当前位置: 仪器信息网 > 行业主题 > >

扫描形貌研究

仪器信息网扫描形貌研究专题为您整合扫描形貌研究相关的最新文章,在扫描形貌研究专题,您不仅可以免费浏览扫描形貌研究的资讯, 同时您还可以浏览扫描形貌研究的相关资料、解决方案,参与社区扫描形貌研究话题讨论。

扫描形貌研究相关的资讯

  • 腐蚀在激光共聚焦扫描显微镜眼中的璀璨形貌
    p    strong 腐蚀形貌常用表征方法 /strong /p p   在腐蚀研究和工程中,腐蚀形貌是判断各种腐蚀类型、评价腐蚀程度、研究腐蚀规律与特征的重要依据。腐蚀形貌表征最常用的方法便是宏观观察、扫描电子显微镜观察和金相显微镜观察等,这些方法容易受主观因素影响。 /p p    strong 激光共聚焦扫描显微镜 /strong /p p   激光共聚焦扫描显微镜(LSCM)以激光作为光源,采用共轭成像原理,沿x、y方向逐点扫描试样表面,合成图像切片,再移动z周,采集多层切片,形成图像栈,将所有图像栈的信息进行合成,形成可以测量垂直高度和表面粗糙度及轮廓的三维表面形貌图像,是一种高敏感度与高分辨率的显微镜技术。 /p p   该技术已广泛应用于形态学、生理学、免疫学、遗传学等分子细胞生物学领域。由于采用激光共聚焦扫描显微镜表征腐蚀形貌具有较好的客观性,因此其在材料腐蚀中也有较好的应用前景。 /p p    strong 试验材料 /strong /p p   试验试剂为乙醇、丙酮(分析纯,国药集团化学试剂有限公司)。试验钢为油田现场用N80钢管,其化学成分(质量分数)为:0.22%C,1.17%Mn,0.21%Si,0.003%S,0.010%P,0.036%Cr,0.021%Mo,0.028%Ni,0.018%V,0.012%Ti,0.019%Cu,0.006%Nb,余量Fe。 /p p    strong 试验仪器 /strong /p p   红外碳硫分析仪,直读光谱仪,电子天平,M273A恒电位仪,扫描电镜,激光共聚焦扫描显微镜。 /p p    strong 腐蚀试验 /strong /p p    span style=" color: rgb(0, 176, 240) " (1)全面腐蚀 /span /p p   将N80钢管加工成挂片试样,用350号金相试纸对试样进行打磨,然后再用丙酮除油和乙醇清洗,最后吹干。 /p p   依据标准ASTM G170-06(R2012)《实验室中对油田及炼油厂缓蚀剂评价及鉴定的标准指南》和SY/T 5405-1996《酸化用缓蚀剂性能试验方法及评价指标》,采用静态腐蚀挂片法对N80钢进行全面腐蚀试验。 /p p   试验在高温高压反应釜中进行。试验介质为15%(质量分数)的N,N& #39 -二醛基哌嗪缓蚀剂,试验温度90℃,试验时间为4h。试验后取出试样,逐步采用毛刷机械法和超声波酒精振荡清洗试样表面的缓蚀剂膜和腐蚀产物,然后烘干送检LSCM。同时,对试样进行宏观观察和扫描电镜观察。 /p p    span style=" color: rgb(0, 176, 240) " (2)沟槽腐蚀 /span /p p   将N80钢管加工成15mm× 5mm圆片试样,焊缝位于试样的中央,试验前采用350号金相砂纸打磨试样,再用丙酮除油和乙醇清洗,最后吹干,并采用光栅尺测量圆片尺寸。 /p p   依据标准Q/SY-TGRC 26-2011《ERW 钢管沟腐蚀实验室测试方法》,对N80钢进行沟槽腐蚀试验,得到沟槽腐蚀的试样。 /p p   试验采用电化学极化法(三电极体系),在1000mL玻璃电解池(带石英窗口)内进行。试验介质为3.5%(质量分数)的NaCl溶液。饱和甘汞电极为参比电极,N80钢为工作电极,铂电极为辅助电极。 /p p   试验时对试样施加-550 mV的恒电位(相对于参比电极),极化144h。试验后取出试样,逐步采用毛刷机械法和超声波酒精振荡清洗试样表面的腐蚀产物,然后烘干送检LSCM。同时,对试样进行宏观观察和扫描电镜观察。 /p p    strong 结果与讨论 /strong /p p    span style=" color: rgb(0, 176, 240) " 1 全面腐蚀 /span /p p   全面腐蚀试验后试样的宏观照片、扫描电镜图和LSCM图分别如图1—3所示。对比这三幅图可以看到:宏观和扫描电镜观察显示试样表面均匀腐蚀,无点蚀坑 LSCM观察显示,试样表面有两处点蚀坑,两处点蚀坑的直径分别为10.24,11.65μm,深度分别为13.78μm和19.83μm。由此可见,LSCM不仅可获得试样的表面三维图,还可客观迅速地找到局部腐蚀处,并可对局部腐蚀处进行简单测量处理。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/8531e939-7799-465b-a201-8006f8ee75f1.jpg" title=" 图1 全面腐蚀试验后试样的宏观照片.jpg" alt=" 图1 全面腐蚀试验后试样的宏观照片.jpg" / br/ br/ /strong strong 图1 全面腐蚀试验后试样的宏观照片 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/9fc9d4b0-37e5-4403-bc07-0e25c5a3291f.jpg" title=" 图2 全面腐蚀试验后试样的扫描电镜图.jpg" alt=" 图2 全面腐蚀试验后试样的扫描电镜图.jpg" width=" 378" height=" 406" border=" 0" vspace=" 0" style=" width: 378px height: 406px " / /strong /p p style=" text-align: center " strong 图2 全面腐蚀试验后试样的扫描电镜图 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/c4ecb6b1-a0e5-4322-b1de-903eca0143be.jpg" title=" 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图.jpg" alt=" 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图.jpg" width=" 400" height=" 271" border=" 0" vspace=" 0" style=" width: 400px height: 271px " / /strong /p p style=" text-align: center " strong 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图 /strong /p p    span style=" color: rgb(0, 176, 240) " 2 沟槽腐蚀 /span /p p   由于N80钢管为焊管,其母材与焊缝的显微组织不一样,在腐蚀环境中易产生电位差,使得焊缝熔合线处易出现深谷状的凹槽,如图4所示。沟槽腐蚀敏感系数α是判断焊管焊缝抗腐蚀的一个重要参数,其计算方法如式(1)所示。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/3507e746-8170-4721-a27d-d203442685a6.jpg" title=" 式(1).png" alt=" 式(1).png" / /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/613be5a5-5c15-45e0-a6d8-6ee416278e9d.jpg" title=" 图4 沟槽腐蚀试验后试样的宏观照片.jpg" alt=" 图4 沟槽腐蚀试验后试样的宏观照片.jpg" / /strong /p p style=" text-align: center " strong 图4 沟槽腐蚀试验后试样的宏观照片 /strong /p p   式中:h1为原始表面和腐蚀后表面的高度差 h2为原始表面和点蚀坑坑底的高度差,如图5所示。h1和h2均取3次测量的平均值,当α& lt 1.3时,表示焊管焊缝对沟槽腐蚀不敏感 当α≥1.3时,表示焊管焊缝对沟槽腐蚀敏感,需采取措施减少沟槽腐蚀。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/8e59d50c-bea6-49da-8f6a-d2448171379f.jpg" title=" 图5 沟槽腐蚀试验参数测定.png" alt=" 图5 沟槽腐蚀试验参数测定.png" / /strong /p p style=" text-align: center " strong 图5 沟槽腐蚀试验参数测定 /strong br/ /p p   沟槽腐蚀试验后试样的金相图和LSCM图分别如图6和图7所示。通过金相图和LSCM图得到参数h1和h2,并根据式(1)计算沟槽腐蚀敏感系数,结果如表1所示。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/75c010b6-db01-472f-ae3d-cff23f615d7c.jpg" title=" 图6 沟槽腐蚀试验后试样的金相图.jpg" alt=" 图6 沟槽腐蚀试验后试样的金相图.jpg" / /strong /p p style=" text-align: center " strong 图6 沟槽腐蚀试验后试样的金相图 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/467f4cb3-f842-418c-af0d-e067c5e4ee20.jpg" title=" 图7 沟槽腐蚀试验后试样的LSCM图.jpg" alt=" 图7 沟槽腐蚀试验后试样的LSCM图.jpg" / /strong /p p style=" text-align: center " strong 图7 沟槽腐蚀试验后试样的LSCM图 /strong /p p style=" text-align: center " strong 表1 不同方法得到的沟槽腐蚀敏感系数 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/15d8299e-3916-4241-bf81-692270f87d04.jpg" title=" 表1 不同方法得到的沟槽腐蚀敏感系数.png" alt=" 表1 不同方法得到的沟槽腐蚀敏感系数.png" / /strong /p p   采用金相显微镜测h2和h1时,需根据主观判断找到3个深度最深的腐蚀坑,然后将其局部放大,并采用仪器标尺测量h2和h1 而采用LSCM测h2和h1时,沟底层处便是腐蚀坑深度,且测量标尺为LSCM自带,因此该方法更便捷、直观和客观,由此计算的α也更可靠。 br/ /p p    strong 结论 /strong /p p   (1)激光共聚焦扫描显微镜表征腐蚀形貌以三维图方式显示,局部腐蚀处可一眼看到,更直观。 /p p   (2)用激光共聚焦扫描显微镜表征沟槽腐蚀,可以直观和客观地找到腐蚀坑深处,仪器自带标尺可直接测量坑深,数据测量更便捷,由此计算的敏感系数也更可靠。 /p
  • 扫描白光干涉表面形貌测量技术及应用——第二届精密测量与先进制造网络会议报告推荐
    高附加值产品中元器件的表面形貌,包括几何形状和微观纹理,对于其公差、装配和功能至关重要。表面形貌对制造工艺的变化非常敏感,由不同工艺形成的表面复杂且多样。表面形貌会影响零件的摩擦学特性、磨损和使用寿命,例如航发叶片的表面会影响飞机的空气动力学性能和燃料使用效率。扫描白光干涉术(SWLI),也称为相干扫描干涉术(CSI),是用于测量材料表面形貌最精确的技术之一。作为一种光学测量手段,扫描白光干涉术先天具有高精度、快速、高数据密度和非接触式测量等优势,被广泛应用于精密光学、半导体、汽车及航天等先进制造与研究领域。扫描白光干涉仪光路结构与成像原理示意图扫描白光干涉术经过30多年发展,在制造和科研领域得到验证,成为表面形貌高精度测量技术的标杆,尤其在半导体、精密光学和消费电子等产业的推动下,其测量功能和性能得到了持续提升。以扫描白光干涉术为代表的光学测量技术,充分利用了光的波动属性以及干涉和全息成像的优势,以光的波长作为“尺子”,在先进的光学、电子和机械元器件的支撑下,将在先进制造与智能制造中充当越来越重要的角色。第二届精密测量技术与先进制造网络会议期间,两位专家将现场分享扫描白光干涉技术及其在半导体行业的典型应用。部分报告预告如下,点击报名  》》》中国科学院上海光学精密机械研究所研究员 苏榕《扫描白光干涉表面形貌测量技术:原理及应用》(点击报名)苏榕博士,研究员,博士生导师,中国科学院及上海市海外高层次人才引进。长期致力于超精密光学干涉成像与散射测量仪器与技术研究,聚焦基础理论、核心算法、校准技术、工业应用及相关国际标准制定。主持多项国家和省部级重点研发项目;发表论文40余篇,书籍章节2章,部分技术被国际顶尖仪器制造商采用。担任期刊《Light: Advanced Manufacturing》和《Nanomanufacturing and Metrology》编委及《激光与光电子学进展》青年编委,SPIE-Photonics Europe、EOSAM和ASPE技术委员会委员,全国产品几何技术规范标准化技术委员会委员,中国计量测试学会计量仪器专业委员会委员,中国仪器仪表学会显微分会委员。【报告摘要】扫描白光干涉术是目前最精确的表面形貌测量技术之一,被广泛应用于各种工业与科研领域。从发明至今的三十余年间,在精密光学、半导体、汽车及航天等先进制造领域的需求牵引下,该技术不断取得新的进展与突破。本报告将介绍白光干涉技术的原理与应用,以及近年来的技术创新。布鲁克(北京)科技有限公司应用经理 黄鹤《先进封装工艺中三维几何尺寸监控的挑战与布鲁克白光干涉技术的计量解决方案》(点击报名)黄鹤博士现任布鲁克公司纳米表面仪器部中国区应用经理。服务于工艺设备和测量仪器行业超过15年,尤其在半导体、数据存储和材料表面工程研究领域拥有丰富经验,是一名材料学博士。黄鹤博士先后在香港理工大学任助研;在应用材料公司任高级应用工程师,负责化学机械抛光工艺和缺陷检测应用;在维易科公司任应用科学家,负责白光干涉三维形貌技术推广与导入。【报告摘要】在半导体行业路线图对不断缩小晶体管几何尺寸的快速追求的推动下,PCB/HDI尤其载板制造商正在通过更薄的高密度互连,将多芯片模块(包含芯粒)借由基板上开发更小、更密集的功能。在大批量生产过程中,对于更细线宽的铜线(Line)、更小开口的孔洞(Via)和深沟槽(Trench)及层间对位偏差(Overlay)等三维几何尺寸的测量面临多种新的挑战。而具备计量功能的 ContourSP 大型面板高效测量系统专门设计用于在制造过程中测量载板面板的每一层,确保在生产过程中最短的工艺开发时间、最高的产量、最长的正常运行时间和最稳定的测量结果。此外,本报告也会简略介绍白光干涉技术在晶圆封装时再布线工艺(RDL)监控中的典型应用。更多详细日程如下:第二届精密测量与先进制造主题网络研讨会报告时间报告题目报告嘉宾单位职称12月14日上午09:00-09:30纳米级微区形态性能参数激光差动共焦多谱联用测量技术及仪器赵维谦北京理工大学 光电学院院长09:30-10:00扫描白光干涉表面形貌测量技术:原理及应用苏榕中国科学院上海光学精密机械研究所研究员10:00-10:30先进封装工艺中三维几何尺寸监控的挑战与布鲁克白光干涉技术的计量解决方案黄鹤布鲁克(北京)科技有限公司应用经理10:30-11:00激光干涉精密测量技术、仪器及应用谈宜东清华大学 精密仪器系系副主任/副教授11:00-11:30关节类坐标测量技术于连栋中国石油大学(华东)教授12月14日下午14:00-14:30基于相位辅助的复杂属性表面全场三维测量技术张宗华河北工业大学教授14:30-15:00短脉冲光频梳激光测距技术杨睿韬哈尔滨工业大学副研究员15:00-15:30机器人精密减速器及关节测试技术程慧明北京工业大学 博士研究生15:30-16:00纳米尺度精密计量技术与国家量值体系施玉书中国计量科学研究院纳米计量研究室主任/副研究员16:00-16:30尺寸测量,从检验走向控制与孪生李明上海大学教授为促进精密测量技术发展和应用,助力制造业高质量发展,仪器信息网联合哈尔滨工业大学精密仪器工程研究院,将于2023年12月14日举办第二届精密测量技术与先进制造网络会议,邀请业内资深专家及仪器企业技术专家分享主题报告,就制造中的精密测量技术等进行深入的交流探讨。报名页面:https://www.instrument.com.cn/webinar/meetings/precisionmes2023/
  • 扫描电镜的衬度信息与表面形貌像——安徽大学林中清33载经验谈(15)
    【作者按】衬度指的是图像上所存在的明、暗差异,正是存在这种差异才使得我们能看到图像。同是明、暗差异,衬度与对比度的不同在于:对比度是指图像上最亮处和最暗处的差异,是以图像整体为考量对象;衬度是指图像上每一个局部的亮、暗差异,它是以图像上的局部细节为考量对象。形貌衬度、二次电子衬度和边缘效应、电位衬度、Z衬度、晶粒取向衬度是展现扫描电镜表面形貌特征的几个主要衬度信息。形貌衬度是形貌像形成的基础,其余的衬度信息叠加在这个基础之上做为形貌像的重要组成部分,充实及完善形貌像所展现的表面形貌信息。依据辩证的观点,这些衬度信息各有其适用领域,相互之间不可能被完全替代。即便是形貌像的基础“形貌衬度”也不具有完全代替其余任何一个衬度的能力。对任何衬度呈现的缺失,都会使得表面形貌像存在程度不同的缺陷,使仪器分析能力受到一定程度的影响,这些都将在下面的探讨中通过实例予以充分的展示。在前面经验谈中有大量的实例及篇幅对以上衬度予以介绍。本文是对过去零散的介绍加以归纳总结,形成体系。下面将从形貌衬度开始,通过实例,依次介绍二次电子衬度、边缘效应、电位衬度、Z衬度以及晶粒取向衬度的成因、影响因素、所展现的样品信息以及应用实例和探讨。一、形貌衬度形貌衬度:呈现样品表面形貌空间位置差异的衬度信息。影响因素:探头接收溢出样品的电子信息的角度。形成缘由:要充分表述表面形貌三维空间的位置信息,形成图像的衬度应当包含两个基本要素:方向和大小。物体图像的空间形态取决于人眼观察物体的角度:侧向观察是立方体,顶部观察为正方形。这是由于该角度包含着形成图像空间形态的两个基本要素:方向和大小。扫描电镜测试时形貌衬度的形成也是同样道理。形貌衬度的形成与探头接收溢出样品的电子信息(二次电子、背散射电子)的角度密切相关。该接收角度发生改变,形貌衬度也将发生变化,形貌像就会跟着出现变动。接收角对形貌像的影响并不单调,而是存在一个最佳范围。不同厂家的不同类型扫描电镜,由于探头位置设计上的差异,各自都存在一个最佳工作距离以形成最佳的信息接收角,呈现出各自所能表达的样品表面形貌的最大空间形态。样品的倾斜会对接收角产生较大的影响,因此倾转样品可以发现表面形貌像的空间信息也会发生改变。任何测试条件的改变都不会带来唯一且单调的结果,而是遵循辨证法的规律,即对立统一、否定之否定和量变到质变。选择测试条件时,要针对样品特性及最终目的做到取舍有度。形貌衬度是形成形貌像的基础,但并不是形貌像的全部。形貌像中许多细小的形貌细节,会受到探头所接收的电子信息(SE和BSE)溢出区大小的影响。电子信息和电子束的能量越大对这些细节的影响也越大,当量变达到一定程度就会影响某些细节的分辨,从而对表面形貌像产生影响。要形成充足的形貌衬度,又该如何选择电子信息接收角的形成方式?依据样品特性及表面形貌特征可分为:A)低倍,低于10万倍,呈现的形貌细节大于20纳米。此时,背散射电子很难完全掩盖这些细节信息,随着所需呈现的样品表面细节的增大,背散射电子对图像清晰度的影响也会减小,图像也将越渐清晰。样品仓内的探头位于样品侧上方,与样品和电子束共同形成较大的电子信息接收角。由该接收角形成的形貌衬度能充分呈现20纳米以上的样品表面形貌细节。随着工作距离、样品台倾斜和加速电压的改变,该接收角的变化幅度较大,图像所呈现的形貌变化也较为明显。镜筒内探头位于样品顶部,与样品和电子束在一条直线上。其对信息的接收角度主要形成于电子信息的溢出角,该角度较小,形成的形貌衬度也较小,不利于充分展现大于20纳米的形貌细节。工作距离、样品台倾斜以及加速电压的改变对接收角的影响较小,图像形态变化不明显。基于以上原因:低于10万倍,观察的样品表面细节大于20纳米。以样品仓探头为主获取的形貌像,空间形态更优异。B)高倍,大于20万倍,观察的形貌细节小于20纳米。表面形貌的高低差异小,形貌衬度也小,电子信息的溢出角度即可满足衬度的形成需求。此时,低角度信息的接收效果将是主导因素,低角度信息越多,图像立体感越强烈。背散射电子因能量较高对这些细节影响较大,必须加以排除。为充分呈现这类形貌信息,应采用镜筒内探头从样品顶部接收充足的二次电子,尽量排除溢出面积较大的背散射电子信息溢出区对样品细节的影响。此时形成形貌像的关键是采用小工作距离(小于2mm),以增加镜筒内探头接收到的低角度二次电子。实例展示及探讨:A )大于20纳米的细节,以样品仓探头为主(大工作距离)形成的形貌像,立体感强、细节更优异,形貌假象较少。B)样品仓探头获取的表面形貌像对工作距离的变化、样品倾斜、加速电压的改变都十分敏感,表面形貌像的形态随之改变也较为明显。镜筒探头位于样品顶端,改变以上条件对接收角的影响不大,形貌像的空间形态变化也不明显。 B1)改变工作距离对表面形貌像的影响(钴、铁、钨合金)B2)样品倾斜对形貌像立体感的影响B3)改变加速电压对形貌像立体感的影响(合金钢)C)小于10纳米的细节,形貌衬度要求较小,溢出样品的低角度电子信息就满足这类表面细节的呈现需求。此时如何避免样品中电子信息的扩散对形貌细节产生影响是首要选择,充分选用低能量的二次电子就显得极为关键。镜筒内探头因位置和结构的特别设计,使得它接收的样品信息以二次电子为主,是展现这类几纳米细节的首选。工作距离越小,镜筒内探头接收到更为丰富的多种角度的二次电子信息,对10纳米以下细节的分辨力最强。D)处于不同位置的镜筒内探头获取的形貌衬度也不相同。位于侧向的镜筒内(U)探头相较于位于顶部的镜筒内探头(T),可获取更多的低角度信息,形貌像的立体感更强。结论:形貌衬度是形成形貌像的基础,探头接收形貌信息的角度是形成形貌衬度的关键因素。不同大小的形貌细节要求的形貌衬度不同,该接收角的形成方式也不同。低倍时,形貌像的空间跨度大,要求的形貌衬度也大,需探头、样品和电子束之间形成一定的角度才能获得充分的形貌像。该角度有一个最佳值,探头位置不同,这个值也不同,形成的形貌像空间感也存在差异。高倍时,形貌空间跨度小,低角度电子信息即可满足形貌衬度的形成需求。此时避免电子信息的扩散对形貌像的影响就极为关键,充分获取低角度二次电子将成为测试时的首选。形貌衬度虽是形成表面形貌像的基础,但并不是唯一因素,要获取充足的形貌像,其他衬度的影响也不可忽视。下面将对形成形貌像的其他衬度加以探讨。二、二次电子衬度和边缘效应一直以来的主流观点都认为:二次电子衬度和边缘效应是形成扫描电镜表面形貌像的主导因素。各电镜厂家都把如何充分获取样品的二次电子做为形成高分辨形貌像的首选,对探头位置的设计,也以充分获取二次电子为目的来展开。这一理论体系的形成依据是:1. 二次电子的溢出量与样品表面斜率相对应,在边缘处的溢出最多。而表面形貌像可看成是不同斜率的平面所组成,故二次电子衬度和边缘效应含有充分的样品表面形貌信息。2. 二次电子能量低,在样品中扩散小,对样品表面那些极细小的细节影响小,分辨能力强,图像清晰度高。 但实际情况却往往于此相反。如下图:右图中二次电子衬度及边缘效应充足,但形貌信息相较左图却十分的贫乏,并在形貌像上带有极为明显的假象。为什么会出现这种与目前主流观点完全不一样的结果?原因何在?这还是要从扫描电镜形貌像的形成因素说起。表面形貌像呈现的是表面形貌高低起伏的三维信息,图像中必须含有两个重要的参数:方向与大小。表述一个斜面,需提供与该斜面相关的两个重要参数:斜率大小和斜面指向,这是向量的概念。二次电子衬度对斜率大小的呈现极为明显,亮、暗差异大;却对斜面指向的呈现极差。对形貌像来说,斜面指向形成的衬度差异对形成形貌像往往更重要。因此由二次电子衬度和边缘效应形成的图像只具二维特性,无法呈现形貌像的三维特征,失去形貌细节也在所难免。探头对样品信息的接收角所形成的形貌衬度能充分表达形貌像的指向差异。因此下探头即便接收的背散射电子较多,对斜率大小的表现较差,但呈现的形貌形态却更充足。任何信息都有其适用范围,在适用范围内总扮演着关键角色。二次电子衬度和边缘效应虽然对斜面指向不敏感,但对斜率大小却极度敏感,该特性能强化平面和斜面区域整体的衬度差异,有利于对区域整体进行区分。区域在形貌像中占比越小,被区分的优势就越大。需要注意:此时区域之间的衬度表述,并非该区域成分和密度的不同,而是各区域中斜面数量和斜率大小的差异。观察区域在图像中面积占比越低,区域中的形貌细节越难分辨,采用形貌衬度对区域进行区分也越难。此时,二次电子衬度和边缘效应对区域进行区分的作用也就越大,如下例:以上是钢铁表面的缺陷,在500倍时采用下探头是无法区分A、B两个区域有哪些不同,很容易被误认为是两块完全相同的平面。但是采用上探头(二次电子衬度优异)发现这两个区域存在非常明显的不同,放大到2万倍,可见区域A和B在形态上的差别巨大,A区域比B区域的起伏大。二次电子衬度和边缘效应的强弱可通过探头和工作距离的选择加以调整。对这一衬度的合理利用,可拓展对样品形貌特征进行分析的手段,获得更充分的形貌信息。此外,充分的运用二次电子,还有利于利用“电位衬度”来扩展对样品表面形貌信息进行分析的方法。三、电位衬度电位衬度:样品表面由于存在少量荷电场,对样品某些电子信息的溢出量产生影响而形成的衬度。影响因素:由于荷电场较弱,受影响的主要是二次电子,背散射电子的溢出量受影响较小。实用方向:样品表面存在有机物污染、局部氧化或晶体结构的改变。这些变化采用Z衬度很难观察到,而形成荷电场强度及位置的些微差异所产生的电位衬度却较明显。该特性在进行样品失效分析时对找出性能改变的区域,作用极其明显。实例展示及分析:A)智能玻璃表面的有机物污染表面镀膜的智能玻璃,通电后总是有明显的光晕出现。该部位用扫描电镜进行微观检测。结果如下:镜筒内(上)探头,SE为主,Z衬度较差。相较于样品仓(下)探头,BSE为主,出现以上类似Z衬度所形成的光斑图案的几率和强度要低,但结果却完全与常规认识相背离。原因何在?从探头的改变对结果影响判断,该图案不是Z衬度所形成,否则下探头图案将更为明显。图案形状如同液体滴在块体上所形成,怀疑为有机液滴落在薄膜表面,造成该处漏电能力减弱,形成局部的弱荷电场,影响二次电子的溢出而酿成电位衬度。背散射电子未受到荷电场的影响,薄薄的液滴层形成的Z衬度又小,故下探头无法呈现反映液滴污染的任何电子信息。能谱分析该处的碳含量略高一些。客户清洗设备,排除任何有机污染的因素,该现象消失。B)铁、钴、镍合金框架表面的氧化斑采用能谱分析颗粒物部位,多出硅和氧的成分信息,说明这里可能存在夹杂物,但含量极少用Z衬度很难区别。而硅、氧造成了其存在区域的漏电能力下降,使得该处的电位衬度极为明显。由此我们可轻松找到材料的缺陷点。通过以上实例可见,材料的缺陷,往往会由于工艺问题使某些部位局部被氧化或污染。这类缺陷采用Z衬度往往很难观察到,而采用电位衬度就会很容易找到。只有在大工作距离下,才可轻松切换样品仓和镜筒探头以分别对某个区域进行观察,针对形貌像所表现出的电位衬度差异,往往很容易找到样品的失效点并分析原因。二次电子和背散射电子都有其善于呈现的衬度信息。二次电子在二次电子衬度、边缘效应和电位衬度的展现上优势明显,上面已经充分的探讨。背散射电子在Z衬度和晶粒取向衬度(电子通衬度ECCI)的表现上更加的优异,下面将分别加以介绍。四、Z衬度Z衬度:由样品各个组成相的平均原子序数(Z)及密度差异所形成的图像衬度。形成因素:相同条件下,SE和BSE的溢出量和散射角会随组成样品的原子序数及密度的不同而不同,造成探头对其的接收量出现差异而形成Z衬度。背散射电子在量的改变上较二次电子更强烈,因此形成的Z衬度更大,灰度差异更明晰。实例展示并探讨:A)高分辨扫描电镜的样品仓探头比镜筒内探头接收到的背散射电子更多,形成的图像中Z衬度更明显。B)样品仓、镜筒、背散射电子探头的Z衬度结果对比。合金钢,能谱图中1、2、3三个区域的色彩,绿色:铁;红色:钨;绿黄:铁、铬。拟合下探头图像所展现的灰度差。低加速电压下,三种探头所形成的Z衬度差异将减弱。五、晶粒取向衬度晶粒取向衬度:晶体材料的晶粒取向差异会造成探头获取的电子信息出现差别,形成的衬度。与EBSD表述的信息有一定的对应性,但对晶粒取向变化的敏感度要远低于EBSD。也称“电子通道衬度”(ECCI),但命名原因及依据不明。形成缘由:从晶体表面溢出的电子信息会随晶粒取向的差异而不同。表现为信息的溢出量及取向上出现差别,使处于固定位置的探头所接收到的电子信息在数量上出现区别,形成表述晶粒取向差别的衬度。背散射电子受晶粒取向不同而出现的衬度差 异较二次电子更为强烈,这与两种电子信息在Z衬度上的表现基本一致。实例展示及探讨:A)zeiss电镜采用三种探头模式观察钢的表面(倍率:×5K)B)日立Regulus8230样品仓和镜筒探头的各种组合结果六、结束语扫描电镜表面形貌像是由呈现表面各种形貌信息的形貌衬度、二次电子衬度及边缘效应、电位衬度、Z衬度及晶粒取向衬度共同形成。其中形貌衬度是形成形貌像的基础,其余衬度叠加在形貌衬度之上,形成完整的表面形貌像。形貌衬度:该衬度的缺失,形貌像将只具有二维特性。形成形貌衬度的关键在于探头接收样品信息的角度,而样品信息(SE\BSE)的能量会对形貌细节的分辨产生影响。背散射电子,因能量较高,在样品中扩散范围较大,对直径小于几十纳米的细节或10万倍以上高倍率图像的清晰度影响较大,对直径十纳米以下细节的辨析度影响极大。虽然二次电子能量较弱,但其对5纳米以下的样品细节或30万倍以上图像清晰度和辨析度还是有明显的影响。低密度样品,以上受影响的放大倍率阈值也会相应降低。探头对信息接收角度的形成方式应依据所需获取的样品信息的特性和样品本身特征来做出合理的选择。样品的表面形貌起伏大于20纳米,所需的形貌衬度较大,需要探头、样品和电子束之间形成一定夹角才能满足需求。背散射电子的扩散,不足以掩盖掉这些细节的展现,相对于形成充分的形貌衬度来说,处于次要地位。此时应选择大工作距离,充分利用样品仓探头对样品信息进行接收,再结合镜筒内探头接收的样品信息给予加持,才能充分展现样品的形貌特征。样品表面起伏越大,样品仓探头在形成形貌像中的占比也相应提高,才有利于充分获取样品的表面形貌信息,形成的表面形貌像也更为充盈。样品表面起伏小于20纳米,所需的形貌衬度较小,溢出样品表面的电子信息角度即能满足形成表面形貌像所需的形貌衬度。此时背散射电子对形貌细节影响将成为形成表面形貌像的主要障碍,必须加以排除。充分利用镜筒内探头,排除样品仓探头的影响将成为获取形貌像电子信息的唯一选择。此时,镜筒内探头能否充分获取低角度电子信息是形成形貌像的症结所在。在实际操作中,选择小工作距离及镜筒内探头的组合就极为关键。有些电镜厂家在物镜下部设置的低角度电子信息转换板,有助于镜筒内探头对低角度电子信息的接收,充分运用该转换板将使得表面形貌像的立体感更加充分,形貌信息更为充实。二次电子衬度与边缘效应:一直以来的主流观点都认为该衬度是形成表面形貌像的基础。但该衬度因缺失对斜面指向因素的呈现,故无法表现形貌像的空间位置信息。由其形成的形貌像对形貌斜面的斜率大小表现充分,而对斜面的指向却没有体现,故形貌像只具二维特性。该衬度容易与Z衬度相混淆而出现形貌假象,但也能够加强斜面区域的衬度,有利于低倍时对形貌不同但组成成分相近的区域进行区分,如多层膜的膜层分割等。电位衬度:该衬度是由样品表面形成的少量荷电场引起的电子信息溢出异常所形成。背散射电子能量较大,信息的溢出量不易受该荷电场影响,故不存在该衬度或存在的衬度值较小。利用不同探头在接收样品信息时,对电位衬度的呈现差异,可对样品中被污染、氧化或发生晶体结构改变而形成漏电能力出现变化的部位,进行区分及分析。这在样品的失效分析中意义重大。Z衬度:由样品组成相的平均原子序数及密度不同所形成的信息衬度。背散射电子从样品表面溢出的数量和角度受样品的组成成份和密度的影响较大,由其为主形成的表面形貌像中,Z衬度的差值更大,图像更锐利,边缘更明晰,但表面细节较差。以二次电子为主形成的形貌像,具有的Z衬度差值较小,图像锐利度不足但细节更丰富。晶粒取向衬度:晶体的晶粒取向差异所形成的信息衬度。主流的称谓是:电子通道衬度(ECCI),命名的原由不明。该衬度如同Z衬度,背散射电子对其的呈现更为明显。对各种衬度信息的充分认识,将有助于正确理解形貌像上各种形貌信息的形成缘由。是正确选择扫描电镜测试条件,获取充分且全面的表面形貌像的基础,必须加以重视。参考书籍:《扫描电镜与能谱仪分析技术》 张大同 2009年2月1日 华南理工出版社《微分析物理及其应用》 丁泽军等 2009年1月 中科大出版社《自然辩证法》 恩格斯 于光远等译 1984年10月 人民出版社 《显微传》 章效峰 2015年10月 清华大学出版社作者简介:
  • 材料微区结构与形貌分析方法研究及应用
    材料的微区结构与形貌特征具有重要的研究意义,常用的分析方法有光学显微镜、扫描电子显微镜、能谱和电子背散射衍射、透射电子显微镜、扫描隧道显微镜、原子力显微镜、X射线CT等。为帮助广大工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作,仪器信息网将于2023年12月18-21日举办第五届材料表征与分析检测技术网络会议,特别设置微区结构与形貌分析专场,邀请多位专家学者围绕材料微区结构与形貌分析技术研究与相关应用展开分享。部分报告预告如下(按报告时间排序):天津大学材料学院测试中心副主任/副高 毛晶《透射电子显微镜技术在材料微区结构及形貌分析中的应用研究》点击报名听会毛晶,天津大学材料学院测试中心副主任/副高。负责透射电镜、X射线衍射仪及透射相关制样仪器(包括球差透射电镜、离子减薄仪等)的运行维护及分析测试工作,具有较丰富的测试经验。熟悉其他各种大型仪器,包括XPS 、FIB 、 SEM等仪器原理、构造及使用。2017年赴美国布鲁克海文国家实验室纳米功能所透射电镜组研修一年。掌握球差及冷冻杆、原位加热杆、电感、三维重构等各种透射电镜先进技术。通过合作的模式将其应用在各种纳米及能源材料的表征中。报告摘要:透射电子显微镜技术具有高分辨率,可以实现原子尺度材料结构及形貌观察,是材料研究必不可少的手段。本报告主要介绍透射电子显微技术在材料微区结构及形貌分析的应用研究,例如透射电镜STEM技术在电催化材料界面中的研究应用、纳米束衍射及中心暗场像在合金材料析出相观察等,并围绕具体工作对透射电子显微镜相关数据处理技术例如几何相位分析、三维成像技术等进行简单的介绍。牛津仪器科技(上海)有限公司应用科学家 杨小鹏《牛津仪器多种显微分析技术及成像系统的介绍及应用》点击报名听会杨小鹏,博士,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。报告摘要:本报告主要介绍牛津仪器MAG部门的多种显微分析技术及成像系统,包括NA部门的EDS和EBSD,在电镜上提供微区的元素和结构分析;全新的Unity探测器,集合了BSE图像探测器和X光探测器,适合快速、大区域、实时的样品表面形貌和成分成像;AZtecWave系统将Wave波谱仪整合到成熟的微区分析系统AZtec中,有效提高了波谱仪的操控性,适合微量、痕量元素的高精度定量分析,也能有效避免元素的重叠峰。AR部门的原子力显微镜,如Cypher、Jupiter等,能提供高通量、高分辨的原子力显微镜成像,适合多种物性的分析和研究。WiTec部门提供的高灵敏度、高分辨激光共聚焦拉曼显微镜,通过分析微区的化学键,可以提供相、结晶性、含量等丰富的信息,分辨率达到300nm,也能做浅表层的3D成像。拉曼显微镜还能和电镜整合成一体化的联用系统,适合快速多技术分析同一感兴趣区。报告还会介绍几个多技术联用的应用案例。徕卡显微系统(上海)贸易有限公司应用工程师 姚永朋《徕卡光学显微镜在不同尺度下的形貌表征》点击报名听会姚永朋,徕卡显微系统工业显微镜应用工程师,负责徕卡工业显微镜技术支持工作,在制样及显微观察等方面经验丰富。报告摘要:光学显微镜是材料表面及微观结构观察分析中的常用仪器,此次报告将分别介绍徕卡体式显微镜、金相显微镜、数码显微镜等不同类型的光学显微镜在不同尺度下的表面结构观察及分析应用。华中科技大学,武汉光电国家研究中心教授 李露颖《半导体纳米材料原子尺度结构性能研究》点击报名听会李露颖,华中科技大学武汉光电国家研究中心教授,博士生导师。2011年5月毕业于美国亚利桑那州立大学,获博士学位,主要从事半导体纳米材料原子分辨率微结构及纳米尺度电学性能的结合研究,重点关注材料的特定原子结构及相应电势、电场、电荷分布对宏观物理性质的影响,取得了一系列有影响力的研究成果,工作被Nature Physics 杂志选为研究亮点,并评价为结构-性能相关研究的典范。到目前为止累积发表SCI 收录第一作者或通讯作者论文39篇(IF≥10的21篇),包括Advanced Materials、Nano Letters、Nature Communications、Advance Science、Advanced Functional Materials、Science Bulletin、ACS Nano、Nano Energy、Chemical Engineering Journal、Small等,论文总引用4500余次,H因子为31,多次受邀在国际国内电子显微学年会上做邀请报告,目前担任湖北省电子显微镜学会理事。报告摘要:结合电子全息技术的纳米尺度定量电学性能表征功能和球差校正技术的原子分辨率微结构表征功能,实现了半导体纳米材料电荷分布的电子全息研究,半导体纳米材料界面纳米尺度电场与原子尺度微结构的结合研究,以及各种外界激励下半导体纳米材料及器件的原位结构性能相关研究。 利用电子全息技术,得到了IV族Ge/Si族量子点和核壳结构纳米线、III-V族GaAs/InAs纳米线、量子点和量子阱组合器件的电荷分布情况,以及n-ZnO/i-ZnO/p-AlGaN异质结发光二极管性能增强的微观机理;利用球差校正技术的原子尺度表征功能,获得了复合半导体ZnSe纳米带同质异构结中自发极化相关电荷裁剪效应的直接实验证据,并对InSe纳米棒中多型体界面极化场进行了原子尺度定量研究。同时通过精确测定(K,Na)NbO3铁电纳米线界面原子尺度极化场,获得其相应材料在退火后宏观压电效应线性增加的微观机制。利用原位热学表征技术,研究了KxWO3纳米片中阳离子有序结构并随温度的变化规律,CsPbBr3纳米晶中 Ruddlesden–Popper层错的调控机制及其对光致发光性能的影响机理;利用原子尺度的原位热学表征技术研究了PbSe纳米晶随尺寸变化的晶体生长和升华机制。利用原位力学表征技术获得MXene高性能压阻传感器的微观作用机理。上海交通大学分析测试中心冷冻电镜中心副主任 郭新秋《透射电镜表征磁性材料样品的前处理技术路线探索》点击报名听会郭新秋,上海交通大学分析测试中心冷冻电镜中心副主任。长期在透射电镜相关领域的测试一线工作,在场发射透射电镜、冷冻透射电镜及相关样品制备等方面积累了丰富的表征分析经验,主持或参与多项显微成像方法学研究课题,支撑相关团队在Small, Nature Physics, Nature communications, energy & environmental science等期刊上发表多篇高水平论文。报告摘要:透射电镜是以波长极短的电子束作为照明源,用电磁透镜对透射电子聚焦成像的一种具有高分辨本领、高放大倍数的大型电子光学仪器。作为一种先进的表征手段,透射电子显微技术在各种功能材料的研究中发挥了重要的作用。磁性材料指能直接或间接产生磁性的一类材料,通常含有铁、钴、镍、钕、硼、钐以及稀土金属(镧系),其磁性强弱与样品本身的含量和价态相关。随着表征技术的快速进步,磁性材料的设计与应用不断更新,相关的研究广受关注。不同组成、不同结构的磁性材料展现出不同的化学与磁学特性,在众多领域都有着广泛的应用。但是,由于透射电镜原理是基于电子与磁场的相互作用来进行成像,镜筒内部磁场强度高达2T以上,如果样品未固定好,更会发生被吸到极靴上的危险。镜筒一旦受到磁性颗粒污染则很难处理,长时间的积累对电镜是一种慢性伤害。在调研中得知,有实验室就发生过此类事件,最终不得不拆机进行维修。还有一些高校平台直接在网站上明确表明了无法进行磁性材料测试。本报告提出了一种透射电镜表征磁性材料的前处理的分类和方法,希望对广发电镜工作者和科研工作者有所帮助。弗尔德(上海)仪器设备有限公司应用经理 王波《二维及三维EBSD分析样品的高效制备方法介绍及应用》点击报名听会王波,天津大学材料学专业博士毕业,曾在摩托罗拉-实验室(亚洲)担任高级失效分析工程师及资深实验室经理。2013年起先后担任知名美国金相品牌亚太区应用主管及德国ATM品牌中国区应用经理。在先进制样尤其是EBSD样品制备方面拥有丰富的经验,并应邀在国内进行过多场金相制样技术讲座,分享最新的样品制备理论、设备耗材及应用案例,深受好评。报告摘要:EBSD分析样品的制备极具挑战性,导致科研人员常会遇到制样成本高、效率低、成功率低等问题。本讲座将着重介绍现代金相制样方法——机械磨抛法及电解抛光法高效制备EBSD分析样品的基本理论、适用范围、技术难点、实操技巧及应用案例,分享经济、高效制备EBSD样品的思路和经验。同时,使用3D分析表征和重构技术,从(亚)纳米到毫米的尺度来研究微观组织和性能的关系已经成为关注热点。讲座也将介绍基于金相连续切片重构和EBSD技术的大体积材料三维EBSD分析样品制备的最新进展和解决方案。钢研纳克检测技术股份有限公司高级工程师 李云玲《原位拉伸及电子背散射衍射在金属材料微观表征中应》点击报名听会李云玲,钢研纳克检测技术股份有限公司高级工程师,从事金属材料微观表征工作10余年,主要研究方向包括金属构件失效分析、断口分析、微观表征技术等。独立完成400余项材料失效分析案例。完成的典型项目有:某型号舰艇动力系统部件失效原因分析、高铁车轮裂纹原因分析、核电乏燃料池不锈钢壁附着物分析、国电逆流变部件失效原因分析、合成氨设备焊接裂纹分析等。大型失效分析项目的完成,为国防设备可靠性提供了技术支持,挽回了客户大量经济损失,得到企业的多次好评。相关工作成果多次在全国钢铁材料扫描电镜图像竞赛及金相比赛中获奖,在国外SCI、EI、中文核心等期刊上发表论文20余篇,参与起草修订多个团体标准,如《钢中夹杂物的自动分类和统计扫描电镜能谱法》(T/CSTM 00346-2021)、《钢中晶粒尺寸测定 高温激光共聚焦显微镜法》(T/CSTM 00799-2023)、《材料实验数据扫描电镜图片要求》(T/CSTM 00795-2022)等。报告摘要:从原位拉伸(in-situ tensile)及电子背散射衍射(EBSD)的基本理论及基本方法出发,介绍两种新技术在金属材料微观表征中的应用,阐述其技术应用过程,包括但不限于在微观表征领域的重要作用,最后从当前技术局限出发探讨未来可能的重要创新。布鲁克(北京)科技有限公司应用科学家 陈剑锋《布鲁克的平插能谱仪与微区XRF介绍》点击报名听会陈剑锋,2003年毕业于中科院长春应化所,主要研究方向是高分辨电子显微镜在高分子结晶中的应用,毕业后加入FEI,负责SEM/SDB的应用、培训以及市场等推广工作。2011年加入安捷伦公司负责SEM的市场和应用工作,2018年在赛默飞负责SEM的应用工作。2021年加入布鲁克,负责EDS,、EBSD、 Micro-XRF等产品的技术支持工作,对电子显微镜的相关应用具有多年的实操经验。报告摘要:布鲁克独有的平插能谱探头因其独特的设计,具有更大的立体角,使能谱分析在低能谱线的采集方面有很大的优势,尤其是目前比较流行的纳米结构材料的分析,而微区荧光在检测限上的优势则是目前工业,地质,环境检测等领域进行重金属元素,微量元素的强有力的工具,在相关的领域中也得到了越来越广泛的应用。本报告将主要介绍布鲁克公司的平插能谱和微区荧光产品及其应用。中国科学院上海硅酸盐研究所研究员 程国峰《X射线三维成像技术及应用》点击报名听会程国峰,理学博士,博士生导师,中国科学院上海硅酸盐研究所 X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会副主任兼秘书长。主要研究领域为X射线衍射与散射理论及应用、三维X射线成像术、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《二维X射线衍射》等专译著4部,发布国家标准和企业标准12项,获专利授权7项,在Nat. Mater.,J. Appl. Phys.,Mater. Lett.等SCI期刊上发表论文90余篇。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • OPTON微观世界 | 第41期 扫描电镜观察不同电解液温度下纯铜粉末表面形貌变化
    背景介绍铜粉是粉末冶金中基础原料之一。也是我国大量生产和消费的有色金属粉末,在现在工业生产中起着不可替代的作用,由于铜及其粉末具有良好的导电导热性能,耐腐蚀性能,表面光洁和无磁性等特点。因而被广泛应用于摩擦材料,金刚石工具,电碳制品,含油轴承,电触头材料,导电材料,机械零件等行业。铜粉的制备方法主要有电解法,雾化法,氧化还原法等。本实验采用电解法制备纯铜粉末,电解液采用0.06mol/L硫酸铜溶液和0.2mol/L硫酸,用铜或者不锈钢做阴极,铜做阳极。制取铜粉的基本工艺:本实验通过改变电解液温度来研究铜粉表面形貌变化。采用ZEISS的Sigma500型号电镜拍摄并观察其表面形貌,对比图片如图1: 图1 不同电解液温度铜粉形貌结果表明:电解法制备的铜粉比表面积大,结晶粉末一般为树枝状,压制性较好。图a1、a2,b1、b2,c1、c2三组图片,电解液温度分别为15°、30°、45°,为了观察整体铜粉形貌以及局部形貌,每组都是在2000X,5000X进行拍摄,通过对比三组图片,能够看出提高电解液温度,扩散速度增加,晶粒长大速度也增大,树枝晶逐渐变大变粗。
  • 《Water Research》:黑磷纳米片与水中黄腐酸机理研究新进展,便携式原子力显微镜揭秘形貌变
    【论文信息】Enhanced degradation of few-layer black phosphorus by fulvic acid: Processes and mechanisms期刊: Water Research IF 13.4DOI: https://doi.org/10.1016/j.watres.2023.120014 【背景概述】黑磷纳米片是一种与石墨烯相似的具有类似层状结构的二维纳米材料。由于其具有优秀的导电特性与可调控的能带结构,黑磷纳米片已被广泛应用于电池储能、癌症治疗、电催化和光催化固氮等领域。但是,由于第五主族的磷原子上存在孤对电子,导致黑磷纳米片很容易被氧化,尤其当黑磷纳米片被排放到水中时,该材料很容易被水中所溶解的氧气分解,形成磷氧阴离子,如果大量的黑磷纳米片被排放到自然水体中,其分解物质将会给水生生物带来氧化应激和发育毒性,严重制约了黑磷的应用。此外,磷氧阴离子还会刺激小球藻的过量繁殖,导致水体的过营养化。之前关于黑磷纳米片在水中氧化分解的研究,主要集中在氧气含量,PH值对黑磷纳米片氧化分解速度的影响,对于黑磷纳米片与自然水体中广泛存在的黄腐酸之间的作用尚未充分研究。 近日,中国地质大学何伟教授课题组与德国达姆施塔特工业大学强强联合,对不同黄腐酸浓度条件下的黑磷纳米片的分解进行了系统性研究。在研究中,通过利用便携式原子力显微镜(AFM)对黑磷纳米片和黄腐酸的二维、三维形貌进行了系统的微观表征。根据相关AFM表征结果,提出了在黄腐酸的参与下,黑磷纳米片的分解机理。相关研究成果已发表在水科学高水平期刊《Water Research》上。 【图文导读】图1. 在氧化-光照条件下,黑磷纳米片在不同浓度的黄腐酸(0,2.5,5 mgC/L)中的降解动力学过程,(a)总磷-氧阴离子(Δ[O-P]),(b)次磷酸盐(H2PO2-),(c)亚磷酸盐(HPO32-),和(d)磷酸盐(PO43-)。图2. 在氧化-光照条件下,黑磷纳米片在不同浓度的黄腐酸中降解前(a,b和c)和降解后(d,e和f)的透射电镜表征。黄腐酸在图中用红色圆圈圈出。图3. 在原液中的黑磷纳米片微观表征。(a)用nGauge对样品进行AFM三维形貌表征,(b)透射电镜表征,(c)nGauge对样品的AFM二维表征结果,(d)nGauge AFM对(c)中划线部分,黑磷样品的高度测量数据,和(e)经AFM测量样品厚度的直方图统计图。图4. 在原液中的黄腐酸微观表征。(a)用nGauge对样品进行AFM三维形貌表征,(b)透射电镜表征,(c)nGauge对样品的AFM二维表征结果,(d)nGauge AFM对(c)中划线部分,黄腐酸的高度测量数据,和(e)经AFM测量样品高度的直方图统计图。图5. nGauge AFM表征黑磷纳米片在降解前(a)和在氧化-光照条件下降解43天后的形貌结果。((b)黄腐酸浓度0 mgC/L,(C)2.5 mgC/L,和(d)5 mgC/L)图6. 在降解反应前和反应后黑磷纳米片的XPS光谱中C1s峰(a)和P2p峰(b)的表征结果。图7. 黄腐酸存在或不存在的条件下,黑磷纳米片的降解机制。本研究中是按照(3)的路径对黑磷纳米片进行降解。 【结论】何伟教授课题组利用便携式原子力显微镜(AFM),大量测量黑鳞纳米片和黄腐酸在反应过程中二维和三维形貌的表面变化,同时借助XPS等其他技术手段,研究了黑鳞纳米颗粒在不同浓度黄腐酸条件下的分解过程与机理。实验结果表明,黄腐酸的存在,在无氧和有氧条件下均可加快黑鳞纳米片在水中的分解,在光照条件下可以产生更多的次磷酸盐,在无光的条件下主要提高磷酸盐的产生。 本文中研究人员使用的便携式原子力显微镜(AFM)是加拿大ICSPI公司设计和研发的,其基于特有的芯片式自感应探针技术,摆脱了传统AFM对激光的依赖,给AFM带来了里程碑式的变化!同时,设备具有小巧、灵活、方便携带、操作简单、扫描速度快、可扫描大尺寸样品、无需后续维护、无需减震超级稳定等优点,非常适合科研研究、高等教育、工业检测等领域的客户,尤其对于需要在户外和非实验室获得原子力显微镜(AFM)表征的用户来说,是一款不可或缺的设备!ICSPI公司便携式原子力显微镜(AFM),左)Redux AFM 右)nGauge
  • OPTON微观世界 | 第40期 扫描电镜观察电化学沉积法制备的MoSi2涂层形貌
    背景介绍高温抗氧化涂层在航空航天领域是至关重要的部分。一种成功的抗氧化涂层首先必须与基体材料有着化学或者物理上的相容性;其次,在材料温度适用范围内,更能提供一层连续、致密的氧阻挡层[1];再者,涂层要有方便、经济的制备工艺等。MoSi2有着高熔点(2030℃),良好的导电性和导热性,优异的高温抗氧化特性,是一种广泛应用的高温材料。现已发展为用于高温合金和碳/碳复合材料高温抗氧化保护涂层[2]。本实验采用电化学沉积法制备钼基体表面MoSi2涂层,图(a)是在900度氧化10h的表面形貌。图(b)是钼基体表面B改性MoSi2涂层,在900度氧化10h的表面形貌。图1 相同实验条件下不同方式制备涂层表面形貌结果表明:图a涂层经过氧化后在表面形成了一层SiO2氧化膜。该涂层主要用于钼及钼合金表面防护,以提高其在高温环境下的服役时间。图b涂层经过氧化后在表面形成了一层由SiO2和B2O3构成的氧化膜。通过B的改性,可以降低MoSi2涂层在中低温段氧化时的“粉化”倾向,进而提高其抗氧化能力。参考文献[1] Thomas A Kircher,et al.Engineering limitations coatings. Mater Sci Eng. 1992. A155:67[2] 蔡作乾,等编著. 陶瓷材料辞典.北京:化学工业出版社,2002
  • 用于纳米级表面形貌测量的光学显微测头
    用于纳米级表面形貌测量的光学显微测头李强,任冬梅,兰一兵,李华丰,万宇(航空工业北京长城计量测试技术研究所 计量与校准技术重点实验室,北京 100095)  摘 要:为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。  关键词:纳米测量;激光全息单元;位移;光学显微测头;纳米级表面形貌0 引言  随着超精密加工技术的发展和各种微纳结构的广泛应用,纳米三坐标测量机等精密测量仪器受到了重点关注。国内外一些研究机构研究开发了纳米测量机,并开展微纳结构测量[1-4]。作为一个高精度开放型测量平台,纳米测量机可以兼容各种不同原理的接触式测头和非接触式测头[5-6]。测头作为纳米测量机的核心部件之一,在实现微纳结构几何参数的高精度测量中发挥着重要作用。原子力显微镜等高分辨力测头的出现,使得纳米测量机能够实现复杂微纳结构的高精度测量[7-8],但由于其测量速度较慢,对测量环境要求很高,不适用于大范围快速测量。而光学测头从原理上可以提高扫描测量速度,同时作为一种非接触式测头,还可以避免损伤样品表面,因此,在微纳米表面形貌测量中有其独特优势。在光学测头研制中,激光聚焦法受到国内外研究者的青睐,德国SIOS公司生产的纳米测量机就包含一种基于光学像散原理的激光聚焦式光学测头,国内也有一些大学和研究机构开展了此方面的研究[9-11]。这些测头主要基于像散和差动光斑尺寸变化检测原理进行离焦检测[12-13]。在CD和DVD播放器系统中常用的激光全息单元已应用于微位移测量[14-15],其在纳米测量机光学测头的研制中也具有较好的实用价值。针对纳米级表面形貌的测量需求,本文研制了一种基于激光全息单元的高分辨力光学显微测头,应用于自主研制的纳米三维测量机,可实现被测样品的快速瞄准和测量。1 激光全息单元的工作原理  激光全息单元是由半导体激光器(LD)、全息光学元件(HOE)、光电探测器(PD)和信号处理电路集成的一个元件,最早应用于CD和DVD播放器系统中,用来读取光盘信息并实时检测光盘的焦点误差,其工作原理如图1所示。LD发出激光束,在出射光窗口处有一个透明塑料部件,其内表面为直线条纹光栅,外表面为曲线条纹全息光栅,两组光栅相互交叉,外表面光栅用于产生焦点误差信号。LD发出的激光束在光盘表面反射回来后,经全息光栅产生的±1级衍射光,分别回到两组光电探测器P1~P5和P2~P10上。当光盘上下移动时,左右两组光电探测器上光斑面积变化相反,根据这种现象产生焦点误差信号。这种测量方式称为差动光斑尺寸变化探测,焦点误差信号可以表示为  根据焦点误差信号,即可判断光盘离焦量。图1 激光全息单元  根据上述原理,本文设计了高分辨力光学显微测头的激光全息测量系统。2 光学显微测头设计与实现  光学显微测头由激光全息测量系统和光学显微成像系统两部分组成,前者用于实现被测样品微小位移的测量,后者用于对测量过程进行监测,以实现被测样品表面结构的非接触瞄准与测量。  2.1 激光全息测量系统设计  光学显微测头的光学系统如图2所示,其中,激光全息测量系统由激光全息单元、透镜1、分光镜1和显微物镜组成。测量时,由激光全息单元中的半导体激光器发出的光束经过透镜1变为平行光束,该光束被分光镜1反射后,通过显微物镜汇聚在被测件表面。从被测件表面反射回来的光束反向通过显微物镜,一小部分光透过分光镜1用于观察,大部分光被分光镜1反射,通过透镜1,汇聚到激光全息单元上,被全息单元内部集成的光电探测器接收。这样,就将被测样品表面瞄准点的位置信息转换为电信号。在光学显微测头设计中选用的激光全息单元为松下HUL7001,激光波长为790 nm。图2 光学显微测头光学系统示意图  当被测样品表面位于光学显微测头的聚焦面时,反射光沿原路返回激光全息单元,全息单元内两组光电探测器接收到的光斑尺寸相等,焦点误差信号为零。当样品表面偏离显微物镜聚焦面时,由样品表面反射回来的光束传播路径会发生变化,进入激光全息单元的反射光在两组光电探测器上的分布随之发生变化,引起激光全息单元焦点误差信号的变化。当被测样品在显微物镜焦点以内时,焦点误差信号小于零,而当被测样品在显微物镜焦点以外时,焦点误差信号大于零。因此,利用在聚焦面附近激光全息单元输出电压与样品位移量的单调对应关系,通过测量激光全息单元的输出电压,即可求得样品的位移量。  2.2 显微物镜参数的选择  在激光全息测量系统中,显微物镜是一个重要的光学元件,其光学参数直接关系着光学显微测头的分辨力。首先,显微物镜的焦距直接影响测头纵向分辨力,在激光全息单元、透镜1和显微物镜之间的位置关系保持不变的情况下,对于同样的样品位移量,显微物镜的焦距越小,样品上被测点经过显微物镜和透镜1所成像的位移越大,所引起激光全息单元中光电探测器的输出信号变化量也越大,即测量系统纵向分辨力越高。另外,显微物镜的数值孔径对测头的分辨力也有影响,在光波长一定的情况下,显微物镜的数值孔径越大,其景深越小,测头纵向分辨力越高。同时,显微物镜数值孔径越大,激光束会聚的光斑越小,系统横向分辨力也越高。综合考虑测头分辨力和工作距离等因素,在光学显微测头设计中选用大恒光电GCO-2133长工作距物镜,其放大倍数为40,数值孔径为0.6,工作距离为3.33 mm。  2.3 定焦显微测头的实现  除激光全息测量系统外,光学显微测头还包括一个光学显微成像系统,该系统由光源、显微物镜、透镜2、透镜3、分光镜1、分光镜2和CCD相机组成。光源将被测样品表面均匀照明,被测样品通过显微物镜、分光镜1、透镜2和分光镜2,成像在CCD相机接收面上。为了避免光源发热对测量系统的影响,采用光纤传输光束将照明光引入显微成像系统。通过CCD相机不仅可以观察到被测样品表面的形貌,而且也可以观察到来自激光全息单元的光束在样品表面的聚焦情况。  根据图2所示原理,通过光学元件选购、机械加工和信号放大电路设计,制作了光学显微测头,如图3所示。从结构上看,该测头具有体积小、集成度高的优点。将该测头安装在纳米测量机上,编制相应的测量软件,可用于被测样品的快速瞄准和高分辨力非接触测量。图3 光学显微测头结构3 测量实验与结果分析  为了检验光学显微测头的功能,将该测头安装在纳米三维测量机上,使显微物镜的光轴沿测量机的Z轴方向,对其输出信号的电压与被测样品的离焦量之间的关系进行了标定,并用其对台阶高度样板和一维线间隔样板进行了测量[16]。所用纳米三维测量机在25 mm×25 mm×5 mm的测量范围内,空间分辨力可达0.1 nm。实验在(20±0.5)℃的控温实验室环境下进行。  3.1 测头输出电压与位移关系的建立  为了获得光学显微测头的输出电压与被测表面位移(离焦量)的关系,将被测样板放置在纳米三维测量机的工作台上,用精密位移台带动被测样板沿测量光轴方向移动,通过纳米测量机采集位移数据,同时记录测头输出电压信号。图4所示为被测样板在测头聚焦面附近由远及近朝测头方向移动时测头输出电压与样品位移的关系。图4 测头电压与位移的关系  由图4可以看出,光学显微测头的输出电压与被测样品位移的关系呈S形曲线,与第1节中所述的通过差动光斑尺寸变化测量离焦量的原理相吻合。当被测样板远离光学显微测头的聚焦面时,电压信号近似常数。当被测样板接近测头的聚焦面时,电压开始增大,到达最大值后逐渐减小;当样板经过测头聚焦面时,电压经过初始电压值,可认为是测量的零点;当样品继续移动离开聚焦面时,电压继续减小,到达最小值时,电压又逐渐增大,回到稳定值。在电压的峰谷值之间,曲线上有一段线性较好的区域,在测量中选择这段区域作为测头的工作区,对这段曲线进行拟合,可以得到测头电压与样板位移的关系。在图4中所示的3 μm工作区内,电压与位移的关系为  式中:U为激光全息单元输出电压;∆d为偏离聚焦面的距离。  3.2 台阶高度测量试验  在对光学显微测头的电压-位移关系进行标定后,用安装光学显微测头的纳米三维测量机对台阶高度样板进行了测量。  在测量过程中,将一块硅基SHS-1 μm台阶高度样板放置在纳米三维测量机的工作台上,首先调整样板位置,通过CCD图像观察样板,使被测台阶的边缘垂直于工作台的X轴移动方向,样板表面位于光学显微测头的聚焦面,此时测量光束汇聚在被测样板表面,如图5所示。然后,用工作台带动样板沿X方向移动,使测量光束扫过样板上的台阶,同时记录光学显微测头的输出信号。最后,对测量数据进行处理,计算台阶高度。图5 被测样板表面图像  台阶高度样板的测量结果如图6所示,根据检定规程[17]对测量结果进行处理,得到被测样板的台阶高度为1.005 μm。与此样板的校准结果1.012 μm相比,测量结果符合性较好,其微小偏差反映了由测量时温度变化、干涉仪非线性和样板不均匀等因素引入的测量误差。图6 台阶样板测量结果  3.3 一维线间隔测量试验  在测量一维线间隔样板的过程中,将一块硅基LPS-2 μm一维线间隔样板放置在纳米测量机的工作台上,使测量线沿X轴方向,样板表面位于光学显微测头的聚焦面。然后,用工作台带动样板沿X方向移动,使测量光束扫过线间隔样板上的刻线,同时记录纳米测量机的位移测量结果和光学显微测头的输出信号。最后,对测量数据进行处理,测量结果如图7所示。  根据检定规程[17]对一维线间隔测量结果进行处理,得到被测样板的刻线间距为2.004 μm,与此样板的校准结果2.002 μm相比,一致性较好。  3.4 分析与讨论  由光学显微测头输出电压与被测表面位移关系标定实验的结果可以看出:利用在测头聚焦面附近测头输出电压与样品位移量的单调对应关系,通过测量测头的输出电压变化,即可求得样品的位移量。在图4所示曲线中,取电压-位移曲线上测头聚焦面附近的3 μm位移范围作为工作区,对应的电压变化范围约为0.628 V。根据对电压测量分辨力和噪声影响的分析,在有效量程内测头的分辨力可以达到纳米量级。  台阶高度样板和一维线间隔样板测量实验的结果表明:光学显微测头可以应用于纳米三维测量机,实现微纳米表面形貌样板的快速定位和微小位移测量。通过用纳米测量机的激光干涉仪对光学显微测头的位移进行校准,可将测头的位移测量结果溯源到稳频激光的波长。实验过程也证明:光学显微测头具有扫描速度快、测量分辨力高和抗干扰能力强等优点,适用于纳米表面形貌的非接触测量。4 结论  本文介绍了一种用于纳米级表面形貌测量的高分辨力光学显微测头。在测头设计中,采用激光全息单元作为位移测量系统的主要元件,根据差动光斑尺寸变化原理实现微位移测量,结合光学显微系统,形成了结构紧凑、集测量和观察功能于一体的高分辨力光学显微测头。将该测头安装在纳米三维测量机上,对台阶高度样板和一维线间隔样板进行了测量实验,结果表明:该光学显微测头可实现预期的测量功能,位移测量分辨力可达到纳米量级。下一步将通过多种微纳米样板测量实验,进一步考察和完善测头的结构和性能,使其更好地适合纳米三维测量机,应用于微纳结构几何参数的非接触测量。作者简介李强,(1976-),男,高级工程 师,主要从事纳米测量技术研究,在微纳米表面形貌参数测量与校准、微纳尺度材料力学特征参数测量与校准、复杂微结构测量与评价等领域具有丰富经验。
  • 飞纳台式扫描电镜对生态环境的研究
    哈尔滨工业大学深圳研究生院金老师课题组主要从事环境和生物能源化研究。通过微生物的驯化筛选,用于处理废水、废气、固体废弃物等,并使其资源化。并且,在利用微生物处理废水、被污染土壤,以及微藻生物能源方面具有多项专利。 随着科技的进步,城市化进程逐渐扩大,人类的生活水平不断提高,废水、废气和固体废弃物的数量逐年递增。今天,当务之急是如何处理这些废弃物。 微生物处理废弃物法就是利用微生物自身的新陈代谢对废弃物进行分解作用,使其无害化。由于微生物处理方法投资少,简便易行,不会形成二次污染,既可消除环境污染,又可变废为宝,所以,受到越来越多的研究人员的关注。 在研究过程中,不仅需要观察微生物的基本形貌,对其进行分类和筛选,还需要观察一些固体废物在降解或能源化过程中的形貌变化,这就需要借助扫描电镜对样品形貌进行观察。 飞纳台式扫描电镜高分辨率专业版Phenom Pro拥有150000倍放大倍数和8 nm分辨率,可以配备背散射探头和二次电子探头,对放置环境要求较低且操作便捷。电镜内部配备有自动马达样品台和两个导航界面,研究人员可以较容易的找到样品需要观察的位置,并且,学生也可以轻松上手操作电镜。 飞纳台式扫描电镜高分辨率专业版Phenom Pro不仅能快速高效的完成样品测试,也大大提高了仪器的利用率。在哈尔滨工业大学深圳研究生院的实验室中,师生们需要测量多种样品,包括微生物样品、淤泥样品和植物样品等,这些样品都可以在飞纳台式扫描电镜下轻松完成测试,提高用户的工作效率。扫描电镜下未经处理的淤泥形貌扫描电镜下处理过的淤泥形貌
  • 中科院:“深度学习”赋能SEM\TEM表征纳米颗粒材料形貌
    获取纳米颗粒定量化形貌信息,是科学家研究纳米颗粒材料性能的重要科研途径,对于推动纳米颗粒材料创新十分重要。扫描电子显微镜(SEM)和透射电子显微镜(TEM)是表征纳米颗粒材料形貌的重要工具。   然而,扫描电子显微镜和透射电子显微镜产生的图像,会因为较大的背景干扰和庞大的纳米颗粒数量,使获取纳米颗粒材料形貌信息变得困难。如何在海量而复杂的图像中实时准确地自动获取纳米颗粒定量化形貌信息成为挑战。   针对这一问题,中国科学院沈阳自动化研究所数字工厂研究室王卓课题组提出了一种基于深度学习的通用框架,用于对前述两种电子显微镜所产生图像中的纳米颗粒形貌进行快速、准确地在线统计分析。 该项研究近期获国际学术期刊Nanoscale (影响因子8.307)封面(Outside Front Cover)刊载,文章题目是A deep learning-based framework for automatic analysis of nanoparticle morphology in SEM/TEM images。 纳米颗粒分割模块结构示意图   该通用框架主要包括纳米颗粒分割模块、纳米颗粒形状提取模块和纳米颗粒形貌统计分析模块三个重要组成部分。其中,在纳米颗粒分割模块的设计中,研究人员将轻量化空洞空间池化金字塔模块、双注意力机制和改进的多尺度渐进融合解码器相融合,能够对纳米颗粒形貌特征进行多尺度多维度的快速捕获和融合,提高该通用框架的实时性和准确性。   试验结果表明,研究人员提出的模型在数据集上测试达到86.2%的准确率,并且将模型部署在嵌入式处理器上处理速度可达11FPS,可以满足电镜端的实时处理需求。
  • 扫描力探针技术在能源纳米技术研究中大有可为
    p   能源纳米技术,泛指利用纳米材料和纳米尺度的特征效应构筑能源纳米器件,致力于解决可再生能源转化和存储过程中的瓶颈问题,目前已成为一个重要的学科交叉领域。能源纳米器件显著区别于电子器件和光电子器件,其工作机制决定于器件中电子、空穴和离子等载流子的长程传输过程,其传输过程常与化学转化相耦合,并且不同于传统化学反应中电子被局域在原子核附近。基于原子力显微镜(AFM)发展的扫描力探针显微术(SFM)从最初的形貌扫描工具,逐步发展成了可探测力学、电学、热学、磁学、光学和化学等性质的多模式功能成像技术,同时结合其高空间和时间分辨率,适应于复杂环境的原位工况成像能力等优势,被广泛用于能源纳米器件工作机理的研究。 /p p   中国科学院苏州纳米技术与纳米仿生研究所研究员陈立桅团队,长期致力于能源纳米器件界面形貌、化学结构和电子过程的扫描力探针研究,目前已在Acc. Chem. Res,Nat. Commun.,JACS,Adv. Mater.,Joule,Nano Lett.,Nano Energy 等期刊上发表了一系列原创性研究成果。近日,受邀在《先进材料》(Advanced Materials)上撰写题为Functional Scanning Force Microscopy for Energy Nanodevices 的综述文章(DOI: 10.1002/adma.201802490),聚焦近年来能源纳米器件的扫描力探针技术的研究进展。 /p p   该综述首先介绍了扫描探针各种功能成像技术的发展历程,从最基本的形貌成像模式开始(图1),依次介绍纳米力学模式、化学成像模式、载流子探测模式和时间分辨成像技术等。第二部分介绍了各种扫描力探针功能成像模式在能源转换器件,如有机光伏电池和有机-无机钙钛矿电池中的进展。该部分重点突出了原位工况研究器件内部界面动态演化的重要意义和面临的挑战(图2)。在第三部分中,该综述介绍了以锂离子电池为典型代表的能源储存器件中固态电解质中间相(SEI)的形貌、力学性质、化学组分在电池循环中的演变,及其与电池循环性能的关联(图3)。该类器件区别于能源转换器件的主要特点是器件行为决定于离子的传输,因此推动了一系列探测离子运动的功能成像模式的发展。最后,该综述总结了扫描力探针技术在能源纳米技术发展中起到的积极推动作用,同时指出进一步提高测量分辨率和测量精度对于推动能源纳米技术领域革新具有重要意义。 /p p style=" text-align: center "   此综述和相关研究工作得到国内外合作者的大力支持,受到国家自然科学基金、科技部重点研发计划、江苏省自然科学基金、中科院先导专项和科研装备研制项目、苏州纳米协同创新中心(教育部2011计划)以及苏州纳米所的经费资助与研发条件支持。 br/ img title=" 1.jpg" alt=" 1.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/3077aae7-37fa-4433-af33-770f84021604.jpg" / /p p style=" text-align: center "   图1.扫描力探针技术原理图,通过针尖扫描过程中是否振动将扫描力探针技术分为非振动模式(a)和振动模式(b)两大类 br/ img title=" 2.jpg" alt=" 2.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/611aebf3-4b8d-49b6-9176-fdacae6f7a8e.jpg" / /p p style=" text-align: center "   图2.原位工况研究有机光伏器件和有机-无机钙钛矿光伏器件能级结构的演变 br/ img title=" 3.jpg" alt=" 3.jpg" src=" https://img1.17img.cn/17img/images/201809/uepic/b1bdb1ed-c242-4cdc-952b-b2a6033070e1.jpg" / /p p style=" text-align: center "   图3.锂离子电池SEI形成原理示意图及其形貌变化的原位表征 /p p br/ /p
  • 12月9日听朱永法、刘忍肖老师在线讲”纳米材料的形貌及粒度表征“!速度报名!
    p strong “纳米材料的形貌及粒度表征应用技术”网络主题研讨会 /strong /p p strong br/ /strong /p p strong 会议时间:2015年12月09日& nbsp 14:00 - 17:00 /strong /p p strong br/ /strong /p p strong 会议简介: /strong /p p strong br/ /strong /p p 纳米科学和技术是在纳米尺度上(0.1nm~100nm之间)研究物质(包括原子、分子)的特性和相互作用,并且利用这些特性的多学科的高科技。其最终目的是直接以物质在纳米尺度上表现出来的特性,制造具有特定功能的产品,实现生产方式的飞跃。纳米科技是未来高科技的基础,而科学仪器是科学研究中必不可少的实验手段。因此,纳米材料的分析和表征对纳米材料和纳米科技发展具有重要的作用。 /p p br/ /p p span style=" color: rgb(112, 48, 160) " strong 部分报告(陆续更新中): /strong /span /p p br/ /p p strong 报告一:纳米材料的形貌和粒度分析方法及应用 /strong /p p strong br/ /strong /p p 报告人:朱永法教授(清华大学/北京电子能谱中心) /p p br/ /p p 报告概要: /p p br/ /p p 主要讲述了纳米材料最常用的三种形貌分析方法的原理和应用特点以及粒度分析的方法和在纳米材料研究方面的应用实例。目前最常用的形貌分析方法是扫描电子显微镜、透射电子显微镜和原子力显微镜。扫描电镜视场广,样品制备简单,不会产生信息失真,可以观察形貌以及实现颗粒大小的分布统计。透射电镜可以观察纳米材料的形貌和颗粒大小,但视野范围小,样品制备过程容易产生大颗粒的丢失现象,但可以区分聚集态和一次粒子的信息。原子力显微镜可以观察薄膜的颗粒大小,也可以观察分散态的纳米材料的形貌及大小。此外,还可以测量颗粒的厚度以及薄膜的粗糙度分布。激光粒度仪是测量颗粒大小常用的方法,但无法观察纳米材料的形貌,是一种统计颗粒直径分布,容易失真。此外,很多纳米材料分散在溶液中,可能是水合方式存在,获得的是水合颗粒大小的分布,并不是真实的材料颗粒大小,但可以获得粒度分布的信息。此外,通过XRD和拉曼光谱还可以获得纳米材料晶粒大小的数据。 /p p br/ /p p strong 报告二:纳米材料的粒度表征 /strong /p p strong br/ /strong /p p 报告人:方瑛(HORIBA) /p p br/ /p p 报告概要: /p p br/ /p p & nbsp 颗粒的尺寸会影响纳米材料的各种性能,而溶液的电位则会影响纳米乳液的稳定性。纳米颗粒分析仪可以表征纳米颗粒的粒径和电位,报告会介绍粒径和Zeta电位的测试原理,重点会介绍颗粒分析在纳米材料中的应用。 /p p br/ /p p strong 报名条件:只要您是仪器信息网注册用户均可参加! /strong /p p br/ /p p strong 环境配置:只要您有电脑、外加一个耳麦就能参加。 /strong /p p br/ /p p span style=" color: rgb(255, 0, 0) " strong 扫码报名!一分钟搞定! /strong /span /p p strong br/ /strong /p p strong img src=" http://img1.17img.cn/17img/images/201511/insimg/f216179f-fbda-408c-a234-8938cb9d2465.jpg" title=" 纳米材料形貌及粒度表征" / /strong /p p br/ /p p strong pc端报名,请点击链接: /strong /p p strong br/ /strong /p p strong a href=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749" target=" _blank" title=" ”纳米材料的形貌及粒度表征“网络主题研讨会" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749 /a /strong /p p br/ /p
  • 欧奇奥(Occhio)粒度和形貌表征技术培训研讨会即将举行
    尊敬的客户,您好! 非常荣幸能够邀请您参加北京市理化分析测试中心与美国康塔仪器公司共同承办的“多孔材料的粒度和形貌表征技术进展研讨会”。北京市理化分析测试中心成立于1979年,隶属于北京市科学技术研究院,主要开展食品、环境、材料、生物医药等方面的公益服务和研究工作,是北京地区具有综合理化分析方法研究与检测实力的公益型科研机构。美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在五十年来的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪;至2005年,研制出最新一代、也是目前唯一一台可以进行静态动态化学吸附和物理吸附、具有双站微孔分析能力的全自动比表面和孔隙度分析仪—Autosorb系列。美国康塔不仅专注于多孔材料表征仪器的研发和制造,同时注重与相关领域合作。2012年,美国康塔仪器公司正式介绍欧奇奥(Occhio)系列粒度粒形分析仪进入中国,为广大客户提供材料颗粒特性表征最现代化全方位解决之道。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术和研究成果,帮助大家正确进行参数设置和结果分析,北京市理化分析测试中心与美国康塔仪器公司将于2014年5月14日至15日共同举办“欧奇奥(Occhio)粒度和形貌表征技术培训研讨会”,力争每个用户都能熟练掌握粒度形貌分析的最前沿技术。 日 期:2014 年5 月14日~15日时 间:9:00 ~ 16:00地 点:北京市理化分析测试中心(北京市西三环北路27号,中国青年政治学院右侧)主讲人:美国康塔仪器公司首席代表杨正红先生 (理论部分) 美国康塔仪器公司技术支持经理王战先生(实验部分)粒度粒形培训目录:l 粒度测量技术发展的历史脉络l ? 粒度测量知识基础l ? 不同粒度测量方法的特点和局限l ? 你所测量的粒度准确吗?l ? 粒径和粒形参数及其在催化剂中的应用l ? 如何看懂粒度分析报告?l ? 影响图像法粒度粒形分析仪准确测量的因素l ? 如何选择图像法粒度粒形分析仪——动态和静态图像粒度分析仪用于成型催化剂l ? FC200粒度粒形分析仪的操作,参数设置和数据采集l “骄子”颗粒图像分析软件的应用,及样品分析实例会务联系人:l 美国康塔仪器公司北京代表处联系人:范丽伟联系方式:010-64401522 13810060894 fanliwei@quantachrome-china.coml 北京理化分析测试中心 联系人:高原 联系方式:010-88417670 robin_gy@126.com 备注:乘车路线:300内、300外、323,323快、362、374、408、425、704、730内、730外、811、817、817支、830外、831、836、849、特5、特8外、特8内、944、944支、967、968、运通103、运通108、运通201到万寿寺站下车即到。
  • 飞纳台式扫描电镜入驻中国科学院深海科学与工程研究所
    中国科学院深海科学与工程研究所主要研究材料在极端环境下(如高温高压)的物理和化学性质,尤其是地质材料的流变特性。在矿物的高温流变,低温塑性,流体影响,熔融影响,晶格扩散等方面做出许多突出贡献。中国科学院深海科学与工程研究所在实验室中模拟深海极端环境,研究其对岩石或人工合成复合材料性能的影响。例如材料在极高的水压下,会发生形变或流变,此时,其内部微观结构也会产生相应变化。扫描电镜常常被用来观察材料微观形貌,用户在研究深海极端环境对材料的影响时,也需要研究材料微观结构的变化。 实验过程中,通过特定的工序制备高强度的二氧化硅掺杂树脂基复合材料,在高水压下会发生变形,通过对比前后样品微观形貌变化,来判断水压对材料的影响。制备复合材料的工艺不同,也会导致材料其抗变形能力的差异。因此,实验过程需要及时对样品的微观形貌进行分析。一台操作简单,成像速度快的扫描电镜在研究过程中显得尤为重要。飞纳台式扫描电镜凭借其稳定的性能和人性化的设计,得到了用户的认可。扫描电镜下复合材料结构扫描电镜下岩石表面
  • 听清华大学朱永法教授和国家纳米科学中心刘忍肖老师在线讲述“复合/纳米材料的形貌及粒度表征”
    p img style=" WIDTH: 600px HEIGHT: 75px" title=" sj0213xuan01_副本.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/insimg/8c21f2e9-490e-4a10-b5be-359d731bbccf.jpg" width=" 600" height=" 75" / /p p strong span style=" COLOR: rgb(0,0,0)" “复合/纳米材料的形貌及粒度表征”网络主题研讨会 /span /strong /p p br/ strong span style=" COLOR: rgb(0,0,0)" 会议时间:2015年12月9日 14:00-17:00 /span /strong /p p br/ 报告日程: /p p br/ span style=" COLOR: rgb(112,48,160)" strong 报告一:纳米材料的形貌和粒度分析方法及应用 /strong /span /p p br/ 报告人:朱永法 /p p br/ 清华大学化学系教授、博导,分析化学研究所副所长,国家电子能谱中心副主任。从事半导体薄膜材料的表面物理化学、纳米材料的合成与性能、环境催化以及光催化的研究工作。 /p p br/ 报告概要: /p p br/ 主要讲述了纳米材料最常用的三种形貌分析方法的原理和应用特点以及粒度分析的方法和在纳米材料研究方面的应用实例。目前最常用的形貌分析方法是扫描电子显微镜、透射电子显微镜和原子力显微镜。扫描电镜视场广,样品制备简单,不会产生信息失真,可以观察形貌以及实现颗粒大小的分布统计。透射电镜可以观察纳米材料的形貌和颗粒大小,但视野范围小,样品制备过程容易产生大颗粒的丢失现象,但可以区分聚集态和一次粒子的信息。原子力显微镜可以观察薄膜的颗粒大小,也可以观察分散态的纳米材料的形貌及大小。此外,还可以测量颗粒的厚度以及薄膜的粗糙度分布。激光粒度仪是测量颗粒大小常用的方法,但无法观察纳米材料的形貌,是一种统计颗粒直径分布,容易失真。此外,很多纳米材料分散在溶液中,可能是水合方式存在,获得的是水合颗粒大小的分布,并不是真实的材料颗粒大小,但可以获得粒度分布的信息。此外,通过XRD和拉曼光谱还可以获得纳米材料晶粒大小的数据。 /p p br/ span style=" COLOR: rgb(112,48,160)" strong 报告二:基于PeakForce Tapping模式的纳米材料表征 /strong /span /p p br/ 报告人: 孙昊 /p p br/ 布鲁克中国北方区客户服务主管 /p p br/ 报告提纲: /p p br/ PeakForce Tapping是由Bruker公司发明的一种新的基本成像模式。与传统的Contact、Tapping模式相比,PeakForce Tapping具有探针-样品作用力小、能够自动优化反馈回路、能够进行定量力学成像等优点。基于PeakForce Tapping模式,Bruker公司发展了一系列扩展成像技术,如智能成像(ScanAsyst),它可以轻易实现绝大部分常见样品的扫描参数自动优化,使刚入门的客户也能非常容易地得到专家级的图像;定量纳米力学成像(PeakForce QNM)可以在扫描形貌的同时实时定量地分析出样品的模量与粘滞力,为纳米力学测量带来了革新;峰值力表面电势测量(PFKPFM)与峰值力导电性测量(PFTUNA)使得在软样品表面同时的电学和力学测量成为可能。在这个Webinar中,我们将介绍基于PeakForce Tapping的一系列新的成像技术在纳米表征中的应用。 /p p br/ span style=" COLOR: rgb(112,48,160)" strong 报告三:纳米材料的粒度表征 /strong /span /p p br/ 报告人:方瑛 /p p br/ HORIBA 应用工程师 /p p br/ 报告概要: /p p br/ 颗粒的尺寸会影响纳米材料的各种性能,而溶液的电位则会影响纳米乳液的稳定性。纳米颗粒分析仪可以表征纳米颗粒的粒径和电位,报告会介绍粒径和Zeta电位的测试原理,重点会介绍颗粒分析在纳米材料中的应用。 /p p br/ span style=" COLOR: rgb(112,48,160)" strong 报告四:尺度表征用纳米标准样品 /strong /span /p p br/ 报告人:刘忍肖 /p p br/ 博士,高级工程师,国家纳米科学中心/中科院纳米标准与检测重点实验室,主要工作领域为纳米技术标准化,承担了十余项纳米技术标准制修订、纳米标准物质/标准样品的研制工作;从事与纳米技术相关的标准化科研工作,参与两项国家重大科学研究计划项目和一项质检公益性行业科研专项,承担国家自然科学基金和北京市自然科学基金项目。 /p p br/ 报告提纲: /p p br/ 纳米标准样品概况;尺度表征用纳米标准样品;示例:粒度、台阶高度纳米标准样品。 /p p br/ 报名条件:仪器信息网个人用户,自助报名当天参会。 br/ br/ span style=" COLOR: rgb(255,0,0)" strong 报名方式:扫描下方二维码或点击链接。 /strong /span br/ br/ img title=" 12-9纳米材料研讨会.png" src=" http://img1.17img.cn/17img/images/201511/insimg/3c15c368-57fd-486a-a4ab-b1df6999103e.jpg" / br/ br/ 仪器信息网“复合/纳米材料的形貌及粒度表征”网络主题研讨会 /p p br/ a title=" “纳米材料的形貌及粒度表征应用技术”网络主题研讨会" href=" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749" target=" _blank" http://www.instrument.com.cn/webinar/Meeting/subjectInsidePage/1749 /a /p
  • 直播预告!第四届材料表征与分析检测技术网络会议之结构与形貌分析分会场
    仪器信息网讯 材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。仪器信息网将于2022年12月14-15日举办“第四届材料表征与分析检测技术网络会议(iCMC 2022)”,两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。会议报名链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/结构与形貌分析主题专场会议日程:报告时间报告题目报告人专场三:结构与形貌分析(12月15日)09:00--09:30电子束辐照敏感材料的电子显微表征方法探索上海科技大学研究员 于奕09:30--10:00牛津仪器 EBSD 技术最新发展及应用牛津仪器科技(上海)有限公司应用科学家 杨小鹏10:00--10:304D超快电子显微镜及其在低维材料非平衡态动力学中的应用南开大学教授 付学文10:30--11:00布鲁克电子显微分析技术在材料表征中的应用布鲁克纳米分析应用工程师 韦家波11:00--11:30电子显微学在光电材料及器件开发研究中的拓展应用北京工业大学副研究员 卢岳11:30--12:00现代扫描电子显微学功能化方法研究进展和应用浙江工业大学副研究员 李永合直播抽奖:30元京东卡5个嘉宾介绍:上海科技大学研究员 于奕于奕,上海科技大学助理教授。2008年获得北京科技大学材料物理学士学位,2013年获得清华大学材料科学与工程博士学位,2013-2017年在美国加州大学伯克利分校和劳伦斯伯克利国家实验室从事博士后研究工作,2017年至今任上海科技大学助理教授、研究员、博士生导师。于奕博士从事材料微观结构的像差校正电子显微学研究,迄今发表科研论文60余篇,引用5000余次,部分重要成果以通讯或第一作者形式发表在Nature,Science,Nano Letters,J.Am.Chem.Soc等期刊。目前于奕博士的研究聚焦在辐照敏感能源材料的原子尺度电子显微分析。【摘要】 透射电子显微技术是表征和分析材料微观结构与成分的重要手段。对于不耐电子束辐照的材料,在进行显微观察的过程中,电子束会对样品的本征结构产生破坏,导致原始结构、特别是纳米和原子尺度的精细结构难以得到表征。这是一个现有技术手段还无法有效解决的难题。在本报告中,我们以辐照敏感的卤化物钙钛矿半导体材料和锂金属材料为例,介绍我们在显微样品制备、显微成像和谱学分析过程中探索到的能够缓解材料辐照损伤的一些方法,并利用这些方法实现对这两类材料的高分辨原子尺度结构解析。牛津仪器科技(上海)有限公司应用科学家 杨小鹏杨小鹏,2010年毕业于清华大学材料科学与工程系。在校期间主要研究材料相变及表征微观组织,熟悉SEM、XRD、TEM、同步辐射等技术手段。曾任职EBSD后处理功能软件开发,熟悉晶体学及EBSD技术底层的计算。2014年加入牛津仪器,主要负责EBSD技术支持及应用推广。【摘要】 牛津仪器一直致力于推动 EBSD 技术的发展,最新发布了第三代 Symmetry EBSD探测器 S3,最快采集速度超过5700花样/秒。同时更新的还有高性价比的C-Nano+ 和C-Swift+ EBSD探测器,最快速度分别达到 600 花样/秒及2000 花样/秒。所有三种型号探测器都可以配置高温荧光屏,满足原位加热EBSD的需求。在软件方面,新发布了花样匹配标定技术 MapSweeper,相比传统EBSD标定技术,对质量差的花样也能标定,提高标定率,改善对大变形样品和TKD样品的分析。MapSweeper还能提高EBSD数据的精度,帮助区分伪对称、相似相、倒反畴界等,这些应用需要对花样进行精细的识别。南开大学教授 付学文 付学文,南开大学物理学院教授,博士生导师,天津市杰出青年基金获得者,入选国家四青人才,南开大学“百名青年学科带头人”,担任国家重点研发计划青年项目首席科学家。2014年获北京大学凝聚态物理博士学位(导师:俞大鹏院士),曾荣获北京市优秀博士毕业生、北京大学优秀博士毕业生和优秀博士论文奖。曾先后在美国加州理工学院(诺贝尔奖得主Ahmed Zewail教授研究组)和美国布鲁克海文国家实验室 (Yimei Zhu教授研究组)做博士后和助理研究员。2019年受聘于南开大学物理科学学院担任教授,牵头建立了南开大学超快电子显微镜实验室。长期从事4D超快电子显微镜、超快阴极荧光等超高时空分辨电子成像与探测技术开发及其在低维量子功能材料的结构、载流子及自旋等动力学中的应用研究。在Science、Science Advances(3篇)、Nature Communications、Advanced Materials、PNAS、ACS Nano(5篇)、Nano Letters等知名国际期刊发表学术论文40余篇,获授权发明专利1项。研究成果多次被 Science、Phys.org、Physicsword、Nanotechweb、Advances in Engineering等科学媒体选为研究亮点进行报道。【摘要】报告将主要介绍4D超快电子显微镜及其在低维材料非平衡态动力学中的应用。布鲁克纳米分析应用工程师 韦家波韦家波,布鲁克纳米分析应用工程师,负责EDS、EBSD、TKD等产品的技术支持工作,对电子显微镜的相关应用具有多年实操经验。【摘要】 主要分享布鲁克高分辨EDS, EBSD/同轴TKD等产品的技术优势及其在材表征方面的应用。北京工业大学副研究员 卢岳 卢岳,北京工业大学固体微结构与性能研究所副研究员、博士研究生导师。长期从事原位电子显微学、光电及光电催化材料与器件研究。作为项目负责人,承担多项国家自然科学基金和省部级以上科研基金,以第一作者或通讯作者在Joule, Nat. Commun., Adv. Mater., Appl. Catal. B-Environ., ACS Nano, Chem. Eng. J., Adv. Funct. Mater., J. Mater. Chem. A等国际期刊发表SCI论文40余篇。【摘要】报告中主要介绍电子显微学在光电材料及器件开发研究中的拓展应用。浙江工业大学副研究员 李永合李永合,男,副研究员,北京工业大学工学博士学位,德国卡尔斯鲁厄理工学院 (KIT)电子显微学研究室博士后。近年来,针对电池离子输运和催化剂活性反应的基础问题,集中发展工况材料动态结构演变的原位电子显微学可视化方法。以此研究基础,主持承担科技部重点研发子任务、国家自然科学基金青年项目、浙江省自然基金探索项目3项,完成德国洪堡基金项目1项,曾入选德国“洪堡学者”和校高层次人才培育计划。【摘要】 扫描电子显微镜长期以来在材料介观尺度表面形貌、成分、结构表征方面具有举足轻重的作用。然而随着对材料研究的深入,对扫描电镜的技术方法的要求也日益苛刻。扫描电镜透射化可以实现扫描电镜的透射成像功能(STEM-in-SEM)来获得体相二维投影信息,FIB-SEM重构进一步实现材料形貌的三维重构可视化,同时原位技术装置引入又可以实现材料外场下的动态形貌结构演变观察,这些最新方法极大地丰富和发展了现代先进扫描电子显微学。基于此,本报告将着重介绍1)发展的STEM-in-SEM方法和FIB-SEM三维重构在弱衬度材料表征应用,以及2)循环条件下,全固态电池失效行为的原位研究等工作。会议报名:https://www.instrument.com.cn/webinar/meetings/icmc2022/
  • 飞纳台式扫描电镜对生物智能材料的研究
    哈尔滨工业大学深圳研究生院生物智能材料实验室致力于智能微/纳米系统及其生物医学应用的开发,涵盖微/纳米制造技术,材料合成和表面化学等多个研究领域。专注于利用介孔二氧化硅构建不同类型的催化和生物催化微/纳米马达,并旨在探索其体外和体内生物医学潜力。 生物智能材料一直是材料领域的热门方向,尤其是在医学领域的应用,其点滴的创新都能对科技发展起到推动作用。但由于其选材覆盖面广泛、结构尺寸微小,所以对扫描电镜的综合观测能力具有较高的要求。 此次,哈尔滨工业大学深圳研究生院购进的飞纳台式扫描电镜能谱一体机Phenom ProX,为实验室样品的表征工作提供高效的检测手段。飞纳电镜Phenom ProX具有150,000的放大倍数、8nm的分辨率,轻松观测纳米尺度,如液态金属纳米球;采用背散射、二次电子双探头,轻松获取原子序数和表面形貌衬度图像,为客户提供更多的样品信息;能谱分辨率达 123eV,精确分析样品中元素的分布和含量;飞纳电镜具有独特的真空设计,即使面对导电性较差的样品,也可直接观测,无需喷金,如图所示未喷金的聚苯乙烯(PS)小球,基本没有出现荷电现象;飞纳电镜操作十分简便、高效,经过一日的系统培训即可独立操作,数分钟即可完成一个样品的观测,大大提升了测试效率。未喷金的聚苯乙烯(PS)小球
  • 高分子表征技术专题——扫描电镜技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!扫描电镜技术在高分子表征研究中的应用ApplicationsofScanningElectronMicroscopyinPolymerCharacterization作者:郑鑫,由吉春,朱雨田,李勇进作者机构:杭州师范大学材料与化学化工学院,杭州,311121作者简介:李勇进,男,1973年生.1996年和1999年在同济大学分别获学士和硕士学位,2002年获上海交通大学博士学位.2002~2011年,历任日本产业技术综合研究所JSPS博士后和研究员.2011年加入杭州师范大学,主要从事高分子材料成型加工研究.先后获得高分子成型加工新锐创新奖(2017年)、冯新德高分子奖提名奖(2018年和2020年)、国际高分子加工学会(PPS)的MorandLambla奖(2019年)、浙江省自然科学奖(2020年)等.摘要扫描电子显微镜(scanningelectronmicroscope,SEM)是表征高分子材料微观结构及其组成信息重要的手段之一,具有操作简便、信号电子种类多样且对样品损伤较小等特点.本文系统阐述了SEM的工作原理,通过与透射电子显微镜(transmissionelectronmicroscope,TEM)进行比较,突出了其优势与特色.详细讨论了该技术的测试方法,包括样品制备、仪器参数设定、操作技巧与图像处理,并揭示了获得高质量SEM图像的关键技术.介绍了SEM不同的信号电子成像、SEM与其他仪器联用及SEM原位分析技术在高分子材料表征中的应用与进展.最后,对SEM的发展趋势进行了展望.AbstractScanningelectronmicroscopy(SEM)isoneofthemostimportanttoolsforthecharacterizationofpolymermaterials' microstructureandcomposition.First,itiseasytooperate thentherearevariouselectronicsignalsavailablewhichcontaindifferentsampleinformationforSEMimaging besides,therearelittlesampledamageduringSEMobservation.Inthiswork,theworkingprincipleofSEMwaselucidatedsystematically.Also,acomparisonwasmadebetweenSEMandTEMwithrespecttoworkingprinciple,resolutionandmagnification,viewanddepthoffield,samplepreparation,sampledamageandpollution.Therefore,theadvantagesandfeaturesofSEMwerehighlighted.Inaddition,theexperimentmethodsofSEMwereillustratedindetail,includingsamplepreparation,instrumentparametersettings,operationskillsandimagetreatment.ThekeyfactorswhichdeterminesthequalityofSEMimagewererevealed.ThemainapplicationsofSEMinpolymercharacterizationwereintroduced.Specifically,thesecondaryelectronsimagingwasusedtoinvestigatethemicrostructureofpolymercomposition,compatibilityofpolymerblends,crystalstructureofpolymer,morphologyofpolymerporousmembrane,biocompatibilityofpolymermaterial,self-assemblebehaviorofpolymerandsoon.Besides,thebackscatteredelectrons,characteristicX-ray,transmittanceelectronswerealsousedtorevealthemorphologyandcompositioninformationofpolymersystems.ThecombinationofSEMwithRamanspectrometerandFocusedionbeamandtheinsituSEMtechniqueswereillustrated.Finally,therecenttrendsofSEMdevelopmentwereprospected.关键词扫描电子显微镜  高分子材料  微观结构  组成信息  应用KeywordsScanningelectronmicroscopy  Polymermaterial  Microstructure  Composition  Application 材料的宏观特性是由其组分及微观结构决定的,因此,深入了解材料的微观结构,明确微观结构与宏观特性之间的内在联系对于开发新材料、提升已有材料性能是至关重要的.电子显微镜技术是探测微观世界的重要研究手段之一,在材料的研究和发展历程中发挥了巨大的作用.电子显微镜是在光电子理论的基础上发展起来的,包括扫描电子显微镜(scanningelectronmicroscope,SEM)和透射电子显微镜(transmissionelectronmicroscopy,TEM)两大类.二者在结构、工作原理、对样品的要求等方面有着本质的区别.下文将对其进行详细阐述.由于二者的成像原理不同,所反映出来的样品信息也不尽相同,因此在实际应用中,往往需要二者相互配合,才能揭示材料最真实的微观结构.与TEM相比,SEM具有更大的视野和景深,样品制备相对简单且对样品厚度要求不严格,并且不容易造成样品的损伤和污染,是快速表征材料微观形貌结构的首选技术.自1965年第一台商用扫描电镜问世以来,经过不断的创新、改进和提高,扫描电镜的种类和应用领域也在不断拓展[1].现有的扫描电镜主要包括钨丝/六硼化镧扫描电镜(SEM)、场发射扫描电镜(FESEM)、扫描透射电镜(STEM)、冷冻扫描电镜(Cryo-SEM)、环境扫描电镜(ESEM)等[2].此外,通过配置功能附件,如X射线能谱仪、X射线波谱仪、阴极荧光谱仪、二次离子质谱仪、电子能量损失谱仪、电子背散射衍射仪等,许多扫描电镜除了研究材料微观结构之外,还兼具微区物相分析的功能[3].鉴于扫描电镜在材料微观结构表征中的重要作用,本文将从扫描电镜的结构与工作原理出发,通过与透射电镜进行对比,突出其性能和特点;详细讨论扫描电镜的实验方法与操作技巧,揭示获得高质量扫描电镜图像的关键技术;总结扫描电镜在高分子材料表征中的应用与最新进展;最后,对扫描电镜的发展趋势进行展望.1扫描电镜的结构与特点1.1扫描电镜的结构扫描电镜的内部结构较为复杂,可分为电子光学系统、样品仓、信号电子探测系统、图像显示与记录系统、真空系统这5个主要部分[3].下文将针对这5个主要部分详细展开.扫描电镜实物图及其主要部件如图1所示.Fig.1TheHitachiS-4800cold-fieldemissionSEManditsmaincomponents.1.1.1电子光学系统电子光学系统主要包括电子枪、聚焦透镜、扫描偏转线圈等.其作用是产生用于激发样品产生各种信号的电子束.为了获得较高的信号强度和图像分辨率,通常要求电子束具有较高的亮度、稳定的束流及尽可能小的束斑直径.因此,电子光学系统是扫描电镜中尤为重要的组成部分.电子枪阴极用来提供高能电子束,常见的有钨丝电子枪、六硼化镧电子枪和冷/热场发射电子枪.表1汇总了几种电子枪的性能及相关参数[4].Table1Severalelectrongunsandthemainperformanceparameter.由电子枪阴极发射的电子束初束尺寸通常较大,需通过聚焦透镜将其大幅度缩小方可照射样品并获得较高分辨率的扫描图像.聚焦透镜分为强激磁、短焦距的聚光镜和弱激磁、长焦距的物镜,二者均通过磁场作用改变电子射线的前进方向而使电子束产生汇聚.扫描系统是扫描电镜一个独特的结构,包含扫描发生器、扫描偏转线圈和放大倍率变换器,其作用是使电子束在样品表面和显示屏中作光栅状同步扫描,以获得样品表面形貌信息.这即是扫描电镜的工作原理,可简单总结为“光栅扫描,逐点成像”.下文将对其进行进一步说明.此外,通过改变电子束在样品表面的扫描振幅还可获得不同放大倍数的扫描图像.1.1.2样品仓样品仓位于物镜的下方,用于放置样品和信号探测器.内设样品台,并提供样品在X-横向、Y-纵向、Z-高度3个坐标方向的移动,以及样品绕自身轴旋转R和倾斜T的动作.通过对这5个自由度的选择性控制,可以实现对样品全方位的观察.其中“Z”方向的距离称为工作距离,通常在2~50mm范围内,工作距离越大,观察的视野越大.1.1.3信号电子探测系统信号探测系统包括信号探测器、信号放大和处理装置及显示装置,其作用是探测样品被电子束激发出的各种信号电子,并经放大转换为用以调制图像的信号,最终在荧光屏上显示出反映样品特征的图像.图2给出了电子束激发样品所产生的主要信号电子,包括二次电子(SE)、背散射电子(BSE)、特征X射线、透射电子(TE)、俄歇电子(AS)、阴极荧光(CL)等,及其所反映的样品性能特征的示意图.而不同的信号电子要用不同的探测系统,目前扫描电镜的探测器有电子探测器、阴极荧光探测器和X射线探测器三大类.Fig.2Theoverviewofmainsignalelectronsgeneratedduringtheinteractionbetweenelectronbeamandsample.1.1.4图像显示与记录系统图像显示与记录系统由显像管和照相机组成.显像管的作用是将信号探测系统输出的调制信号转换成图像显示在阴极射线荧光屏上,并由照相机将显像管显示的图像、放大倍率、标尺长度、加速电压等信息拍摄到底片上.1.1.5真空系统为了确保电子光学系统能正常、稳定地工作,防止样品污染,电子枪和镜筒内部都需要严格的真空度.以场发射扫描电镜为例,通常要靠一台机械泵、一台分子泵和一台离子泵联合完成.真空度越高,入射电子的散射越少,电子枪阴极的寿命越长,同时高压电极间放电、打火等风险隐患也会降低.1.2扫描电镜的性能和特点扫描电镜和透视电镜是分析材料微观形貌的2种常用表征手段.为了明确扫描电镜性能和特点,本文将扫描电镜与同为电子显微镜的透射电镜进行全方面比较说明.1.2.1成像原理结合扫描电镜的结构,其成像原理如下:在高压作用下,由电子枪阴极发射出的电子束初束,经聚光镜汇聚成极细的电子束入射到样品表面的某个分析点,与样品原子发生相互作用而激发出各种携带样品特征的信号电子,通过相应的探测器接收这些信号电子,经放大器放大后进行成像,即可分析样品在电子束入射点处的特征.同时,通过扫描线圈驱动入射电子束在样品表面选定区域作从左到右、从上到下的光栅式扫描,实现对选定区域每个分析点的采样,从而产生一幅由点构成的图像.其工作原理如图3(a)所示.扫描电镜是信号电子成像,主要用来观察样品表面形貌的立体(三维)图像.Fig.3SchemeofthestructureandimagingprincipleforSEM(a)andTEM(b).作为电子显微镜的另一大类,透射电镜的总体工作原理与扫描电镜有着显著差别[2].在透射电镜中,由电子枪发射出的电子束初束同样通过聚光镜汇聚成极细的电子束照射在极薄的样品(50~70nm)上.与扫描电镜不同的是,透射电镜通过穿过样品的电子,即透射电子,来反映样品的内部结构信息.携带了样品信息的透射电子经过物镜的汇聚调焦和初级放大后,形成第一幅样品形貌放大像;随后再经过中间镜和投影镜的2次放大,最终形成三级放大像,以图像或衍射谱的形式直接投射到荧光屏上,通过配有电荷耦合器件(chargecoupleddevice,CCD)的相机拍照或直接保存在计算机硬盘中.其工作原理如图3(b)所示.透射电镜是透射成像,用来观察样品在二维平面内的形态和内部结构.1.2.2分辨率和放大倍数分辨率表示对物点的分辨能力,指的是能够清晰地分辨2个物点的最小距离.显微镜的理论分辨率(γ0)可用贝克公式(公式(1))表述.显然,仪器所用光源波长越短,分辨率越高.根据德布罗意公式(公式(2))和能量公式(公式(3)),电子显微镜的电子束波长随加速电压增加而缩短,进而明显提高电子显微镜的分辨率.而仪器的有效放大倍率(M有效)与仪器的理论分辨率是直接相关的.由公式(4)可知,仪器分辨率越高,有效放大倍率越大.当仪器分辨率确定后,其有效放大倍率也随之确定.因此,分辨率才是评价显微镜的核心指标.而我们通常意义上说的放大倍率实际是图像放大倍率,也即屏幕输出比(M)(公式(5)).在超高真空条件下,扫描电镜的水平和垂直分辨率分别可达0.14和0.01nm.放大倍数从10倍到1.5×106倍连续可调;透射电镜的最高分辨率可达0.1nm,放大倍数从几百倍到1.5×106倍连续可调.式中λ为光源波长,n为显微镜内介质的折光率(真空环境时n=1),α为透镜孔径半角.式中h为普朗克常数,m为电子质量,v为电子运动速度.式中e为电子电荷量,U为加速电压.式中γe为人眼分辨率(0.2mm).式中Lm为荧光屏成像区域边长(通常为10cm),Ls为电子束在试样上的扫描区域边长.1.2.3视野和景深视野指的是能看到的被检样品的范围,与分辨率和放大倍率有关;景深指可获得清晰图像的深度范围.扫描电镜的视野(10mm~10μm)比透射电镜(1mm~0.1μm)大得多,景深也比透射电镜大.如图4所示,扫描电镜图像更有立体感,更适合观察样品凹凸不平的细微结构[5].Fig.4TheSEM(a)andTEM(b)imagesforthesamesample(ReprintedwithpermissionfromRef.[5] Copyright(2019)ElsevierLtd.).1.2.4样品制备扫描电镜的样品制备比较简单,对样品的厚度要求不严格,不导电的样品要经过镀膜导电处理(后文将以高分子材料为例,详细介绍扫描电镜样品的制备方法),强磁性样品需消磁后方可观察;而对于透射电镜来说,电子必须穿过样品才能成像,因此样品要很薄,通常要经过特殊的超薄切片进行制备,过程相对复杂.1.2.5样品的损伤和污染在用扫描电镜观察样品时,照射在样品上的束流(10-10~10-12A)、电子束直径(5nm)和加速电压(2kV)都较小,故电子束能量较低.此外,电子束在样品上做光栅状扫描,因此观察过程中对样品的损伤和污染程度较低;而使用透射电镜时,为了使图像有足够的亮度,要用较强的束流(~10-4A)和加速电压(100kV),因此电子束能量较高,且固定照射在样品的某处,因此引起样品的损伤程度较大,易造成样品和镜筒的污染.综上所述,扫描电镜的性能和特点显著,如成像立体感强,放大倍数范围大、分辨率高,不仅对样品具有普适性,且制样简单,观察时对样品的损伤和污染小,此外还可以通过调节和控制各种影响成像的因素和参数来改善图像质量(详见下文),因此是观察材料显微结构的重要工具.2实验方法与技巧要获得一幅优质的扫描电镜图像,需掌握样品制备技术、熟知操作要点并对图像进行必要的处理.下文将以高分子材料为例,对扫描电镜的实验方法与操作技巧进行阐述.2.1样品制备高分子材料扫描电镜样品的制备方法根据要观察的部位、样品形态及高分子本身的性质有所不同.观察块状或薄膜样品表面时,只需将大小合适的样品表面朝上用导电胶黏贴在样品台上;观察块状或薄膜样品内部结构时,通常要将样品置于液氮中,通过淬断获得维持形貌的断口,然后再将断口朝上用导电胶固定在样品台上进行观察.对于较薄且自支撑性较差的薄膜样品,可带支撑层一起淬断.如将载有纳米纤维膜的锡箔纸,或将纤维膜浸水之后进行淬断,更便于得到其断面.此外,黏贴样品时应尽量保持样品平稳、牢固,减少样品与导电胶之间的缝隙,以增加其导电和导热性.有时,为了分辨高分子复合体系的组分分布情况,还需要对样品进行适当的刻蚀,利用选择性溶剂去除复合体系中的某一相,以暴露更多微观细节[6~8],之后再进行清洗、干燥、黏贴、镀膜等步骤.观察粉末样品时,要保证粉末与样品台粘接牢固,在样品仓抽真空时不会飞溅导致电镜污染.根据粉末样品的尺寸,可选择用干法或湿法来制备扫描样品.其中,干法适用于制备尺寸大于2μm的粉末样品.通常在导电胶上负载薄薄一层粉末样品后,要用洗耳球等从不同方向吹掉粘接不牢固的粉末;湿法适用于制备尺寸在2μm以下的粉末样品.首先选择合适的分散液(如水、乙醇等),将粉末样品通过超声处理均匀地分散在其中,随后用滴管将样品溶液滴加到硅片上,待溶剂挥发后固定在样品台上进行下一步处理.对于导电性好的高分子样品,只要用导电胶将要观察的部位朝上粘接在样品台上即可观察[9,10];而大部分高分子材料都是绝缘的,经过高能电子束的持续扫描,样品表面会产生电荷积累,不仅会排斥入射电子,还会干扰信号电子,影响探测器对信号电子的接收,造成图像晃动、亮度异常、出现明暗相间的条纹等现象.这就是所谓的“荷电效应”[11~13].为了解决这个问题,除了要用导电胶将其粘接在样品台上,还可以选择对其进行镀膜处理以提高样品的导电性[11].通常,5nm的镀膜厚度足以改善样品的导电性.对于具有特殊结构的样品,如表面不致密或者起伏较大的样品,可以适当增加镀膜厚度.常用的镀膜材料有碳膜、金膜、银膜、铂膜等.其中,金膜二次电子产率高、覆盖性好,在中低倍(1.5×104倍)以下观察时较常使用.在进行更高放大倍数、更高分辨率分析时,通常会选择颗粒较小的铂膜或金-铂合金膜.而镀膜可以通过真空镀膜和离子溅射镀膜技术来实现.镀膜层的厚度以能消除荷电效应为准.但是,镀膜会掩盖一些样品的微观形貌细节,使得观察结果产生偏差;此外,对于还要进行能谱分析的样品,镀膜也会对结果产生不利影响.此时,可以选择在低压模式下对样品进行观察(详见3.4节),即使不镀膜也可以观察到细微的结构.当使用常规扫描电镜观察时,磁性样品要预先消磁,所有样品还需要经过彻底的干燥处理后方可观察.2.2实验技巧2.2.1仪器参数样品制备完成后,需要对扫描电镜进行操作,调整相应的参数,获取扫描电镜图像.通常,一幅优质的扫描电镜图像要能够清晰、真实地反映样品的形貌,需具备较高的分辨率、适中的衬度、较高的信噪比、较大的景深等.其中,信噪比指一个电子设备或者电子系统中信号与噪声的比例.当扫描过程中采集的信号电子数量太少时,仪器或测试环境的噪声太大,信噪比太低,会导致显示屏上出现雪花状噪点,从而掩盖了样品图像的细节.而较高的分辨率是高质量扫描电镜图像的首要特征.此外,图像的分辨率、衬度、信噪比、景深等特征之间是相互关联的,通过调整电镜的参数可以改变上述特征发生不同效果的变化.(1)加速电压加速电压升高,束斑尺寸减小,束流增大,有利于提高图像的分辨率和信噪比.此外,升高加速电压还能提高二次电子的发射率,但与此同时,电子束对样品的穿透厚度增加,电子散射增强,这些反而会导致图像模糊、分辨率降低.因此,应根据样品的实际情况进行适合的选择.对于高分子材料来说,由于其耐热性和导电性均不佳,为了避免观察、拍摄过程中样品发生热损伤及荷电效应导致图像不清晰,应适当采取较低的加速电压.(2)束流束流是表征入射电子束电子数量的参数,束流与束斑直径之间的关系可用公式(6)表示:其中,i束流,d是束斑直径,β是电子源的亮度,α是电子探针的照射半角.由此公式可知,当其他参数不变时,束流增大,束斑尺寸也会相应变大,此时分辨率会下降,而由于束流增大有利于激发出更多的信号电子,故信噪比提高.所以,束流对分辨率和信噪比的影响是相反.通常,随着观察的放大倍数增加,图像清晰度所要求的分辨率也要增加,因此可适当减小束流,而信噪比可以通过其他途径,如延长扫描时间等手段来弥补.(3)工作距离工作距离是指物镜最下端到样品的距离,对入射至样品表面的电子束的束斑尺寸有直接影响.缩短工作距离可以减小束斑尺寸,进而提高图像分辨率.然而,缩短工作距离会导致电子束入射半角α增大,因此景深变小,图像立体感变差.因此,要得到高分辨率的图像时,需选择较小的工作距离(5~10mm);而要观察立体形貌时,可选用较长的工作距离(25~35mm),获得较大的景深.(4)物镜光阑物镜是扫描电镜中最靠近样品的聚光镜,多数扫描电镜在物镜上都设有可动光阑,用于遮挡非旁轴的杂散电子并限定聚焦电子束的发散角,同时还兼具调节束斑尺寸的功能.所用的光阑尺寸越小,被遮挡的杂散电子越多,在一定的工作距离下,孔径半角越小,因此景深变大,图像立体感变强,同时束斑尺寸减小,图像分辨率提高.另一方面,光阑孔径小会导致入射电子束束流减小,激发出的信号电子数量减少,导致信噪比变差.因此,对于放大倍率不高的扫描样品,或者需要使用能谱仪对样品微区进行化学组成成分分析时,应选用较大孔径的光阑,获得较大的束流和较高的信噪比.通过上述分析可知,影响扫描电镜图像质量的各个因素之间是有内在联系的,在实际操作过程中,需根据样品的自身性质及拍摄的具体需求选择合适的条件参数.2.2.2操作要点为了获得高质量的扫描电镜图像,除了选择合适的仪器参数,还应掌握正确的操作方法.(1)电子光学系统合轴在扫描电镜中,由电子枪阴极发射的电子束通过聚光镜、物镜及各级光阑,最终汇聚成电子探针照射到样品表面并激发出电子信号.其中,到达样品表面的电子束直接决定了扫描电镜的图像质量.因此,在观察样品前必须使上述各部件的中轴线与镜筒的中轴线重合,使得电子束沿中轴线穿行,将光学系统的像差减到最小,这就是“合轴”‍.合轴主要通过镜筒粗调和电子束微调来实现.镜筒粗调又称机械合轴,一般仪器安装后会由专业的维修工程师进行操作.此外,仪器使用过程中发现光斑偏离过大也需要进行机械合轴.以日立SU8000扫描电镜为例,通过调节对应位置的螺丝和旋钮,依次进行电子枪、聚光镜光阑、物镜光阑、各级聚光镜、像散合轴等,此时屏幕中心应会出现一个既圆又亮的光斑,说明机械合轴完成.随后,还要利用扫描电镜的对中电磁线圈所产生的磁场拖动电子束进行精确合轴,又称电子对中.相较于机械对中,电子对中幅度小、合轴精确度高,一般在完成机械对中的基础上进行.实际使用扫描电镜时,如在调焦或消像散时发现图像位置移动,说明电子束对中出现问题,需对其进行校正.电子对中可通过倾斜(tilt)和平移(shiftX/Y)实现.Tilt用于调整电子束的发射倾斜角度,ShiftX/Y用于电子束平面X、Y方向的移动.在调整过程中注意观察图像的亮度,亮度最大时调整结束.(2)放大倍数和视野选择根据观察要求,选择合理的放大倍数及视野,确保观察部位具有科学意义,通过观察到的样品形貌能够回答要解决的研究问题.此外,所观察的画面和角度要符合传统的美学观点,同时具有良好的构图效果.(3)电子束聚焦和相散消除电子束聚焦和相散消除是电镜操作中最核心的步骤.聚焦是指通过旋转Focus旋钮调节物镜的励磁电流,使其在欠焦、正焦、过焦这3种状态下反复切换,并通过对比图像的清晰度来确认正焦的位置,此时束斑直径最小.调焦过程中电子束在样品表面的变化如图5所示.在过焦和欠焦状态下,图像在相互垂直的方向上出现拉长的现象,且在正焦状态下也不清晰,此时就表明出现了像散.在消除像散时,首先要把图像聚焦到正焦状态,随后通过调节消像散器的X、Y旋钮,辅以调焦操作,并观察图像是否被拉长,再根据实际情况,重复上述过程,直到图像清晰为止.图5也展示了不同聚焦状态下有无像散的电子束斑形状及尺寸.显然,消除像散后正焦时电子束斑尺寸更小,因此此时的图像具有更高的清晰度.Fig.5Theshapeandsizechangeofelectronbeamduringfocusingprocessbeforeandaftertheastigmatismbeingeliminated.(4)衬度和亮度调整图像中最大亮度和最小亮度的比值就是图像的衬度,也称对比度或反差,可通过改变扫描电镜中光电倍增管的电压进行调整.亮度则是通过改变电信号的直流成分进行调节.实际上,反差增强时直流成分也会增加,因此相应地亮度也会提高.在进行扫描电镜观察与拍摄时,应交替调节衬度和亮度,保证图像具有清晰的细节和适当的明暗对比.(5)扫描速度调整扫描速度要结合样品自身的性质与观察要求进行调整.通常情况下,低倍观察时用快速扫描,高倍观察时用慢速扫描.当图像要求高分辨率时常用慢速扫描.对于导热性和导电性较差的高分子材料,为避免热损伤和荷电效应,通常要采用快速扫描.(6)样品台角度调整表面较为光滑的样品通常其形貌衬度较弱,通过调整样品台的角度,可以使更多二次电子离开倾斜的样品表面,提高信号电子的强度(如图6所示),进而改善图像衬度和分辨率[14].Fig.6TheSEescapedfromthehorizontal(a)andtilted(b)sample.(7)图像拍摄在实际观察与拍摄时,通常要先在较低的倍率下对整个样品进行观察,之后选择具有代表性的区域再进行放大.遵循“高倍聚焦、低倍拍照”的原则,在高于所需拍摄放大倍数的状态下(1.2~2倍放大倍数)进行聚焦,后回调至所需放大倍数进行拍照,可获得清晰度更高的图像.此外,为了使SEM图像更具有代表性和准确性,一方面,要对具有代表性的观察区域进行一系列放大倍数的拍摄,此时可按从高倍率到低倍率的顺序进行拍摄,过程中无需反复执行电子束聚焦的步骤,仍可获得高清晰度的图像;另一方面,也要进行多点观察,即对样品不同区域进行观察.2.3图像处理图像处理是指在探测器的后续阶段,通过各种图像处理技术,对图像的衬度、亮度或噪声等进行改善,获得一幅细节更清晰、特征更明显的图像.在此过程中,不应改变样品的原始信息.表2总结了仪器参数和操作要点对图像质量的影响[3,4].Table2TheinfluencefactorsoftheSEMimagesandthecorrespondingadjustment.3扫描电镜在高分子材料表征方面的主要应用总体而言,扫描电镜是一个功能十分强大的测试平台,除了最基本的成像功能之外,通过搭配不同的信号电子探测器,或与其他仪器(如拉曼光谱、单束聚焦离子束系统等)联用,或引入原位分析手段等方法,可以对材料的微观结构、元素、相态等进行分析.3.1不同信号电子在高分子材料表征方面的应用常用于高分子材料表征的信号电子为二次电子(SE)、背散射电子(BSE)、特征X射线、透射电子(TE).其中,SE、BSE和特征X射线对样品厚度没有要求,当高能电子束入射至样品后,这3类信号电子的逃逸深度及大致对应的扫描电镜图像分辨率如图7所示[15].而TE要求样品的厚度在100nm以下,因此需要超薄切片处理,且为了获得足够的衬度,通常要对共混物的其中一个组分进行染色处理.通过在SEM平台搭配不同的信号电子探测器,可以得到不同的SEM成像方式.Fig.7TheescapedepthofSE,BSEandcharacteristicX-rayandtheirapproximateimageresolution.3.1.1二次电子成像高能入射电子与样品原子核外电子相互作用使其发生电离形成自由电子,并克服材料的逸出功,离开样品的信号电子即为二次电子SE,其产额为每个入射电子所激发出的二次电子平均个数.二次电子是扫描电镜中应用最多的信号电子.由于其能量较低且容易损失,只有样品表面或亚表面区域所产生的二次电子才能离开样品到达探测器[16].此外,表面形貌的变化对二次电子产额影响较大,图8展示了不同表面形貌,如尖端、平面、斜面、空洞、颗粒等,对二次电子产额的影响.显然,凸出的尖端、较为倾斜的面以及颗粒在经电子束照射后逃逸的SE较多[17].在成像时,SE产额较多的表面形貌通常更亮.这种由于形貌差异导致的图像亮度不同而获得的图像衬度即为形貌衬度.二次电子提供的形貌衬度是扫描电镜最常用的图像衬度.通过搭配二次电子探测器,可以做如下研究:Fig.8SchemeoftheSEyieldondifferentsurfacemicrostructure.(1)高分子复合材料微观结构以高分子为基体,通过引入增强材料(如各种纤维[18~20]、晶须[21~23]、蒙脱土[24,25]、粒子[26~28]等)作为分散相,可以获得具有优异特性的复合材料.通常,其性能强烈依赖于增强材料的尺寸、分散性等.SEM在开发高性能高分子复合材料中发挥了重要作用.于中振等制备了一种具有良好电磁屏蔽性能的聚苯乙烯(PS)/热还原氧化石墨烯(TGO)/改性Fe3O4纳米粒子的复合材料[29].由扫描电镜图像可以清晰地分辨不同形貌的填料,如改性的零维Fe3O4颗粒结构(图9(a))与二维还原氧化石墨烯(RGO)的片层结构(图9(b)).此外,扫描电镜图像也能反映填料的分散情况.如图9(a),RGO在PS基体中表现出明显的聚集,而从图9(c)可见,TGO和改性的Fe3O4纳米颗粒(Fe3O4-60)在PS基体中可以很好地分散.图9(c)所显示的具有许多小空间的微观结构有利于电磁波的衰减.Fig.9SEMimagesof(a)PS/RGO,(b)PS/Fe3O4-60and(c)PS/TGO/Fe3O4-60composites(ReprintedwithpermissionfromRef.[29] Copyright(2015)ElsevierLtd.).刘欢欢等通过扫描电镜对MWCNTs在PP基体中的分散进行了观察,扫描电镜图像中PP基体和MWCNTs表现出明显的衬度差异(图10(a)),是由于二者不同的形貌造成的[30].在较暗的PP基体中出现了大块较亮的MWCNT团聚体,说明其分散性较差.通过引入马来酸酐接枝PP(MAPP)作为增容剂,同时引入Li-TFSI离子液体帮助MWCNTs分散后,图10(b)的扫描电镜图像呈现均一的衬度和亮度,说明此时MWCNTs在PP基体中的分散性有大幅改善.Fig.10SEMimagessofimpactfracturesurfaceofPP/MWCNTs(a)andPP/MWCNTs/Li-TFSI/MAPP(b)(ReprintedwithpermissionfromRef.[30] Copyright(2019)ElsevierLtd.).(2)高分子共混体系相容性对现有高分子材料进行共混是获得高性能新材料的有效途径.共混体系组分之间的相容性是共混改性的基础,其对共混体系的性能起到了决定性的作用[31].因此,对共混体系相容性的研究十分重要,通常要用多种方法,如DSC、FTIR、NMR、SEM等,从不同角度进行研究分析[32].其中,SEM可以直接反应共混物的相形貌,能粗略、直观表征共混体系的相容程度,因此相较于其他方法应用更为广泛.近年来,李勇进和王亨缇等针对不相容共混体系做了一系列工作,通过设计合成并添加反应性增容剂,制备了众多高性能功能化的高分子共混物[5,33~39].在其工作中,大量运用扫描电镜对增容共混体系的相结构、微区尺寸、两相界面等进行研究,并结合透射电镜与红外等其他表征手段,系统研究了不同反应性增容剂的增容机理.图11(a)的扫描电镜图像中,较大的分散相尺寸以及较差的界面黏附性说明了增容前的共混体系是完全热力学不相容的;加入反应性接枝共聚物作为增容剂后,分散相尺寸明显细化,并形成了双连续的相形貌,同时界面也有显著增强(如图11(b)所示).图11(c)的透射电镜图像同样印证了增容后共混体系相容性得到改善的结论[36].Fig.11(a)SEMimageofpolyvinylidenefluoride(PVDF)/poly(lacticacid)(PLLA)=50/50blendwithoutcompatibilizer SEM(b)andTEM(c)imagesofPVDF/PLLA=50/50blendwithcompatibilizer(ReprintedwithpermissionfromRef.[36] Copyright(2015)AmericanChemicalSociety).(3)高分子的晶态结构晶态和非晶态结构是高分子最重要的2种聚集态,其对材料的性能有着重要的作用.扫描电镜为研究高分子的结晶形态提供了更直观的视角[40~42].为了更清晰地观察晶体及其细微结构,如片晶等,通常要对样品进行选择性的刻蚀,以去除晶体中的无定形区[43~46].Aboulfaraj等用扫描电镜对等规聚丙烯(iPP)的球晶结构进行了详细的研究[46].扫描样品经抛光处理,得到平整、光滑的观察面,随后浸泡在含1.3wt%高锰酸钾、32.9wt%浓H3PO4和65.8wt%浓H2SO4的混合溶液中去除PP球晶中的无定型部分,经清洗、干燥、喷金后用扫描电镜进行观察.从图12(a)~12(d)的SEM图像中可以分辨出衬度明显不同的2种PP的球晶结构,其中暗的是α-球晶而亮的是β-球晶.之所以出现这种对比效果,与电子束照射在不同表面形貌的样品上时二次电子的产额不同有关.首先,α-球晶的片晶沿径向和切向交互贯穿呈互锁结构,因此刻蚀后表面平整,在进行扫描电镜观察时,入射电子的径向扩散很弱;作为对比,β-球晶以弯曲的片晶和束状晶体结构为特征,因此刻蚀后表面较为粗糙,可以产生更多的二次电子供探测器接收.通过调整样品台的旋转角度,可以根据衬度的变化清楚地分辨出PP的2种球晶.不同旋转角度对应不同二次电子的产额,如图12(e)和12(f)所示.Fig.12SEMimagesofPPplateobservedatdifferenttiltangles:(a)0°,(b)20°,(c)40°and(d)60° Schemeofthereflectionoflightraysbytheetchedsectionsofα‍-andβ‍-spherulitesunderconditionsofdirect(e)andlow-angle(f)illumination.(ReprintedwithpermissionfromRef.[46] Copyright(1993)ElsevierLtd.).傅强等用扫描电镜研究了高密度聚乙烯(HDPE)/多壁碳纳米管(MWCNTs)复合材料注塑样品从皮层到芯层的微观结构和晶体结构[44].扫描样品同样经过了刻蚀处理.扫描电镜图像明显揭示了复合材料中的纳米杂化shish-kebab晶体,其中CNTs作为shish,而HDPE的片晶作为kebab(图13).此外,由于注塑成型过程中的剪切梯度和温度梯度的影响,纳米杂化shish-kebab晶体结构沿着复合材料注塑样条厚度方向发生变化.Fig.13SEMmicrophotographofthenanohybridshish-kebabatthelayerof400μmalongthethicknessdirectionintheHDPE/MWCNTscomposite.ThesamplewasetchedbeforeSEMobservation.(ReprintedwithpermissionfromRef.[44] Copyright(2010)ElsevierLtd.).此外,扫描电镜在研究结晶-结晶[45,47~49]、结晶-非晶[50,51]聚合物共混体系中的晶体形态方面也有重要的应用.李勇进等系统研究了聚乳酸(PLLA)/聚甲醛(POM)结晶/结晶聚合物共混体系的结晶形态及结晶动力学,通过用氯仿刻蚀掉共混物中的PLLA组分,利用扫描电镜对POM的结晶形态、PLLA的分布等进行了研究[45].由图14可见明显的聚甲醛环带球晶结构,说明即使在PLLA存在的情况下,POM仍会发生结晶形成连续的晶体框架.此外,在POM的环带球晶中观察到许多周期分布的狭缝孔,说明此处原本是PLLA的聚集区.Fig.14SEMimagesobtainedfromquenched(a),141℃(b)and151℃(c)isothermallycrystallizedPOM/PLLA=50/50blendinwhichthePLLAwasetched.(ReprintedwithpermissionfromRef.[45] Copyright(2015)AmericanChemicalSociety).(4)高分子多孔膜的形貌表征膜分离技术是解决水资源、能源、环境等领域重大问题的有效手段,其核心是分离膜[52,53].高分子多孔膜是一类成本相对较低、应用较为广泛的分离膜,但由于其普遍疏水的特性,在实际应用中容易造成污染,导致膜孔堵塞,通量下降,分离效率降低等问题[54].广大专家学者发展了多种改性方法来提高高分子多孔膜的亲水性及防污性[55~59].扫描电镜在开发高性能多孔膜的过程中发挥了重要的作用.徐志康等利用扫描电镜对比了改性前后PP微孔膜的表面孔形貌变化[60];魏佳等研究了不同Gemini表面活性剂体系对多孔膜污染类型及堵塞指数的影响,并用扫描电镜对膜表面形貌和污损情况进行了观察[61];靳健等用扫描电镜表征了聚酰胺(PA)纳滤膜(NF)表面褶皱结构的形成过程[62].从图15的扫描电镜图像中可以清晰地分辨纤维结构、纳米颗粒结构、孔结构及随着反应时间延长所产生的形貌变化.Fig.15Thepreparationofpolyamide(PA)nanofiltration(NF)membranewithcrumpledstructures:Top-viewSEMimagesofpristinesingle-walledcarbonnanotube(SWCNTs)/polyethersulfone(PES)compositemembrane(a),polydopaminemodifiedMOFZIF-8nanoparticles(PD)/ZIF-8loadedSWCNTs/PEScompositemembrane(b)andmorphologychangeofthemembraneimmersedintowaterindifferenttimeafterinterfacialpolymerizationreactiononPD/ZIF-8nanoparticlesloadedSWCNTs/PEScompositemembrane(c-f)(Thescalebarofimagesis1μm).(ReprintedwithpermissionfromRef.[62] Copyright(2018)SpringerNatureLimited).(5)高分子材料的生物相容性聚醚砜(PES)是一类十分重要且应用十分广泛的生物医用膜材料,表现出优异的化学稳定性、机械性能及成膜性[63].然而,其疏水性极大地限制了其在临床领域的应用.为了提高PES作为血液透析膜的使用性能,赵长生等展开了一系列改性研究,旨在改善PES膜的血液相容性[64~66].通过扫描电镜观察血小板在生物材料表面的黏附情况是评估材料血液相容性的重要手段.由图16所示的扫描电镜图像可见,未改性的PES膜有较多的血小板黏附,说明血液相容性较差;而改性过后的PES膜血小板黏附情况有明显改善,对应了较好的血液相容性[65].Fig.16SEMmicrographsoftheadheredplateletsonsurfacesofPES(a)andmodifiedPESHMPU-2(b)andHMPU-8(c).(ReprintedwithpermissionfromRef.[65] Copyright(2014)ElsevierLtd.).(6)高分子自组装行为高分子自组装可以获得具有特定结构和功能的聚合物超分子体系.利用扫描电镜对其组装结构进行观察是揭示其构效关系的重要手段.ByeongduLee等合成了一系列不同接枝密度的嵌段共聚物,并利用SEM对的自组装形貌进行了研究[67].如图17所示,所合成的聚乳酸-聚苯乙烯嵌段共聚物(PLA-b-PS)自组装成了长程有序的片层状结构,且从扫描电镜图像中可以明显看出,随着接枝密度的降低,其片层尺寸也有明显的减小.SEM观察到的这种标度行为为嵌段共聚物及其材料的设计提供了新的思路.Fig.17SEMimagesofpoly(D,Llactide)‍-b-polystyrene(PLA-b-PS)with(a)z=1.00,(PLA)100-b-(PS)100 (b)z=0.75,(PLA0.75-r-DME0.25)110-b-‍(PS0.75-r-DBE0.25)110 (c)z=0.50,(PLA0.5-r-DME0.5)104-b-‍(PS0.5-r-DBE0.5)104 and(d)z=0.25,(PLA0.25-r-DME0.75)112-b-‍(PS0.25-r-DBE0.75),inwhichthegraftingdensities(z)changedbysubstitutingPLAwithendo,exonorbornenyldimethylester(DME)andPSwithendo,exonorbornenyldi-n-butylester(DBE).(ReprintedwithpermissionfromRef.[67] Copyright(2017)AmericanChemicalSociety).2004年,颜德岳和周永丰等创新性地制备了一类两亲性超支化多臂共聚物,其可以在丙酮溶剂中自组装成宏观多壁螺旋管,首次实现了具有不规整分子结构的超支化聚合物的溶液自组装及分子的宏观自组装[68].在之后的工作中,高超和颜德岳等利用这类两亲性超支化聚合物制备了具有高度有序蜂窝状孔结构的多孔膜,并用SEM对其结构进行了详细研究[69].从图18(a)的扫描电镜中可以明显观察到,几乎所有孔都是规整均匀的六边形孔,孔径宽度为5~6mm.此外,由图18(b)和18(c)可见,每个六边形单元都像一个有六面双层墙壁的巢室.这里应用了2个扫描电镜的观察技巧:图18(b)是将样品台倾斜了45°所观察到的形貌,而观察图18(c)时所使用的加速电压高于20kV,此时被顶层覆盖的下层骨架也可以显示出来.Fig.18RepresentativeSEMimagesofthehoneycombpatternedfilmspreparedfromanamphiphilichyperbranchedpoly(amidoamine)modifiedwithpalmitoylchloride(HPAMAM10KC16)onasiliconwafer(a-c).Thesamplewastilted45°intheimagesof(a)and(b).Theacceleratingvoltagewas20kVfor(c).Thescalebarsare20mm(a),2mm(b),5mm(c).(ReprintedwithpermissionfromRef.[69] Copyright(2007)Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim).3.1.2背散射电子成像高能入射电子受到样品原子核的散射而大角度反射回来的电子称为背散射电子BSE,其产额为样品所激发的背散射电子数与入射电子数的比值.当加速电压大于5kV时,背散射电子产额可用公式(7)表示[3]:其中,φ为样品倾斜角,Z为原子序数.显然,背散射电子的产额随样品倾斜角和原子序数的增加而增加,尤其原子序数越高时,其对应的背散射电子图像越亮[70].这种由于原子序数差异导致的图像衬度称为成分衬度.通过在高分辨扫描电镜平台上搭配背散射电子探测器,不仅可以对高分子材料的总体相形态进行分析[71~73],还可以显示出更细节的片晶结构[74,75].其优势在于,BSE成像既不需要像TEM那样的超薄样品,也不需要像二次电子检测或原子力显微镜成像的高压,仍可以显示出较高的衬度、分辨率和信息量.张立群等用原位动态硫化的方法制备了一种可再生的热塑性硫化橡胶(TPV)作为3D打印材料,该TPV包含一种生物基弹性体PLBSI和聚乳酸PLA[72].SEM-BSE图像清晰了反映了动态硫化过程中共混体系的相态变化,其中PLA是亮相而PLBSI是暗相(如图19所示).此外,Bar等利用SEM-BSE观察了聚丙烯共聚物、乙丙共聚物等样品的片晶结构[75].不同于SE成像时通过形貌衬度观察结晶性高分子的晶体及其片晶结构,BSE成像则是通过成分衬度突出片晶形貌.Fig.19SEM-BSEmicrographsofpoly(lactate/butanediol/sebacate/itaconate)bioelastomers/poly(lacticacid)(PLBSI/PLA)(70/30)thermoplasticvulcanizate(TPV)samplescollectedatA(a),B(b),C(c),D(d),E(e)andF(f)pointintorquecurvewhichvariedwithblendingtime(g)andthechemicalreactionofinsitudynamicalvulcanization(h).(ReprintedwithpermissionfromRef.[72] Copyright(2017)ElsevierLtd.).3.1.3X射线能谱分析高能入射电子作用于样品后,部分入射电子打到核外电子上,使原子的内层(如K层)电子激发并脱离原子,而邻近外层(如L层)电子会填充电离出的电子穴位,同时产生特征X射线,如图20所示.该X射线的能量为邻近壳层的能量差(ΔE=EK-EL=hc/λkα)[3].由于不同原子壳层间的能量差值不同,因此利用能量色散X射线光谱仪(EDX)对特征X射线的能量进行分析,可以研究样品的元素和组成[76~80].需要注意的是,EDX通常用于分析原子序数比硼(B)大,含量在0.1%以上的样品,且加速电压必须大于被测元素线系的临界激发能,加速电压对分析的深度、面积、体积等起到重要影响.此外,EDX又包括3种分析方法:点分析、线扫描分析及面分布分析.其中,点分析是指高能入射电子固定在某个分析点上进行定性或定量的分析,当需要对样品中含量较低的元素进行定量分析时,通常只能选用点分析方法;线扫描可以分析样品中特定元素的浓度随特征显微结构的变化关系,是电子束沿线逐点扫描的结果;面分布分析则是指高能入射电子在某一区域做光栅式扫描得到元素的分布图像,又称Mapping图.背散射电子像可以通过图像衬度粗略反映出所含元素的原子序数差异,而特征X射线的Mapping图则可以精确反映出元素构成及其富集状态.在Mapping图中,不同元素可以用不同颜色进行区分,元素富集程度不同则元素的颜色深度不同,因此可以获得彩色的衬度图像.该衬度为元素衬度.在上述的3种分析方法中,点分析灵敏度最高,面分布分析灵敏度最低,但可以直接观察到相分布、元素分布的情况及均匀性.具体实验中,应根据样品自身特点及分析目的等选择合理的分析方法.图21(a)、21(b)和21(c)~21(e)分别为典型的EDX点、线、面分析结果[78,79].Fig.20ThegenerationmechanismofcharacteristicX-ray.Fig.21PointEDXscanonoutersurfaceoftheglassfiber(a)(ReprintedwithpermissionfromRef.[78] Copyright(2011)AmericanSocietyofCivilEngineers) lineEDXscanforCainglassfiber-reinforcedpolymer(GFRP)(b)(ReprintedwithpermissionfromRef.[78] Copyright(2011)AmericanSocietyofCivilEngineers) SEMimage(c)andthecorrespondingEDXmappingscanspectraofC(d)andF(e)elementofpoly(acrylicacid)graftedPVDF(G-PVDF)hollowfibermembrane.(ReprintedwithpermissionfromRef.[79] Copyright(2013)ElsevierLtd.).3.1.4透射电子成像当样品厚度低于100nm时,部分高能入射电子可以穿透样品,从样品下表面逃逸,这部分信号电子称为透射电子TE,其携带了样品内部的结构信息.扫描透射电子显微镜(STEM)是一种通过位于样品正下方的TE探测器接收TE信号的新型SEM,它同时具备了TEM信息量丰富和SEM分辨率较高的优势.在高分子材料表征中,可以利用STEM得到样品的内部形貌、化学成分及晶体结构等信息[36,81~85].如图22(a)和22(b)所示,STEM及其EDX元素分析为研究反应性增容体系的内部形貌及增容剂纳米胶束的分布提供了直观的图像[36];图22(c)的STEM图像揭示了嵌段共聚物的微相分离结构[84];此外,STEM还可用于观察聚合物的片晶结构,由于晶区密度高于无定形区密度,这种密度差提供了衍射衬度,故在STEM图像中晶区更明亮而无定形区较暗(图22(d))[83].Fig.22STEMimagesoftheselectivedispersionofnanomicellesinP((S-co-GMA)‍-g-MMA)compatibilizedPVDF/PLLA=50/50blend(a)anditscorrespondingFelementmapping(b),thesamplewasstainedbyRuO4.(ReprintedwithpermissionfromRef.‍[36] Copyright(2015)AmericanChemicalSociety) STEMimage(darkfieldTEMmode)ofpolystyrene-polyisopreneblockcopolymer(PSt-PI-1)(c),inwhichthebrightanddarkpartsareattributedtothePImoietiesWstainedwithOsO4andPStmoieties,respectively(ReprintedwithpermissionfromRef.‍[84] Copyright(2008)TheRoyalSocietyofChemistry) STEMimageofHDPEspecimenshowingdiffractioncontrastoflamellae(d)(ReprintedwithpermissionfromRef.‍[83] Copyright(2009)AmericanChemicalSociety).综上所述,本文对SE、BSE以及特征X射线成像的特点进行了总结,详见表3.Table3Featuresofimagesobtainedfromdifferentsignalelectrons.3.2SEM与其他仪器联用在高分子材料表征方面的应用3.2.1拉曼光谱(Raman)-SEM联用Raman光谱在高分子科学中应用十分广泛,它提供了各种关于化学结构、分子构象、结晶、取向等的定量信息[86].SEM与共聚焦Raman光谱的联用(RISE)是显微镜学一个重要的里程碑.如图23所示,利用RISE既可以获得高分辨率的电镜图像,还能获得关于化学和结构组成的信息[87].此外,在SEM图像中衬度较弱的样品还能通过其光特性的差别突出显示[88].如图24所示,在SEM图像中不明显的PS微球,通过拉曼成像,可以清晰地分辨其位置.此外,由于拉曼信号强度强烈依赖于颗粒数量,因此拉曼成像中颗粒的亮度也反映了颗粒数量.Fig.23(a)SEMimagesofthematrix(M)ofrecycledpolyvinylchloride(PVC)powders(RPP)andtheselectednanoparticles(P1,P2,andP3)onRPPsurface (b)RamanspectraofnanoparticlesonthesurfaceofRPPrecordedwiththeconfocalRaman-in-SEMsystem(532nmlaser)(ReprintedwithpermissionfromRef.[87] Copyright(2020)AmericanChemicalSociety).Fig.24(a,d)SEMimagesof500nmPSbeads,inwhichtheredsquareindicatedselectedregionforRamanimaging (b,e)Ramanimagesoftheindicatedregionsshowingtheintensityofthe1001cm-1bandafterspectralintegrationovertherangefrom970cm-1to1015cm-1,indicatedbytheblackcrossesin(c).(f)ThespatiallyintegratedRamanintensity,shownin(b)and(e),foreverysingleorclusterofpolystyreneparticles.(ReprintedwithpermissionfromRef.[88] Copyright(2016)JohnWiley&Sons,Ltd.).3.2.2聚焦离子束(focusedionbeam,FIB)-SEM联用FIB是一种将离子源产生的离子束经离子枪加速并聚焦后对样品表面进行扫描的技术.与SEM联用成为FIB-SEM双束系统后,通过结合各种附件,如纳米操纵仪、各种探测器和样品台等,FIB-SEM可用于快速制备TEM样品[89,90]和进行微纳加工[90],此外基于其层析重构技术还能实现材料微观结构的三维重建及分析[91~94].图25(a)~25(a' ' )为利用FIB-SEM制备TEM样品的示意图及原位观察得到的样品SEM图像[89,90].FIB-SEM联用为精确定位制样区域,高效制备TEM样品提供了新的方向.图25(b)和25(b' )展示了FIB在聚合物薄膜样品上铣削微米尺寸孔洞的SEM和TEM图像[90].FIB-SEM在材料的精细加工领域表现出明显的优势.图25(c)的SEM图像中,暗相对应较深的孔,亮相对应较浅的孔,而中等亮度区域对应乙基纤维素(EC)固体.在其对应的三维重构图中(图25(c' )),较硬的多孔EC骨架结构是黑色的,而白色的区域表示孔洞结构[91].三维重构是理解晶粒、孔隙及分相等微结构与性能之间关系的重要手段,通常要经过SEM传统的二维成像手段结合FIB连续切片获取不同位置截面信息,再经过图像处理获得二值化数据之后方可进行三维重构.该方法具有较高的空间分辨率,但同时也存在重构范围有限,重构效率低等不足,这也是后续扫描电镜等技术发展的重要方向.Fig.25(a)SchematicoftheShadow-FIBtechniqueforTEMsamplepreparation(ReprintedwithpermissionfromRef.[89] Copyright(2009)MicroscopySocietyofAmerica) SEMimagesofpoly(styrene-b-isoprene)(PS-b-PI)filmonthesiliconwafers(a' )beforeand(a' ' )aftershadowFIBpreparation(ReprintedwithpermissionfromRef.[90] Copyright(2011)ElsevierLtd.) (b)SEMimageof100pAFIB-milledholesinthepoly(styrene-b-methylmethacrylate)(PS-b-PMMA)diblockcopolymersheetand(b' )thecorrespondingBFTEMimageofPS-b-PMMAsheetmilledfor9s(ReprintedwithpermissionfromRef.[90] Copyright(2011)ElsevierLtd.) (c)SEMimageoftheporousnetworkofleachedethylcellulose(EC)/hydroxypropylcellulose(HPC)filmwhichcontained30%HPC(HPC30)and(c' )itscorresponding3DreconstructionsoftheporousstructureofHPC30.(ReprintedwithpermissionfromRef.[91] Copyright(2020)ElsevierLtd.).3.3原位表征技术在高分子材料表征方面的应用通过配置专门的样品台,如制冷台、加热台、拉伸台,可以在电镜样品室内对样品进行诸如加热、制冷、拉伸、压缩或弯曲等操作,并可以用SEM实时观察样品的形貌、成分等的变化.冷冻扫描电镜(Cryo-SEM)是一种集冷冻制样、冷冻传输与电镜观察技术于一体的新型扫描电镜,需配置制冷台.常规的扫描电镜要求高真空环境,因此样品需干燥无挥发组分.而一些特殊样品,如囊泡、凝胶、生物样品等,在干燥过程中会发生结构变化,通过常规扫描电镜无法观察样品的真实结构.Cryo-SEM则弥补了这一不足,适用于含水样品的观察.图26展示了Cryo-SEM在表征高分子囊泡[95]、凝胶[96]与乳胶[97]方面的应用.显然,Cryo-SEM最大限度地保留了样品的原始结构.Fig.26(a)Cryo-SEMimagesofpolymervesiclesarmoredwithpolystyrenelatexspheres(ReprintedwithpermissionfromRef.[95] Copyright(2011)AmericanChemicalSociety) (b)High-pressurefrozen-hydratedpoly(acrylicacid)(PEG-AA)microgels(ReprintedwithpermissionfromRef.[96] Copyright(2021)AmericanChemicalSociety) (c)Plasticallydrawnparticlesfromfrozensuspensionsofpolystyrenelatexwithadiameterof500nm.(ReprintedwithpermissionfromRef.[97] Copyright(2006)AmericanChemicalSociety).加热台常用于分析金属或合金样品的腐蚀、还原或氧化反应[98,99],在高分子材料表征中少有应用.此外,拉伸台在高分子材料表征中较为常用.图27(a)为碳纤维/环氧树脂共混物薄片沿加载方向的破坏情况[100];图27(b)展示了循环荷载的炭黑填充天然橡胶体系的裂纹尖端演变[101].显然,原位分析可以清晰地反映材料性能变化的第一现场.Fig.27(a)InsituSEMimageof:initialfailureinacarbonfiberreinforcedpolymer(HTA/L135i(902/07/902))laminate(ReprintedwithpermissionfromRef.[100] Copyright(2006)ElsevierLtd.) (b)Evolutionofacracktipduringcyclicloadingafter1,10and21insitucycles,respectively.(ReprintedwithpermissionfromRef.‍[101] Copyright(2010)WileyPeriodicals,Inc.).3.4其他扫描电镜技术在高分子材料表征方面的应用高分子材料通常具有较高的电阻值和较差的导热性,当高能入射电子束在样品表面持续扫描时,样品极易发生荷电效应并受到热损伤,这些对扫描电镜的观察均会造成不利影响.因此,在使用常规扫描电镜时,为了消除荷电效应,提高样品的导热性,一般要在样品表面镀上一层导电薄膜.但是,镀膜有时会掩盖样品表面的形貌信息.低压扫描电镜(LV-SEM)通过低能电子束照射样品,能够实现对高分子材料的极表面进行无损伤的测试观察,因此可以反映材料最真实的微观结构[102~104].LV-SEM对样品表面形貌的灵敏度由图28可见.图28(a)和28(b)均是聚氨酯/二氧化硅复合物的扫描电镜图像,其中,图28(a)样品经过了镀碳处理,且是在20kV加速电压下捕捉的;图28(b)未经镀膜处理,观察所用加速电压为1kV[15].显然,在较低的加速电压下,样品表面细节更清晰,而在较高电压下,由于电子束穿透深度更大,因此表面以下的二氧化硅颗粒也显现出来.Fig.28SEMimagesofpolyurethanesamplefilledwithsilicamicroparticlesobservedatdifferentacceleratingvoltages:(a)20kV(carboncoated),(b)1kV(uncoated).(ReprintedwithpermissionfromRef.‍[15] Copyright(2014)DeGruyter).4扫描电镜的发展趋势随着高分子材料科学的发展,扫描电镜及其应用技术也在不断改进.首先,低压成像技术的发展为观察绝缘、耐热差的高分子材料表面的微观结构提供了可能.同时,即使不喷镀导电膜也能清晰成像,因此可以获得更真实、更细节的微观结构.此外,用传统的扫描电镜无法观察的特殊样品也可以利用低压技术成像,如含水高分子材料或生物样品,几乎不需要对样品进行处理.现有水平下,1kV加速电压成像的分辨率也可以达到1~1.8nm[3].如何在超低压下获得更高分辨率的扫描电镜图像是后续扫描电镜发展要解决的问题.其次,如文中介绍,电子束与样品相互作用所产生的信号电子种类较多,每种信号电子都携带了样品大量的特征信息,通过配置不同的功能附件,可以获得高分子样品形貌、结构、化学组成等信息.一方面,对高分子材料来说,很多信号电子所携带的信息未能被充分解析.如背散射电子(BSE),除了直接成像,其对应的衍射(EBSD)技术还可以揭示材料的晶体微区取向和晶体结构等信息.然而由于高分子材料通常结晶度不能达到100%,因此很难通过EBSD进行检测.另一方面,开发功能更强大的扫描电镜附件也是重要的发展方向.此外,扫描电镜的原位分析技术也为高分子材料科学的发展提供了有力支撑,二者的有效结合实现了对材料宏观-微观多层次结构的分析.最后,基于扫描电镜的二维图像进行拼接、重构三维图像几近年来也获得了极大的发展.这种跨多维度的扫描电镜分析技术在高分子材料的表征中目前还存在很大限制.综上,扫描电镜的发展将会为高分子材料提供更为便捷、信息量更丰富、更准确的表征手段.致谢感谢南京大学胡文兵教授在论文修改过程中给予的帮助和指导.参考文献1PeaseRFW.AdvImagElectPhys,2008,150:53-86.doi:10.1016/s1076-5670(07)00002-x2GuoSuzhi(郭素枝).ElectronMicroscopeTechnologyandItsApplication(电子显微镜技术及应用).Xiamen(厦门):XiamenUniversityPress(厦门大学出版社),20083RenXiaoming(任小明).ScanningElectronMicroscope/PrincipleofEnergySpectrumandSpecialAnalysisTechnique(扫描电镜/能谱原理及特殊分析技术).Beijing(北京):ChemicalIndustryPress(化学工业出版社).20204ZhangDatong(张大同).ScanningElectronMicroscopeandX-RayEnergyDispersiveSpectrometerAnalysisTechnics(扫描电镜与能谱仪分析技术).Guangzhou(广州):SouthChinaUniversityofTechnologyPress(华南理工大学出版社).20085WeiB,LinQ,ZhengX,GuX,ZhaoL,LiJ,LiY.Polymer,2019,185:121952.doi:10.1016/j.polymer.2019.1219526ParkJ,EomK,KwonO,WooS.MicroscMicroanal,2001,7(3):276-286.doi:10.1007/s1000500100747ZhengX,LinQ,JiangP,LiY,LiJ.Polymers,2018,10(5):562.doi:10.3390/polym100505628SumitaA,SakataK,HayakawaY,AsaiS,MiyasakaK,TanemuraM.ColloidPolymSci,1992,270(2):134-139.doi:10.1007/bf006521799SainiP,ChoudharyV,DhawanSK.PolymAdvTechnol,2012,23(3):343-349.doi:10.1002/pat.187310LiW,BuschhornST,SchulteK,BauhoferW.Carbon,2011,49(6):1955-1964.doi:10.1016/j.carbon.2010.12.06911EgertonRF,LiP,MalacM.Micron,2004,35(6):399-409.doi:10.1016/j.micron.2004.02.00312HeinLRO,CamposKA,CaltabianoPCRO,KostovKG.Scanning,2013,35(3):196-204.doi:10.1002/sca.2104813RaviM,KumarKK,MohanVM,RaoVN.PolymTest,2014,33:152-160.doi:10.1016/j.polymertesting.2013.12.00214JoyDC.JMicrosc,1987,147(1):51-64.doi:10.1111/j.1365-2818.1987.tb02817.x15ŠloufM,VackováT,LednickýF,WandrolP.Polymersurfacemorphology:characterizationbyelectronmicroscopies.In:PolymerSurfaceCharacterization.Berlin:WalterdeGruyterGmbH&CoKG,2014.169-206.doi:10.1515/9783110288117.16916SeilerH.JApplPhys,1983,54(11):R1-R18.doi:10.1063/1.33284017JoyDC.JMicrosc,1984,136(2):241-258.doi:10.1111/j.1365-2818.1984.tb00532.x18SathishkumarTP,SatheeshkumarS,NaveenJ.JReinfPlastCompos,2014,33(13):1258-1275.doi:10.1177/073168441453079019KarataşMA,GökkayaH.DefTechnol,2018,14(4):318-32620ForintosN,CziganyT.ComposBEng,2019,162:331-343.doi:10.1016/j.compositesb.2018.10.09821WangWenjun(王文俊),WangWeiwei(王维玮),HongXuhong(洪旭辉).ActaPolymericaSinica(高分子学报),2015,(9):1036-1043.doi:10.11777/j.issn1000-3304.2015.1500722FavierV,ChanzyH,CavailléJY.Macromolecules,1995,28(18):6365-6367.doi:10.1021/ma00122a05323ConverseGL,YueW,RoederRK.Biomaterials,2007,28(6):927-935.doi:10.1016/j.biomaterials.2006.10.03124RameshP,PrasadBD,NarayanaKL.Silicon,2020,12(7):1751-1760.doi:10.1007/s12633-019-00275-625YangJintao(杨晋涛),FanHong(范宏),BuZhiyang(卜志扬),LiBogeng(李伯耿).ActaPolymericaSinica(高分子学报),2007,(1):70-74.doi:10.3321/j.issn:1000-3304.2007.01.01326LiShaofan(‍李‍少‍范),WenXiangning(‍温‍向‍宁),JuWeilong(‍鞠‍维‍龙),SuYunlan(‍苏‍允‍兰),WangDujin(‍王‍笃‍金).ActaPolymericaSinica(高分子学报),2021,52(2):146-157.doi:10.11777/j.issn1000-3304.2020.2018927HuangDengjia(黄‍登‍甲),SongYihu(宋‍义‍虎),ZhengQiang(郑‍强).ActaPolymericaSinica(高分子学报),2015,(5):542-549.doi:10.11777/j.issn1000-3304.2015.1436528FuZhiang(傅志昂),WangHengti(王亨缇),DongWenyong(董文勇),LiYongjin(李勇进).ActaPolymericaSinica(高分子学报),2017,(2):334-341.doi:10.11777/j.issn1000-3304.2017.1628829ChenY,WangY,ZhangH,B,LiX,GuiC,X,YuZ,Z.Carbon,2015,82:67-76.doi:10.1016/j.carbon.2014.10.03130LiuH,GuS,CaoH,LiX,JiangX,LiY.ComposBEng,2019,176:107268.doi:10.1016/j.compositesb.2019.10726831SeyniFI,GradyBP.ColloidPolymSci,2021,299(4):585-593.doi:10.1007/s00396-021-04820-x32KrauseS.Polymer-polymercompatibility.In:PolymerBlends.NewYork:AcademicPress,1978.15-113.doi:10.1016/b978-0-12-546801-5.50008-633WangH,YangX,FuZ,ZhaoX,LiY.LiJ.Macromolecules,2017,50(23):9494-9506.doi:10.1021/acs.macromol.7b0214334FuZ,WangH,ZhaoX,LiX,GuX,LiY.JMaterChemA,2019,7(9):4903-4912.doi:10.1039/c8ta12233d35WangH,FuZ,ZhaoX,LiY,LiJ.ACSApplMaterInterfaces,2017,9(16):14358-14370.doi:10.1021/acsami.7b0172836WangH,DongW,LiY.ACSMacroLett,2015,4(12):1398-1403.doi:10.1021/acsmacrolett.5b0076337FuZ,WangH,ZhaoX,HoriuchiS,LiY.Polymer,2017,132:353-361.doi:10.1016/j.polymer.2017.11.00438DongW,HeM,WangH,RenF,ZhangJ,ZhaoX,LiY.ACSSustainChemEng,2015,3(10):2542-2550.doi:10.1021/acssuschemeng.5b0074039WeiB,ChenD,WangH,YouJ,WangL,LiY,ZhangM.Polymer,2019,160:162-169.doi:10.1016/j.polymer.2018.11.04240GanZ,KuwabaraK,AbeH,IwataT,DoiY.PolymDegradStabil,2005,87(1):191-199.doi:10.1016/j.polymdegradstab.2004.08.00741ChenX,DongB,WangB,ShahR,LiCY.Macromolecules,2010,43(23):9918-9927.doi:10.1021/ma101900n42ShahD,MaitiP,GunnE,SchmidtDF,JiangDD,BattCA,GiannelisEP.AdvMater,2004,16(14):1173-1177.doi:10.1002/adma.20030635543AboulfarajM,G' sellC,UlrichB,DahounA.Polymer,1995,36(4):731-742.doi:10.1016/0032-3861(95)93102-r44YangJ,WangK,DengH,ChenF,FuQ.Polymer,2010,51(3):774-782.doi:10.1016/j.polymer.2009.11.05945YeL,ShiX,YeC,ChenZ,ZengM,YouJ,LiY.ACSApplMaterInterfaces,2015,7(12):6946-6954.doi:10.1021/acsami.5b0084846AboulfarajM,UlrichB,DahounA,G' sellC.Polymer,1993,34(23):4817-4825.doi:10.1016/0032-3861(93)90003-s47YeL,QiuJ,WuT,ShiX,LiY.RSCAdv,2014,4(82):43351-43356.doi:10.1039/c4ra06943a48YeC,CaoX,WangH,WangJ,WangT,WangZ,LiY,YouJ.JPolymSci,2020,58(12):1699-1706.doi:10.1002/pol.2019023249YeC,ZhaoJ,YeL,JiangZ,YouJ,LiY.Polymer,2018,142:48-51.doi:10.1016/j.polymer.2018.02.00450WangJ,DingM,ChengX,YeC,LiF,LiY,YouJ.JMembrSci,2020,604:118040.doi:10.1016/j.memsci.2020.11804051WangJ,ChenB,ChengX,LiY,DingM,YouJ.JMembrSci,2021:120065.doi:10.1016/j.memsci.2021.12006552JhaveriJH,MurthyZVP.Desalination,2016,379:137-154.doi:10.1016/j.desal.2015.11.00953YanX,AnguilleS,BendahanM,MoulinP.SepPurifTechnol,2019,222:230-253.doi:10.1016/j.seppur.2019.03.10354RynkowskaE,FatyeyevaK,KujawskiW.RevChemEng,2018,34(3):341-363.doi:10.1515/revce-2016-005455LiJH,ShaoXS,ZhouQ,LiMZ,ZhangQQ.ApplSurfSci,2013,265:663-670.doi:10.1016/j.apsusc.2012.11.07256ZhangX,LiangY,NiC,LiY.MaterSciEngC,2021,118:111411.doi:10.1016/j.msec.2020.11141157XingC,GuanJ,LiY,LiJ.ACSApplMaterInterfaces,2014,6(6):4447-4457.doi:10.1021/am500061v58ZhengX,ChenF,ZhangX,ZhangH,LiY,LiJ.ApplSurfSci,2019,481:1435-1441.doi:10.1016/j.apsusc.2019.03.11159HuMX,YangQ,XuZK.JMembrSci,2006,285(1-2):196-205.doi:10.1016/j.memsci.2006.08.02360YangYF,LiY,LiQL,WanLS,XuZK.JMembrSci,2010,362(1-2):255-264.doi:10.1016/j.memsci.2010.06.04861ZhangW,LiangW,HuangG,WeiJ,DingL,JaffrinMY.RSCAdv,2015,5(60):48484-48491.doi:10.1039/c5ra06063j62WangZ,WangZ,LinS,JinH,GaoS,ZhuY,JinJ.NatCommun,2018,9(1):1-9.doi:10.1038/s41467-018-04467-363HariharanP,SundarrajanS,ArthanareeswaranG,SeshanS,DasDB,IsmailAF.EnvironRes,2021:112045.doi:10.1016/j.envres.2021.11204564NieS,XueJ,LuY,LiuY,WangD,SunS,RanFZhaoC.ColloidSurfaceB,2012,100:116-125.doi:10.1016/j.colsurfb.2012.05.00465MaL,SuB,ChengC,YinZ,QinH,ZhaoJ,SunSZhaoC.JMembrSci,2014,470:90-101.doi:10.1016/j.memsci.2014.07.03066FangB,LingQ,ZhaoW,MaY,BaiP,WeiQ,ZhaoC.JMembrSci,2009,329(1-2):46-55.doi:10.1016/j.memsci.2008.12.00867LinTP,ChangAB,LuoSX,ChenHY,LeeB,GrubbsRH.ACSNano,2017,11(11):11632-11641.doi:10.1021/acsnano.7b0666468YanD,ZhouY,HouJ.Science,2004,303(5654):65-67.doi:10.1126/science.109076369LiuC,GaoC,YanD.AngewChem,2007,119(22):4206-4209.doi:10.1002/ange.20060442970RobinsonVNE.Scanning,1980,3(1):15-26.doi:10.1002/sca.495003010371MurariuM,FerreiraADS,DegéeP,AlexandreM,DuboisP.Polymer,2007,48(9):2613-2618.doi:10.1016/j.polymer.2007.02.06772HuX,KangH,LiY,GengY,WangR,ZhangL.Polymer,2017,108:11-20.doi:10.1016/j.polymer.2016.11.04573GoizuetaG,ChibaT,InoueT.Polymer,1993,34(2):253-256.doi:10.1016/0032-3861(93)90074-k74BlacksonJ,Garcia-MeitinE,DarusM.MicroscMicroanal,2007,13(S02):1062-1063.doi:10.1017/s143192760707604075BarG,TochaE,Garcia-MeitinE,ToddC,BlacksonJ.MacromolSym,2009,282(1):128-135.doi:10.1002/masy.20095081376BoraJ,DekaP,BhuyanP,SarmaKP,HoqueRR.SNApplSci,2021,3(1):1-15.doi:10.1007/s42452-020-04117-877KorolkovIV,GorinYG,YeszhanovAB,KozlovskiyAL,ZdorovetsMV.MaterChemPhys,2018,205:55-63.doi:10.1016/j.matchemphys.2017.11.00678KamalASM,BoulfizaM.JComposConstr,2011,15(4):473-481.doi:10.1061/(asce)cc.1943-5614.000016879ZhangF,ZhangW,YuY,DengB,LiJ,JinJ.JMembrSci,2013,432:25-32.doi:10.1016/j.memsci.2012.12.04180AbdMutalibM,RahmanMA,OthmanMHD,IsmailAF,JaafarJ.Scanningelectronmicroscopy(SEM)andenergy-dispersiveX-ray(EDX)spectroscopy.In:Membranecharacterization.Amsterdam:ElsevierLtd,2017.161-179.doi:10.1016/b978-0-444-63776-5.00009-781GuiseO,StromC,PreschillaN.Polymer,2011,52(5):1278-1285.doi:10.1016/j.polymer.2011.01.03082FortelnýI,ŠloufM,SikoraA,HlavatáD,HašováV,MikešováJ,JacobC.JApplPolymSci,2006,100(4):2803-2816.doi:10.1002/app.2373183LoosJ,SourtyE,LuK,deWithG,BavelS.Macromolecules,2009,42(7):2581-2586.doi:10.1021/ma802658984HiguchiT,TajimaA,YabuH,ShimomuraM.SoftMatter,2008,4(6):1302-1305.doi:10.1039/b800904j85InamotoS,YoshidaA,OtsukaY.MicroscMicroanal,2019,25(S2):1826-1827.doi:10.1017/s143192761900986386ButlerHJ,AshtonL,BirdB,CinqueG,CurtisK,DorneyJ,MartinFL.NatProtoc,2016,11(4):664-687.doi:10.1038/nprot.2016.03687ZhangW,DongZ,ZhuL,HouY,QiuY.ACSNano,2020,14(7):7920-7926.doi:10.1021/acsnano.0c0287888TimmermansFJ,LiszkaB,LenferinkAT,vanWolferenHA,OttoC.JRamanSpectrosc,2016,47(8):956-962.doi:10.1002/jrs.493189KimS,LiuG,MinorAM.MicroscToday,2009,17(6):20-23.doi:10.1017/s155192950999100390TimmermansFJ,LiszkaB,LenferinkAT,vanWolferenHA,OttoC.Ultramicroscopy,2011,111(3):191-199.doi:10.1016/j.ultramic.2010.11.02791FagerC,BarmanS,RödingM,OlssonA,LorénN,vonCorswantC,BolinDRootzénH,OlssonE.IntJPharmaceut,2020,587:119622.doi:10.1016/j.ijpharm.2020.11962292ČalkovskýM,MüllerE,MeffertM,FirmanN,MayerF,WegenerM,GerthsenD.MaterCharact,2021,171:110806.doi:10.1016/j.matchar.2020.11080693NeusserG,EpplerS,BowenJ,AllenderCJ,WaltherP,MizaikoffB,KranzC.Nanoscale,2017,9(38):14327-14334.doi:10.1039/c7nr05725c94GhoshS,OhashiH,TabataH,HashimasaY,YamaguchiT.IntJHydrogEnergy,2015,40(45):15663-15671.doi:10.1016/j.ijhydene.2015.09.08095ChenR,PearceDJ,FortunaS,CheungDL,BonSA.JAmChemSoc,2011,133(7):2151-2153.doi:10.1021/ja110359f96LiangJ,XiaoX,ChouTM,LiberaM.AccChemRes,2021,54(10):2386-2396.doi:10.1021/acs.accounts.1c0010997GeH,ZhaoCL,PorzioS,ZhuoL,DavisHT,ScrivenLE.Macromolecules,2006,39(16):5531-5539.doi:10.1021/ma060058j98MotomuraS,SoejimaY,MiyoshiT,HaraT,OmoriT,KainumaR,NishidaM.JElectronMicrosc,2015,65(2):159-168.doi:10.1093/jmicro/dfv36399HeardR,HuberJE,SiviourC,EdwardsG,Williamson-BrownE,DragnevskiK.RevSciInstrum,2020,91(6):063702.doi:10.1063/1.5144981100HobbiebrunkenT,HojoM,AdachiT,DeJongC,FiedlerB.ComposPartA,ApplSciManuf,2006,37(12):2248-2256.doi:10.1016/j.compositesa.2005.12.021101BeurrotS,HuneauB,VerronE.JApplPolymSci,2010,117(3):1260-1269.doi:10.1002/app.31707102JoyDC,JoyCS.Micron,1996,27(3-4):247-263.doi:10.1016/0968-4328(96)00023-6103MohaiyiddinMS,OngHL,OthmanMBH,JulkapliNM,VillagraciaARC,Md.AkilH.PolymCompos,2018,39:E561-E572.doi:10.1002/pc.24712104PrimoGA,ManzanoMFG,RomeroMR,IgarzabalCIA.MaterChemPhys,2015,153:365-375.doi:10.1016/j.matchemphys.2015.01.027原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21377&lang=zhDOI:10.11777/j.issn1000-3304.2021.21377《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304
  • 『爆裂推荐』便携式原子力显微镜(AFM)全新上线!AFM纳米形貌表征从未如此简单!
    近期,QuantumDesign中国引进了加拿大ICSPI公司设计和生产的便携式nGauge原子力显微镜(AFM),该设备基于其有的芯片式自感应探针技术,摆脱了传统AFM对激光的依赖,带给了传统AFM革命性的变化! nGauge便携式芯片原子力显微镜(AFM)具有小巧灵活、方便携带,操作简单,扫描速度快,可扫描大尺寸样品,无需维护、无需减震、超稳定等优点,适合各类纳米表征应用场景,从科学研究、高等教育到工业用户的样品3D表面形貌快速成像分析等,革命性的创新技术大的降低了传统AFM的复杂操作,也大的拓宽了传统AFM的应用范围!图1. nGauge便携式芯片原子力显微镜(AFM)实物图。左图为使用状态,右图为收纳状态。nGauge便携式原子力显微镜(AFM)特点:更小巧,更便携拥有的AFM微纳机电芯片,使得nGauge原子力显微镜(AFM)系统仅有公文包大小,可随身携带。 更简单,更易用只需点击鼠标三次即可获得样品表面纳米形貌信息,无需配置减震平台。 更高性价比扫描速度快,可扫描大尺寸样品。一个针可以进行上千次扫描,无需繁琐的更换针操作和其他后期维护工作。 部分应用案例:材料 - 钢铁抛光样品表面检测光学显微镜图像nGauge AFM三维成像生物 - 皮肤样本光学显微镜图像nGauge AFM三维成像器件 - 微纳光学器件检测SEM图像nGauge AFM三维成像光电子器件检测SEM图像nGauge AFM三维成像部分文章列表:[1]. Zhao, P., et al., Multiple antibiotics distribution in drinking water and their co-adsorption behaviors by different size fractions of natural particles. Science of The Total Environment, 2021. 775: p. 145846.[2]. Guo, P., et al., Vanadium dioxide phase change thin films produced by thermal oxidation of metallic vanadium. Thin Solid Films, 2020. 707: p. 138117.[3]. Connolly, L.G., et al., A tip-based metrology framework for real-time process feedback of roll-to-roll fabricated nanopatterned structures. Precision Engineering, 2019. 57: p. 137-148.[4]. O' Neill, C., et al., Effect of tooth brushing on gloss retention and surface roughness of five bulk‐fill resin composites. Journal of Esthetic and Restorative Dentistry, 2018. 30(1): p. 59-69. 部分已有用户:样机体验:为了更好的服务客户,Quantum Design中国引进nGauge便携式芯片原子力显微镜样机,为大家提供样机体验机会,还在等什么?赶快联系我们吧! 电话:010-85120277/78 邮箱:info@qd-china.com,期待与您的合作!
  • 药物颗粒形貌与流动性的关系
    在制药行业中,药物粉体的流动性对生产、混合、传输、储存等过程具有重要影响。因此,准确描述和改善药粉的流动性,是控制产品质量的重要手段。药物粉体的流动性与颗粒形貌密切相关,还与粒度分布、含水量、颗粒表面粗糙程度和加入的其他成分等因素有关。本文通过实验寻求颗粒形貌和流动性之间的相关性。我们选取3个粒度和颗粒形貌均不相同的样品,先采用卡尔流动性指数法测试它们的流动性,测试结果如下。从以上结果可以看出,1号样品的流动性指数大,流动性好;2号样品流动性指数居中,流动性一般;3号样品的流动性指数最小,流动性最差。那么,它们的形貌和粒度分布如何呢?从动态显微图像粒度粒形分析系统测定结果看,1号样品中圆形度大于0.7的颗粒个数占比达到94.1%(圆形度大于0.9的颗粒占到2.3%)。1号样品颗粒的圆形度较高,与流动性成正相关。 图| 1号样品部分颗粒的圆形度和粒形2号样品颗粒粒径分布非常均匀,圆形度大于0.7的颗粒个数所占比例为79.6%,与1号样品相比少14.5%,因此它的流动性也较低。可见此样品的圆形度与流动性也呈正相关。 图| 2号样品部分颗粒的圆形度和粒形3号样品的颗粒形状多数近似于线条型,所有颗粒的圆形度都在0.5以下,圆形度在0.2~0.4的颗粒占97.5%。图| 3号样品部分颗粒的圆形度和粒形结合上述,1号样品94.1%的颗粒圆形度大于0.7,圆形度较高,流动性也好;2号样品79.6%的颗粒圆形度大于0.7,圆形度一般,流动性也一般;3号样品所有颗粒圆形度均小于0.5,圆形度最差,流动性也最差。圆形度与流动性呈正相关性的原因之一,是因为球形颗粒间接触面积最小,因而流动性好;非球形粒状颗粒间的接触面积稍大,流动性次之;片状、枝状和针状的颗粒间的接触面积大,且颗粒间相互勾连,故流动性最差。 如何进行颗粒圆形度分析?丹东百特仪器有限公司生产的干法或湿法动态粒度粒形分析系统,具有测试分析速度快,操作简便、测试范围大等优点。可同时测出粒度和粒形,更有长径、短径、等效面积径、体积分布、面积分布和数量分布等多种结果,能满足制药领域粒度粒形及流动性研究的需要。百特干法和湿法动态图像粒度粒形分析系统
  • 150万!中国科学院金属研究所扫描探针显微镜采购项目
    项目编号:22CNIC-031692-017项目名称:中国科学院金属研究所扫描探针显微镜采购项目预算金额:150.0000000 万元(人民币)最高限价(如有):150.0000000 万元(人民币)采购需求:名称:扫描探针显微镜数量:一套简要技术参数:实现在微纳米尺度上观测样品表面的三维形貌,获得样品尺寸、厚度以及粗糙度等信息,同时可对样品表面的力学、电学性能等物理化学特性进行研究。*扫描范围,扫描器X,Y轴扫描范围不小于80μm×80μm,Z轴扫描范围不小于10μm;*至少内置两个全数字双频锁相放大器,保证在扫描过程中实时自动调整探针驱动频率与共振频率保持一致,实现高灵敏的压电信号检测,支持实现双频共振追踪等测量模式。合同履行期限:合同生效后6个月。本项目( 不接受 )联合体投标。
  • 纳米尺度,原位探究?扫描电镜专用原位AFM探测系统助力锂离子电池老化过程原位研究
    【期刊】Journal of Power Sources IF=9.13DOI:https://doi.org/10.1016/j.jpowsour.2021.230459 【成果简介】 锂离子电池现已广泛应用于数码产品,医疗器械,和汽车等众多领域。可是,在使用锂离子电池的过程中,锂电池的性能会随着内部结构的老化而降低。这一问题会导致使用锂离子电池的成本增高。为了更加深入地了解锂离子电池在使用过程中老化的细节。奥地利林茨大学Gramse教授课题组近日利用扫描电镜专用原位AFM探测系统AFSEM对锂离子电池老化过程中电表面的形貌和导电特性的变化进行了纳米尺度的原位研究,其成果发表在Journal of Power Sources上。 AFSEM™ —使AFM和SEM合二为一:▪ 实现AFM和SEM的功能性互补▪ 让SEM实现样品的真实三维形貌成像▪ 在扫描电镜中进行AFM原位分析▪ 无需激光和探测器,适用于任何样品表面▪ 适配SEM不妨碍正常的操作 【图文导读】图1 用不同尺度和方法来研究锂离子电池的电化学表现。A)用电化学阻抗谱(EIS),电池循环和容量测试的方法研究锂离子电池的老化问题。 B)用电化学相关有限元的方法来研究电池的EIS表现。C)用AFM,AFSEM和SEM等表征手段研究电池循环后的纳米尺度上的彼变化。图2 电化学循环次数,充电状态和循环温度对锂离子电池阻抗谱的影响。A)电池不同循环次数后阻抗谱的变化。B)充电600次后,24℃条件下的电池阻抗谱。C)不同温度下,循环100次后电池阻抗谱的研究。 图3 锂离子电池的有限元模型。A)锂离子电池的一维有限元模型。B)不同薄膜阻抗下模拟的电化学阻抗值。C)电化学阻抗模拟值随着双层电容的变化。D)不同电材料颗粒大小对电化学阻抗模拟值的影响。图4 电池经过循环后,SEM和AFSEM对电池内部结构的原位微纳表征。A)经过不同次数的循环后,石墨阳表面的电子扫描成像。B)AFSEM对不同循环次数的阳表面形貌进行原位表征。C) AFSEM对不同循环次数的阴表面形貌进行原位表征。图5 利用AFSEM多功能探针对不同老化阶段的阳材料进行表征。A)为AFSEM原子力显微镜扫描获得的形貌图。B)扫描微波显微镜对样品表征结果。C)AFSEM提供的样品纳米尺度的直流电导率测量。 【文章总结】 奥地利林茨大学Gramse教授课题组利用AFSEM对老化锂离子电池电表面进行了纳米尺度的原位分析。这是因为AFSEM可以在电子显微镜所需的真空环境下运行。在获得电子显微成像的基础上,还可以获得样品表面形貌的信息。除此之外,AFSEM的多功能探针,也可以对样品指定区域的磁性,电学,力学,热学性能进行微纳尺度的表征。
  • 150万!中国科学院金属研究所扫描探针显微镜采购项目
    项目编号:22CNIC-031692-017项目名称:中国科学院金属研究所扫描探针显微镜采购项目采购方式:竞争性磋商预算金额:150.0000000 万元(人民币)最高限价(如有):150.0000000 万元(人民币)采购需求:名称:扫描探针显微镜数量:1套简要技术参数:实现在微纳米尺度上观测样品表面的三维形貌,获得样品尺寸、厚度以及粗糙度等信息,同时可对样品表面的力学、电学性能等物理化学特性进行研究。扫描范围,扫描器X,Y轴扫描范围不小于80μm×80μm,Z轴扫描范围不小于10μm;至少内置两个全数字双频锁相放大器,可实现在扫描过程中,同时在共振峰的两侧施加两个振动频率以实时追踪共振频率的变化,自动调整探针驱动频率与共振频率保持一致,实现高灵敏的压电信号检测;工作带宽20MHz。导电性原子力显微镜模块:通过测量探针与样品之间的超低电流可对样品的导电性进行成像和I/V曲线测试,具有pA级分辨率,最大测量电流不小于10μA合同履行期限:合同生效后6个月内本项目( 不接受 )联合体投标。
  • 用户培训丨EM科特台式扫描电镜入驻中科院金属研究所
    2020年11月,EM科特工程师针对台式扫描电镜的应用测样及上机操作等方面问题为金属研究所的师生们展开专业的系统培训。工程师正为大家演示仪器材料环境腐蚀研究中心是研究国家重大工程中所需要的关键材料在核电、油气田、石化等典型使用环境中(如力学化学交互作用、高温高压、多相流、腐蚀性大气和土壤等)发生腐蚀失效的行为及机理,并对材料在腐蚀环境中的服役性能进行监/检测、失效分析及寿命预测的研究中心。同时,材料环境腐蚀研究中心发展新型耐蚀材料及防护涂层,确保材料在重大工程中的安全使用。材料环境腐蚀研究中心在纳米材料、合金材料等研究方向科研成果显著,所研制的镁合金及防护涂层已在汽车等领域批量应用;纳米复合涂料已在飞机、电力、船舶上应用。台式扫描电子显微镜是一种可安放在实验台面上操作的电子显微镜,原理和传统扫描电子显微镜相同,其应用范围很广,包括断裂失效分析、产品缺陷原因分析、镀层结构和厚度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的结构与蚀损分析等。EM科特台式扫描电镜区别于传统扫描电镜的笨重机身,具有体积小巧、操作简便、抽真空快速、性价比高等优势,并且用户可遵照客户服务指南任意移动SEM设备。我们的台式扫描电镜为各个行业提供样品表面的微结构和表面形貌的微观观察,广泛应用于材料科学、纳米颗粒、生物科学、食品药品、纺织纤维、地质科学等诸多领域。EM科特始终保持前瞻性的探索精神,专注于台式/桌面扫描电镜技术的研究与开发,致力于为全球高校、企业及科研院所提供便捷、高效、精确的桌面扫描电镜解决方案及桌面电镜相关的技术支持与检测服务。
  • 300万!山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目
    项目编号:OITC-G220311575项目名称:山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):295.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期交货地点是否允许采购进口产品第1包扫描探针显微镜(SPM)1主要用于探测样品表面微区形貌、及表界面纳米尺度上物理和化学性质的新型表面分析仪器。拟采购的多功能SPM具有操作简单自动化强,速度快,超低噪音水平,扫描环境可控和超高的原子级分辨率等特点。不仅可获得样品微区三维形貌信息,还能够精确的从纳米尺度上对材料进行原位的力学、电学、压电性能以及磁学等性能进行表征。合同生效后 4个月内山东能源研究院是 合同履行期限:合同生效后 4个月内本项目( 不接受 )联合体投标。
  • 300万!山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目
    项目编号:OITC-G220311575项目名称:山东能源研究院氢能和燃料电池材料分析平台之扫描探针显微镜采购项目预算金额:300.0000000 万元(人民币)最高限价(如有):295.0000000 万元(人民币)采购需求:包号设备名称数量简要用途交货期交货地点是否允许采购进口产品第1包扫描探针显微镜(SPM)1主要用于探测样品表面微区形貌、及表界面纳米尺度上物理和化学性质的新型表面分析仪器。拟采购的多功能SPM具有操作简单自动化强,速度快,超低噪音水平,扫描环境可控和超高的原子级分辨率等特点。不仅可获得样品微区三维形貌信息,还能够精确的从纳米尺度上对材料进行原位的力学、电学、压电性能以及磁学等性能进行表征。合同生效后 4个月内山东能源研究院是 合同履行期限:合同生效后 4个月内本项目( 不接受 )联合体投标。
  • 原位电镜观察双金属纳米粒子的结构形貌演变
    最近几年,随着基于贵金属(如Pt、Pd、Au等)的纳米催化剂被深入研究,人们开始把注意力转移到非贵金属催化剂(Fe、Co、Ni、Cu等)的可控合成和催化性质研究上。如果能够开发出替代贵金属的非贵金属催化剂,无论是从基础研究还是工业应用上来说都是非常有价值的。不过,从物理和化学性质来说,贵金属和非贵金属的区别还是非常大的。  考虑到金属催化材料一般是用来催化氧化还原反应,因此我们这里做一些简单的对比。对于贵金属来说,它们的纳米粒子一般来说性质比较稳定,经过还原后不太容易被氧化。即使在催化反应过程中,虽然位于表面的原子会发生价态的变化,但是对于纳米粒子的整体来说,这种价态的变化并不是那么的显著。相比之下,非贵金属的性质就更加难以控制和琢磨。对于Fe和Co来说,被还原后的金属纳米粒子非常不稳定,一旦接触空气就会被氧化。如果没有一些保护的配体或者载体,那么完全变成氧化物可能就是几秒钟的事。相对来说,Ni和Cu的金属态纳米粒子相对来说稳定一些。但是如果尺寸比较小(小于5 nm),也非常容易被空气氧化。在绝大部分加氢反应中,非贵金属的催化剂都需要经过一个预先的还原过程来进行活化。而我们在对催化剂进行表征的过程中,很多时候催化剂已经接触了空气,和实际反应条件下的样品有区别了。这种差异在非贵金属催化剂上体现的特别明显。图1. 通过Kirkendall效应,实心的Co纳米粒子被氧化形成空心的CoO结构。图片来源:Science  在氧化和还原的过程中,不仅仅是发生化学价态的变化,很多时候还会伴随着纳米粒子形貌的变化。十多年前,材料科学家们在制备Fe、Co纳米粒子的时候就发现这些实心的纳米粒子暴露空气后会逐渐被氧化,然后形成空心结构的CoO(Science, 2004, 304, 711)。这种现象可以用Kirkendall效应来解释。同时这也说明在化学态变化的同时,物质也在纳米尺度发生迁移。上述现象目前在非贵金属体系中比较普遍 而在贵金属体系则比较少见。考虑到在催化反应中,不光是催化剂的表面性质对反应性能影响很大,催化剂活性组分的几何结构也有至关重要的影响。因此,对于在氧化-还原过程中形貌会有显著变化的非贵金属催化剂,借助一些原位表征手段研究纳米粒子在氧化-还原过程中的结构演变就是很有意义的课题。  在2012年,来自美国Brookhaven国家实验室和Lawrence-Berkeley国家实验室的电镜科学家就借助环境透射电镜研究了CoOx纳米粒子被H2还原到金属Co纳米粒子的过程(ACS Nano, 2012, 6, 4241)。如图2所示,小颗粒的CoOx粒子在逐步还原的过程中会发生团聚,然后得到大颗粒的金属Co纳米粒子。图2. 通过原位电镜来观察CoOx还原到金属Co的过程。图片来源:ACS Nano  对于单组份的Co纳米粒子,情况可能还相对简单一些。对于双金属甚至更多组分的非贵金属纳米粒子,在氧化-还原条件下他们的结构演变就会变得更加复杂和有趣。最近,在2012年工作基础上,美国Brookhaven国家实验室的Huolin L. Xin博士和天津大学的杜希文教授等科学家用原位透射电镜研究了CoNi双金属纳米粒子在氧化的过程中形貌的变化(Nat. Commun., 2016, 7, 13335)。图3. CoNi合金纳米粒子逐渐被氧化为多孔的CoOx-NiOx结构。图片来源:Nat. Commun.  首先,作者考察了单个的CoNi合金纳米粒子在400 ℃下被氧化的过程。如图3a所示,实心的具有规则几何外形的纳米粒子是初始的材料。经过61秒后,在这个纳米粒子的棱角处可以观察到形貌的变化。随着时间的延长,可以明显的观察到表面形成了一层衬度较低一些的氧化层。经过了大概十分钟后,整个纳米粒子的形貌已经发生了显著的变化,说明Co和Ni在氧化的过程中不是静止的,而是在运动。再经过一段时间,实心的纳米粒子就会呈现一种核壳结构出现了氧化层和金属内核之间的明显界限。如果延长粒子在氧气气氛中的时间,金属态的内核会进一步的被氧化,直到变成一个具有多孔性质的氧化物结构(如图3b和图3c所示)。为了考察在氧化过程中Co和Ni两种元素的分布情况,作者对中间形成的结构进行了EELS elemental mapping。如图3所示,本来是充分混合的CoNi合金粒子经过氧化后,发生了部分的分离。在氧化后的粒子上,可以看到在表面形成了一个富含Co的薄层。在原文中,作者对这个氧化过程进行了三维的元素分析,确认了Co和Ni发生了空间上的部分分离。  为了解释在原位电镜实验中观察到的现象,作者对这个氧化过程进行了理论上的计算和分析。通过经典的固体物理和物理化学的理论,作者比较了Co和Ni的氧化趋势的强弱,发现Co更容易被氧化。同时,作者还考察了Co和Ni在氧化过程中的速率,发现Co具有更前的结合O的能力,也更容易在氧化的过程中发生迁移。这样结合起来就解释了在原位电镜实验中观察到了Co和Ni发生部分的分离的现象。  总的来说,这项工作发现了非贵金属纳米粒子中一些有趣的现象。而这些现象其实和催化过程都是有紧密的关系,可以帮助我们更好的理解非贵金属催化剂在氧化-还原条件下的一些行为。
  • 用二次离子质谱法检测锂——表面形貌与化学分析的相关性
    古德伦威廉(Gudrun Wilhelm) 乌特戈拉-辛德勒(Golla-Schindler)蒂莫伯恩塔勒(Timo Bernthaler) 格哈德施耐德(Gerhard Schneider)二次离子质谱 (SIMS) 允许分析轻元素,尤其是锂。研究者使用三种不同的探测器将二次电子图像与表面形貌、化学分析相关的元素映射相结合,过测量标准样品并将其质谱信息与老化阳极的质谱信息相比较来鉴定化合物,获得了对锂离子电池老化现象的新见解。介绍电动汽车、自行车和踏板车的使用正在增加,而这些都需要高性能、长寿命的电池。在开发这些电池时,需要了解的一个重要主题就是老化过程。如果锂电池老化,阳极表面会发生锂富集,这与功能性工作锂的损失成正比,将会降低电池的容量。然而,确切的结构和化学成分仍然难以捉摸。我们预计,将二次电子成像和二次离子质谱 (SIMS) 与锂的相关可视化相结合,将带来新的见解。材料和方法使用配备 Gemini II 柱、肖特基场发射电子枪、Inlens 检测器、Oxford Ultim Extreme EDS检测器和使用镓离子的聚焦离子束的 Zeiss crossbeam 540 进行研究。连接了 Zeiss 飞行时间检测器和 Hiden 四极检测器以实现 SIMS 分析。第三个检测器是一个扇形磁场检测器,它连接到使用氦或氖离子工作的 Zeiss Orion NanoFab。使用三种不同的 NMC/石墨电池系统证明了锂检测,这些系统具有降低的容量 ( 900 次充电和放电循环。 结果使用扫描电子显微镜 (SEM) 检测二次电子可以使循环阳极箔的表面形貌具有高横向分辨率(图 1a、b、c):阳极石墨板覆盖有 (a) 薄壳(几纳米厚),(b)纳米颗粒(约 10-100 nm),(c)大的沉淀物,如球形颗粒(约 100-500 nm),以及微米范围内的大纤维。这些结构具有不均匀分布,表明局部不同的老化条件和过程。化学成分使用能量色散光谱法(EDS,图 1d)进行了分析。EDS 光谱检测元素碳、氧、氟、钠和磷。除碳外,检测到的最高量是氧和氟。很明显,EDS场光谱和点光谱是不同的:场光谱具有更高量的氧、氟和磷。相位映射表明EDS点谱的测量点位于氧和氟含量低的区域,氧和氟都是纳米颗粒的一部分。这证明了不均匀分布与局部不同的元素组成成正比。图:1:具有高横向分辨率的循环阳极箔的表面形貌;石墨板覆盖有(a)结壳,(b)小颗粒,(c)由球形颗粒和微米级纤维组成的大沉淀物;(d) 用 EDS 分析的循环阳极表面;所呈现的点和场光谱显示了氧、氟和磷含量的差异;氧和氟在相位映射中更喜欢相同的表面结构。SIMS 可以检测到高锂信号(m/z 6 或 7),这允许锂映射与二次电子图像相关(图 2a、b)。锂覆盖整个表面并且是所有表面结构的一部分:结壳、纳米颗粒以及大小纤维。由于氧的电负性提高了对锂的检测,因此可以检测到具有高氧浓度的粒子的高信号。锂具有不同的键合伙伴,导致不同的表面结构。示例性地,显示了质荷比 33 和 55(图 2c,d)。M/z 33 是大纤维结构的一部分,而 m/z 55 在小纤维结构中富集。必须仔细解释质荷比。M/z 33 可以解释为正离子 Li2Li3+、OLi2+ 和 Li2F+。M/z 55 可以解释为锰。铜、钴和镍存在于与锰相同的表面结构中。这些元素表明正极材料(Mn、Co、Ni)的分解和负极集流体(Cu)的浸出。结壳和纳米颗粒均不含 m/z 33 和 m/z 55。在正离子质谱中只能检测到 m/z 6、7 和 14。负离子质谱为它们提供 m/z 16 和 m/z 19,可与氧和氟相关联。在正离子质谱中可以检测到图7和14。负离子质谱为它们提供 m/z 16 和 m/z 19,可与氧和氟相关联。 图 2:与 SIMS 元素映射 (bd) 相关的循环阳极箔的表面形貌 (a);(b) 锂覆盖整个表面,是所有表面结构的一部分;(c) m/z 33 和 (d) m/z 55(锰)偏好不同的表面结构,表明不同的化合物。使用 Zeiss Orion NanoFab [1] 测量了隔膜的阳极侧,与传统 SIMS 相比,它具有更高的横向分辨率。横向分辨率取决于离子探针的尺寸,因此 NanoFab 的横向分辨率显着提高(图 3)。可以识别球形颗粒和纳米颗粒。对于 (b) m/z 6 (锂)、(c) m/z 19 (氟)和 (e) m/z 16 (氧),球形颗粒显示出高信号。纳米粒子包含相同的元素和额外的 (d) 硅 (m/z 28)。可以使用每个像素的平均计数来半定量地解释质谱结果。这证明了球形颗粒和纳米颗粒的不同化学组成。 图 3:循环隔膜的表面形貌(阳极侧);与 SIMS 元素映射相关;沉淀物中含有锂和氟以及少量的氧气;纳米粒子含有锂、氟、硅和氧;二次离子质谱测量的半定量解释。SIMS 质谱由元素峰和分子峰组成。元素峰代表单个同位素,分子峰由几个同位素组成。通过将分子峰与标准样品的峰光谱进行比较,可以精确解释分子峰。这已在下一步中完成,并允许确定表面结构的化合物。图 4a 显示了化合物 LiF 的质谱(正离子)。可以找到几个峰:m/z 6、7、14 和 m/z 32 和 33 附近的一系列峰。这些是可以解释为 Li(6 和 7)和 Li2(14)的主峰。该组可能被视为 Li2Li3+ 或 OLi2+ 或 Li2F+。锂同位素 6 和 7 导致几个 m/z 比。该质谱可以与循环阳极的质谱(正离子)进行比较(图 4b)。主峰显示出良好的相关性,而由于循环阳极上的低 LiF 含量,强度较小的峰可能不可见。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。对于负离子的质谱也必须这样做。那里的主峰也可能是相关的。该过程证明 LiF 沉淀在循环阳极的顶部。将此结果与图 2 中的 SIMS 映射进行比较,发现 m/z 33(和 m/z 6、7 和 14)是大纤维结构的一部分(图 3c)。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。因此,大纤维结构可能包含 LiF 或可能由 LIF 组成。测量标准样品可用作指纹技术,并为解释 SIMS 结果开辟了新途径。 图 4:(a) LiF 质谱与 (b) 循环阳极质谱的比较;m/z 6、7、14、32 和 33 的峰可以与循环阳极质谱相关;m/z 33 的正确解释需要进一步的标准样品测量。结论显示结壳、纳米颗粒和大沉淀物的不均匀表面形貌可以通过二次电子图像进行可视化,并通过 EDS 和 SIMS 进行分析。使用 SIMS 进行的锂分析表明,所有结构都包含具有不同键合伙伴的锂,例如纳米颗粒中的氧、氟和硅,球形颗粒中的锂、氟和氧,以及小纤维结构中的锰。标准样品(例如 LiF)的制备能够通过质谱解释来定义准确的化合物。 致谢我们感谢 Hiden GmbH 的四极质谱仪和 Graham Cooke 的有益讨论,我们感谢 Peter Gnauck、Fouzia Khanom、Antonio Casares 和 Carl Zeiss 使用 Orion 进行 SIMS 测量,我们感谢 Hubert Schulz 在飞行探测器,我们感谢 IMFAA 合作者的帮助和项目 LiMaProMet 的财政支持。联系古德伦威廉(Gudrun Wilhelm)德国,阿伦(Aalen),阿伦大学(Aalen University),材料研究所 (IMFAA),gudrun.wilhelm@hs-aalen.de 参考文献:[1] Khanom F.、Golla-Schindler U.、Bernthaler T.、Schneider G.、Lewis B.:显微镜和微量分析 25 (S2) S. 866-867 (2019) DOI:10.1017/S1431927619005063 ---------------------------------------------------------------------------------------------------关于作者古德伦威廉(Gudrun Wilhelm)德国,阿伦大学(Aalen University),材料研究所 (IMFAA),Gudrun Wilhelm 在弗里德里希-亚历山大-埃尔兰根-纽伦堡大学学习地球科学,重点是矿物学。2019 年,她以科学员工和博士生的身份加入阿伦大学材料研究所(IMFAA)。她的研究重点是锂离子电池的老化机制。主要方法有扫描电子显微镜法、能量色散光谱法和二次离子质谱法。原文Lithium detection with Secondary Ion Mass Spectrometry,Wiley Analytical Science 2022.8.10翻译供稿:符 斌
  • 布鲁克携三维形貌计量新品亮相SEMICON CHINA 2021
    自1988年首次在上海举办以来,SEMICON CHINA 已成为中国首要的半导体行业盛事之一,它囊括当今世界上半导体制造邻域主要的设备和材料厂商。SEMICON CHINA见证了中国半导体制造业茁壮成长,加速发展的历史,也将为中国半导体制造业未来的强盛壮大做出贡献。2021年3月17日,SEMICON CHINA 2021在上海新国际博览中心隆重召开。作为世界领先的分析仪器公司之一,布鲁克携其半导体解决方案亮相SEMICON CHINA 2021。布鲁克展台在此次布鲁克参展的产品中,一台台式全自动三维形貌计量的新品吸引了观众的目光。白光干涉仪 Contour X这款白光干涉仪Contour X(三维光学轮廓仪)是世界上最全面的快速,非接触式3D表面计量自动化台式系统。该系统集成了布鲁克专有的自动倾斜光学测头,可以完全编程并自动测试一定角度范围内的表面特征,并能最大程度地减少跟踪误差。据了解,Contour X-500满足计量要求,具有无与伦比Z轴分辨率和准确性,并在更小的占地面积内提供了布鲁克的白光干涉仪(WLI)落地式型号所有业界的优点。利用业界最先进的用户界面,CountourX-500可以直观地调用多种预设好的滤镜和分析工具。借助其新的USI通用扫描模式,本产品可以轻松地针对各种复杂应用场景定制分析方法。这些场景涵盖了从精密加工表面和半导体工艺制程,到眼科和MEMS器件的R&D表征。
  • Versa SCAN原位局部扫描电化学测试技术获新研究进展
    p style=" text-align: center " span style=" font-size: 18px " strong Versa SCAN 原位局部扫描电化学测试技术 /strong /span /p p style=" text-align: center " span style=" font-size: 14px " 阿美特克集团科学仪器部 黄建书博士 /span /p p   传统的宏观电化学测试技术,如恒电位、恒电流、循环伏安和交流阻抗等测量的是样品整体响应,整个电极/电解液界面的平均响应信号。由于样品很少为均相,所以样品通常由钝化/活化自然属性的局部区域,或者阴极/阳极特性的局部区域组成,并且样品的性质变化往往由于局部反应和变化所导致,如腐蚀过程通常是由点腐蚀和缝隙腐蚀开始,催化剂表面并非所有位置都有催化活性,表面仅有部分活性点有催化效果等等。因此,宏观测试技术在研究中受到局限性,可以通过探针/微电极在样品表面扫描,监测电流、电压和阻抗等电信号的变化来区分局部反应发生的程度、位置和区域大小。 /p p   根据应用不同,可分为以下九种技术 /p p 1. 扫描电化学显微镜(SECM) /p p 2.等距离扫描-柔性探针技术 (Stylus SECM) /p p 3.无氧化还原介质SECM技术(AC-SECM) /p p 4. 扫描振动电极测量系统(SVET,SVP) /p p 5. 微区电化学阻抗系统(LEIS) /p p 6. 扫描开尔文探针系统(SKP) /p p 7. 扫描微液滴系统(SDC) /p p 8. 非接触式光学微区形貌探测系统(OSP) /p p 9. 表面离子浓度成像系统(ISP) /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/fd19b840-e0e1-4684-a9f0-53056f228a73.jpg" title=" 1.png" style=" width: 622px height: 358px " width=" 622" vspace=" 0" hspace=" 0" height=" 358" border=" 0" / /p p style=" text-align: center " strong Fig 1 Versa SCAN 系统概图 /strong /p p & nbsp /p p   由于成像机理是电化学,所以SECM, SVET和LEIS等技术的应用就如同电化学反应本身的应用一样多种多样。在某些关键的领域,如腐蚀机理研究,能源材料,生物传感器,反应动力学,多孔膜,燃料电池催化剂等方面发挥巨大作用。 /p p & nbsp /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/67c712bb-3ff7-4c62-8f9e-01eff8da18f8.jpg" title=" 2.png" style=" width: 590px height: 295px " width=" 590" vspace=" 0" hspace=" 0" height=" 295" border=" 0" / /p p style=" text-align: center " strong Fig 2 基体7075 Al表面涂层耐腐性评价,相同区域面扫描, pH 3(左),pH 8 (右)和pH 6.85 (中), /strong /p p style=" text-align: center " strong 电解液为0.1 M磷酸缓冲溶液 /strong /p p style=" text-align: center " strong ECS Transactions, 66 (30) 65-71 (2015) /strong /p p & nbsp /p p   微区探针扫描有两种模式,等高扫描和等距离扫描。等高扫描适合于样品非常平整的表面或者粗糙度比较小的样品,但对于部分应用的样品无法抛光或确保非常小的粗糙度范围,比如腐蚀涂层,表面修饰电极,生物样品等,如果按照等高度进行扫描,由于样品的高度发生变化,所以探针移动的每个位置和样品表面的距离会发生变化,这会从而导致最终结果中的信号变化,很可能来自于探针和样品的距离变化而非样品表面真实的性质变化,因此等高模式扫描对于样品表面粗糙度比较大的样品测试具有很大局限性。 /p p   为了克服样品粗糙度较大对于测试结果的影响,需要使用等距离扫描模式,即探针尖端到样品的距离保持恒定,如何实现等距离扫描呢? /p p   Ametek 科学仪器部与瑞士洛桑理工Hubert H. Girault教授团队合作开发了Versa SCAN-Stylus Probe柔性探针测试系统,该系统所采用的探针构造如下,中心为柔性碳纤维,碳纤维外层覆盖厚度均匀的聚合物涂层,在扫描过程中探针与样品表面成一定角度,探针到样品的距离保持恒定,即探针外侧涂层的厚度决定了探针到样品的距离,如涂层的厚度为10um,则探针到样品的距离为10um。 /p p br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/8cc578e9-4048-430b-96ab-d17847b99e26.jpg" title=" 3.png" style=" width: 460px height: 283px " width=" 460" vspace=" 0" hspace=" 0" height=" 283" border=" 0" / /p p style=" text-align: center " strong Fig 3 柔性探针扫描示意图 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/029522ea-bb4d-4f82-b2a7-8ff90563f824.jpg" title=" 4.png" / /p p style=" text-align: center " strong Fig 4 柔性探针扫描过程 /strong /p p   柔性探针技术优势如下:适用于倾斜的,褶皱的和粗糙的样品。与样品软接触:接触力为硬探针接触的1/1000,所以柔性探针技术成为研究生物样品的理想选择。 /p p 1.& nbsp 低成本:无需额外硬件的特殊反馈和电子控制用于控制探针和样品表面的垂直距离 /p p 2.& nbsp 快速测量: SECM扫描前无需样品表面形貌测量 /p p 3.& nbsp 柔性和稳定性探针: 定位和扫描时探针和样品不会被损坏,如肿瘤细胞组织和测试 /p p 4.& nbsp 小的尖端:探针样品距离易于控制可提高成像的对比度和分辨率 /p p 5.& nbsp 电极易于制备: 使用后电极的尖端可以切除确保表面干净。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/3847eed9-5600-42bc-ad7c-616afa070d79.jpg" title=" 5.png" / /p p style=" text-align: center " strong Fig 5 左边:三期黑色素瘤(异相分布并且络氨酸浓度较低) 右边:二期黑色素瘤 /strong /p p style=" text-align: center " strong (均相分布并且谷氨酸浓度较高) /strong /p p & nbsp /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/3938b4ee-d070-4227-9faa-d1254096d28b.jpg" title=" 5.1.png" style=" width: 519px height: 290px " width=" 519" vspace=" 0" hspace=" 0" height=" 290" border=" 0" / /p p style=" text-align: center " strong Fig 5 PVDF膜上的香蕉液污点,由样品发生-探针收集模式使用多巴氨检测谷氨酸酶 /strong /p p   近来,在燃料电池催化剂表面活性位表征,锂离子电池金属锂负极枝晶的行成机制,正极材料的溶解导致的性能下降和充放电过程中材料表面电阻变化与容量之间的关系等研究展现出广阔前景。 /p p img src=" http://img1.17img.cn/17img/images/201712/insimg/adc2bcf1-3311-47c6-98c5-5ab3e70817e7.jpg" title=" 6.1.png" style=" width: 261px height: 360px " width=" 261" vspace=" 0" hspace=" 0" height=" 360" border=" 0" / & nbsp img src=" http://img1.17img.cn/17img/images/201712/insimg/d38d101e-0a84-489d-8ba0-e9753ba6c835.jpg" title=" 6.2.png" style=" width: 311px height: 234px " width=" 311" height=" 234" / & nbsp & nbsp /p p style=" text-align: center " strong Fig 6& nbsp 锂离子电池原位测试池,LEIS用于检测锂离子电池正极材料 /strong /p p strong br/ /strong /p p br/ /p p 销售热线& nbsp 400 1100 281 br/ 服务热线& nbsp 400 1100 282 br/ 联系邮箱& nbsp amt.si.china@ametek.com /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制