当前位置: 仪器信息网 > 行业主题 > >

三种颗粒尺寸

仪器信息网三种颗粒尺寸专题为您整合三种颗粒尺寸相关的最新文章,在三种颗粒尺寸专题,您不仅可以免费浏览三种颗粒尺寸的资讯, 同时您还可以浏览三种颗粒尺寸的相关资料、解决方案,参与社区三种颗粒尺寸话题讨论。

三种颗粒尺寸相关的资讯

  • 利用等比例扩大管道尺寸实现用于核酸药物递送的脂质纳米颗粒的可扩展化合成
    基于脂质纳米粒子(LNPs)的核酸药物递送系统已经被证明在基因编辑、癌症治疗、传染病预防、慢性病治疗等领域具有巨大潜力。微流控技术作为一种高效的可调合成平台,可以在LNPs的合成过程中精确控制流动参数,包括流量比、总流量以及脂质浓度等,从而实现不同尺寸的粒子合成。这对于实现不同器官的精准靶向具有重要意义,是当前科学研究的一个关键焦点。然而,将LNPs从实验室研发成功转化为临床应用仍然面临一个严峻的挑战:如何稳健地实现制备规模的放大。目前,规模化合成LNPs的方法主要分为并行化合成策略和通道尺寸扩大策略两种。虽然并行化合成策略原理简单,但需要建立复杂的系统以确保流量分配的稳定性,因此尚未在LNPs的工业制造中广泛应用。通道尺寸扩大策略则采用更大尺寸的单一芯片,提高了最大容许流量,并通过高流速下的湍流混合来确保极限尺寸纳米粒子的合成,例如受限撞击射流混合器和T型混合器。然而,尽管后者能够实现稳定的大规模生产,但在不同流速下难以维持一致的粒径和尺寸分布。因此,我们迫切需要一种创新性的方法,既能保证可扩展的合成,又能维持LNPs的一致性和稳定性。为此,中科大工程学院褚家如教授团队的李保庆副教授与生命科学与医学部田长麟教授团队深入研究后,提出了一种创新的脂质纳米粒子合成策略,即“等比例缩放通道尺寸实现LNPs的可扩展合成”。这一策略通过在三个维度上等比例缩放惯性微流体混合器,并且通过控制混合时间保持一致来确保一致粒径分布的LNPs的合成。这一策略为LNPs的大规模生产提供了实际可行的途径。相关研究成果已发表在Nano Research上。中国科学技术大学在读博士生马泽森和童海洋为共同第一作者。合作团队首先研制了一种高效的惯性流混合器,该混合器充分利用了流体的惯性效应,包括迪恩涡、分离涡以及分离重组效应,以显著提高混合效率。与其他惯性流混合器相比,这种混合器在更低的雷诺数下也能实现充分混合。利用这一混合器,合作团队研究了两种LNPs配方在不同混合时间下的粒径分布,发现混合时间和粒径之间存在良好的线性关系。因此,合作团队推测,通过在不同混合器中控制混合时间的一致性,可以实现具有相同粒径分布的LNPs的合成。基于这一构想,合作团队等比例缩放了该惯性流体微混合器,并使用高精度3D打印和激光加工制备了具有不同通道尺寸的芯片。这些芯片用于实现不同通量条件下的LNP筛选和规模化制备的一致性。对于管道尺寸小于100μm的芯片,选择了摩方精密nanoArch S130设备进行打印和加工,以确保尺寸得到精确控制,从而实现了小于1mL/min流量下均匀的LNPs的合成。此外,合作团队还基于流体力学的相似性理论进行了研究,通过量纲分析和实验标定,总结出了不同管道尺寸混合器实现相同混合时间的流量关系。经过实验验证,在相同的混合时间下合成的LNPs具有一致的粒径、分散性以及包封率。此外,合作团队还验证了具有相同粒径的LNPs在核酸递送方面的能力,成功合成了包封siRNA的LNPs,并证明了它们具有相同的基因沉默效力。总体而言,合作团队提出的“等比例缩放通道尺寸实现可扩展化合成”的策略为核酸药物的大规模生产提供了一种简单、可靠且稳定的途径。这一方法有望极大地加速LNPs药物从早期开发阶段迈向临床应用,推动核酸药物研发进入崭新的领域,为人类健康做出重要贡献。利用摩方精密nanoArch S130设备打印加工的管道尺寸分别为50μm和100μm的微流控芯片模具。其中XY方向上的精度为2μm,Z方向上的精度为5μm,样件尺寸为30mm×40mm。图1 惯性流混合器的结构以及原理示意图。(a)混合器的结构示意图。(b)利用混合器合成脂质纳米粒子的原理示意图。(c)混合器混合机理示意图。三种惯性流效应共同促进了混合,包括迪恩涡、分离涡以及分离重组效应。图2 利用计算流体力学仿真不同管道尺寸混合器的流型相似性。(a)前两个混合单元混合流型的顶部视图。(b)三种管道尺寸混合器在不同雷诺数下的流型相似性。图3 通道尺寸为100、250和500μm的混合器的前两个混合元件的流态俯视图。流动状态包括层流(Re=25和132)、瞬态流(Re=264)和湍流(Re=396)。图像经过数字处理以增强对比度。将溶解有黑色染料(0.025g/mL)作为示踪剂的去离子水和乙醇以3:1的FRR泵入混合器中。流动方向是从左到右。其中100μm的芯片是通过摩方精密nanoArch S130设备打印进行加工。图4 在相同混合时间下,不同通道尺寸的混合器合成具有一致粒径和尺寸分布的LNPs。(a)等比例缩放微混合器用于可扩展化合成LNPs。(b-c)在相同的混合时间下测量了两种LNPs配方的粒径分布。图5 一步对相同粒径LNPs核酸药物递送的性能评估。合成了包封因子VII siRNA后进行静脉注射,两天后测定因子VII活性。结果表明不同组别之间呈现一致的体内沉默效率。原文链接https://doi.org/10.1007/s12274-023-6031-1
  • 几何尺寸测量仪
    产品名称:几何尺寸测量仪产品品牌:EVM-G系列产品简介:本系列是一款高精度影像测量仪,结合传统光学与影像技术并配备功能完备的2.5D测量软件。可将以往用肉眼在传统显微镜下观察到的影像传输到电脑中作各种量测,并将测量结果存入电脑中以便日后存档或发送电子邮件。其操作简单、性价比高、精确度高、测量方便、功能齐全、稳定可靠。适用于产品检测、工程开发、品质管理。在机械加工、精密电子、模具制造、塑料橡胶、五金零件等行业都有广泛使用。产品参数:u 变焦镜筒:采用光学变焦物镜,光学放大倍率0.7X~4.5X,视频总放大倍率40X~400X连续可调,物方视场:10.6-1.6mm,按客户要求选配不同倍率物镜。u 摄像机:配备低照度SONY机芯1/3′彩色CCD摄像机,图像表面纹理清晰,轮廓层次分明,保证拥有高品质的测量画面。可以升级选配1/2′CMOS130万像素摄像机。u 底座:仪器底座采用高精度天然花岗石,稳定性高,硬度高,不易变形。u 光栅尺:仪器平台带有高精度光栅尺(X,Y,Z三轴),解析度为0.001mm。Z轴通过二次聚焦可实现对沟槽、盲孔的深度进行测量。u 光源:采用长寿命LED环形冷光源(表面光及底光),使工件表面照明均匀,边缘清晰,亮度可调。u 导轨:双层工作平台设计,配备高精度滚动导轨,精度高,移动平稳轻松。u 丝杆:X,Y轴工作台均使用无牙光杆摩擦传动,避免了丝杆传动的间隙,灵敏度大大提高,亦可切换快速移动,提高工作效率。 工作台仪器型号EVM-1510GEVM-2010GEVM-2515GEVM-3020GEVM-4030G金属台尺寸(mm)354×228404×228450×280500×330606×466玻璃台尺寸(mm)210×160260×160306×196350×280450×350运动行程(mm)150×100200×100250×150300×200400×300仪器重量(kg)100110120140240外型尺寸L*W*H756×540×860670×660×950720×950×1020 影像测量仪是建立在CCD数位影像的基础上,依托于计算机屏幕测量技术和空间几何运算的强大软件能力而产生的。计算机在安装上专用控制与图形测量软件后,变成了具有软件灵魂的测量大脑,是整个设备的主体。它能快速读取光学尺的位移数值,通过建立在空间几何基础上的软件模块运算,瞬间得出所要的结果;并在屏幕上产生图形,供操作员进行图影对照,从而能够直观地分辨测量结果可能存在的偏差。影像测量仪是一种由高解析度CCD彩色镜头、连续变倍物镜、彩色显示器、视频十字线显示器、精密光栅尺、多功能数据处理器、数据测量软件与高精密工作台结构组成的高精度光学影像测量仪器。仪器特点采用彩色CCD摄像机;变焦距物镜与十字线发生器作为测量瞄准系统;由二维平面工作台、光栅尺与数据箱组成数字测量及数据处理系统;仪器具有多种数据处理、显示、输入、输出功能,特别是工件摆正功能非常实用;与电脑连接后,采用专门测量软件可对测量图形进行处理。仪器适用于以二维平面测量为目的的一切应用领域。这些领域有:机械、电子、模具、注塑、五金、橡胶、低压电器,磁性材料、精密五金、精密冲压、接插件、连接器、端子、手机、家电、计算机(电脑)、液晶电视(LCD)、印刷电路板(线路板、PCB)、汽车、医疗器械、钟表、螺丝、弹簧、仪器仪表、齿轮、凸轮、螺纹、半径样板、螺纹样板、电线电缆、刀具、轴承、筛网、试验筛、水泥筛、网板(钢网、SMT模板)等。ISO国际标准编辑影响影像测量仪精度的因素主要有精度指示、结构原理、测量方法、日常不注意维护等。 中国1994年实行了国际《坐标测量的验收检测和复检测量》的实施。具体内容如下:第1部分:测量线性尺寸的坐标测量机 第2部分:配置转台轴线为第四轴的坐标测量机 第3部分:扫描测量型坐标测量机 第4部分:多探针探测系统的坐标测量机 第5部分:计算高斯辅助要素的误差评定。 在测量空间的任意7种不同的方位,测量一组5种尺寸的量块,每种量块长度分别测量3次所有测量结果必须在规定的MPEE值范围内。允许探测误差(MPEP):25点测量精密标准球,探测点分布均匀。允许探测误差MPEP值为所有测量半径的值。ISO 10360-3 (2000) “配置转台轴线为第四轴的坐标测量机” :对于配备了转台的测量机来说,测量机的测量误差在这部分进行了定义。主要包含三个指标:径向四轴误差(FR)、切向四轴误差(FT)、轴向四轴误差(FA)。ISO 10360-4 (2003) “扫描测量型坐标测量机” :这个部分适用于具有连续扫描功能的坐标测量机。它描述了在扫描模式下的测量误差。大多数测量机制造商定义了"在THP情况下的空间扫描探测误差"。在THP之外,标准还定义了在THN、TLP和TLN情况下的扫描探测误差。 沿标准球上4条确定的路径进行扫描。允许扫描探测误差MPETHP值为所有扫描半径的差值。THP说明了沿已知路径在密度的点上的扫描特性。注:THP的说明必须包括总的测量时间,例如:THP = 1.5um (扫描时间是72 秒)。ISO 10360-4 进一步说明了以下各项定义:TLP: 沿已知路径,以低密度点的方式扫描。THN: 沿未知路径,以高密度点的方式扫描。TLN: 沿未知路径,以低密度点的方式扫描。几何尺寸测量仪工作原理影像测量仪是基于机器视觉的自动边缘提取、自动理匹、自动对焦、测量合成、影像合成等人工智能技术,具有点哪走哪自动测量、CNC走位自动测量、自动学习批量测量的功能,影像地图目标指引,全视场鹰眼放大等优异的功能。同时,基于机器视觉与微米精确控制下的自动对焦过程,可以满足清晰影像下辅助测量需要,亦可加入触点测头完成坐标测量。支持空间坐标旋转的优异软件性能,可在工件随意放置或使用夹具的情况下进行批量测量与SPC结果分类。全自动影像测量仪编辑全自动影像测量仪,是在数字化影像测量仪(又名CNC影像仪)基础上发展起来的人工智能型现代光学非接触测量仪器。其承续了数字化仪器优异的运动精度与运动操控性能,融合机器视觉软件的设计灵性,属于当今最前沿的光学尺寸检测设备。全自动影像测量仪能够便捷而快速进行三维坐标扫描测量与SPC结果分类,满足现代制造业对尺寸检测日益突出的要求:更高速、更便捷、更的测量需要,解决制造业发展中又一个瓶颈技术。全自动影像测量仪是影像测量技术的高级阶段,具有高度智能化与自动化特点。其优异的软硬件性能让坐标尺寸测量变得便捷而惬意,拥有基于机器视觉与过程控制的自动学习功能,依托数字化仪器高速而的微米级走位,可将测量过程的路径,对焦、选点、功能切换、人工修正、灯光匹配等操作过程自学并记忆。全自动影像测量仪可以轻松学会操作员的所有实操过程,结合其自动对焦和区域搜寻、目标锁定、边缘提取、理匹选点的模糊运算实现人工智能,可自动修正由工件差异和走位差别导致的偏移实现精确选点,具有高精度重复性。从而使操作人员从疲劳的精确目视对位,频繁选点、重复走位、功能切换等单调操作和日益繁重的待测任务中解脱出来,成百倍地提高工件批测效率,满足工业抽检与大批量检测需要。全自动影像测量仪具有人工测量、CNC扫描测量、自动学习测量三种方式,并可将三种方式的模块叠加进行复合测量。可扫描生成鸟瞰影像地图,实现点哪走哪的全屏目标牵引,测量结果生成图形与影像地图图影同步,可点击图形自动回位、全屏鹰眼放大。可对任意被测尺寸通过标件实测修正造影成像误差,并对其进行标定,从而提高关键数据的批测精度。全自动影像测量仪有着友好的人机界面,支持多重选择和学习修正。全自动影像测量仪性能使其在各种精密电子、晶圆科技、刀具、塑胶、弹簧、冲压件、接插件、模具、军工、二维抄数、绘图、工程开发、五金塑胶、PCB板、导电橡胶、粉末冶金、螺丝、钟表零件、手机、医药工业、光纤器件、汽车工程、航天航空、高等院校、科研院所等领域具有广泛运用空间。选购方法编辑有许多客户都在为如何挑选影像测量仪的型号品牌所困扰,其实最担心就是影像测量仪的质量和售后。国内影像测量仪的生产商大部分都集中在广东地区,研发的软件功能大部分相似,客户可以不用担心,挑选一款能够满足需要测量的产品行程就行了。根据需要来选择要不要自动或者手动,手动的就比较便宜,全自动的大概要比手动贵一倍左右。挑选影像测量仪最重要看显像是不是清晰,以及精度是否达标(一般精度选择标准为公差带全距的1/3~1/8)。将所能捕捉到的图象通过数据线传输到电脑的数据采集卡中,之后由软件在电脑显示器上成像,由操作人员用鼠标在电脑上进行快速的测量。有的生产商为了节约成本可能会采用国产的,造价比较低,效果就稍微差点。常见故障及原因编辑故障1)蓝屏;2)主机和光栅尺、数据转换盒接触不良造成无数据显示;3)透射、表面光源不亮;4)二次元打不开;5)全自动影像测量仪开机找不到原点或无法运动。原因由于返厂维修周期长,价格昂贵,最重要的是耽误了客户的正常的工作。造成问题出现的原因很多,但无外乎以下原因:1)操作软件文件丢失或CCD视频线接触不良;2)光栅尺或数据转换盒损坏;3)电源板损坏;4)加密狗损坏或影像测量仪软件操作系统崩溃。以上问题可能是只出现一个,也有可能几个问题一起出现。软件种类编辑二次元测量仪软件在国内市场中种类比较多,从功能上划分主要有以下两种:  二次元测量仪测量软件与基本影像仪测量软件类似,其功能特点主要以十字线感应取点,功能比较简单,对一般简单的产品二维尺寸测量都可以满足,无需进行像素校正即可直接进行检测,但对使用人员的操作上要求比较高,认为判断误差影响比较大,在早期二次元测量软件中使用广泛。  2.5D影像测量仪在影像测量领域我们经常可以听到二次元、2.5次元、三次元等各种不同的概念,所谓的二次元即为二维尺寸检测仪器,2.5次元在影像测量领域中是在二维与三维之间的一种测量解决方案,定义是在二次元影像测量仪的基础上多加光学影像和接触探针测量功能,在测量二维平面长宽角度等尺寸外如果需要进行光学辅助测高的话提供了一个比较好的解决方案。仪器优点编辑1、装配2个可调的光源系统,不仅观测到工件轮廓,而且对于不透明的工件的表面形状也可以测量。2、使用冷光源系统,可以避免容易变形的工件在测量是因为热而变形所产生的误差。3、工件可以随意放置。4、仪器操作容易掌握。5、测量方便,只需要用鼠标操作。6、Z轴方向加探针传感器后可以做2.5D的测量。测量功能编辑1、多点测量点、线、圆、孤、椭圆、矩形,提高测量精度;2、组合测量、中心点构造、交点构造,线构造、圆构造、角度构造;3、坐标平移和坐标摆正,提高测量效率;4、聚集指令,同一种工件批量测量更加方便快捷,提高测量效率;5、测量数据直接输入到AutoCAD中,成为完整的工程图;6、测量数据可输入到Excel或Word中,进行统计分析,可割出简单的Xbar-S管制图,求出Ca等各种参数;7、多种语言界面切换;8、记录用户程序、编辑指令、教导执行;9、大地图导航功能、刀模具专用立体旋转灯、3D扫描系统、快速自动对焦、自动变倍镜头;10、可选购接触式探针测量,软件可以自由实现探针/影像相互转换,用于接触式测量不规则的产品,如椭圆、弧度 、平面度等尺寸;也可以直接用探针打点然后导入到逆向工程软件做进一步处理!11、影像测量仪还可以检测圆形物体的圆度、直线度、以及弧度;12、平面度检测:通过激光测头来检测工件平面度;13、针对齿轮的专业测量功能14、针对全国各大计量院所用试验筛的专项测量功能15、图纸与实测数据的比对功能维护保养编辑1、仪器应放在清洁干燥的室内(室温20℃±5℃,湿度低于60%),避免光学零件表面污损、金属零件生锈、尘埃杂物落入运动导轨,影响仪器性能。2、仪器使用完毕,工作面应随时擦干净,再罩上防尘套。3、仪器的传动机构及运动导轨应定期上润滑油,使机构运动顺畅,保持良好的使用状态。4、工作台玻璃及油漆表面脏了,可以用中性清洁剂与清水擦干净。绝不能用有机溶剂擦拭油漆表面,否则,会使油漆表面失去光泽。5、仪器LED光源使用寿命很长,但当有灯泡烧坏时,请通知厂商,由专业人员为您更换。6、仪器精密部件,如影像系统、工作台、光学尺以及Z轴传动机构等均需精密调校,所有调节螺丝与紧固螺丝均已固定,客户请勿自行拆卸,如有问题请通知厂商解决。7、软件已对工作台与光学尺的误差进行了精确补偿,请勿自行更改。否则,会产生错误的测量结果。8、仪器所有电气接插件、一般不要拔下,如已拔掉,则必须按标记正确插回并拧紧螺丝。不正确的接插、轻则影响仪器功能,重则可能损坏系统。测量方式编辑1、物件被测面的垂直测量2、压线相切测量3、高精度大倍率测量4、轮廓影像柔和光测量5、圆及圆弧均匀取点测量精密影像测绘仪测量软件简介:绘图功能:可绘制点、线、圆、弧、样条曲线、垂直线、平行线等,并将图形输入到AutoCAD中,实现逆向工程得到1:1的工程图。自动测绘:可自动测绘如:圆、椭圆、直线、弧等图形。具有自动寻边、自动捕捉、自动成图、自动去毛边等功能,减少了人为误差。测量标注:可测量工件表面的任意几何尺寸,不同高度的角度、宽度、直径、半径、圆心距等尺寸,并可在实时影像中标注尺寸。SPC统计分析软件:提供了一系列的管制图及多种类型的图表表示方法,使品管工作更方便,大大提升了品质管理的效率。报表功能:用户可轻易地将测量结果输出至WORD、EXCEL中去,自动生成检测报告,超差数值自动改变颜色,特别适合批量检测。鸟瞰功能:可察看工件的整体图形及每个尺寸对应的编号,直观的反应出当前的绘图位置,并可任意移动、缩放工件图。实时对比:可把标准的DXF工程图调入测量软件中与工件对比,从而快速检测出工程图和实际工件的差距,适合检测比较复杂的工件。拍照功能:可将当前影像及所标注尺寸同时以JPEG或BMP格式拍照存档,并可调入到测量软件中与实际工件做对比。光学玻璃:光学玻璃为国家计量局检验通过之标准件,可检验X、Y轴向的垂直度,设定比例尺,使测量数据与实际相符合。客户坐标:测量时无需摆正工件或夹具定位,用户可根据自己的需要设置客户坐标(工件坐标),方便、省时提高了工作效率。精密影像测绘仪仪器特点:经济型影像式精密测绘仪VMS系列结合传统光学与数字科技,具有强大的软件功能,可将以往用肉眼在传统显微镜下所观察到的影像将其数字化,并将其储存入计算机中作各式量测、绘图再可将所得之资料储存于计算机中,以便日后存盘或电子邮件的发送。该仪器适用于以二座标测量为目的一切应用领域如:品质检测、工程开发、绘图等用途。在机械、模具、刀具、塑胶、电子、仪表等行业广泛使用。变焦镜筒:采用光学变焦物镜,光学放大倍率0.7X~4.5X,视频总放大倍率:40X~400X,可按客户要求选配不同倍率物镜。摄像机:配备低照度SONY机芯1/3”彩色CCD摄像机,图像表面纹理清晰,轮廓层次分明,保证拥有高品质的测量画面。底座:仪器底座采用高精度天然花岗石,稳定性高,硬度高,不易变形。光栅尺:仪器平台带有高精密光栅尺(X、Y、Z三轴),解析度为0.001mm。Z轴通过二次聚焦可实现对沟槽、盲孔的深度进行测量。光源:采用长寿命LED环形冷光源(表面光及底光),使工件表面照明均匀,边缘清晰,亮度可调。导轨:双层工作平台设计,配备高精度滚动导轨,精度高、移动平稳轻松。丝杆:X、Y轴工作台均使用无牙光杆磨擦传动,避免了丝杆传动的背隙,灵敏度大大提高,亦可切换快速移动提高工作效率。
  • 生态中心发展一种纳米材料尺寸表征新方法
    中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室中科院院士江桂斌研究组近日发展了一种复杂介质中纳米材料尺寸鉴定与表征的新方法,通过将毛细管电泳与电感耦合等离子体质谱在线联用(CE-ICP-MS),可在单次检测中完成复杂介质中纳米材料的种类鉴定、尺寸分布表征和相关离子检测,结果比常规方法更为简便和准确。相关论文日前发表在化学期刊《德国应用化学》(Angew. Chem. Int. Ed., doi: 10.1002/anie.201408927)上,并被选为VIP paper(Very Important Paper)。   论文发表后,ChemistryViews 杂志以Getting the Measure of Nanoparticles 为题配发评论文章,认为这一工作为鉴定和表征混合纳米粒子提供了一种准确的新方法,可广泛用于纳米科学研究的相关领域。   目前通用的纳米材料的尺寸鉴定与表征方法主要依赖于透射电镜和光散射两种方法。毛细管电泳与等离子体质谱联用方法无须样品制备,可非常方便地用于纳米材料商品和医用品的质量控制,实现环境水样中纳米材料的快速筛查和尺寸表征。    CE-ICP-MS 表征纳米颗粒示意图
  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al,J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 2004年,Andre Geim和Konstantin Novoselov分离出当前知名度最高的二维材料——石墨烯,并获得2010年诺贝尔奖。作为石墨烯的重要衍生物,氧化石墨烯可以通过预先对石墨进行氧化,然后再剥离石墨层而获得。随着剥离程度的不同,氧化石墨烯一般具有单层、双层、三层以及少层(一般为2-5层)和多层(6-10层)结构。由于氧化石墨烯具有的独特二维结构以及优异的电学性能、光学性能以及化学活性等特性,使得其在超级电容器、透光薄膜、催化触媒以及抗菌净化等诸多领域具有广泛的应用前景。同时,由于氧化石墨烯生产成本低廉,原料易得,同时拥有大量的羧基、羟基和环氧基等诸多含氧基团(图1),因此比其他碳材料更具竞争优势。目前,全球拥有成千上万的研究人员从事氧化石墨烯材料研发工作,很多中国高校和研究所都有这样的研究团队或研究人员。世界上有数千家公司在研发氧化石墨烯产品,包括众多的中国公司。 /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201912/uepic/77331f4f-7c4e-493b-adce-d0c4c84bb86d.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析1.png" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析1.png" style=" text-align: center text-indent: 0em max-width: 100% max-height: 100% " / /p p style=" text-align: center text-indent: 0em " strong 图1 氧化石墨烯结构示意图(a)和HRTEM图(b) /strong /p p style=" text-align: justify text-indent: 2em " 由于材料的尺寸、形状与材料的性能有着密切的关系,粒径是纳米材料最重要的表征参数之一。因此,获得尺寸及形状规则均一的氧化石墨烯纳米材料对于拓宽其应用领域,非常重要。然而,目前的制备技术一般获得的氧化石墨烯材料其尺寸以及形状均具有多分散性的特点。因而需要对产物进行处理,以获得尺寸及形状规则均一的氧化石墨烯纳米材料。 /p p style=" text-align: center text-indent: 0em " span style=" font-size: 20px " strong span style=" color: rgb(0, 176, 240) " 氧化石墨烯粒径调控技术 /span /strong /span /p p style=" text-align: justify text-indent: 2em " 目前,针对于尺寸及形状多分散性的氧化石墨烯材料,其粒径调控技术主要有以下几种,现分别作简单介绍如下: /p p style=" text-align: justify text-indent: 2em " strong 1)氧化切割法 /strong /p p style=" text-align: justify text-indent: 2em " 在石墨的氧化过程中,就石墨的内部碳原子而言,在氧化的开始阶段,石墨的sp2杂化结构将转变为sp3杂化结构,形成呈线状分布的环氧基,而后续的氧原子为了维持体系的稳定,将在环氧基线状分布的基础上,原位形成环氧基对。由于羰基比环氧基对的能量低,从而使得羰基在结构中具有更好的稳定性。因此,在氧化过程中,形成的环氧基对将原位转变为羰基,从而导致碳碳键断裂。如此循环,从而实现对石墨片的切割细化。而对于石墨边缘的碳原子而言,氧原子将首先与其结合并使石墨本身的碳碳键断裂,形成羰基。随着氧化反应的继续进行,从体系稳定性角度(能量最低),后续的氧原子将与内层(而非相邻)的碳原子结合形成碳氧键,同时再使内部碳碳键断裂。如此反复,进而实现对石墨片的切割作用。而该切割作用即可实现对氧化石墨烯产物粒径的调控优化。 /p p style=" text-align: justify text-indent: 2em " strong 2)离心筛选法 /strong /p p style=" text-align: justify text-indent: 2em " 离心筛选技术是在离心力的作用下,利用被离心样品物质的沉降系数、浮力、密度的差别,进行分离、浓缩、提取制备样品。作为一种高效便捷的分离技术,离心筛选已被广泛应用于固/液混合物的分离提纯等领域。 /p p style=" text-align: justify text-indent: 2em " 在离心力场中,悬浮分散在水中不同粒径尺寸的氧化石墨烯会受到离心力的作用,而发生不同程度的沉降运动。通常,粒子的沉降速度与其粒径的平方成正比关系。也就是说,大粒子的沉降速度将大大快于小粒子。因此,通过高速离心,可以明显改善氧化石墨烯的粒径尺寸分布优化。 /p p style=" text-align: justify text-indent: 2em " strong 3)超声细碎法 /strong /p p style=" text-align: justify text-indent: 2em " 采用超声细碎技术,可明显加速多层氧化石墨烯的剥离,从而提高单层或少层氧化石墨烯的产率,同时对于细碎氧化石墨烯粒径尺寸以及优化其尺寸分布具有重要的作用。 /p p style=" text-align: justify text-indent: 2em " 在适当的超声处理阶段,来源于超声波的震荡力会破坏氧化石墨烯之间的团聚(亦有利于层间剥离),同时粉碎细化氧化石墨烯,从而导致随着超声处理时间的延长,出现氧化石墨烯粒径尺寸的减小以及尺寸分布的窄化。当继续延长超声处理时间,由于此时的超声震荡力不足以再粉碎细化已经形成的较小尺寸的氧化石墨烯。因此,增加超声处理时间将不会再对氧化石墨烯的粒径尺寸起到粉碎细化作用。因此,在超声处理细化及优化氧化石墨烯粒径尺寸及其分布的过程中,存在临界处理时间。为了获得粒径尺寸及其分布满足需求的氧化石墨烯,必需选择适当的超声处理时间。 /p p style=" text-align: center text-indent: 2em " span style=" color: rgb(0, 176, 240) font-size: 20px " strong 氧化石墨烯粒径测试方法 /strong /span /p p style=" text-align: justify text-indent: 2em " 现阶段,针对于氧化石墨烯材料粒径的表征方法众多,现简要介绍几种常用的测试方法如下: /p p style=" text-align: justify text-indent: 2em " strong 1)扫描电子显微镜 (Scanning& nbsp Electron Microscopy, SEM)& nbsp /strong /p p style=" text-align: justify text-indent: 2em " SEM利用电子和物质的相互作用,以获取被测样品的各种物理、化学性质的信息,如形貌、组成、晶体结构等。SEM是对纳米材料尺寸和形貌研究最常用的方法。因此,该方法也常常用来测试表征氧化石墨烯的粒径尺寸状态(图2)。该方法是一种颗粒度观测的绝对方法,具有可靠性和直观性。但是,该方法的测量结果缺乏整体统计性,同时对一些不耐强电子束轰击的样品较难得到准确的结果。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/2a229252-f9c9-4537-9cb1-70fd8162027b.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析2.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析2.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图2 氧化石墨烯粒径SEM图 span style=" text-indent: 2em " & nbsp /span /strong /p p style=" text-align: justify text-indent: 2em " strong 2)透射电子显微镜 (Transmission Electron Microscope, TEM) /strong /p p style=" text-align: justify text-indent: 2em " TEM是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子发生碰撞而产生散射,从而形成明暗不同的影像。TEM分辨率为0.1~0.2 nm,放大倍数为几万~百万倍,可用于观察超微结构。TEM是对纳米材料形貌、粒径和尺寸进行表征的常规仪器。该方法可直接观察氧化石墨烯材料的形貌和测定粒径大小(图3),具有一定的直观性与可信性。但是TEM测试的是材料局部区域观察的结果,具有一定的偶然性及统计误差,需要利用一定数量粒子粒径测量,统计分析而得到纳米粒子的平均粒径。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/b29af068-e379-4d3f-a146-92cc98809d46.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析3.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析3.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图3 氧化石墨烯粒径TEM图 /strong /p p style=" text-align: justify text-indent: 2em " strong 3)原子力显微镜 (Atomic Force Microscope, AFM) /strong /p p style=" text-align: justify text-indent: 2em " AFM是利用测量探针与样品表面相互作用所产生的信号, 在纳米级或原子级水平研究物质表面的原子和分子的几何结构及相关性质的分析技术。AFM能直接观测纳米材料表面的形貌和结构。AFM测量粒子直径范围约为0.1nm~数十纳米,在得到其粒径数据的同时,即可观察到纳米粒子三维形貌。因此,该方法也常常用来测试表征氧化石墨烯的粒径形貌特征(图4)。同时,AFM可在真空、大气、常温等不同外界环境下工作,也不需要特别的制样技术,探测过程对样品无损伤,可进行接触式和非接触式探测等。但是,AFM测试观察范围有限,得到的数据不具有统计性,较适合测量单个粒子的表面形貌等细节特征。 /p p style=" text-align: justify text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/4ed4956d-b4ef-44ed-b765-1c76561c107e.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析4.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析4.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图4 氧化石墨烯粒径AFM图 /strong /p p style=" text-align: justify text-indent: 2em " strong 4)动态光散射 (Dynamic Light Scattering, DLS) /strong /p p style=" text-align: justify text-indent: 2em " 光通过胶体时,粒子会将光散射,在一定角度下可以借助于科学仪器检测光信号。DLS即通过测量样品散射光强度的起伏变化,而得出样品的平均粒径及粒径分布信息。DLS适用于氧化石墨烯工业化产品粒径的检测,测量粒径范围为1 nm~5 μm。该方法能够快速获得精确的粒径分布,重复性好,测试取样量较大,测试结果具有代表性。但是,其测试结果受样品的粒度以及分布影响较大,只适用于测量粒度分布较窄的颗粒样品,且测试中易受粒子团聚和沉降的影响。 /p p style=" text-align: justify text-indent: 2em " strong 5)拉曼光谱法 (Raman)& nbsp /strong /p p style=" text-align: justify text-indent: 2em " 拉曼光谱法基于拉曼效应的非弹性光散射分析技术,拉曼频移与物质分子的转动和振动能级有关,不同的物质产生不同的拉曼频移。利用拉曼光谱可以对纳米材料进行分子结构、键态特征分析、晶粒平均粒径的测量等。因此,该方法也常常用来测试表征氧化石墨烯的晶粒平均粒径(图6)。拉曼光谱法灵敏度高,不破坏样品,方便快速。但是也存在测试结果易受光学系统参数等因素的影响,而且傅里叶变换光谱分析常出现曲线的非线性问题等不足。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201912/uepic/43519652-3c6c-44a6-8ea6-9b86f2893737.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析6.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析6.jpg" / /p p style=" text-align: center text-indent: 0em " strong 图6 氧化石墨烯粒径Raman图 /strong /p p style=" text-align: center text-indent: 2em " span style=" color: rgb(0, 176, 240) font-size: 20px " strong 总结 /strong /span br/ /p p style=" text-align: justify text-indent: 2em " 目前,针对于尺寸及形状多分散性的氧化石墨烯纳米材料,其粒径调控技术主要有氧化切割法、离心筛选法、超声细碎法等。同时,纳米材料粒度的测试方法众多,不同的粒度分析方法均有其一定的适用范围以及对应的样品处理方法。因此,在实际检测时,应综合考虑材料的特性、测量目的、经济成本等多方面因素,确定最终选用适当的氧化石墨烯粒径测试方法。 /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align: justify text-indent: 2em " 参考文献: /p p style=" text-align: justify text-indent: 2em " [1] Su C, Loh K P. Carbocatalysts: graphene oxide and its derivatives [J]. Accounts of Chemical Research, 2013, 46 (10): 2275-2285. /p p style=" text-align: justify text-indent: 2em " [2] Erickson K, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010, 22(40): 4467-4472. /p p style=" text-align: justify text-indent: 2em " [3] Bianco A, et al. All in the graphene family-A recommended nomenclature for two-dimensional carbon materials [J]. Carbon, 2013, 65: 1-6. /p p style=" text-align: justify text-indent: 2em " [4] He Y, et al. Preparation and electrochemiluminescent and photoluminescent properties of a graphene oxide colloid [J]. Carbon, 2013, 56: 201-207. /p p style=" text-align: justify text-indent: 2em " [5] Li Z, et al. How graphene is cut upon oxidation? [J]. Journal of the American Chemical Society, 2009, 131(18): 6320-6321. /p p style=" text-align: justify text-indent: 2em " [6] Fan T, et al. Controllable size-selective method to prepare graphene quantum dots from graphene oxide[J]. Nanoscale research letters, 2015, 10(1): 55. /p p style=" text-align: justify text-indent: 2em " [7] Khan U, et al. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation[J]. Carbon, 2012, 50(2): 470-475. /p p style=" text-align: justify text-indent: 2em " [8] Zhao J, et al. Efficient preparation of large-area graphene oxide sheets for transparent conductive films[J]. ACS nano, 2010, 4(9): 5245-5252. /p p style=" text-align: justify text-indent: 2em " [9] Krishnamoorthy K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2013, 53: 38-49. /p p style=" text-align: justify text-indent: 2em " [10] Hu X, et al. Effect of graphite precursor on oxidation degree, hydrophilicity and microstructure of graphene oxide [J]. Nano, 2014, 9(3): 14500371-8. /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: justify text-indent: 2em " 作者简介: /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 150px height: 196px float: left " src=" https://img1.17img.cn/17img/images/201912/uepic/cba3ceb4-db0b-42e1-a0b4-d802034691c1.jpg" title=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析7.jpg" alt=" 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析7.jpg" width=" 150" height=" 196" border=" 0" vspace=" 0" / 胡学兵,博士,硕士研究生导师。2014年博士毕业于中国科学院上海硅酸盐研究所,现就任景德镇陶瓷大学教授。2008年和2017年分别在法国欧洲膜研究所和英国诺丁汉大学从事学术研修工作。主要从事面向环境、能源等应用的功能化石墨烯新材料及分离膜材料的研究开发工作。先后主持国家自然科学基金、江西省青年科学基金重大项目和江西省科技计划项目等各类项目10余项。2016年荣获中国科学技术协会全国科技工作者创新创业大赛金奖(江西省唯一),2017年荣获中国科学院开放基金项目一等奖,2018年“儒乐杯”江西省青年科技创新项目大赛全省前8强。先后在《Journal of Membrane Science》、《RSC Advances》、《Applied Surface Science》、《Journal of Porous Materials》、《Materials Letters》等期刊上发表学术论文67篇(SCI/EI收录39篇)。申请国家发明专利15项,已授权13项。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 12月18日,胡学兵教授将亲临由仪器信息网组织的 strong span style=" text-indent: 2em color: rgb(0, 176, 240) " “ a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em color: rgb(0, 176, 240) " 第二届‘纳米表征与检测技术’公益网络研讨会 /span /a ” /span /strong ,更深入地讲解氧化石墨烯粒径尺寸测试表征技术,机会难得,业内同仁和莘莘学子可以点击下方图片或链接报名参会,与胡教授互动交流。 /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong span style=" text-indent: 2em " 免费报名地址: /span /strong /span a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _self" style=" text-decoration: underline " strong span style=" text-indent: 2em " https://www.instrument.com.cn/webinar/meetings/nano2/ /span /strong strong span style=" text-indent: 2em " /span /strong /a /p p style=" text-align: center " span style=" text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/nano2/" target=" _self" img style=" max-width: 100% max-height: 100% width: 664px height: 246px " src=" https://img1.17img.cn/17img/images/201912/uepic/2206666c-651c-4189-ae79-e6c91973e92d.jpg" title=" 540_200.jpg" alt=" 540_200.jpg" width=" 664" height=" 246" border=" 0" vspace=" 0" / /a /span /p
  • 种子尺寸分析仪-测量种子尺寸的仪器
    TPKZ-3-L种子尺寸分析仪由浙江托普云农公司提供,种子尺寸分析仪采用图像识别技术设计而成,可以在极短的时间内快速完成考种工作,测量种子长度尺寸。种子分析仪,也可以理解为能够测量种子尺寸的分析仪。  种子尺寸分析仪也称智能考种分析仪,托普云农新设计研发的智能型自动考种系统。这款仪器可以在极短的时间内快速完成考种工作,是现代育种考种、种子研发中的常用仪器之一。仪器是基于图像识别技术,突破籽粒和感知数据采集等关键技术,研发了集玉米、大豆等散粒长、粒宽、千粒重等多参数一体化快速检测设备,实现考种过程的自动化、智能化,减少人力成本投入,去除人为误差干扰,加强了考种测量准确率,构筑了智能化考种测量方法,为农业遗传育种研究而服务。  用途:能测量数量、千粒重、平均粒型、每一粒籽粒的粒型。玉米棒除外。  功能特点:  1.实时性:测量速度快,能够实时测量出籽粒的数量、粒长、粒宽、周长、面积、重量等参数。算法计算时间≤1s,大大缩短了测量的时间,为研究降低了时间成本。  2.一键式:智能考种分析系统是基于图像识别技术,一键执行,马上计算出所有测量参数,降低人工操作性,减少人为误差,简化操作流程,一键得到测量结果。  3.存储方式:测量数据的保存可以为研究提供详尽而细致的数据结果,智能考种分析系统配备了相应存储容量,可将所有数据导出excel到电脑,方便用户进行本地数据存储和数据对比分析工作,满足了数据存储的需要。  4.适应范围:针对于籽粒考种,智能考种分析系统设置散粒考种范围包括大豆,玉米的考种需求。  种子尺寸分析仪技术参数:  1.数粒范围:50~20000粒  2.数粒精度:圆形种子自动数粒误差≤±0.1%,长形种子自动数粒误差≤±0.5%,可手动修正保证结果准确。粒型误差≤±0.5%  3.系统供电:DC5V,直接使用USB供电,可以外接电脑或者充电宝  4.响应时间:5s内输出结果
  • 试论晶圆关键尺寸量测手段和设备的“三体”混动时代
    电子束光刻(EBL)手段,自从其超级高手MAPPER和EUV光刻PK完败之后,一直怀才不遇地降维转战至量测领域,凭借其高贵的光刻血统,完成量测可以说是“手拿把掐”;晶圆Fab发展到65nm技术节点阶段,对以栅极宽度为典型对象的量测技术上,电子束手段以其独树一帜的分辨率、自动化、稳定性和高通量的特征,是无可争议,不能替代的独门武艺;电子束关键尺寸(Critical Dimension)量测设备厂家的竞争也到了白热化阶段;异军突起的中国人技术和设备-汉民微测HMI,凭借扎实的技术创新和对用户痛点的逐一攻克,借助一次Intel晶圆厂验证试机的良机,大秀肌肉,赢得了接下来多家IDM大厂的八成以上设备采购,竟将KLA这样的量测设备巨兽挤出了电子束市场,迫使他们暂时关闭了电子束量测部门。近年来随着半导体行业步伐的加快,由于今天的量测要求比历史上的关键尺寸测量要全面得多,所以半导体晶圆制造行业已经采用了具有各种尺寸量测能力的手段:非电子束光源的量测技术从物理规律的前后两端夹击,不断缩短靠近电子束的分辨率领地:从下方而来的光学量测OCD设备,凭借激光器技术的突破和晶圆光刻光源EUV的降维下放量测(日本公司技术),还有在不需要真空和对环境干扰比起电子束不敏感的先天优势,已经在28nm节点量测稳定发挥(以色列公司技术),并利用和飞秒等离子光刻技术(FPL)一个思维路线的脑洞,突破至14nm量测(新加坡公司技术30mW-1340nm/1320nm/1064nm),逐步挑衅逼近,最终和电子束量测领地短兵相接;而从上方而至的物理探针量测AFM等工具,借助其天然的分辨特长,和来自隧道探针显微术(STM)量子力学的底气,借助其与纳米压痕光刻技术(NIL)一样的思维角度,轻松完成了已经成为电子束瓶颈的极限尺寸量测任务。明眼人不难看出,只用一类量测手段和工具无法在线量测工艺规范所要求的所有关键尺寸。为了规避这种情况,工艺开发通常使用破坏性量测手段 - 横截面电子显微术(X-SEM),透射电子显微术(TEM)等进行尺寸表征(Thermo Fisher主要供货)。这些离线工具速度慢、成本高昂,并且采样和量测的整体通量低下,是不得已的选择。先进的工艺需要精确量测复杂结构上的多个复杂细节,随着FinFET、3D-NAND、Multi-Pattern、DRAM等令人乍舌的复杂沟槽结构的出现,以及IBM骤然发布的GAA 2nm变态制程节点,例如侧壁角度(Side Wall Angle),轮廓(Profile),垫片宽度(Sapcer Widths),垫片下拉(Spacer Pull-Down),外延接近(Epitaxial Proximity),基础/底切(footing /undercut),溢出/底部填充(overfill /underfill )等,而且所有这些特征的尺寸都需要控制在单微束埃的精度水平。为了应对这些不断增长的量测挑战,晶圆厂没有比任何时候更加需要通过引入混合量测技术(Hybrid Metrology),合体使用来自多种设备类型的量测手段,以实现或改进一个或多个关键参数的测量,来彻底改变这一怪兽级别行业的尺寸量测功能的需求。图中描述了量测对象及虚拟混合量测生态系统设想。现在是时候电子束量测低下高贵的头颅了,因为只有合体混动式量测技术和设备,才能把从不同工具获得的数据集合在一起,拿到量测对象的关键的优质的信息,更好地全面细致地了解晶圆的光刻及整体制造过程。以OCD,SEM和AFM这“三体”集成的横跨光源分辨率限制的混合式量测手段和设备,可以毫不夸张地成为晶圆量测的“革命性”方法,通过焊接三类工具的强项,从而可以分离每个单项工具中严重耦合的参数。混合量测技术对晶圆关键尺寸这朵小花实施了几种不同技术维度的交叉施肥。特别需要承认的是:一个量测手段可以提供另两个无法拿出的样品信息,反之亦然。这样的“三体”手段既可以从所有工具上获得相对独立的通用信息,也可将这“三体”相互交叉、引用以提高最终数据的准确性。换句话说就是:参数之间的干扰相关性降低,从而获得了更好的准确性。让我们把这个脑洞接着开大,就是发挥“三体”量测技术和设备工具的平衡术:由于混动量测技术结合了来自不同手段的信息,因此通常有一种更有效率的方法可以将每个手段按其所长分配给样品,来自一类工具和手段的数据可以与另一类交换,并以互补或协同的方式使用,在速度和测量精度方面提高其整体性能。图中的仿真模拟算法为我们显示了混合量测技术的引入是如何解耦两个几何参数的(SWA和TCD),对比这两个参数在没有混合量测技术的情况下是如何以非物理方式耦合的。综上所述,混合量测技术和设备使晶圆厂能够成功量测目前难以使用单个工具可靠量测的复杂结构;通过执行混合量测技术,可以获得增强的量测性能,重拾晶圆量测顶到技术天花板而逐渐失去的信心,是晶圆量测手段和设备的未来。
  • 什么?营养品中有银纳米颗粒!
    纳米银作为常见的抑菌成分在很多生活用品中都能找到,比如无臭衣服,防霉浴帘,食品容器及食品砧板。有些商家甚至将纳米银颗粒添加到膳食补充剂中,宣称可以提高免疫力,广为宣传。但是,没有任何一种含胶体纳米银的保健品被认为是安全有效的。事实上不仅仅是保健效果,连所谓的独家技术和高科技成果都是忽悠人的。美国FDA禁止了纳米银保健品,也有研究发现纳米银会对肺部、神经及皮肤产生毒性。甚至能渗入大脑、进入胎盘、干扰精细胞。而且银纳米颗粒排放到环境中,可能会对植物和水生生物造成影响。单颗粒ICP-MS (SP-ICP-MS)技术,可用于非常低的颗粒浓度,大小,大小分布和溶解浓度的测定,使得SP-ICP-MS成为评估纳米颗粒在不同环境介质中命运的常规技术。本实验使用NexION ICP-MS测定了三种市售含有银纳米颗粒的三种营养补充剂,实际看看这些保健品中的银纳米颗粒数量和尺寸。样品三个市售营养补充剂样品置于超声波浴中超过5分钟,以确保颗粒被均匀地分布在溶液中并减少结块。样品依次用实验室一级去离子水稀释并定容到50mL聚乙烯样品管中。对样品和参比溶液进行稀释,使得所述颗粒的浓度为约20万个粒子/mL。实验使用Ted Pella公司柠檬酸盐缓冲液中的20nm,50nm和80 nm的银纳米颗粒悬浮液来计算尺寸和传输效率。通过建立0.5-5 μg/L的标准曲线来进行测定溶解银离子浓度。所有SP-ICP-MS测定均是在NexION 350D ICP-MS (PerkinElmer, Shelton, CT )标准模式(无气体)和Syngistix纳米应用模式下操作的。所有仪器的工作条件见下表。实验结果下面两图展示了1号样品和2号样品中银纳米颗粒的尺寸分布图。两者都使用了对数正态拟合方式进行计算,见图中的实线部分。样品1的数据显示颗粒的一个明显的分布约为15nm,而样品2的数据显示颗粒的分布为约33nm。Syngistix纳米应用模块给出了样品的颗粒浓度和溶解浓度。Ted Pella™ 50 nm AgNP标准溶液用于样品审核控制。48nm作为最常见的尺寸与给定值50nm非常吻合,并且所测量的颗粒浓度与制造商给出的2.5 E+10颗粒/mL浓度值非常吻合。结论使用珀金埃尔默NexION 350 ICP-MS和Syngistix纳米应用模块,对市售的3中营养补充剂中的纳米银颗粒进行了测定。单粒子的ICP-MS能实现分析物的溶解离子和颗粒形式之间的分离和定量。在一次分析中,颗粒成分,浓度,尺寸和尺寸分布,均可直接进行测定。扫描下方二维码,即可下载采用ICP-MS对营养补充剂中银纳米粒子单粒子的特性研究相关应用报告。
  • 我国发明功能胶体纳米颗粒分离的新方法
    “化工资源有效利用”国家重点实验室在功能胶体纳米颗粒的分离方面取得新进展   在国家自然科学基金委、科技部和教育部支持下,北京化工大学化工资源有效利用国家重点实验室 孙晓明 教授与美国Stanford大学的 戴宏杰 教授合作,提出了一种功能胶体纳米颗粒的分离新方法:密度梯度超离心速率分离法。其利用胶体颗粒在离心场力作用下穿过密度梯度区的速率不同,通过控制离心参数,实现纳米颗粒按照尺寸、密度和团聚状态等差异进行分离。   不同尺寸及形貌纳米颗粒的获得是研究尺寸效应、量子效应和表面效应等特性的基础。长期以来,人们主要依靠合成方法的改进来获得单分散纳米颗粒。但是由于温度场、浓度场的不均一性和苛刻的反应条件,有时会使得单分散纳米颗粒的获得比较困难。作为合成手段的有效补充, 孙晓明 教授等发展了一种新的分离方法来实现纳米颗粒按照颗粒尺寸、密度和团聚状态等不同进行分离。   这一原理以前仅限于DNA、蛋白质等生物大分子和疫苗的分离。其主要过程是将被分离物(如生物大分子)置于一定的密度梯度区上端,在超速离心条件下,被分离物会在离心力的作用下迁移。不同的被分离物由于尺寸和密度等不同会受到不同的浮力和粘滞阻力,从而在同样的密度梯度中表现出不同的定向运动行为,因此在一定时间之后被分离物依尺寸和密度等特征达到一定的空间分布。   孙晓明 教授等拓宽研究思路,依据胶体纳米颗粒与生物大分子在尺度和密度上的相似性,巧妙地将此原理移植至胶体纳米颗粒体系的分离。通过FeCo@C磁性纳米颗粒和Au纳米颗粒在碘克沙醇梯度溶液中的分离研究,发现调整密度梯度溶液的浓度、离心速度和时间等参数,可以实现1.5~20nm颗粒的尺寸分离。研究同时指出,该方法也可用于分离密度不同的胶体颗粒,如FeCo@C纳米胶体颗粒溶液中的碳纳米管能够与该磁性颗粒颗粒实现较完全的分离。为了进一步验证分离的高效性,混合了5nm、10nm和20nm三种单分散Au胶体颗粒,试验表明仅需通过一次15分钟的离心即可恢复原来的单分散状态。研究工作发表在近期出版的Angew. Chem. Int. Ed. (2009, 48, 939 –942)上。与传统的渗析、过滤、色谱和电泳等方法不同,这一方法在液相密度梯度中完成分离,避免了由于固—固相互作用造成的胶体颗粒损失和分离体系的失效,并可通过调整密度梯度的梯度差、温度和分离时间等参数达到不同的分离效果,具有通用、高效、省时、产品无损失和体系易重建等优点,展现出令人激动的分离效果和潜力。 Fig. 1 胶体颗粒通过密度梯度超离心进行速率分离的机理示意图。 Fig. 2 以Au 纳米颗粒的复原显示分离的效果:(A) 三种单分散Au颗粒和其混合物在离心后的照片。红色区域显示Au颗粒所在位置。(B-D) 起始的三种Au颗粒的TEM照片 (E-G) 复原后Au颗粒的TEM照片。
  • 尺寸/成本优势兼具 可用于近红外的MEMS光谱传感器亮相
    微机电系统(MEMS)晶片制造商Si-Ware Systems(SWS)日前于美国西部光电展(SPIE Photonics West 2015)上发布第一款MEMS光谱感测器(Spectral Sensor),可用以设计手持式近红外线(Near Infra-Red, NIR)光谱分析仪,协助农夫检测土壤样品;未来应用层面更可望扩大至工业、医疗、消费性电子等领域。 SWS光学MEMS部门经理Bassam Saadany表示,该公司的MEMS光谱感测器同时具备小尺寸、低成本优势。SWS指出,MEMS光谱感测器与传统的桌上型光谱仪器功能相同,皆能透过分析光谱响应(Spectral Response)来量化和鉴定待测物。 事实上,SWS亦利用MEMS光谱感测器模组组成小型光谱仪--NeoSpectra。据悉,NeoSpectra是目前市场上最精巧、低成本的傅立叶变换近红外线(Fourier Transform InfraRed, FT-IR)光谱仪。与市面上的小型近红外线光谱仪不同,NeoSpectra主要系由低成本、高校准度的元件所构成。 NeoSpectra可涵盖大范围的光谱量测,且能以极低功耗运作。目前NeoSpectra第一代产品的操作范围为近红外线光谱区,在1,150nm到2,500nm之间的光谱范围内拥有三种不同的配置方式。 值得一提的是,NeoSpectra已率先获得Dutch Sprouts选用,设计成小型手持式近红外线光谱分析仪,让农夫可以随时检测土壤品质,进而提升农作效率;而未来,SWS亦将致力于缩小MEMS光谱感测器模组尺寸,使其可应用于行动装置内,用以监测使用者血糖、含氧量以及其他医疗参数。 SWS目前已开始供应NeoSpectra的评估套件(Evaluation Kit)--SWS62221,并预计于2015年第三季开始正式量产。
  • 全尺寸、全自动三维检测,解决质量争议,实现顺利交付!
    遇到客户质量争议怎么办?在日常生产交付中,往往会出现因为评判标准、技术手段不一样,导致双方之间对于结果存在争议的情况。“明明检测过,产品都是合格的,但是客户就是说不合格!”遇到这种问题,确实是让人懊恼,关键是怎么解决。寻找问题产生原因原先,这家厂商质检环节是由外包的三坐标检测完成,测到关键点位的数值没有问题,客户反映说装配之后会有异常阻尼感,问题的关键在于三坐标没有测到的部分。为了解决这个问题,最好的办法是进行全尺寸三维检测,将整个工件的整体数据与设计数据进行拟合对比。该厂商工程师找到天远三维,使用AutoScan Inspec全自动桌面三维检测系统找到了症结所在——在三坐标未检测到的装配处存在异常。在找到了问题点之后,厂商快速改进了生产工艺。全自动、全尺寸三维检测方案根据之前的经验教训,该企业采用AutoScan Inspec来进行后续的质检工作,主要是进行了两个维度的质检。01单个零件的深度全尺寸三维检测这个装配件对于精度要求很高,AutoScan Inspec专注于小尺寸精密工件扫描,精度≤10μm,能够获取完整、准确的三维尺寸,检测生产实物与设计图纸之间细微的差别。三维扫描及数据截图全尺寸三维检测每一个装配点、装配线、装配面均可进行完整检测02 一个批次零件的全自动三维检测在质检中,需要保证同一个批次的零件均在合理误差范围内,AutoScan Inspec可以实现一个批次内所有零件的快速三维扫描、检测。● 全自动三维扫描,操作简单● 两分钟完成一个工件三维扫描,高效快速● AI智能补扫,扫描中有数据缺失,自行进行二次扫描● 兼具路径存储功能,同批次工件无需重新设置,直接导入路径快速扫描通过全尺寸、全自动的三维检测,帮助生产厂商解决了客户的质量质疑问题。同时,在产品交付的过程中,能够为客户提供完整的三维检测报告以及同一批次工件的误差范围等准确数值,减少双方的沟通成本,实现顺利交付。
  • 百特颗粒计数器在液压油和润滑油污染度检测中的应用
    在液压和润滑系统使用过程中,由于外部环境和内部摩擦产生的颗粒会导致油液变得污浊,污浊的油品会造成元件磨损、卡阻、损坏等故障,严重影响设备的有效作业率。因此有效检测油品中颗粒的含量,及时更换受污染的液压油或润滑油,是保证机械设备安全运行的有效方法。为了定量地检测油液的污染度,需要按油液中固体颗粒物含量来划分污染度等级并确定检测仪器和方法。目前业内一般按国际标准ISO4406或美国航天学会标准NAS 1638来划分油品污染度等级,采用光阻法颗粒计数器作为油品污染度检测仪器。百特颗粒计数器丹东百特研制的BettersizeC400光学颗粒计数分析仪(简称百特颗粒计数器)具有检测不同油液中固体颗粒大小和个数的能力。它采用国际先进的光阻与角散射结合技术,配合高灵敏度检测器和高精度信号采集与传输系统,可准确的分析0.5-400μm之间的颗粒大小、数量和粒度分布。颗粒计数器的测试原理颗粒计数器的测试原理是通过泵使颗粒逐个通过毛细管测量区时,激光照射到颗粒时,因为颗粒遮挡和散射,产生与颗粒大小成正比的光阻和散射信号,通过传感器接收这些光信号并传输到电脑中,再用专门的分析软件对这些信号进行处理,从而得到颗粒尺寸、数量和粒度分布信息。颗粒计数器灵敏度高、结果准确、分析速度快、能分析含有极少颗粒样品等特点。百特颗粒计数器可同时满足ISO4406、NAS1638等标准,还可根据需要自定义分级,得出粒度分布结果。样品检测结果用百特颗粒计数器测试A、B、C三种不同污染等级的液压油,按ISO4406标准,根据A、B、C三个样品每毫升油液中不同粒径的颗粒个数自动计算出它们的污染度等级,结果如表1所示。表1,按ISO4406标准划分的污染度等级按NAS1638标准,根据A、B、C三个样品每100毫升油液中不同粒径的颗粒个数自动计算出它们的污染度等级,结果如表2所示。表2,按NAS1638标准划分的污染度等级结论用百特颗粒计数器可以检测不同污染度等级的液压油和润滑油中的颗粒数量和粒度分布,并按不同的标准自动计算出污染度等级,测试速度快,准确性好,操作简便,是油品品质的“火眼金睛”。
  • 上海光机所将时域散斑技术成功运用于大尺寸光学元件测量
    p   上海光机所信息光学与光电技术实验室周常河课题组近期将双目测量和时域散斑技术相结合,应用于300mm口径大尺寸透镜毛坯测量,成功重建出透镜毛坯表面的三维形貌。该方法实现了大尺寸透镜的快速、低成本测量,相关成果发表在[Optics Express 27,10898(2019)]上。 /p p   大尺寸光学元件,尤其是非球面元件,被广泛运用在大型激光装置,例如“神光”II综合实验激光装置中。在元件的生产过程中,表面检测至关重要。在透镜毛坯的粗研磨阶段,主要检测设备是三坐标测量机。三坐标测量机的测量精度很高,但是这种逐点测量方式的效率低,尤其是在测量大尺寸(例如米级)透镜毛坯时,大型三坐标测量机价格昂贵,且不易移动,不便于使用。 /p p   该课题组提出,用双目光学三维测量方法重建透镜粗毛坯的表面。双目视觉原理类似于人眼的三维感知,如图1所示。左右两个不同位置不同角度放置的摄像机,同步拍摄毛坯表面图像,经过同源点匹配和视差计算,可以用三角法对毛坯表面进行三维重构。但是,由于透镜毛坯强散射特性,基于空域的结构光编码方法会出现解码误差。课题组提出用时域散斑技术进行时域方向的编码,实验中顺序投影20幅带通随机数字散斑图像,对于每个像素点,都有一个20维度的编码。通过比较左右待匹配点码值之间的汉明距,可以在极线方向寻找到同源点对。另一方面,偏振技术被运用于消除透镜毛坯的多次反射问题。最终,全场的三维点云数据在短时间内被成功重建出,如图2所示。 /p p   相对于三坐标测量机,该方法实现了透镜毛坯表面的快速、全场、低成本的三维测量,是一个很有前景的测量方法,尤其是对米级尺寸的透镜毛坯测量具有重要的应用价值。 /p p   该项研究成果得到了中科院前沿科学重点研究项目、上海市科委专业技术服务平台项目、上海市自然科学基金项目的支持。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 266px " src=" https://img1.17img.cn/17img/images/201906/uepic/482c68fb-7372-43b1-b732-3fc94bc4fd4c.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 600" height=" 266" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图1 双目三维测量系统结构图 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 235px " src=" https://img1.17img.cn/17img/images/201906/uepic/fe72b6f5-fdf9-4e68-99b9-cb2ee607b7ed.jpg" title=" 2-2.jpg" alt=" 2-2.jpg" width=" 600" height=" 235" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图2 透镜毛坯的三维点云 /p
  • 滨松成功研发只有桌子尺寸大小的高功率、高重复频率激光器
    滨松光子学株式会社(静冈县滨松市,董事长:昼马 明 ,以下简称“滨松光子学(株)”)将传统泵浦用半导体激光器的功率提高了三倍,并优化了放大器的设计 ,成功开发了只有桌面尺寸大小,可以产生1焦耳(以下,j)的高能量、300赫兹(以下,hz)高重复频率的功率激光器。一般的激光器的输出功率与设备的尺寸、重复频率成正相关关系,而该课题实现了小型却高功率、高重复频率的激光器。本产品的诞生,通过去除细小的污垢的激光清洁来提高了传统加工的生产效率,同时,期待它在金属材料的激光成形、延长金属器件的使用寿命的激光喷丸等方面的新应用。该产品的开发是内阁办公室主导的综合科学技术与创新研发推进项目(impact)的一部分,是佐野雄二负责的“普及功率激光器以实现安全、安心、长寿社会”研发项目的一环,由滨松光子学(株)中央研究所产业开发研究中心副所长川嶋利幸等人开发,而且今后我们也将继续推进研究成果的产品化。此外,该新研发的产品将于11月1日(星期四)起连续3天在actcity滨松(滨松市中町区)举行的滨松光子综合展“2018photon fair”上展出。<关于功率激光器>功率激光器主要由振荡器和放大器组成。 振荡器由泵浦用半导体激光器、激光介质、全反射镜、输出镜和光开关组成,放大器由泵浦用半导体激光器和激光介质组成。 由振荡器发出的激光通过放大器时,从三种高能量状态(激发状态)的三段激光介质接收能量实现高功率输出。功率激光器的结构<新产品概述>该产品搭载了最新研发的泵浦用半导体激光器,虽然只有桌子尺寸大小,但却是可以产生1j的高脉冲能量且300hz的高重复频率的功率激光器。滨松光子学(株)已经开始制造并销售300hz的重复频率下输出功率为100w的泵浦用半导体激光器。此次,结合公司独有的晶体生长技术和镀膜技术,将传统泵浦用半导体激光的功率提高到世界最高水平300w,同时放大器在激光介质的长度和横截面积上下功夫,并采用具有提高冷却效率的放大器,解决了由于热问题导致激光介质损坏或破坏的问题,成功输出了传统放大器的3倍能量。这是因为放大器采用了新的散热设计,提高了激光的放大效率。此外,由于采用半导体激光器作为泵浦光源,具有高于市面上销售的氙灯泵浦脉冲激光器约10倍的光电转换效率,约100倍的泵浦光源的寿命。通过控制零部件的数量,成功实现了器件的稳定输出、小型以及低成本。一般激光器的功率与设备的尺寸、重复频率成正相关关系,但本产品却实现了小型而又高功率和高重复频率的特性。利用该产品,可以对附着于材料上的小污垢进行激光清洁,以提高传统加工的生产效率。此外,我们也期待脉冲激光器在工业领域的新应用,如飞机的金属材料等可以在不使用模具的情况下进行变形加工完成激光成形,以及通过激光喷丸来提高金属器件的使用寿命等。<研发背景>激光在金属材料的钻孔、焊接、切割等方面有着广泛地加工用途,为了提高生产效率,光纤激光器和co2激光器等各种各样的激光都在朝着高功率的方向发展。激光分连续输出一定强度激光的cw(continuous wave)激光和短时间内重复输出激光的脉冲激光,目前cw激光是激光加工领域的主流。另一方面,脉冲激光不同于cw激光,它正在朝着新型激光加工的应用方向发展。采用半导体激光器作为泵浦光源的功率激光器,它具有高功率、高重复频率的特性,但因为半导体激光器价格昂贵很难推向产品的实用化,而市场上销售的j级脉冲激光器上使用的泵浦光源多采用氙灯光源,对激光器内部有严重地热影响,因此重复频率只能限制在10hz左右。像这样,为了进一步提高生产效率,同时扩大用途,对小型且可以发出高功率、高重复频率脉冲激光的激光器的需求日益增加。主要规格<委托研究信息>此研究成果,是通过以下的科研课题项目得到的。内阁办公室创新研发推进项目(impact)项目负责人:佐野雄二研发项目:普及功率激光器以实现安全、安心、长寿社会研发课题:开发高功率小型功率激光器研究负责人:川鸠利幸(滨松光子学株式会社 中研研究所 产业开发研究中心 中心副主任)研发时间:2015年~2018年本研究开发课题是致力于开发桌子大小、高功率、高重复且稳定性高的脉冲输出的功率激光器。<项目负责人佐野熊二的评论>“普及功率激光器以实现安全、安心和长寿的社会”的impact计划,推动了大功率脉冲激光器的小型化、简化和高性能的发展,这对于探索最先进的科学和工业是不可缺的,同时,我们也正在推进相关基础技术和应用技术的开发,旨在提供可以随时随地使用,具有高稳定性的廉价激光器,向工业领域的创新努力。此次,滨松光子学(株)的开发团队采用了自有的先进半导体激光器作为泵浦高能脉冲激光器的光源,通过优化激光器件,以低价格实现前所未有的小型、高功率、高重复的激光设备。从限制成本和生产效率的角度来看,在我们之前放弃引入激光设备的领域,也期待会有更多的应用。功率激光器设备的结构 功率激光器设备外观
  • 颗粒标准物质购买指南,三分钟看懂该怎么买
    在科学研究、工业生产以及质量控制等众多领域,颗粒标准物质都发挥着至关重要的作用。然而,对于许多人来说,如何正确购买颗粒标准物质可能是一个令人困惑的问题。本文将为您提供一份详尽的购买指南,帮助您轻松选购到符合需求的颗粒标准物质。 一、明确购买目的和需求 在购买颗粒标准物质之前,首先要明确您的购买目的和具体需求。是用于校准测量仪器?还是用于质量控制?亦或是进行科学研究?不同的用途可能需要不同类型、规格和精度的颗粒标准物质。 同时,您还需要考虑颗粒的尺寸范围、浓度、形状、材质等因素。例如,如果您需要用于检测过滤器的性能,那么您可能需要特定尺寸范围且均匀分布的颗粒标准物质。二、选择可靠的供应商 选择一个信誉良好、经验丰富且具备资质的供应商至关重要。您可以通过以下方式筛选合适的供应商:行业口碑:了解供应商在行业内的声誉,查看其他用户的评价和反馈。资质认证:确保供应商具备相关的认证和资质,如CNAS、 ISO 标准认证等。技术实力:考察供应商的研发能力和技术支持水平。 像鸿蒙标准物质这样在标准物质领域深耕多年的供应商,通常能够提供高质量、多样化的颗粒标准物质,并能为您提供专业的技术咨询和售后服务。三、查看产品质量证书和检测报告 优质的颗粒标准物质应该附带详细的质量证书和检测报告。这些文件将提供关于颗粒标准物质的特性、精度、不确定度等关键信息,帮助您评估其是否符合您的要求。 四、价格与性价比 价格虽然是一个重要因素,但不应是唯一的决定因素。过于便宜的颗粒标准物质可能质量无法保证,而过于昂贵的也不一定就最适合您的需求。要综合考虑产品的质量、性能和价格,选择性价比最高的产品。 五、售后服务 购买颗粒标准物质后,良好的售后服务同样重要。供应商是否提供技术支持、培训、产品质量保证以及售后咨询等服务,都会影响您的使用体验和工作效率。购买颗粒标准物质需要综合考虑多个因素,做好充分的准备和调研。只有这样,您才能选购到满意的产品,为您的工作和研究提供可靠的保障。
  • Cell Rep:细胞尺寸和周期状态或会影响HIV感染机体
    近日,一项刊登在国际杂志Cell Reports上的研究报告中,来自伊利诺伊大学的科学家们通过研究发现,细胞尺寸和细胞的周期状态或许在HIV中扮演着关键的决定性作用。如今抗逆转录病毒药物的开发使得HIV感染成为了一种可控的慢性疾病,然而如果未能及时诊断或治疗,HIV感染就会进化成为AIDS(获得性免疫缺陷综合征),2017年全球大约有100万人因感染HIV而死亡。挽救生命的药物并不能治疗HIV,因为当HIV感染机体后其会偷偷地靶向作用诱发机体抵御任何感染的免疫反应的细胞,尤其是HIV会入侵CD4 T细胞,并不断复制最终接管CD4宿主细胞的DNA。研究者Roy Dar教授说道,当感染CD4 T细胞后HIV会经历两种命运中的一种,其要么会整合成为复制状态,诱发成百上千个感染性病毒颗粒的产生;要么会进入一种休眠状态。这项研究中,研究人员重点分析了如何有效清除HIV潜在的病毒库,因为HIV病毒库会自发激活并且躲避药物疗法的攻击,如果HIV感染者没有严格遵守抗逆转录病毒药物体系的治疗,其机体中的病毒库就会激活从而引发感染者出现一系列疾病症状。截至目前为止,并没有一种有效的方法能够区分出机体中未感染的细胞和潜在感染的细胞,而诸如这种策略就能够支持当前科学家们治疗HIV感染的疗法。这项研究中,研究人员在实验室中调查了被HIV潜在感染的T细胞的重新激活的过程,他们构建出了一种携带绿色荧光蛋白(GFP)的特殊病毒结构,当细胞重新激活时GFP就会发生表达。研究者所开发的延时单细胞成像技术能够通过计算GFP的平均荧光强度来监测单个细胞从沉默状态到活跃状态的重新激活过程;一旦研究人员鉴别出重新激活的细胞后,他们就会对细胞的尺寸进行计算,并确定重新激活所需要的细胞平均参数,结果发现,在潜伏的细胞群体中,只有较大尺寸的细胞会恢复活性,而较小的细胞则会保持沉默。据研究者介绍,较大的宿主细胞尺寸或能提供一种天然的细胞机制来帮助增强病毒表达所需要的细胞裂解量,同时当病毒决策发生偏离时也能够帮助破坏病毒的潜伏状态。Dar说道,这项研究中我们提出了一种被动性的宿主细胞主导病毒制定决策的案例,当宿主细胞尺寸较小时病毒就不会发起攻击,只有当宿主细胞尺寸较大时病毒才会被重新激活。此外,研究者还发现,细胞从潜伏状态过渡到活性状态依赖于细胞的周期(即细胞中DNA复制的阶段),同时其还受到了药物疗法的调节;研究者表示,我们可以使用药物疗法来调节特定细胞周期状态内外的细胞数量,从而感染HIV的激活决策;本文研究结果有望帮助研究人员开发抑制HIV感染的新型策略和疗法,后期研究人员还希望通过更为深入的研究来阐明细胞尺寸和周期状态如何影响HIV的感染决策。
  • 2020年颗粒测试与表征仪器新品盘点(23款)
    2020年伊始,新冠疫情爆发,全球经济被按下了“暂停键”。疫情期间,科学仪器企业伸出援手共同抗疫的同时,也在苦练内功、研发新品,迎接“春天”的到来。纵观2020年中国颗粒测试市场,新产品层出不穷,创历年新高,仪器信息网特此盘点了20余款颗粒测试与表征仪器新品,以飨读者。(特别声明:受限于时间与资源,新品盘点范围仅限本网收录的不完全统计,如有遗漏,欢迎补充完善)2020年,颗粒测试与表征仪器新品种类繁多,涉及纳米粒度仪及Zeta电位分析仪、图像粒度粒形分析仪、颗粒计数器、筛分仪、比表面及孔径分析仪、多组分竞争吸附仪、化学吸附仪等。纳米粒度仪及Zeta电位分析仪(1)马尔文帕纳科2020年8月,马尔文帕纳科发布Zetasizer Advance 系列新品,包括Zetasizer Ultra、Zetasizer Pro、Zetasizer Lab三种型号,且每种型号又分为Blue Label和Red Label 两个版本,均可进行颗粒粒度、Zeta电位和分子量分析。2021年1月15日,马尔文帕纳科超级品牌日将线上直播发布 Zetasizer Advance,具有多种创新设计的新品即将揭开神秘面纱,点击下方图片查看详情。(2)HORIBAViewSizer 3000ViewSizer™ 3000 实现了纳米颗粒追踪分析技术的突破性提升,包括特有的照射和检测方法,使得各种尺寸纳米颗粒的可视化、粒径和数量浓度测量成为可能。仪器创新点:1)仪器配备三种波长激光光源,激光功率可调,实现宽分布样品粒径的精确测量;2)特有的样品池设计可实现样品体系的快速混合,且清洗方便;3)荧光模块可实现样品中各组分粒径分布及颗粒数量与比例的测量;4)运用重力沉降原理扩展仪器的粒径测量上限。(3)德国飞驰 A22 NeXTAnalysette 22 NeXT于2020年6月正式上市,用户可根据需求自行选择测量范围:Analysette 22 NeXT 微米型测量范围为0.5–1500μm,能满足大多数常规样品的测量需求;Analysette 22 NeXT纳米型测量范围拓展至0.01-3800μm,测量精度极高,附加的检测器能够灵敏地分辨极小的颗粒。该新品操作和清洗非常简单,分析时间短,具备可靠的测量结果和重复性,还可以记录额外的测量数据如湿法分散过程中体系的温度及PH值。(4)东曹 LENS3东曹生命科学新推出的LenS3多角度光散射检测器为测量合成聚合物、多糖、蛋白质和生物大分子分子量(MW)和回转半径(Rg)提供了革新的解决方案。仪器创新点: 1)采用了创新的光路设计,可以在10°、90°和170°三个固定角度进行光散射测量;2)可以测量小至2nm样品的散射光的角不对称性,远低于目前的检测极限。(5)美国PSS PSS Nicomp 380 N3000 PlusNicomp 380 N3000系列纳米激光粒度仪是在原有的经典型号380DLS基础上升级配套而来,相对于上一代产品,配件选用材料进行升级,配套软件版泵升级,检测速度升级,检测精度升级。其配套粒度分析软件复合采用了高斯(Gaussian)单峰算法和拥有专利技术的 Nicomp多峰算法,对于多组分、粒径分布不均匀分散体系的分析具有独特优势。(6)美国MAS CHDF4000型CHDF4000高分辨率纳米粒度仪采用毛细管流体分离技术(CHDF),用于测量粒径在5nm-2μm 范围内胶体的真实粒度分布(PSD),还可以用来分析多组分的复杂粒度体系,并不需要作出任何假设。另外,该粒度仪样品用量很少,小于1ml即可。 Zeta-APSZeta-ASP为一款高浓度胶体和乳液的特性参数检测仪,可以测试粒径、Zeta电位、滴定、电导等。此仪器对于高达60%(体积)浓度的样品,无需进行稀释或样品前处理,即可直接测量,甚至对于浆糊凝胶、水泥以及其它仪器很难测量的材料都可直接进行测量。 ZetaFinder ZF400型ZetaFinder ZF400 高浓度Zeta电位分析仪采用专门的电动声波振荡技术,可完成非凡的电动测量结果,从而避免了传统的微电泳技术的许多限制和局限。该仪器可同时测量Zeta电位、PH、电导、温度等指标,样品在测量时甚至可以进行滴定操作,并且可以在任何pH值下分析固体、不透明或半透明样品。(7)丹东百特 BT-90+BT-90+纳米粒度仪是丹东百特在BT-90纳米粒度仪基础上,全新开发的测量纳米颗粒粒度及其分布的纳米粒度测试系统,可实现亚纳米至微米范围的准确检测。BT-90+具有极佳的功能扩展能力,除了可以检测颗粒的粒径之外,还具备检测体系的粘度、颗粒之间的相互作用力、温敏材料的温度变化趋势等能力。(8)广州贝拓DLS 90DLS90纳米粒度仪具有极速测量和标准测量两种模式,极速测量模式下,最快可以10s给出测量结果。该仪器采用光子计数级的高精度光电倍增管和集成的光子相关器,配备精确的温控系统,采样时间最短可达100ns,可测量粒径范围低至1nm图像粒度粒形分析仪(1)FlowCam FlowCam 5000CFlowCam 5000C是Fluid Imaging Technologies公司于2020年3月发布的新品,该仪器可通过40+种形态参数表达所测颗粒的尺寸和形状,获得高质量颗粒图像和基于图像直测获得的定量数据,每分钟可分析成千上万个颗粒,是一款高效率、高性价比的颗粒检测仪器。(2)梅特勒-托利多 EasyViewer 400梅特勒-托利多全新发布的EasyViewer 400是一款探头式工具,功能更加强大、分辨率更高、探头尺寸更长,为测量高浓度体系、更小颗粒、透明液滴和颗粒、中试放大提供高效解决方案。该工具无需取样、稀释或备样,测量快速,简单易用,可一键生成报告,具有高分辨率(980nm)、更窄景深、背光光源三大亮点。无论是实验室研发还是中试放大,均可实时在线捕捉高分辨率晶体、颗粒和液滴尺寸、形貌的演变过程,对于科研人员理解机理、优化过程、快速决策扮演着重要的角色,广泛应用于制药、化工等多种领域。颗粒计数器(1)美国PSS FMS AccuSizer 780 OL-NDFMS AccuSizer 780 OL-ND 在线颗粒计数器使用基于光阻法的单颗粒光学传感技术(SPOS)原理,对检测样本不仅仅可以给出粒度分布(PSD),更可以获得颗粒数量(COUNT)。该仪器全自动化工作,无需人工进样,完美解决了自动取样和自动检测两大难题。(2)德国TOPAS LAP 323LAP-323气溶胶粒径谱仪利用双波长光散射技术测试颗粒物粒径和数量分布,采用两个不同波长的激光二极管对颗粒进行测试,分辨率更高,结果数据更准确。此外,该设备还具有集成度高、智能化流量控制、设计紧凑、使用便捷等特点。筛分仪格瑞德曼 AJ200空气筛分仪AJ200适用于颗粒样品的粒度分离、团聚样品的分散,该产品具有特殊喷嘴设计,转速可调,适用于更加广泛的应用条件。创新点:1)气流喷嘴可以转动,保证样品充分流动;2)真空度可手动或自动调节气流压力,确保不同颗粒粉末准确结果 ;3)德国吸尘器,超低静音,功率大效率高。比表面及孔径检测类仪器(1)麦克仪器 ASAP 2425ASAP 2425多站式全自动比表面与孔隙分析具有六个独立分析站,不同于市面上大多数仪器,可同时分析样品,也可独立分析,可在一小时内完成六个BET比表面分析;拥有12个独立的样品脱气站,即一个样品的制备不会影响另一个样品的脱气和分析。用户可选配低比表面积型号(氪气分析)和微孔型号,其中,低比表面积型号可精确测量低表面积材料( 1 m2/g);微孔型号则包括1mmHg 传感器,增强了微孔表征性能。(2)精微高博 TB系列TB系列比表面积及孔径同步分析仪在使用过程中,多个样品共用同一杜瓦瓶、同一气源进行测试分析,可保证分析测试的准确性和重复性,真正实现多站间无差异化分析。独有的Vtech技术融合了Vspace冷自由空间控制技术、Vlevel液氮面控制技术、Vstable稳定测试技术、Vctrl防抽飞控制技术,使得TB系列产品的测试效率更高,测试结果更重复、更稳定,更能满足大孔材料的测试需求。(3)贝士德 BSD-MAB该吸附穿透曲线分析仪自带的热导检测器可测定不同实验条件的双组份的吸附穿透曲线,如不同吸附剂,不同温度,不同压力,不同床层厚度,不同气体浓度,不同穿透流量等;连接色谱或质谱可完成三组分及三组分以上的多组分竞争性吸附、选择性吸附以及置换吸附等测试;可实现吸附剂对ppm级别浓度的TVOC、SO2及NH3等污染气体的吸附测试,尤其适用于吸附剂对室内、车内等环境中微量污染气体吸附性能的评价及吸附相关参数的测定。(4)理化联科 iPore400iPore 400型能同时测定6个样品,并对另外六个样品进行独立地脱气处理,可代替氪吸附完成超低比表面样品的测定,为医药行业尤其是进入药典的药品、电池材料以及3D打印常用金属粉末等超低比表面样品的测试,提供全新解决方案,同时还可以对膜的孔径进行测定。 iPore600iPore 600型能在测定3个微孔样品的同时,独立地对另外六个样品进行脱气,具有两套独立的真空系统,适合高校及研究单位对超微孔材料和微介孔材料的比表面及孔径进行精确分析,可广泛应用于电池材料、金属粉末、固体药物制剂(原料药API及其辅料)等超低比表面样品的质量控制和研发。 iChem 700iChem 700全自动程序升温化学吸附仪可用于对催化剂材料进行TPD、TPR、TPO、TPRx、脉冲化学吸附、催化剂处理、脉冲校准和动态BET比表面分析等,以对催化剂材料的酸碱度、酸碱分布、活性金属分散度、金属与载体的相互作用等进行分析,此外,可配置在线色谱仪,连续对TPRx产物进行定性和定量监测以及对脱附气体的浓度进行检测。
  • 种子尺寸分析仪-玉米种子粒型参数分析仪器
    托普云农作物考种分析系统TPKZ-1型,专业用于各种作物籽粒的考种,同时也适用于测量玉米果穗、截面。种子尺寸分析仪-玉米种子粒型参数分析仪器。  种子分析仪适用范围:  玉米、水稻、小麦、油菜、豆类、花生、芝麻等各种作物种子。  种子尺寸分析仪功能特点:  1、配A3幅面最gao分辨率1600dpi × 1600dpi、紫光M1彩色扫描仪。可分析各类种粒的种粒直径1~20mm。扫描仪分析工作区:A3幅面(431.8mm×304.8 mm)。  2、分析速度:可同时成像分析10个玉米果穗、35个玉米截面、1000粒左右玉米籽粒。  3、自动数粒速度:1500~3000粒/分钟(玉米籽粒),其它籽粒为1200~20000粒/分钟,数粒误差≤±0.1~0.4%,可监视修正结果,监视修正即达准确。具有相机画面畸变、背光板均匀性的自动矫正特性,有效减小尺寸测量误差。  4、自动测出籽粒数、各籽粒的粒形参数(长、宽、长宽比、面积、等效直径、周长等),以及其平均值,并排序输出。自动千粒重分析的精度误差:≤±0.5%。并能对不同品种的种子进行长和宽的对比,并输出矢量图。  5、同时成像分析玉米果穗:10个/次/分钟、玉米截面:35个/次/2分钟。自动测出各玉米穗长、穗粗、秃尖长、左右穗缘角、穗行角、平均行粒数、粒厚、截面穗行数、穗粗、轴粗,颜色以及其平均值,可测出各玉米截面上的种子粒长、粒宽、颜色(RGB具体数值表示)、粒高等尺寸参数。  6、水分测定:通过水分测定仪,数据能输入到软件中,然后统一输出分析数据。  7、图像分析:有任意放大、缩小,方便查看标记结果。  8、有被测样本条码、电子天平RS232重量数据的自动输入接口,插上电脑条码枪即可刷入样本条码编号 电子天平上的被测样本重量数据可一键送到电脑保存为EXCEL表。  9、分析过程为全程电脑控制,高效、准确、简便易用,真正一键式操作,鼠标一点,结果即现。  10、辅助删补:用鼠标选择增加/删除,或直接用鼠标在屏上手工计数,以确保结果准确性。目标区的个性化计数:对工作区视野中任选范围或矩形范围内的计数。  11、种子尺寸分析数据导出:分析图像结果可保存,自动形成总报表,统计分析结果能输出至Excel表,考种系统有云平台的支持,通过云平台可以上传或是下载数据。  12、软件加密:采用动态二维码+密码狗加密,登记具体使用单位的信息,防止加密狗的丢失。
  • 用单粒子ICP-MS对废水中的银纳米颗粒的分析测量
    “纳米银”是“银纳米颗粒”的简称或俗称,指由银原子组成的颗粒,其粒径通常在1~100nm范围。银材料表面具有抑菌性质早已为人熟知,其机理是位于材料表面的银原子可以被环境中的氧气缓慢氧化,释放出游离的银离子(Ag+),这些银离子通过与细菌壁上巯基结合,阻断细菌的呼吸链,最终杀死附着在材料表面的细菌。由于纳米颗粒的小尺寸效应和表面效应,随着颗粒尺寸的减小,纳米银的表面原子数与其内部原子数的比例急速升高,最终导致其银离子的释放速率显著增高,杀菌效果更加显著。利用纳米银抑菌特性的各种产品,包括纺织品、化妆品、药品等,以及其他工业产品,越来越多的研发并被投入使用。这些纳米银最终将会进入到环境中,对生态环境和生物健康产生影响。快速地检测和表征在各种不同的环境基体下的纳米粒子的技术手段因此显得极为必要,而珀金埃尔默公司的单颗粒ICP-MS技术则可以很好的应对这项挑战。本实验带您了解不同的废水中,单颗粒ICP-MS测定纳米银的能力。样品水样:是从加拿大魁北克省蒙特利尔附近的污水处理厂抽取。废水:是经过污水处理厂最终处理后排放到河里的废水,在二级沉降池后收集。混合溶液:经过生物处理后离开曝气池,到达二级沉降池处理悬浮物和沉积物的废水,从二级曝气池收集。海藻酸盐:一种在废水中可以检测到并由废水中溶解性有机碳组成的ppm级多糖。海藻酸盐溶液被用作于比较废水样品的一个已知的控制和替代物。用去离子水溶解从褐藻提取的海藻酸钠(Sigma-Aldrich, St. Louis, Missouri, USA)配制成浓度为6ppm的海藻酸盐溶液,并震荡一个小时。实验平均粒径为67.8±7.6nm的用PVP包裹的Ag ENPs标准品(用TEM定值,nanoComposix™ Inc., San Diego, California, USA),加入10mL到所有样品中,使浓度为10ppb(5,000,000粒/mL)。样品用去离子水稀释10-1000倍,测试前超声5分钟。所有样品一式三份。使用PerkinElmer NexION® 300D/350D ICP-MS进行分析,采用SP-ICP-MS模式,在Syngistix™ 软件纳米分析模块下进行。实验参数如表1所示。实验结果图1显示了0.1ppb(50,000粒/mL)Ag ENPs标准品的粒径分布,相当于66.1±0.1nm的平均粒径,浓度为52,302±2102粒/mL。对粒径的测试结果和TEM定值的一致性表明海藻酸盐基并不影响测量精度。图1:在6ppm海藻酸盐溶液中的Ag的粒径分布在确定海藻酸盐溶液技术的准确度的基础上,排放废水和混合溶液样品进行下一步的测量。图2和图3显示了废水和混合溶液各自的粒径分布。分析前样品稀释100倍,表2显示了粒径大小和颗粒浓度的测试结果。另外,平均粒径与证书标称值一致,颗粒浓度接近计算值,表明没有废水基体会影响测量结果。这些结果表明,可以准确测量在废水样品中的Ag ENPs。图2:稀释100倍废水中Ag的粒径分布图3:稀释100倍的混合溶液中Ag的粒径分布结论实验证明SP-ICP-MS具有准确测试三种不同类型废水样品中的银纳米粒子的能力。虽然废水基体很复杂,但是它们不会抑制SP-ICP-MS准确测量粒径和纳米粒子浓度的能力。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 2023年中国汽车工程学会尺寸工程分会论文征集通知
    由中国汽车工程学会尺寸工程分会主办的“2023 年汽车尺寸工程交流会”将于2023年7月召开。尺寸工程分会致力于在汽车尺寸工程领域开展学术交流、标准体系完善、人才培养及学会任务等工作,促进专业发展,提高专业水平,助力国家汽车专业尺寸工程整体技术水平提升。会议将以“务实、创新”为主题,以技术交流为目的,以助力汽车强国为初心,推动国内尺寸工程技术发展。诚挚欢迎尺寸工程专业的各位委员,从事汽车主机及零部件、摩托车制造及相关工业领域的尺寸工程技术人员,关心中国汽车尺寸工程技术进步的国内外友好人士踊跃投稿。入选论文将编入大会论文集,同时安排在会议上宣讲相关论文,并推荐在《汽车工艺与材料》、AI《汽车制造业》等杂志上发表。一、论文范围 1、尺寸工程技术在汽车尺寸同步工程方面的研究与应用;2、尺寸工程技术在白车身尺寸精度控制方面的研究与应用;3、尺寸工程技术在整车外观尺寸精度控制方面的研究与应用;4、尺寸工程技术在汽车质量控制工具方面的研究与应用;5、尺寸工程技术在汽车开发中的未来展望。二、论文格式要求采用A4幅面复印纸排版打印,上下左右的页边距均为30mm,字体及字号要求如下:论文题目(三号宋体加粗)作者姓名(作者所在单位 邮政编码)(五号宋体)【摘要】:300字以内(5号楷体)x x x x x x x x x x x x x x x (正文5号宋体)小标题(小4号黑体加粗)图表可用小5号或6号字要求文章没有发表过,且主题明确,逻辑严谨,文字精炼,图像清楚(若引用外文数据或图表必须翻译成中文),格式规范。要求专题论述论文不能超过2500字,综述性论文不能超过3500字。三、论文提交时间征文截止日期为2023年6月30日,论文请同时发至以下三个邮箱:联系人: 史有为 17743121786 shiyouwei@faw.com.cn杨 博 17804310832 yangbo1@faw.com.cn 苏志勇 13514466239 suzhiyong@faw.com.cn
  • 珠三角首台超大尺寸SLM金属3D打印设备在季华实验室研制成功
    近日,季华实验室增材制造团队自主研发的JHL600超大幅面SLM金属3D打印设备,取得阶段性进展,仅仅经过一年多的不断努力,设备开发小组完成了从结构设计、光学设计、水电气设计,加工采购,到工控机及切片软件的自主开发、安装调试及一系列软硬件联调工作,突破了多项交叉学科难题,并已完成发明专利申请共计10余件,其中已获得一件发明专利授权及两件软著授权,设备已具备打印功能。△JHL600金属增材制造装备渲染图通过260余张机械设计图纸、100余张电气原理设计图纸、一整套自主开发PLC控制程序、500余种外购件选型采购记录、9000余行切片软件源代码以及26000余行工控机软件源代码这样复杂排列组合,完成了珠三角首台超大尺寸金属3D打印设备的研制,可实现最大成形尺寸达800x600x600mm³,一举跻身全球最大幅面激光选区熔化设备行列。△设备开发成员同装备实拍合影该设备的成功研制将解决航空航天发动机大尺寸关键零部件增材制造的“卡脖子”问题,利用双构建仓可快速切换概念、多激光同步扫描、自适应双向铺粉、永久过滤系统及闭环粉末循环系统等高效模块式设计,配合自主开发的Jiva 3D(季华3D系统)上位机及扫描路径规划软件,从而实现打印效率的提升,同时提高设备运行的可靠性和稳定性。△首版工艺测试样件实拍图该设备实现了首次近30小时的稳定运行,成功完成了第一版316L不锈钢材料工艺测试样件的打印任务;在设备成形性能及微观组织一致性方面均满足了测试标准。团队下一步将继续开展设备微调、工艺优化等一系列研发工作,完成多材料、大尺寸、复杂结构打印工艺的开发,推进超大尺寸3D打印设备的工业化。金属增材制造团队同时展开增材制造工艺及产品研发、金属粉末雾化工艺及装备开发,以科研为基础,工程化及应用化为目标,打造覆盖核心技术的全流程链研发中心,引领粤港澳大湾区增材制造技术的美好愿景。
  • 磁力显微镜的魅力—纳米尺寸分子磁通漩涡中心极性反转
    磁学是物理学古老的研究领域之一,也是具生命力的发展领域,利用电子自旋的研究来推进数据的存储、传输和计算等多方面的应用进展一直是科研工作者执着追求且不断探索的方向。 在众多研究过程中,电子自旋结构的成像与可控操作成为磁学领域研究的巨大挑战。与之相关的电子自旋现象包括斯格明子、刺猬状自旋结构、磁通漩涡等,其中,磁通漩涡电子自旋结构是研究多位磁学存储介质的一个重要现象。以往关于磁通漩涡中心性反转的研究工作都是针对微米尺度开展的,纳米尺度的磁通漩涡中心性反转工作目前仍需进一步探索和研究。 Elena P. 等人利用德国attocube公司的低温强磁场磁力显微镜—attoMFM在实验中清晰的观测到了25nm尺寸单个分子中磁通漩涡中心性反转现象。为了实现纳米尺寸单分子中磁性研究,Elena等人选取的纳米尺寸磁性分子为K0.22Ni[Cr-(CN)6]0.74体系。该体系分子尺寸可控制调整,且具有易于制备的特点。研究单分子纳米尺度的磁性,具备低噪音、高灵敏度、以及较高的空间分辨率等特征的磁性表征技术就显得为重要。德国attocube公司的低温磁力显微镜attoMFM可提供可变磁场的环境,是实现纳米磁性分子在低温下磁通漩涡性质表征与操控的有力设备。如下图实验数据,只需通过施加很小的外加磁场(600 Oe左右),单分子中的磁通漩涡就可实现中心性反转。在4.2 K的低温环境中,通过施加连续变化的外加磁场与attoMFM成像的实验数据分析,可观察到纳米单分子磁通漩涡磁性随着外加磁场发生清晰的中心性反转。attoMFM实验观测到纳米分子中磁通漩涡中心性反转 下图为具有纳米别高分辨率的磁力成像结果。图中清晰显示了分子的磁力分布情况。原本分子磁通漩涡中心性导致在垂直方向磁力分布可被外加微小磁场改变(下图中的白色部分表明,经过磁场施加针样品由排斥力转变为吸引力)。另外,作者也详细分析研究了不同尺寸单个分子中的磁通漩涡中心性反转机制。attoMFM直接观察到NP4单分子磁通漩涡中心性反转 作者预见,该次实验结果中纳米尺寸单分子的磁通漩涡中心性转换的特性可能为未来数据存储开创新篇章,数据的读写可以通过很小的磁场来操纵。 相关产品:低温强磁场原子力/磁力/扫描霍尔显微镜 - attoAFM/attoMFM/attoSHPM系统:http://www.instrument.com.cn/netshow/C159542.htmAttocube低温强磁场扫描近场光学显微镜:http://www.instrument.com.cn/netshow/C81740.htm
  • 国内首台关键尺寸量测设备(CD-SEM)出机中芯国际
    近日,国内半导体制造良率管理设备厂商东方晶源在北京总部举行了国内首台关键尺寸量测设备(CD-SEM)出机仪式,正式宣布斩获订单并出机中芯国际。东方晶源董事长俞宗强博士、总经理蒋俊海先生,北京市经信委、亦庄管委会、国家02专项以及东方晶源客户、股东、投资方等代表出席了此次活动,共同见证了这一重要时刻。此次出机仪式,标志东方晶源继2019年攻克电子束缺陷检测技术后,再一次取得了重大产品技术突破,填补了国内关键尺寸量测设备(CD-SEM)的市场空白。据悉,此次出机的关键尺寸量测设备(型号:SEpA-c410)面向300mm硅片工艺制程,通过先进的电子束成像系统和高速硅片传输方案,搭配精准的量测算法,可实现高重复精度、高分辨率及高产能的关键尺寸量测。进驻中芯国际后,将通过实际产线验证,进一步提升、完善设备性能,向产业化目标整体迈进。中芯国际是世界领先的集成电路晶圆代工企业之一,也是中国内地技术最先进、配套最完善、规模最大的集成电路制造企业集团,提供0.35微米到14纳米不同技术节点的晶圆代工与技术服务,在先进制程探索、设备多元化方面等方面走在行业前列。东方晶源继首台电子束缺陷检测设备进驻中芯国际产线后,首台关键尺寸量测设备能够进入中芯国际12英寸产线验证,说明其研发实力已获得行业高度认可,是我国集成电路制造自主可控的重要组成。东方晶源自成立以来,专注于芯片制造关键环节的良率控制和提升领域。在北京市经信委、亦庄管委会、合作伙伴和投资方的共同支持下,不断取得重要产品技术突破,公司旗下计算光刻系列软件(OPC)、电子束缺陷检测设备(EBI)均已经过国际大厂产线验证并实现订单收入,在国产化设备领域取得了瞩目的成绩。此次出机,东方晶源在良率控制产品线添加了至关重要的一环,也解决了我国在芯片制造领域中又一项“卡脖子”难题。中芯国际与东方晶源作为各自领域的优秀代表,进一步加强了战略合作关系,是半导体产业链上下游产研与应用合作的典范。目前,半导体设备市场主要被国外巨头垄断,行业集中度很高,是我国半导体产业被“卡脖子”的关键所在,因此国产化替代对国家科技创新的意义重大。东方晶源俞宗强董事长表示:国产半导体设备的快速发展,除了国家政策、研发资金、人才培养等方面的大力投入,更需要晶圆代工厂的实际使用和验证完善。目前,东方晶源已经和国内大部分有市场影响力的晶圆代工企业建立了合作关系。未来,希望更多的晶圆代工企业对国产设备厂商保持更加开放的心态,为优质国产芯片设备供应商提供可以验证技术、实现产业化的平台,共同携手突破国外技术垄断,推动我国半导体产业链实现全面自主可控,配合国家实现在半导体领域的战略布局。
  • 实现首件产品生产尺寸全流程控制,高精度三维扫描助力用户轻松赢得国际订单
    在制造业的激烈竞争中,交付时间和生产质量是非常重要的两个因素,各制造企业也都不断引进新技术、优化生产管理方式,来实现生产效率和生产质量的提升。本期,我们将走进一家机械制造公司,了解其如何通过高精度三维扫描技术,进行首件产品生产全流程的高效、准确全尺寸控制,从而提高生产效率和质量,缩短交付周期,成功交付,赢得客户青睐。/ 关于客户单位 /该机械制造公司集产品开发、模具制作、铸造、机加工为一体,其部分经营内容为:向国外用户提供机械制造的铸件产品。其经营过程中,通常需要先制作首件产品,发货给国外客户,等首件产品得到客户确认后,获取批量制作订单。所以,快速、成功交付首件产品,是赢取后续批量订单的关键。为了能够更加高效高质地制作首件产品,其在国外用户的推荐下,引入了先临天远FreeScan UE Pro 多功能激光手持三维扫描仪,实现了良好的应用效果。- 高精度工业三维扫描 -首件产品生产尺寸检测全流程解决方案在该公司的首件产品制作过程中,高精度三维扫描技术能够实现生产模具以及首件产品的三维检测,贯穿于产品的整个生产过程,使得整个生产过程更加顺畅,缩短工期,并保证生产尺寸质量。首件产品生产主要流程:1)CAD设计:根据客户需求,进行原型CAD设计,以进行后续制作。2)模具制作:根据CAD设计,制作模具模型以及铸造模具。3)模具三维检测:使用FreeScan UE Pro进行模具三维扫描,并结合检测软件进行三维检测,高效检测模具的尺寸、形面的偏差。4)首件生产:使用模具进行首件产品的制作。5)首件三维检测:同样通过高精度三维扫描技术进行首件产品的尺寸检测,若合格,则可进行发货,若有偏差,调整工艺继续生产、三维检测合格后发货。- 三维扫描 -- 三维点云数据 -- 三维检测色谱图 -高精度三维尺寸检测应用优势:1)强大的便携性和通用性由于FreeScan UE Pro具有强大的便携性、环境适应能力以及尺寸检测的通用性,能够应用于首件产品的整个生产过程的尺寸检测中,客户单位可以轻松实现多个不同生产环节的三维尺寸精准控制。2)测量结果准确可靠FreeScan UE Pro精度为0.02mm,且重复性精度稳定,能够为3D尺寸测量提供准确的三维点云数据,确保测量结果的准确性。*FreeScan系列产品 ISO 17025 认证:基于JJF1951-2021和 VDI/VDE 2634 第3 部分标准。基于可追踪球体直径测量数据对探测误差性能进行评估,在工作范围内基于可追踪长度标准件从多视角方向进行测量,来评估球体间距误差。可通过集成或内置摄影测量获取体积精度进一步优化的数据。一开始是我的国外客户推荐我三维扫描这项技术,当时也是推荐了先临三维这个品牌,事实证明确实好用。我印象很深刻一次:当我去到国外客户现场的时候,客户也拿他的三维扫描仪进行了三维尺寸的检测,结果是,他的检测报告和我的检测报告几乎一模一样,我的客户非常满意。——客户单位董事长先临天远FreeScan UE Pro 多功能激光手持三维扫描仪,助力用户单位轻松实现首件产品生产全流程的高效、准确全尺寸控制,从而推进其生产质量和生产效率的双重提升。同时,先临天远的高精度工业三维扫描仪,其数据获取的能力,也获得了国际终端用户的认可。接下来,先临天远也将不断在全球推广高精度工业三维扫描技术的应用,打造全球知名品牌,为全球制造业企业提供3D光学测量技术。
  • 不贴点!跟踪式激光扫描系统在大尺寸精密测量中显身手
    精准测量是支撑高质量制造的基石。先临三维的高精度工业3D扫描技术作为一种光学测量工具,凭借其高精度、高效率、非接触等优势,为高端制造的精密三维尺寸检测提供保障。当下,这项技术已经渗透至到汽车工业、航天制造、电子电器、教育科研等行业,满足了不同用户对三维尺寸检测的需求。在工业领域,激光3D扫描仪得到了广泛应用。然而,传统的激光3D扫描仪需要在被测物体上粘贴标志点,以实现高精度三维数据的拼接与获取。在大型工件的三维尺寸检测中,这种方式动辄需要粘贴和去除成百上千个标志点,耗费大量时间。先临三维的跟踪式激光扫描系统以动态跟踪、不贴点的独特优势,以及激光扫描高精度、高效率、材质适应性佳的稳定表现,为大型工件精准的三维尺寸检测提供了破题思路。通过在扫描仪的工作过程中使用跟踪仪来获取扫描仪的三维空间信息,跟踪式激光扫描系统实现了大范围的无需标志点的拼接扫描,从而为大型工件的三维尺寸检测进一步提速。行业应用案例: 汽车工业白车身是指装焊完成但未涂装的车身结构,是整车零部件的载体。这种车身具有尺寸体积大、曲面复杂、部分零件表面反光等检测难点,因此需要精度高、无需贴点、材质适应性更强的激光3D扫描设备进行数据获取。使用先临天远的FreeScan Trak Pro2 跟踪式激光扫描系统,仅需约10分钟即可获取完整的白车身三维数据。此外,扫描精度最高可达0.023mm且重复性精度稳定,结果准确可靠满足工业测量需求。*FreeScan系列产品 ISO 17025 认证:基于JJF1951-2021和 VDI/VDE 2634 第 3 部分标准。基于可追踪球体直径测量数据对探测误差性能进行评估,在工作范围内基于可追踪长度标准件从多视角方向进行测量,来评估球体间距误差。可通过集成或内置摄影测量获取体积精度进一步优化的数据。轨道交通轨道车辆的车身主体是由一次次的焊接而成型,保证焊接的准确度,是后期顺利装配的基础。因此,确保扫描结果精准、扫描过程不贴点以保证效率,是车身进行三维检测的核心诉求。FreeScan Trak Pro跟踪式激光扫描系统表现出色,高效获取车身的完整三维数据后,将扫描获取数据与原始的CAD设计数据相对比,即可完成车身的焊接质量检测。模具铸造在模具铸造过程中,模型的形状和尺寸至关重要。面对结构复杂的大型铸件模型,不贴标志点的高效扫描成为三维检测中的关键环节。FreeScan Trak Pro流畅、高质的扫描提供了助力,不仅大幅缩短三维尺寸检测时间,还为铸件的浇筑生产节省大量时间。更多应用场景先临三维的跟踪式激光扫描系统,同样为航空制造、工程机械等行业的大尺寸精密测量提供高效解决方案。我国制造业正向高端迈进,大型化装备 和复杂结构制造的兴起,对测量方式提出了精度更高、适应性更强的要求。先临三维的高精度工业3D扫描业务线,品全而精,包含踪式激光三维扫描系统、手持式激光三维扫描仪、固定式蓝光三维扫描仪等多款产品,以精准测量保证精密制造。未来,先临三维将持续对产品、功能、应用进行深度打磨,让高精度工业3D扫描技术朝着设备无线化、软件智能化、检测自动化的方向不断精进,助力先进制造业的高质量发展。
  • FreeScan Trak Pro2,进一步革新大尺寸工件的全尺寸检测效率!
    高精度三维扫描技术在工业制造领域不断普及,其在赋能制造产品尺寸高效控制的同时,制造企业用户也对其提出了更高的应用要求,其中一项,就是使用效率。如今,高精度三维扫描仪的扫描速度非常快,但是在粘贴标志点这一预处理环节却需要不少时间,特别是在大型工件的三维扫描中,甚至会超过三维扫描的时间,这也成了用户使用过程中的痛点。基于此,先临天远从用户需求出发,研发了基于光学跟踪技术的FreeScan Trak Pro系列产品,无需标志点,可以实现高效的大型工件三维数据获取。本期,我们详细了解下,FreeScan Trak Pro2如何提升大型工件的三维扫描效率,实现三维数据又快又准地获取。Part01、作为测量工具,精度是重中之重作为一项3D测量工具,精度是非常重要的一项参数,FreeScan Trak Pro2精度高达0.023mm,配合摄影测量,体积精度达到0.044mm+0.012mm/m。同时,FreeScan Trak Pro2重复性精度稳定,多次测量同一样件的结果一致性高。高精度且重复性精度稳定,使得FreeScan Trak Pro2在进行大型工件的测量过程中,结果可信性高。Part02、多项优势组合,打造大型工件扫描高效率在整个扫描过程中,从预处理到三维扫描再到数据处理,FreeScan Trak Pro2在每一个操作环节均体现着“高效”二字。无需贴点,节省大量预处理时间基于动态光学跟踪原理,FreeScan Trak Pro2跟踪式激光扫描系统中,系统可对扫描头进行跟踪定位并实时获取测量目标的三维数据,无需粘贴标志点,即可完成高精度的三维扫描。-该铸件长约4.5m,高约1.8m,重达20吨-如此一来,在大件扫描过程中,能够减免大量的预处理时间,例如上图这个大型铸件,能够省去至少1个小时的贴点时间。三维扫描快速、流畅FreeScan Trak Pro2共计拥有58束蓝色激光线,扫描速度可达368万点/秒(配合使用TE25扫描仪),且扫描过程非常流畅,上图中20吨的大铸件,三维数据获取仅需半小时(包括转站时间)。扫描速度快,且能够稳定、顺畅地完成扫描任务,在大型工件测量过程中,FreeScan Trak Pro2打造了非常舒畅的扫描体验。实时网格,减少数据后处理时间FreeScan Trak Pro2跟踪式激光扫描系统实现了扫描过程中,实时生成网格数据,这样就减少了点云封装的时间,扫描之后,就可以直接导出stl数据。特别是针对这种大件,数据量大,点云封装的时间较久。如此一来,就能够进一步提升大件三维数据获取效率。无需贴点预处理,扫描快速流畅,实现三维数据实时网格化,先临天远研发团队从用户实际使用需求出发,每一个使用环节均进行了设计优化,实现了大型工件的扫描高效率。FreeScan Trak Pro2已经在大型工件的测量应用中大展拳脚。具体应用案例新能源车电池托盘检测FreeScan Trak Pro2扫描新能源车电池托盘仅需3分钟左右,将扫描数据导入至检测软件中,在路径设置完成的情况下,测量时间仅需1-2分钟。如此,在5分钟以内,即可完成所有孔位的测量数据,位置偏差一目了然。白车身三维扫描通过FreeScan Trak Pro2跟踪式激光扫描系统,扫描下整个白车身仅需10分钟左右,为生产尺寸质控的提速提供了新思路。通过优化设计,FreeScan Trak Pro2实现了大尺寸工件全尺寸检测效率的进一步革新!另外,FreeScan Trak Pro2无需贴点,能够更好地应用于自动化三维检测项目中,通过机器代替人工,能够实现三维检测效率提升的质变,将在整个制造业中发挥效力。先临天远精耕工业3D测量领域多年,具有强大而全面的产品体系,致力于为每一位工业测量用户提供最为合适的三维视觉解决方案。
  • 激光跟踪仪:在大尺寸高端装备中大显身手
    导语:激光跟踪仪作为大尺寸空间几何量精密测量仪器,由于具有较高的技术门槛,国内企业又缺乏深厚的经验积累,导致该产品长期被国外垄断。历经十余年的研发与实践,中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队终于在激光跟踪仪的技术领域有了与国际先进技术比肩的突破性进展。本文将带您了解这个研发团队的激光跟踪仪和它在精密制造中扮演的关键性角色。说起激光跟踪仪,高端装备制造企业对它大概并不陌生,它是一种大尺寸空间几何量精密测量仪器,是大型高端装备制造的核心检测仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点。检测的装备体积越大越能显示出此类产品的优越性,所以它更多出现在航空航天、汽车制造、重型机械制造、重工与船舶、能源、科研、医疗等领域等先进制造领域。激光跟踪仪是激光干涉测距技术、激光绝对测距技术、精密测角技术、光电探测技术、精密机械技术、精密跟踪技术、现代数值计算理论等各种先进技术的集大成之作,需要突破百米的测量范围、毫秒级的测量时间、微米级的测量精度以及动态实时跟踪测量等各项技术难点,技术门槛非常高,需要长期的经验积累,几乎不存在弯道超车的可能性。目前,世界范围内主要有美国FARO、美国API、瑞士Leica三家公司生产销售激光跟踪仪,我国当前尚无成熟的激光跟踪仪产品销售。因此,攻克关键技术难点实现激光跟踪仪国产化迫在眉睫。组建团队 攻关激光跟踪仪技术壁垒由于激光跟踪仪的重要性、特殊性和不可替代性,国家层面高度重视激光跟踪仪的自主研发。中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队(以下简称该团队)一直致力于实现激光跟踪仪的国产化。该团队激光跟踪仪的研发历史已有十余年,并阶段性取得骄人成绩:(1)2011年中科院微电子研究所 (原中科院光电研究院激光跟踪仪研发团队)在国内率先开展激光跟踪仪整机研制;(2)2013年推出国内首台原理样机,初步形成具有一定规模的、专业稳定的整机开发团队,引领国内激光跟踪仪的整机与系统关键技术发展,积极追赶国际前沿;(3)2017年推出国际首台三自由度飞秒激光跟踪仪样机,从技术层面上实现了跨越式发展;(4)2021年研制成功国内第一台六自由度激光跟踪仪样机,并通过技术指标测试;(5)2021年三自由度激光跟踪仪进入到产业化阶段,立足海宁集成电路与先进制造研究院,组建了数十人的激光跟踪仪产业化团队,建立激光跟踪仪小批量生产线。该团队在激光跟踪仪领域取得了一系列具有自主知识产权的研究成果,共申报发明专利32项(已授权21项),软件著作权6项,发表研究论文60余篇。2020年激光跟踪仪成果通过了中国仪器仪表行业协会组织的成果鉴定,鉴定委员会认为:“本研究成果技术难度很大,创新性很强,取得了多项自主知识产权。整体达到国际先进水平,研制的激光跟踪仪填补国内空白,飞秒激光跟踪仪属国际首创,其中绝对测距精度、断光续接精度达到国际领先水平。”该成果荣获中国机械工业技术发明特等奖和中国计量测试学会科技进步一等奖。该团队目前主推三自由度激光跟踪仪ICAM-LT-3DOF、六自由度激光跟踪仪ICAM-LT-6DOF如图1所示。除此以外,该团队还可以根据用户的要求定制解决方案,更加贴近客户的使用需求,解决用户的“非标”问题。图1 ICAM-LT-3DOF型激光跟踪仪图2 ICAM-LT-6DOF型激光跟踪仪干货满满 技术原理深度剖析当三自由度激光跟踪仪工作时,如图2所示,激光测距系统获得靶球到仪器的精确距离r,方位编码器和俯仰编码器测角系统分别测出目标方位角A和俯仰角E,利用这三个原始测量值,就可以通过球坐标与直角坐标之间的转换关系获取空间三维直角坐标(X,Y,Z)。图3 三自由度激光跟踪仪原理图合作靶球在空间移动时,从合作靶球返回的一部分光会进入激光跟踪仪内部的位置检测器(PSD,Position Sensitive Detector),随着合作靶球的移动PSD将探测偏移值,跟踪控制系统根据这个偏移值控制方位和俯仰电机转动直到偏移值为零,从而达到跟踪的目的。测量组合参数(A,E,r) 经过坐标转换得到空间三维直角坐标(X,Y,Z)后,经过数据分析软件可以得到被测对象各种几何量参数。激光跟踪仪数据采集系统将测量数据发送至上位机以后,经上位机解析可以确定目标的三维尺寸、几何形貌等信息,并通过计算机实时显示并打印测量结果。六自由度激光跟踪仪为三自由激光跟踪仪的升级产品,如图3所示,在空间位置信息测量的基础上加入了视觉测量、光电测量和惯性测量等模块,用以获取目标空间姿态信息。首先需要建立激光跟踪仪坐标系与上述测量模块之间的转换关系,并通过视觉测量中纵向投影比不变的约束实现横滚角测量;在上述基础上,基于光束向量唯一性约束和激光准直传感原理实现方位角和俯仰角的测量,最后实现三个空间姿态角的测量;除此之外,还融入了惯性测量单元IMU的测量信息,用于动态条件下的辅助测量。图4 六自由度激光跟踪仪原理图多项技术突破 跻身国际先进该团队历经10余年的垂直深耕,在激光跟踪仪领域相继突破了高速激光干涉测距、高精度绝对测距、精密跟踪转台设计、高精度测角、动态伺服跟踪、目标快速识别锁定、多源融合姿态测量、系统误差检测与补偿等多项关键技术,在80m范围内,跟踪测量速度大于4m/s,具有良好的目标快速识别锁定能力,测量精度达到15μm+6ppm,技术性能跻身国际先进行列。优势突出 大尺寸精密测量显身手在大尺寸精密测量领域,激光跟踪仪具有测量范围大、精度高、功能多、可现场测量等优点,取代了大型固定式三坐标测量机、经纬仪、全站仪等许多传统测量设备,在设备校准、部件检测、工装制造与调试、集成装配和逆向工程等应用领域显示出极高的测量精度和效率,激光跟踪仪已成为大尺寸精密测量的主要手段,在实践中可以为为航空航天、汽车制造、重型机械制造、重工与船舶、科学研究、能源、医疗等领域等行业提供可靠的技术保障。(1)航空航天领域在航空航天制造领域,飞行器具有外形尺寸大、外部结构特殊、部件之间相互位置关系要求严格等特点,飞行器的装配通常是在各部件分别安装后再进行总体装配,在部装的某些环节和总装的整个过程中都需要进行严格的几何检测。激光跟踪仪测量的现场性和实时性以及它的高精度可以满足飞机型架和工装的定位安装、飞机外形尺寸的检测、大型零部件的检测以及飞机维修等工程测量需求。例如,测量一架大型飞机的内外形尺寸,首先要确定整架飞机的空间坐标,保证所测量的外形尺寸空间点都在同一坐标系中,可以布置足够的激光跟踪仪测站,这些测站保证了飞机上、下、左、右、前、后等整个外形都在激光跟踪仪测量范围内。其次要保证飞机处于静止状态,测量过程中不能产生移动。激光跟踪仪在每个测站测量某一个区域的飞机外形坐标点,将各个测站下的飞机外形坐标连接起来就构成整架飞机的外形尺寸坐标,对这些点进行处理可形成飞机外形的数字模型。激光跟踪仪扫描范围大,采集数据速度快,数据采集量大,精度高,大大提高了飞机测量的工作效率。(2)汽车制造领域在汽车制造领域,激光跟踪仪用于车身检测、汽车外形测量、汽车工装检具的检测与调整。通过激光跟踪仪采集汽车不同部位的点云数据,再进行拼接得到完整的汽车曲面点云数据,利用三维造型软件得到汽车三维模型。另外,汽车生产线需要以最高级别的自动化程度和准确性进行定期检测,以进行重复性和适产性测试。激光跟踪仪这种移动坐标测量设备适合工业现场使用,在检测工程中使汽车生产的停工期大幅缩短。(3)重型机械制造领域在重型机械制造业中,大尺寸部件的检测和逆向工程常采用激光跟踪仪。在零部件生产中,该系统可以快速精确地检验每个成品零部件的尺寸是否与设计尺寸一致,同时将零部件物理模型迅速数字化,得到的数字化文件可以用各种方法处理从而得出测量结果。在工件模具生产中,激光跟踪仪对工件模型进行扫描测量后建立数据模型,由数据模型生成可被加工中心识别的加工程序,从而加工出模具。三维管片和模具测量系统也是激光跟踪仪的典型工程应用之一,通过跟踪测量成品管片各个表面上的空间点坐标,经过坐标系转换和纠正将表面数据点拟合成平面或曲面,检验管片的尺寸与设计尺寸的偏差,便可判断成品的质量是否合格。与传统的检测方法相比,激光跟踪仪测量速度快,能在短时间内采集大量空间数据点信息,同时可以直接处理数据,给出成果报表,不仅工作效率高,而且大大节省了人力物力。(4)重工与船舶领域在造船工业领域中,激光跟踪仪常用于舰船外形尺寸检测、重要部件安装检测与逆向工程等。例如,船舶制造公司对于甲板都有着极高的要求,每一个拼接块的连接点都必须恰好能够和另外一片拼接块严丝合缝对接,且甲板外侧的外观必须与船体形状严格吻合,如此才能体现船舶的质量和性能。激光跟踪仪能够实时地对长度以及横向曲率进行测量,代替笨重的模板进行现场装配与检测,可使生产时间节约60%-70%,大大提高了船舶的生产效率。(5)能源领域在能源领域,激光跟踪仪常用于大型零部件的高精度加工、尺寸检测和辅助维护。例如,水力发电站中,新的涡轮发电机投入工作之前,必须获得精确的涡轮机转子形状,以便后续的勘测;当进行水力发电站的检测时,需要对在役涡轮机转子开展数字化测量,从而确定涡轮转子的磨损情况。在风力发电站中,对大型风电轮毂叶片外形尺寸进行高精度测量是保证风电轮叶片正常工作的关键。激光跟踪仪能够完成定轴轴径、同轴度、轮毂连接孔位置度的高精度测量,并且仪器轻便灵活、精度高、测量范围大、能够现场测量,已成为风电行业的必然选择。(6)科研领域在科研领域中,激光跟踪仪在粒子加速器的定期检测与调整、重要核心部件安装检测以及机器人制造校准中发挥了重要作用。例如,机器人在工厂机械安装、马达驱动安装、夹具重组等整个生产周期过程中必须保持规定的精度,才能称为高性能工业机器人。机器人设计尺寸与实际生产尺寸的偏差往往较大,主要是由于机械公差和部件安装误差所引起的。在校准机器人的实际应用中,一般有两个工作测量组,一组负责装配机器人,一组则负责检测校准安装部件,激光跟踪仪安置在这两个测量组之间。操作人员通过计算机控制定位,激光跟踪仪可以监测两个工作小组的测量工作。在一组操作人员利用激光跟踪仪检测机器人配件的同时,另一组工作人员负责装配经过检测的工件,装配后再利用激光跟踪仪进行校准。这样,大幅提高了机器人生产安装的工作效率,也节省了人力物力。(7)医疗领域在医疗领域中,质子医疗机在治疗时最重要的是需要准确定位患者体内癌细胞位置,通过控制治疗床移动,将患者需要治疗的部位送到有效的治疗区域内,才能够进行准确有效的治疗。因此医疗机在安装调试时,要求系统能够控制机械臂,将末端工装精确地移动到理论位置。这对测量方案提出了更高标准的要求:能够准确调整病灶中心的位置,X、Y、Z方向偏差要求小于0.1 mm;能够调整连接法兰的姿态精度,RX、RY、RZ要求小于0.1°,同时检测、分析效率要尽可能高。在质子医疗机安装调试过程中,激光跟踪仪可以提供简单便捷的应用方案。首先通过测量固定在墙体上的定位点,建立离子源坐标系,在软件中将机器坐标系定位到离子源坐标系统;通过坐标转换得出病灶中心与工装上定位孔的坐标关系,解算出定位孔的坐标。其次,将反射球放置在定位孔上,通过监视窗口功能查看当前位置偏差,实时调整工装,使偏差逐渐缩小至公差要求。该团队研发的激光跟踪仪已在卫星天线变形与位姿测量技术、飞机大型部件装配测量技术、船舶分段对接测量技术、高能加速器准直调节测量技术、工业机器人现场校准技术等领域开展了一系列应用研究,并取得了良好的社会效益。制造业中的智能装备、复杂结构制造、高精密制造和装配的兴起,对于测量系统提出了精度更高、智能化程度更高、适应性更强的要求。激光跟踪仪作为最先进的三坐标及姿态精密测量仪器之一,将为工程技术及科学研究大尺寸精密测量提供有效的解决方案。由于激光跟踪仪应用范围广、测量效率高、测量精度高,该仪器在高端制造领域扮演的角色越来越重要。激光跟踪仪的国产化,对于我国的制造业,尤其是高端制造领域,具有十分重大的意义。借势而起 稳扎稳打培育市场目前,国家政策一直在主张推进仪器的国产化,实现国产仪器与进口仪器的同台竞争。中国仪器仪表行业协会与中国和平利用军工技术协会在此方面做了大量的工作,这对国产激光跟踪仪的市场化推进是极大的政策性优势。在国防军工行业,激光跟踪仪的应用主要在导弹的测量、潜艇的测量、战斗机的装配、军舰的测量、天线的装配及外形检测,大型结构件测量检测等。由于进口的高端激光跟踪仪含有摄像头装置,这对我国国防军工行业造成了安全隐患。另外,由于进口激光跟踪仪不对我国展示源代码,不排除进口激光跟踪仪含有潜在的功能,这对我国部分商业秘密也带来了风险。如此种种安全隐患更是急需国产激光跟踪仪技术的开发与产品的应用。这是提供给国内企业的机会更是挑战。该团队也将借助他们国际领先的技术优势、可靠的数据链优势,以及强有力的价格优势和维修服务优势,不遗余力的为客户提供高质量的定制化产品和服务。结束语随着中国先进制造业和高端装备的飞速发展,以激光跟踪仪为代表的高精度、数字化、智能化的精密检测设备已经成为这些领域企业占领行业制高点的制胜法宝。一方面,激光跟踪仪在先进制造和高端装备领域的关键作用日益凸显,成为制造行业的核心仪器,国内对激光跟踪仪的需求量激增,国产化呼声高涨;另一方面,近年来西方对我国的技术限制和打压,使激光跟踪仪的采购和售后具有一定的不确定性,这将影响我国高端装备的发展,所以国家对激光跟踪仪等关键核心仪器的国产化大力支持。显而易见,未来激光跟踪仪的产业化具有极为光明的市场前景。
  • 上海微系统所在大尺寸石墨烯制备及导热应用方面取得进展
    制备决定未来,石墨烯材料的可控制备是石墨烯行业的基础,更是石墨烯在下游应用中充分发挥其性能优势的关键。在批量制造石墨烯材料的过程中,精确控制石墨烯片层厚度、横向尺寸和化学结构等参数已成为石墨烯在热管理、新能源、纤维等领域应用的瓶颈。鳞片石墨剥离技术是发展最为成熟的石墨烯规模化制备技术,该方法已实现石墨烯片层厚度和化学结构的精确控制,但在横向尺寸调控方面仍然面临挑战,典型的石墨烯横向尺寸分布在几百纳米到几个微米以内。单一石墨烯片的的横向尺寸越大,所组装构建的宏观结构在导热、导电和力学等性能方面具有更大的提升潜力和空间。因此,亟待发展横向尺寸在几十微米、甚至几百微米的大尺寸石墨烯材料规模化高效可控制备技术,而实现这一目标必须从制备机理上进行创新和突破。近期,针对传统技术利用长时间、强氧化剂环境氧化剥离石墨存在的剪切破碎严重、横向尺寸难保持等关键科学问题,中科院上海微系统所丁古巧课题组在前期独创的“离域电化学解理” 方法(Chemical Engineering Journal 428 (2022): 131122. 10.1016/j.cej.2021.131122)和“预解理再剥离”技术(Carbon 191 (2022): 477. 10.1016/j.carbon.2022.02.001)基础上,提出了 “氧化新鲜石墨烯网络结构”新策略,该策略首先利用离域电化学法深度解理石墨获得多孔的石墨烯网络结构,然后对获得的石墨烯多孔网络结构进行氧化剥离,由于多孔网络结构为氧化剂的输运提供了高速通道,实现了氧化剂当量和氧化剥离时间的同步大幅减小(图1a),氧化剂当量从通常报道的2-5减少至1,氧化时间从通常的3-5 h下降到1 h,为大尺寸石墨烯材料的制备提供了新的思路。图1. (a) “氧化石墨烯网络结构”策略示意图;(b)大尺寸氧化石墨烯横向尺寸及分布;(c)大尺寸氧化石墨烯的晶格结构分析;(d, e)“氧化新鲜石墨烯网络”策略的优势。该方法在不引入后续筛选处理的情况下实现了大尺寸高晶格质量氧化石墨烯的高效制备。将石墨剥离过程中横向尺寸保持率提高到文献报道最好水平的1.5-2倍,将氧化石墨烯的平均尺寸极限从~120 μm提升到~180 μm(图1b)。需要特别指出的是,结构表征数据表明所制备的水相可分散大尺寸氧化石墨烯具有完全不同于传统氧化石墨烯的晶格结构,也不同于一般的石墨烯,是介于氧化石墨烯和高质量石墨烯之间的一种特殊结构石墨烯材料。氧化剂当量和氧化时间同时减少不仅抑制了石墨/石墨烯碎裂,还在很大程度上保留了石墨原料的sp2结构,在剥离形成的石墨烯片中形成了 “晶区网络包围非晶区岛”的特殊晶格结构(图1c)。更重要的是,机理研究还发现深度预解理石墨结构并保持其“新鲜性”对于石墨烯横向尺寸保持至关重要,传统方法在预解理和氧化剥离体系之间切换时引入的洗涤干燥等过程不可忽视。现有预解理方法很难将石墨解理成石墨烯网络结构,而且溶液体系切换不可避免的片层“回叠”效应在很大程度上破坏了新构建的氧化剂输运通道。相反,“离域电化学解理”体系很好地匹配了氧化剥离体系,从根本上避免了不同体系切换造成的不良影响,是“氧化新鲜石墨烯网络结构”策略成功的关键。进一步的物性结果(图2)表明,大尺寸高质量石墨烯具有良好水相分散性,可组装形成层状结构宏观膜。与绝缘的传统氧化石墨烯膜不同,在不经还原处理情况下大尺寸高质量石墨烯宏观膜表现出良好导电性,电导率达到305.3 Sm-1。同时,相对于小尺寸氧化石墨烯,大尺寸高质量石墨烯构建的宏观膜具有优异的力学性能,杨氏模量达到21.2 GPa,拉伸强度达到392.1 Mpa,分别是小尺寸石墨烯膜的~3倍和~5倍。更重要的是,大尺寸高质量石墨烯在构建石墨烯导热厚膜方面表现出明显优势,制备的100 μm石墨烯厚膜导热系数达到1576.1±26.7 W m-1 K-1,超过此前文献报道水平,充分体现了大尺寸石墨烯的导热优势。图2.大尺寸氧化石墨烯膜的显微结构(a)、导电性能(b)、力学性能(c-f)和导热性能(g-j)优势。上述工作大幅突破了氧化石墨烯的平均横向尺寸极限,同时拓展了氧化石墨烯的物性空间,形成了水相可分散大尺寸高质量氧化石墨烯的可规模化制备技术,从材料层面为石墨烯基器件热管理体系、力学增强结构、导电复合材料的性能突破和应用升级提供了新的解决方案。相关研究成果近期以“Oxidating Fresh Porous Graphene Networks toward Ultra‐Large Graphene Oxide with Electrical Conductivity”为题在线发表于Advanced Functional Materials (IF=19.924,10.1002/adfm.202202697)。论文第一作者为中科院上海微系统所张鹏磊博士,通讯作者为中科院上海微系统所丁古巧研究员、何朋副研究员。相关工作得到国家自然科学基金(51802337, 11774368 and 11704204)等资金支持。论文链接 https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202202697
  • 老中青专家学者齐聚西安颗粒学术盛会
    仪器信息网讯 2010年8月16日,“中国颗粒学会第七届(2010年)学术年会暨海峡两岸颗粒技术研讨会”在西安市陕西宾馆隆重开幕。 其中,“颗粒测试与应用”分会场的专家学者报告简介如下: 法国鲁昂大学任宽芳博士 报告题目:小粒子光散射理论和测量技术的新发展   任宽芳博士主要介绍了三种光学测量技术的新发展:“相多普勒仪、新的彩虹测量术和数字全息。相多普勒仪是流体测量中不可或缺的测量技术;新的彩虹测量术可通过测量散射场的角分布快速准确地测量粒子的尺寸及其分布,且不需严格角度定标;新发展的数字全息和相多普勒仪利用特殊的椭圆形高斯波,可以同时测量粒子的尺寸分布及三维速度场。” 上海理工大学苏明旭副研究员 报告题目:颗粒超声层析成像的散射特征分析   苏明旭副研究员通过边界元方法计算了单个球形颗粒的散射特征,对比分析了用于颗粒超声层析成像的颗粒散射场特性。对于管内放置有单个和三个球形颗粒的声场进行的数值模拟,并由二值逻辑反投影图像重建算法对其进行了空间分布的重建,分析了重建图像的误差。结果验证了基于边界元方法的数值模拟和重建过程是有效的。 西安电子科技大学李祥震博士 报告题目:高斯波束入射梯度折射率微珠的散射强度分析   李祥震博士表示:“近年来,随着工程应用的需要,玻璃微珠研究和制备得到了较快的发展。其中,梯度折射率玻璃微珠的研究开始兴起。利用几何光学近似方法,计算出在轴高斯波束入射情况下梯度折射率微珠的散射强度分布,再通过与广义洛伦兹-米理论计算结果的对比,就可以分析不同散射角度上表面波等因素的影响。” 南京理工大学陈守文副研究员 报告题目:纳米TiO2生产及应用现场浓度检测方法的研究——二安替吡啉甲烷分光光度法   陈守文副研究员在现有相关标准的基础上,提出了纳米TiO2生产及应用现场空气中纳米粉尘采集与分析一体完成的方法。通过对二安替吡啉甲烷分光光度法对纳米 TiO2 测定可行性的研究,详细分析了该方法的性能,包括测量范围、检测限、精密度、准确度和稳定度的分析,结果表明,该方法能较好的满足纳米TiO2 的分析需要。 华南师范大学韩鹏副教授 报告题目:一种新的用于光子相关光谱法的反演算法——累计加权函数法   韩鹏副教授介绍说:“基于抑制噪声,增加信号差别的思路,研究开发了一种有利于光子相关光谱反演运算的累计加权函数法。目前,新研制出的光子相关器仅有名片大小,物理通道有245个,并内置了光子技术器,每秒的最大光子数为3M。而其后续的研究包括严格的数学证明、合适后续算法的选择、累计函数的改进等方面。” 上海理工大学沈嘉琪博士 报告题目:电流模式动态光散射纳米颗粒测量技术研究进展   沈嘉琪博士说到:“动态光散射技术常用于胶体稳定性的表征和某些过程的连续监测,但粒径测量分辨率较低。传统的基于90°散射角光子计数的动态光散射技术的高浓度效应大多表现为多次光散射。实践证明,通过减小散射区域可以有效抑制多次光散射,从而提高动态光散射技术的浓度上限。” 清华大学于溯源教授 报告题目:不均匀荷电对细颗粒相互作用的影响   于溯源教授介绍到:“通过对颗粒荷电机制的分析,认为颗粒所带的外来电荷应视为一种不均匀分布电荷。同时,给出颗粒荷电不均匀程度的定量表示和比较方法,计算其产生的电势。应用偶极子近似方法计算两个球形不均匀荷电颗粒的相互作用能,并通过不均匀模型和点电荷模型的相互作用能之比讨论两个颗粒的相互作用。” 上海石油化工研究院祁晓岚高工 报告题目:复合孔道分子筛的孔结构表征   祁晓岚高工谈到:“基于Canny算子原理的基础上,详细讨论了NMS图像灰度统计值的特点和影响因素,发现通过找到直方图上双峰间的‘谷’,将两端的灰度值作为Canny算子的双阙值,这在处理颗粒图像方面是最行之有效的方法。经实验证明,该方法比已有的自适应算法更加准确,它能够最大程度地去除噪声,保留有效边界。” 中国石油大学陈胜利教授 报告题目:单分散聚苯乙烯微球和SiO2微球粒度标准物质的研制   陈胜利教授首先介绍了国内外研制粒度标准物质的现状,并通过研究,建立了溯源NIM和NISI的微球粒径定值方法-紧密排列-光学显微镜和紧密排列-扫描电镜两种绝对定值法,研制了11种国家一级粒度标准物质和11种国家二级粒度标准物质,单分散微球合成水平与粒度标准物质的定值水平与NISI相当。 哈尔滨工业大学甘阳教授 报告题目:Surface Chemistry of Aluminum (Hydro-)oxide Particles by Site-Specific AFM Colloidal Probe Technique   甘阳教授利用技术使一个SiO2(已知半径及表面能)的小球粘附在氢氧化铝001晶体面上,通过原子力显微镜(AFM)定位在此区域测量两者之间的粘附力。研究结果与传统观点相悖,测得该区域的表面活性为5.9,表明氢氧化铝颗粒化学表面有活性,也同时证实了国外Bickmore团队对表面官能团的研究结果, 云林科技大学陈文章教授 报告题目:Au/Polypyrrole 奈米混材于葡萄糖生物感测器之应用   陈文章教授指出:“利用同步辐射X-光可单步骤合成分散均匀的Au-PPy奈米混材,并可有效地控制颗粒粒径,同时,Au-PPy奈米混材能有效提升电极电活性面积约达16倍。另外,Au-PPy奈米混材修饰性葡萄糖感测器的线性范围广(为0~600mg/dl),且感测器灵敏度可达0.511μA/mM,比未修饰前提升了约65%。” 全国颗粒学标准化技术委员会李兆军秘书长 报告题目:颗粒标准化发展情况   李兆军秘书长首先介绍了国外标准制定组织以及当前有关于颗粒的标准情况。李兆军秘书长表示:“ 2007年我国批准筹建颗粒学标委会,目前已列入国家标准化体系工程工业二组体系表,目标是赶上国际标准的步伐,转化国际标准,发展成为我国自己的颗粒标准化体系,同时还要尽可能将我国自主知识产权转化为标准(国家/国际标准)。”   另外,本次会议还设置了“优秀研究生论文奖”,因此“颗粒测试与应用”分会场邀请了一部分研究生做报告。部分学生报告简介如下:   南京理工大学峁平   报告题目:纳米粉尘湿法采集与检测技术研究   上海理工大学呼剑   报告题目:超声衰减谱法表征纳米颗粒的粒度分布   上海理工大学秦授轩   报告题目:粉体颗粒粒度分布在线测量方法技术研究   上海理工大学王华睿   报告题目:布朗运动和定向流动下激光自混频的研究   上海理工大学于彬   报告题目:关于逆向傅立叶变换颗粒测量技术的讨论   上海理工大学薛明华   报告题目:基于超声法的颗粒两相介质多参数测量   相关链接:中国颗粒学会第五届理事会成立
  • 【经典文献赏析】微流成像颗粒分析技术(MFI)和光阻法(LO)对比研究
    国家食品药品检定研究院(NIFDC)和烟台大学药学院等科学家在期刊Journal of Pharmaceutical Sciences发表文章:Subvisible Particle Analysis of 17 Monoclonal Antibodies Approved in China Using Flow Imaging and Light Obscuration.文章中,使用光阻法(LO)和微流成像颗粒分析技术(MFI)分析了来自国内批准的17种商业单抗隆抗体药物中,205个样品的亚可见颗粒。每种方法进行了633次测试。在测试中,冻干粉或注射器包装的样品具有显著更高的颗粒浓度,且MFI的颗粒计数通常高于LO计数。通过研究数据表明,LO无法检出蛋白质半透明颗粒的数量是MFI方法高于LO计数的原因。研究背景基于单克隆抗体(mAb)生产工艺的复杂性,因此需要对其关键质量属性(CQA)进行控制和监测,同时为了确保药物产品的安全性和有效性,还需证明CQA在生产过程的一致性。这些CQA包括可见颗粒(VPs)和亚可见(SVPs)颗粒的测量。然而过去并没有对治疗蛋白质产品中的亚可见颗粒(0.1-100μm)的颗粒进行积极的检测。有研究表明,治疗性蛋白质产品中的蛋白质有聚集并形成SVPs的倾向,且这种聚集会引起治疗效果的降低和潜在的免疫原性风险。欧洲药典(EP)2.9.19、美国药典(USP)788和中国药典(ChP)0903等药典专论中对SVPs进行颗粒计数限值。且USP1787建议使用4-100μm粒径范围内的形态测量,这可能有助于理解粒子来源为固有的、内在的/外在的,以降低SVPs带来的风险。光阻法(LO)是USP788规定的主要检测方法,用于量化两个尺寸范围(≥10μm和≥25μm)的SVPs。该技术确定了颗粒的大小和数量,但由于其检测原理,无法区分不同类型的颗粒,例如蛋白质聚集体、硅油液滴等。许多研究表明,LO可能无法检测到半透明的蛋白质聚集体,从而低估了样品中的总颗粒。也有一些报告表明,样品的折射率(RI)会影响LO结果。随着USP787和USP1787的发布,要求在计数/浓度和形态方面表征2-10μm的SVPs。流式成像显微镜(FIM)技术已成为量化与LO技术相同大小范围内的SVPs的替代方法,它可以检测半透明的蛋白质聚集体,即通过使用直接对颗粒进行成像的FIM,还可以获得形态信息。这使得该技术能够将蛋白质聚集体与其他颗粒(如硅油滴、气泡和其他外在和内在的颗粒杂质)区分开来。本文中FIM技术使用的是ProteinSimple的微流成像颗粒分析技术(MFI)。到目前为止,比较这两种技术的研究都使用了标准微珠、蛋白质模拟物或有限数量的治疗性mAb样品。但没有对多批不同的商业治疗性mAb进行并排比较。在本研究中,使用LO和MFI方法分析了17种国家药品监督管理局批准的mAb药物产品。通过分析200多批mAb商业药物产品提供了一个独特的数据集,以检验MFI法和LO方法之间的粒子数计数差异和二者关联。样品准备表1列出了17种生物制药mAb药物产品的清单。对于每种药物产品,最多可获得50个批次。不同批次的相同药物被视为研究中的不同样本。对于药物的不同批次,它们分别标有数字1、2、3等。因此,研究中共有205个样品,如表1所示。每个批次由LO和MFI测试3到9次。总共对205个样本使用两种方法进行了1266次测试(633次使用LO方法,633次使用MFI方法)。研究结果如图所示,对使用MFI和LO测量的205个样品的颗粒计数进行了分析。由于颗粒形成是从较小尺寸到较大尺寸的动态过程,且USP1787要求对2-10μm颗粒进行表征(因为这个尺寸范围可能具有免疫原性)。所以使用MFI和LO检测了≥2μm、≥5μm、≥10μm的颗粒计数,以及2-10μm的颗粒计数。结果显示,在205个样本的633次运行中,22个样本的运行子集显示LO计数高于MFI计数。对于其余样本,MFI方法的计数高于LO方法。从结果中可以看出,来自注射器和冻干样品的样品在所有尺寸范围内的颗粒计数都明显高于瓶中液体。特别是在≥2μm尺寸范围内,根据之前的报告,硅油滴可能是这个尺寸范围内高计数的主要贡献者。2-10μm尺寸范围的计数与≥2μm尺寸范围的计数具有非常相似的趋势。这是因为粒子数的多少由较小的粒子数支配。冻干形式的药品在重构时可能会形成气泡,蛋白质容易吸附到气泡从而形成蛋白质颗粒。根据早期研究,MFI方法优于LO方法的一个优势是MFI比LO方法可以检测到更多的半透明蛋白质聚集体。因此,与LO方法相比,MFI方法通常检测到更多蛋白质溶液中的颗粒(如上图所示)。为了验证MFI方法在检测半透明蛋白质聚集体方面优于LO,首先需要在MFI测试获得的结果中将蛋白质颗粒与其他颗粒分开。这可以通过利用MFI软件对粒子的各种尺寸、形态和图像强度信息等不同范围的参数来区分不同类型的粒子。利用参数的组合充当过滤器以分离样品中的蛋白质和其它颗粒。例如参数AR反映了粒子的圆度,AR=1表示正圆,AR1表示非圆。通常,硅油滴和气泡的AR值接近1,而蛋白质颗粒的AR值较低。蛋白质颗粒图像通常具有相对较小的强度变化(暗度),而硅油滴、气泡和固体材料碎片通常具有明确的暗边缘。硅油滴、气泡或固体材料碎片的颗粒图像的强度变化(整个颗粒的暗度变化)大于蛋白质颗粒的强度变化。粒子图像的暗度变化可以通过参数Intensity STD来反映。因此可以采用AR0.8或AR≥0.8且Intensity STD≤100的过滤器来区分样品中的蛋白质颗粒和其他污染物颗粒,例如硅油滴和固体材料的碎片。为了显示统计显著性,上图使用了三种粒子计数相对较高且MFI计数和LO计数之间差异较大的样本。LO 和MFI检测了单个样品药物Atezolizumab的5个批次。结果显示,两个计数方法在所有运行中都相对一致,MFI的计数略高。对于药物 Daratumumab,如图B所示,在11个批次中,两个计数方法对于大多数运行来说都是一致的,其中一个批次的MFI计数要高得多。通过应用过滤器,可以确定MFI计数高的原因是蛋白质颗粒的计数高。从以上两个例子中可以看出,在同一种药物中,不同批次的颗粒计数MFI和LO方法的结果一般是一致的,MFI计数略高于LO计数。有几个批次具有较高的MFI计数,这是由于高计数的蛋白质颗粒引起的。不同批次的相同药物的蛋白质颗粒计数可能不同。图C显示了来自注射器包装的两个Golimumab样品的计数。6次运行中的蛋白质颗粒计数是一致的,而非蛋白质颗粒的计数在不同批次中是可变的。大量MFI计数高于LO计数,主要原因是蛋白质颗粒计数高。这也证实了早期的研究。对于这种药物,在所有6次运行中,非蛋白质颗粒的趋势和LO的总计数非常吻合。为了确定使用MFI观察到的更高计数是否与半透明蛋白质聚集体的数量有关。因为在示例中,从总MFI计数中分离出的非蛋白质颗粒计数接近LO计数。因此需要比较MFI的总计数与LO的计数以及MFI的计数与LO的非蛋白质部分之间的相关性。首先,将所有270次MFI运行中≥5μm的MFI计数与LO计数作图,相关性较低(图A)。当将MFI计数的非蛋白质颗粒与总LO计数作图时,相关性显著提高(R2从0.781到0.933),这表明蛋白质、半透明颗粒的数量是导致MFI计数高于LO的主要因素。因此证实了MFI在检测蛋白质半透明颗粒方面优于LO。结 论本研究使用LO和FIM方法测量了来自17种商业mAb药物产品的205个样品(批次)中≥2μm、≥5μm、2-10μm、≥10μm的SVPs。结果显示,冻干粉或注射器包装状态的样品显示出明显更高的颗粒浓度,尤其是在≥2μm尺寸范围内的颗粒计数。且MFI粒子计数通常高于LO计数(205个样本中的183个样本)。通过使用AR 0.8 or AR ≥0.8 and Intensity STD ≤100过滤器将样品中的蛋白质颗粒与其它污染物颗粒分离,审查了不同批次相同药物中LO和FIM计数的差异。MFI显示药物中的某些批次具有显著高的颗粒计数,被证实是由大量蛋白质颗粒引起的。同时,与瓶装液体相比,注射器的颗粒计数最多可高出10倍,瓶装液体主要归因于非蛋白质颗粒,主要是硅油液滴。MFI方法计数升高的原因是蛋白质、半透明颗粒而导致。将MFI的总计数与LO的总计数作图,并将MFI计数的非蛋白质部分也与LO的计数作图。结果相关性有很大改善。结果表明,与LO方法相比,蛋白质半透明颗粒的数量是MFI方法计数升高的主要因素。以上表明,虽然LO方法是被广泛接受的微粒分析工具,但它不足以测量生物制药中的所有粒子,证明了MFI等正交工具的必要性。由于MFI的优势,可以开展实验室间验证研究,以测试将MFI技术引入mAb的释放控制和稳定性研究的可能性。因此目前药典对SVPs的要求可以通过MFI等新技术的应用进行优化。获取资料请扫二维码
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制