当前位置: 仪器信息网 > 行业主题 > >

设计与应用研究

仪器信息网设计与应用研究专题为您整合设计与应用研究相关的最新文章,在设计与应用研究专题,您不仅可以免费浏览设计与应用研究的资讯, 同时您还可以浏览设计与应用研究的相关资料、解决方案,参与社区设计与应用研究话题讨论。

设计与应用研究相关的资讯

  • “噪声自动监测系统与应用研究”通过验收
    我站承担的2007年度环保公益性项目—“噪声自动监测系统与应用研究”课题,通过环保部项目验收,得到好评。   本项目开展了噪声自动监测点位优化与布设、监测数据有效性、监测结果评价及噪声自动监测系统技术指标等关键技术的研究,取得了多项科研成果。项目成果在北京奥运会、上海世博会及呼和浩特市、珠海市等城市噪声自动监测系统建设与研究中得到应用。项目系统提出了适合我国的噪声自动监测技术体系,编制并颁布实施了《功能区声环境质量自动监测技术规定(暂行)》和《环境噪声自动监测系统技术要求(暂行)》。   本研究较全面的解决了我国噪声自动监测的技术问题,为我国实施噪声自动监测进行了技术储备,为后续建立噪声自动监测国家标准打下了基础。研究成果基础性、应用性强,不仅可推进我国噪声监测自动化进程,也为我国环保标准、规范的制修订以及环保规划、政策、法规制定等提供了技术支撑。
  • 宜兴环科园与俄罗斯院士团队共建联合应用研究中心
    p   2月15日,中国宜兴环保科技工业园与俄罗斯科学院、莫斯科国立大学正式签约,三方将在南工2011协同创新中心宜兴石墨烯新材料产业园内,合作共建联合应用研究中心。 /p p   记者了解到,今年1月,南工2011协同创新中心宜兴石墨烯新材料产业园落户宜兴环科园,该产业园依托南京工业大学、新加坡南洋理工大学等国内外一流技术与专家团队,以石墨烯水处理电极、石墨烯动力电池等为产业方向,积极建设一流的石墨烯产品孵化及产业化基地。 /p p   据介绍,俄罗斯科学院和莫斯科国立大学在新兴环保功能材料应用研究方面有深厚的研究基础。此次与宜兴环科园签约后,由俄罗斯科学院副院长阿尔朵申· 谢尔盖· 米哈伊罗维奇院士、莫斯科国立大学化学学院院长维乐利· 鲁尼院士领衔的专家团队,将与宜兴石墨烯新材料产业园合作,共建联合应用研究中心,进行新材料应用的产业研发工作。 /p p   今后联合应用研究中心研究方向包括防腐蚀、防生物附着石墨烯环保涂层,超临界流体氧化法处理污泥、污水工艺开发等。预期今年三季度,专家团队将进驻研究中心,启动首个防腐蚀环保涂层项目的研发。 /p p /p
  • 宁波大学质谱技术与应用研究院丁力团队招聘博士后
    宁波大学质谱技术与应用研究院是国家“双一流”学科重点建设的研究院,集浙江省先进质谱技术与分子检测重点实验室为一体,在质谱仪器核心技术、关键部件和整机的自主研制,以及质谱应用技术和方法研发等多领域处于国内外领先地位。质谱技术与应用研究院及浙江省先进质谱技术与分子检测重点实验室成立以来,得到政府支持的1亿实验室建设经费和高级人才科研启动经费。累计获得纵向经费4000多万元。已有国内外知名质谱专家唐科奇、丁传凡、胡军、俞建成、余邵宁、丁力领衔的多个质谱仪和质谱分析团队正致力于实现质谱仪器技术和应用的自主创新、技术发展和成果转化。为进一步充实研发实力,现诚招多名博士后研究员。工作期限为2-4年。  条件:  在应用物理、分析化学、机电、电子或信息技术相关专业博士毕业,数理基础扎实,对精密分析仪器研发具有浓厚兴趣。能熟练运用至少一种电脑仿真软件或机械、电子设计软件,有一定编程能力、和实验室动手能力。能够持续在宁波工作至少两年。  待遇:  除了学校规定的博士后工资,课题组进一步提供部分生活补贴,年薪总额在30万元以上(取决于学识和实际工作经验),同时享受学校的优惠租房。并有可能进一步申领当地政府的人才奖励。每年有在国内外参加学术会议的机会,在课题进行中会与国内外高校及知名仪器企业充分接触和交流,为今后就业提供广阔的选择。  有意者请发自我介绍信和简历至丁博士邮箱:dingli1@nbu.edu.cn丁力博士简历:  1990年于复旦大学物理系获理学博士学位。先后工作于复旦大学材料科学系,以色列魏兹曼科学研究所,英国贝尔法斯特女王大学纯粹与应用物理系。1998年加入岛津欧洲研究所。2007年至2011年任岛津分析技术研发(上海)有限公司总经理。2011年至今任岛津欧洲研究所高级研究员,研发二部经理。主要领导了多项质谱仪器的研发,是国际上数字离子阱质谱技术的创始人,在离子源,四极场离子阱,静电离子阱,飞行时间等分析器技术及其联用技术方面有很多创新和突破。发表论文、报告、专著一百余篇,有三十余项发明专利。领域:QIT、ToF、Quadrupole、MALDI、APMALDI、ESI、Digital Ion Trap、Linear Ion Trap、Electrostatic Ion Trap,FTMS、 CDMS、MSMS、ECD、Ambient Pressure Ion Sources 等。
  • 食品安全检测技术与应用研究专场讨论会开展
    仪器信息网讯 作为“广州国际分析测试及实验室设备展览会暨技术研讨会”重要活动之一的“食品安全检测技术与用用研究专场”报告会于2011年5月17日在广州锦汉展览中心开展,本次专场报告会由广东省质量检验协会主办,来自相关各界的参会人员逾200人。本次专场报告会围绕食品安全检测技术及进展、仪器在食品安全检测过程中的应用研究等话题进行了热烈的探讨和研究。仪器信息网作为支持媒体参加了此次专题报告会。   食品安全检测技术与应用研究专场报告会现场   来自广东省质量检验协会的李荣超秘书长主持了本次大会。与会领导有广东省质量技术监督局食品生产监管处张欣处长、广东省质量检验协会黄锡檀会长、广东省对外技术交流中心吴汉荣主任。张欣处长在大会上发言。   广东省质量技术监督局食品生产监管处处长张欣先生   大会主持人广东省质量检验协会秘书长李荣超工程师   来自广州市质量监督检测研究院/国家加工食品质量监督检验中心的高级工程师冼燕萍女士做了精彩报告,报告题目为“食品中未知物筛查分析技术的应用和展望”。冼女士从未知物筛查技术的必要性、未知成分分析的典型案例、未知物筛查分析技术的应用现状、未知物筛查分析技术的展望四个方面对未知物筛查技术做了详细介绍。报告指出:检测机构保障食品安全技术能力的提升等因素使未知物筛查分析成为必要,并且通过典型案例说明适当先进的仪器组合分析对技术的发展极其必要 关于目前技术发展应用现状,高端技术如三重四级杆质谱与色谱联用、高分辨率质谱与色谱联用等的应用,使得筛查分析技术更加准确 冼女士报告中指出食品安全保障工作任重而道远,简便快捷的前处理技术、多类型净化技术和智能化微型化的检测设备是未知物筛查分析技术发展方向。 广州市质量监督检测研究院/国家加工食品质量监督检验中心的高级工程师冼燕萍女士 报告题目:食品中未知物筛查分析技术的应用和展望   中山大学公共卫生学院营养学系李华斌教授就食品添加剂检测方法进展方面做了介绍。李教授首先对食品添加剂做整体介绍,指出食品添加剂既有正面作用又存在安全问题,超限量、超范围、伪劣、违法添加剂层出不穷。李教授介绍,按用途来分目前食品添加剂共分为20多类。而后就其中食品防腐剂、添加剂、抗氧化剂、食用色素、非法食品添加物五大类的检测方法做了详细介绍。 中山大学公共卫生学院营养学系李华斌教授 报告题目:食品添加剂检测方法进展   广东省微生物研究所的傅妍芳女士就水质理化快速检测技术方面做了报告。傅女士介绍环境污染问题日趋严重的今天,具有能减少和消除各种危机隐患、预防事故发生、提高产品质量等意义的理化快速检测成为一大趋势,主要体现在大型仪器、在线仪器、便携式仪器、试剂盒等在水质快检上的应用。关于理化快速检测技术方法未来的发展趋势,傅女士认为多元化、立体化是实验室快检和现场快检的发展方向,同时,不断加强应用性研究和技术标准的建立也是快检技术发展的必备条件。 广东省微生物研究所工程师傅妍芳女士 报告题目:水质理化快速检测技术的应用现状与发展趋势   此外其他专家还做了精彩报告:小麦粉中溴酸钾的测定方法探讨研究、固相萃取技术及其应用、分析化学样品前处理-如何选择最好的过滤器、食用陶瓷铅、镉溶出量对食品安全的影响及其测定方法、液质联用技术在食品安全中的应用进展、色谱-质谱联用技术在公共安全检测中的应用、金属污染物测定方法的技术改造。
  • “近红外光谱技术在制药行业的应用研究与需求高峰论坛”在北京召开
    12月23日,近红外光谱技术服务平台与中国仪器仪表学会近红外光谱分会,在北京召开了首届“近红外光谱技术应用研究与需求高峰论谈”。江苏国钥云技术有限公司智能制造创新部王钧总监,同近红外领域专家老师们就“近红外光谱技术在制药行业的应用与需求”进行分享和研讨,来自制药领域(华润江中、天方药业等)以及近红外设备供应商(无锡迅杰、北京格致同德、天津九光科技、烟台国工智能等)企业代表前来参会。会上,王钧总监就当前近红外光谱技术在制药领域中的应用案例进行报告,并结合目前实施的案例提出新的思路和方法;主要针对不同的实施场景和目标,结合近红外光谱技术,灵活组织工业生产大数据集,柔性选择组合使用数据分析挖掘算法和技术(多元统计过程控制,MSPC),将低质、碎片化的数据转变成高质、高价值密度信息,并结合生产过程中难点和痛点,建立与应用相关联的数学模型,将生产过程透明化,进而实现产品质量控制分析的可视化、模型化和定量化。此外,结合制药行业GMP“有效、合格、安全和稳定”四大要求,参会代表们就近红外在制药行业应用过程的存在的问题进行深入讨论,如“设备使用过程中性能评价、软件定制化开发所涉及的计算机系统验证方法、近红外模型开发的专一性或特异性的证明方法等”。专家们还对近红外定量分析的稳健性进行了探讨,并对江苏国钥云智能制造创新团队目前在制药行业应用推广所取得的成果给予了认可和高度评价,对团队未来的研究方向建言献策。(撰稿人:付秀)
  • 莱伯泰科上海应用研究中心正式揭牌
    仪器信息网讯 2023年3月31日,“应用创新启迪未来”莱伯泰科上海应用研究中心揭牌仪式在上海市松江区启迪漕河泾科技园隆重举行。上海市松江区副区长陈容、启迪漕河泾科技园总经理徐永昌、上海市环境与儿童健康重点实验室主任颜崇淮博士、华测检测环境事业部实验室总监陈卫东,以及来自上海和南京的近100位用户代表和合作伙伴出席了揭牌仪式。揭牌仪式现场上海是中国的经济中心和科技创新中心之一,具有全球科技创新中心的重要地位和发展前景。莱伯泰科在上海建立应用研究中心,旨在进一步提升公司在中国市场的影响力和竞争力,加速在华东地区的发展步伐,并为当地客户提供更加优质的服务支持。同时,莱伯泰科也将充分利用上海高素质的人才储备和完善的科研体系,通过不断努力创新和开发应用方法,为全国客户提供更高效、更专业的解决方案,为国家重大难题提供解决方案,为科技创新贡献力量。莱伯泰科董事长胡克博士致辞莱伯泰科董事长胡克博士在应用研究中心揭牌仪式上表示,当前的分析仪器行业已经不再是简单的产品销售,而是以服务为中心的全方位解决方案的提供。硬件、软件、售后服务和应用方法研究,这四项内容缺一不可。客户需要的不仅仅是产品,而是完整的解决方案。为此,莱伯泰科将不断提供更具针对性的应用方法和技术支持,帮助客户提高工作效率、降低成本。胡克博士指出,上海是中国创新的前沿和热土,莱伯泰科上海公司是莱伯泰科在京津以外的第一个创新基地。未来几年,莱伯泰科将以此为基础,加大投入、引入更多人才、创立更多研究和开发团队,将上海基地打造成为公司的新增长动力。莱伯泰科董事长胡克博士与上海市松江区副区长陈容共同揭牌随后,莱伯泰科董事长胡克博士与上海市松江区副区长陈容共同启动了令人激动的揭牌仪式,并正式宣布“莱伯泰科上海应用研究中心”成立。上海市松江区副区长陈容致辞陈容副区长在致辞中首先祝贺莱伯泰科上海应用研究中心的成立,并强调科学仪器产业作为推动科技发展和催生科技创新的重要要素,是科学家的“眼睛”和高端制造业皇冠上“最耀眼的明珠”。作为上海乃至长三角地区科学仪器发展的重要节点,松江区将充分发挥科学仪器产业集群的先发优势,以行业龙头企业为引领,吸引更多创新能力强、发展潜力大的科学仪器企业落户松江,打造大中小微企业相互促进的集群发展格局,为国产仪器的发展提供坚实支撑。启迪漕河泾科技园总经理徐永昌启迪漕河泾科技园总经理徐永昌在随后的致辞中表示,启迪漕河泾科技园一直将科学仪器作为园区特色产业重点培育,并在此基础上持续提升园区在科学仪器、仪器仪表领域的专业能力和资源,推动产业集群高质量发展。他对莱伯泰科在上海成立应用研究中心表示祝贺,并希望莱伯泰科未来发展更加繁荣昌盛。上海市环境与儿童健康重点实验室主任颜崇淮博士致辞华测检测环境事业部实验室总监陈卫东致辞随后,上海市环境与儿童健康重点实验室主任颜崇淮博士与华测检测环境事业部实验室总监陈卫东分别进行了致辞,对莱伯泰科二十多年来给予他们的支持和帮助表达了衷心的感谢,感谢莱伯泰科推出的物美价优的实验室仪器设备以及及时高效的服务支持,对胡克博士在发展国产科学仪器中孜孜不倦的坚守致以了崇高的敬意。珀金埃尔默大中华区总经理朱兵博士致辞天美(中国)科学仪器有限公司总裁付世江致辞珀金埃尔默大中华区总经理朱兵博士和天美(中国)科学仪器有限公司总裁付世江先生作为合作伙伴代表也进行了精彩致辞,纷纷对胡克博士表达了祝贺,希望将来继续携手前行,共同致力于推动科学仪器技术的发展。莱伯泰科市场部经理雒丽娜 最后,莱伯泰科市场部经理雒丽娜做了题为《应用 创新 启迪未来—莱伯泰科上海应用研究中心的目标和愿景》报告,为现场嘉宾介绍了莱伯泰科21年的发展历程,并描述了上海应用研究中心未来的发展计划,未来,中心将重点加大在半导体检测、新能源、新材料、新环境污染、新药开发等领域的应用研究投入,为客户提供完整解决方案的同时,力争保持与世界科技发展的步伐同步。“应用,创新,启迪未来”,这三个词不仅代表了莱伯泰科对于未来发展的期望和信心,更传递了莱伯泰科对于应用方法研究与开发的高度重视。我们相信,通过莱伯泰科上海应用研究中心的建立,莱伯泰科将推动更多前沿科技的应用和创新,为各行业提供更优质的解决方案,以期推动行业进步,启迪未来。让我们一起共同期待莱伯泰科上海应用研究中心在未来的发展中展现出更加辉煌的成就!实验室参观精彩瞬间实验室一角
  • 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 10月21日,石墨烯在纺织产业应用发展论坛在2019中国国际石墨烯创新大会上成功召开,石墨烯高端纺织应用代表专家齐聚一堂,交流了石墨烯纺织新材料的最新科研及产业化发展成果,期间,“石墨烯纺织新材料及产业应用研究院”正式揭牌成立。论坛由西安市政府、中国石墨烯产业技术创新战略联盟主办,西安工程大学和西安丝路石墨烯创新中心联合承办,相关领域专家学者、企业代表200余人参会。 /span br/ /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/1aa721e7-f944-46af-ab4b-ae8fd488a9fd.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (2).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (2).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /span /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " strong 会议现场 /strong /span /p p style=" text-indent: 0em text-align: center " span style=" text-indent: 2em " strong img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/2bd33252-6d34-4c25-9e7b-2779caffa905.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立.JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /strong /span /p p style=" text-indent: 0em text-align: center " span style=" text-indent: 2em " strong 贺辛亥主持揭幕仪式 /strong /span /p p style=" text-indent: 2em " 揭牌仪式由西安工程大学材料工程学院执行院长贺辛亥主持,出席的领导和嘉宾有国家新材料产业发展专家咨询委员会委员、中国石墨烯产业技术创新战略联盟秘书长李义春,西安工程大学副校长、纺织学院院长李鹏飞,浙江大学材料学院教授高超,中科院上海微系统所研究员丁古巧,陕西金澧科技有限公司总经理金党波,西安工程大学纺织学院科研副院长王进美,西安工程大学协同创新中心副教授马建华,国家经济技术开发区、浙江长兴国家大学科技园副主任胡斌、青岛加石墨烯科技有限公司李东一、西安丝路石墨烯创新中心副主任王丽萍、西安工程大学材料学院党支部书记张茂林,西安工程大学材料学院科研副院长苏晓磊等。 /p p style=" text-align: justify text-indent: 2em " “石墨烯纺织新材料及产业应用研究院”由西安工程大学与西安丝路石墨烯创新中心联合共建,旨在发挥双方资源优势,共同致力于石墨烯纺织新材料和新技术开发,促进科技成果转化应用,并为企业培养相关领域科技人才,促进石墨烯纺织新材料及产业应用可持续发展。研究院还将构建石墨烯在纺织领域应用推广平台,形成创新链、产业链、资金链的协同发展,为拓展石墨烯在纺织领域的市场应用提供有力支撑。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/2a19f9b1-f638-45f8-9676-c888ad499fae.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (3).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (3).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 李义春致辞 /strong /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/aafa4044-84fc-4dcd-a89a-e4ae45f85c79.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (4).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (4).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 李鹏飞致辞 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align:center" img style=" width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/d2186bf8-0aca-4cd5-9cb6-e3ec8a019f3a.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (5).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (5).JPG" / /p p style=" text-align: center " strong 揭牌仪式 /strong br/ /p p style=" text-align:center" img style=" width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/07bcb6ca-56e8-485f-b984-d3058956205f.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (8).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (8).JPG" / /p p style=" text-indent: 0em text-align: center " strong /strong strong 签约仪式 /strong /p p style=" text-align: justify text-indent: 2em " 会上,李义春秘书长和李鹏飞副校长相继致辞,并共同为“石墨烯纺织新材料及产业应用研究院”揭牌,王丽萍副主任、苏晓磊副院长代表双方单位为共建研究院签约。与会领导嘉宾共同上台见证了这一石墨烯在高端纺织应用领域的重要里程碑时刻,并合影留念。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/59f12475-97fb-4a74-a3df-a92623827635.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (9).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (9).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 浙江大学材料学院教授高超 /strong /p p style=" text-align: justify text-indent: 2em " 揭牌及签约仪式后,在丁古巧研究员的主持下,论坛进入专家报告环节。高超教授首先做《纯石墨烯纤维及石墨烯复合纤维》报告。我国纺织业市场容量超万亿,从业人员2000万,化纤产量占全球70%,每年生产服装高达456亿件,但是中国纺织行业却也存在缺乏知识产权、核心技术和高端品种的不足。高超强调,石墨烯纤维正是促进中国从纤维大国走向纤维强国,为中国制造2025担当硬科技产业革命先导,实现国人的新时代健康小康生活的重要推手。报告中他介绍了自己科研团队的一系列石墨烯复合纤维科研成果,2010年首次研制成功的氧化石墨烯-尼龙6原位聚合复合纤维荣获IGCC颁发的全球首个单层氧化石墨烯及多功能石墨烯复合纤维认证证书;多功能石墨烯复合纤维,具有可添加多功能、耐水洗、无重金属添加、手感纤细顺滑,无皮肤瘙痒等优势,该成果目前已经实现石墨烯与锦纶、涤纶、氨纶等的复合。纯的石墨烯碳纤维一项是美日等发达国家控制、禁运的高端产品,报告中,高超还介绍了由其团队首创的由天然石墨制备碳纤维的新途径。通过对石墨进行化学剥离得到氧化石墨烯,再经过湿法纺织得到石墨烯新型碳纤维。这一中国自主知识产权的成果具有结构功能一体化,微结构设计性强等优势。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/e518ec40-f16f-484e-98fa-39c07d0f2047.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (11).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (11).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 陕西金澧科技有限公司总经理金党波 /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 身穿自研石墨烯西服的金党波总经理做了《石墨烯对未来纺织业的影响》报告。他介绍了金澧科技研发团队、产品及经营状况介绍。他表示,纺织品的可纺性是第一要素,其团队研发产品可在不改变任何行业机械、加工设备的前提现,提高纺丝的纤维强度,并且提升了20% 的弹性。他表示随着石墨烯制备的成本不断下降,石墨烯在穿着舒适性、可纺性、功能性特征等方面的优势将更加凸显。展望未来,他认为石墨烯定会取代正常面料,石墨烯服装终有一天,也将成为服装市场的主导产品。 /span /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/a3d66b9b-0e92-4e7b-8919-d2ddf3e4f4f3.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (15).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (15).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /span /p p style=" text-align: center " strong 西安工程大学纺织学院科研副院长王进美 /strong /p p style=" text-align: justify text-indent: 2em " 现如今,生活环境的不断恶化促使了细菌的繁殖和各种传染病的增加。另一方面现代电子科技的高速发展和移动无线技术的日益普及,也催生了第四大公共污染源——电磁辐射。因此研究开发新型抗菌材料和电磁屏蔽材料已成为当今科研领域的热点之一,石墨烯凭借众所周知的优异性能,在相关功能纺织品上的应用日益广泛。王进美教授以此为切入点,带来了《智能调温石墨烯复合功能纺织品开发与性能》报告。其团队用(改进)Hummers法制备了氧化更彻底的氧化石墨烯,采用上浆工艺用氧化石墨烯分散液对棉纱、涤棉纱进行处理,并织造成布,其成品对大肠杆菌、金黄色葡萄球菌等细菌具有优异的抗菌性,并具有出色的电子屏蔽特性。报告中,王进美详细介绍了这一成果的制备加工工艺以及相关的检测方法及指标参数。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/f5f7840c-3892-4688-a64e-bfe5aa0a1ab3.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (14).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (14).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 西安工程大学协同创新中心副教授马建华 /strong /p p style=" text-align: justify text-indent: 2em " 马建华副教授做《石墨烯规模化制备及其在纺织结构传感器领域的应用》报告,《石墨烯规模化制备及其在纺织结构传感器领域的应用》报告,其团通过引入可电离基团、碱性体系中的离子化、机械剪切剥离等方法的有机结合,实现了超高浓度大尺寸氧化石墨烯的制备方法,最大尺寸可达128um。利用这一成果,马建华团队制备了浓度低至20ug/ml的LGO凝胶,并且通过3D打印获得了形状可设计的石墨烯三维结构体。该结构体具有极低的密度、良好的导电性和极高的比强度。在此基础上,其团队继续通过3D打印,结合正弦波的网状结构设计,制备了PDMS/石墨烯柔性传感器。他们成功研制了灵敏度、拉伸应变更高达350%的石墨烯复合导电纤维,并通过针织、机织或者编织实现功能织物的制备,进而通过结构设计实现其在应变传感以及柔性可穿戴领域的应用。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/995c4da7-3d84-47d6-8f87-c8170e4c5a6c.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (13).JPG" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (13).JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 中科院上海微系统研究所研究员丁古巧 /strong /p p style=" text-align: justify text-indent: 2em " 丁古巧研究员报告的题目是《亚微米尺寸石墨烯定制及其在纤维领域的应用探索》。石墨烯材料的成本是桎梏其应用的敏感原因,石墨烯的制备技术和能力也决定了产业的加速度。报告中,丁古巧首先介绍了其所在的上海烯望材料科技有限公司的石墨烯生产线情况,包括可在常温快速氧化2-4h,只用浓硫酸等3种试剂,并采用Go与浓硫酸压滤分离,提高重复利用率并减少污染排放的氧化还原石墨烯生产线;可生产亚微米尺寸、水性分散、强碱兼容、分散剂兼容的石墨烯产品的的机械剥离生产线;以及生产石墨烯单层率高、可控性高、生产污染性同比氧化还原法大幅降低的电化学生产线。在此基础上,丁古巧团队研发了一系列具有优异特性的石墨烯改性纤维。通过对亚微米石墨烯进行湿法纺丝、熔融纺丝,制备了石墨烯复合纤维,进而研制了一系列拥有抗菌、导电、抑螨、远红外、抗紫外等优良特性的石墨烯改性面料,并继续往下游延伸,成功研制了石墨烯智能点电灸膜。另一方面研制了Gr-PVDF 压电传感,通过水与石墨烯的共同诱导,得到了高压电相含量的PVDF/石墨烯涂布。进而通过结构设计,成功搭建了反应非常灵敏的Gr-PVDF-TPU应变传感装置,该成果已在跆拳道计分、心脏监测等方面进行了应用。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 600px height: 822px " src=" https://img1.17img.cn/17img/images/201910/uepic/8f804898-7d36-4525-9a14-f5c40d4a8df7.jpg" title=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (12).jpg" alt=" 重磅里程碑!石墨烯纺织新材料及产业应用研究院揭牌成立 (12).jpg" width=" 600" height=" 822" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 会议研讨剪影 /strong /p p style=" text-align: justify text-indent: 2em " 论坛取得了巨大的成功,期间,报告嘉宾们与参会专家学者进行了大量卓有意义的学术研讨,并与多个石墨烯制备、加工、应用企业达成了产业合作的初步意向,论坛取得了巨大的成功。王丽萍副主任会后表示,主题明确,贴近实际应用和产业化,正是本次论坛乃至整个2019中国国际石墨烯创新大会的创新之一,希望通过这样的模式,在汇聚石墨烯最新学术成果交流碰撞的同时,促进整个石墨烯行业产学研更好的结合与发展。 /p
  • 电子传感技术在中药材及农产品分析领域的应用研究进展
    电子传感技术以其信号易于获得、信息丰富、能够从整体上表征样品性质等优势,近年来在中药材及农产品分析领域得到日益广泛的应用.对常用的电子传感技术电子眼、电子鼻、电子舌等进行介绍,对上述技术在中药、烟叶、食品、饮料等领域的应用报道进行综述,并对其相关的多变量数据分析技术、多源数据融合技术、品牌保护技术及未来仪器研发进行展望,以期为电子传感技术在中药材及农产品领域的推广应用提供借鉴. 电子传感技术在中药材及农产品分析领域的应用研究进展_冯绘敏.pdf
  • 石墨烯节能环保应用研究院正式揭牌成立
    p style=" text-align: justify text-indent: 2em " 2019年10月19日,在2019中国国际石墨烯创新大会同期先行举办的石墨烯节能环保产业应用发展论坛上,石墨烯节能环保应用研究院正式揭牌成立。论坛和仪式由香港大学浙江研究院执行院长、香港大学理学院/工学院教授郭正晓、中环装备总经理助理、中节能(唐山)环保装备股份有限公司董事长黄勇主持,中国石墨烯产业技术创新战略联盟秘书长李义春、中节能环保装备股份有限公司党委书记周宜等领导和专家出席。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/e5529449-e2cf-4e2e-9ca2-db5f6c2ba362.jpg" title=" IMG_4625.JPG" alt=" IMG_4625.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 揭牌后的石墨烯节能环保应用研究院正式成立 /strong /p p style=" text-align: justify text-indent: 2em " 中国节能环保集团有限公司是中国节能环保领域最大的科技型服务型产业集团,2016年与唐山市签署战略合作框架协议,成立中节能(唐山)环保装备股份有限公司,致力于节能环保装备的研生产、销售和服务。本次拟成立的石墨烯节能环保应用研究院由中节能(唐山)环保装备股份有限公司和中国石墨烯产业技术创新战略联盟联合成立,研究院旨在以产业化为目标,围绕节能环保的发展需求,开展石墨烯新材料节能环保应用共性关键技术、产品和装备的研制开发。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 600px " src=" https://img1.17img.cn/17img/images/201910/uepic/9f176d91-c904-4f10-b057-ab0cbacbac2b.jpg" title=" initpintu_副本.jpg" alt=" initpintu_副本.jpg" width=" 600" height=" 600" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 签约及专家受聘仪式 /strong /p p style=" text-align: justify text-indent: 2em " 会议上举行了隆重的揭牌仪式、签约仪式和专家受聘仪式,东京大学教授、新材料与产业技术北京研究院院长古月文志和浙江大学工研院石墨烯应用研究中心主任陈威正式受聘成为中节能石墨烯节能环保应用研究院的首席专家,签约仪式后与会专家进行了学术交流活动。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/5c7570a9-c961-4073-8b7f-59fb9a7e67bb.jpg" title=" IMG_4707.JPG" alt=" IMG_4707.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 古文月志 /strong /p p style=" text-align: justify text-indent: 2em " 纳米表面的活性特别强,纳米材料想做成产品具有重大的安全隐患需要克服,而氧化石墨烯和石墨烯由于纳米毒性非常低,因此应用空间非常广泛。东京大学教授、产业技术北京研究院古文月志做《银/卤化银/石墨烯-高效率光催化剂及环保应用》,其研究团队通过染色办法成功研制了每厘米电阻可高达100欧姆的石墨烯导电丝,且反复洗涤也不会受到影响。利用这一成果,古文月志团队先后研制出了能用10年,“具有拥抱恋人温度”的石墨烯电热毯、以及可实现手机24小时监测心脏的心电图的可穿戴传感器(EGG)。另外氧化石墨烯的制作非常危险,常有爆炸隐患,古文月志团队还在制造氧化石墨烯的过程中取得了改进,将氧化石墨烯做成向蛋糕一样的海绵体,完美解决了这个问题。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/e530b2a6-42ee-455c-aa25-3b63675c25b5.jpg" title=" IMG_4716.JPG" alt=" IMG_4716.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 郭正晓 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/1d181c6f-5992-4480-b6f1-f5953fff648d.jpg" title=" IMG_4721.JPG" alt=" IMG_4721.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /strong /p p style=" text-align: center " strong 毕恒昌 /strong /p p style=" text-align: justify text-indent: 2em " 郭正晓教授和东南大学毕恒昌老师也先后做了《graphene-Based Catalysts for Enery Conversion andStorage》报告,和《Graphene-Based Materials for Purification of water and air and its industrialization progress》报告。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 600px " src=" https://img1.17img.cn/17img/images/201910/uepic/cc42f308-fbeb-4c52-97f3-f0df77ea2050.jpg" title=" initpintu_副本随时.jpg" alt=" initpintu_副本随时.jpg" width=" 600" height=" 600" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 学术报告后,参会专家们就氧化石墨烯纤维结合、石墨烯地毯材料附着力、石墨烯氢能源电池、氢能产业化、石墨烯节能净化材料等方面的问题进行了踊跃交流,气氛热烈。湘潭大学郑林义教授接受记者采访时,祝贺了石墨烯节能环保应用研究院的成立,他还兴奋地表示,自己昨天晚上刚从实验室连夜赶来参加会议,这一上午收获颇丰,充分对接了产学研资源,不虚此行。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201910/uepic/61e2147f-d185-47cb-972c-c80ca94f7029.jpg" title=" IMG_4623.JPG" alt=" IMG_4623.JPG" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 黄勇 /strong /p p style=" text-align: justify text-indent: 2em " 中节能(唐山)环保装备股份有限公司董事长黄勇总结强调,节能环保行业是一个不能脱离其他行业独立存在的行业,与工业发展,人居环境等方方面面密切相关。节能环保行业同时是也是一个政策导向、行业回报率高的行业,需要新技术的不断涌现和产业化的持续投入与付出,希望通过石墨烯节能环保应用研究院的成立,开展石墨烯在节能环保领域的应用探索,开发一批产业应用核心技术,促进我国节能环保行业更好地发展。 /p
  • “检测别动队”在身边 ——访北京有色金属与稀土应用研究所理化中心主任王峰
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 伟业往往孕于平凡,默默无闻处总有顶天立地的脊梁。在北京就有这样一家单位,他们的工作鲜见报道,但却是“身怀绝技”。北京奥运场馆热轧带钢筋的检查工作由其负责,国庆60周年观礼台工程主结构材料由其检测,北京朝阳区保障性住房钢筋的检测工作中也尽是他们的身影& #8230 & #8230 完成这些成就的单位究竟是怎样的面貌,又有哪些不为人知的精彩?近日,仪器信息网有幸走进北京有色金属与稀土应用研究所理化中心,采访了理化中心主任王峰。 /span /p p style=" text-align: left text-indent: 0em " span style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 663px height: 482px " src=" https://img1.17img.cn/17img/images/201912/uepic/74e7e3d8-5f8a-4682-8d07-2f4ff4b8e404.jpg" title=" “检测别动队”在身边.1.jpg" alt=" “检测别动队”在身边.1.jpg" width=" 663" height=" 482" border=" 0" vspace=" 0" / & nbsp /span /p p style=" text-align: center text-indent: 0em " strong 工作中的北京有色金属与稀土应用研究所理化中心主任王峰 /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 有色检测标准的“攻坚别动队” /strong /span /p p style=" text-align: justify text-indent: 2em " 标准与检测一向焦不离孟,作为有色及黑色金属材料及制品权威检测机构,除了在上述国家重大任务中承担检测职责,理化中心还参与了大量相关标准的制制修订工作,其中就有国家标准《GB/T 22638.6-2016 铝箔试验方法 第 6 部分 直流电阻的测定》,王峰恰好是该标准的主要起草人之一。“铝箔直流电阻是电子、电力、电解电容器用铝箔的一个重要技术指标,指标的均匀性可以反映出铝箔化学成分控制、内部组织和厚度均匀性的优劣,如何准确的测定铝箔直流电阻,为铝箔生产提供准确、客观的数据,是铝箔质量控制的一个重要保障。”王峰强调。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/c60fea25-9de6-4833-8814-c43edf8b0a05.jpg" title=" “检测别动队”在身边...jpg" alt=" “检测别动队”在身边...jpg" / /p p style=" text-align: center text-indent: 0em " strong 理化中心的电阻率仪 /strong /p p style=" text-align: justify text-indent: 2em " 随着“一带一路”基础设施建设的相继开展,铝箔已成为应用最广泛的有色金属制品之一,在建筑、车辆、船舶、能源等领域发挥着越来越大的作用,也为中国铝箔产品全面走向世界带来巨大机会。王峰表示,为铝箔产品标准的修订提供检测技术支撑是非常重要的工作。“我们的修订,主要是结合国内仪器设备生产情况与国外先进标准,使该系列检测方法标准更加科学、合理,符合国际惯例,并真正起到指导国内铝箔企业生产、提高技术水平。” /p p style=" text-align: justify text-indent: 2em " 在上述国标之外,理化中心也参与了大量有色行业标准的制定,包括金锡合金化学分析检测标准、变形铝合金铸锭超声波检测标准、氯化钯化学分析标准等等& #8230 & #8230 据王峰介绍,我国目前已建立起比较完善的有色金属标准体系,但部分标准使用率还不高,标准在检测维度的适应性、有效性以及配套协调性也有待进一步提高。“比如有的产品标准中规定了检测指标,但却没有检测方法,或者有了检测方法标准,又缺乏产品标准中规定的检验标准。”王峰说道,“而这一部分就需要我们做相关检测工作的人积极参与其中,并且付出更多的努力。” /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 五脏俱全的高精尖仪器基地 /span /strong /p p style=" text-align: justify text-indent: 2em " 支撑理化中心参与国家标准化工作的底气,来源于单位雄厚的仪器储备。在参观走访中笔者了解到,理化中心检测仪器设备达40余台套。拥有电子扫描显微镜、激光粒度仪、电感耦合等离子体质谱仪、电感耦合等离子体光谱仪、三坐标测量仪、水浸超声探伤、金相显微镜、同步热分析仪、激光热导仪、热膨胀仪、氧氮联测仪、原子吸收光谱仪、力学实验机、硬度计等一系列国内外先进仪器。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 300px height: 400px " src=" https://img1.17img.cn/17img/images/201912/uepic/87b5c6cb-d170-4c3a-bc7b-6ff6f94ab721.jpg" title=" “检测别动队”在身边....jpg" alt=" “检测别动队”在身边....jpg" width=" 300" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 理化中心进口显微硬度计 /strong /p p style=" text-align: justify text-indent: 2em " “比如我们这套进口的显微硬度计,最小载荷可达到0.00002kg,镜头放大倍数可达到1000倍,比头发丝还细的键合丝硬度都可以测量,此外还能应用于材料不同相区的检测分析。”王峰介绍到。这些高水准的仪器错落分布在1000余平米的检测专用实验室中,在理化中心数十位专业检测人员的操控下,井然有序地开展着各项检测任务。“我们实验室麻雀虽小,但是五脏俱全。”王峰开玩笑说,谦虚又充满自信。 /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 开放共享 “检测别动队”并不遥远 /span /strong /p p style=" text-align: justify text-indent: 2em " 如此权威又专业的检测单位,其实离我们普通人的距离并不遥远。“作为第三方检测机构,我们是可以面向社会承接金属制品的物理性能和成分分析等测试服务的。”王峰笑着说,“比如北工大、北科大等高校的学生,在学校排不上号时,经常也会把相关样品送到我们这检测。” /p p style=" text-align: justify text-indent: 2em " 在他看来,当前在检测行业,资源的开放与共享是未来发展的一个重要方向。“比如我们理化中心,除了专门用于有色金属检测的专用仪器设备外,还拥有很多通用型的高端仪器设备,很多仪器其实闲置率是很高的,与其浪费资源,不如造福社会。”正因为如此,理化中心相继加入了北京材料测试服务联盟、首都科技条件平台检测与认证领域中心、国家新材料测试评价平台等一系列促进科学仪器设备共享服务的重要组织,不断探讨如何为社会提供更好的检测服务。”就在仪器信息网到访之时,恰好有外面的用户送来了一组氧化物粉末样品,工作人员正在使用产自珠海欧美克的LS-909激光粒度仪测量该样品的粒度和粒度分布。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/85a61b82-9693-4b2d-aa23-906de92f134c.jpg" title=" “检测别动队”在身边.....jpg" alt=" “检测别动队”在身边.....jpg" / /p p style=" text-align: center text-indent: 0em " strong 图电脑后侧为LS-909干湿二合一激光粒度仪 /strong /p p style=" text-align: center text-indent: 0em " strong 图电脑左侧为仪器所配的DPF-110干法进样器和SCF-105B湿法进样器 /strong /p p style=" text-align: center text-indent: 0em " strong ( a href=" https://www.instrument.com.cn/netshow/C240671.htm" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 点击了解仪器详情 /span /a ) /strong /p p style=" text-align: justify text-indent: 2em " “我们研究所本身需要检测的金属合金粉体材料往往是球形的,数十微米级单分散颗粒,检测粒度非常容易。”王峰解释说,“但是像这种从外面送来的样品往往粒度粒形更为复杂,对激光粒度仪分散性、重现性、重复性、精准度等指标的要求更高,并且经常会提出检测异常尺寸颗粒的灵敏性等涉及其他应用测试特性的要求,而这也恰好能让我们购买的高端仪器物尽其用。”现如今理化中心的LS-909激光粒度仪几乎每天都要迎来各种需求的粒度测试任务。“还是那句话,物尽其用,我们单位的仪器设备是开放共享的。” /p p style=" text-align: justify text-indent: 2em " 后记:采访中,王峰主任还分享了他对中国检测机构未来发展趋势的第二个看法,认为:检测机构将从单纯提供样品检测数据向提供产品的综合性能评价转型。而想做到这一点,需要检测机构在精通检测的同时,更多地深入学习、掌握相关材料和产品的应用。“我还只是个学徒工,需要提高的还很多。”王峰认真地说。 /p p style=" text-align: justify text-indent: 2em " strong 附录1,理化中心简介: /strong /p p style=" text-align: justify text-indent: 2em " 北京有色金属与稀土应用研究所理化中心隶属于北京有色金属与稀土应用研究所,负责研究所自研有色金属焊接材料、功能材料等产品的研发与检测工作。同时,理化中心还是北京市有色金属与黑色金属材料权威检验机构,并在此基础上成立了由北京市质量技术监督局依法授权的市级质量监督检验站——北京市冶金产品质量监督检验站,具有独立法人资格。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/1a7b2127-d910-42e9-9838-eba69d64dc9b.jpg" title=" “检测别动队”在身边......jpg" alt=" “检测别动队”在身边......jpg" / /p p style=" text-align: center text-indent: 0em " strong 理化中心一角 /strong /p p style=" text-align: justify text-indent: 2em " 理化中心拥有CMA计量认证和CNAS实验室认可证书,目前已授权检测方法 200 余项,授权检测产品 100 余项。”测试的材料,被广泛应用于航空航天、电力电子、光电信息、铁路交通、建筑检测等诸多领域。 /p p style=" text-align: justify text-indent: 2em " strong 附录2,王峰简介: /strong /p p style=" text-align: justify text-indent: 2em " 王峰,男,1985年出生,硕士学位,现任北京有色金属与稀土应用研究所理化中心主任,先后从事金属材料物理性能检测、有色金属新产品研发、标准起草与修订、实验室体系管理等工作。十多年来,始终坚持扎根科研检测一线,为首都打造科技创新中心贡献一份力。 /p
  • 我国首个民用海洋测绘应用研究中心成立
    1月9日,我国首个民用海洋测绘应用研究中心在上海海洋大学成立。   中心将以动态海洋监测为目标,以海洋测绘与海洋资源调查、开发与管理,海洋生态系统等多学科交叉应用为特色,以陆海统一高精度测绘基准、海岛礁精确测绘、海底地形地貌测绘、海洋地理信息服务、海岸带测绘应用等方向作为主要研究领域,以深远海测绘技术研究为特色,建立我国高精度动态海洋监测技术体系。
  • 燕山石化树脂应用研究所技术交流会
    2014年4月17日上午,由北京亿路达公司举办的聚烯烃表征技术交流会在燕山石化树脂应用研究所顺利举行,研究所各科室技术工程师及领导共20多人参与,主讲人是前美国陶氏化学的专家Wallace W. Yau博士(下面简称姚博士)。 作为世界著名的聚烯烃表征技术研发及其设备生产商-Polymer Char公司在中国的独家代理商,北京亿路达机电设备有限公司应从事聚烯烃研究与分析工作者们的强烈要求,特邀全球聚烯烃表征领域著名专家——前陶氏化学美国研发中心聚合物表征高级科学家、中国石化特聘高级顾问姚博士就“聚合物结构对材料性能的影响”以及“Polymer char仪器在聚烯烃表征的应用”两个话题与燕山石化的技术工程师进行了深入探讨。会上,姚博士通过分享自己丰富的经验与贴合实际的案例,通过细致耐心的解答,令与会者受益匪浅。 本次交流会按计划圆满完成,客户满意度很高,并对下一次交流会提出了期望与建议。
  • 程琳教授团队:毛细管聚焦的微束X射线荧光谱仪及其应用研究
    毛细管聚焦的微束X射线荧光谱仪及其应用研究邵金发,侯禹存,程琳*(北京师范大学核科学与技术学院,射线束技术教育部重点实验室 100875)摘要随着科技的发展,人们对物质的分析慢慢深入到微区领域。而微束能量色散X射线荧光作为一种高灵敏、高精度的元素分析技术,已然成为物质微区分析的有利工具。本实验室将毛细管X射线聚焦技术与能量色散X射线荧光分析技术相结合,自行设计研发了一种新型毛细管聚焦的微束X射线荧光谱仪。该谱仪在利用毛细管X光透镜的特点将X射线源发出的X射线束会聚到微米量级的同时,基于激光位移传感器开发了自动调整样品测量点到透镜出口端距离的闭环控制系统,有效的减少由于样品表面不平整或弧度带来的测量误差,弥补了现有微束X射线荧光谱仪在此方面的不足。因此,该微束X射线荧光谱仪为表面不平整文物样品的无损微区元素分析提供了解决方案。1. 引言微束能量色散X射线荧光光谱(Micro-energy dispersive X-ray fluorescence, µ-EDXRF)分析技术因其快速、准确、无损分析等优点,被广泛应用在考古、地质、环境、材料、生物等科学领域[1-8]。目前,基于实验室光源以获得微束入射X射线的方法主要有准直器限束和X射线光学器件聚焦两种。通过准直器限束获得微束入射X射线是最早在微束X射线荧光谱仪中使用的方法,具体为采用准直狭缝或小孔作为光阑放置在入射光路上,用以减小入射X射线的发散度。但与此同时,入射光束的强度会因为物理阻挡而降低,从而导致获得的特征X射线信息减弱。而多毛细管X光透镜利用X射线全反射原理,可将在空心毛细管内表面上的多次全反射的X射线会聚于焦点。因此可以实现以较大的角度收集从X射线源产生的X射线,且会聚后X射线的束斑大小可低至几十微米。同时,毛细管X光透镜对Cu-Kα的能量有高达2-3个数量级的放大倍数[9],且具有低的发散度。同时,可以将基于毛细管聚焦的微束能量色散X射线荧光分析技术与大面积扫描相结合,实现微米级表面结构和元素分布的分析测定。目前国内外存在部分商业化的微束X射线荧光谱仪,其中美国EDAX公司生产的Orbis系列微束X射线荧光谱仪,适用于部分地质和考古样品测试的[10];德国Bruker公司生产的M4 Tornado可移动式微束X射线荧光谱仪,适用于实验室或博物馆内各类样品的研究[11]。但由于部分文物样品表面并不平整或存在较大的弧度,若不对相对位置进行修正,这将使得样品测量点与毛细管X光透镜出口端的距离在测量过程中发生改变,从而影响测量结果的准确性和元素区域扫描的分辨率[12]。为解决上述问题,本实验室自行设计和开发一种新型的微束X射线荧光谱仪以及相应的计算机控制程序,并且开展了相关分析方法学的研究。2. 仪器组成本实验室设计的毛细管聚焦的微束X射线荧光谱仪结构示意图如图1所示,其主要由微焦斑X射线管(Mo靶,焦斑大小50μm×50μm,德国Röntgen公司)、毛细管X光透镜(Mo-Kα能量处束斑大小为31µm)、SDD X射线探测器(5.9keV时能量分辨率为145eV,铍窗有效面积25mm2)和PX5多道分析器、精度为20µm的激光位移传感器、激光笔、具有20倍放大功能的1400万像素固定焦距CCD摄像头、高精度XYZ三维样品台,以及在LabVIEW语言环境下开发的仪器控制程序等部分组成。仪器控制软件主要包括探测系统控制界面、X射线源高压控制界面、机械运动系统控制界面、CCD图像采集控制界面和氦气控制界面构成。其中主界面包含了各个控制功能系统的一些主要控制命令及输出,如图2所示。谱图显示区域在探测过程中实时显示X射线探测器探测到的谱图。此外,该仪器使用的高精度自动化三维运动平台可以满足微区的二维μ-EDXRFF分析的需求,以便实现对感兴趣区域内元素分布的分析。图1 微束X射线荧光谱仪的结构示意图图2 微束X射线荧光谱仪控制程序主界面3. 实验分析3.1 清代红绿彩瓷的分析为了评估本仪器对样品微区进行元素二维扫描分析的能力,选取一片清代红绿彩瓷的残片作为研究对象(图3)。选取图3中A(白釉)、B(红彩)、C(绿彩)进行微区的元素组成分析。实验测量时,X射线管电压40 kV,电流0.6 mA,探测活时间300 s。样品A(白釉)、B(红彩)、C(绿彩)三点的微束X射线荧光分析的能谱如图4所示,彩料中各元素化学成分采用基本参数法进行定量分析,所得的数据如表1所示。图3 清代红绿彩瓷残片与感兴趣区域图片图4 红绿彩中白釉、红彩和绿彩的μ-EDXRF光谱表1 白釉、红彩和绿彩的化学成分(质量分数,%)此外,选择如图3中2mm×2mm的感兴趣区域,使用微束X射线荧光谱仪进行µ-EDXRF二维扫描分析。进行µ-EDXRF二维扫描分析时,X射线管电压为40 kV,电流为0.6 mA,扫描步距为30 µm,每个点探测时间为1.5 s,扫描数据经软件处理得到如图5所示的元素分布图。图5 扫描区域内Pb、K、Fe、Ca、Cu、Al、Mn、Si元素的分布3.2 吉州窑古陶瓷的分析为评估本仪器对表面存在大弧度的样品进行微区元素二维扫描分析的能力,选取一片吉州窑古陶瓷的残片作为研究对象(图6)。实验开始前调节平移台使样品表面感兴趣区域清晰呈现在CCD图像中,并通过鼠标在控制界面的CCD视野中选择具体的目标扫描区域。选取图6中大小为10mm×10mm的区域进行元素二维扫描分析。µ-EDXRF二维扫描分析的测量条件与上文相同。同时,为验证本仪器“源-样”距离自动控制系统对测量结果的影响,分别在开启和关闭“源-样”距离自动控制系统的条件下进行元素二维扫描分析,扫描数据经软件处理得到如图7所示的元素分布图。图6 吉州窑古陶瓷样品与扫描区域图片图7 扫描区域内K、Ca、Zn、Fe元素分布图。a)关闭“源-样”距离自动控制系统,b)开启“源-样”距离自动控制系统通过图7与图6的比较可知,在关闭“源-样”距离自动控制系统的情况下进行µ-EDXRF二维扫描时,由于样品表面的弯曲,样品测量点与毛细管X光透镜出口端之间的距离发生变化,使得X射线光束的焦点无法与样品测量点重合。这导致测得元素分布图空间分辨率变差,同时生成的图像发生了扭曲。相反,当打开“源-样”距离自动控制系统进行测量时,由于该系统可实时调整平移台使X射线束准确照射在样品测量点上,显著降低由于样品表面弯曲带来的偏差。极大的改善了测量结果,表明该仪器在不平整样品的µ-EDXRF二维扫描中具有重要的应用价值。4. 结论本实验室将毛细管X射线聚焦技术与能量色散X射线荧光分析技术相结合,设计和研发了一种新型毛细管聚焦的微束X射线荧光谱仪。该微束X射线荧光谱仪在具备无损分析微小样品和样品微区的元素分布能力的同时,其基于激光位移传感器开发的“源-样”距离自动控制系统可实时调整样品测量点到透镜出口端距离,显著降低了由样品表面不平整或弧度带来的测量偏差,弥补了现有微束X射线荧光谱仪在此方面的不足。因此,其在材料科学、地球科学和文物保护等领域有着广泛的应用前景。参考文献[1] 戴珏,吴奕阳,张元璋,等.能量色散X射线荧光光谱法在检测仿真饰品中有害元素的应用[J].上海计量测试,2018,45(04):34-35.[2] 陈吉文,倪子月,程大伟,等.基于EDXRF的土壤中痕量镉的快速检测方法研究[J].光谱学与光谱分析,2018,38(08):2600-2605.[3] 陈曦,周明慧,伍燕湘,等.能量色散X射线荧光光谱仪在稻米中镉含量测定的应用研究[J].食品安全质量检测学报,2018,9(10):2331-2338.[4] 蒯丽君. 化学前处理—能量色散X射线荧光光谱法应用于矿石及水体现场分析[D].中国地质科学院,2013.[5] Rathod T, Tiwari M, Maity S , et al. Multi-element detection in sea water using preconcentration procedure and EDXRF technique [J]. Applied Radiation & Isotopes, 2018, 135.[6] Figueiredo E, M F, Araújo, Silva R J C, et al. Characterisation of Late Bronze Age large size shield nails by EDXRF, micro-EDXRF and X-ray digital radiography [J]. Applied Radiation & Isotopes Including Data Instrumentation & Methods for Use in Agriculture Industry & Medicine, 2011, 69(9):1205-1211.[7] Natarajan V, Porwal N K, Babu Y, et al. Direct determination of metallic impurities in graphite by EDXRF. [J]. Appl Radiat Isot, 2010, 68(6):1128-1131.[8] Li L, Huang Y, Sun H Y, et al. Study on the property of the production for Fengdongyan kiln in Early Ming dynasty by INAA and EDXRF [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 381:52-57.[9] Bonfigli, Francesca, Hampai, et al. Characterization of X-ray polycapillary optics by LiF crystal radiation detectors through confocal fluorescence microscopy[J]. Optical Materials, 2016, 58: 398-405.[10] Moradllo M K, Sudbrink B, Hu Q, et al. Using micro X-ray fluorescence to image chloride profiles in concrete[J]. Cement & Concrete Research, 2016:S0008884615300636.[11] Ramos I. Pataco I M, Mourinho M P, et al. Elemental mapping of biofortified wheat grains using micro X-ray fluorescence[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016.[12] Ricciardi P,Legrand S,Bertolotti G, et al. Macro X-ray fluorescence (MA-XRF) scanning of illuminated manuscript fragments: potentialities and challenges[J]. Microchemical Journal, 2016, 124:785-791.*通讯作者程琳,工学博士,美国加州大学尔湾分校访问学者。现任职于北京师范大学核科学与技术学院,教授,博导。长期从事毛细管聚焦的微束X射线分析技术的研究及相关设备的研发;目前已经成功研发出国内首台毛细管聚焦的微束X射线荧光谱仪和毛细管聚焦的X射线衍射仪等设备并开展相关的分析技术及应用研究;作为项目负责人已经承担多项国家自然科学基金、北京市自然科学基金和北京市科技计划项目等,国家自然科学基金评审专家、北京市高新技术企业评审专家和X-ray spectrometry等国际刊物审稿人。e-mail: chenglin@bnu.edu.cn
  • 细胞工程:应用研究待突破
    近日,国务院印发的《生物产业发展规划》明确指出,要大力开展生物技术药物创新和产业化,发展细胞治疗等新技术与装备。细胞工程又一次备受瞩目。   细胞工程是以细胞为对象,应用生命科学理论,借助工程学原理与技术,有目的地利用或改造生物遗传性状,以获得特定的细胞、组织产品或新型物种的一门综合性科学技术。   对于我国细胞工程研究现状,细胞产品国家工程研究中心副主任张磊对《中国科学报》记者说:“一方面,文章发表量和专利申请量增幅很大,基础研究成果显著 而另一方面,应用研究缺乏监管和规范,基础平台和研究项目总体处在跟随欧美国家的状况,缺少有导向性的重大创新性技术。”   据介绍,作为细胞工程的重要组成部分,细胞治疗技术存在的问题较为典型。细胞治疗技术,一类是免疫细胞治疗,另一类是干细胞治疗。   张磊说,免疫细胞治疗已列入国家第三类医疗技术,医疗机构陆续开展相关方面应用,但都处在小规模、不规范的状态。干细胞治疗中,只有造血干细胞技术相对成熟,但需突破其扩增技术,其他干细胞产品尚未建立起明确的质量标准和规范的技术评价体系。   对于细胞工程的发展前沿,张磊表示,一是3D人体细胞打印,将人体细胞作为“生物打印机”的原料,将事先提取好的活体细胞进行组合排列,“打印”出所需要的组织和器官 二是利用合成生物技术,开发标准的“生物元件”,装配成各种功能的“生物装置”,并构建出新的“生物系统”,对细胞进行有目的的改造,合成出需要的药物和其他材料。
  • 综述|相变蓄冷材料及系统应用研究进展
    摘要:相变蓄冷技术利用相变材料在相变时伴随着的吸热或放热过程对能量进行储存和应用,起到控制温度、降低能耗和转移用能负荷的作用。本文综述了相变温度在 25℃以下的相变蓄冷材料及其在不同应用场景的筛选依据。其次,介绍了相变蓄冷材料在食品医疗冷链物流、建筑节能控温与数据中心应急冷却、人体热管理和医疗保健的相变纺织品等领域的应用。从调节相变蓄冷材料相变温度、过冷度、热导率和循环稳定性等方面总结了材料热物性的调控策略,分析了不同调控策略存在的优缺点。指出相变蓄冷系统可通过增强蓄冷系统热导率和强化传热结构来改善普通材料传热性能差的问题。最后从复合相变材料制备到系统设计优化和应用场景拓展等方面对相变蓄冷技术研究方向进行了展望。关键词:相变蓄冷材料;相变蓄冷系统;复合相变材料;热物性;应用随着全球变暖和人们生活质量的提升,制冷需求快速增长,制冷空调系统带来的碳排放量与日俱增,预计到2050年,全球制冷能源消耗仍将增加十倍。面对制冷能耗急剧增长的发展趋势,大力开发太阳能、风能等新能源电力是解决未来制冷能耗缺口的技术关键。然而,新能源电力存在间歇性、波动大的缺点,易出现发电量与用电量不匹配的问题。因此发展高效储能技术,对新能源消纳与利用是适应可再生能源网络的有效途径。发展先进的蓄冷技术,调节制冷和用冷负荷使之匹配,是制冷系统技术发展的重要方向。蓄冷技术可以在峰谷电价时段或能量盈余的时候进行储能,实现能源移峰填谷,降低电网峰值用电负荷和成本。相对于电化学储能,蓄冷技术可以直接存储冷能,具有安全性高、循环稳定性好、成本低的优点。因此,将蓄冷技术与制冷系统耦合的储能技术一直是研究热点,在工商业及民用场景应用广泛。在冷链运输领域,我国每年因运输过程中低温环境不合格导致水产品腐烂损失率达25%,果蔬类损失率达25%~35%,全球有超过50%的疫苗被浪费。因而蓄冷技术在冷链运输领域能够通过减少运输过程中的温度波动来降低产品变质几率,有效减少产品损耗,实现食品和医疗用品的长距离运输。蓄冷技术也可应用于建筑节能,将蓄冷材料与建筑基体复合制得储能墙体,在白天吸收室外进入室内的热量,夜晚则释放热量给室内供暖,实现辅助控制室内温度,减小建筑采暖、制冷能耗,有助于提高室内环境舒适度。此外,通过蓄冷空调将晚上低谷电转化为冷能储存起来,在白天电网高负荷时释放,转移用电负荷,结合分时阶梯电价策略能降低建筑制冷成本与能耗。此外,蓄冷技术与纺织品结合制作成智能纺织品、应用于人体热管理,也是重要的应用领域之一。蓄冷材料是蓄冷技术的核心,开发适宜温度及高蓄冷密度的蓄冷材料是满足不同蓄冷需求的关键。目前常见的蓄冷材料主要有∶显热蓄能材料和潜热蓄能材料。显热蓄能材料包括水等,利用自身升降温过程中热能的变化进行能量储存和释放,技术成熟且成本便宜,适合大规模生产。但其蓄冷密度小,只适用于分钟、小时级的短时蓄冷场景。潜热蓄能材料利用相变材料固-液-气相态变化来储蓄或释放能量,其中应用最为广泛的固-液相变能在相变过程中吸收大量热能,同时温度保持不变(如图1)。潜热蓄能材料蓄冷密度远高于显热蓄能,适用于数小时至数周的蓄能场景,且成本适中,具备大规模应用的潜力。图 1 固液相变过程本文主要对应用于蓄冷领域的相变材料进行综述,探讨相变蓄冷材料物性调控和优化、相变蓄冷系统传热技术强化,总结当前相变蓄冷材料和蓄冷系统不足,展望相变蓄冷技术研究方向和应用前景。01常见相变蓄冷材料常见相变蓄冷材料主要指相变温度在25℃及以下的相变材料。其中,按材料成分可分为有机、无机和共晶相变材料。1.1 有机相变蓄冷材料有机相变材料主要包括石蜡、脂肪酸、酯和醇等,以碳链长度小于17的烷烃为主。有机相变材料相变焓优异、腐蚀性小,而且热稳定性好、经多次相变后物理和化学性质基本不变,可靠性好。但有机相变材料热导率低,如石蜡、酸或醇类有机物的热导率为0.3 W/(mK)、部分材料易燃、生产成本较高等。表1列举了一些相变温度在25℃及以下的常用有机相变材料热物性。其中十四烷相变温度为5~8℃,在冷库、冷链运输保温箱、空调蓄冷等多个场景中应用最为广泛。表 1 有机相变材料的热物性参数1.2 无机相变蓄冷材料无机相变材料主要有冰、水合盐类、熔融盐类、金属或合金类等,其中冰和水合盐因相变温度较低主要用于低温领域,如在空调和建筑蓄冷等领域应用广泛。无机相变材料相变焓大、热导率较高,常见水合盐热导率为0.5 W/(mK) ,而且来源广、成本低、商用化前景好。然而无机相变材料可靠性差,存在过冷度高和相分离严重的缺点,多次使用后性能衰减严重,而且腐蚀性强。表2列举了一些相变温度在25℃及以下的常用无机相变材料热物性。表 2 无机相变材料的热物性参数无机相变材料中冰的研究最多,因为冰相变焓为334 kJ/kg,为常见相变材料的2~3倍,而且成本低廉。冰与水混合所得冰浆具有良好流动性和高相变潜热,可通过离心泵和管道输送,在极高含冰量下不堵塞,且所需输送管道和储罐尺寸小,以其为基础的冰蓄冷技术是实际工程项目中使用最广泛的蓄冷技术。1.3 共晶相变蓄冷材料共晶相变材料是将两种或两种以上相变材料混合制备得到的共晶产物,其熔点低于任一组分。共晶相变材料按材料可分为有机-有机共晶、无机-无机共晶和有机-无机共晶相变材料。无机-无机共晶相变材料包括金属合金相变材料、水合盐及熔融盐共晶相变材料,有机-有机共晶相变材料包括有机酸共晶和石蜡,无机-有机共晶相变材料主要是有机酸和水合盐的共晶相变材料。其中无机-有机共晶相变材料能实现有机、无机材料优势互补,可获得兼具过冷度低、潜热较高、性能稳定的相变蓄冷材料,但目前应用研究较少,潜力巨大。共晶相变材料能通过调整各组分比例来控制相变温度,而且能一定程度上改善材料过冷度和相分离等问题,是调节相变材料热物性的一种重要方法,但共晶相变材料的制备工艺较为复杂,需要围绕共晶点按比例形成共晶物,且组分比例与相变温度不呈线性规律,应用前需要进行大量预实验,过程繁琐复杂。表3列举了一些相变温度在25及以下的常用共晶相变材料热物性。表 3 共晶相变材料的热物性参数1.4 相变蓄冷材料的选择研究并筛选出适用于蓄冷系统的相变蓄冷材料,是相变蓄冷技术的关键之一。一般来说,用于蓄冷领域的相变材料应具有以下特性∶①相变温度合适;②相变潜热大;③热导率高;④冻结和熔化率高;⑤热稳定性好;⑥固液相变体积变化小;⑦过冷度低;⑧循环稳定性好;⑨无毒和无腐蚀性;⑩成本低。目前相变蓄冷材料中有机相变材料和无机相变材料应用最为广泛,二者关键物性对比如图2所示,可作为实际选材的参考依据。无机相变材料具有低成本、毒性低和高热导率的优点,适合大规模生产,在蓄能水罐、冷库等大型建筑设备中应用较广,但其过冷度高、相分离严重和腐蚀性强的缺陷限制其在蓄冷领域的应用。有机相变材料具有过冷度低、循环稳定性好和腐蚀性小优点,主要适用于冷链运输和智能纺织品,但其低热导率、有毒、易燃和高成本的缺点阻碍其进一步应用。相比有机、无机相变材料,共晶相变材料可根据组分比例调控相变温度,实现精准控温,适用于要求温度变化范围小的场景,但目前研究较少,适用环境较少。图 2 无机相变材料与有机相变材料关键物性对比图在实际应用中,很难筛选出满足所有条件的相变蓄冷材料,因此要优先选择相变温度适宜且相变潜热高的蓄冷材料,最后采用合适的方法对其性能进行调控。02相变蓄冷技术的应用2.1 冷链运输冷链运输过程中环境温度波动易造成产品损耗,如果引入相变材料,发挥其相变控温功能,减少环境温度波动,能有效提高冷链运输产品质量。冷链运输根据保温方式分为被动式和主动式。被动式冷藏主要应用于冷藏箱,如图3所示,在箱体内加入相变蓄冷材料,吸收进入到箱体内部的热量、减缓温度上升速率,为冷藏物体长时间提供低温储存环境。Li等复合了膨胀石墨与辛酸-月桂酸共晶相变材料,二者质量比为71∶29,制得复合相变材料的相变温度和潜热分别为3.8℃和141.7 J/g,热导率提升了2.8倍,使材料释冷速率提高636.7%。Huang等基于石蜡OP5E开发了一种蓄冷保温箱,高低温测试表明,相变材料可以在至少80 h使保温箱内部温度保持在2~8℃。Liu等将KCl-NH4Cl共晶盐吸附于高吸水性聚合物SAP上,制得一种相变温度为-21℃和相变潜热为230.62 J/g的蓄冷材料。该材料在-15℃下冷藏生物样品时,冷藏时间能达到16.37 h,能有效保证生物样品质量。图 3 被动式冷藏箱及内部构造主动式冷藏是如图4所示在车内安装含相变材料的制冷机组,主动将车内温度控制在适合食品冷藏的低温状态。在主动冷藏系统内,加入相变材料可以辅助控温,减少车厢内的温度波动,降低主动制冷系统能耗。刘广海等设计了一款集隔热、相变蓄冷、制冷送风为一体的冷藏车,相比传统冷藏车,相变材料加入使车内平均温度波动下降48.7%,温度不均匀度系数下降50%。Zhang等考察了集成相变材料对制冷系统能耗影响情况,含相变材料的集装箱制冷能源成本和运营成本分别降低71.3%和85.6%。Michele等提出了一种结合相变材料并用于冷藏车的新型隔热墙,当相变材料厚度为1 cm时,能在10 h内使车内温度波动范围不超出相变温度2℃。图 4 主动式冷藏车及系统组成将相变材料与冷链运输相结合,能出色发挥相变材料高潜热和相变控温的特点,不仅大幅延长有效冷藏时间,还减少冷藏空间的温度波动,提升其温度均匀性,有效减少冷藏产品的损耗率。与传统制冷相比,将制冷系统与相变材料结合,能大大降低能源成本和运营成本,起到减少碳排放的作用。2.2 纺织品人体热管理与出汗散热类似,将相变材料如图5所示应用于纺织品中,通过引入温度调节作用以提升人体舒适度。这种纺织品被称为智能调温纺织品,能响应人体或环境的变化,实现保暖和降温双向温度调节功能,适应多变的环境。目前相变材料与纺织品结合方式主要有三种∶填充法、涂层法和纤维中空填充法。图 5 纺织品集成相变材料用于温度调节填充法是将相变材料填充于纤维或密封袋中,再集中放置在服装内部,特别是胸部和背部等发热量较大的部位,通过相变材料直接吸热或放热的方式控制体表温度。如图6所示,Saeid等将相变温度在24~35℃的石蜡用于降温背心,穿着降温背心在轻度活动和中度活动期间,温度仍维持在人体舒适温度范围内,出汗率分别降低了42%和52%,减少了脱水几率。Hou等开发了一种基于相变材料的液体冷却背心,背心重量为1.8 kg,能在炎热环境中为穿戴者提供至少2 h温度舒适环境。图 6 石蜡降温背心及其包装涂层法将相变微胶囊加入涂层液中,并用刮板将液体均匀涂抹在织物表面,使纤维表面粘附上相变微胶囊来改变纺织品的热性能。Xu等将相变微胶囊固定在棉质衣物上,所制衣物相变温度为16.5℃~36.8℃,符合人体热舒适温度,而且保温系数与不含相变材料的衣物相比从1.05%提高到32.2%。Yin等将相变温度为25.7℃的相变微胶囊嵌在纤维表面,使面料保温率达23.9%,控温能力良好。纤维中空填充法是如图7所示对含有中空结构的纤维进行加工,在内部填充相变材料来赋予纤维蓄能特性。Ke等制备了一种聚丙烯腈/月桂酸-硬脂酸/二氧化钛的复合纳米纤维,相变温度约为25℃,经30个循环后性质相对稳定,具有良好的控温性和稳定性。Song等采用真空浸渍法将月桂酸封装到木棉纤维微管中,制得样品中月桂酸质量分数达86.5%,焓值达153.5 J/g,经2000次循环后性能基本不变。图 7 纤维中空填充法相变材料对热能的吸收会延缓身体温度升高,并减少皮肤中水分散失,从而提高舒适度。同时相变材料具有相变控温特性,可以减缓穿着者的热失衡症状,如感冒、中暑和晕厥等,在医疗保健领域有着广阔的发展空间。Olson等制备了由NaCl、Na2SO4和水组成的复合相变材料,如图8所示,应用于婴儿出生后降温问题上,通过简单方式抑制了环境温度的变化。Prashantha等将相变材料制成冰袋用于低温治疗,不仅降低成本,而且延长了使用时间,提供更好的冷疗功能。图 8 相变床垫(蓝色)上为婴儿降温,床垫由相变材料和软垫组成Zhang等用浸渍法将OP10E和SEBS混合制备了可在10℃下保持1800 s的弹性相变油凝胶,并设计如图9所示的冷却帽用于发烧儿童的冷敷治疗,模拟了人体热调节过程,建立发烧儿童所需凝胶量的数据库,为相变头套设计提供参考标准。图 9 相变油凝胶冷却帽建模及数据库将相变材料与人体热管理相结合,可以实现个性化体温调节。这类智能被动体温调节纺织品体积小、使用便利,在高温作业和户外运动等场景中提升人体舒适度。将相变纺织品制备调节体温的医疗保健产品,能帮助婴儿或患有温度敏感性疾病的人群缓解热失衡和常见并发症,加快病情治愈速率。创新性的相变智能体温调节纺织品在技术上已有了较深积累,其商业化值得期待。2.3 建筑节能及数据中心应急冷却将相变材料用于建筑节能领域,能使室内温度维持在舒适范围内,提高人们居住和办公舒适度,实现节能和减少碳排放的目标。建筑节能领域所用蓄冷技术可根据蓄冷方式分为被动式蓄冷和主动式蓄冷。被动式蓄冷主要通过将相变材料与建筑墙体复合制得如图10所示的相变储能墙体,白天吸收热量给室内降温,夜晚释放热量维持室内温度,起到辅助调节室温、减小建筑采暖和制冷能耗的作用。聂瑞等将硅藻土、十八烷和过硫酸铵混合制备一种相变微胶囊/硅藻土复合材料,具有调节室温以及维持室内湿度平衡的功能。Wang等将石蜡、膨胀石墨和高密度聚乙烯掺入水泥砂浆中制备复合相变砖块,在15~30℃和18~24℃时,120 mm厚的相变墙体比240 mm厚普通墙体的蓄能能力分别提高了12.7%和61%,有效降低了室内温度波动。Fu等将膨胀珍珠岩和六水氯化钙复合制得相变温度在27.38℃的相变砖块,用其代替泡沫保温砖作为屋顶,使得室内峰值温度降低5℃,达到室内峰值温度的时间滞后约900 s。图 10 相变材料在建筑节能中的应用主动式蓄冷主要通过制冷装置将电能和太阳能等转化并储存到如图11、图12所示蓄冷装置中,常见于冷库、家用空调和数据中心应急冷却系统等,能在需要时将冷能释放出来,有助于缓解能源供需不匹配的问题。图 11 集成相变材料冷却系统的空调系统图 13紧急冷却系统综上,在建筑节能领域中引入相变蓄冷材料,可减少室内温度波动并维持在舒适范围内。且相比传统制冷装置,相变材料具有的高相变焓优势能减少制冷机组装机容量,实现制冷、蓄冷装置的轻量化,降低安装、运行成本,提高能源利用效率。
  • 李福生教授团队:手持式能量色散X射线荧光光谱仪及其应用研究
    手持式能量色散X射线荧光光谱仪及其应用研究(李福生,电子科技大学教授、博士生导师)摘要光谱分析及信息科学被广泛应用于工业检测、污染防治等领域。X射线荧光光谱(X-Ray Fluorescence spectrometry, XRF)由于具有快速、无损、精确等优点,在环境污染监测、中草药鉴别、金属回收等方面具有十足的研究潜力和广阔的应用前景。人工智能及高端装备研究团队立足于自主研发的手持式X射线荧光光谱元素分析仪(TS-XH4000),利用X射线荧光光谱分析技术结合先进的人工智能算法开展土壤污染监测、土壤质量综合评价、铁粉元素测量等研究工作。团队研发的新一代手持式X射线荧光光谱仪采用具有可实现盲测,检出限低,可测微量元素等优势。1.引言能量色散X射线荧光光谱分析技术由于其快速、无损和精确的检测优点,目前已经被广泛应用于煤质分析、安检过程、资源勘采、货物通关、环境检测和中草药检测等领域[1][2][3]。能量色散X射线荧光光谱采用脉冲高度分析器将不同能量的脉冲分开并测量。能量色散X射线荧光光谱仪可分为具有高分辨率的光谱仪,分辨率较低的便携式光谱仪,和介于两者之间的台式光谱仪[4]。目前国内外同类手持式X射线荧光光谱分析仪主要包括美国品牌Niton生产的分析仪[5],日本生产的Olymbus光谱仪[6]和日立光谱仪[7]等。这些光谱仪普遍存在精准度一般、采购成本较高、难以单独定制等问题。而本团队设计的X射线荧光光谱仪历经几代研发,采用智能AI算法,可实现盲测,检出限低,可测微量元素;采用全球首创9mm*5mm腰形窗口,保护探头、便于测细小物品及不规则物品;安全性高,所有仪器均配有已申请专利的探头保护盖,自检安全保护;且工作状态有灯带提示,配有物料感应功能,利于物体识别,很好保护操作者的安全。本团队光谱仪的所有核心技术都归自己所有,不受国外任何技术限制。本团队所设计和研发的型号为TS-XH4000-SOIL的手持式能量色散XRF光谱仪(基于 AMPTEK INC.的 SDD 探测器)利用智能能量色散荧光分析法可以同时得到检测样品的X荧光光谱图及样品中所含元素种类和含量,测量元素范围为Na(11)-U(92)。此外,团队结合新型人工智能算法,例如BP神经网络[8]、支持向量回归[9]、贝叶斯优化算法等[10],设计了计算机校正软件,实现了基于X射线荧光光谱的中草药真伪鉴别,基于X射线荧光光谱的土壤重金属元素含量和铁粉含量的精确定量分析。2. 仪器组成本团队自主研发的手持式X射线荧光光谱仪集成先进智能算法、人体学设计外观结构、各型接口等,可在合金回收、土壤污染检测、中草药鉴别等众多领域应用。该光谱仪主要由激发源(X射线光管)、探测器、滤光片、多道脉冲幅度分析器等部分组成,结构示意图如图1所示。X射线管配有电源(最大电压50kV,最大电流200mA)。在仪器测量之前,需要先根据死时间、光谱信号噪声、光谱分辨率等指标将仪器的相关参数调整至最佳,然后通过检测纯元素的X射线光谱,完成能量刻度的定标,实现从通道数到能量刻度数的转换。接着,将定量模型算法需要的变量、算法参数、补偿系数、预处理流程等设定到主控内存中,完成采集完信号后并解析信号,最终反演物质的元素含量等信息,并通过WIFI或蓝牙将仪器所测量的精度显示到PC端。图1 手持式X射线荧光光谱仪的结构示意图本团队还设计了谱图预处理及模拟谱图生成的软件,其软件界面如图2所示。其主要功能包括:能量刻度转换、初级光源预处理、初级光源生成、Sigma计算、 XRF光谱模拟等功能。该程序可以生成多元素样本的 XRF光谱图及光谱大数据,为人工智能对样品的定性和定量分析提供数据支持,旨在实现元素的无标样的定性定量分析。图2 X射线荧光光谱分析仪控制程序主界面3. 土壤元素实验分析土壤质量综合评价与土壤中各种元素的含量有着密切的联系。因此本实验研究了XRF技术结合SVR算法定量分析土壤中铜(Cu)元素含量的可行性。如图3所示,本实验使用的设备是由课题组研究生产制造的手持式ED-XRF光谱仪,型号为TS-XH4000-SOIL,该设备的X射线管在45KV和25uA下正常工作。实验中采用了55个国标样品作为土壤标准样品,样本中每个待测元素都具有足够宽的含量范围和适当的含量梯度。图3 土壤样本与XRF光谱仪在验证中,将实验样品分为训练集和测试集两个集合,分别用于外部验证和内部验证。然后,基于灵敏度分析得出Cu元素主要受到Fe、Co、Ni、Cu等组分信息的影响,选择最优输入特征为该4种元素。使用最优输入特征和全部特征作为输入,基于贝叶斯优化算法找到最优模型参数,分别建立了预测土壤样品Cu元素含量的SVR定量预测模型。同时以全部特征作为输入建立了单参数PLS模型,通过5倍交叉验证(CV)选择单参数PLS模型的最优主成分个数为9。基于校准集数据分别建立了三种模型,利用这些模型对13个测试集和42个训练集数据中的Cu元素含量进行预测,结果如图4所示。图4 Cu元素的预测结果 (a):经过特征降维的SVR模型 (b):全部特征作为输入的SVR模型 (c):PLS模型可以看到,对训练集数据进行直接预测时,采用全部特征作为输入的SVR模型取得了最好的效果,其预测结果和原数据几乎一致(R2C= 0.9988, RMSEC = 6.9356),然而,对于测试集数据采用全部特征作为输入的SVR模型获得了非常差的结果(R2P= 0.9146, RMSEP = 73.8296)。基于4个高灵敏度特征的SVR在预测测试集时获得了非常好的效果(R2P= 0.9918, RMSEP = 22.8803),预测数据的一致性较好。在XRF技术结合SVR定量分析中,变量选择对于测试集的预测精度有关键作用。4. 中草药元素实验分析本实验采用30份金银花样品主要选择产地为山西、河南、湖南与广西省,其中每个产地各选择5份,共20份,并将样本命名为JYH-01~JYH-30。7份外观相似的山银花样品,产地为湖南省,样本命名为SYH01~SYH-07。3份粉末相似的商陆、多穗金粟兰、宽叶金粟兰样本,命名为DB-01~DB-03。三类真伪中药材的XRF数据集各有其特有的性质,本文使用t-SNE算法可以提取出三组XRF数据集的前350 维特征,将这些特征降维映射至二维图片中进行可视化分析,如图5所示。可以明显的看出这三组真伪中药材的 XRF数据集在图片二维空间中位于三簇不同的位置。从而三组样本在含有以上5种元素重要相关信息的350维数据在映射至二维中有了明显的区分,比原始XRF光谱图更容易理解与分析。图5 基于金银花、外观相似伪样本、粉末相似伪样本三组XRF样本集的t-SNE特征降维可视化图为更直观地了解这土壤和中草药XRF数据集的固有特性,利用t-SNE算法将350维的XRF特征映射到二维空间并在同一幅图中进行可视化分析。如图6所示,两个数据集在二维空间聚集成了两个分布位置不同的簇。首先,两组样本在含有重要相关信息的350维数据在二维图中有了明显的区分,比原始XRF反射光谱图更易于分辨。图6 两组XRF样本集的t-SNE特征降维可视化图5. 铁粉元素测量及实验分析针对手持式X射线荧光分析技术在铁粉行业的应用,本团队开展X射线荧光背景散射内标法用于铁粉元素测量的应用研究。首先,通过低电压高电流、高电压低电流、不同采集板的增益,选择合适的设备参数获取较优的特征X射线信号。接着,分别采用SiPIN、SDD类型探测器的手持式X射线荧光分析仪建模,Si-Kα峰、Fe-Kβ峰加背景散射线内标对铁粉中的元素含量进行建模。最后,根据含量已知的铁粉样品对所建立模型的确定度系数R2和均方根误差RMSE进行评估,选出不同场景情况下合适的应用模型。表1 SiPIN探测器时铁粉中Fe元素预测结果表2 SiPIN探测器时铁粉中Si元素预测结果表3 SDD探测器时Fe元素预测结果表4 SDD探测器时Si元素预测结果如表1和表2所示,为采用SiPIN探测器的建模结果。Si-Kα峰加背景散射线内标的结果,R2为0.9070, RMSE为0.0007; Fe-Kβ峰加背景散射线内标法的结果,R2为0.88,RMSE为0.0037。如表3和表4所示,为采用SDD探测器的建模结果。Si-Kα峰加背景散射线内标的结果,R2为0.9869,RMSE为0.0002; Fe-Kβ峰加背景散射线内标的结果,SDD探测器Fe建模结果,R2为0.9099,RMSE为0.0033。采用SDD探测器定量结果验证结果更好,这与SDD探测器性能良好有关。6. 总结本团队基于自主设计和研发的手持式ED-XRF光谱仪,结合人工智能算法对土壤重金属元素含量、中草药成分和铁粉元素含量进行准确定性、定量分析。所设计的TS-XH4000-SOIL光谱仪具有高精度和高可靠性,提出的先进人工智能算法框架可以有效校正土壤和铁粉XRF光谱和待测元素含量的复杂映射关系。因此,本团队研发的光谱仪和相应的人工智能算法软件在环境监测和保护、冶金行业及其他分析化学领域都有着广泛重要的应用。参考文献[1] 甘婷婷, 赵南京, 殷高方, et al. 水体中铬,镉和铅的X射线荧光光谱同时快速分析方法研究简[J]. 光谱学与光谱分析, 2017, 37(6):7.[2] 王袆亚, 詹秀春, 袁继海,等. 偏振能量色散X射线荧光光谱测定地质样品中铷锶钇锆元素不确定度的评估[C]// 第八届全国X射线荧光光谱学术报告会.0.[3] 张辉, 刘召贵, 殷月霞,等. 能量色散X射线荧光光谱法测定中草药中的Cd元素[J]. 分析测试技术与仪器, 2019, 25(3):5.[4] 张颖, 汪虹敏, 张辉,等. 小型台式EDXRF现场快速测定深海沉积物中稀土元素[J]. 海洋科学进展, 2019, 37(1):11.[5] Ene A, Bosneaga A, Georgescu L. Determination of heavy metals in soils using XRF technique[J]. Rom. Journ. Phys, 2010, 55(7-8): 815-820.[6] Adame A. Development of an automatic system for in situ analysis of soil using a handheld Energy Dispersive X-Ray Fluorescence (EDXRF)[J]. 2020.[7] Antunes V, Candeias A, Carvalho M L, et al. GREGÓRIO LOPES painting workshop: characterization by X-ray based techniques. Analysis by EDXRF, μ-XRD and SEM-EDS[J]. Journal of Instrumentation, 2014, 9(05): C05006.[8] Li F, Yang W, Ma Q, et al. X-ray fluorescence spectroscopic analysis of trace elements in soil with an Adaboost back propagation neural network and multivariate-partial least squares regression[J]. Measurement Science and Technology, 2021, 32(10): 105501.[9] Yang W, Li F, Zhao Y, et al. Quantitative analysis of heavy metals in soil by X-ray fluorescence with PCA–ANOVA and support vector regression[J]. Analytical Methods, 2022, 14(40): 3944-3952.[10] Lu X, Li F, Yang W, et al. Quantitative analysis of heavy metals in soil by X-ray fluorescence with improved variable selection strategy and bayesian optimized support vector regression[J]. Chemometrics and Intelligent Laboratory Systems, 2023, 238: 104842.作者简介李福生,电子科技大学教授,博士生导师。在核粒子能谱分析、蒙特卡洛模拟、人工智能与云计算技术、模式识别及智能系统、控制科学及多智能体、智能制造及智慧工厂等方面的研究与应用成果斐然,具有丰富的理论研究基础和工程应用经验。曾就职于美国GE-贝克休斯公司、荷兰皇家壳牌集团等国际 500强企业的科研院,并兼任美国北卡罗莱纳州立大学客座教授。近年来在国际权威杂志发表高水平论文30多篇,拥有2项国际发明专利和50多个国内专利,出版学术专著1册,参与多个国际重大研发项目。在仪器研制方面,成功研发了多代高精度手持式X射线光谱成分分析仪,且已经过上海市计量测算技术研究中心的专业鉴定,具有高灵敏度、高准确度、快速无损等特性,可广泛应用于石油、天然气煤层气勘探与开采,铀矿探测以及金属、食物、植物、土壤的检测等,对实现我国在地质考古、公共安全、环境保护、食品安全等领域的探测设备核心部件的升级及市场国产化产生了重大影响。e-mail:lifusheng@uestc.edu.cn
  • iCMR 2017邀请报告:低场核磁共振技术在水泥基材料中的应用研究
    p style=" TEXT-ALIGN: center" strong 第一届磁共振网络会议(iCMR 2017)邀请报告 /strong /p p style=" TEXT-ALIGN: center" strong 低场核磁共振技术在水泥基材料中的应用研究 /strong /p p style=" TEXT-ALIGN: center" img title=" 佘安明网页照片.JPG" style=" HEIGHT: 293px WIDTH: 220px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/insimg/02e9f38c-b8d2-440c-8e4e-5ca06bd23a40.jpg" width=" 220" height=" 293" / & nbsp /p p style=" TEXT-ALIGN: center" strong 佘安明 博士 /strong /p p style=" TEXT-ALIGN: center" strong 同济大学材料科学与工程学院 /strong /p p    strong 报告摘要: /strong /p p   低场核磁共振技术是一种非破损、非侵入的快速测试方法,在生物、食品、材料中有着广泛的应用。本报告着重介绍低场核磁共振技术在水泥基材料中的应用进展,包括低场核磁表征水泥水化动力学与微结构形成演变的研究。 /p p   strong  报告人简介: /strong /p p   佘安明,男,博士,同济大学材料科学与工程学院讲师,硕士生导师。研究方向为:土木工程材料的测试与表征;纳米改性水泥基材料的功能化设计;高性能混凝土的制备与应用基础研究。近年来作为主持人承担国家自然科学基金青年基金(NO.51108341)、中国博士后基金面上项目(NO.20110490703)、中国博士后基金特别资助(NO.2012T50437)、同济大学青年优秀人才基金、中央高校基本科研业务费专项资助等项目,作为参与人参加国家“973”计划项目、国家自然科学基金等课题多项。在低场核磁共振相关方向发表SCI/EI论文十余篇,专利和软件著作权4项。曾获中国材料研讨会青年优秀论文奖等奖励。 /p p    strong 报名链接: a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCMR2017/" target=" _self" http://www.instrument.com.cn/webinar/meetings/iCMR2017/ /a /strong /p p & nbsp /p
  • 复旦大学携手沃特世创立国内首个生物医学质谱应用研究中心
    2018年5月28日,复旦大学生物医药研究院与沃特世(Waters)共同举办了“质谱技术在生物医学研究中的应用研讨会暨沃特世-复旦大学IBS生物医学质谱应用研究中心揭幕仪式”,宣布国内首个针对蛋白质组学和糖组学研究的应用中心正式成立。该中心的成立旨在利用双方在质谱技术与生命科学研究领域,特别是蛋白质组学领域的强大影响力,力争实现技术突破,推动建立中国在国际蛋白质组学领域的思想领袖地位,培养顶尖科学家。 复旦大学生物医学研究院常务副院长杨芃原教授首先介绍了应用研究中心的概况。他表示,应用研究中心未来将针对蛋白质组学、蛋白质翻译后修饰、糖基化修饰、糖组学、糖生物学、生物医学、分析化学、生物质谱等领域开展合作研究。 复旦大学生物医学研究院常务副院长杨芃原教授致辞 沃特世公司华东区总经理萧伟志先生在致辞中说道:“精准医学研究目前已上升至国家战略,伴随着生物医学领域的迅速发展,必将绽放出更加璀璨的光芒。作为国际一流的高等学府,复旦大学在生物医学发展领域具有极大的影响力。而沃特世作为全球液相及液质联用技术的引领者,希望在此领域贡献自己的绵薄之力。生物医学质谱应用研究中心的成立揭开了复旦大学和沃特世公司战略合作的新篇章,我相信这一平台将开启双方共享成果的窗口,让先进技术更好地为生物医学领域广大研究者服务。” 沃特世公司华东区总经理萧伟志先生致辞 随后,杨芃原教授与萧伟志先生分别代表复旦大学生物医学研究院和沃特世公司签署了合作协议,并共同为应用研究中心揭幕。 复旦大学生物医学研究院常务副院长杨芃原教授(右)与沃特世公司华东区总经理萧伟志先生(左)签署合作协议 本次活动还邀请了来自全球生命医学研究领域的著名教授及沃特世公司的应用专家,共同分享交流了该领域的最新研究进展。复旦大学生物医学研究院常务副院长杨芃原教授首先作了题为“使用智能技术实现通用的糖蛋白分析”的主题报告,针对世界级难题“蛋白质糖基化的高效、精确的定位鉴定和蛋白质组学研究”提出了一系列辨识策略和搜寻引擎,其中包括:PGlyco1.0、pGlcyo2.0和pGlyco3.0,成功建立了N-糖肽的大规模N-糖体数据库,并对其进行了分析。 复旦大学生物医学研究院常务副院长杨芃原教授做精彩报告 随后,爱尔兰国家生物工艺研究和培训研究所、著名糖组学专家Pauline Rudd教授作了题为“药物生产、系统生物学和医学中糖分析的新策略和自动化技术”的主题报告,详尽介绍了如何通过找到修饰后的糖基与疾病之间的联系,帮助开发和发现新的诊断方法和治疗靶标。她表示,近年来,沃特世研究开发了各种可应用于该领域的创新技术和生物信息学平台,这些方法为健康科学和疾病研究领域的系统糖生物学研究开创了新纪元。 糖组学专家Pauline Rudd教授做精彩报告 复旦大学生物医学研究院副院长陆豪杰教授的报告则分享了其课题组在过去几年对于糖蛋白和糖肽技术的研究进展,其中包括了基于糖肽直接富集技术,以及衍生化技术如何提高选择性和效率等。过去几年,陆豪杰教授的课题组发现了一系列适用于生物学和临床研究的糖肽富集及定量技术,对该领域的发展起到了重要的推动作用。 复旦大学生物医学研究院副院长陆豪杰教授做精彩报告 最后,沃特世公司生物医学总监Jose Castro-Perez博士在“转化研究和质谱分析法在溶酶体贮积症的生物标记发现和发展中的作用”的报告中介绍了如何将DIA和DESI方法应用于戈谢病患者体液组织脂质含量的分析、鉴定和量化。他指出,一些最初的结果表明,这些方法可以通过揭示代谢异常为戈谢病提供新的见解。 沃特世公司生物医学总监Jose Castro-Perez博士做精彩报告 该应用研究中心将建立基于UPLC和离子淌度质谱的组学分析平台,并在合作研究、共建组学数据库、组学方法开发、人才培养与交流等方面开展全面合作。 关于复旦大学生物医学研究院 复旦大学生物医学研究院成立于2005年,拥有基因组与表观遗传学子平台、分子细胞学子平台、结构与药物子平台、蛋白质组学子平台、影像和形态子平台、生物信息学子平台。研究院成立至今,共发表SCI论文约1600篇,影响因子大于20(含CNS刊物)的论文共计22篇。其中表观遗传学团队在组蛋白修饰、非编码RNA、表观遗传调控研究、代谢和分子细胞生物学团队在乙酰化蛋白质组及共代谢通路、代谢与肿瘤研究领域居于世界前列。 关于沃特世公司 沃特世公司(纽约证券交易所代码:WAT)是全球领先的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球31个国家和地区直接运营,下设15个生产基地,拥有约7,000名员工,旗下产品销往100多个国家和地区。
  • 中国LIBS技术与应用研究最新进展——第五届中国LIBS技术研讨会召开
    p    strong 仪器信息网讯 /strong 2017年3月25-26日,第五届中国激光诱导击穿光谱技术研讨会(CSLIBS 2017)在浙江师范大学举行。本次会议由中国光学工程学会激光诱导击穿光谱专业委员会主办,浙江省光信息检测与显示技术研究重点实验室承办。来自国内70多所大学、科研院所以及相关仪器设备公司的200多位激光诱导击穿光谱技术领域的专家学者参加了此次会议。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201703/insimg/5e1f4f07-5904-4d5a-811f-59ac8dd04f12.jpg" style=" float:none " title=" IMG_8274_现场.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201703/insimg/e0c74cda-35ee-4ed0-a143-fbab343810b1.jpg" style=" float:none " title=" IMG_8276_现场.jpg" / /p p style=" text-align: center " 会议现场 /p p   激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy,LIBS)由于其快速多元素同时测量、无需样品准备、无损、可远程测量等独特优点,可以为生产过程等提供原位、在线、快速的关键元素浓含量信息,被称为是“未来的化学分析之星”。 /p p   但是,由于受不可控的激光-物质(无法通过样品准备进行精确控制)相互作用的影响,加上其后的激光-等离子体(由激光烧蚀产生)、等离子体-环境气体、等离子体-激波(由等离子体快速碰撞产生)之间相互作用过程中受多种不确定因素的影响,导致LIBS系统信号测量不确定度较高,可重复性精度较差 受基体效应的影响,测量误差也相对较大。这两个瓶颈导致目前还未实现LIBS大规模商业化。 /p p   LIBS是一个优点与缺点都非常明显的分析技术。在今后很长一段时间内,还需要进行大量的机理、数据处理、应用研究,积极和其他设备配合,开发商业化定量分析技术......,虽然这个过程可能会很漫长,但是对于推动LIBS技术发展、实现其大规模商业应用来说,这些都是非常重要的。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201703/insimg/85a14ea7-2849-4bcf-a727-40f9323c216e.jpg" style=" float:none " title=" IMG_8269_王建力.jpg" / /p p style=" text-align: center " 浙江师范大学党委副书记王建力 span style=" text-align: center " 致辞 /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201703/insimg/766416e1-488e-4f86-905a-7b6bf5378a66.jpg" style=" float:none " title=" IMG_8283_邓伟.jpg" / /p p style=" text-align: center " 中国光学工程学会副秘书长邓伟致辞 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201703/insimg/a1f21c52-9875-4f83-b9a3-7e0210df9ee6.jpg" title=" IMG_8278_周卫东.jpg" / /p p style=" text-align: center " 浙江师范大学周卫东主持开幕式 /p p   CSLIBS 2017上,共进行了15个邀请报告,17个口头报告,45个墙报展示。相对来说,基础研究的内容较多;另外,因为目前LIBS还没有大规模商业化,所以很多专家的研究工作中都包括了仪器研制的内容,可以说为LIBS的商业化打下了广泛的基础。而应用研究报告多是集中在煤炭、钢铁等行业。 /p p   部分报告内容如下: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201703/insimg/968d458d-e105-423f-bf44-c73eeef0fefd.jpg" title=" IMG_8328_段亿翔.jpg" / /p p style=" text-align: center " 四川大学 段忆翔 /p p style=" text-align: center " 报告题目:创新型分析仪器研发及方法学研究进展 /p p   报告中,段忆翔介绍了其团队研发的台式、便携式、手持式系列LIBS 仪器。其中,段忆翔团队研制了采用风冷型高性能微型脉冲激光系统的激光诱导击穿拉曼一体光谱分析仪(LIBRAS),可获得同一微区位置分析样品的原子光谱与分子光 谱信息,为进一步解析物质组成及微观结构提供了更加强有力的工具。据段忆翔介绍相关成果已经形成了真正的商品,拥有了实际的用户。除自主研发 LIBS 仪器整机及关键部件外,段忆翔团队的另外一个研究重点是创新方法的研究工作。此次报告中段忆翔介绍了水中重金属分析的各种新方法、颗粒粉末样品检测方法等。此外,段忆翔团队也开发了多种新型质谱离子源,如基于微波等离子体的常压解吸离子源(MIPDI)、基于直流微等离子体的常压解吸离子源(MFGDP)和微波诱导等离子体质子转移反应离子源(MIP-PTR)等。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201703/insimg/e4d750ac-ec49-4339-ae82-40915502f488.jpg" title=" IMG_8331_李颖.jpg" / /p p style=" text-align: center " 中国海洋大学 李颖 /p p style=" text-align: center " 报告题目:LIBS探测技术的海洋应用研究进展 /p p   报告中,李颖介绍了其团队自主研制的深海 LIBSea系统,该系统实现了我国首次深海 2000米的热液、冷泉原位探测 LIBSea系统与也是中国海洋大学研制的 DOCARS系统并行,完成了第一次海底 LIBS 和 Raman 的同时探测,开发的 LIBS-Raman联合探测原理样机于青岛海域开展了验证性应用试验 李颖团队开发的显微LIBS—Raman联合探测系统,成功应用于贝类成分等分析。最后,李颖还介绍了中国海洋大学承担的国家重点研发计划重点专项——“深海热液化学场多光谱联合原位综合探测系统”的研究进展。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201703/insimg/bf1fe292-e8a4-440e-9e98-fa2d803d3aa5.jpg" title=" IMG_8351_李祥友.jpg" / /p p style=" text-align: center " 华中科技大学 李祥友 br/ /p p style=" text-align: center " 报告题目:LIBS-LIF技术的研究及其应用 /p p   报告中,李祥友介绍了其团队以LIBS-LIF技术进行谱线干扰消除的研究进展。LIBS-LIF 技术采用可调谐激光选择性增强特定元素光谱,利用这种选择性增强原理,所有的干扰谱线都能被消除,从而达到彻底消除光谱干扰的目的。报告中,李祥友以土壤中Pb元素检测为例展示了LIBS-LIF消除 LIBS 谱线干扰的显著效果。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201703/insimg/098218b0-a708-44db-95ef-f917d2cd57d4.jpg" title=" IMG_8375_俞进.jpg" / /p p style=" text-align: center " 上海交通大学 俞进 /p p style=" text-align: center " 报告题目:Analysis of liquids and powders with laser-induced breakdown spectroscopy: the principle and some application examples /p p   液体和粉末样品的LIBS测试时存在着,由于溅射、起泡等效应导致激光烧蚀效率较低,以及基体效应严重等问题。在这次报告中,俞进回顾了其团队近年来在改善LIBS测试液体和粉末样品的效率方面所做的工作,如原理机制的研究以及该技术的一些应用实例。应用例子包括了润滑油、葡萄酒和土壤等的分析。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201703/insimg/ad8ffd84-4e2e-4ce3-913c-1645788f0a6e.jpg" title=" IMG_8376_孙对兄.jpg" / /p p style=" text-align: center " 西北师范大学 孙对兄 /p p style=" text-align: center " 报告题目:LIBS技术中环境气体对等离予体性质的影响及辉光放电辅助的谱线增强 /p p   报告中,孙对兄主要介绍其团队近年来在 LIBS 基础理论及应用方面的研究进展,主要包括LIBS 技术中氩气、氦气等环境气体对等离子体性质的影响、辉光放电辅助 LIBS光谱增强及其在液体分析中的应用。其团队还研制了激光等离子体中光谱演化的辐射动力学软件和时空分辨测量装置。 /p p   更多报告内容请见: a href=" http://www.instrument.com.cn/news/20170329/215925.shtml" target=" _blank" title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong 第五届中国LIBS技术研讨会部分精彩报告 /strong /span /a /p p br/ /p
  • 2021年度Biolin研讨会----表面张力和接触角的应用研究
    大昌华嘉科学仪器部很荣幸地邀请您参加2021年11月30日举办的Biolin表面张力和接触角应用研究在线研讨会,届时来自学术界和工业界的研究人员将齐聚一堂,分享他们在食品、饮料、智能表面、脂质单层、制药和生物基材料等领域涉及表面张力和接触角测量在实际应用中的见解和经验。欢迎参会交流!11月30日与您不见不散,现在就查看会议日程报名参会吧!会议日程:分会2021年11月30日(周二)北京时间:16:00 - 20:00第二分会2021年11月30日(周二)北京时间:23:30 - 03:20会议秘书:华 嘉:18221806517(微信同号)百欧林:18618382402(微信同号)报名链接:复制以下链接到浏览器,完成各分会参会注册分会:https://content.biolinscientific.com/sign-up-for-attension-day-2021-morning-session?hsCtaTracking=16582fcc-5dbf-49c5-b18d-9193f96c634c%7C3818f7fa-7f61-426d-9b79-00d337598114第二分会:https://content.biolinscientific.com/sign-up-for-attension-day-2021-evening-session?hsCtaTracking=84bf97d7-3950-4c60-a0e4-25aeff9845b7%7C4458f878-007e-4376-968a-9bc15e68d937更多2021年度Biolin研讨会报告人简介和会议日程等会议详情可登陆会议网站查阅:https://content.biolinscientific.com/attension-seminar-2021?__cf_chl_jschl_tk__=4SFNcrFVDBbgl1wNP0nMJBbyzVksTFErzW8Cu0G5qnY-1637574638-0-gaNycGzNCP0
  • 关于近红外光谱分析网络化应用研究的思考
    近几年以来,在国内烟草行业,随着烟草企业的联合重组与整合,对烟叶原料品类多样化提出了更高的要求,为了统筹优化与合理应用原料提供技术支持,以Web Service架构的“互联网+近红外光谱分析”的基本模式,于2015年,云南中烟构建的以原料研究为导向的烟叶原料近红外分析网络系统上线使用,通过六年多来的运行,实现了原料近红外分析检测数据的交换和共享,对评估烤烟收购质量,合理组配复烤模块单元,提供了即时的数据支持;在产品开发和产品维护方面,针对性使用烟叶原料,研发新产品配方、优化配伍和维护产品质量稳定,发挥了积极的辅助作用,特别是从“人、机、料、环、法”等方面,依据相应的技术标准(包含近红外校正模型建立、验证、应用和维护等),规范了网点的近红外光谱实验室,多年来,积累了初烤烤烟、复烤片烟和库存片烟等烟叶原料近红外分析检测大量的数据资产。系统功能基本达到了设计预期。然而,为了进一步探索分析烟叶原料品质类别、配方模块(单元)相似性、质量变化趋势和规律,在综合利用近红外光谱数据、理化性质数据和一些与质量相关的半结构化非结构化数据时,由于集成的常规性质数据有限,满足不了质量表征的需求,加之,在网络平台上面对大量的数据处理分析,传统的化学计量学定性定量建模计算模式难于适应,制约了多变量数据(如光谱)的深入挖掘和数据挖掘的效率。为了推进近红外光谱分析网络化应用,本文基于烟草近红外光谱网络化应用的实践经验,抛砖引玉,与大家探讨近红外光谱分析网络化应用研究的一些思路。1、近红外光谱标准化烟草可视为一种多成分复杂化学体系的天然作物,迄今为止,从烟草中鉴定出来的化学成分达5500多种,烟草质量与这些化学成分的相关性至今尚未全部研究清楚,通常采用为数有限的常规化学成分指标(如烟碱、总氮、总糖、还原糖、蛋白质、钾、氯和灰分等),评估烟草整体质量特征时仍存在不足,普遍认为,烟草在燃吸时的整体质量特征是烟草中这些复杂成分相互协同作用的结果。在近红外光谱定量分析中,烟草近红外光谱包含大量潜在的物质组成信息尚未充分利用,不同质量特征的烟草具有自身的特征近红外光谱,应用适当的化学计量学模式识别方法,如PLS-DA、SIMCA和SVM,结合近红外光谱挖掘烟草的整体质量特征归属,对寻求质量特征相似或相近的替代原料,保障规模化产品制造稳定的原料供给有着重要的意义。每一个网点的近红外光谱实验室是数据“发源地”,数据质量决定了将来数据的应用价值。实验室除了从“人、机、料、环、法”等方面,依据相应的规范(包含近红外光谱测量、校正模型建立、验证、应用和维护的技术标准等)要求运行之外,显然,在网络环境里光谱数据采集的“标准化”就特别重要。这就要求入网的近红外光谱仪必须具有优良的光学特性,仪器之间的差异最小,保证对不同产区网点的近红外光谱仪测量的光谱数据进行分析时,仪器的背景差异不会造成明显的影响,但事实上,同一厂家同一型号同一个批次生产的光谱仪都很难做到这一点,可以说,近红外光谱仪之间的差异是进行网络数据共享,挖掘光谱数据信息存在的问题之一。一是借鉴模型转移的化学计量学方法,根据仪器之间的光谱差异,建立一个光谱的数学关系,然后依据这个数学关系,“软拷贝”实现光谱数据采集的标准化;二是仪器厂商提升仪器的制造水平,降低仪器之间的差异,特别是不同批次生产的仪器之间的差异,才能使其测量的光谱差异最小,不会对后续的光谱分析造成明显的影响,也就是说用一台仪器采集的光谱建立的模型预测同一组样品在本台仪器上测量的光谱,与使用本台仪器的模型预测另一台仪器测量同是一组样品的光谱所得到的结果无明显的差异,在这两台仪器之间就无需建立光谱的数学关系,即简单的“硬拷贝”就可实现网络平台光谱数据采 集的标准化,要义见图1示意。在网络环境中的光谱仪可视为一个“网络传感器”,对传感器的技术要求在朝着高质量、高精度、小型化、低功耗和智能化等方向演进,对网络用户来说,期待仪器制造商生产性能一致性优良的光谱仪,乃是尤为理想的解决方案。图1 不同的光谱仪采集同一组样品,可得到基本相同的光谱,即“一个世界,一个标准”2、云化近红外光谱分析网络平台云计算服务是一种集中式服务,所有数据都通过网络传输到云计算中心进行处理。资源的高度集中与整合使得云计算具有很高的通用性,然而,面对网络设备和数据的爆发式增长,边缘计算相比于云计算模型,能够更加迅速、可靠和节能地响应用户需求,数据在本地处理也可以提升用户隐私保护程度。另外,边缘计算也减小了对网络的依赖,在离线状态下也能够提供基础业务服务。通过云化近红外光谱分析网络平台,集成不同的烟草产地生态环境、等级、品种以及相应的近红外光谱、理化性质(包含烟叶的形态形状图像,化学成分指标等)数据是其任务之一,便于分析挖掘与感官质量相关的特征信息,服务于烟叶原料的精细化种植及科学合理应用,在近红外光谱定性、定量建模或后续的各种数据挖掘实际应用中,是基于“中心云”或“边缘云”的数据资源进行的。有时会用到中心云的数据资源,如对各大产区烟草质量进行整体性比照分析,探索各大烟区烟草质量特征,支持原料生产基地系统规划;有时会用到边缘云的数据资源,如对某个产区烟草历时性数据作趋势分析,探索烟草质量的稳定性与变化趋向,辅助基层植烟区改进或调整生产措施。所以,面向服务对象的规模、复杂程度合理部署、云化近红外光谱分析网络平台就尤为重要,有利于集约化网络资源,提升数据的分析处理以及数据挖掘的效率,见图2示意。图2. 近红外光谱分析平台云化示意图3、构建云计算自动化(智能)建模服务系统通常,在建立样本数量大于3000个以上的近红外校正模型时,样本量越大,运算速度越慢,对计算机性能的要求越就越高,且在建模过程中,如组织训练集或校正样本集、清洗异常样本、筛选适宜的建模数据等等,基本是基于“文件夹”来操作完成的,对网络环境中的大体量的数据资源,因缺乏探索性数据分析的网络计算手段而难于被充分利用,传统的建模方式和流程效率低、适应性差。基于网络资源进行化学计量学网络计算,现代云计算技术为化学计量学计算研究搭建了高灵活性平台。如何选择诸如Hadoop、Spark等生态圈技术,通过分布式计算提升定性、定量建模效率,并结合长期积累的建模经验、领域知识(包含相关的波长或波段选择、光谱预处理方法及其经验参数设置、模型误差水平控制等),实现自动化建模,这是我们要联合网络计算专家实现近红外光谱分析网络化云计算所要解决的问题。显然,把传统的近红外光谱定量、定性分析涉及的训练集样本或校正集样本的筛选、光谱的预处理、建模等化学计量学方法(算法)网络化,开发分布式计算的化学计量学软件系统(当然,这也是数据挖掘的重要组成部分),共享应用网络软、硬件资源优势,平衡计算负载,实现近红外光谱分析云计算,可能是一种比较好的解决思路,这无论是对近红外光谱定性定量分析的普通用户,还是对近红外光谱数据进行深度挖掘的高级用户,都具有较好的便利性和实用性。4、研发基于特征模型的网络搜索引擎基于多维质量特征数据(结构化和非结构化数据),诸如烟草产地生态、等级、品种、理化性质指标、近红外光谱、形态形状图像等,选取不同的特征,通过模式识别技术建立用户预期的质量特征类模型,然后应用“基于特征模型的网络搜索引擎+类模型”搜索网络共享资源(中心云或边缘云)中具有相近或相似质量特征的样本,也就是在网络共享资源中“淘宝”,寻求在产品制造中烟叶原料的替代应用,保障产品质量的稳定。搜索引擎形式类似“百度”或“Google”。这里以烟草近红外光谱定性分析的应用举例说明,我们需要什么样功能的“搜索引擎”,近红外光谱包含丰富的化学物质结构信息,且近红外光谱与物质组成及含量相关,不同属性、特征的烟草样品具有相应的特征近红外光谱,通过结合烟草领域知识,采用适宜的化学计量学模式识别方法(如基于PCA的各种分类算法、ANN或SVM等)来提取烟草样品近红外光谱特征信息,训练能表征质量特征的近红外光谱类模型,应用验证通过的类模型和待测烟草样品近红外光谱便可预测待测样品的归属类别或特征。常规近红外光谱定性预测分析是基于“文件夹+类模型”进行操作的,而在网络环境中,近红外光谱定性预测分析必须网络化,预测是在云化的近红外光谱分析网络平台上,应用“基于特征模型的网络搜索引擎+类模型”寻找“隐藏”在“中心云”或“边缘云”中的数据资源(见图3示意),它承担着大体量的网络计算。基于特征模型的网络搜索引擎是“云计算自动化(智能)建模服务系统”预测分析网络化的延展,可简单视为是一个“网络预测器”,当然,这个“网络预测器”需要网络计算专家和近红外光谱化学计量学算法专家联手研发。图3. 近红外光谱分析网络化应用示意图5、其它针对不同应用场景或职能部门,利用中心云数据或边缘云数据进行一些简单的在线统计分析计算,并对结果进行可视化展示,如原料生产部门可快速实现对烟叶质量指标的比较,分析烟叶质量的稳定性、质量变化走势等。开发一些满足不同应用场景的APP、微信小程序、公众号等(见图3示意),也是一项值得开展的工作。(作者:王家俊 云南中烟工业有限责任公司)
  • 程琳教授团队:毛细管聚焦的微束X射线衍射仪及其应用研究
    毛细管聚焦的微束X射线衍射仪及其应用研究邵金发,程琳*(北京师范大学核科学与技术学院,射线束技术教育部重点实验室 100875)摘要随着自然科学的不断进步,诸多领域都朝着微观层面发展,人们对物质的分析随之深入到微区范畴。微束X射线衍射分析技术是一种无损分析微小样品或样品微区物相结构的有利工具,凭借着无损、微区、空间分辨率高等特点被应用于诸多领域中。本实验室将毛细管X射线聚焦技术与X射线衍射分析技术相结合,自行设计研发了一种新型毛细管聚焦的微束X射线衍射仪。它利用毛细管X光透镜的特点,将X射线源发出的X射线束会聚到微米量级,从而实现对小样品或者样品微区的物相分析,为解决金属文物、陶瓷文物等的无损微区物相分析提供了解决方案。1. 引言微束X射线衍射(micro-X-ray diffraction,µ-XRD)是一种可靠的、无损的物相结构分析技术,已被广泛应用于生物化学、材料科学、地球科学、应力分析等领域[1-6]。目前获得微束入射X射线的方法主要有准直器限束和X射线光学器件聚焦两种。通过准直器限束获得微束入射X射线是最早在微束X射线衍射仪中使用的方法,具体为采用准直狭缝或小孔作为光阑放置在入射光路上,用以减小入射X射线的发散度。但是与此同时,入射光束的强度会因为物理阻挡而降低,导致获得的衍射信息变弱,难以达到理想的分析效果[3,4]。而多毛细管X光透镜利用X射线全反射原理,可将在空心毛细管内表面上的多次全反射的X射线会聚于一焦点。因此可以以较大的角度收集从X射线源产生的X射线,且会聚后X射线的束斑大小可低至几十微米。同时,毛细管X光透镜对Cu-Kα的能量有高达2-3个数量级的放大倍数[7],且具有低的发散度,非常适合微小样品和样品微区物相结构无损分析的研究。目前德国Bruker公司生产的D8系列X射线衍射仪通过添加一个由微焦点X射线源和多毛细管X光透镜集成的附加模块实现μ-XRD分析的功能[8];意大利LANDIS实验室开发了一个集成多毛细管半透镜的μ-XRD衍射[9,10]仪。但由于仪器均缺乏二维、三维自动控制平台,难以实现样品微小测量点的准确定位,更无法实现样品微区的二维μ-XRD分析。面向微小样品和样品微区µ-XRD分析的需求,本实验室自行设计和开发一种新型的微束X射线衍射仪以及相应的计算机控制程序,并且开展了相关分析方法学的研究。2. 仪器组成本实验室设计的毛细管聚焦的微束X射线衍射仪外观如图1所示,其主要由微焦斑X射线管(Cu靶,焦斑大小50 μm×50 μm)、毛细管X光透镜(Cu-Kα能量处束斑大小为100 µm)、接收狭缝、SDD X射线探测器(5.9keV时能量分辨率为145eV,铍窗有效面积25 mm2)、具有20倍放大功能的1400万像素固定焦距CCD摄像头、测角仪,XYZφ四维样品台,以及在LabVIEW语言环境下开发的仪器控制程序等部分组成。图1 微束X射线衍射仪的外观图控制程序的主界面具有微区X射线衍射分析和微区能量色散X射线荧光(micro energy dispersive X-ray fluorescence,μ-EDXRF)分析两种模式,如图2所示。谱图显示区域在探测过程中实时显示X射线探测器探测到的谱图。此外,该仪器使用的高精度自动化三维运动平台可以满足微区的二维μ-XRD分析的需求,以便实现对感兴趣区域内物相分布的分析等相关问题。图2 微束X射线衍射仪控制程序的主界面与Si (4 0 0)的X射线衍射图3. 实验分析3.1 氮化钛薄膜的分析薄膜具有强大的性能,但同时也会因为各种内部或者外部因素而发生失效。因此,薄膜微观区域特征的变化对宏观尺度特征的研究具有重要的作用。本文选择TiN薄膜作为研究对象,以期了解薄膜中TiN晶相生长的择优取向并对其进行快速评估。该TiN薄膜的是利用金属真空蒸汽电弧离子源(MEVVA)先进行离子注入,再经磁过滤真空阴极电弧沉积系统(FCVA)气相沉积而成。被测样品如图3所示,A部分和B部分是TiN薄膜,C部分为304不锈钢衬底,其中A部分更靠近整个样品的边缘,感兴趣的区域标识在中间的矩形条框中(0.5 mm×5.0 mm)。由于图中各部分形状不规则,易被常规X射线仪器的射线束无差别的覆盖,因此在这里进行微区分析十分必要。图3 TiN薄膜与304不锈钢衬底以及被测位置图片在μ-EDXRF分析模式下,X射线管电压为30 kV,管电流为0.5 mA,X射线束与样品表面的夹角θ1和X射线探测器铍窗的中心线与样品表面的夹角θ2均为45°,探测器探测活时间为60 s,测量得到的μ-EDXRF光谱见图4。同时,选择如图3中所示的感兴趣区域,使用微束X射线衍射仪进行µ-EDXRF二维扫描分析。扫描步距为50 μm,每个点的测量条件与μ-EDXRF分析保持一致,每步的探测活时间为500 ms。经过数据处理,得到扫描区域内各元素的分布如图5所示。在µ-XRD分析模式下,X射线管的设置与µ-EDXRF分析模式下相同,测角仪2θ范围为10°~120°,步距角为0.1°,每步的探测活时间为1 s,测量得到的X射线衍射图谱如图6所示。图4 TiN薄膜测量点的μ-EDXRF光谱图5 TiN薄膜扫描区域中Fe和Ti元素的分布图6 TiN薄膜测量点的μ-XRD图从图4可以看出,TiN薄膜测量点a和b的主要荧光峰来自Ti元素,同时,测得的304不锈钢衬底的主要合金元素为Fe、Ni和Cr。通过荧光峰的强度可知,a点Fe与Cr的相对含量较b点高,而b点Ti的相对含量较a点高,即b点处沉积了更多的Ti。从图5中可以看出,从中部到边缘位置Ti的含量发生了明显的改变,这主要受沉积束流在304不锈钢衬底上的覆盖面积所影响,而这种含量的改变与薄膜物相的变化有一定的联系。图6的测量结果表明,在该TiN薄膜中TiN所呈现的取向分别为(1 1 1)、(2 0 0)、(2 2 0)和(3 1 1)。在a点中最强的衍射峰来自于TiN的(2 2 0)晶面;在b点中TiN的(1 1 1)晶面呈现为最强,而(2 2 0)晶面消失了。结合图5中的元素分布可知,Ti的含量在物相变化的过程中起到了重要作用,随着沉积Ti的增加,膜内积聚的内压力促进了相变。因此,使用本微束X射线衍射仪可以实现对TiN薄膜,尤其是镀在微小零件上的薄膜的定点性能监测。同时,借助本微束X射线衍射仪,可从元素组成、元素分布、物相组成几方面对薄膜的微区进行表征。可以帮助认识了薄膜微区的性质,并为宏观的薄膜失效或者薄膜强化提供了研究数据。3.2 清代红绿彩瓷的分析为了评估本仪器对样品微区进行物相二维μ-XRD分析的能力,选取一片清代红绿彩瓷的残片作为研究对象。调节样品台使样品表面感兴趣区域清晰呈现在CCD图像中,并通过鼠标在控制界面的CCD视野中选择具体的目标扫描区域(图7)。选择图7中A(白釉),B(红彩)和C(绿彩)进行μ-XRD分析。µ-XRD分析的测量条件与上文保持一致,所得μ-XRD图如图8所示。从图8中可以看出,A点白釉XRD谱图在15 °~35 °之间出现一个驼峰,这是白釉在高温烧制过程中形成的非晶相所致;同时,经过对比ICCD PDF卡,A点白釉中主要存在的晶相为钾长石KAlSi3O8 (PDF 25-0618)、石英SiO2 (PDF 46-1045)和莫来石3Al2O32SiO2 (PDF 15-0776)等;B点红彩中主要存在的晶相为Fe2O3 (PDF 47-1409)和石英SiO2(PDF 46-1045)等;C点绿彩中主要存在的晶相为Pb8Cu(Si2O7)3 (PDF 31-0464)等。图7 清代红绿彩瓷残片与感兴趣区域图片图8 红绿彩中白釉、红彩和绿彩的μ-XRD图此外,选择如图7中2 mm×2 mm的感兴趣区域,使用微束X射线衍射仪进行µ-XRD二维扫描分析。该区域被划分为21×21个被测试点,扫描步距为100 µm,每个点的测量条件为:X射线管电压为30 kV,电流为0.5 mA,2θ探测范围为24.5°到30.5°,步距角为0.3°,每步探测活时间为0.8 s。由此得到的扫描总谱经数据处理得到的晶相分布图如图9所示。图9 扫描区域中Pb8Cu(Si2O7)3、3Al2O32SiO2、KAlSi3O8和Fe2O3的晶相分布4. 结论本实验室将毛细管X光透镜技术与X射线衍射分析技术相结合,设计和研发成一种新型微束X射线衍射仪。该微束X射线衍射仪具备无损分析微小样品和样品微区的物相结构的能力,且能实现样品微区中感兴趣区域的μ-XRD二维扫描。同时,该仪器还可实现样品的μ-EDXRF分析和μ-EDXRF二维元素分析,可为物相结构的研究提供了元素种类的参考信息,扩展了微束X射线衍射仪的功能。因此,其在材料科学、地球科学和文物保护等领域有着广泛的应用前景。 参考文献[1] Lin C , Li M , Youshi K , et al. The study of chemical composition and elemental mappings of coloredover-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence[J]. Nuclear Inst & Methods in Physics Research B, 2011, 269(3):239-243.[2] Laclavetine K, Ager F J, Arquillo J, et al. Characterization of the new mobile confocal micro X-ray fluorescence (CXRF) system for in situ non-destructive cultural heritage analysis at the CNA: μXRF-CONCHA[J]. Microchemical Journal, 2016, 125: 62-68.[3] Figueiredo E, Pereira M, Lopes F, et al. Investigating Early/Middle Bronze Age copper and bronze axes by micro X-ray fluorescence spectrometry and neutron imaging techniques[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2016, 122:15-22.[4] Brai M, Gennaro G, Schillaci T, et al. Double pulse laser induced breakdown spectroscopy applied to natural and artificial materials from cultural heritages[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2009, 64(10):1119-1127.[5] HložEk M, Trojek T, B Komoróczy, et al. Enamel paint techniques in archaeology and their identification using XRF and micro-XRF[J]. Radiation Physics & Chemistry, 2016: S0969806X16300573.[6] Scrivano S, Ruberto C, B Gómez-Tubío, et al. In-situ non-destructive analysis of Etruscan gold jewels with the micro-XRF transportable spectrometer from CNA[J]. Journal of Archaeological Science: Reports, 2017, 16: 185-193.[7] Bonfigli, Francesca, Hampai, et al. Characterization of X-ray polycapillary optics by LiF crystal radiation detectors through confocal fluorescence microscopy[J]. Optical Materials, 2016, 58: 398-405. .[8] Berthold, C. , Bjeoumikhov, A. , & Lutz Brügemann. (2009). Fast XRD2 micro diffraction with focusing X-ray microlenses. Particle & Particle Systems Characterization, 26(3), 107-111.[9] Rotondo, G. G. , Romano, F. P. , Pappalardo, G. , Pappalardo, L. , & Rizzo, F. . (2010). Non-destructive characterization of fifty various species of pigments of archaeological and artistic interest by using the portable X-ray diffraction system of the Landis laboratory of catania. Microchemical Journal, 96(2), 252-258.[10] Padeletti, G. , Fermo, P. , Bouquillon, A. , Aucouturier, M. , & Barbe, F. . (2010). A new light on a first example of lustred majolica in Italy. Applied Physics A, 100(3), 747-761.*通讯作者程琳,工学博士,美国加州大学尔湾分校访问学者。现任职于北京师范大学核科学与技术学院,教授,博导。长期从事毛细管聚焦的微束X射线分析技术的研究及相关设备的研发;目前已经成功研发出国内首台毛细管聚焦的微束X射线荧光谱仪和毛细管聚焦的X射线衍射仪等设备并开展相关的分析技术及应用研究;作为项目负责人已经承担多项国家自然科学基金、北京市自然科学基金和北京市科技计划项目等,国家自然科学基金评审专家、北京市高新技术企业评审专家和X-ray spectrometry等国际刊物审稿人。e-mail: chenglin@bnu.edu.cn
  • 岛津亮相第二届国际富勒烯应用研究学术研讨会
    由中国科学院化学研究所、北京分子科学国家实验室主办的第二届国际富勒烯应用研究学术研讨会于2011年12月21日在江西省赣州市上犹县召开。中国科学院院长、党组书记白春礼,中国科学院化学研究所所长、中国科学院院士万立骏,北京航空航天大学教授、中国科学院院士江雷,清华大学教授、中国科学院院士李亚栋,江西省科学院党组书记郭建晖等出席学术研讨会。共有80余名来自国内外相关领域的知名专家学者参加。 在学术研讨会上,与会专家围绕富勒烯、纳米管等新型碳纳米材料的国内外研究进展进行了简要回顾,交流了国内外科学家近期的一些重要研究成果,并就富勒烯等碳纳米材料的发展趋势、国际国内最新进展、应用前景以及发展战略展开了深入讨论。 本次应用研究学术研讨会的一大亮点是产学研用的真正结合,来自实验室研发、中试规模生产模拟、富勒烯生产厂家、以及富勒烯原料加工企业,可以说富勒烯整个产业链条都参与到此次研讨会,讲出各自最新进展、急需解决的问题并进行探讨,以期推进整个富勒烯行业的发展。可以说,此次会议开创了产学研用的一个新模式,为更多的学术会议开辟了一条新路。 岛津公司作为专业的分析仪器公司,为富勒烯科研生产提供多种分析仪器,大型分析仪器事业部大学科研销售团队参加了此次会议。销售经理郭云昌博士首先介绍了岛津公司:岛津企业管理(中国)有限公司是岛津制作所的海外分支机构,公司成立于1999年8月11日。公司现有12个分公司,4个分析中心,50个技术维修点,成立岛津企业管理(中国)有限公司的成立目的是为了拓展岛津制作所在中国国内的业务,满足顾客对于岛津公司及其附属公司生产的高科技分析和测试仪器、医疗器械及工业设备等产品日益增长的需要,更有效、更及时地提供优质的服务。 岛津大型仪器大学科研销售经理 郭云昌博士 高端分析仪器资深销售王燕华女士结合研讨会中科研实际需求,介绍了岛津/KRATOS 高性能成像X射线光电子能谱仪 AXIS-ULTRA DLD 的无损深度剖析重构软件及Ar/C24H12双模式离子枪。无损深度剖析重构软件能够在不使用离子源对样品进行刻蚀的情况下分析样品的表面深度信息结构,配置Ar/C24H12双模式离子枪,该离子枪的C24H12离子源可实现不改变有机材料化学状态的深度剖析,避免以往Ar离子源刻蚀导致有 机材料化学状态改变的弊端。相信该仪器的使用必将为我国方兴未艾的富勒烯研究提供新的有利手段。 岛津高端分析仪器资深销售 王燕华女士 富勒烯是什么? 富勒烯(Fullerene,又译作福乐烯)是完全由碳组成的中空的球型、椭球型、柱型或管状分子的总称。很像足球的球型富勒烯也叫做巴基球,偶尔也称其为球碳或芙等;管状的叫做碳纳米管或巴基管。富勒烯在结构上与石墨很相似,石墨是由六元环组成的石墨烯层堆积而成,而富勒烯不仅含有六元环还有五元环,偶尔还有七元环。 富勒烯的应用 富勒烯是纳米科学的一个重要组成部分,近年来富勒烯的研究极大地推动了纳米科学的发展。经过20余年的研究积累,现在富勒烯的研究已经进入到应用领域。例如,以富勒烯为主要活性物质的有机/高分子太阳能电池的能量转化效率已经突破9%,并已经能够利用印刷机大批量印制;具有抗衰老效能的富勒烯化妆品也已经走入了千家万户。我国富勒烯研究水平处于世界前列,近年来中国科学家作出了一系列有特色的研究工作,引起国际上广泛关注。 什么是XPS? X射线光电子能谱仪(X-ray Photoelectron Spectroscopy,简称XPS)是广泛应用于材料科学领域的高技术分析仪器,主要用于固体材料的表面(2~3nm深度)元素成分和价态的定性和定量分析,与成像功能和离子溅射刻蚀相结合,也可以用于固体表面元素成分及价态的二维面分析和深度剖析,在纳米材料、高分子材料、材料的腐蚀与防护、各类功能薄膜的机理研究、催化剂研究与失效等方面具有不可替代的作用。
  • 检验检测数字化应用研究项目工作会议在上海召开
    近日,中国合格评定国家认可委员会(CNAS)在上海组织召开“检验检测数字化应用研究”项目工作会议。来自检验检测机构、数字化技术研究与应用机构等行业专家30余人参加会议。CNAS副秘书长肖良出席会议并讲话。   肖良指出,本次会议是贯彻落实《质量强国建设纲要》和《数字中国建设整体布局规划》要求的一项务实举措,数字化转型通过先进的数字技术必将创新行业发展模式。他希望项目组在前期研究探讨的基础上,继续攻坚克难,深化调查研究,推动研究成果更好地满足市场和技术发展需求。   项目组及行业专家围绕检验检测机构数字化转型发展需求,结合头部机构在信息化、数字化、智能化应用中已取得的经验,从检验检测数字化管理、数字化服务、智能化应用、数字化应用水平评测、典型应用场景等多方面进行了深入交流讨论。会议期间,上海化工研究院、上海建筑科学研究院和上海电器科学研究院的代表就数字化转型方面取得的成效和经验进行了分享。
  • iCMR 2017特邀报告:基于核磁共振代谢组学在药物毒性评价中的应用研究
    p style=" TEXT-ALIGN: center" strong 第一届磁共振网络会议(iCMR 2017)特邀报告 /strong /p p style=" TEXT-ALIGN: center" strong 基于核磁共振代谢组学在药物毒性评价中的应用研究 /strong /p p style=" TEXT-ALIGN: center" img title=" 李中峰小.jpg" style=" HEIGHT: 385px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/insimg/9f680b63-b982-4b7b-b183-8b07fcfb682c.jpg" width=" 300" height=" 385" / & nbsp /p p style=" TEXT-ALIGN: center" strong 李中峰 副教授 /strong /p p style=" TEXT-ALIGN: center" strong 首都师范大学 /strong /p p strong   报告摘要: /strong /p p   药物安全性评价是目前药物研究的重要领域,本报告利用NMR的代谢组方法研究药物毒性信息,主要利用生物体液、组织等的核磁共振谱图所提供的生物体内全部小分子代谢物的丰富信息,通过对这些信息的多元统计分析和模式识别处理,了解相关生物体在病理生理学和药理药毒学等方面的状况及动态变化,以及它们所揭示的生物学意义,并希望从分子水平来药物毒性作用规律。 /p p strong   报告人简历: /strong /p p   李中峰,首都师范大学副教授、硕士生导师,北京波谱学会常务理事。目前从事着核磁共振在生物医药中的应用研究工作。主要的研究方向包括:(1)基于核磁共振的药物疾病代谢组学研究;(2)磁共振成像造影剂的研究。 /p p   近年来在Anal. Chem., Sensors and Actuators B, Molecular BioSystems, Biomedical Chromatography, Journal of Pharmacy and Pharmacology, Journal of Inorganic Biochemistry,Magnetic Resonance Imaging等杂志发表三十多篇文章。 /p p    strong 报名链接: /strong a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCMR2017/" target=" _self" http://www.instrument.com.cn/webinar/meetings/iCMR2017/ /a /p p & nbsp /p
  • 山东大学韩琳教授团队在高性能SERS传感及应用研究方面取得最新进展
    近日,山东大学海洋研究院韩琳教授团队在拉曼传感芯片及应用研究中取得新进展,相关工作发表于Journal of Hazardous Materials (影响因子: 13.6,中科院一区top )上。海洋研究院硕士研究生周宏鹏为第一作者,韩琳教授、张宇教授为共同通讯作者,山东大学为唯一作者完成单位。表面增强拉曼散射(SERS)具有超灵敏、无损、指纹识别等特点,可以实现样本的低浓度甚至单分子水平的无标记快速高灵敏检测分析,在生命健康、环境监测、食品安全等领域具有广泛的应用。考虑到农药残留对公众健康和环境造成的重大危害,有必要开发一种简单、灵敏、可靠的农药残留检测方法来解决这一问题。团队通过在多孔氮化镓基底上原位自组装高拉曼增强、高稳定C-Ag纳米粒子制备了一种超灵敏、超稳定、可多次重复利用的C-Ag/porous GaN SERS传感芯片,并将其应用到痕量农药残留的检测分析。研究表明,C-Ag/porous GaN SERS传感芯片的检测限低至10-14M,增强因子高达1.80 × 1011,可以实现单分子的超灵敏检测分析;同时芯片具有优异的均匀性和重复性,在空气中长达22周的储存后其性能保持稳定。这得益于大比表面积的纳米结构基底和超疏水高稳定的C-Ag纳米粒子结合形成超强的电磁增强效应,这也从时域有限差分仿真结果得到了验证。因此,这项研究为食品安全和环境监测提供了一个有效的平台。上述系列研究工作得到了山东省重点研发计划、山东大学青年交叉团队、山东大学交叉培育等项目的资助。近几年,课题组在拉曼传感芯片及应用方面取得的相关成果分别发表在Sensors and Actuators B: Chemical(2021,341, 130031),Small methods(2022, 6, 2200096),ACS applied materials &interfaces(2022, 14, 2, 3504–3514),Food Chemistry(2023,402, 134241)、Materials Today Nano(2023,22, 100305)等期刊。
  • 贵金属纳米结构组装及其表面增强拉曼散射应用研究获进展
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文课题组和美国西弗吉尼亚大学教授吴年强研究小组合作,在贵金属纳米结构组装及其表面增强拉曼散射(SERS)应用研究方面取得新进展,相关结果以封面论文发表在《纳米研究》(Nano Res. 2015, 8, 957-966)上。  由于电磁增强作用,位于贵金属纳米结构表面的分子拉曼信号会得到数量级的增强,从而产生表面增强拉曼散射效应。表面增强拉曼散射技术具有分子“指纹”识别能力,在化学和生物分析等领域拥有广泛的应用前景。贵金属纳米结构表面具有大幅度增强局域电磁场的位置(一般位于10nm的间隙处)称为表面增强拉曼散射“热点”,是表面增强拉曼散射信号的主要来源。因此,在三维空间内增加“热点”的密集度将有效提高表面增强拉曼散射灵敏度。目前,构筑三维SERS基底的主要方式是将球形贵金属颗粒组装到非金属纳米结构阵列上。相关理论和实验研究表明,与球形贵金属纳米颗粒相比,带有棱角或尖端的贵金属纳米结构能够产生更强的局域电磁场,因而其组装体在间隙处更易产生“热点”。如果将这些纳米结构组装成三维SERS基底,有望得到高灵敏度SERS基底。  该研究团队以ZnO纳米锥阵列作为牺牲模板,使用含有贵金属离子和特定表面活性剂的电解液,采用电沉积方法构筑多种贵金属纳米结构单元组装的纳米管阵列,例如由银纳米片、金纳米棒、铂纳米刺和钯纳米锥等结构单元组装的纳米管阵列。这些纳米结构单元具有显著的棱角和/或尖端 由其组装的纳米管阵列具有大量间隙,在三维空间内产生高密度的“热点”。因此所构筑的纳米管阵列具有很高的表面增强拉曼散射灵敏度。例如,银纳米片组装的纳米管阵列能够灵敏地检测浓度低至10fM的罗丹明6G (R6G)。这种银纳米片组装的三维SERS基底对高毒性有机污染物多氯联苯也表现出高表面增强拉曼散射灵敏度,并能够检测两种多氯联苯的混合物,表明该三维SERS基底在检测环境中高毒性有机污染物方面具有应用前景。  相关工作得到科技部“973”计划、“中国科学院、国家外国专家局创新团队国际合作伙伴计划”和国家自然科学基金等项目的支持。图1. 论文的相关图片被选作期刊封面  图2. (a)银纳米片组装的纳米管阵列的扫描电镜(SEM)照片 (b)折断的纳米管的SEM照片 (c)不同浓度R6G的SERS光谱 (d) 20μ M多氯联苯-77 (PCB-77)和10μ M多氯联苯-1 (PCB-1)的混合物溶液(曲线I) 以及30μ M的 PCB-1溶液(曲线II)的SERS光谱。
  • iCMS 2016特邀报告之空气动力辅助离子化质谱分子成像技术及其应用研究进展
    第七届质谱网络会议(iCMS 2016)邀请报告之空气动力辅助离子化质谱分子成像技术及其应用研究进展 报告时间: 11月23日下午14:00-17:00报告摘要:  质谱成像技术是质谱技术发展的前沿和热点领域之一。常压敞开式质谱成像技术因其方便快捷的特点发展迅速并在各领域的应用研究取得重要突破。报告人结合所在课题组的科研工作,详细报告空气动力辅助离子化质谱成像(AFAI-MSI)技术及其应用研究进展。内容包括AFAI-MSI硬件的开发、质谱成像数据处理与信息挖掘软件的开发、AFAI-MSI在药物成像分析、肿瘤临床病理诊断等领域取得的应用进展。 报告人简介: 贺玖明,博士,副研究员,硕士生导师。  专业研究方向领域  1. 质谱离子化新技术及其药物分析应用新方法  2. 质谱分子成像新技术新方法及其应用  自2000年以来,一直从事基于质谱的快速分析新技术和新方法研究,主要包括:药物代谢产物、药物杂质的分析鉴定研究 临床前药物药代动力学研究 复杂天然产物混合物的快速分析方法研究 不稳定金属有机复合物的冷喷雾质谱分析和结构表征研究 常压敞开式离子源及其质谱分子成像的新技术、新方法研究。共发表质谱研究相关的署名SCI论文30多篇 第一作者及通讯作者10篇,包括分析化学领域最权威的国际期刊Anal. Chem.上3篇,Scientific Reports 2篇 第二作者10篇。曾获2010年北京市科学技术奖二等奖(第二完成人),2015年度药物科研岗位标兵。  将重点开展新型常压敞开式离子化和质谱分子成像技术及其应用研究 研发质谱分子成像新技术,动物体内药物的分子成像及原位表征新方法、恶性肿瘤等重大疾病生物标志物的分子成像等研究。
  • 武汉岩土所核磁共振技术探测方法与应用研究获进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   岩土介质作为一种工程材料和工程环境,其中水分的物理状态和相态变化对岩土体的工程力学性质、工程的施工方法及安全稳定等至关重要。特别是在冻土、含水合物土和非饱和土等多场多相耦合的复杂岩土工程问题中,内部水分的含量,迁移与重分布、相变等一系列物理状态变化会影响到土的工程力学特性。例如降雨导致的滑坡,冻胀引起的路基开裂,海底天然气水合物分解引起海底滑坡,造成一系列海上设施的破坏等。这类问题是岩土工程中的难题,尽管有许多学者就这方面问题进行理论和实验方面的研究和讨论,但得到的一些模型与规律往往带有经验性,适用范围很局限,不能满足工程界的普遍需要。因此,为了确保工程项目的安全及稳定,岩土介质中有关水分迁移,重分布及相变现象的微观过程与机理的研究十分必要。 /p p   核磁共振技术是一项研究单位体积中质子(即氢核)含量与分布的探测技术。核磁共振技术中的核磁共振谱峰的面积正比于相应质子数,可用于定量分析。氢核横向弛豫时间(T sub 2 /sub /ms)是质子在射频激发后其相位变化、能量复原所需时间的表征,T sub 2 /sub 能反映质子所处的环境,因此核磁共振可用于测定物质的微观结构。水是一种含氢量较高的物质,且广泛存在于自然界中,在核磁共振中具有很强的信号及敏感性。鉴于水的这一特性,核磁共振已应用于医学、地质找水、食品和生物分析等领域,核磁共振在这些领域的应用引起众多不同领域学者的注意。中国科学院武汉岩土力学研究所研究员韦昌富率领的科研团队,近年基于这一想法将其应用于涉及水分含量、分布、迁移与相变问题的岩土现象,如冻土未冻水含量、含水合物土相平衡条件和非饱和土毛细滞回的分析,在以下几方面取得系列成果:(1)利用核磁共振测得不用土体在各级吸力下的T sub 2 /sub 时间分布曲线,定性的探讨不同吸力下试样中的水分分布,从微观上分析干密度、初始含水量和土样组分对试样脱湿过程的影响;(2)通过联合联合水力测试系统与核磁共振测试系统,讨论土体在一个水力循环过程中孔隙水分布与迁移的微细观过程。基于核磁共振技术提出快速准确的测试土体孔隙分布的方法,并将实验结果与传统压汞法的结果作对比。结果表明,该方法孔径测试范围比压汞法大,尤其是小孔径范围的测试具有更大优势,同时该方法是无损的,避免了测试过程中由于对试样结构的损坏而导致测试结果的失真;(3)结合毛细水与吸附水在土体中作用的吸力范围、冰点值及含量随温度变化的差异,提出了一种基于核磁共振技术的快速与无损测试土体吸附水含量的方法;(4)利用核磁共振技术获得冻土中未冻水含量,发现冻融循环过程中未冻水含量具有明显的滞回性,并发现未冻水含量的滞回圈可分为三个阶段;(5)利用低场核磁共振技术研究粉土中CO sub 2 /sub 水合物的分解过程,核磁共振实验结果表明,在水合物融化过程中小孔隙中水合物先融化,随着温度的进一步,大孔隙中水合物开始融化。根据核磁总信号与气体压力随温度的变化计算得出粉土中二氧化碳水合物的饱和度S sub h /sub ,并进一步得到土体中水合物P-T-S sub h /sub 相平衡曲线,以及二氧化碳水合物的水合数;(6)利用核磁共振二维谱(T sub 1 /sub -T sub 2 /sub )研究土体冻融循环对土体水分分布与结构的影响。 /p p   研究工作得到了国家自然科学基金重点项目、面上以及青年基金,中科院知识创新重要方向项目以及岩土力学与工程国家重点实验室的资助,相关研究成果发表在 em Applied Magnetic Resonance /em 、 em Cold Regions Science and Technology /em 、 em Vadose Zone Journal /em 、 em Journal of Performance of Constructed Facilities /em 、 em Journal of Engineering Mechanics /em 、《岩土力学》、《物理化学学报》,《岩土工程学报》等期刊上。 /p p    /p p style=" text-align:center " img alt=" " oldsrc=" W020171212311984838796.jpg" src=" http://img1.17img.cn/17img/images/201801/uepic/5bc3dc81-c702-4eba-b7f8-68e421cec09f.jpg" / /p p style=" text-align:center " 基于核磁共振得出的土体孔隙分布与压汞法 /p p style=" text-align:center " img alt=" " oldsrc=" W020171212311984847186.jpg" src=" http://img1.17img.cn/17img/images/201801/uepic/afd945c4-f454-484d-b1bc-83ab7294bbd2.jpg" / /p p style=" text-align:center " 土体冻融循环过程中毛细水与吸附水含量的变化 /p p style=" text-align:center " img alt=" " oldsrc=" W020171212311984847646.jpg" src=" http://img1.17img.cn/17img/images/201801/uepic/08962561-5536-4c6d-a703-ed2e84406d60.jpg" / /p p style=" text-align:center " 粉土中二氧化碳水合物分解过程不同温度下的T2分布曲线 /p p style=" text-align:center " img alt=" " oldsrc=" W020171212311984851553.jpg" src=" http://img1.17img.cn/17img/images/201801/uepic/f7187fa8-53c8-417e-98cb-b780f0c11d3d.jpg" uploadpic=" W020171212311984851553.jpg" / /p p style=" text-align: center " 饱和土体核磁二维谱 /p
  • 制备液相色谱仪器及其应用研究和有关问题的探讨
    李昌厚 (中国科学院上海营养与健康研究所,上海 200233)摘要: 本文根据仪器学理论、分析化学理论和作者使用液相色谱、制备色谱仪器的实践,简单综述了制备液相色谱仪器的发展趋势、基本原理、特点;制备色谱仪器结构组成、制备色谱的分类、主要应用等;同时,对制备色谱仪器的研发者、生产者、使用者工作中应该注意和重视的有关问题做了讨论,并对打破崇洋媚外的思想、弘扬我国民族分析仪器等问题进行了探讨。本文可供制备液相色谱仪器的研发者、制造者、使用者参考。一、前言制备色谱是科研、生产工作中,特别在制药、生物、环保等行业,可以说是必不可少的仪器之一。近几年来,由于国家对分析仪器的重视,广大科技工作者在制备色谱仪器和应用方面,做了很大的投入、付出了很多艰辛努力,取得了令人振奋的进步和丰硕成果。本人长期从事光谱、色谱仪器及其应用研究,通过实践,深深认识到制备色谱非常重要;作者通过在色谱仪器,特别是在制备色谱的研发、使用和维修方面的实践工作取得了一些经验、教训,愿与有关的科技工作者分享。本文主要对制备色谱仪器及其有关问题做了一些讨论,对制备液相色谱仪器的研发者、生产者、使用者、维修者和有关的管理人员都有参考作用。二、国产制备色谱仪器发展概况自从20世纪60年代HPLC问世以来,国内外很多科技工作者一直在摸索如何得到HPLC的分离产物,经过长期探索,国外的有关科技工作者首先推出了在生命科学领域应用的制备色谱仪器,例如:Biotage公司推出的Isolera制备色谱等等。我国的广大科技工作者也在努力攻关,研发制备色谱仪器,并且取得了可喜的成绩。例如:上海科哲公司2021年推出了系列制备色谱系统。据作者参观了解的有关信息,上海科哲公司的制备色谱目前已经有:实验室型半制备/制备液相色谱系统、中试放大型制备液相色谱系统等18种产品。每一类产品又包含多种不同的型号,款款都有针对性,都是根据用户提出的实际需求研发的,实用性非常强。有的专为高校打造、有的专为药企打造、有的专为CRO/药企打造、有的专为科研院所打造,大大方便了各类用户对仪器的选择。其中全自动化的进样与馏分收集器,无人化操作是仪器全自动的核心,也是最重要的创新集结点。既符合集成创新的特点,又符合二次创新的特点。其中:高压系列制备色谱,已经有从100型制备液相色谱系统发展到8000型高压制备色谱系统,有10种产品可复盖全行业的用户,可供各类用户选择;中低压系列制备色谱,从1000型快速制备纯化系统发展到5000型快速制备纯化系统,可供各类用户选择;DAC中试系列制备系列,从50型制备色谱系统发展到150型制备色谱系统,可供用户任意选择。又如:大连依利特公司推出的P230A/P分析-半制备一体化液相色谱系统,在保证其良好准确性、重复性及宽泛流量范围等优点的同时,方便实用,实现分析与半制备系统之间的快捷切换,一机两用,极大降低用户仪器的采购成本。此外,大连依利特还推出了P3500高压恒流泵,这是大连依利特分析仪器有限公司在P230p高压恒流泵基础上,设计开发的具有自主知识产权的高压恒流泵。可广泛应用于医药、生化、环保、质量控制等领域高效液相色谱的分析及制备,也适合在一些特殊领域作为高精度进料泵使用;小凸轮驱动短行程柱塞的双柱塞并联式往复恒流泵,取消了传统液相色谱仪缓冲器,降低了系统体积。上海伍丰公司推出的LC-100P系列制备液相色谱,可以满足常规实验室纯化制备,并可根据使用需要,搭配紫外检测器组成等度系统,高压二元梯度系统,实现实验室制备提取,广泛用于制药、化工、食品、生化、环保等领域。上海通微公司推出了半制备高效液相色谱分析系统EasySepTM-1050 高压输液泵。该产品采用浮动式柱塞安装方式,确保了柱塞杆与密封圈的同心,从而使柱塞杆与密封圈的寿命大幅延长。小凸轮驱动短行程柱塞杆设计,极大降低输液脉动。微处理器控制微步驱动电路,使得步进电机运行平稳、噪声低;采用紫外/可见光检测器,具有精密定位的光路结构,确保仪器的波长准确度和稳定性;全新设计的数字信号直接输出模式,避免色谱信号因多次转换造成的信号畸变和干扰,降低仪器的基线噪音和漂移。仪器更采用全程数字滤波,大大提高了信噪比和抗干扰能力,具备出色的检测灵敏度和稳定性。江苏汉邦(Han bon)公司推出的NS4000系列制备色谱,是为小试、中试放大而研发的制备色谱产品,适合不同系统的特殊使用要求。汉邦推出的Han bon CS-Prep工业制备色谱系统,具有高效、快速、智能、防爆等特点,在生物、医药、食品等领域有广阔的应用前景。总体而言,我国目前已有多个公司都在研发、生产各种不同类型的制备或半制备液相色谱仪器,可以说,我国制备色谱仪器发展形势大好。但是因为篇幅所限,本文不能一一提到,希望有关的研发者、生产者、使用者们谅解。三、 制备色谱的原理和特点高效制备液相技术是利用混合物中各组分物理化学性质的差异,使它们以不同程度分布在两个不相溶的相中,且各组分可在两相的相对运动过程中,在两相中发生多次分布,从而达到分离、得到被检测物质产物的目的。制备液相色谱具有以下特点:1)采用色谱柱,其填料多为细颗粒多孔材料,所以分离效率高;2)应用范围广泛,对极性和非极性、离子型和非离子型、小分子和大分子、热稳定性和热不稳定性的化合物均具有较好的分离效果;3)根据所分离化合物的理化性质可配备不同类型的检测器,如紫外检测器(UVD)、二极管阵列检测器( DAD )、荧光检测器( FD )、蒸发光散射检测器( ELSD)等,实现稳定可靠的在线检测;4)可连续自动化操作。 四、 制备色谱仪器的结构组成制备型(Prep)色谱或纯化色谱是利用色谱方法,分离出一定量达到足够纯度的化合物,用于后续实验或处理的色谱方法。用户首先要确定目标化合物,然后开发色谱方法,将目标化合物从原料、副反应或其它杂质中成功分离出来。其总体目标是满足日益增长的高通量和高效率需求,同时运用各种纯化技术达到相应的规模、纯度和重现性的要求。一般制备液相色谱系统的原理示意图如下:上图中:溶剂泵的流量大小和流量稳定性、色谱柱的直径和填料、检测器的灵敏度和功能、数据处理工作站的性能等等,都是非常值得重视的关键部件。研发者、使用者都必须高度重视这四个方面。因为篇幅所限,本文不能展开讨论。五、制备色谱的分类1、根据系统的压力分类制备色谱可分为中压制备、低压制备和高压制备三种,其主要区别是:1)柱子粒径不同---高压制备常用10μm粒径以下的填料;中、低压制备常用20μm粒径以上的填料,一般为20-60μm。2)分离难度不同---中压分离难度较低,样品量大;高压分离难度较高,样品量相对较小。3)溶剂级别不同---中压溶剂要求比较低,常用于粗分、富集,工业级或分析级试剂;高压制备通常是色谱级。4)应用场景不同---复杂样品通常先中压粗分,高压二次制备2、根据制备色谱柱分类根据固定相和流动相的极性,制备色谱可分为反相色谱与正相色谱1) 反相色谱流动相极性大于固定相极性,适用于能溶于水、有机混合物的中性或非离子化合物的分离。特点:保留时间重现性好、固定性耐用、可用甲醇、乙腈、THF作为常用溶剂,使用成本低廉。2) 正相色谱流动相极性小于固定相极性,适用于不溶于水、有机混合物的亲脂样品、异构体分离。特点:保留时间重现性稍差;石油醚/乙酸乙酯、二氯甲烷/甲醇是常用溶剂。3、根据流路分类1)通常采用泵前低压混合,梯度比例阀控制分离梯度。下面是一般低压、中压制备色谱流路图: 上图中:梯度比例阀、泵、色谱柱、检测器、馏分收集器都是非常重要的部件,所有的制备色谱研发者、生产者、使用者都应该特别重视这些部件。2)制备色谱的高压制备流路高压制备流路通常采用泵后高压混合,混合的效果更好。下面是高压制备色谱流路图: 上图中:泵、混合器、色谱柱、检测器、馏分收集器、色谱工作站都是非常重要的部件,所有的制备色谱研发者、生产者、使用者都应该特别重视这些部件。六、 制备色谱仪器的应用1、制备色谱在天然产物和中药中的应用中草药是我国的国药、,是我国新药研发的宝贵资源,为了从中草药中分离出更多的有效成分,以满足化合物药效结构的高通量筛选及药理作用研究的需要,需借助于具有快速、高效的分离能力的技术。例如:糖类化合物纯化生物、黄酮类化合物纯化、生物碱类化合物纯化、生物萜类化合物纯化、生物甾体化合物纯化、其它类型天然产物纯化等等。高效制备液相色谱以其良好的分离度、灵敏度和较大的样品通量使其成为现阶段天然产物、中草药研究中不可或缺的重要手段,是得到被研究产物的重要仪器之一。下图是上海科哲的PuriMaster-3000A制备色谱仪器,用于川芎药材中7种活性成份的制备结果,效果非常好。 上图中:1.阿魏酸,2. 洋川芎内酯I,3. 洋川芎内酯H,4. 阿魏酸松柏酯,5. 洋川芎内酯A,6. Z-藁本内酯,7. 欧当归内酯A2、制备色谱在蛋白纯化中的应用 蛋白质和肽类药物活性强,生物功能明确,特异性高,有利于临床应用,已成为医药产业中的一大类重要产品。但这些产品无论是来自于生物体内还是由化学合成,往往都带有复杂的混合成分,而目的蛋白或肽类的丰度又低,给分离纯化带来困难,需要多种方法联合使用以获得纯度满意的产品。在此过程中,反相制备通常在分离的最后阶段被用作获得高纯度产品的关键方法。色谱柱使用比较普遍的是烷基反相键合柱,例如 C18、C8 及 C4 等,具体选择可以由蛋白质相对分子质量或疏水性而定。流动相大多为甲醇或乙腈等有机相与水的混合体系,通常还添加三氟醋酸,以增加样品的溶解度,提高分离度。下图是上海科哲公司的制备液相色谱,在多肽纯化实验室的应用情况:由于很多蛋白质和多肽类药物的活性强,特异性高,所以反相制备色谱,通常在分离的最后阶段,被用作获得高纯度产品的关键方法。科哲的PuriMaster-3000A制备色谱仪器,由于功能齐全,可靠性好,已经广泛被用户用来作为蛋白质、多肽等的分离、纯化仪器。 3、制备色谱在生命科学中的应用液相色谱作为一种十分重要的分离分析技术,自60年代末期至70年代初崛起以来,一直受到生命科学界广大研究人员的高度重视,制备液相色谱仪用于一系列生命科学前沿领域中的重大课题,并在其中发挥了特殊作用,它在包括生物大分子在内的生物活性物质的分离分析,以及制备纯化方面得到了越来越广泛的应用,特别是它的制备纯化能力是其它方法无法取代的。例如:多糖化合物纯化,有些糖类化合物没有紫外吸收,一般用示差折光检测器检测,但是示差折光检测器容易受到温度的影响,所以检测效果不理想。维生素的纯化方面,很多使用者采用C18、C8柱的反相制备液相色谱分离,分析脂溶性维生素等效果比较好。目前制备色谱的应用非常广泛,因篇幅所限,本文不能展开,请读者自己查阅有关文献。并请大家谅解。七、有关问题的探讨从仪器学理论、分析化学理论和作者的长期实践来看,作者认为制备色谱的研发者、使用者必须认识并重视以下5个问题:1、要重视对制备色谱的泵、柱、检测器三者关系的认识:目前国内外的制备色谱研发者、制造者、使用者在这方面普遍存在一些问题。目前很多研发、使用制备色谱的科技工作者,没有搞清楚或没有完全搞清楚制备色谱中的泵、柱、检测器三者的关系。一旦仪器制造者或使用者在制备色谱仪器出现某些问题时,不是从仪器学理论上去分析、找问题,而是闭着眼睛盲目的从泵、柱、检测器,多方面去寻找问题。往往找了很久,一事无成。所以,虽说目前国内已经有20多家公司在生产HPLC或者同时在生产制备色谱仪器,但是,都是只做泵和检测器,而做色谱柱或填料的企业都不做泵和检测器。本人认为这是阻碍我国HPLC和制备色谱仪器及其应用发展的关键问题之一。基于本人长期的研发和使用色谱仪器的实践经验,感到研发、使用制备色谱时,应该特别注重把泵、柱、检测器三者联合起来看,要了解三者的关系、要知道各个部件的作用、相互影响和重要性!不能顾此失彼!希望制备色谱的生产企业,要重视泵、柱、检测器三者的关系,这样才能研发生产出高质量的整机制备液相色谱系统!因为篇幅所限,不能展开讲了。以后有机会作者将专文再讨论这些问题。2、应该对制备色谱柱及柱外效应的有关问题引起高度重视:1)色谱峰拖尾:与柱质量、流动相的流速、试样等有关,发现拖尾一定要从这些方面查找原因。 2)制备色谱柱很贵,作者的单位曾经购买过一根进口C18制备色谱柱,花费8万美金!所以,如何延长制备色谱柱寿命、保养制备色谱柱很重要。长期不用时应该用甲醇浸泡着,严格控制洗柱时间或洗柱的溶剂量。一般经常使用的柱,下班时应该洗 45分钟或用20倍床体积的溶剂冲洗。3)必须注意对“柱外效应”的控制:所谓“柱外效应”,,就是指除柱系统外,管路、连接件、卡套、进样器和流动池的死体积等引起的色谱峰增宽效应。 3、应该特别注重对色谱柱质量的判断:1)色谱柱的柱效:塔板数高者好,特别要注意影响柱效的因素,塔板数降到一定程度该柱就报废了。 2)重复性:一根柱子反复使用时,最好RSD能够保持小于0.1%。 3)耐用性(寿命):因为柱效很容易降低,所以需要重视对柱的保护。 4)色谱柱使用后一定要进行清洗 ,以免造成腐蚀、阻塞、降低塔板数。一般应该用20倍床体积冲洗;隔几天再用的制备色谱仪器,最好用20%甲醇:80%水冲洗30分钟左右后,再用纯甲醇冲洗20分钟后保存。 4、应该特别重视流动相问题 1)PH值特别重要:一般C18柱PH小于3时,容易损坏色谱柱,但是抗酸性的柱可以使用小的PH值。 2)注意选择试剂的截止波长:如乙腈截止波长215nm、丙酮截止波长330nm、正丁烷210nm等等。 3)流速:流速要适当,否则峰形难看,浪费溶剂。制备色谱应该根据制备需求的具体情况选择流速。5、应该注重溶剂前处理 调试时最好使用HPLC级的优质溶剂,溶剂使用前必须过滤和脱气,要注意以下几点: 1)过滤目的: 溶剂进泵前和样品注射前应该过滤除去溶剂中的微小颗粒、微生物,保证泵和色谱柱不会堵塞或损坏,保证分析数据可靠。 2)对过滤器的要求和最佳孔径选择方法: 对过滤器总的要求是速度快、溶出度小、死体积小、精确的孔径、体积适当、化学兼容性好等。3)脱气:主要目的是:除去流动相中溶解或因混合而产生的气泡。制备色谱流动相脱气使用较多的是离线超声波振荡脱气、在线惰性气体鼓泡吹扫脱气和在线真空脱气。流动相的气泡进入液相泵会引起压力的上下波动,造成仪器稳定性差,危害性很大。可以打开排空阀,大流速冲洗。 八、必须打破崇洋媚外的思想、弘扬民族精神、大力发展中国的民族分析仪器 我国的常规制备色谱仪器基本上可以与国外同类同档次的仪器抗衡,即:有些指标与国外仪器相当、有些指标优于国外仪器、少数非关键的指标不及国外仪器。有人说:“很多用户崇洋媚外,不愿意使用国产仪器”;有人说:“他们是质检部门,工作很重要,国产仪器数据不准确!必须用进口仪器”;还有人说:“他们是进出口产品检验工作,面对外国人,我们要求得到外国人的认可”… 作者认为这些说法完全是一种借口,事实并非如此。作者作为一个中国科学院的用户、作为一个年长的科技工作者,可以负责任的、坦率的、骄傲的告诉大家,我是中国科学院第一个使用国产光谱仪器(紫外可见分光光度计TU-901)、色谱仪器(FD-高效液相色谱)的科技工作者。我还可以告诉大家,用户不是一定要用进口的仪器的。例如:作者曾经研发了一台HPLC,采用了自制的高压泵、自制的检测器和国产的色谱柱。整个HPLC在美学性方面远远不及国外的HPLC,但是,我们用它在多肽、核酸等有机化学领域的科研工作中,解决了很多实际问题,发表了不少论文,效果很好。当时,中国科学院化学所和北京大学各有一位科技工作者在我们单位搞协作,他们把这个情况告诉了自己单位的有关领导和有关科技工作者。结果,这两个单位的老科学家、老教授都主动提出要求购买我们研发的HPLC。我们问他为什么不买进口HPLC?为什么要买我们这样难看的仪器?他们异口同声的回答说:“你们的HPLC不像国外某些厂商的HPLC,他们的仪器价格昂贵、性价比低、并且低浓度的样品做不出来,有时很难重复文献值;而你们的HPLC适用性强、技术指标实在、分析检测数据准确可靠,在实际工作中能解决问题”。这是为什么呢?因为一般科研工作基本上都是从重复文献开始,而仪器学理论告诉我们,噪声是HPLC分析检测误差的主要来源之一,它限制对被分析检测样品的浓度。如果在分析测试工作中,HPLC的噪声大了,样品浓度稍微稀一点,就因为噪声将样品的信号淹没了,就无法检测出结果。很多进口HPLC的噪声大,低浓度样品重复不出文献值、有时分析检测的数据也很不准确。所以,这个例子充分说明:广大用户需要的不一定是进口仪器,而是要求稳定可靠的仪器、是能得到准确可靠数据的仪器、是性价比高的仪器。至于什么“质检工作要求高”、“求外国人认可”,这些都是站不住脚的歪理。例如:我国的三聚氰胺事件中,为了建立国家检测标准,经过10多家实验室确证,并经专家组审查通过,决定采用HPLC法作为国家三聚氰胺标准检测仪器,并确定指标为:检测范围为0.3mg/Kg-100mg/Kg;检测限0.05mg/Kg。当时国家急于建立标准,决定采用招标方式选择建标中使用的仪器。大家找了北京普析通用与另外两家国外生产的HPLC仪器作为竞标对象。当时根本没有想到国产HPLC会中标,只是担心有人质疑建立国标不用国产仪器,是崇洋媚外的做法,所以选了普析通用的L6型HPLC。当时大家决定由国家标物中心拿出盲样,对三家仪器进行比对测试。比对测试的结果,普析通用和国外一家品牌产品的数据与标样数据非常接近,两家的比对测试数据基本一致,三家中排名前两名。最后,专家、领导共同讨论,从比对测试的数据可靠性、仪器的性价比、制订国标等多个因素全方位考虑,国产仪器L6中标。普析通用的L6型(现已升级到L600型)被选为《原料乳三聚氰胺快速测定--液相色谱法》国家标准起草时使用的唯一国产品牌的HPLC。随后,在国家建标过程中,采用普析通用的L6系列高效液相色谱仪,建立了奶粉/牛奶中三聚氰胺的HPLC-UV检测方法。奶中的三聚氰胺经1%三氯乙酸溶液提取,提取液加乙酸铅溶液沉淀蛋白,离心后上清液经混合型阳离子交换固相萃取柱(Cleanert PCX,60mg/3ml)净化,洗脱液吹干后定容,用L6型高效液相色谱仪进行测定,最低检测限为0.0416mg/L(优于安捷伦的HPLC检测结果),回收率为:95.87%-105.21%,在1-50ppm之间有良好的线性关系(R2=0.9996)。这个工作要求不高吗?这个比对工作外国人能不认可吗?这里能说明用户崇洋媚外吗?回答都是否。同时,这个例子说明国产HPLC不比进口的差,说明国产HPLC有些地方优于进口同类同档次的产品。从仪器学理论和使用者的实际要求、从仪器的性价比和售后服务等全方位来讲,进口液相制备色谱和国产制备色谱的质量都相差无几,例如:公司某进口品牌上海科哲仪器型号某型号FlashDoctor泵1-200mL/min1-200mL/min进样器注射器注入高压六通阀系统压力200psi200psi检测波长UV:200-400 nm(标配) UV:200-800 nm(选配)UV:190-850 nm(标配)软件操作英文界面中文界面,参数设置简单上表摘自《仪器信息网》的超级品牌活动日,2021-09-16.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制