当前位置: 仪器信息网 > 行业主题 > >

神经胶质瘤细胞

仪器信息网神经胶质瘤细胞专题为您整合神经胶质瘤细胞相关的最新文章,在神经胶质瘤细胞专题,您不仅可以免费浏览神经胶质瘤细胞的资讯, 同时您还可以浏览神经胶质瘤细胞的相关资料、解决方案,参与社区神经胶质瘤细胞话题讨论。

神经胶质瘤细胞相关的仪器

  • 赛多利斯Incucyte 实时活细胞分析系统,可有效捕获培养箱中细胞的变化。系统支持高分辨率荧光和明场图像采集,能够实现数小时、数天或数周内数据的实时记录。系统使用灵活,从增殖分析到肿瘤球免疫杀伤检测,均可协助用户实时观察和定量复杂的生物变化。集成式软件可以简化数据分析,快速获得结果,并生成可供发表的图表和绘图。 技术优势 1. 灵活简单的样品制备:兼容多种培养容器- 在正式开始实验前,可用免标记法分析细胞融合度,监测培养瓶/ 培养皿,以确保细胞健康- 可用 96 和 384 孔板同时开展多种实验,一次性可容纳多达6 块板Incucyte 试剂可显著提高效率- 检测试剂对细胞健康和形态无影响- 采用经过验证的活细胞检测试剂和配套方案,可节省实验优化和问题查找分析的时间2. 简单灵活的实验设置快捷设置,一步完成- 向导式操作界面,可指引用户设置自动采集和分析参数- 可容纳多个用户同时使用,支持不同的采集频率和图像放大倍数- 远程监测:凭借免费许可证,即可从联网端口控制您实验室里的Incucyte 系统 向导式界面可快速进行实验设置,即使您初次使用,也能轻松完成。3. 多种成像模式获取和查看实时图像- 可采集优质高清相差、红色和绿色荧光图像以及视频- 通过自动对焦,可选择 4 倍、10 倍或 20 倍物镜成像,同时用于多个应用领域- 对细胞干扰最小- 别具匠心的移动光学设计即细胞保持静止状态,让光学元件移动,尤其适用于分析敏感和非贴壁细胞- 采取非侵入性、非干扰性图像采集模式,对整个生物学过程进行长期监测,展现出其本来状态 自动获取实时图像。4. 实时自动分析-可重复的高效图像:根据不同应用领域,选择相应的数据处理和分析模块,可对数千幅图像进行可重复的定量分析,消除操作偏差- 强大的可视化图像和动态检测:专为生物学家开发的可定制的灵活工具,能够快速评估结果,缩短从生成数据到发表的时间 使用Incucyte VesselView 立即查看培养容器中所有位置的图像,并快速评估实验结果,对感兴趣的图像可以放大通过mask 自动识别感兴趣的区域生成时间间隔的图表,可直接用于演示使用Incucyte PlateGraph可立即查看所有96 或384 孔动态趋势,并导出数据以计算EC50 或IC50 值 广泛应用 细胞健康- 细胞增殖:采用免标记法实时自动监测细胞生长,或用NucLight&trade 核标记法实时自动测量活细胞数目。- 细胞凋亡:采用简单的均相方法实时检测活细胞凋亡情况。- 细胞毒性:采用均相法实时检测细胞活性,操作简单,适用于筛选。- 神经突分析:对单纯的神经元培养物、及其与星形胶质细胞的共培养体系,自动实时检测神经突动力学。- 肿瘤球:实时监测肿瘤球的形成、生长和健康状态,并进行定量分析。细胞迁移和侵袭- 划痕迁移和侵袭:研究处理因素对细胞迁移(2D基质)或侵袭(3D凝胶)的效应。- 趋化作用:使用ClearView&trade 96孔板查看并确认趋化因子介导的趋化迁移或侵袭效应。细胞功能- 免疫细胞成簇:无需从培养箱中取出,即可对细胞成簇和扩增进行观察和定量分析。- 抗体内化:适用于抗体筛选或治疗分析的快速、动态、高通量检测。- 免疫细胞杀伤:通过对NucLight&trade 核标记的细胞直接计数或利用IncucyteCaspase 3/7 试剂检测凋亡,来分析肿瘤细胞死亡。- 细胞吞噬:对细胞吞噬pHrodo标记的生物颗粒或靶细胞进行连续分析,并生成视频。- 血管生成:使用我们的共培养检测全套试剂盒,完成血管形成的动力学分析。监测细胞和其他工作流程- 活细胞免疫细胞化学:采用新的免疫细胞化学方法揭示表面蛋白表达的动力学。- 细胞培养QC:无需从培养箱中取出细胞,即可免标记监测细胞形态和增殖。- 克隆稀释:自动扫描克隆,并通过全孔分析验证单克隆性。- 转染效率:采用GFP/RFP 监测和定量分析基因转染的效率和动态变化。- 报告基因:实时检测启动子驱动的重组GFP/RFP 报告基因表达活性。提出新问题- 设计以前无法开展的新实验- 可用于日常监测,也可通过基于图像的动态检测,解答独特的科学问题获取新答案- 实时连续分析,不错过任何一个数据点- 剖析随时间变化和因细胞而异的生物活性- 通过图像和视频这种可视化方式来验证实验结果保护培养的细胞- 无需将细胞从培养箱内取出或干扰培养环境,即可完成细胞分析- 采用的试剂不会影响细胞健康和形态提高效率- 自动获取和分析图像,轻松便利- 兼容 96和 384 孔板,并完成多重性检测- 同时可容纳多个用户和多种应用
    留言咨询
  • Maestro Edge/Pro 高通量微电极阵列系统-对神经胶质瘤致癫痫潜在机制进行研究 含有代谢酶异柠檬酸脱氢酶 (IDH) 突变的胶质瘤脑肿瘤患者经常会出现难治性癫痫发作,但其致病机制尚不清楚。在这项研究中,研究人员使用神经胶质大鼠皮层细胞培养模型和来自 IDH 突变型胶质瘤患者的人类皮层组织来证明 D-2-羟基戊二酸 (D-2-HG)(一种由肿瘤亚型产生的代谢物)会改变代谢谱和上调哺乳动物周围皮层神经元中的雷帕霉素靶蛋白 (mTOR) 信号传导,从而促进神经元尖峰和癫痫发作活动。 为了在存在神经胶质瘤代谢物的情况下检查体外神经网络活动,研究人员使用了 Axion 的 Maestro Pro 多电极阵列 (MEA) 平台和包含神经胶质瘤培养物的定制 transwell共培养小室。 研究结果表明,癌代谢物 D-2-HG 通过激活 mTOR 通路促进周围神经元的癫痫发作活动——这一重要发现提高了对 IDH 突变神经胶质瘤患者癫痫发生的理解,并可能导致新的治疗方法。神经网络功能实时检测攻略◆ ◆ ◆ ◆PART I 原理介绍为什么要检测神经电活动?研究证明构建体外神经元疾病模型是研究神经元功能和神经系统复杂疾病的一个有效策略。细胞成像、基因表达分析或者蛋白印迹这些方法能够全面地反应神经疾病模型的复杂性吗?神经网络功能又是怎样的?科学家们很难得到一个完整的答案。而使用Maestro MEA技术,任何科学家都能够快速简单地高通量检测活细胞的网络电活动。 什么是高通量微电极阵列? Axion的MEA板底部紧密嵌合了呈网格状的电极阵列。科学家们可以在电极上贴附培养神经元等可兴奋性细胞,它们会逐渐成熟并形成网络,并最终生成网络功能。这样MEA板上每个电极就都可以捕捉到毫秒级的神经元自发放电,为您在时间和空间两个维度提供精准的实验数据。您还可以通过电刺激或者光刺激进一步拓展实验设计。适用样本原代神经元细胞,iPSC衍生神经元,脑片,iPSC衍生神经球/类器官/迷你大脑三个层面了解神经网络功能神经细胞(橙色)经培养覆盖于固定在MEA板底部的电极(灰色)上。Maestro MEA系统检测神经网络的功能,包括电活动、同步性和网络震荡。Activity 电活动 如何判断神经元有没有功能?动作电位是一个重要标志。动作电位发放频率高表明其放电频繁;发放频率低意味着神经元电生理功能可能已受损。Synchrony 同步性 如何评判神经元间突触的功能?突触的存在使得神经元之间的联系成为可能。一个神经元的动作电位藉此得以影响到另一个神经元发放的可能性。同步性检测能够反映出突触连接的强弱,及不同的神经元在毫秒级别时间范围内产生同步放电的可能。Oscillation 网络震荡 如何确定样本的网络功能?有功能的神经网络是由兴奋性和抑制性神经元共同构成的。它的一个重要特征就是神经震荡,即不断变化中的神经活动高潮-低谷周期。而一个MEA孔内检测到的所有神经元电发放在时间轴上的规律就是该样本的震荡数据。PART II Maestro系统介绍Maestro MEA实验流程Maestro使得MEA实验简单到超乎想象。仅需三步:A将神经元培养在Axion MEA板上。B将MEA板放入Maestro MEA系统,静待环境仓达到温度和气体浓度的平衡。C使用AxIS Navigator软件无创且实时地从三个层面(电活动、突触功能、网络震荡)定量分析神经元电活动。配套的其他分析软件,还能自动计算出多于25种类别的二级参数,供您进行数据深度挖掘。Maestro平台优势提供关键答案 与常规方法间接检测可兴奋性不同,Maestro MEA系统的测试直接反映神经元的动作电位。比较常见的间接技术如钙成像,无法捕获微小却重要的神经网络信号变化。而蛋白表达水平的检测结果与细胞疾病模型功能的相关性也很差。只有使用Maestro MEA系统实时追踪细胞的可兴奋性,您才能回答这个关键问题:样本是否在以您期待的方式放电?无标记分析 Maestro MEA系统无创地检测神经元群落的电信号,杜绝使用染料或报告子,避免其对细胞模型的干扰,您数据的准确性无需置疑。更使您得以实现对一个样本电活动的长期(数小时、数周甚至数月)追踪。原位检测 其它的高通量平台(例如自动化膜片钳或者流式细胞仪)通常会要求对样本做预处理,制备成单细胞悬液再上机检测。对于可兴奋性细胞这种以互相交联的功能性网络形式存在的样本来说,这是一种非常不理想的状态。此外,细胞收集的过程也需要大量的手动操作步骤。只有Maestro MEA系统能够在捕获神经元细胞可兴奋性的同时维持其形态学上的复杂性。简单易用 只有电生理专家才会使用Maestro MEA系统?不存在的!只要把细胞培养在MEA板上,然后把板放入Maestro MEA仪器检测仓内,即可记录神经元电生理数据。Axion提供的一系列软件会帮您完成剩下的数据分析步骤,甚至连可直接用于文献发表的图表都搞定了。您也可以!PART III 应用方向简介神经疾病细胞模型,药物神经毒性筛选,神经细胞功能检测,光遗传学,模式生物表型筛选,干细胞开发及质控,神经球、脑类器官研究帕金森神经肌肉接头病脆性X综合症智障癫痫化合物神经毒理检测星形胶质细胞对神经元功能的影响精神分裂孤独症/自闭症脑瘫偏头痛蛇毒腺类器官前额叶痴呆精神类药物滥用/成瘾神经元代谢干细胞治疗/修复注意缺陷多动障碍/多动症高通量微电极阵列+光遗传的强大组合Axion公司创新的高通量光遗传刺激系统Lumos,可对MEA板内样本进行光强(1-100%)和光照时长(低至100ms)的控制。您可以选择多至四种不同波长的LED光源来刺激单孔内的细胞,并行处理通量高至96个。您也可以对每个孔内混合培养细胞样本中的某一类细胞群体进行单独控制,建立高阶神经疾病模型。所以,通过在软、硬件上与Maestro系统无缝整合,Lumos可以助您精准、灵活、高效地实现神经细胞网络的调节及实时的功能检测。 Axion BioSystems ImagineExploreDiscover
    留言咨询
  • 脑胶质瘤约占中枢神经肿瘤的一半, 临床治疗效果差。尤其是胶质母细胞瘤, 其恶性程度极高, 预后性差, 是威胁人类健康的主要恶性肿瘤之一,因此, 选择一种有效的动物模型是研究脑胶质瘤发病机制及其治疗方法的关键。 目前建立脑胶质瘤的方法有诱发型、移植型和转基因型三类, 虽然前两种方法的运用时间较长, 获得的动物模型目前使用比较广泛, 但却各有其局限性而限制了它们的应用范围。相对来说, 转基因动物模型具有分子机制明确、建立系统稳定、重复性好等优点, 随着分子生物学技术的不断完善, 转基因动物胶质瘤动物模型的优势体现得越来越充分, 尤其是慢病毒介导的胶质瘤动物模型, 其载体构建简单, 表达系统稳定性强, 免疫原性小, 是一类很有发展潜力的转基因方法。转基因动物模型缺点是组织特异性 注射难度比较大, 而靶向转基因小鼠因具有其独特的优势, 因此,需结合两种方法使用。 脑胶质瘤动物模型的运用为临床上治疗人类胶质瘤的前期研究提供了重要信息, 虽然动物模型能在很大程度上模拟人类胶质瘤的发生, 但目前的研究结果表明, 动物肿瘤模型与人类胶质瘤的发病机理始终有所差异, 在抗肿瘤药物筛选上, 很多抗肿瘤药物对模式胶质瘤动物有很好的疗效, 但在人体上却收效甚微,这就提醒着我们还需要不断开发建立动物脑胶质瘤模型的新技术。 纽迈研发的脑胶质瘤动物模型成像仪可以通过非侵入性的方式,对动物模型体内的脑胶质瘤进行高分辨率、高敏感度的成像,帮助研究人员观察肿瘤的生长、转移和治疗效果等。这种成像仪的使用,不仅为脑胶质瘤的基础研究提供了强大的工具,也为开发新的治疗方法和药物提供了重要的实验依据。脑胶质瘤动物模型成像仪技术指标:场强:1±0.05T ,共振频率约42MHz动物线圈:直径60mm脑胶质瘤动物模型成像仪适用范围:磁共振造影剂大、小鼠活体成像脑胶质瘤动物模型成像仪应用方向:肿瘤识别(脑、皮下、肝脏)肿瘤生长与治疗过程肥胖研究磁共振造影剂研究脑胶质瘤动物模型成像仪应用案例:
    留言咨询
  • 细胞实时监测系统 MAESTRO Z技术概述细胞测试相对于使用组织和动物模型的相关实验来说有着通量和成本上的巨大优势,我们因此得以快速开展人类生命的离体探索。但是很多基于细胞样本的实验技术是终点法的,只能得到一个时间点的样本快照数据。Axion BioSystems公司的MaestroZ平台很好地解决了这个弊端。我们使用基于阻抗检测的细跑分析技术,使得实时、不间断且无需标记的细胞监测成为可能。对数据流的后续分析可以揭示细胞间互作和细胞一药物反应的动力学,使得您可以更好地理解其机理而需做费时费力的多次终点法实验。 实时检测细胞的增殖、形态和活力Maestro Z的工作原理细胞样本生长在埋入于多孔板底部的电极之上。通过检测阻抗值的变化,MaestroZ平台能够将细胞的存在进行量化。测试时,我们将微小的电信号施加于电极上。当细胞贴附于电极并伸展开后,细胞间形成的联接将会阻挡住这些电信号的通过,导致阻抗值的读数增加。另外,一些细胞结构形态上的细微改变(比如源于受体介导的信号传递或细胞形态学变化)也会影响到阻抗值。阻抗检测的无标记和非侵入特性,使得我们的技术特别适合被用来定量细胞的动态反应,无论您想持续观察多久。 阻抗检测会计算有多少电信号(上图中青色箭头所示)被电极-细胞的界面所阻挡。当电极末被覆盖时,电信号能够轻松穿过,这时阻抗值比较低。当细胞盖住电极时,能够通过的电信号就变少了,相应的阻抗值就会增大。当细胞死亡或者脱离电极时,阻抗就会恢复到基线水平。 实验流程 活细胞阻抗记录 MaestroZ阻抗实验能够被广泛地应用到各个领域。比如说实时监测细胞的生长、肿瘤免液治疗实验(包括T细胞介导的细胞溶解)细胞毒理以及GPCR介导的信号传导等等。 MAESTRO Z 应用案例您的细胞样本专属功能档案基于各自不同的生物学功能,细胞样本间的生长、贴附及互作会有所不同。这些特性共同构成了一个独特的细胞档案。Maestro Z使您得以记录这些信息,并基于细胞各种特性(如种类、密度、形态和贴附)的不同来将它们分开归档。细胞功能归档可被用于细胞质控、纯度分析、量化生产速率和优化实验启动时间点等方面。这些功能的实现无需复杂的实验设定和分析。只需一个按键,Maestro Z系统就能稳定测试环境,使您能够长时间非侵入地监测细胞,并提供实时的生长区曲线和简明的终点图示。 我们将Hela细胞按照不同密度种入Cytoview-Z测试板内,并对其贴附、伸展及增殖的不同生长阶段开展监测。从上方最左边的图中我们可以看到对应于这些阶段的实时阻抗记录。其中任意时间的终点数据(如第16个小时)都可以以柱状图的形式单独表示出来(中图)。而从右侧的图示上我们可以看出Hela、A549、和Calu-3这三种不同的细胞生长曲线都不尽相同。 追踪免疫介导细胞死亡神经胶质瘤是一种恶性脑肿瘤目前并无有效治疗方案,预后生存期也只有12-15个月。而人体免疫系统中的效应细跑,有着高特异性和固有的细胞毒性、在未来的脑胶质瘤治疗中被人们奇予很高的期望。Maestro Z的阻抗测试有着高灵敏、无标记及无损的特点,为连续监控肿瘤细胞增殖和免疫细胞介导的细胞毒性提供了可能性。因此能够被用来评估免疫治疗的效价。 如上左图所示,我们将恶性胶质母细胞瘤细胞株U87MG,以三种不同的细胞密度及四重复的形式,分成12个样本种到CytoView-Z阻抗板内。使用Maestro Z对其阻抗值变化持续监测24小时后,以10:1的比例将被激活的人T细胞加入到这些样本孔内,后续的确能够观察到阻抗值的降低。这和预期中的T细胞介导的U87细胞裂解效应是一致的。对比之下,那些未经处理的肿瘤细胞样本(浅蓝色显示),其同时段测得的阻抗值则继续上升。上中图则显示了在这三种处理条件下(不同的细胞数量),检测到的的实时细胞裂解比例。在这基础上,我们就能如上右图所示,对每种处理方案的KT50(裂解50%肿瘤细胞所需时间)值进行计算。可以看翻,要达到更快的U87MG细胞杀伤速度,我们就需要更高的T细胞密度。 细胞毒性的动态研究当您想要测试新药或者细胞治疗的效果时,传统的终点法实验只能区分细胞样本的死活,而无法了解细胞反应的动态过程并对背后的机理做出解释。Maestro Z所提供的无标记、非侵入的连续监控能力,就使您得以捕捉到细胞毒性的全程。不仅能看到毒性的程度,还能揭示其动态学和细胞死亡的速率。通过这些细胞反应的动态表现,您往往更能洞悉一个药物的效力及机理。 用Doxorubicin药物处理A549细胞后,阻抗测试揭示了样本的动态反应(上左图为实时连续检测结果,中图为虚线处单个时间点的读数)。在同一块板上,我们可以将Dox药物处理组的阻抗数据和细胞生长组(未加药对照)及细胞死亡组(加入Tergazymel)的相关数据做比对,从而得知Dox药物导致细胞溶解比例的实时效应,并能够覆盖药物反应的整个过程。 感知受体介导的快速信号传导经由信号传导通路,细胞能够接收外界的信息。胞外信号分子与细胞表面的对应受体结合后,细胞内的信号传导就会被触发,并最终决定细胞的行为。跨膜受体中的最大家族是G蛋白偶联受体(GPCRs)。被结合后,它们将导致细胞构象的改变并引起下游的一系列反应。这些细微的变化通常发生迅速,但其对细跑生理的重大影响却能够持续几分钟至几个小时。通过阻抗检测,我们能够将其捕获并量化。Moestro Z的高灵敏度及连续监测特性赋予您测试细胞信号传导动态的能力,无论这个过程有多久。 如上左图所示,我们将Calu-3细胞培养在阻抗检测板中,随后加入不同浓度的异丙肾上腺素(一种强效β肾上腺素受体拮抗剂,图中青色所示)并观察阻抗值的实时变化。如果我们将20分钟时间点的数据做成柱状图(如中图所示),可以看到最高药物浓度组的阻抗值在那时已经降到了最低,而最低药物浓度组则已经回复到了基线值。我们还可以探索不同机理的化合物对于细胞信号传导的不同作用。如右图所示,橘色标识的组胺处理组(100μM)很迅速地出现了短时间的阻抗值降低;而灰色标识的细胞松弛素处理组,由于其细胞周期停止及肌动蛋白合成受抑制,则表现出前高后低的阻抗变化规律。 MAESTRO Z独特优势Maestro Z是全球领先的基于电极技术的实时细胞分析系统。具备最新设计的内置测试环镜仓以及下一代数据采集和分析软件。Maesto Z平台为您的要时细胞分析提供完整的解决方案。 持续的细胞监测并行记录96个样本的阻抗,就算要做长达几周的实时记录也毫无压力。实验过程非侵入、无标记。根除染料/报告子对细胞的影响,数据可靠性无需置疑。 强大的数据分析功能AxIS Z软件极大地简化了您实验的设定、执行和分析等各个环节。现在您可以全神贯注于科学本身,再也不用为数据分析发愁了。 实现原位检测无需繁复的细胞悬液制备(比如进行流式分析时),也不必破坏贴壁细胞的网络形态。Maestro Z系统使得高通量样本在正常生理环境下的实时数据睡手可得。 想看到您的样本?有些时候,您只是想在显微镜下看一眼自己的细胞样本。Maestro Z 96孔专用板的每个孔内都设有细胞观察窗口,方便您的操作。 精确的环境控制另外购置一台细胞培养箱?不存在的。Maestro Z的内置智能环境仓可以精准地控制温度和二氧化碳浓度,省下您宝贵的实验室空间和预算。另外这种设计还能从根本上杜绝电噪音和机械震动。一举两得。
    留言咨询
  • 产品简介SPRm200系统将光学显微镜与分子互作技术相结合,专为观察和测量细胞膜表面蛋白和其他目标分子结合亲和力及动力学常数,为分子相互作用的研究开辟了新的前沿。SPRm200无需对观察目标进行标记,可以实时定量的进行检测。可同时可视化观察细胞结构和局部结合活性。无需提取细胞膜蛋白,即可在正常活细胞状态下观察和测量药物和膜蛋白的实时相互作用。探测器测量每个像素的SPR响应,并将其映射到SPR图像中。在每个像素处,记录一个传感图,从而提供更多的局部信息。SPRM使在自然条件下研究细胞表面膜蛋白与其他目标分子结合和相互作用成为可能。SPRm200凭借其卓越的灵敏度和稳定性,还可测量细菌和病毒相互作用的结合活性,同时可用于开发输送纳米药物的新方法。产品特点In vitro & 无标记 膜蛋白分子相互作用动力学检测光学显微镜与高分辨率表面等离子共振检测器同时成像,可用于自然环境下,单细胞或多细胞表面蛋白受体与药物分子相互作用筛选与分析。实时&定量同步于SPR测量的光学成像亲和力测定、动力学常数分析通过框选不同的细胞,可以分别获取不同区域的传感器数据,实现对单个细胞表面蛋白分子亲和力的测定。 纳米粒子检测仪器将光以共振角投射到传感器上,沿金属膜表面产生可传播的表面等离子体波。当纳米颗粒与传感器表面待检物结合时,它在SP波中充当散射中心,形成印记图案,印记比实际大小高出100倍。这种放大的印记能够检测到小于光学衍射极限的颗粒,通过测量和绘制这些印记,可以监测和研究纳米级别尺度的结合活性。SPR图像中印记图案的出现和强度变化提供了关于传感器表面待检物与纳米颗粒之间的亲和力,以及待检物与介质中的其他分子的相互作用的丰富信息。细菌和抗生素由细菌细胞纳米运动引起的波动可以对细胞代谢进行深入研究。当将抗生素(PMB)添加到细胞SPR分析池中,细菌细胞的波动急剧减少,从而提示PMB与细胞膜蛋白结合的亲和力。应用研究方向1.小分子药物(200Da)与单细胞或多细胞结合筛选与分析2.细胞精度统计学分布分析,研究细胞异质性差异3.抗体药物与单细胞或多细胞结合的筛选4.细菌或病毒与抗菌性药物的相互作用5.其他分子细胞/活细胞层面原位研究应用实例小分子药物常用药物中,小分子药物可占总量98%,小分子药物通常是信号传导抑制剂,它能够特异性地阻断肿瘤生长、增殖过程中所必需的信号传导通路,从而达到治疗的目的。1. 小分子药物与HEK 293细胞GPR39受体相互作用2. 小分子药物与细胞ASIC 酸敏感离子通道受体相互作用研究3. 肽与A549细胞的相互作用4. CP-D细胞相互作用5. WGA与CHO细胞的相互作用抗体药物1. 单克隆抗体(mAb)疗法已成为治疗癌症、自身免疫性疾病、哮喘和许多其他疾病的既定方法。2. 人神经胶质瘤细胞(H4)抗体结合的测定3. A431细胞的EGFR结合亲和力 基于病毒、细菌载体分子互作的研究1.快速ASTs实验2. 通过SPRM电化学阻抗分析,测量了传感器表面病毒肽配体和不同GPCR受体的结合动力学常数参数
    留言咨询
  • Naturethink细胞共培养实验系统_北京_上海别名:细胞培养体系,细胞培养技术,体外细胞共培养系统 产品型号:NK110-GPY 产品介绍:血管遍布于人体各处。作为血液循环的通道,承担着人体所需内部、外部物质的输送、转移;没有物质运送的输入和输出,物质就会在一处堆积。血管见证或者参与绝大多数远程和近程的反应;因而脱离血管及内皮细胞去研究其它细胞、类器官、器官会显得不够完整。细胞共培养系统主要是模拟细胞在体环境下进行细胞培养,以期获得细胞的在体状态为目标,来实现对在体细胞的研究 。在体细胞并非独立存在,会与周边的细胞发生相互作用,会通过血液循环与附近的或者远程的细胞形成相互作用;譬如内皮细胞与平滑肌细胞、内皮细胞与肿瘤细胞、内皮细胞与体细胞、内皮细胞与肝细胞、肝细胞与心肌细胞等等。Naturethink细胞共培养实验系统可用于实现内皮细胞受血流及流体剪切力刺激下与另一种不同培养环境下的细胞进行共培养;也可用于两个远程细胞之间可能的相互关联的研究;随着仪器应用的扩大,产品可以应用的场景越来越多。比方:根据不同的实验需求,进行多种细胞在仿生环境下相互影响的研究实验,实现不同比例的细胞数量下两种细胞相互影响的结果,更多的实验需要根据用户自身需求进行相应的调整,如原代细胞和不同细胞系共培养;上皮细胞与间充质细胞共培养;体外各种细胞旁分泌或自分泌间的相互作用;细胞球体或类器官共培养;血管细胞共培养(血管内皮细胞和平滑肌细胞共培养);肿瘤细胞和肿瘤相关基质细胞共培养;神经元和胶质细胞共培养;星胶质和小胶质细胞共培养;肌肉和神经细胞间的相互作用。 Naturethink细胞共培养实验系统可实现细胞流体环境下的血管内皮细胞与平滑肌细胞共培养实验、肿瘤细胞与内皮细胞共培养实验;肿瘤血液循环迁移实验、骨细胞与内皮细胞共培养实验、类器官药物代谢实验、类器官体外仿生环境培养实验、类器官药物代谢实验、类器官体外仿生环境培养实验、血脑屏障实验、内皮细胞与其他细胞共培养、细胞近程相互影响实验、细胞间远程分泌作用实验、细胞流体剪切力实验等。 Naturethink细胞共培养实验系统的应用领域包括心脑血管、肿瘤、骨科、口腔、内科、眼科、药物代谢、组织工程、类器官培养、干细胞培养、组织器官培养、器官移植等领域。 参数说明:流体恒剪切力范围:0-30dyne/cm2;模拟多种血流循环模式:稳定流,脉冲流,振荡流;培养液用量:30-100ml;细胞培养面积:3*4平方厘米;频率变换周期:0-2Hz。产品优势:多细胞培养,发现细胞间的相互作用;不同细胞间加载不同力刺激;多器官所属细胞可联合实验,又相互独立;多维度类器官培养,可扩展性大;多种血流模式:稳定流,脉冲流,振荡流;模拟体内多种血管场景:动脉、静脉、毛细血管。 Naturethink是国内较早从事仿生细胞培养仪器研发与销售的企业,多年的技术沉淀,使得我们在人体仿生环境培养领域拥有独立自主的研发能力,并拥有核心技术;我们为用户提供仪器设备的改进、设计及研发服务。同时我司还提供多种规格平行平板流动腔小室、细胞流体剪切应力系统、细胞共培养流体剪切应力实验系统、牵张力细胞实验系统装置、、人体血液循环模拟系统、细胞张应力(应变)刺激实验系统、细胞压力刺激实验室系统、细胞综合应力实验系统、血液循环模拟培养系统、细胞组织构建培养系统等。
    留言咨询
  • 多功能细胞电穿孔仪 400-860-5168转1674
    美国著名BTX是专业的细胞融合、多功能细胞电穿孔仪 的生产厂家。自从1983年起,苛求的科研工作者就已经把BTX多功能细胞电穿孔仪作为电融合、电穿孔等应用领域的首选仪器。ECM多功能细胞电穿孔仪在转基因的应用领域中得以广泛的应用,其无以伦比的高性能得到了全球同行的厚爱。BTX的多功能细胞电穿孔仪系列产品适用于动植物、细菌、酵母、哺乳动物、人类细胞(包括活体细胞)的转基因等操作,BTX还在网站建立了技术数据库,提供超过5000份的参考目录和600多份的protocols供科研工作者免费查阅。多功能细胞电穿孔仪应用举例&bull 动物细胞转染(系统:ECM630/830)对真核细胞的转染可以通过多种方法获得,例如磷酸钙沉淀、脂质体转染、病毒方法以及电穿孔。电穿孔已经被正式对传统的转染方法不灵的细胞有很好的效果,因此被选为最佳的分子传递系统。电穿孔的好处有可重复性、更高的效率、大量样本处理、无毒性以及容易使用(不需要孵育时间)。Lofin等人(1999)对NIH/3T3细胞进行电穿孔使mRNA进入,以研究细胞周期及细胞分化过程中mRNA对基因表达调节、控制。Bodwell等人(1999)在对COS-7细胞进行电穿孔是使用较长的脉冲时间后获得了较高水平的表达。Warner等人(1997)使用电穿孔方法成功转化了淋巴细胞。Incyte Genomics公司成功使用BTX电穿孔仪转染了ES细胞进行转基因小鼠的生产。BTX ECM399\630\830型仪器、电穿孔杯以及多种特用的电极都用于动物细胞转染用途。&bull 蛋白质电整合/电插入 (系统:ECM630/830)将蛋白质导入细胞以及将蛋白质插入至细胞膜中也可以通过电穿孔来实现。不光肽段,而且包括抗体的多种蛋白,也可以进行导入。Ushio-Fukai等人(1998)对电穿孔插入哺乳动物细胞中的外源蛋白进行了定量。对于这些用途可以使用多种BTX电极。&bull 植物细胞转化(系统:ECM630/830)对植物原生质(玉米、烟草等)及完整植物的电穿孔可以用于产生对农业/园艺有用的转基因作物。植物细胞转化的一个主要目的是对植物细胞进行稳定转化以产生具有优良品质及产量增加的作物。Lin等人(1997)优化了多种植物上用于GUS表达的电穿孔条件,结果显示完整植物细胞以及原生质都可以进行有效转化。Diaz等人(1994)针对小麦及燕麦的叶和根的原生质进行了相似的优化试验,证明了电穿孔对于植物工作的有效性。这些作者也比较了电穿孔与PEG的差别,结果发现电穿孔更有效、更有重复性、更经济。BTX是世界上体内转染用特殊电极的领先者。对于这些用途可以使用多种BTX电极,例如2针阵列、游标尺电极、以及Tweezertrodes。&bull 贴壁细胞的转染----ACT (系统:ECM630/830)除了对盛在普通样品杯的悬浮细胞进行电穿孔外,还可以对多种培养板上的贴壁细胞进行原位电穿孔。这样可以避免用胰酶消化细胞,有助于保持细胞的活性及细胞数目。Lewis等人(1999)使用培养皿电极将基因转染入人类及静脉内皮细胞。Paptis等人(1998)通过对长在导电载玻片的NIH/3T3细胞进行原位电穿孔研究信号转导。Teruel等人(1999)也对位于载玻片上的海马神经细胞转入DNA、RNA以及多种大分子。BTX为贴壁细胞的转染(ACT)提供了PP35-2、366、747、840及Epizap电极系统。请关注不久后为这些用途开发的新产品&bull 高通量筛检----HTS (系统:ECM630/830)高通量筛检及cDNA文库的建立,需要一次处理多个样本的能力。使用传统样品杯花费很大而且有时间限制。然而,96孔板里使用的电极对于这些类型的应用肯定有用。Hoffma-Tsay等人(1994)使用96孔共轴电极在植物融合实验中检测8种化学物质。Peterfy等人(1995)比较了多种类型的多孔电极,将DNA传递入COS-7细胞。Marrero等人(1997)使用多孔电极将抗体电导入血管平滑肌细胞,以诱导细胞增值。BTX目前提供747和840用于这样的用途,并且不断开发新的产品。体内基因导入(IVGD)(系统:ECM830)在体内基因转移的非病毒技术中,直接将质粒DNA注射进入肌肉内是简单、廉价及安全的。Aihara及Miyazaki(1998)第一次指出通过在肌肉内将DNA注射与电穿孔相结合,可以将表达增强100倍。Mir等人(1999)使用多种类型的电极将基因传递进入多种种属的骨骼肌(大鼠、小鼠、兔、猴)。他们的结果显示通过使用电穿孔以及DNA注射:(1)基因转移的效率大大增加了,只是表达增强2-4倍;(2)不同实验之间的差别缩小了,而这正是单独DNA注射的主要缺点;(3)表达持续时间很长(数月),这对于长期临床应用非常重要;(4)不同种属的不同的肌肉都有阳性的反应,说明广泛的可用性;(5)基因表达非常特异仅在局部,而周围组织则没有影响到。这种技术成功用于其他组织,例如肝、睾丸、以及皮肤。最近Vicat等人(1999)通过体内电穿孔仪将基因传递如小鼠脑组织。与被称为有力的脑组织基因转移的非病毒载体的pCMV-luc与PolyEthylenlmine联合的方法相比,电穿孔的效率要高50倍。Nishi等人证明使用电穿孔可以获得有效的神经胶质瘤基因转移。Nishi还显示对实体瘤进行电基因治疗后肿瘤生长阻滞了50-90%。Dean等人将基因电导入完整的肠系膜动脉获得了成功。电穿孔已经被证实确实是进行体基因/药物转移方面一项有前途的技术,有许多新奇的用途。BTX公司特制的2针阵列电极、Genetrodes、卡钳电极、Tweezertrodes提供将基因侵入性以及侵入性转移入组织的方法。卵内基因转移(IOGD) (系统:ECM830)Muramatsu等人(1997)比较了3种转染方法用于将外源基因转入早期鸡胚进行表达。他发现与脂质体转染及基因枪相比,电穿孔是最有效的方法。Takeuchi等人(1999)使用电穿孔技术将早期鸡胚转染了tbx5及tbx4基因,以确定肢芽的翅/腿标志。对于这种用途已经开发出特用的电极。Genetrodes、L形状针电极,被用于测定鸡胚及靶向组织的特定区域。许多研究人员已经转染了眼、心或者肢体组织,方便了发育生物学方法的进一步研究。刚上市的足控开关具有遥控功能,是ECM830可以在不需要手操作的情况下进行激活,这对于卵内、体内以及体外胚胎用途非常重要。体外胚胎基因转移(IVEGD)(系统:ECM830)Tasaki等人(1999)讨论了使用电穿孔在体外小鼠胚胎方面的运用。小鼠胚胎有柱状的结构而且有比家禽更多胚胎培养基操作需求。有可能对胚胎进行电穿孔用于异位表达研究。在小鼠中后脑部的基因表达已经被观察。这个技术也用在交配后9.5天小鼠胚胎,以研究Hu基因在神经分化中的功能。BTX为这些目的提供一种全新的电极:Genepaddles。&bull 胚胎操作/核移植/动物克隆 (系统:ECM2001/830)核移植是将细胞核从供体转入受体的过程。细胞核指导胚胎的发育,导致新生体安全出生。在这个过程中,电融合用于将供体细胞与受体卵细胞融合,并进一步激活细胞分裂,形成胚胎。Meng等人(1997)将核移植技术扩展至灵长类动物模型,克隆出恒河猴。技术的进步使研究人员能够从分裂球进展至更高分化的胚胎细胞以及静止的胚儿细胞,作为核的供应来源。胚胎产生的细胞在体外培养6-13代,然后在转入前使用血清饥饿的方法使细胞静止。如前文所述,Roble、Cibelli以及Stice是第一次在1998年报告使用非老化胚成纤维细胞作为核的供体进行核移植而产生绵羊克隆转基因牛的人。Ian Wilmut在1996年震惊了整个世界,他从成年乳腺的细胞产生出第一个动物克隆&mdash &mdash 多利。使用分化的成年细胞进行克隆的能力打开了核移植广泛运用的大门即基因治疗的令人激动的模式。最近的成功事例PPL Therapeutics公司从成年体细胞克隆出猪。对于这些用途可以使用多种细胞融合样品池及微型载玻片。
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。相关研究 1.中医 仿生针灸 揉眼 视网膜眼部修复 2.机械信号转导,通道表达,piezo1通道3.骨细胞牵张成骨 软骨在生、 骨密度 骨质疏松 4.牵张之后胶原的分泌量 5.肺部仿生,仿呼吸机,体外肺部模型 6.心肌仿生,心肌肥大 7.肌肉收缩 细胞调节分化 脑损伤 8.在自己基底水凝胶,组织膜,纤维,组织工程 微流控芯片 9.组织修复 机械感受 10.药物在机械应变的抗炎和促炎作用 11.3D培养 不同基地牵张 12.肿瘤微环境 蛋白表达标签: 牵张力细胞实验培养仪细胞拉力装置细胞拉伸细胞牵张拉伸细胞拉伸实验细胞牵张细胞牵张实验牵张拉伸培养牵张力细胞拉伸仪如果您感兴趣的话,我们可以为您提供试样服务,请联系:
    留言咨询
  • Naida GoNadia Go是一款紧凑、灵活的微流控单细胞制备系统,可用于单细胞转录组测序文库制备、3D细胞培养、细胞间相互作用等。Nadia Go为英国Dolomite Bio公司推出进行单细胞转录组测序文库的优化型号,可进行多个维度的参数调整,包括液滴大小、温度、搅拌速度、压力等,结合配备的高速显微成像系统,实时观察液滴形成过程,为您开发新的单细胞方法和方案。同时可应用于水凝胶微流控液滴,进行细胞3D培养、共培养、细胞间相互作用等。Nadia Go的优势:开放性:温度、压力、搅拌速度、时间可灵活调节实时成像:高速相机实时观察液滴的形成,方便新应用的开发兼容多种样品:兼容多种类型和大小的细胞应用方向:应用于单细胞RNA测序(scRNA Seq),单细胞核RNA测序(sNuc-Seq),细胞3D培养、共培养、细胞间相互作用等研究,具体研究领域包含:肿瘤学研究免疫学研究干细胞研究神经生物学感染与免疫微生物学研究
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。如您对此感兴趣,请联系:(微信同号)产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。国产flexcell产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。 相关研究 1.中医 仿生针灸 揉眼 视网膜眼部修复 2.机械信号转导,通道表达,piezo1通道3.骨细胞牵张成骨 软骨在生、 骨密度 骨质疏松 4.牵张之后胶原的分泌量 5.肺部仿生,仿呼吸机,体外肺部模型 6.心肌仿生,心肌肥大 7.肌肉收缩 细胞调节分化 脑损伤 8.在自己基底水凝胶,组织膜,纤维,组织工程 微流控芯片 9.组织修复 机械感受 10.药物在机械应变的抗炎和促炎作用 11.3D培养 不同基地牵张 12.肿瘤微环境 蛋白表达标签: 牵张力细胞实验培养仪细胞拉力装置细胞拉伸细胞牵张拉伸细胞拉伸实验细胞牵张细胞牵张实验牵张拉伸培养牵张力细胞拉伸仪如果您感兴趣的话,我们可以为您提供试样服务,请联系:
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。 相关研究 1.中医 仿生针灸 揉眼 视网膜眼部修复 2.机械信号转导,通道表达,piezo1通道3.骨细胞牵张成骨 软骨在生、 骨密度 骨质疏松 4.牵张之后胶原的分泌量 5.肺部仿生,仿呼吸机,体外肺部模型 6.心肌仿生,心肌肥大 7.肌肉收缩 细胞调节分化 脑损伤 8.在自己基底水凝胶,组织膜,纤维,组织工程 微流控芯片 9.组织修复 机械感受 10.药物在机械应变的抗炎和促炎作用 11.3D培养 不同基地牵张 12.肿瘤微环境 蛋白表达微信同号
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。国产flexcell产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。国产flexcell产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。如果您感兴趣的话,我们可以为您提供试样服务,请联系:
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。如果您感兴趣的话,我们可以为您提供试样服务,请联系:
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。免费试用三个月为方便您亲自验证产品,我们承诺免费为所有中国用户提供3个月的试用期 相关研究 1.中医 仿生针灸 揉眼 视网膜眼部修复 2.机械信号转导,通道表达,piezo1通道3.骨细胞牵张成骨 软骨在生、 骨密度 骨质疏松 4.牵张之后胶原的分泌量 5.肺部仿生,仿呼吸机,体外肺部模型 6.心肌仿生,心肌肥大 7.肌肉收缩 细胞调节分化 脑损伤 8.在自己基底水凝胶,组织膜,纤维,组织工程 微流控芯片 9.组织修复 机械感受 10.药物在机械应变的抗炎和促炎作用 11.3D培养 不同基地牵张 12.肿瘤微环境 蛋白表达标签: 牵张力细胞实验培养仪细胞拉力装置细胞拉伸细胞牵张拉伸细胞拉伸实验细胞牵张细胞牵张实验牵张拉伸培养牵张力细胞拉伸仪如果您感兴趣的话,我们可以为您提供试样服务,请联系:(微信同号)vx:
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。如您对此感兴趣,请联系:(微信同号)产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。国产flexcell产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。 相关研究 1.中医 仿生针灸 揉眼 视网膜眼部修复 2.机械信号转导,通道表达,piezo1通道3.骨细胞牵张成骨 软骨在生、 骨密度 骨质疏松 4.牵张之后胶原的分泌量 5.肺部仿生,仿呼吸机,体外肺部模型 6.心肌仿生,心肌肥大 7.肌肉收缩 细胞调节分化 脑损伤 8.在自己基底水凝胶,组织膜,纤维,组织工程 微流控芯片 9.组织修复 机械感受 10.药物在机械应变的抗炎和促炎作用 11.3D培养 不同基地牵张 12.肿瘤微环境 蛋白表达标签: 牵张力细胞实验培养仪细胞拉力装置细胞拉伸细胞牵张拉伸细胞拉伸实验细胞牵张细胞牵张实验牵张拉伸培养牵张力细胞拉伸仪产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。 相关研究 1.中医 仿生针灸 揉眼 视网膜眼部修复 2.机械信号转导,通道表达,piezo1通道3.骨细胞牵张成骨 软骨在生、 骨密度 骨质疏松 4.牵张之后胶原的分泌量 5.肺部仿生,仿呼吸机,体外肺部模型 6.心肌仿生,心肌肥大 7.肌肉收缩 细胞调节分化 脑损伤 8.在自己基底水凝胶,组织膜,纤维,组织工程 微流控芯片 9.组织修复 机械感受 10.药物在机械应变的抗炎和促炎作用 11.3D培养 不同基地牵张 12.肿瘤微环境 蛋白表达标签: 牵张力细胞实验培养仪细胞拉力装置细胞拉伸细胞牵张拉伸细胞拉伸实验细胞牵张细胞牵张实验牵张拉伸培养牵张力细胞拉伸仪如果您感兴趣的话,我们可以为您提供试样服务,请联系:
    留言咨询
  • Maestro Z/ZHT 肿瘤细胞杀伤评估仪/ CAR-T免疫研究-应用案例:监测免疫T细胞介导的细胞死亡 人体免疫系统中的效应T细胞,对肿瘤细胞有着高特异性和与生俱来的细胞毒性,在未来的脑胶质瘤治疗中被人们寄予很高的期望。Maestro Z的阻抗测试有着高灵敏、无标记及无损的特点,能够实时监测肿瘤细胞的增殖和T细胞介导的细胞溶解等过程,在体外评估免疫治疗的效价方面有着突出的优势。 如上左图所示,我们将恶性胶质母细胞瘤细胞株U87MG, 以三种不同的细胞密度及四重复的形式,分成12个样本种到CytoView- Z阻抗板内。使用Maestro Z对其阻抗值变化持续监测24小时后,以10:1的比例将被激活的人T细胞加入到这些样本孔内,后续的确能够观察到阻抗值的降低。这和预期中的T细胞介导的U87细胞裂解效应是一致的。对比之下,那些未经处理的肿瘤细胞样本( 浅蓝色显示),其同时段测得的阻抗值则继续上升。 上中图则显示了在这三种处理条件下(不同的T细胞数量),检测到的的实时细胞裂解比例。在这基础上,我们就能如上右图所示,对每种处理方案的KT50 (裂解50%肿瘤细胞所需时间)值进行计算。可以看到,要达到更快的U87MG细胞杀伤速度,我们就需要更高的T细胞密度。◆ ◆ ◆ ◆实时真阻抗细胞动态检测仪◆ ◆ ◆ ◆PART I 什么是真阻抗细胞检测 阻抗指贴附细胞对检测电流所起的阻碍作用。Maestro Z的真阻抗技术采用不同频率的交流电来检测细胞的阻抗变化。该技术不但可以检测因细胞数量变化导致的阻抗变化,还能实时检测因细胞形态、通透性变化而导致的细微阻抗变化。PART II Maestro Z的特点一体化设计 该仪器无需额外占用培养箱空间。专门设计的样本仓可以屏蔽外界电磁和机械噪音,避免培养箱开关门等额外操作导致检测结果偏差。真阻抗检测技术 该平台延续了Axion BioSystems公司成熟的高信噪比电生理检测技术,采用不同频率交流电,可用来检测细胞细微阻抗变化。友好易用的软件 操作软件提供实时数据记录,自动数据分析,自动数据报告生成。除此之外,还提供自动扣除本底,Nomalization等高阶数据分析,免除繁琐的手工计算。软件还符合FDA 21 CFR Part 11条款,兼容企业在GXP方面合规要求。数据安全性 自带数据储存,无惧电脑宕机,确保重要数据安全。PART III 应用方向简介 样本类型:悬浮细胞,贴壁细胞,3D培养细胞,类器官等 实时记录细胞增殖、凋亡过程,建立专属功能档案细胞毒性动态研究癌细胞浸润、迁移能力,划痕实验癌症免疫疗法,肿瘤免疫学,细胞治疗病毒学研究跨内皮/上皮细胞电阻(TEER)研究G蛋白偶联受体(GPCR),信号通路研究细胞愈合能力测试想要了解更详细特点,快来联系我们吧! Axion BioSystems ImagineExploreDiscover
    留言咨询
  • Maestro Z/ZHT 肿瘤细胞杀伤评估仪/ CAR-T免疫研究-应用案例:监测免疫T细胞介导的细胞死亡 人体免疫系统中的效应T细胞,对肿瘤细胞有着高特异性和与生俱来的细胞毒性,在未来的脑胶质瘤治疗中被人们寄予很高的期望。Maestro Z的阻抗测试有着高灵敏、无标记及无损的特点,能够实时监测肿瘤细胞的增殖和T细胞介导的细胞溶解等过程,在体外评估免疫治疗的效价方面有着突出的优势。 如上左图所示,我们将恶性胶质母细胞瘤细胞株U87MG, 以三种不同的细胞密度及四重复的形式,分成12个样本种到CytoView- Z阻抗板内。使用Maestro Z对其阻抗值变化持续监测24小时后,以10:1的比例将被激活的人T细胞加入到这些样本孔内,后续的确能够观察到阻抗值的降低。这和预期中的T细胞介导的U87细胞裂解效应是一致的。对比之下,那些未经处理的肿瘤细胞样本( 浅蓝色显示),其同时段测得的阻抗值则继续上升。 上中图则显示了在这三种处理条件下(不同的T细胞数量),检测到的的实时细胞裂解比例。在这基础上,我们就能如上右图所示,对每种处理方案的KT50 (裂解50%肿瘤细胞所需时间)值进行计算。可以看到,要达到更快的U87MG细胞杀伤速度,我们就需要更高的T细胞密度。◆ ◆ ◆ ◆实时真阻抗细胞动态检测仪◆ ◆ ◆ ◆PART I 什么是真阻抗细胞检测 阻抗指贴附细胞对检测电流所起的阻碍作用。Maestro Z的真阻抗技术采用不同频率的交流电来检测细胞的阻抗变化。该技术不但可以检测因细胞数量变化导致的阻抗变化,还能实时检测因细胞形态、通透性变化而导致的细微阻抗变化。PART II Maestro Z的特点一体化设计该仪器无需额外占用培养箱空间。专门设计的样本仓可以屏蔽外界电磁和机械噪音,避免培养箱开关门等额外操作导致检测结果偏差。真阻抗检测技术该平台延续了Axion BioSystems公司成熟的高信噪比电生理检测技术,采用不同频率交流电,可用来检测细胞细微阻抗变化。友好易用的软件操作软件提供实时数据记录,自动数据分析,自动数据报告生成。除此之外,还提供自动扣除本底,Nomalization等高阶数据分析,免除繁琐的手工计算。软件还符合FDA 21 CFR Part 11条款,兼容企业在GXP方面合规要求。数据安全性自带数据储存,无惧电脑宕机,确保重要数据安全。PART III 应用方向简介 样本类型:悬浮细胞,贴壁细胞,3D培养细胞,类器官等 实时记录细胞增殖、凋亡过程,建立专属功能档案细胞毒性动态研究癌细胞浸润、迁移能力,划痕实验癌症免疫疗法,肿瘤免疫学,细胞治疗病毒学研究跨内皮/上皮细胞电阻(TEER)研究G蛋白偶联受体(GPCR),信号通路研究细胞愈合能力测试想要了解更详细特点,快来联系我们吧! Axion BioSystems ImagineExploreDiscover
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。如您对此感兴趣,请联系:(微信同号)产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。
    留言咨询
  • Quasi Vivo 系统有 3 个不同的腔室可用,每个腔室都旨在满足特定应用的需求。允许浸没式细胞培养,而模块化特性允许互连细胞共培养。与市售的 transwells 和插入物兼容,使用户能够在气液界面培养细胞并创建液/液屏障模型。由标准多孔板占地面积上的 6 个腔室组成,由几乎没有或没有非特异性结合的材料制成。查看 QV500 颠覆传统细胞培养方式,灌流培养系统呼吸道上皮细胞的气液界面培养是研究经空气传播的病原体,如SARS等的常用的模型。传统的培养方式是用TransWell在普通培养箱中静置培养。但是此种培养方式无法模拟培养过程中营养物质和代谢废物在组织内的运输,培养得到的模型通常有各种各样的缺陷,并且所需实验周期较长。呼吸道上皮细胞的常规transwell静止培养方式Quais Vivo(QV600)灌流培养系统(腔室+储液瓶+底座+管道+泵等)而灌流培养系统可为细胞培养提供持久恒定的流动培养环境,最大限度模拟体内环境。研究发现,使用系统进行灌流培养与静态培养相比,气液界面培养的呼吸道上皮细胞(正常人气管上皮细胞 Normal Human BronchialEpithelial Cells,简称NHBE;小气道上皮细胞 Small Airway EpithelialCells,简称SAE),发育分化速度更快,表现为纤毛分化度更高,纤毛运动更强、粘液产生和屏障功能更强。在灌注下加速分化后,将上皮细胞转移到静态条件下,并添加抗原呈递细胞(APC)以研究其在病原体感染后的功能。(ChandorkarP, et al., Fast-track development of an in vitro3D lung/immune cell model to studyAspergillus infections. Sci Rep. 2017 7(1):11644. doi:10.1038/s4-4.)01、人体内所有的细胞都需要营养物质和代谢废物的流动 02、肺部气管/支气管和小气道上皮结构精细,进行体外培养模拟体内环境,对呼吸道病原体的研究至关重要 03、采用全新的灌流培养方式培养呼吸道上皮细胞(采用QV600)相比使用transwell静止培养(StaticConditions),此灌流培养系统(PerfusedConditions)中,呼吸道上皮细胞的生长和分化呈现更好状态04、电镜照片显示,采用灌流培养方式(Perfusedconditions)的呼吸道上皮细胞,分化程度更高 05、使用MUC5B染色可以发现,采用灌流培养方式(Perfusedconditions)的呼吸道上皮细胞,在培养的第7天即可分泌大量粘液。染色可以发现,细胞间的紧密连接发育更完善06、使用WGA染色发现,采用灌流培养方式(Perfusedconditions)的呼吸道上皮细胞,纤毛分化度更高 07、测量TEER(经细胞电阻),采用灌流培养方式(Perfusedconditions)的呼吸道上皮细胞TEER值更大,代表得到的上皮细胞膜状结构更完整Quasi Vivo全球应用全球使用Kirkstall公司灌流培养系统的学术及研究机构已达70+个,遍布美国、英国、法国、瑞典、奥地利、意大利、荷兰、瑞士、日本等。目前灌流培养系统已成功用于以下器官模型的培养:1.呼吸系统(培养热点)2. 肝脏3. 肾脏4.心血管5.成纤维细胞6.糖尿病模型7.血脑屏障8.脑组织类器官一、不同细胞,型号怎么选?01、单一细胞QV500:所有腔室培养相同的细胞。02、细胞共培养QV600:每个腔室培养2种或以上细胞。QV900:使管路上游的细胞培养基成为下游细胞的条件培养基。流动培养形成含血管的3D心脏组织 | 再生医学在再生医学领域,怎样培养出含血管的组织,是未来应用能否成功的关键之一。早期的临床试验采用生长因子或细胞注射的方法来修补损伤的心脏,但由于注射细胞造成的炎症反应和局部缺血会在体内造成低氧环境,使得注射的细胞定植率低而死亡率高,不能有效地修复损伤的心脏功能。Quasi VivoQV500流动培养系统为接种在明胶支架上的人间充质干细胞(hMSCs)和人心肌祖细胞(hCMPC)提供充足的氧气,促进细胞和营养物质向支架核心内扩散,并能快速有效地排除组织内的代谢废物,促进血管生成,从而形成由血管样和心脏样细胞组成的组织结构密集的适于体内移植的原组织。(PagliariS, et al. A multistep procedure to prepare pre-vascularized cardiactissue constructs using adult stem cells, dynamic cell cultures,and porous scaffolds. Frontiers in Physiology. 2014 5:210)流动培养系统(QV500型)的蠕动泵将培养基从储液瓶泵到两个串联的培养腔室内,并能保持恒定流速(200μl/min),保证多孔明胶支架内层的培养基流动。构建含血管的3D心脏的实验方案示意图。明胶多孔支架被浸入稀释的Matrigel中,然后转移至内皮分化培养基中。之后将人间充质干细胞接种在支架上,使人间充质干细胞定植在支架培养上并向内皮进行分化,96小时后,将在聚苯乙烯细胞培养板用心脏分化培养基预先定型2周的心脏TNT-GFP人心肌祖细胞接种于血管化的支架上,用QV500流动培养系统在心脏分化培养基中培养7天。采用上述实验方案,对用QV500培养一周后的共培养结构进行检测,发现在支架上有大量细胞定殖。 QV500流动培养条件下支架内部浸润了大量的血管样细胞(红色)和人心肌前体细胞(hCMPC)衍生的心肌细胞(绿色),而静态培养条件下,细胞大部分分布在支架表面。免疫组化结果显示通过QV500动态培养可以促进心肌样细胞(GFP,绿色)和内皮样细胞(VCAM-1阳性细胞,红色)向支架内部浸润。 (A)切片显示QV500流动培养的内皮样细胞(VCAM-1阳性细胞,红色)排列成孔状,形成管状结构,并与心肌样细胞(GFP,绿色)接触。 (B)QV500流动培养条件下,支架内广泛的细胞分布导致形成密集组装的多细胞组织,该组织衍生自所用的人间充质干细胞(hMSCs)和人心肌前体细胞(hCMPC)。总结:在本文中使用的QV500流动培养系统,能增强氧气与营养物质的运输,进而增强工程化心血管组织的活性和功能。与众不同的流动培养系统,让日、美、英、法、瑞士、瑞典等全球70多个研究机构获得了更强大的细胞培养工具,在包括呼吸系统、心血管系统、肝脏、肾脏、肠道、脑组织类器官,以及糖尿病的研究上更进一步。流动培养实现血脑屏障三种细胞共培养 | 阿尔茨海默病新模型血脑屏障(blood-brain barrier,BBB)在中枢神经系统(CNS)的生理和病理中都起着重要的作用。血脑屏障功能异常会引起包括阿尔茨海默症(AD)等许多神经退行性疾病。组成血脑屏障的毛细血管内皮细胞(capillaryendothelialcells)、周细胞(pericytes)以及星形胶质细胞(astrocytes)间的复杂的相互作用使得很难在体内确定这三种细胞对神经毒性各自的贡献。而流动培养系统可为体外培养这三种细胞提供在不形成屏障的情况下维持细胞间通讯的最佳培养环境。流动培养系统为未来研究不同类型的血脑屏障细胞在中枢神经系统疾病和细胞毒性试验中的特殊作用提供一个有价值的工具。(Miranda-AzpiazuP, et al. A novel dynamic multicellular co-culture system forstudying individual blood-brain barrier cell types in braindiseases and cytotoxicity testing. Sci Rep. 2018 8(1):1-10.)图 1.单独培养的人星形胶质细胞(A,GFAP阳性)、周细胞(B,α-actin阳性)、血管内皮细胞(C,CD31阳性)以及血管内皮细胞形成的紧密连接(D,ZO1阳性)。图 2用QV500培养共享相同的培养基的星形胶质细胞、周细胞和血管内皮细胞的示意图(A),R为储液瓶,P为蠕动泵。连接培养基存储瓶的一个QV500流动培养系统的细胞培养腔室(B)。图 3 QV500流动培养系统建立的能同时培养三种不同细胞的多细胞共培养体系。图4几种流动培养方式示意图:A图为单独星形角质细胞流动培养,B图为单独周细胞流动培养,C图为单独血管内皮细胞流动培养,D图为三种细胞组合后一起流动培养。图5用MTT法测细胞活力,与静态培养相比,采用QV500流动培养系统对单独培养血管内皮细胞(HBECs)、周细胞(HBVPs)、星形角质细胞(HAs)(A)或三种细胞共培养(B)的血管内皮细胞的细胞活力有明显升高。图6用MTT法测细胞活力,与静态培养(Static)相比,流动培养(Dynamic)的周细胞(HBVPs)会更早受到Aβ25-35(淀粉样蛋白β肽的Aβ25-35片段,用于阿尔茨海默病的造模)的毒害。总结:本文中研究者利用QV500流动培养系统建立了三种细胞的共培养。这些细胞不接触,通过共享培养基实现细胞间的通信,不形成屏障能更好的研究这些细胞类型单独对不同化合物的响应情况。并且研究者还发现共享相同培养基的星形胶质细胞、周细胞和血管内皮细胞的最适流速为50µ l/min。作为创新的细胞培养方法,Quasi Vivo流动培养已经全球70余家zhuanye机构使用验证,获得了令人侧目的培养效果,在美、英、法、日等多国开展了颇具新意的细胞研究,涉及呼吸系统、肝脏、肾脏、心血管、成纤维细胞、糖尿病模型、脑组织类器官等。
    留言咨询
  • 我们zui新的单细胞分选系统-cellenONE(单细胞分选+单细胞测序建库利器+单细胞微阵列)-分选后得到的单细胞精度高以及活性高! 一:单细胞分选(单细胞精zhun率高达98%)cellenONE X1是一款基于压电声学技术的自动化单细胞分选系统,可以在多种微孔板(96孔、384孔、1536孔、 5184孔、自制微孔板)上精确沉积细胞。有限稀释法和大多数微流控技术都遵循泊松分布,导致每个位置有多个细胞,这样会使效率低下,且数据有偏差。 cellenONE X1使用视觉反馈,以确保在每个位置只有单个细胞! a:喷头区域没有单个细胞 b:喷头区域有单个细胞 c: 喷头区域有多个细胞cellenONE X1仅仅选取含有单个细胞的液滴(b)直接分选到指定的孔板或微孔中。所有不符合设定条件的细胞都会被放回样本管中,确保没有细胞被浪费,也可以重新吸取回收细胞进行二次分选!设备对每一滴样品进行实时图像分析并拍照留底记录整个实验过程。到目前为止成功分离出的部分细胞和颗粒:细胞系:如CHO,杂交瘤,HEK293T,Hela,A549,PC3,H1975,HepaRG,Jurkat等原代细胞:如PBMC(包括B细胞和T细胞部分),成纤维细胞,角质形成细胞,黑素细胞,心肌细胞,HUVEC,神经干细胞等细胞核:来自细胞系,新鲜冷冻(FF)和福尔马林固定石蜡包埋(FFPE)组织切片等样本的细胞核微球:直径为2-30um的微球(带细胞标签的微球用于细胞标记)二:开放的文库构建实验——极小反应体系、极低试剂成本cellenONE X1是一个开放式平台,可提供单细胞分选和纳升级试剂加样操作。这种多功能性,使得现在越来越多的单细胞文库制备工作得以自动化执行。 而且,纳升级别的操作精度将极大地降低试剂耗材的成本。 三:cellenONE 技术:• 基于温和而高精度的压电声学分配技术.• 对分配器喷嘴内的细胞进行自动光学监.• 根据每个样品,机器对分配步骤测绘.• 细胞的位置决定是否满足单细胞条件,从而决定是否在下一滴中被分选. cellenONE是法国cellenion公司全新推出应用与单细胞测序及单细胞克隆领域前期获取单细胞的全自动分选系统,与目前市场上常见的流式细胞仪(FACS)相比有以下优点:1.没有最小样本容量或细胞数与传统流式细胞分析仪,CellenONE可以处理任何小样本数量从1μl回收率高的细胞悬液,FACS通常需要至少2万个细胞来进行单细胞分离,而CellenONE可以将细胞从50个细胞中分离出来!!!2.非常温和的分配(对克隆应用很重要)脆弱细胞的剪切应力更低(更好的生存能力),分选过后细胞活性高于FACS分选的细胞3.单细胞率和单细胞活性分选后得到的单细胞率可以高达95%,单细胞活性可以高达85%,远高于其他单细胞分选仪器4.多样性不仅可以分选单细胞,还可以分选微珠和nl级别试剂,可以大大减少试剂消耗成本,可以兼容96、384、1536孔板或客户自定义微孔板
    留言咨询
  • Quasi Vivo 系统有 3 个不同的腔室可用,每个腔室都旨在满足特定应用的需求。允许浸没式细胞培养,而模块化特性允许互连细胞共培养。与市售的 transwells 和插入物兼容,使用户能够在气液界面培养细胞并创建液/液屏障模型。由标准多孔板占地面积上的 6 个腔室组成,由几乎没有或没有非特异性结合的材料制成。查看 QV500‍‍‍‍‍颠覆传统细胞培养方式,灌流培养系统呼吸道上皮细胞的气液界面培养是研究经空气传播的病原体,如SARS等的常用的模型。传统的培养方式是用TransWell在普通培养箱中静置培养。但是此种培养方式无法模拟培养过程中营养物质和代谢废物在组织内的运输,培养得到的模型通常有各种各样的缺陷,并且所需实验周期较长。呼吸道上皮细胞的常规transwell静止培养方式Quais Vivo(QV600)灌流培养系统(腔室+储液瓶+底座+管道+泵等)而灌流培养系统可为细胞培养提供持久恒定的流动培养环境,最大限度模拟体内环境。研究发现,使用系统进行灌流培养与静态培养相比,气液界面培养的呼吸道上皮细胞(正常人气管上皮细胞 Normal Human BronchialEpithelial Cells,简称NHBE;小气道上皮细胞 Small Airway EpithelialCells,简称SAE),发育分化速度更快,表现为纤毛分化度更高,纤毛运动更强、粘液产生和屏障功能更强。在灌注下加速分化后,将上皮细胞转移到静态条件下,并添加抗原呈递细胞(APC)以研究其在病原体感染后的功能。(ChandorkarP, et al., Fast-track development of an in vitro3D lung/immune cell model to studyAspergillus infections. Sci Rep. 2017 7(1):11644. doi:10.1038/s4-4.)01、人体内所有的细胞都需要营养物质和代谢废物的流动 02、肺部气管/支气管和小气道上皮结构精细,进行体外培养模拟体内环境,对呼吸道病原体的研究至关重要 03、采用全新的灌流培养方式培养呼吸道上皮细胞(采用QV600)相比使用transwell静止培养(StaticConditions),此灌流培养系统(PerfusedConditions)中,呼吸道上皮细胞的生长和分化呈现更好状态04、电镜照片显示,采用灌流培养方式(Perfusedconditions)的呼吸道上皮细胞,分化程度更高 05、使用MUC5B染色可以发现,采用灌流培养方式(Perfusedconditions)的呼吸道上皮细胞,在培养的第7天即可分泌大量粘液。染色可以发现,细胞间的紧密连接发育更完善06、使用WGA染色发现,采用灌流培养方式(Perfusedconditions)的呼吸道上皮细胞,纤毛分化度更高 07、测量TEER(经细胞电阻),采用灌流培养方式(Perfusedconditions)的呼吸道上皮细胞TEER值更大,代表得到的上皮细胞膜状结构更完整Quasi Vivo全球应用全球使用Kirkstall公司灌流培养系统的学术及研究机构已达70+个,遍布美国、英国、法国、瑞典、奥地利、意大利、荷兰、瑞士、日本等。目前灌流培养系统已成功用于以下器官模型的培养:1.呼吸系统(培养热点)2. 肝脏3. 肾脏4.心血管5.成纤维细胞6.糖尿病模型7.血脑屏障8.脑组织类器官一、不同细胞,型号怎么选?01、单一细胞QV500:所有腔室培养相同的细胞。02、细胞共培养QV600:每个腔室培养2种或以上细胞。QV900:使管路上游的细胞培养基成为下游细胞的条件培养基。流动培养形成含血管的3D心脏组织 | 再生医学在再生医学领域,怎样培养出含血管的组织,是未来应用能否成功的关键之一。早期的临床试验采用生长因子或细胞注射的方法来修补损伤的心脏,但由于注射细胞造成的炎症反应和局部缺血会在体内造成低氧环境,使得注射的细胞定植率低而死亡率高,不能有效地修复损伤的心脏功能。Quasi VivoQV500流动培养系统为接种在明胶支架上的人间充质干细胞(hMSCs)和人心肌祖细胞(hCMPC)提供充足的氧气,促进细胞和营养物质向支架核心内扩散,并能快速有效地排除组织内的代谢废物,促进血管生成,从而形成由血管样和心脏样细胞组成的组织结构密集的适于体内移植的原组织。(PagliariS, et al. A multistep procedure to prepare pre-vascularized cardiactissue constructs using adult stem cells, dynamic cell cultures,and porous scaffolds. Frontiers in Physiology. 2014 5:210)流动培养系统(QV500型)的蠕动泵将培养基从储液瓶泵到两个串联的培养腔室内,并能保持恒定流速(200μl/min),保证多孔明胶支架内层的培养基流动。构建含血管的3D心脏的实验方案示意图。明胶多孔支架被浸入稀释的Matrigel中,然后转移至内皮分化培养基中。之后将人间充质干细胞接种在支架上,使人间充质干细胞定植在支架培养上并向内皮进行分化,96小时后,将在聚苯乙烯细胞培养板用心脏分化培养基预先定型2周的心脏TNT-GFP人心肌祖细胞接种于血管化的支架上,用QV500流动培养系统在心脏分化培养基中培养7天。采用上述实验方案,对用QV500培养一周后的共培养结构进行检测,发现在支架上有大量细胞定殖。 QV500流动培养条件下支架内部浸润了大量的血管样细胞(红色)和人心肌前体细胞(hCMPC)衍生的心肌细胞(绿色),而静态培养条件下,细胞大部分分布在支架表面。免疫组化结果显示通过QV500动态培养可以促进心肌样细胞(GFP,绿色)和内皮样细胞(VCAM-1阳性细胞,红色)向支架内部浸润。 (A)切片显示QV500流动培养的内皮样细胞(VCAM-1阳性细胞,红色)排列成孔状,形成管状结构,并与心肌样细胞(GFP,绿色)接触。 (B)QV500流动培养条件下,支架内广泛的细胞分布导致形成密集组装的多细胞组织,该组织衍生自所用的人间充质干细胞(hMSCs)和人心肌前体细胞(hCMPC)。总结:在本文中使用的QV500流动培养系统,能增强氧气与营养物质的运输,进而增强工程化心血管组织的活性和功能。与众不同的流动培养系统,让日、美、英、法、瑞士、瑞典等全球70多个研究机构获得了更强大的细胞培养工具,在包括呼吸系统、心血管系统、肝脏、肾脏、肠道、脑组织类器官,以及糖尿病的研究上更进一步。流动培养实现血脑屏障三种细胞共培养 | 阿尔茨海默病新模型血脑屏障(blood-brain barrier,BBB)在中枢神经系统(CNS)的生理和病理中都起着重要的作用。血脑屏障功能异常会引起包括阿尔茨海默症(AD)等许多神经退行性疾病。组成血脑屏障的毛细血管内皮细胞(capillaryendothelialcells)、周细胞(pericytes)以及星形胶质细胞(astrocytes)间的复杂的相互作用使得很难在体内确定这三种细胞对神经毒性各自的贡献。而流动培养系统可为体外培养这三种细胞提供在不形成屏障的情况下维持细胞间通讯的最佳培养环境。流动培养系统为未来研究不同类型的血脑屏障细胞在中枢神经系统疾病和细胞毒性试验中的特殊作用提供一个有价值的工具。(Miranda-AzpiazuP, et al. A novel dynamic multicellular co-culture system forstudying individual blood-brain barrier cell types in braindiseases and cytotoxicity testing. Sci Rep. 2018 8(1):1-10.)图 1.单独培养的人星形胶质细胞(A,GFAP阳性)、周细胞(B,α-actin阳性)、血管内皮细胞(C,CD31阳性)以及血管内皮细胞形成的紧密连接(D,ZO1阳性)。图 2用QV500培养共享相同的培养基的星形胶质细胞、周细胞和血管内皮细胞的示意图(A),R为储液瓶,P为蠕动泵。连接培养基存储瓶的一个QV500流动培养系统的细胞培养腔室(B)。图 3 QV500流动培养系统建立的能同时培养三种不同细胞的多细胞共培养体系。图4几种流动培养方式示意图:A图为单独星形角质细胞流动培养,B图为单独周细胞流动培养,C图为单独血管内皮细胞流动培养,D图为三种细胞组合后一起流动培养。图5用MTT法测细胞活力,与静态培养相比,采用QV500流动培养系统对单独培养血管内皮细胞(HBECs)、周细胞(HBVPs)、星形角质细胞(HAs)(A)或三种细胞共培养(B)的血管内皮细胞的细胞活力有明显升高。图6用MTT法测细胞活力,与静态培养(Static)相比,流动培养(Dynamic)的周细胞(HBVPs)会更早受到Aβ25-35(淀粉样蛋白β肽的Aβ25-35片段,用于阿尔茨海默病的造模)的毒害。总结:本文中研究者利用QV500流动培养系统建立了三种细胞的共培养。这些细胞不接触,通过共享培养基实现细胞间的通信,不形成屏障能更好的研究这些细胞类型单独对不同化合物的响应情况。并且研究者还发现共享相同培养基的星形胶质细胞、周细胞和血管内皮细胞的最适流速为50µl/min。作为创新的细胞培养方法,Quasi Vivo流动培养已经全球70余家zhuanye机构使用验证,获得了令人侧目的培养效果,在美、英、法、日等多国开展了颇具新意的细胞研究,涉及呼吸系统、肝脏、肾脏、心血管、成纤维细胞、糖尿病模型、脑组织类器官等。
    留言咨询
  • Maestro Edge/Pro 高通量微电极阵列系统-在神经毒理(重金属铝)方向中的应用 先前的报道表明铝会导致神经毒性损伤,并表明该机制可以改变神经元的电生理和神经元网络变化。 在这项研究中,作者使用 Axion MEA 系统中的原代小鼠海马神经元来记录 AI 给药后的神经网络活动,并显示出对电脉冲活动的显着抑制。 MEA 记录和后分析显示,Al 暴露以剂量和时间依赖的方式显着影响加权发射率、突发频率、突发持续时间、网络突发频率和同步指数。通过慢病毒转染,作者能够上调海马神经元中的 miR-29a 并逆转尖峰活性的下降。 这些发现连同神经突生长的变化、蛋白激酶 B 磷酸化的变化表明 miR-29a 是铝毒性的潜在靶标和铝诱导电活动的潜在途径。神经网络功能实时检测攻略◆ ◆ ◆ ◆PART I 原理介绍为什么要检测神经电活动?研究证明构建体外神经元疾病模型是研究神经元功能和神经系统复杂疾病的一个有效策略。细胞成像、基因表达分析或者蛋白印迹这些方法能够全面地反应神经疾病模型的复杂性吗?神经网络功能又是怎样的?科学家们很难得到一个完整的答案。而使用Maestro MEA技术,任何科学家都能够快速简单地高通量检测活细胞的网络电活动。 什么是高通量微电极阵列? Axion的MEA板底部紧密嵌合了呈网格状的电极阵列。科学家们可以在电极上贴附培养神经元等可兴奋性细胞,它们会逐渐成熟并形成网络,并最终生成网络功能。这样MEA板上每个电极就都可以捕捉到毫秒级的神经元自发放电,为您在时间和空间两个维度提供精准的实验数据。您还可以通过电刺激或者光刺激进一步拓展实验设计。适用样本原代神经元细胞,iPSC衍生神经元,脑片,iPSC衍生神经球/类器官/迷你大脑三个层面了解神经网络功能神经细胞(橙色)经培养覆盖于固定在MEA板底部的电极(灰色)上。Maestro MEA系统检测神经网络的功能,包括电活动、同步性和网络震荡。Activity 电活动 如何判断神经元有没有功能?动作电位是一个重要标志。动作电位发放频率高表明其放电频繁;发放频率低意味着神经元电生理功能可能已受损。Synchrony 同步性 如何评判神经元间突触的功能?突触的存在使得神经元之间的联系成为可能。一个神经元的动作电位藉此得以影响到另一个神经元发放的可能性。同步性检测能够反映出突触连接的强弱,及不同的神经元在毫秒级别时间范围内产生同步放电的可能。Oscillation 网络震荡 如何确定样本的网络功能?有功能的神经网络是由兴奋性和抑制性神经元共同构成的。它的一个重要特征就是神经震荡,即不断变化中的神经活动高潮-低谷周期。而一个MEA孔内检测到的所有神经元电发放在时间轴上的规律就是该样本的震荡数据。PART II Maestro系统介绍Maestro MEA实验流程Maestro使得MEA实验简单到超乎想象。仅需三步:A将神经元培养在Axion MEA板上。B将MEA板放入Maestro MEA系统,静待环境仓达到温度和气体浓度的平衡。C使用AxIS Navigator软件无创且实时地从三个层面(电活动、突触功能、网络震荡)定量分析神经元电活动。配套的其他分析软件,还能自动计算出多于25种类别的二级参数,供您进行数据深度挖掘。Maestro平台优势提供关键答案 与常规方法间接检测可兴奋性不同,Maestro MEA系统的测试直接反映神经元的动作电位。比较常见的间接技术如钙成像,无法捕获微小却重要的神经网络信号变化。而蛋白表达水平的检测结果与细胞疾病模型功能的相关性也很差。只有使用Maestro MEA系统实时追踪细胞的可兴奋性,您才能回答这个关键问题:样本是否在以您期待的方式放电?无标记分析 Maestro MEA系统无创地检测神经元群落的电信号,杜绝使用染料或报告子,避免其对细胞模型的干扰,您数据的准确性无需置疑。更使您得以实现对一个样本电活动的长期(数小时、数周甚至数月)追踪。原位检测 其它的高通量平台(例如自动化膜片钳或者流式细胞仪)通常会要求对样本做预处理,制备成单细胞悬液再上机检测。对于可兴奋性细胞这种以互相交联的功能性网络形式存在的样本来说,这是一种非常不理想的状态。此外,细胞收集的过程也需要大量的手动操作步骤。只有Maestro MEA系统能够在捕获神经元细胞可兴奋性的同时维持其形态学上的复杂性。简单易用 只有电生理专家才会使用Maestro MEA系统?不存在的!只要把细胞培养在MEA板上,然后把板放入Maestro MEA仪器检测仓内,即可记录神经元电生理数据。Axion提供的一系列软件会帮您完成剩下的数据分析步骤,甚至连可直接用于文献发表的图表都搞定了。您也可以!PART III 应用方向简介神经疾病细胞模型,药物神经毒性筛选,神经细胞功能检测,光遗传学,模式生物表型筛选,干细胞开发及质控,神经球、脑类器官研究帕金森神经肌肉接头病脆性X综合症智障癫痫化合物神经毒理检测星形胶质细胞对神经元功能的影响精神分裂孤独症/自闭症脑瘫偏头痛蛇毒腺类器官前额叶痴呆精神类药物滥用/成瘾神经元代谢干细胞治疗/修复注意缺陷多动障碍/多动症高通量微电极阵列+光遗传的强大组合Axion公司创新的高通量光遗传刺激系统Lumos,可对MEA板内样本进行光强(1-100%)和光照时长(低至100ms)的控制。您可以选择多至四种不同波长的LED光源来刺激单孔内的细胞,并行处理通量高至96个。您也可以对每个孔内混合培养细胞样本中的某一类细胞群体进行单独控制,建立高阶神经疾病模型。所以,通过在软、硬件上与Maestro系统无缝整合,Lumos可以助您精准、灵活、高效地实现神经细胞网络的调节及实时的功能检测。 Axion BioSystems ImagineExploreDiscover
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。如果您感兴趣的话,我们可以为您提供试样服务,请联系:
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。如果您感兴趣的话,我们可以为您提供试样服务,请联系
    留言咨询
  • 细胞机械刺激培养系统(细胞拉伸仪)细胞牵张是细胞动态培养方法之一,旨在人体内部的动态环境并对体外培养的细胞施加应力刺激。通过自定义程序的机械应力刺激后,可以观察到在常规静态细胞培养中无法获得的细胞变化及反馈。 celltank03细胞应力加载系统CellTank是杭州表面力科技有限公司生产的应用于该领域的科研仪器,公司在产品生产和研发方面拥有完全自主知识产权。celltank细胞牵张培养系统celltank03细胞应力加载系统产品简介celltank03细胞应力加载系统研究表明,不同种类的外界应力刺激对不同种类的细胞以及细胞内表达均产生显著影响。CellTank可在培养细胞的同时,模拟细胞在身体内所受的张应力,给细胞带来外界刺激。模拟中的拉伸应力,几乎可以应用于所有学科中研究的细胞,特别是体内受到周期性拉伸刺激的细胞。了解细胞力学刺激后发生的改变。用于细胞组织再生,疾病原理的解析等研究领域。产品参数说明1. 机器规格 1.1 重量:3kg 1.2 尺寸:350*330*110mm 1.2 供电:输入 AC 100-220V/50-60Hz;输出 DC 15V 3A(max) 2. 拉伸加载 2.1 伸长范围:0~30% 2.2 加载速度:≤30mm/s 2.3 拉伸频率:≤2Hz 3. 运行控制 3.1 波形:正弦波、方波、三角波及其组合celltank细胞牵张培养系统产品配件柔性拉伸培养腔轴向受力均匀,可在长时间连续机械牵拉中表现出良好的再现性。材质:PDMS,高生物相容性; 耐热:180℃; 耐湿:完全; 耐用:20%拉伸比例下约900000次循环; 高透明度,便于进行细胞固定、荧光成像等操作。可选择的多规格固定托架,同时满足对多个细胞培养腔进行加载:4组,底面积32*32mm;8组,底面积20*20mm。产品应用范围例如膀胱细胞、骨细胞、成纤维细胞、角质形成细胞、小球细胞、韧带细胞、肝细胞、肺泡细胞、神经元细胞、星形胶质细胞、骨骼肌细胞、平滑肌细胞、干/祖细胞、肌腱细胞等研究。产品CellTank在提品质道路上永无止境,使广大客户收获的使用体验。一体式设计,操作不连接电脑; 触控屏幕,可直接对幅值、频率、间隔时间等参数进行修改; 优化设计,培养箱环境中(37°C,相对湿度≥90%)也能防潮散热,长时间工作。产品使用流程用细胞外基质对拉伸腔进行预处理,接种细胞; 待细胞粘附在基底上,开始培养过程; 细胞增殖后,选择牵张模式并开始刺激; 进行细胞观察; 根据实验目标收获/处理细胞,分析凋亡率、表达情况等。如果您感兴趣的话,我们可以为您提供试样服务,请联系
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制