当前位置: 仪器信息网 > 行业主题 > >

三维成像

仪器信息网三维成像专题为您整合三维成像相关的最新文章,在三维成像专题,您不仅可以免费浏览三维成像的资讯, 同时您还可以浏览三维成像的相关资料、解决方案,参与社区三维成像话题讨论。

三维成像相关的资讯

  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 三维体扫描大型成像显示器亮相世博
    世博会徽标、招手的海宝、迎客的茶壶……在一个高2.8米、直径1.3米宛若水帘洞的圆柱体空间内,一件件上海世博会标志物栩栩如生地展现在人们眼前。没有观看角度的限制、无须佩戴特制眼镜,人们惊喜地体验到360度全景观看这些三维立体影像的璀璨感受。日前,由华东师大信息科学技术学院教授刘锦高课题组研发的“三维体扫描大型成像显示器”正式亮相,即将在世博会重大活动中使用。这一精准同步的光、机、电一体化高科技产品将引领人们感受真正的三维立体效果。   首创“旋转真三维”显示系统   真正的三维立体效果,是将物体的长度、宽度、深度(厚度)直观地进行再现。由于条件限制,多数三维立体效果在深度的展示上都有所欠缺,即使是观看3D电影,有时还是会受到观察角度的限制,无法完全享受身临其境之感。然而,华东师大研发的这套全新的三维体扫描电子系统的核心部件由数十枚32位CPU组成,它们的运算能力远胜一般的多核计算机。它将立体对象提取出不同的切面、切片进行显示,利用扫描在三维空间的体像素构成了立体图像,展示了一个最接近真实物体的立体画面。这套拥有水平与垂直视角的全角光场立体显示器,满足了水平视差与垂直视差的观看要求,再现人们观察世界的真实感受,并获得高亮璀璨的显示效果,从而带给人们质感的3D影像。   刘锦高课题组此次研制大型体扫描显示器仅用了短短几个月的时间,克服了一系列困难。目前,课题组已成功研制了一套大型显示系统及一套备份系统。显示器的首度公开亮相,标志着一种全新的大型立体显示方式的诞生。它突破了以往裸视三维立体显示技术(例如LCD、PDP技术等)需要借助二维平面来展现三维影像的瓶颈,通过对物体进行旋转扫描,将图像置于一个真实的立体空间,实现了真正意义上的三维立体显示。该研发工作得到了上海市科委的大力支持。   刘锦高表示,此套系统是我国自主研发的产品,属世界首例,拥有完全的自主知识产权。   探索计算机图形学新领域   “目前的计算机图形学主要基于平面光栅扫描理论。而这套新系统的研发为计算机图形学向三维体扫描方向的发展奠定了基础。”刘锦高告诉记者,三维体扫描大型成像显示器的研制成功,突破了传统计算机图形学理论,为图形扫描理论和技术的发展开辟了新的研究方向,并提供了有力的实例论证。   他表示,目前,体扫描计算机图形学还处于探索阶段,仍有许多问题需要进一步细化研究。“这对于我们科技工作者来说,意味着新的一轮挑战。”   力拓技术应用的崭新境界   这套显示系统在军事训练、医疗诊断、数据可视化、工程产品设计、景观建筑、视频游戏、虚拟现实、多媒体教学等方面具有广阔的应用前景。   “就以医疗诊断来说,我们通过CT、核磁共振获取的人体或器官扫描影像本来可以提供三维数据,但由于三维成像显示技术尚未成熟,目前只能以胶片或其他介质的二维形式来显示,需要有经验的医学专家才能判读,增加了诊断的难度。若将这些数据通过三维体扫描显示器来再现,就会有超乎想象的突破。再如,关于航天飞机的设计,我们可以在任何部件的设计改进之后马上显示其整体效果。”刘锦高如数家珍般给出不少例子。
  • 设备更新选型指南丨超快荧光三维成像技术推荐
    市面绝大多数共聚焦显微镜采用点扫描式激光共聚焦技术,成像速度较慢,难以满足活细胞动态观测、大视野快速扫描等成像需求。长光辰英的S3000转盘共聚焦显微镜采用三条纹转盘共聚焦成像技术,配合电动Z轴快速扫描,将成像速度提高至少二十倍。同时采用LED面光源激发光线更均匀,光毒性、光漂白性大大降低,适合连续观测。作为超快荧光三维成像的革新者,长光辰英的成像产品为活细胞,细胞生物学、微生物学、发育生物学、神经生物学及植物学等领域研究提供快速三维荧光成像的有力工具。推荐产品 S3000超快三维荧光成像系统S3000 超快三维荧光成像系统 (qq.com) PRECI SCS-F荧光单细胞分选仪PRECI SCS 微生物单细胞分选仪 (qq.com) RAColony菌落原位多表型检测与挑取工作站RAcolony 菌落原位多表型检测与挑取工作站 (qq.com) SC-catcher单细胞光镊操纵与分选系统SC-catcher单细胞光镊操纵与分选系统 (qq.com)应用案例Daphnia活体内纳米塑料颗粒排出过程的动态成像Daphnia吃到肠道内的纳米塑料颗粒会产生红色荧光,用共聚焦模式进行拍摄随着Daphnia肠道蠕动,纳米塑料颗粒排出的全部过程。此动图由10min的实际时间缩时到12s。传统点扫描激光共聚焦显微镜很难对动态过程实现拍摄,S3000转盘共聚焦成像系统可以很好地捕捉活体样本的动态变化。斑马鱼活体全鱼3D荧光成像神经细胞转入GFP基因的3d日龄斑马鱼,在镜下进行长达2h的活体动态荧光扫描,整张图由8个视野,每个视野17层进行逐层扫描成像,可以在2分钟内进行斑马鱼活体全鱼的荧光扫描,实现了激光点扫描共聚焦无法达到的速度,更好的保持斑马鱼的活性,提供长时间拍摄的条件。肺组织切片的超大视野快速成像对小鼠肺叶组织切片进行共聚焦切片扫描,在其中橙色标明的气管ROI区域进行更大放大倍数的细节扫描。对常规荧光切片扫描仪难以捕捉及判断的信号进行高清成像。肠道微生物高分辨成像利用能够代谢标记肽聚糖的D型氨基酸荧光探针(FDAA)作为工具,通过使用红绿两种FDAA探针对小鼠进行序贯在体标记,随后,对肠道微生物进行取样,并使用S3000转盘共聚焦显微镜观察双色荧光在细菌上的分布,进而推测其增殖分裂模式。【文章链接:《mLife》丨基于共聚焦荧光成像的单细胞分选测序技术揭示肠道菌群中细菌的分裂模式及种属分类 (qq.com)】【拓展阅读:想知道共聚焦显微镜下的昆虫什么样子吗?(qq.com)】【拓展阅读:HOOKE S3000转盘共聚焦显微镜下的微观世界掠影 第二篇--植物系列 (qq.com)】【拓展阅读:共聚焦显微镜下掠影 第三篇《动物组织系列》 (qq.com)如果您对我们的产品和服务感兴趣,请随时联系我们
  • 中科院西安光机所三维显微成像技术研究取得新进展
    日前,Nature旗下的Scientific Reports 刊登了中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室姚保利研究组题为Full-color structured illumination optical sectioning microscopy 的研究论文。  众所周知,色彩(光谱)信息是描述物体特征的一个重要物理量。三维物体彩色层析成像技术是获取物体表面形态特征的重要手段,也是真实物体三维数字化的基础。以激光共聚焦扫描显微镜为代表的点扫描显微成像技术具有三维层析成像能力,但是逐点扫描整个三维样品需要较长的时间,而且视场很小,目前仅应用于生物医学显微成像领域。条纹投影法和白光相移干涉法是较为成熟的三维物体表面成像与测量技术,得到了广泛的应用,这两种技术结合三维贴图技术(3D mapping)都可以近似得到三维物体的表面颜色信息,但是贴图技术的缺点是图像畸变大而且分辨率不高。同时,受到相位解包裹算法的限制,条纹投影法和白光相移干涉法对于表面具有复杂和突变结构的物体都不适用,而类似的复杂结构又是常见的(例如动物的毛发、机械工件的表面毛刺、植物的叶片等)。结构光照明显微(SIM)是一种特殊照明方式的宽场成像技术,经过特定算法的解算和重构可以实现三维光切片成像,并且能够精确解析样品表面的复杂结构。但目前所有的SIM都是单色的,另外,受显微物镜视场大小的限制,SIM技术目前也仅应用于微观领域。  西安光机所姚保利研究组自2010年开始SIM技术研究以来,开展了深入细致的理论和实验研究工作,首次提出并实现了基于数字微镜器件(DMD)和LED照明的SIM技术(Scientific Reports 2013,国家发明专利ZL201110448980.8)。在本次发表的研究论文中,通过使用彩色CMOS相机记录白光或多色结构光照明获得的光切片图像,对传统光切片SIM技术采用的均方根层析算法进行改进,提出了基于HSV彩色空间的彩色解码算法(已申请国家发明专利),获得了物体高分辨率彩色三维图像。结合三维多视场数据自适应融合技术,解决了对介观物体(亚毫米到毫米量级尺寸)显微成像时,由于显微物镜视场有限,无法一次获得整个物体高分辨三维图像的问题,视场范围达到了2mm2以上。研究组与中科院动物研究所开展了联合实验研究,实现了对螨虫和昆虫跳器的彩色三维光切片成像,为该方面的研究提供了有力的技术支持。同时对微电子芯片及硬币表面结构进行了大视场彩色三维成像,推动了SIM技术在三维物体表面形貌测量方面的应用。  三维成像与测量技术是目前国内外光学领域一个重要的研究方向,已嵌入到了现代工业与文化创意产业的整个流程。该研究取得的成果使西安光机所在三维显微成像方面掌握了核心技术,该技术通过与生物医学、材料化学、精密制造等学科的交叉合作,将大大提高我国在该领域的研究水平,具有广泛的应用前景。螨虫(a)和跳甲跳器(b)的彩色三维图像数字微镜器件芯片的彩色三维图像
  • 中国学者开发小型化在体实时三维显微成像设备
    “为了更关键的可行性验证,我们需要直接在人体上采集活体成像数据。不过毕竟仪器还处于实验室里的工程样机阶段,搬去临床科室的条件尚不成熟。这时候伊丽莎白希尔曼 (Elizabeth M. C. Hillman)教授当仁不让地站出来,成为了 Medi-SCAPE 系统的第一位志愿者。”中国科学技术大学特任研究员梁文轩回忆道,“这样的成像实验我们至少做了三次,每次都持续三四个小时,全都是希尔曼 教授自己做受试。因为她坚持表示,在充分验证安全性之前,必须由她自己承担风险。”梁文轩博士(图片来源于网络)2022 年春季,他选择回国加入中国科学技术大学。在此之前,其在美国哥伦比亚大学祖克曼研究所从事博士后研究。针对临床对在体实时三维病理学显微成像的需求,他研制了小型化的扫掠共焦对准的平面激发(swept confocally-aligned planar excitation,SCAPE)原型系统,并通过实验探索了其在实时在体病理学成像领域的应用潜力。2022 年 3 月 28 日,相关论文以《高速光片显微镜用于原位获取活体组织的体积组织学图像》(High-speed light-sheet microscopy for the in-situ acquisition of volumetric histological images of living tissue )为题发表在 Nature Biomedical Engineering 上 [1]。图丨相关论文(来源:Nature Biomedical Engineering)实时在体三维病理学成像的需求组织病理学在医院各科室的疾病诊疗中应用广泛,是包括各种癌症在内的绝大多数临床疾病的诊断金标准。常规的组织病理学检查首先需要活检取材,即通过开放式活检、内窥镜活检、穿刺活检等方式,在(疑似)病变区域切取小块组织样本,然后将该组织样本送检病理科,之后经过固定、脱水、浸蜡、包埋等一系列处理步骤制成病理切片,并将其放在光学显微镜下,观察组织的微观结构与细胞形态,从而分析和获取相关的病理学诊断信息。不过,需要说明的是,这套传统的标准流程也存在一定的局限。首先是得到病理准确结果的等待时间长,至少要十几个小时。后来临床中发展出了术中冰冻病理切片,简化了组织处理的步骤,但依然需要大概 20 分钟,所以无论是常规的组织病理还是术中冰冻病理,都不适合需要实时诊疗反馈的场景。其次,活检取材加病理学切片观察本质上是离体的观测手段,难免会切除正常组织,影响患者体验和术后恢复。此外,离体的活检组织会失去其在体时的代谢和功能动态,而这些信息却对判断活体组织的状态和病变程度来说颇具价值。因此,需要探寻一种更为理想的解决方案。比如,研发一种在体、原位的光学显微成像方法,在不切除组织的情况下,能够直接可视化活体组织的三维微观结构乃至其功能动态,给医生提供实时或者至少是即时的组织病理学级别的图像信息。这样既可以在肿瘤切除手术中为医生提供实时的诊断反馈,推动提升手术的精准度和疗愈率,也可以在诸如早癌筛查、治疗随访等临床场景中,辅助医生更准确、更快速地评估待探查组织的健康或病变状况,及时采取相应的诊疗措施,在保证检测准确率和灵敏度的前提下,尽量减少对正常组织的损伤,最终改善诊疗效率和患者体验。据介绍,临床上现有的各种手术显微镜和内窥镜,大多是基于宽场照明的反射光显微镜,只能拍摄组织表面的形态,无法可视化皮下(或黏膜下)的组织形态。因此,要想在不切片的前提下直接获取厚生物样本(即使仅有几十微米厚)的三维层析图像,也即实现对原位在体组织的三维显微成像,需要开发具有光学层析能力的三维光学显微成像方法。过去几十年来,具备光学层析能力的活体显微成像技术取得了诸多进展,诞生了多种不同的成像机制。其中,与病理学显微成像密切相关的主要有两大类。第一类是基于“点扫描光学层析”的显微成像,典型代表包括共聚焦(反射或荧光)显微镜、双光子荧光显微镜等。但其成像速度不足,易受活体组织运动的影响,难以实施大范围或者三维扫描成像。第二类是光片荧光显微镜,也被称为层状光选择照明显微镜。但由于其狭窄的样本空间,这种显微镜不适用于临床场景的活体组织成像。所以,理想的适合于实时在体病理学成像的显微成像技术应该具备以下几个方面的特征。第一,能够实现“无需切片、胜似切片”的三维成像效果的光学层析能力。第二,微米级别的空间分辨率。第三,可以兼容不同的组织形状和前视式成像架构的开放的样本空间。第四,拥有尽可能高的三维体积成像速度,以有效对抗活体组织运动的干扰,使得快速、大范围、三维全景成像成为可能,为临床诊疗提供更丰富、更全面的图像引导。探索 SCAPE 显微术于实时在体病理学成像领域的应用据介绍,基于前述的临床需求和现有成像技术的局限,在导师的指导下,他所在的团队启动了将 SCAPE 显微成像技术应用于实时在体病理学成像的探索,并将此研究项目称之为 Medi-SCAPE。作为扫描斜光片三维显微成像方法的代表,SCAPE 显微术由希尔曼 课题组于 2015 年率先提出。简单来说,其基本的工作原理是,使用单个主物镜既产生(相对于主光轴)倾斜的激发光片,又收集光片所激发的荧光,即同一个物镜以“双肩挑”的方式既用作激发物镜也用作探测物镜,从而将传统光片显微镜的正交双物镜架构简化为 SCAPE 的单物镜前视式架构。在继承正交光片显微成像的光学层析能力的基础之上,SCAPE 显微镜的第一个优势是提供了开放的样本空间。无论是线虫、斑马鱼、果蝇等模式动物,还是人体的器官和组织,只要能放置于主物镜前面,就可以实施三维成像,视野范围大约为 0.8 毫米见方 0.3 毫米深。其单物镜前视式架构与宽场手术显微镜和内窥镜一致,天然适合临床中的实时在体成像需求。不仅如此,SCAPE 显微镜还巧妙引入了远程光片扫描与去扫描机制,整机除了扫描振镜以外,没有其他的机械运动部件,可以在主物镜与样本保持相对静止的前提下完成高速三维成像,极大程度地提升了二维帧率和三维体积率的上限。在实际中,受限于科研级互补金属氧化物半导体相机的帧率,现行 SCAPE 显微镜的体积率大约在 10 体积/秒左右,相较点扫描模式而言,已经有数量级的提升,这是 SCAPE 显微镜的另一个重要优势。尤为关键的是,SCAPE 的三维体积率优势,使得在体大范围三维全景成像成为可能。医生不再需要采集规则排布的三维体数据阵列,而是可以自由地操控 SCAPE 显微探头,在待探查组织的表面随意游走。即使存在活体组织与探头之间的无规则轴向相对运动,SCAPE 的高速三维体积率仍能保证相邻的两组体数据块之间有足够的三维空间重叠,从而支持后期通过三维配准和融合算法“去抖动”,实现“漫游式”扫描三维全景成像。“这对于肿瘤边界判别、早癌筛查等临床应用尤为关键,也是我们希望将 SCAPE 显微镜推向临床应用的重要动力和信心来源。”他表示。据其介绍,SCAPE 显微成像技术问世以后,首先在生命科学领域的研究中显示了强大的潜力,在基础科学和技术创新两方面,都取得了一系列重要进展。在以往的成像实验中,样本通常是表达了荧光蛋白或钙离子指示剂的转基因培养细胞或者模式动物,其拥有相对较强的荧光信号。但在临床活体成像应用中,显然不能在人体细胞中表达荧光蛋白,而临床上获批允许用于人体的荧光染料的种类和特异性也有限。因此,该团队更希望能够借助机体的自发荧光来实施无标记成像。不过,需要说明的是,自发荧光是相对较弱的。那么,SCAPE 显微镜能否利用无标记组织的自发荧光信号,获得与标准病理学图像一致的微观组织结构,以及其成像结果能否有效反映健康组织和病变组织,在微观形态学或功能学方面的区别呢?图丨用 Medi-SCAPE 对多种新鲜小鼠组织进行无标记成像(来源:Nature Biomedical Engineering)围绕这一问题,该团队首先在小鼠上试验了肝、脾、肺、肾、胰腺等新鲜离体的器官或组织,验证了 SCAPE 显微镜能够在不破坏目标组织的前提下,有效地可视化其三维微观结构,并得到了与组织病理学切片图像高度匹配的三维图像。并且,他们也在活体小鼠肾脏上诱导了缺血和再灌注的过程,并成功追踪了肾皮质中近端和远端肾小管的荧光信号在此过程中的动态变化,验证了 SCAPE 显微镜在快速三维结构成像的同时,也能够捕捉活体组织的功能动态。图丨小鼠大脑和肾脏的体内功能成像(来源:Nature Biomedical Engineering)进一步地,他们测试了被手术切除的慢性肾脏病患者的新鲜肾脏,从 SCAPE 图像中清晰地观察到了小血管粥状硬化等血管形态方面的诊断特征,分辨毛细血管簇、鲍曼囊腔等肾小球内部结构,并能够区分出正常和出现硬化症的肾小球等。研制小型化 SCAPE 显微镜样机,实现同等效能的高速三维体积成像上述在体或新鲜离体小鼠组织的成像实验,都是在台式 SCAPE 显微镜上进行的。由于该设备的占地面积约 1 平方米,体积庞大,结构复杂,所以并不适用于术中肿瘤边界判定或皮肤病变治疗随访等临床场景。梁文轩 表示:“要在这些场景下充分发挥 SCAPE 显微技术的潜能,就需要一台小型化、轻便化的 SCAPE 显微成像探头。能否小型化或微型化,以及能小型化到什么程度,这是 Medi-SCAPE 项目需要回答的第二个关键问题,也是我当时主力承担的课题任务。”他和导师经过仔细分析,决定在第一代样机设计中不追求极致微型化,而是尽量采用市面上可以买到的元件,以完成初步的可行性验证为重点。基于此,梁文轩 通过深入思考,提出了模组化的创新架构。首先将光片生成透镜与荧光探测物镜整合为远端收发模组,简化掉了台式 SCAPE 设计的二向色镜和分叉光路;然后优化折叠了从第二物镜到主物镜的近端级联 4f 光路,使得前端模组更加紧凑。由此配合选用尺寸小得多的光学元件,他成功研制了一台小型化 SCAPE 显微镜样机,使整机面积缩小至台式 SCAPE 的 20%,并取得了同等水平的荧光收集效率和三维分辨率(约 0.81.12.1 微米),能够以约 10 体积/秒的体积率扫描成像约 400×700×160 微米长宽深的三维视场,且同样能够利用内源性自体荧光进行高速三维体成像。小鼠新鲜无标记组织的成像实验表明,该样机能够清晰解析肝、肾、肠粘膜等多种器官的细胞级精细结构。“虽然该样机的前端探头部分与科学级互补金属氧化物半导体相机装配在一起,并没有完全做到轻便灵活的手持式探头形态,但其全面采用了尺寸更小的光学元件,依然为 SCAPE 显微镜的小型化提供了有力的可行性验证。”他补充说。图丨 Medi-SCAPE 系统设计(来源:Nature Biomedical Engineering)此外,在台式和小型化 Medi-SCAPE 平台上,该团队还利用健康志愿者的舌头,模拟了大范围漫游采集模式。实验中由志愿者随意地“舔过”主物镜来模拟漫游模式,然后从所得的高速“体数据流”中可以准确估计和恢复相邻体数据块之间的三维错位,进而通过配准与融合算法生成涵盖若干毫米范围的三维全景图像。拼接后的全景图像呈现不规则的边界,这说明在应用 SCAPE 进行全景三维成像时,并不需要仔细地控制漫游轨迹,这也是 SCAPE 显微术独特的优势所在。“等到将来研制出更加便携的手持式 Medi-SCAPE 探头时,医生可以灵活地操控该探头在各种组织表面自由地游走以及调整探头的倾角,无需担心这些操作对三维全景拼接的影响,大大提升探头的临床实用性。”他说。图丨人体口腔的活体成像(来源:Nature Biomedical Engineering)致力于为基础科学和临床应用提供切实有益的解决方案据梁文轩介绍,他本科和硕士就读于清华大学生物医学工程系,以医学影像为主要研究领域。在硕士阶段,其研发了基于数字信号处理器芯片(Digital Signal Processor,DSP)的高性能三维锥束 CT 重建算法,通过深入底层汇编语言的流水线并行算法,大幅刷新了 DSP 平台上的算法性能记录。硕士毕业后,他来到美国约翰斯霍普金斯大学生物医学工程系攻读博士学位,将研究目光转向生物医学光学与光子学领域。在博士阶段,他主导研发了两代基于光纤扫描的微型双光子显微内窥镜,在直径仅 2.2 毫米、重量不足 1 克的超微型内窥探头中集成了双光子激发、焦点扫描和荧光收集等全部功能。博士毕业后,其在约翰斯霍普金斯大学从事了半年多的博士后研究,后入职哥伦比亚大学祖克曼研究所,跟随 SCAPE 显微技术的发明人开展博士后研究。除了如前所述的小型化Medi-SCAPE 样机研发,他还提出了基于纤维光锥的跨介质中间图像耦合机制,解决了制约介尺度 SCAPE 显微镜的信号效率瓶颈,并据此研发了具备 440.4 毫米长宽深超大视场的 meso-SCAPE 系统。目前,他在中科大担任特任研究员,在合肥本部物理学院和苏州高等研究院生物医学工程学院同时开展教学与科研工作。关于该项研究,他表示会有两个方面的后续计划。一方面是进一步推进 Medi-SCAPE 的微型化,朝着 10 毫米直径的细长硬管形手持式 Medi-SCAPE 探头,以及直径 3 毫米以下的柔性光纤微型 SCAPE 探头等目标前进。另一方面是与临床专家紧密合作,深入理解不同科室的特点和对在体病理学成像技术的需求,从而定制化开发台式、手持式或内窥式架构的 Medi-SCAPE 成像设备,并联合开展成像实验和临床测试等。此外,他所带领的课题组,未来仍会围绕活体三维显微成像开展方法学创新与应用研究,探寻成像原理、采集策略、架构设计等方面的方法学创新,为基础生命科学研究和临床诊疗应用创制切实有益的前沿技术和解决方案。“欢迎具有交叉学科背景或是希望获得交叉学科训练、有志于推动自主知识产权国产高端科研和医疗仪器研发的同学加入课题组,也诚挚希望能与怀有同样愿景的学术界和产业界同仁取得联系,深入磋商,共同努力。”梁文轩 最后说。参考资料:1. Patel, K.B., Liang, W., Casper, M.J.et al. High-speed light-sheet microscopy for the in-situ acquisition of volumetric histological images of living tissue. Nature Biomedical Engineering 6, 569–583 (2022). https://doi.org/10.1038/s41551-022-00849-72.Voleti, V., Patel, K.B., Li, W. et al. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nature Methods 16, 1054–1062 (2019). https://doi.org/10.1038/s41592-019-0579-4本文作者:路雨晴
  • 华东师大实现超灵敏、高分辨、大视场的中红外单光子三维成像
    华东师大精密光谱科学与技术国家重点实验室曾和平教授与黄坤研究员团队在中红外三维成像领域取得进展,发展了宽视场、超灵敏、高分辨的中红外上转换三维成像技术,获得了单光子成像灵敏度与飞秒光学门控精度,可为芯片无损检测、远程红外遥感和生物医学诊断等重要应用提供有力支撑,相关成果以“Mid-infrared single-photon 3D imaging”为题于2023年6月9日在线发表于Light: Science & Applications。华东师大为论文的第一完成单位,博士研究生方迦南为论文第一作者,曾和平教授和黄坤研究员为共同通讯作者。激光三维成像技术具有成像分辨率高、测量距离远、探测信息丰富等优点而被广泛应用于自动驾驶、卫星遥感、工业生产检测等众多领域。特别是,中红外波段位于分子指纹光谱区,涵盖多种官能团吸收峰,能够对三维目标进行化学特异性识别,在无损伤物质材料鉴定、无标记生物组织成像,以及非入侵医学病理诊断等领域备受关注。此外,该波段包含多个大气透射窗口,且相较于近红外光有更好穿透烟尘、雾霾的能力,在形貌测绘与遥感识别等方面具有独特优势。长期以来,如何实现趋近单光子水平的探测灵敏度都是中红外三维成像领域的国际研究热点,对于促进其在低光通量、光子稀疏的微光探测场景下的应用具有积极意义。然而,单光子水平的激光三维成像长期以来仅局限在可见光/近红外波段,主要制约因素在于中红外波段缺乏高探测灵敏度与高时间分辨率的光子探测与成像器件。近年来,随着红外器件工艺精进与新材料涌现,中红外探测器性能得到了长足发展,但依然面临着增强灵敏度、提升响应带宽、扩大像素规模、提高工作温度等亟待解决的难题。中红外三维测量可以采用光学相干层析、光热成像、光声成像等技术方案来实现,但往往需要逐点扫描,无法单次获取高性噪比的大面阵成像。因此,实现大视场、高分辨的中红外单光子三维成像仍颇具挑战。图3:中红外单光子三维成像装置图为此,华东师大研究团队发展了基于高精度非线性光学取样的中红外上转换测控技术,实现了超灵敏、高分辨、大视场的中红外三维成像,展示了单光子探测灵敏度、飞秒门控时间精度以及百万像素宽画幅。具体而言,研究人员采用非线性光学和频过程将信号波长高效转换至可见光波段,利用高性能硅基相机即可实现红外成像,从而规避了现有红外焦平面阵列灵敏度不足的技术瓶颈。同时,该上转换成像系统采用同步脉冲泵浦方案,可将背景噪声限制在极窄时间窗口内,结合精密频谱滤波可以有效提升探测信噪比,进而实现单光子水平的成像灵敏度。此外,研究人员沿用课题组此前发展的非线性广角成像技术[Nature Commun. 13, 1077 (2022)],通过单次曝光即可获得大视场成像,免除了逐点机械扫描过程,大幅提升了成像速度。图4:中红外三维立体成像,被测信号强度约为1光子/像素/秒进一步,研究人员采用超快光学符合门控技术,精确测量中红外信号的相对飞行时间,从而得到被测物体表面的形貌信息。该时间飞行成像系统的时间分辨能力取决于光学脉冲宽度,可以达到飞秒水平的时间标记精度,通过高速延时扫描与宽场全幅采集,对被测场景进行快速时域切片,进而反演出目标界面的反射率、透射率以及材料的吸收率、折射率、色散量等丰富信息。图4展示了多角度中红外照明下三维数据信息融合重构出的被测目标立体形貌,其中被测信号强度约为1光子/像素/秒。图5:时空关联去噪算法,信号和噪声水平分别约为0.05和1000光子/像素/秒 在稀疏光子场景中,有效信号往往被淹没在严重的背景噪声中,仅从强度信息通常难以识别被测目标。为此,如何有效地区分信号和噪声光成为单光子成像的关键难点。为模拟极低照度、高噪声场景,该研究团队将红外信号衰减至0.05光子/像素/秒,对应的信噪比低至1:20000。如图5a-c所示,传统强度峰值识别算法并不能有效甄别信号。在主动成像中,成像系统接收的信号光子在时-空域上具有一定的连续性,而背景噪声光子则会随机分布在整个时间轴与空间像素点上。 基于该特性,研究人员发展了精确、高效和鲁棒的点云去噪算法,通过关联增强空间相邻像素与相邻时间帧的强度,有效提取与甄别信号光子,进而实现高背景噪声下的中红外单光子三维成像(图5d-i)。 所发展的中红外三维成像技术具备高灵敏与高分辨的独特优势,结合该波段优越的抗散射干扰能力,对于复杂环境下的红外场景恢复具有重要意义,可以发展出中红外散射成像与中红外非视域成像。此外,通过调谐中红外信号波长,可以实现四维高光谱成像,可为材料检测、无损探伤、生物成像等创新应用提供有力支撑。 近年来,曾和平教授与黄坤研究员课题组在红外单光子测控方面开展了系列创新研究,先后发展了中红外非线性广角成像 [Nature Commun. 13, 1077 (2022)],中红外单光子单像素成像[Nature Commun. 14, 1073 (2023)],以及高帧频中红外单光子光谱 [Laser Photonics Rev. 2300149 (2023)]等。相关工作得到了科技部、基金委、上海市、重庆市与华东师大的资助。
  • 深圳先进院提出梯度光场编码的双光子快速三维成像技术
    近日,中国科学院深圳先进技术研究院研究员郑炜团队提出一种基于激发光梯度编码的快速三维成像技术,可使双光子体成像速度比传统技术提升5至10倍。  双光子显微镜具有亚微米级的成像分辨率和毫米级的成像深度,被广泛应用在神经结构和功能成像以及其他活体成像研究中。传统的双光子三维成像是将双光子激发的焦点在样品中进行逐层的二维扫描来实现的,这种三维成像方法不仅速度受限且增加了样品暴露在高能激光中的时间,对生物组织造成光损伤和光漂白,不利于活体组织的长时间成像。  该研究提出的新型梯度光场双光子显微成像技术只需要进行两次二维扫描即可获得样品的三维信息,极大降低了激光对样品的损害。  在生活中,可利用编码来确定位置。与此类似,梯度光场技术设计了一对轴向拉长并且强度梯度变化的焦点,利用这对焦点的强度变化来编码并解析出物体的位置:横向扫描第一个梯度焦点得到的图像中,位置较浅处的样品荧光强度强,位置较深处的样品荧光强度弱,第二个焦点对应的图像则正好相反。两幅图像的和反映了样品的真实三维荧光强度,图像的比值则反映了荧光的深度信息。该方法可一次分辨深度12微米内三维信息,荧光点轴向定位精度为0.63微米。梯度光场双光子显微镜非常适合活体细胞的三维成像,在观测巨噬细胞吞噬荧光小球的实验中,能够快速捕捉荧光小球在巨噬细胞内外的三维运动轨迹,并精确定量出巨噬细胞运载小球的速度。  相关成果以Axial gradient excitation accelerates volumetric imaging of two-photon microscopy为题,发表在Photonics Research上。研究得到国家自然科学基金重大科研仪器研制项目、重大研究计划以及广东省重点实验室等支持。   论文链接 (a):梯度光场双光子显微成像原理、(b):巨噬细胞吞噬小球过程、(c):小球的运动轨迹、(d):小球运动轨迹的量化与评估
  • 看得更远、更清!我国科学家实现200公里单光子三维成像
    近日,中国科学技术大学潘建伟院士团队实现超过200公里的远距离单光子三维成像,首次将成像距离从十公里突破到百公里量级,为远距离目标识别、对地观测等领域的应用开辟了新道路。该成果日期在国际学术期刊《光学》发表。如何“看得更远、看得更清”是人类对视觉感知的不懈追求。近年来发展的激光雷达成像技术能够对目标场景进行高精度三维成像。单光子成像雷达作为一种具有单光子级探测灵敏度和皮秒级时间分辨率的新兴激光雷达成像技术,是实现远距离光学成像的理想方案。然而,如何实现远距离单光子成像雷达,是该领域的研究热点。科研团队经过长期攻关,发展了单像素单光子成像算法等核心技术,2019年在城市环境中实现了距离达45公里的单光子三维成像,突破了由英国哈利瓦特大学保持的最远距离纪录(10公里)。在此基础上,研究团队通过进一步技术突破,将成像距离拓展到201.5公里,成像灵敏度达到平均每个像素0.4个信号光子。为了实现百公里单光子成像,研究团队搭建了全新的单光子雷达系统,并发展了针对远距离成像的多项新技术。基于此单光子雷达系统,研究人员在新疆的高山上对百公里外的多个目标进行三维成像,并测试了单光子计算成像算法;结果显示该系统可以在200公里范围内进行精确的三维成像,成像灵敏度达到单像素单光子。据介绍,该研究工作对于面向低功耗、高分辨率等实用化需求的远距离激光雷达研究具有重要应用价值。
  • 苏州医工所李辉组流式光片成像系统实现斑马鱼高通量三维成像
    结构和功能的异质性是普遍存在的生命现象,这要求在生殖发育研究、药物筛选等领域进行大规模的样品研究来消除个体差异。其中斑马鱼作为一种重要的模式生物,由于其体积小、透明度好、繁殖能力强等特点非常适合利用其进行大规模成像,在大规模遗传发育研究和药物筛选方面具有明显优势。然而目前常规成像技术受进样方式及成像方法限制,往往只能对少数斑马鱼样品进行手动操作的二维成像。近年来发展的光片照明显微镜可以实现对斑马鱼进行高分辨、低光照的三维成像,但是由于凝胶固定等复杂的样品准备流程,仍然无法满高通量的成像需求。并且获得一个完整的斑马鱼胚胎三维图像,往往需要在多个区域中分别扫描成像而后进行图像拼接,进一步限制了其在高通量分析中的应用。鉴于此,中科院苏州医工所李辉课题组将流式成像与光片结合,建立了流式光片成像系统(light-sheet flow imaging system, LS-FIS)。通过设计精密的控制时序,斑马鱼样品逐个地被加载到与水具有相似折射率的FEP管道中,并以倾斜的角度连续通过光片照明区域,与光片面垂直的物镜采集荧光信号进行成像。LS-FIS在样品流过照明面时进行连续成像,每帧图像叠加形成三维图像,从而实现了不进行图像拼接的情况下全斑马鱼胚胎的高通量三维成像。研究人员还在光片光路中引入明场照明与成像来完成样品运动速度标定与矫正,实现优于3μm的细胞分辨率三维成像。得益于高效的流式进样方式以及先进的图像重建算法,利用LS-FIS可实现200 胚胎/小时的全斑马鱼胚胎三维成像,相较于传统光片技术通量提高了50倍以上,这为使用斑马鱼进行大规模的遗传发育研究和药物筛选提供了仪器装备基础。相关结果以“Heterogeneities of zebrafish vasculature development studied by a high throughput light-sheet flow imaging system”的论文标题发表在最近的Biomedical Optical Express期刊上。图1 a)LS-FIS系统光路图;(b)LS-FIS液路图;(c)利用LS-FIS获得的典型全胚胎斑马鱼血管三维图像Tg(kdrl: EGFP);(d)躯干放大图;(e)图b中三维截面图可清晰分辨血管内壁;(f)头部放大视图,可清晰分辨主要血管结构利用LS-FIS技术,研究人员进行了斑马鱼躯干及头部血管发育研究,统计并分析了3-9 dpf的斑马鱼节间血管三维长度及眼部晶状体血管网形态变化,共获得超过500条全胚胎斑马鱼三维图像。针对这些大量数据的统计分析显示,节间血管总长在7dpf前持续增长,并且与二维结果一致;但7-9dpf间由于形态卷曲程度增加,二维图像已难以正确体现真实的血管长度,体现出三维成像在血管发育定量评价中的重要性。另一方面,针对晶状体血管网络这种典型的三维空间结构,仅二维成像更加无法全面获得其特征信息。而通过LS-FIS,可以方便地从全胚胎三维结构中分割出眼部区域,进而统计其形态结构,研究结果表明,虽然眼部晶状体血管网络(hyaloid basket)的形态在3-8dpf内仍然为持续增长趋势,但其方差仅为节间血管发育的10%。这提示尽管来自同一批胚胎,斑马鱼不同部位的异质性仍然存在很大差距,这也表明了大规模三维成像对于遗传发育的必要性。图2 (a)全胚胎三维数据中分割出躯干部分节间血管,并绘制血管发育曲线;(b)全胚胎三维数据中分割出头(左上)部及晶状体血管网络(右上、左下),并统计晶状体网络形状的深度及直径信息,绘制其变化曲线(右下)为适应大规模三维图像数据自动化分析的要求,研究人员还开发了基于深度学习的相关图像分析处理算法。针对斑马鱼节间血管,提出了一种多尺度特征的三维卷积神经网络(MS-3D U-Net),通过多尺度特性学习和基于硬注意力机制的损失函数,实现了对三维图像的血管分割和识别,识别准确度达到90%以上(AUC值)。相关结果也发表在Biomedical Optical Express期刊上[1]。图3 LS-FIS样机论文第一作者为助理研究员杨光,通讯作者为李辉研究员。LS-FIS样机和图像分析算法为斑马鱼大规模三维成像,进行异型性研究提供了完整解决方案。本工作得到中国科学院仪器装备研制,国家自然科学基金委等项目的支持。参考文献:1. J. Yin, G. Yang, X. Qin, H. Li, and L. Wang, "Optimized U-Net model for 3D light-sheet image segmentation of zebrafish trunk vessels," Biomed. Opt. Express, BOE 13(5), 2896–2908 (2022).
  • 三维成像有了共聚焦、双光子,为何还要光片显微镜?
    组织透明化和光片显微镜诞生的必要性生物组织的三维特性使得生命科学的研究都需基于3D空间信息而进行分析,如脑部神经投射、血管分布以及肿瘤微环境等。传统组织学检测包括对冰冻或者石蜡包埋的组织样本进行切片,从而产生微米级别的切片,研究者可以对该切片进行免疫组化染色从而获得细胞层面信息。生物学家早就认识到组织薄切片比厚组织观察起来更加容易,显微切片机将组织切割成微米厚度的二维切片,通过二维切片我们可以获得单细胞层面的信息(Richardson & Lichtman, 2015)。但是三维组织结构可以让人们全面理解器官在正常功能和病理状态下的关键信息,例如神经系统就迫切需要进行三维结构的成像,因为大多数单个神经元向许多方向延伸,它们的真实性质和功能无法通过二维切片来确定;此外,发育生物学需要在三维结构上才能更好的认识器官甚至整个动物的形态发生(Chung et al., 2013)。因此获取完整生物组织在单细胞分辨率尺度上的三维结构一直是生命科学领域的重要目标之一。怎样才能获得组织的三维层面信息?一种方法是通过将一系列连续的切片输入电脑进行三维结构重建,但是这种方法在技术上具有挑战性,因为组织在此过程会被撕裂、折叠、压缩或拉伸从而导致组织某个部分的损失或变形,由于剖面不完整,最终的体积重建可能无法还原最原始的三维结构(Oh et al., 2014)。还有一种方法是使用光学切片技术进行整体成像,比如激光共聚焦、双光子显微镜和转盘显微镜等成像显微镜的使用,这些成像显微镜可以对小组织进行三维结构成像,但是这些现代的显微技术没办法解决组织太厚带来的严重速度滞后问题,以及强激光造成的光漂白、光毒性等问题。光学成像与细胞荧光标记相结合,因其具有良好的空间分辨率和高信噪比,是收集器官或组织单细胞分辨率信息的实用方法之一。然而,组织不透明是全组织和全器官光学成像的主要障碍之一,因此要进行光学成像就要进行组织透明化。那么是什么原因导致组织不够透明?在组织中,生物物质如水、脂类、蛋白质和矿物质通常以不均匀的混合物存在,它们的不均匀分布导致光发生强烈的横向散射,此外,生物物质有时会在细胞内外形成不均匀的结构,包括脂质颗粒和细胞器(如线粒体)、大的蛋白质簇(如胶原纤维)、甚至全细胞体积(如红细胞),当光被分子、膜、细胞器和组织中的细胞反射时,本来应该以直线传播的光线会发生多次偏移,因此光不能直接穿过组织从而形成光的散射(Tuchin, 2015 Wen, Tuchin, Luo, & Zhu, 2009)。组织不透明的另一个原因是光的吸收,血红蛋白、肌红蛋白和黑色素是生物组织中吸收可见光的主要分子,血红蛋白存在于所有脊椎动物(除了鳄鱼、冰鱼)和许多无脊椎动物中,样品内的光吸收可以限制激发光进入组织和荧光发射返回到探测器(Richardson & Lichtman, 2015)。正是由于光的散射和光的吸收,导致光的分布加宽、光的强度衰减,特别是在组织的深层区域,最终导致组织不透明,无法进行全组织三维结构光学成像。因此,组织透明化的目的主要是减少光的散射和吸收,以获得更好的光学成像效果(图1)(Gracie Vargas, 2001)。图1 实现组织透明化的关键步骤 (Susaki & Ueda, 2016)当光穿过组织时,由于脂质、色素的存在,导致光发生散射和吸收,从而组织不透明;组织透明化最主要的目的是通过脱脂、脱色等步骤从而减少光的吸收和光的散射。三种组织透明化方法类型:有机溶剂型、水溶剂型、水凝胶型经科学家的不断研究和突破,多种组织透明化方法相继被提出和优化。组织透明步骤包括:①样本固定;②样本透化(依据组织特性选择脱脂、脱钙、脱色、脱水或水化);③折射率匹配。有机溶剂型透明化方法还涉及到组织脱水过程,根据组织成像需要还要涉及到样本免疫标记(图2)(Almagro, Messal, Zaw Thin, van Rheenen, & Behrens, 2021);为了避免组织发生形变以及检测目标丢失,在透明化之前必须进行样本固定,但是固定程度需要控制,如果固定太弱,组织会软榻,如果固定过头,会阻碍免疫标记;一般使用多聚甲醛(PFA)、戊二醛(GA)进行组织固定,PFA可以均匀的固定大于500微米直径的样品,GA比PFA固定效果好,但是速度慢(分子较大,扩散速度慢),SWITCH方法通过改变pH提高GA效率,GA一般适合固定脆弱以及蛋白表达较弱的组织;在组织切片中我们通过抗原修复减少醛固定时造成的抗原表位封闭(二硫键),在水性透明化方法SHIELD采用聚甘油-3-聚缩水甘油醚(P3PE)既能固定组织又能保存蛋白质;透化过程中用到的试剂主要有三种类型:①有机溶剂;②高水化试剂;③脱脂试剂;随后用高折射率的物质替换组织液体进行折射率匹配,实现组织透明。(Park et al., 2018)。图2 组织透明化基本流程(Almagro et al., 2021)(a) 不同来源样本获取。(b) 用不同方式(去垢剂、醇类化学试剂、电泳)增加组织通透性。(c) 组织标记(抗体、染料、凝集素)以及透明化(有机溶剂型透明化方法、水溶剂型透明化方法)。(d) 组织成像(三维数据、定量分析)。依据各透明化方法中使用的溶剂及其作用原理将现有的组织透明化方法主要分为三类:有机溶剂型、水溶剂型、水凝胶型(图3)(Matryba et al., 2020 Ueda et al., 2020b)。基于有机溶剂的组织透明化方法通过使用高折射率(RI)的有机溶剂将不同成分的RI均质,从而获得极好的组织透明度。BABB组织透明化方法可以完全透明胚胎和幼鼠大脑(Dodt et al., 2007),但该方法中乙醇脱水作用会导致内源性GFP信号淬灭,无法透明有髓组织。通过引入四氢呋喃(THF)和二苄醚(DBE), 3DISCO能够实现大多数成年啮齿动物器官的良好透明度,并将FPs保存几天,虽然DBE能有效保护内源荧光信号,但是DBE降解产物如过氧化氢、醛类物质会对荧光蛋白产生有害干扰(Erturk et al., 2012)。与3DISCO相比,uDISCO能够实现全身透明化和成像,并在数月内保持内源性FPs(Pan et al., 2016)。a-uDISCO是uDISCO的改良版本,通过调节pH条件提高荧光强度和稳定性(Li, Xu, Wan, Yu, & Zhu, 2018)。然而,uDISCO和a-uDISCO都不能有效的透明化高度着色的器官和硬组织。为了解决这些限制,赵瑚团队开发了聚乙二醇(PEG)相关溶剂系统(PEGASOS),该系统可以透明所有类型的组织,同时保留内源性荧光(Jing et al., 2018)。朱丹教授团队通过温度和pH值调节开发了一种基于3DISCO,称为FDISCO,FDISCO有效的保存了FPs和化学荧光示踪剂,并允许在几个月内重复拍摄样品(Qi et al., 2019)。最近开发的sDISCO通过添加抗氧化剂稳定DBE,进一步保留了荧光信号。蛋白质也可以通过免疫标记来观察。由Renier等人开发的iDISCO可以对小鼠胚胎和成年器官进行全贴装免疫标记和体积成像(Renier et al., 2014)。vDISCO是一种基于纳米体的全身免疫标记技术。该技术将FPs的信号强度增强了100倍以上,并揭示了Thy1-GFP-M小鼠的全身神经元投射(Cai et al., 2019)。虽然有机溶剂方法表现出出色的透明性能,并实现了亚细胞分辨率的全身成像,但也存在一些不足,例如样品的大幅收缩、大多数有机溶剂的毒性和荧光蛋白的猝灭。由于油性透明化方法存在诸多缺点,水性透明化方法诞生,水性与油性透明化方法最大区别在于水性试剂具有强亲水性,更有利于荧光信号的保存,适用于自带荧光的组织样本进行透明化。水性透明化试剂主要包括:单纯浸泡透明化和高水化脱脂透明。ClearT是基于甲酰胺的浸泡型透明化方法,速度快,但是会导致组织膨胀且荧光信号会淬灭。PEG可以稳定蛋白质构象,继而发展了可保留荧光蛋白的ClearT2透明化技术,但该方法透明度比ClearT低。SeeDB技术以果糖和硫代甘油为主要成分,可以在几天内将组织透明化,但果糖粘度过高导致组织内渗透性低,在此基础上衍生出FRUIT透明化方法,尿素的使用降低了果糖粘度,提高试剂流动性和渗透性。浸泡型透明化方法不能去除脂质,因此样本透明度有限。SDS、Triton X-100可以有效去除脂质,水化法通过在透明化过程中去除脂质,利用水化作用降低样本折射率进而实现组织透明化。Scale技术利用尿素水化作用进行透明化,可保留荧光信号,但该方法操作时间较长,易导致组织破碎。CUBIC在Scale基础上添加了胺基醇,可以去除血红素使组织脱色,也可以保留荧光信号(Tian, Yang, & Li, 2021)。水凝胶解决了高浓度去垢剂导致样本形变的问题,水凝胶与样本中蛋白质和核酸分子形成共价连接便可以固定和保护细胞结构。水凝胶型组织透明化方法是一种基于水凝胶的组织透明化方法,利用丙烯酰胺凝胶将生物分子固定在它本来的位置,用水凝胶来替换组织中的脂类,让溶液中的单体进入组织,然后对其稍微加热,上述单体开始凝聚为长分子链,在组织中形成高分子网络,这一网络能够固定组织的所有结构,但不会结合脂类,随后快速将脂类抽出,便获得了完整透明的立体组织,如脑组织中的神经元、轴突、树突、突触、蛋白、核酸等都完好的维持在原位。这种独特的组织脱脂方法能够最小化结构破坏和生物分子损失。该方法的脱脂方式主要有两种:电泳和简单被动脱脂,均能有效去除脂质,从而大大提高了水凝胶组织的光学透明度和大分子通透性(Chung et al., 2013 Treweek et al., 2015)。CLARITY透明化方法利用凝胶包埋样本,并利用电场力去除脂质使样本快速透明;SHIELD通过环氧化物P3PE固定组织实现蛋白的保护,之后使用SDS进行被动或主动脱脂。水性透明化方法虽然可以部分解决荧光蛋白易淬灭的问题,但是也存在透明时间长,透明能力低的缺点,一般适用于小样本组织透明化。水凝胶透明化方法操作过程复杂,且需要一定的设备。图3 组织透明化方法的主要类型 (Ueda et al., 2020b)(A) 有机溶剂型透明化方法通过使用有机溶剂依次将组织进行脱水、脱脂、折射率匹配,在短时间内可使组织完全透明。然而,有机溶剂会快速漂白荧光蛋白的信号并且使组织皱缩。(B) 水溶剂型透明化方法以水溶性试剂对组织依次进行脱色、脱脂、折射率匹配,从而使组织完全透明。该方法具有更高的生物安全性和兼容性。(C) 水凝胶型透明化方法通过凝胶将生物分子固定在原来的位置,随后对组织进行脱色、脱脂、折射率匹配操作,从而使组织透明。基于水凝胶的方法可以保留足够的RNA用于分析,如荧光原位杂交;由于水凝胶网会固定组织,因此会使组织体积扩大几倍。组织透明化方法的选择(对于不同检测目标、不同组织、含有特定化学成分的组织选择的组织透明化方法以及试剂不同)组织透明化从2014年兴起以来,前期主要在神经科学领域广泛应用,随着透明化方法的不断改进,目前在发育生物学、免疫学、肿瘤学研究中也被广泛应用。检测目标不同,透明化方法中的试剂选择不同,水凝胶适用于不稳定分子如RNA的保存,CLARITY方法中用到的化学试剂单丙烯酰胺或双丙烯酰胺对细胞内部结构进行很好的固定,使得在后期脱脂等处理后组织内部结构依然保持;常用的样本固定试剂是甲醇,在使用过程中可以较好的固定蛋白质(表1)(Almagro et al., 2021)。表1 不同试剂适用于不同检测目标(Almagro et al., 2021)水性试剂蔗糖和尿素对内源性荧光试剂、脂类试剂比较友好;而有机溶剂苄醇-苯甲酸苄酯(BABB)会造成脂质洗脱和蛋白质荧光基团淬灭,所以不能用于脂肪组织的检测;聚乙二醇(PEG)是有机溶剂型透明化方法PEGASOS中用到的试剂,可以有效保护内源性荧光;此外在有机溶剂型透明化方法中可以通过调节pH、温度达到保护荧光的效果,如FDISCO在四氢呋喃(THF)中,维持碱性pH和低温下,EGFP荧光信号可以维持数月(表2)。此外,免疫标记中使用的小分子染料(如细胞核染料DAPI、碘化丙啶、RedDot和SYTO)、凝集素、抗体对目标进行标记,其中抗体被动扩散速度非常慢,免疫染色可以通过优化抗体浓度、温度、孵育时间等提高染色效率;我们也可以通过减小样品体积、用小分子荧光染料代替抗体增强染色效果。也可以通过改变荧光标记的亲和属性如SWITICH方法,让它们在组织中自由扩散再进行结合;通过电泳的方式也可以提高染色效率(Almagro et al., 2021)。 表2不同试剂对于荧光信号的保留(Almagro et al., 2021)此外,某些组织中含有较难去除的成分如色素、脂肪,其中血红素是组织中较难去除的色素,仅仅通过灌注PBS不足以去除肾脏、心脏、肌肉、肝脏中的血红素,可以选择含有漂白剂成分的试剂进行脱色如双氧水,并且能去除自发荧光,但是过氧化物处理会损伤目标荧光蛋白,所以荧光标记一般在漂白之后进行;前列腺和乳腺富含脂肪,会阻碍抗体进入、光线穿透,可以选择含有去垢剂成分的组合如TritonX-100、SDS、CHAPS等进行脱脂,去污剂可以破坏脂质双层使组织形成可以运输出组织的胶束,SHANEL方法中的CHAPS能生成较小的胶束,能更快的从组织中析出,具有有效的去脂效果。当组织较大时,被动去脂速度就比较慢,这时可以通过电泳的方式加快进程;电泳组织透明设备(ETC)和随机电子迁移(使用旋转电场或在单向电场内旋转样品)可以加速去脂。其它类型组织如硬组织骨骼,其中含有的钙化矿物质阻碍光的穿透,50%-70%的骨骼由遍布蛋白基质的钙化羟基磷灰石(HAP)晶体组成,这时可以选择含有钙螯合剂组合的方法如乙二胺四乙酸(EDTA)中性缓冲液,进行脱钙处理(表3)(Almagro et al., 2021)。表3不同试剂对于细胞组分去除(Almagro et al.,2021)组织透明化方法的应用范围不同组织在透明化方法的选择上都有所不同,根据组织成分、检测目标、组织类型选择不同的透明化方法,下表是不同透明化方法在不同健康以及肿瘤组织上的应用实例,对于组织在选择方法的时候可以借鉴这些实例,从而更好的避开长时间的摸索(表4)。表4 不同透明化方法应用到不同肿瘤组织举例(Almagro et al., 2021)此外,利用组织透明化方法可以实现人类器官三维成像(图4)(Ueda et al., 2020a)。图4 人类胚胎组织以及器官透明化三维结构图(Ueda et al., 2020a)(a) 胚胎周围神经三维图像。(b) 泌尿系统中的肾脏和Wolffian管。(c) 胚胎背部、手臂、头部肌肉。(d)手部脉管系统。(e)手部三种感觉神经。(f)肺上皮小管。参考文献Almagro, J., Messal, H. A., Zaw Thin, M., van Rheenen, J., & Behrens, A. (2021). Tissue clearing to examine tumour complexity in three dimensions. Nat Rev Cancer, 21(11), 718-730. doi:10.1038/s41568-021-00382-wCai, R., Pan, C., Ghasemigharagoz, A., Todorov, M. I., Forstera, B., Zhao, S., . . . Erturk, A. (2019). Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat Neurosci, 22(2), 317-327. doi:10.1038/s41593-018-0301-3Chung, K., Wallace, J., Kim, S. Y., Kalyanasundaram, S., Andalman, A. S., Davidson, T. J., . . . Deisseroth, K. (2013). Structural and molecular interrogation of intact biological systems. Nature, 497(7449), 332-+.Dodt, H. U., Leischner, U., Schierloh, A., Jahrling, N., Mauch, C. P., Deininger, K., . . . Becker, K. (2007). Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods, 4(4), 331-336. doi:10.1038/nmeth1036Erturk, A., Becker, K., Jahrling, N., Mauch, C. P., Hojer, C. D., Egen, J. G., . . . Dodt, H. U. (2012). Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat Protoc, 7(11), 1983-1995. doi:10.1038/nprot.2012.119Gracie Vargas, M., Kin F. Chan, PhD, Sharon L. Thomsen, MD, and A.J. Welch, PhD. (2001). Use of Osmotically Active Agents to Alter Optical Properties of Tissue: Effects on the Detected Fluorescence Signal Measured Through Skin.Jing, D., Zhang, S., Luo, W., Gao, X., Men, Y., Ma, C., . . . Zhao, H. (2018). Tissue clearing of both hard and soft tissue organs with the PEGASOS method. Cell Res, 28(8), 803-818. doi:10.1038/s41422-018-0049-zLi, Y., Xu, J., Wan, P., Yu, T., & Zhu, D. (2018). Optimization of GFP Fluorescence Preservation by a Modified uDISCO Clearing Protocol. Front Neuroanat, 12, 67. doi:10.3389/fnana.2018.00067Matryba, P., Sosnowska, A., Wolny, A., Bozycki, L., Greig, A., Grzybowski, J., . . . Golab, J. (2020). Systematic Evaluation of Chemically Distinct Tissue Optical Clearing Techniques in Murine Lymph Nodes. J Immunol, 204(5), 1395-1407. doi:10.4049/jimmunol.1900847Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., . . . Gerfen, C. R. (2014). A mesoscale connectome of the mouse brain. Nature, 508(7495), 207-+.Pan, C., Cai, R., Quacquarelli, F. P., Ghasemigharagoz, A., Lourbopoulos, A., Matryba, P., . . . Erturk, A. (2016). Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods, 13(10), 859-867. doi:10.1038/nmeth.3964Park, Y. G., Sohn, C. H., Chen, R., McCue, M., Yun, D. H., Drummond, G. T., . . . Chung, K. (2018). Protection of tissue physicochemical properties using polyfunctional crosslinkers. Nat Biotechnol. doi:10.1038/nbt.4281Qi, Y., Yu, T., Xu, J., Wan, P., Ma, Y., Zhu, J., . . . Zhu, D. (2019). FDISCO: Advanced solvent-based clearing method for imaging whole organs. Sci Adv, 5(1), eaau8355. doi:10.1126/sciadv.aau8355Renier, N., Wu, Z., Simon, D. J., Yang, J., Ariel, P., & Tessier-Lavigne, M. (2014). iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell, 159(4), 896-910. doi:10.1016/j.cell.2014.10.010Richardson, D. S., & Lichtman, J. W. (2015). Clarifying Tissue Clearing. Cell, 162(2), 246-257. doi:10.1016/j.cell.2015.06.067Susaki, E. A., & Ueda, H. R. (2016). Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. Cell Chem Biol, 23(1), 137-157. doi:1
  • 新品!博鹭腾小动物活体三维成像系统在广州发布!
    2022年3月26日,“第一届华南动物活体成像应用研讨会暨小动物活体三维成像系统发布会”在广州隆重举办。此次会议由广东省医药行业协会和广东省实验动物学会指导,广州博鹭腾生物科技有限公司主办,广州云星科学仪器有限公司协办。大会开幕大会开始,广东省食品医药联合党委书记张俊修先生首先上台致开幕辞。张书记对此次大会的举办表示了祝贺,也肯定了博鹭腾在国产动物活体仪器方面取得的重大成果。与此同时,张书记提出了几点期望与建议:一是响应国家号召,加强对科学技术道路的坚持;二是在中医方面,运用新的思维改进现有的研究成果;三是在西医方面,希望活体成像技术的进步能够为器官移植提供新思路和新方法。张俊修 先生广东省食品医药联合党委书记广东省实验动物秘书长朱才毅研究员对大会的成功举办表示热烈的祝贺,他指出小动物活体三维成像产品的发布,将有利于推动实验动物行业的进一步发展,特别能有效减少实验动物的使用量,符合动物伦理,体现了民族科技企业的强烈社会责任感。他希望博鹭腾能够按照伟中省长提出的,加快构建基础研究+技术攻关+加成果产业+科技金融+人才支撑全过程创新生态链,强化企业创新主体责任,探索产学研相结合的路子,推出更多更好的新产品,为建设更高水平的科技自立自强贡献力量和智慧。朱才毅 研究员广东省实验动物学会秘书长最后,广州博鹭腾生物科技有限公司总经理罗文波博士致辞。罗文波总经理强调了生命科学仪器在科学进步中的重要性,尤其是高端的科学仪器对重要行业的发展有着不可或缺的推动作用。不论是当前的发展趋势还是国家出台的相关政策,都对国产科学仪器寄予了厚望。博鹭腾正是要迎难而上,开拓创新,创国产生命科学仪器先锋,为生命科学乃至世界的科技进步贡献自己的力量。 罗文波 博士广州博鹭腾生物科技有限公司总经理学术分享在各位嘉宾精彩致辞结束后,迎来了“干货满满”的应用研讨会。本次会议采用线下分享和线上直播相结合的方式,邀请了来自广州医科大学、汕头市中心医院、湖南斯莱克景达实验动物有限公司、新疆医科大学、中山大学附属第五医院的五位专家,就活体成像技术在纤维化疾病研究中的应用、光学分子影像技术在乳腺外科手术导航中的应用、常见肿瘤动物模型构建以及应用、基于近红外光辅助的活体成像与光活化治疗研究、近红外荧光成像用于食管癌术中导航的研究进行了深入的分享。专家们精彩绝伦的讲座,为本次研讨会注入了新的力量,使现场嘉宾和线上观众都收获颇多,对活体成像也有了更加深入的了解和认识。苏金 教授广州医科大学呼吸疾病国家重点实验室课题组长、博士生导师《活体成像技术在纤维化疾病研究中的应用》邱斯奇 副主任医师汕头市中心医院科研大数据中心副主任、硕士生导师《光学分子影像技术在乳腺外科手术导航中的应用》聂晶 博士湖南斯莱克景达实验动物有限公司研发部总监《常见肿瘤动物模型构建以及应用》努尔尼沙阿力甫 副教授新疆医科大学医学工程技术学院副院长、博士生导师《基于近红外光辅助的活体成像与光活化治疗研究》李丹 副研究员中山大学附属第五医院广东省生物医学影像重点实验室副主任、博士生导师《近红外荧光成像用于食管癌术中导航的研究》新品发布仪式最后是本次会议最为激动人心的新品发布仪式。随着倒计时的结束,幕布落下,Aniview Kirin现身。从此刻起, AniView Kirin小动物活体三维成像系统将正式加入博鹭腾AniView活体成像家族。来自博鹭腾的市场部经理魏宇清先生对新产品进行了详细介绍,魏经理将AniView Kirin的特点归纳为六点,灵敏、精准、形象、出色、温暖、安全。这几大特点不仅体现在优异的硬件参数上,同样也体现在智能的软件算法、人性化的设计以及优秀的使用体验等方面。魏宇清 先生广州博鹭腾生物科技有限公司市场部经理这是国产唯一集光谱分离算法与三维立体成像于一体的高端活体成像系统,打破了国外产品的技术垄断,从此高端活体成像系统领域拥有了属于中国人自己的声音。AniView Kirin小动物活体三维成像系统博鹭腾博鹭腾作为一家集生命科学仪器设备的研发、生产、服务于一体的国家高新技术企业,目前已开发并上市了多款具有自主知识产权的产品,形成了分子影像、蛋白凝胶预制及印迹处理系统、发光检测、活体成像四个系列,用户包括清华大学、中山大学、西北农林科技大学等上百家高校及科研单位。
  • 天津大学召开X射线三维显微成像技术及其应用学术交流会
    11月22日,天津大学科研院组织召开了“X射线三维显微成像技术及其应用”学术交流会。天津大学精仪学院特聘教授、科技部重大科学仪器项目负责人须颖博士做了关于X射线三维显微成像技术的报告。材料学院、化工学院、理学院、精仪学院等材料领域的师生、及上海大学等校外师生参加了此次交流会。  会上,须颖博士介绍了X射线三维显微成像技术及其应用领域。他详细介绍了X射线三维显微镜的成像原理、分辨率、与传统CT扫描成像及扫描方式的差异等,并强调了其在扫描精度及数据处理速度上的巨大提升。  同时,须博士还着重介绍了X射线三维显微镜在诸多领域的广泛应用。在能源地矿领域中,可用于岩心、矿石、煤等微结构的三维成像 在生物领域中,可用于动植物的组织形态和成分微结构成像,甚至可精准复制数据,用于颅骨重塑 在工业领域中,可用于电子元器件、火工品、铸件、焊件、陶瓷、封装等微结构和缺陷检测 在材料领域中,用于非金属材料及复合材料微结构和成分成像 在农业中,用于种子形态学的研究,并计划用于良种筛查等方向。此外,扫描得到的单位数据体可直接转化为STL数据,为3D打印提供前后端技术支撑。  最后,与会的各个材料相关领域的师生,结合各自研究方向,就此仪器在各自研究中的应用等方面进行了讨论和交流。   X射线三维显微镜由天津大学和三英精密联合开发,目前已完成样机研制工作,并形成了产品。借助于X射线三维显微镜,可用于各种材料内部微观尺度上的三维结构表征,揭示材料结构跨尺度的三维空间分布等,在航空航天领域有着广泛的应用前景,也将为超精密增材制造产品提供质量检测手段,并有效缩短工艺和产品研发周期。
  • 网络讲座|实体瘤微环境和类器官分析——三维立体成像成新趋势
    图像数据采集和分析为深入分析高度异质的肿瘤细胞和可塑多变的肿瘤微环境提供了宝贵的空间分布信息,这是传统组化或2D成像的方法无法企及的,伴随样本前期制备必需步骤切片而带来伪信号、人为偏碍和后期数据叠加拟合引入误差等因素带来巨大局限性。三维整体光片成像该技术为肿瘤免疫治疗药物开发早期阶段开展药物递送途径、监测免疫细胞浸润等研究提供更直观的数据依据。光片成像与免疫细胞浸润示踪以CAR-T细胞用于实体肿瘤治疗为例,CAR-T细胞向肿瘤实体内部有效浸润、分布及持续存在时间是开发构建CAR-T细胞早期的重要评价依据,但现有研究技术缺乏能获取相关数据的方案,更无法使之可视化。在用于胰腺癌细胞治疗方案前期开发中,科学家构建了CD66c-LNGFR+ 的二代CAR T细胞,并采用较长波长可激发的荧光染料Vio® 667 Dye对之进行标记(可有效提升光片成像信号强度并降低信噪比)。三维成像图中可清晰观察到实体肿瘤内部坏死区域(黑色无信号),CD66c-LNGFR+ CAR-T治疗可令肿瘤血管化程度明显提高(Rhodamin-Lectin标记血管)但该CAR-T细胞不具备较好浸润肿瘤实质的作用(Vio667仅位于肿瘤表层的信号分布)。三维立体成像效果:类器官3D光片成像在当前领先的肿瘤类器官在个体化治疗的药物筛选应用中,类器官鼻祖Hans Clevers也极为认同三维整体成像技术能更好提取类器官立体空间中特定细胞位置与分化的关系,是类器官研究的技术趋势。同时结合高通量成像方法,可有效降低不同实验批次的组内差异,为获得治疗有效性预测提供稳定可靠的依据。网络直播课程作为目前较领先的成像技术,完整组织三维光片成像技术尚未普及。基于当前最先进光片成像系统美天旎UltraMicroscope和在肿瘤免疫学的专业积淀,我们将介绍当前最为领先的完整组织三维立体成像的方法实现高分辨率的实体肿瘤微环境可视化分析。此次网络课程包含如下内容:大样本组织三维立体光片成像的基本原理满足光片成像的样本制备解析大样本组织三维立体光片成像技术在肿瘤免疫学中的应用概述如何针对多个肿瘤样本进行图像采集及数据分析实例展示光片成像在细胞浸润肿瘤实体并进行示踪的应用识别描下方二维码免费注册观看直播(可收看直播和回放)
  • 清华大学330万元采购单光子自适应高速三维显微成像系统,仅限国产
    8月24日,清华大学公开招标购买1套单光子自适应高速三维显微成像系统,预算330万元,仅限国产。  项目编号:清设招第2021172号  项目名称:单光子自适应高速三维显微成像系统  预算金额:330.0000000 万元(人民币)  采购需求:包号名称数量是否允许进口产品投标采购预算(人民币)01单光子自适应高速三维显微成像系统1套否330万元  设备用途介绍:实验需要对在体活细胞进行清晰地大范围亚细胞结构动力学过程观测,比如细胞器间的相互作用、胚胎发育过程、神经响应等等,必须能够高速获取大范围的三维荧光信号。  单光子自适应高速三维显微成像系统的成像方式极大的提高了成像速度及有效的解决了系统及样品的像差问题,同时大大降低了激光对样品的损伤,能够实现更长时间的活体观察,其图片能观察细微的差别,分辨亚细胞水平动力学及结构,成像质量非常高。  简要技术指标 :  1)基本配置:系统由以下主要模块组成  倒置荧光显微镜   多波段激光器   数据采集系统   图像处理系统。  2)技术要求:  系统分辨率:XY小于250nm,Z小于400nm   图像采集系统:支持活体哺乳动物三维图像采集   图像处理系统:专业处理器i9 10920,内存不小于128GB,固态硬盘不小于10T,显卡Nvidia RTX2080TI。  合同履行期限:交货时间:合同签订后5个月内  本项目( 不接受 )联合体投标。 开标时间:2021年09月14日 09点00分(北京时间)
  • 苏州医工所李辉团队在斑马鱼高通量三维成像研究中取得进展
    斑马鱼是生命科学研究中最常用的模式生物之一,在再生生物学、发育生物学、免疫学、神经生物学以及疾病模型药物筛选中被广泛应用。由于其具有体型小、生命周期短、饲养环境简单和成本低等特点,在大规模遗传发育研究和药物筛选方面具有明显优势。然而,目前实际开展科学研究过程中主要以手工分拣筛选和利用传统显微镜进行局部成像为主,其工作量大但数据采集效率低下,无法有效发挥微小模式动物的自身优势,无法实现大规模分析,不能适应中大规模遗传/药物筛选需求。斑马鱼胚胎同时具有通体透明的特点,非常适合于光学显微镜下的活体观测。光片显微技术(Light-sheet microscopy)是一种新型的三维成像方式,其具有光毒性小、扫描速度快等特点。然而针对毫米级的模式生物如斑马鱼、线虫等,光片成像需要复杂的样品准备流程,并且由于视场限制,获得全胚胎的三维数据往往需要多区域成像与拼接,一条受精后3天左右的斑马鱼整个三维成像大约需要15分钟左右,这严重限制了该技术的成像通量。针对这一制约生命科学研究的瓶颈问题,中科院苏州医工所李辉课题组与中科院营养健康所潘巍峻课题组展开合作,提出了基于流式光片的高通量显微成像技术LS-FIS(light-sheet flow imaging system)。LS-FIS创新性地将流式成像技术与光片照明技术相结合,通过设计液流与光学耦合系统,结合精密的进取样控制时序与三维重建算法,实现了200 胚胎/小时的高通量三维成像。利用该技术,研究人员进行了斑马鱼躯干及头部血管发育研究,统计并分析了受精后3到9天的斑马鱼节间血管三维长度及眼部晶状体血管网形态变化。实验共获得超过500条全胚胎斑马鱼三维图像,典型成像结果如图1所示。这是目前已知首次报道的大规模全鱼三维成像数据。相关结果发表于Biomedical Optics Express上(V13(2022),pp. 5344-5357)。论文第一作者为杨光助理研究员,通讯作者为李辉研究员。论文链接:https://opg.optica.org/boe/fulltext.cfm?uri=boe-13-10-5344&id=502612 图1. 高通量三维成像系统LS-FIS的原理图(左)和针对上百条斑马鱼3-9天血管发育过程的统计研究该团队研发的高通量三维成像系统LS-FIS样机已经多次迭代验证,设计了合理的光机系统结构和外观,开发了简洁易用的软件界面。样机在中科院营养健康所和神经所试用,已具有较好的稳定性和可靠性,并在2021年全国斑马鱼大会上展出,受到了广泛关注。图2 高通量三维成像系统LS-FIS实物样机(上)和在2021年全国斑马鱼大会上展出(下)。该团队进一步开发了相关的图像分析处理算法来应对LS-FIS拍摄到的大量三维图像数据自动化分析处理的需求。针对斑马鱼节间血管,提出了一种多尺度特征的三维卷积神经网络(MS-3D U-Net),通过多尺度特征学习和基于硬注意力机制的损失函数,实现了对三维图像的血管分割和识别,识别准确度达到90%以上(AUC值)。基于MS-3D U-Net,对24小时连续观测的斑马鱼胚胎三维图像数据进行自动分割处理和测量,绘制了节间血管和背侧纵向吻合血管的发育曲线。相关文章发表在Biomedical Optics Express 上(V 13(2022),pp. 2896-2908)。论文第一作者为硕士生殷静怡,通讯作者为王林波助理研究员。论文链接:https://opg.optica.org/boe/fulltext.cfm?uri=boe-13-5-2896&id=471611 本工作得到中国科学院仪器装备研制,国家自然科学基金,苏州市高新区领军人才等项目的支持。
  • 基于16 × 4阵元的CMUT面阵,实现高效率、高质量三维超声反射成像
    与传统工艺制作的压电块体型超声换能器相比,电容式微机械超声换能器(CMUT)具有阻抗匹配特性良好、带宽大、体积小等优势,在医学超声成像和无损检测方面得到了广泛应用。三维超声反射成像通常需要利用CMUT线阵的机械移动实现对被测物的多维度扫描,但这一方法往往难以实现较小距离的移动,并且存在一定的误差。利用CMUT面阵对被测物进行扫描可以同时获取多维度的超声反射信号,从而减少测试工作量,并且能够准确获取被测物的三维信息。然而,目前国内关于利用CMUT面阵进行非接触式三维超声反射成像的研究鲜有报道。据麦姆斯咨询报道,为了解决上述挑战,来自中北大学的研究人员提出了利用基于16 × 4阵元的CMUT面阵进行B模式及二次谐波三维成像测试的方法,以得到伪影水平更低、重建偏差更小的超声反射图像。相关研究成果以“基于16 × 4阵元CMUT面阵的三维超声反射成像”为题发表在《微纳电子技术》期刊上。CMUT面阵的制备及工作原理研究人员分别利用绝缘体上硅(SOI)和二氧化硅(SiO₂)晶圆制备了CMUT振动薄膜和真空腔,并且在真空环境中通过晶圆键合形成CMUT面阵。图1 CMUT剖面图及阵元图图2 基于16 × 4阵元的CMUT面阵实物图CMUT的工作原理是通过在上、下电极之间施加直流偏压,从而产生感应静电力将顶部薄膜拉向底部电极。当CMUT处于发射模式时,将交流电压信号叠加在直流偏压上会激励薄膜振动,实现电能和机械能的转换,产生超声信号;当CMUT处于接收模式时,在上、下电极之间施加直流偏压,在超声波的作用下,薄膜会产生振动,从而使得电容值发生改变,通过检测这一变化即可实现超声信号的接收。图3 CMUT工作原理仿真及实验平台搭建该研究利用基于Matlab的k-Wave光声仿真工具箱对基于16 × 4阵元的CMUT面阵进行超声反射成像仿真。整个仿真区域介质为硅油,被测物为一块长和宽均为3 cm、厚1 cm的铝块,铝块与CMUT的距离为3 cm,CMUT阵元间的距离为1 mm。此外,采用单个阵元发射、所有阵元接收,即一发多收的扫描方式对铝块进行扫描。图4 基于16 × 4阵元的CMUT面阵及被测铝块仿真模型随后,研究人员在仿真的基础上搭建了基于16 × 4阵元的CMUT面阵的超声反射成像测试系统。采用面阵上第二条线阵的单个阵元发射、所有阵元接收的方式进行实验测试。实验使用信号发生器和功率放大器驱动CMUT面阵发射超声波,并且利用示波器观察超声反射信号波形。图5 基于16 × 4阵元的CMUT面阵超声反射成像测试系统示意图及超声反射成像实测图仿真及实验结果研究人员采用B模式及二次谐波两种成像算法分别对被测铝块的超声反射信号进行处理,以获取其三维图像及对应的二维切面。结果显示,基于16 × 4阵元的CMUT面阵的反射成像系统能够确定铝块的位置。此外,基于B模式成像算法和二次谐波成像算法所获取的成像结果中,铝块与CMUT面阵的距离重建偏差分别为3.63%及1.47%。图6 被测铝块二维反射成像结果图7 被测铝块三维反射成像结果综上所述,该研究搭建了基于16 × 4阵元的CMUT面阵的三维超声反射成像系统,以获得误差小、信噪比高的超声反射图像。采用单个阵元发射、所有阵元接收的收发方式对铝块进行了相关测试与仿真,利用B模式及二次谐波成像算法对超声回波信号进行处理,获取了被测物的二维切面及三维图像。仿真和实验结果均可以较清晰地确定铝块的位置,与实际情况相符。为了对比两种算法的成像效果,研究人员计算了铝块与CMUT面阵的距离重建偏差。计算结果显示,B模式及二次谐波成像算法的仿真距离重建偏差分别为0.63%和0.4%,实验重建偏差分别为3.63%和1.47%,二次谐波图像的距离重建偏差均小于B模式图像的距离重建偏差。总之,该研究证明了所提出的基于16 × 4阵元的CMUT面阵的三维超声反射系统可实现对被测物的三维成像。论文信息:DOI:10.13250/j.cnki.wndz.2023.03.010
  • 先睹为快!国产厂商首发新品:太赫兹三维层析成像系统
    p    strong 仪器信息网讯 /strong 2020年5月29日上午九点,青源峰达将在抖音平台发布新产品QT-TO1000太赫兹三维层析成像系统。 /p p   青岛青源峰达太赫兹科技有限公司是中国工程物理研究院及青岛盛瀚色谱技术有限公司合资成立的公司,致力于太赫兹基础技术、系统技术和应用技术的研发设计,重点领域为医学及工业检测领域。公司成立以来,已发布了QT-TS1000高精度太赫兹时域光谱系统和QT-TS2000快速太赫兹时域光谱系统两款新产品。 /p p   5月29日,青源峰达将再次网上发布新产品QT-TO1000太赫兹三维层析成像系统。届时,此产品的研发负责人、技术大咖们将从幕后走向台前,通过现场和线上的不同形式与用户实现面对面交流,从不同维度全面阐述产品的核心亮点,与应用客户和技术爱好者进行深入交流和探讨。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 342px " src=" https://img1.17img.cn/17img/images/202005/uepic/c20c958e-7f58-4b8e-b469-28334f8c6085.jpg" title=" 太赫兹.jpg" alt=" 太赫兹.jpg" width=" 450" height=" 342" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 新品外观先睹为快 /strong /p p   三维层析成像技术是目前国内外光学领域一个重要的研究方向,以嵌入到了现代工业与文化创意产业的整个流程 它是获取物体表面形态特征的重要手段,也是真实物体三维数字化的基础。太赫兹三维层析成像技术是较为成熟的三维物体表面成像与测量技术,是一种太赫兹波谱方式的宽场成像技术 经过特定算法的解算和重构可以实现三维光切片成像,并且能够精确解析样品表面的复杂结构。 /p p   中国工程物理研究院主要从事国家战略高新技术装备和战略科技领域的研究,主要学科方法包括微波毫米波电路及系统研究, span style=" color: rgb(255, 0, 0) " 太赫兹电路及系统研究 /span ,电真空电子电路及系统研究,通信与信息系统研究,超高速数字信号处理研究等。 /p p   除了新品面世,发布会当天,青源峰达太赫兹科技有限公司与青岛大学将围绕太赫兹技术应用、海洋观测等领域的科学和技术问题,依托物理科学学院学科平台以及山东省海洋观测与宽带通信技术协同创新中心,结合青岛青源峰达太赫兹科技有限公司在太赫兹与水下观测方面的技术基础和生产研发平台,本着优势互补、互利共赢、促进发展的原则,在专业人才培养、科研合作、成果转化等方面达成合作协议,并签署协议,努力实现“校企合作、产学共赢”,推动学科服务社会能力和科研成果转化。届时,中国工程物理研究院流体物理研究所、中国石化青岛安全工程研究院、山东科技大学等院校专家领导将共同见证! /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/a164fb1b-6874-4a8a-a102-a9b145b66ccd.jpg" title=" 微信图片_20200528175821.jpg" alt=" 微信图片_20200528175821.jpg" / /p p style=" text-align: center " strong 欢迎参会! /strong /p p br/ /p
  • 抓住“设备升级”新机遇,沃亿生物跨尺度三维成像解决方案助力先进科研技术设备更新
    政策 更新置换先进科研技术设备日前,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》(以下简称《行动方案》)。《行动方案》提出到2027年,工业、农业、建筑、交通、教育、文旅、医疗等领域设备投资规模较2023年增长25%以上;明确实施设备更新行动中需提升教育文旅医疗设备水平,推动符合条件的高校、职业院校(含技工院校)更新置换先进教学及科研技术设备,提升教学科研水平。 据教育部高教司内部人士透露,未来有可能准备照国家要求储备一些政府投资项目且对相关设备提出要求,以高水平、大件仪器设备优先,务必优先国产设备。 解决方案 沃亿生物跨尺度三维成像沃亿生物fMOST相关设备是基于骆清铭院士MOST团队发明的荧光显微光学切片断层成像技术研发而成,该设备将超薄切片与显微成像相结合,使用时间延时积分(TDI)成像方法,实现对厘米级尺寸大样品组织的稳定高分辨率三维成像,是一种有别于传统成像技术的全脑光学成像设备,它打破传统显微成像技术在组织中的成像深度限制,全组织任意位置的轴向分辨率达1微米,能全自动化地高分辨率获取全脑神经结构、全器官/组织血管网络等三维数据集,极大提高相关研究的工作效率,能够应用于神经科学研究、心脑血管病研究、药物评价研究学科/领域,在大组织三维成像方面具有先进性。 该设备在脑疾病、脑网络发育、神经计算药物研究和病理研究等领域具有重要用途,不仅能获取小鼠全脑范围内的神经元、毛细血管、树突、轴突定性和定量信息,还适用于小鼠全脑连接图谱的获取、神经环路的全脑精准定位研究以及神经元的长程投射追踪。具体应用包括果蝇、斑马鱼、小鼠、大鼠、灵长类等模式动物在正常、疾病及发育过程中神经和血管网络的变化,以及各种组织、器官的在正常情况下以及疾病模型下的三维精细成像及重构。 2013年,通过教育部直属高校科研成果公开 挂牌交易转让的方式,沃亿生物购买了MOST系列技术的zhuan利。至此,沃亿生物组织力量开始消化技术,不断打磨细节、积累经验、调整方案,历经十余年的精细打磨,实现从原理机到高端科研仪器的转变。先后推出了适用于Golgi、Nissl、HE等传统组织染色方法的BioMapping1000以及适用于荧光全脑成像的BioMapping5000、BioMapping9000与BioMapping9500系列产品。该系列仪器稳定性高、鲁棒性强,具有长时间不间断的三维数据采集能力,特别适用于自动获取全脑内神经环路投射路径及其细胞构筑信息。 科研设备换新,fMOST相关设备作为国产的高端科研仪器无疑是最佳之选! BioMapping 5000 荧光显微光学切片断层成像系统 01 产品简介BioMapping5000采用时间延迟积分(TDI)成像方式,通过对样本的多次曝光和信号累积,在保证高速成像的同时可实现高信噪比的成像,并结合创新性的化学成像样品处理方法可获得高轴向分辨率,实现对全脑树突棘分布的精细成像。 02 技术参数 成像模式 高速线性扫描荧光成像适用标记技术 Dylight594,mCherry,PI,GFP, YFP体素分辨率 0.35μm*0.35μm*1μm连续切削厚度 1-4μm最大样本体积 5㎝*5㎝*2.5㎝ 03 应用实例 △10100个海马神经元单细胞分辨率全脑投射图谱 BioMapping9000 荧光显微光学切片断层成像系统 01 产品简介BioMapping9000是基于fMOST技术的荧光三维成像仪器,基于斜光片成像与振动切片结合实现单细胞分辨率的全脑三维快速荧光成像仪器,与前述其他产品相比,具有成像速度更快的优势,能快速获取与分析全脑荧光数据,适合对批量样本进行高效筛选。 02 技术参数 成像模式 斜光片照明荧光成像适用标记技术 Dylight594,mCherry,PI,GFP, YFP体素分辨率 1.3μm*1.3μm*0.92μm连续切削厚度 20-200μm最大样本体积 5㎝*5㎝*2.5㎝ 03 应用实例 △小鼠c-fos全脑表达三维展示及定量胞体统计 BioMapping9500 荧光显微光学切片断层成像系统01 产品简介Biomapping 9500 是基于fMOST技术的多功能荧光三维成像仪器。具备高精度或高通量两种成像模式。搭载切片回收系统,便于后续实验。一站式高效成像平台,适用于多种应用场景。 02 技术参数 成像模式 线性扫描荧光成像适用标记技术 Dylight594,mCherry,PI,GFP, YFP体素分辨率 0.35μm*0.35μm*1μm连续切削厚度 1-200μm最大样本体积 5㎝*5㎝*3㎝ 03 应用实例 △基于琼脂糖包埋的振动切片与切片的全自动回收△272张切片 50μm厚度 11小时 △272张切片 50μm厚度 DAPI染色 7天
  • 新发明可将大脑核磁共振成像转化成三维图像
    据国外媒体报道,荷兰埃因霍温科技大学的研究人员开发出一个新的软件工具,该工具使用特殊技术将核磁共振成像转化成三维图像。医生借助该工具能够看见病人的大脑线路和线路连接的图像,在不用进行手术的情况下就可以研究病人的大脑线路。   生物医学图像分析教授巴尔特说,对于脑神经外科医生而言,知道大脑中重要神经束的精确位置是极为重要的。他举例说,对帕金森氏症患者进行“深部脑刺激”可以抑制他们的病情,有了这个新工具,医生可以在图像上看到大脑线路,从而能够更为准确地决定在大脑的何处埋置电极。这项新技术也能为神经和精神疾病带来新的曙光。而且重要的是,脑外科医生事先知道重要神经束的位置,在对病人进行治疗时就能够避免损伤,这是一个巨大的进步。   该软件工具是基于一项最近开发的叫做“哈尔迪”(高分辨率漫射成像)的技术。在哈尔迪核磁共振成像技术的基础上,研究小组对这些异常复杂的数据进行了交互式可视化等处理,最终得到了这项新的软件工具。   巴尔特教授预计,这项技术可能还需要几年的时间才能在医院使用。他说:“我们现在需要验证软件程序包,也需要证明使用该技术得到的图象与现实相符。”而相应的核磁共振成像技术的扫描速度还需要进一步提高,因为1个小时的扫描时间对病人来说过长。此外,该软件工具已经被其他科学家广泛使用。
  • 组织透明化三维成像技术线下培训班暨研讨会
    借助组织透明化技术和光片荧光显微技术的发展,研究者对生物组织内部的结构及生理、病理特征的观察和分析从2D提升到了3D。透明化三维成像技术利用深部组织可视化和大数据,引领科学领域的进步。我们针对科学研究中组织三维成像的重点和难点为目标,发展和完善“组织透明化方法”、“光片显微镜成像”、“数据采集分析处理”,并大力推广组织透明化三维成像方法、技术和应用。技术培训班不仅将介绍不同组织透明化方法相关的技术和应用,讲解成像工具的基础知识,而且会进行组织透明化染色、光片显微镜及数据采集,拼接和处理的实操演示。我们将邀请到国内此领域的知名专家学者做特邀报告,借此为致力于组织三维成像研究者提供一个共享科研成果和前沿技术,了解学术发展趋势,拓宽研究思路的机会。本次线下培训班由锘海生物科学仪器(上海)股份有限公司主办,我们专注于高速高分辨率的3D荧光显微成像系统的研发、生产和服务,广泛应用于脑科学、肿瘤学、药物研发、干细胞研究、组织胚胎学等各个研究领域,同时建立起高性能大数据存储系统,目前与国内外数十家高水平实验室开展合作研究,并获得了高质量的成像数据。讲座于2020年8月27日—8月29日在锘海生物科学仪器(上海)股份有限公司的总部上海漕河泾开发区举办,8月我们在锘海期待与您相聚。详情可咨询13818273779(手机与微信同号)
  • 长光辰英超快三维荧光成像系统亮相蓉城,助力科研产出新速度
    近日,长光辰英S3000超快三维荧光成像系统,在成都四川大学生物治疗国家重点实验室装机试用,S3000凭借其快速共聚焦切片成像的核心特点,受到众多老师关注,争先申请试用。试用现场,产品经理对成像原理进行详细讲解,演示系统操作流程,并为试用过程中老师遇到的问题进行一一解答。川大重点实验室王老师:“将原来一整天的拍摄时间缩短到2个小时以内,这样的拍摄效率,要得”。S3000超快三维荧光成像系统,软件易学易用,操作简单。节省了共聚焦层扫的宝贵时间,提升实验效率及科学产出,更好地助力科研工作。S3000超快三维荧光成像系统由快速三维扫描狭缝转盘模块、高分辨率高灵敏度相机、大功率低光毒性LED荧光激发光源及自动化显微镜主机构成。超快共聚焦成像。采用结构光转盘技术,光通量比针孔式转盘提高数倍,允许LED激发光源共聚焦成像 根据相机配置、成像度可达30-50帧/秒 三种切片模式自由切换,实现快速成像和高质量成像的结合。全谱段探测。一个LED光源可应对全谱段检测应用,激发光:370-700 nm,发射光:410-750 nm 覆盖常见荧光染料的光谱范围 4位滤光块转轮,通道切换时间小于0.2s,滤光块免工具更换,可实现4+N多通道荧光拍摄。模块化设计。采用紧凑的共聚焦光路设计,仪器外形更小巧 无需庞大空间也可安装,共聚焦模块可灵活耦合在正置、倒置、体式等各种显微镜上,适应不同应用场景。高可靠性及可扩展性,兼容已有成像设备,让科学工作者从仪器维护中释放出来,把更多时间投入到科学研究本身。该仪器在四川大学生物治疗国家重点实验室试用展示一周后,还将在华西口腔医院及四川大学生命科学学院分别做试用演示。届时欢迎想了解的老师及经销商同仁莅临观摩试用。样片showtime小鼠神经突触 60X NA1.4 oil给药细胞 60X NA1.4 oil果蝇脑神经元 40X NA 0.95
  • 重大科学仪器开发专项三维数字彩色成像测量仪项目启动
    p   9月11日,国家重点研发计划重大科学仪器设备开发重点专项“三维数字彩色成像测量仪”项目启动会在广东深圳举行,该项目旨在提升我国科学仪器设备的自主创新能力和装备水平,进一步推动3D和虚拟现实产业跨部门、跨行业、跨区域研发布局和协同创新。 /p p   这一重大专项由国内3D扫描打印和VR/AR领域的领军企业易尚展示牵头,联合清华大学、北京航空航天大学、深圳大学、南京理工大学、河北工业大学、中航工业长城计量所等国内光学领域顶尖研究院所,针对三维测量仪器设备技术和产品的迫切需求,以关键核心技术和部件的自主研发为突破口,研制技术国际领先、具有自主知识产权、质量稳定可靠、核心部件国产化的结构光三维数字彩色成像测量仪。项目将在赶超国际一流“三维数字彩色成像测量”技术、进行产品迭代升级等方面形成良好的契机和优势,并在树立行业创新标杆方面发挥积极作用。 /p p   项目实施后,能大幅提升我国三维数字化科学仪器设备的可持续发展能力和核心竞争力,极大推动我国3D扫描打印产业和虚拟现实产业的发展,为我国博物馆文物三维数字化提供核心装备,加速推动3D虚拟电商发展,提升国内3D创客教育领域的整体装备水平。 /p p /p
  • 中国科学技术大学等单位成功研制超光谱三维靶向成像仪
    中国科学技术大学刘诚教授牵头,中国科学院合肥物质科学研究院、安徽大学、广东省广州生态环境监测中心站等单位参与,自主研制同时具备多组分污染气体垂直成像、水平成像和污染源靶向成像遥感功能的超光谱三维靶向成像仪,荣获2023年第二届“金燧奖”中国光电仪器品牌榜金奖。该奖项由中国光学工程学会、中国计量科学研究院主办,重点评选出中国自主研发、制造、生产的高端光电仪器。超光谱污染气体三维靶向成像仪的垂直成像遥感功能实现了臭氧及前体物无盲区垂直廓线的同步观测,在臭氧污染敏感性的垂直演化规律识别、污染物高空传输和垂直交换影响研究中广泛应用;水平成像遥感能够将排放热点高值区范围从卫星遥感和地面原位监测的公里级缩小到百米级尺度;排放源成像遥感可将排放责任锁定到米级尺度的污染排口,实现排放通量的动态监测。团队研究成果打破了我国超光谱污染气体地基遥感对欧美核心部件和关键技术的依赖,相关成果发表在Earth-Science Reviews、Remote Sensing of Environment、Science Bulletin、Engineering等国内外期刊上,截至目前已授权发明专利4项,实用新型专利1项。超光谱污染气体三维靶向成像装备被生态环境部卫星环境应用中心、中国气象科学研究院等20余家政府部门和企业用于大气环境立体监测,为中国国际进口博览会、成都大运会等国家重大活动的空气质量保障提供支撑。
  • 高速三维动态成像 苏州医工所在结构光照明超分辨显微成像仪器研制方面取得进展
    对于生物医学研究,著名物理学家理查德费曼有句名言:“...很多基础生物学的问题是很容易被回答的;你只是需要看到它们就够了”。这句话一定程度上说明了直接观察的光学显微镜对于细胞生物学、发育生物学、免疫学、病理药理学等生物医学研究的重要性。但是受衍射极限的限制,传统光学显微镜的分辨率理论上只能达到光波长的一半。近20年来,超分辨荧光显微成像技术的出现有效打破了光学衍射极限的束缚。基于单分子定位技术的超分辨显微镜(SMLM)和受激发射损耗显微镜(STED)以及结构光照明超分辨显微镜(SIM)等技术在众多课题组的努力下都得到了长足发展,尤其是结构光照明显微镜由于成像速度快、光毒性小、无需特殊荧光标记等优势,已成为生命科学领域尤其是活细胞成像中最受欢迎的技术手段。近期,苏州医工所李辉课题组围绕着结构光照明超分辨显微成像方法、高保真SIM重构算法、以及国产化的SIM显微镜研制等方面取得了一系列重要进展。   三维成像方法因可以获取到更多的生物样品信息而备受关注。但是现有的三维成像不可避免的带来离焦模糊和时间分辨率差的问题,很难用于对样品的快速三维动态成像。为了实现对厚样品的快速三维成像,李辉课题组发展了基于数字微镜阵列器件(DMD)和液体变焦透镜(ETL)的结构光照明层切显微技术,并开发了基于两张原始图像的层切成像算法。该方法将传统的三维层切成像的速度提高了数倍以上,课题组利用该技术对斑马鱼和大脑血管的心血管系统进行了高速动态成像,清晰地显示了心脏跳动期的收缩-舒张过程以及腹部血管的蠕动特性。相关成果以“Four-dimensional visualization of zebrafish cardiovascular and vessel dynamics by a structured illumination microscope with electrically tunable lens”为题发表在Biomedical Optical Express(2020)上,其中博士生陈冲为论文第一作者。   图1 基于两张正反图像的结构光照明层切算法(左);斑马鱼心脏跳动过程的快速三维成像(右)。   结构光照明超分辨成像技术在多种纳米尺度的亚细胞结构研究中已经得到广泛的应用。但是对于具有大动态范围的样本,例如聚集的细胞囊泡,样品中荧光较强的聚集性区域和亮度较弱的稀疏区域不能同时呈现。现有的SIM方法针对这种样品无法重建出高质量的图像。对此,李辉课题组提出了一种采用多重曝光采集的高动态SIM成像方法HDR-SIM,采集三组不同强度照明的SIM图像然后融合出一帧超分辨图像。用HDR-SIM,强度相差400多倍单个和聚集的荧光小球样本在同一张SIM超分辨图中可以同时观察到,并且对分辨率不会产生影响。在使用本方法观测不同尺度的细胞囊泡结构,单个小囊泡和大的囊泡聚集都可以同时获得清晰的分辨。相关成果以“High Dynamic Range Structured Illumination Microscope Based on Multiple Exposures”为题发表在Frontiers in Physics (2021)上,其中梁永为论文第一作者。   图2 高动态SIM成像原理(左);“聚集-单个”的荧光小球高动态SIM成像(右)。   在结构光照明成像过程中,超分辨图像重建算法尤为关键。SIM重建算法的一些固有缺陷造成超分辨图像中经常出现重构伪影,使得SIM图像的保真度经常受到质疑,并且图像重建时需要完成一系列复杂的参数设定,限制着普通用户对SIM技术应用。李辉课题组开发了一种基于点频谱优化的高保真SIM重建算法。该算法有效克服了常规SIM算法极易产生重构伪影且光学层切能力差的问题,对不同质量原始数据的处理均能获得具有极少伪影和良好光学层切的高质量超分辨图像,有效提高了SIM成像的保真度。同时,该算法对OTF失配和用户自定义参数不敏感,使用生成的理论OTF和较少的参数即可重构高质量SIM图像,降低了SIM成像对实验实施和后处理重构的高要求,提升了算法对普通用户的友好度。相较于几种传统的SIM算法, HiFi-SIM算法对多种不同图像质量、不同样品复杂度、不同图像来源(商用设备/自主搭建SIM系统)的原始数据进行重建, HiFi-SIM均展现出了最少的重建伪影和最优的图像质量。相关成果以“High-fidelity structured illumination microscopy by point-spread-function engineering”为题发表在国际光学类顶级期刊Light: Science & Applications (2021) 上,其中文刚为论文第一作者。   图3 高保真结构光照明超分辨成像重建算法HiFi-SIM(左);细胞结构HiFi-SIM与其他算法重建结果比较(右)。   李辉课题组自2014年以来一直专注SIM成像的技术创新、仪器研发和应用推广,开发了多种形式的结构光照明显微镜系统。最近,基于课题组最新的研究成果,研发了一套可集成于显微镜下层光路的结构光照明插件,具有结构紧凑、方便易用等特点。插件可配置国产倒置荧光显微镜,实现了SIM超分辨成像系统的国产化替代。首台机器已经于近期交付某大学用户进行试用。 图4 插件式结构光照明超分辨成像系统   以上工作得到了国家重点研发计划项目和国家自然科学基金委项目的支持。
  • 990万!南京大学微纳米X射线三维成像系统采购项目
    一、项目基本情况项目编号:ZH2024020078(2440SUMEC/GXGG1056)项目名称:微纳米X射线三维成像系统预算金额:990.000000 万元(人民币)最高限价(如有):990.000000 万元(人民币)采购需求:序号名称数量1微纳米X射线三维成像系统1具体详见招标文件第四章招标技术规格及要求合同履行期限:合同签订后2个月本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年05月07日 至 2024年05月11日,每天上午9:00至11:30,下午14:00至17:30。(北京时间,法定节假日除外)地点:江苏苏美达仪器设备有限公司,南京市长江路198号14楼方式:详见其它补充事宜售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:南京大学     地址:南京市栖霞区仙林大道163号        联系方式:王老师 025-89688969      2.采购代理机构信息名 称:江苏苏美达仪器设备有限公司            地 址:南京市长江路198号            联系方式:文件发售:李婧怡025-84532580,技术咨询:王嘉卉 025-84532585、黄丹025-84531274            3.项目联系方式项目联系人:黄丹电 话:  025-84531274
  • 国家重大仪器专项“X射线三维分层成像仪”项目启动会在萧举行
    p   7月17日,国家重点研发计划重大科学仪器设备开发专项“X射线三维分层成像仪”项目启动会和签约仪式在萧举行,来自全国30多位行业专家参加会议,标志着该项目正式启动实施。这也是2017年重大科学仪器设备开发专项首个召开启动会的项目。 /p p   据悉,该项目成为今年科技部发文的国家重点研发专项项目之一,并在近期获得了国家“重大科学仪器设备开发”专项项目资金支持。 /p p   该项目重点开发具有自主知识产权、质量稳定可靠、核心部件国产化的X射线三维分层成像仪,以及创建相关软件和数据库,实现IC封装的高精度自动无损检测。一旦开发完成并实现产业化推广后,如要检测iPad内部结构,不用螺丝刀把硬件拆开,只需用“X射线三维分层成像仪”,通过3D图像构建就可实现无损检测。 /p p   据了解,该项目由金马控股集团有限公司和中国科学院高能物理研究所共同投资的北京高能新技术有限公司牵头,该公司在去年G20峰会时承担了高端核排查任务。 /p
  • 中国科学家提出冷冻电子断层三维成像目标识别新方法
    5月22日,中国科学院生物物理研究所朱平研究组在国际学术期刊《自然-通讯》(Nature Communications)发表论文。在该论文中,研究者提出了一种在冷冻电子断层三维成像中,对目标分子原位结构特征和动态构象进行高信噪比直接观察和识别的方法,并命名为REST(REstoring the Signal in Tomograms)。冷冻电子断层成像技术可以获得细胞及组织样品中纳米级分辨率的生物大分子原位三维结构,但由于冷冻电子断层成像中的极低信噪比和不可逆信息缺失,研究者难以获得深度学习过程中所需的目标颗粒真实信息(ground truth),使得利用神经网络和深度学习技术进行电子断层成像中的目标大分子蛋白识别具有很大的挑战。为了解决上述技术瓶颈,朱平研究组新发表的研究论文提出并实现了两种训练策略。在策略一中,研究者选取来自原始数据中少量颗粒进行亚单位平均,以该平均结果作为训练的“ground truth”并和原始颗粒建立训练对。在策略二中,研究人员通过对高质量“ground truth”密度图人为添加不同程度的噪声和动态构象变化,以此模拟真实数据中低信噪比和大分子结构异质性,并将模拟获得的高噪声、动态变化的低质量颗粒密度图与高质量密度图建立映射和训练集。在建立以上训练集和深度学习策略后,研究者利用深度学习网络对训练集进行学习和训练,并将训练好的模型和习得的知识迁移到原始数据中,进行目标蛋白颗粒的信息恢复。 REST方法流程和训练策略研究发现,采用以上策略,REST方法在恢复目标蛋白清晰信号(如在嘈杂的背景中识别并提取粒子)、分割目标特征、识别目标蛋白的动态或柔性结构、获得没有缺失信息的密度作为初始模型并辅助电子断层成像中亚单位平均(STA)等冷冻电子断层成像相关的各种任务中,将具有广泛的应用价值和前景。中国科学院生物物理研究所朱平研究组博士生张浩楠、副研究员李岩为该论文的共同第一作者,朱平研究员为论文的通讯作者。该研究工作得到国家自然科学基金、科技部重点研发项目、中国科学院战略性先导科技专项(B类)等的资助。
  • 1373万!北京理工大学原位三维X射线成像系统采购项目
    项目编号:0873-2301HW5L0004项目名称:北京理工大学原位三维X射线成像系统采购预算金额:1373.0000000 万元(人民币)采购需求:采购原位三维X射线成像系统1套;用于科研。接受进口产品投标,具体采购要求详见附件合同履行期限:签订合同后10个月内本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:北京理工大学地址:北京市海淀区中关村南大街5号联系方式:林老师,010-689179812.采购代理机构信息名称:北京中教仪国际招标代理有限公司地址:北京市海淀区文慧园北路10号联系方式:施歌、王磊、杨硕、刘欣,010-59893121、010-59893127、010-598931293.项目联系方式项目联系人:施歌、王磊、杨硕、刘欣、杨轶、蒋旭、谢杰、韩寿国、陈清电话:010-59893121、010-59893127、010-59893129004采购需求.pdf
  • 科学家利用新的成像技术拍摄细胞内部和外部的高清三维图像
    据New Atlas报道,了解细胞和细菌的微观世界非常重要,但要进行详细研究却很困难,尤其是在不伤害受试者的情况下。洛桑联邦理工学院(EPFL)的研究人员现在开发了一种新的显微镜技术,结合了现有的两种技术,使科学家能够建立细胞内部和外部的高清和三维图像。科学家已经开发出很多不同的显微镜成像技术,但它们都有其优点和缺点。电子显微镜可以揭示标本表面的复杂细节,但它不能用于活细胞,因为电子束的强度会破坏样本。其他方法,如荧光显微镜,不会伤害样本,但要以分辨率为代价。因此,对于这项新的研究,EPFL的研究人员从开发他们自己的成像技术开始。它是基于现有的一种叫做扫描探针显微镜(SPM)的技术,用探针尖刺入样品以绘制出其表面。然而,这对细胞是侵入性的,所以EPFL团队用一个玻璃纳米孔取代了这种探针,测量离子的流动而不需要接触样品。他们把这种方法称为扫描离子电导率显微镜(SICM)。该团队将这种新的SICM技术与现有的一种叫做随机光学波动成像的技术结合起来,后者可以窥视细胞内部,观察里面的各种分子和过程。这两种技术结合在一起,使科学家能够同时拍摄细胞内部和外部的高清三维图像。该研究的作者Samuel Mendes Leitão说:“一个细胞的膜是它与周围环境互动的地方。它是许多生物过程和形态变化发生的地方,比如在细胞感染期间。我们的系统让研究人员分析细胞内的分子排列,并绘制出它们与膜动态的关联。”也许最重要的是,他们可以随着时间的推移监测过程,从一秒钟以下到数天的规模。在测试中,该团队能够观察哺乳动物细胞的移动、交流、分化、通过其膜吞噬分子以及被细菌感染。研究人员说,这项新技术将是感染生物学、免疫学和神经生物学的一个非常有用的工具,但也可以在能源科学等其他领域找到用途,以帮助生产太阳能燃料等事情。相关研究成果发表在《ACS Nano》和《自然通讯》杂志上的两篇论文中。
  • 第一届华南动物活体成像应用研讨会暨小动物活体三维成像系统发布会
    在去年发布的「十四五规划」的国家战略中,生命科学被纳入引领性科技领域的重点攻关项目,而正在呼吁生物医药行业健康发展的议题也引起了广泛关注。动物活体成像技术作为基础医学、材料科学、药效评估等领域的基础研究方式,受到越来越多的应用。 博鹭腾作为专业从事动物活体成像设备研发与生产的高新技术企业,一直致力于对动物活体成像相关技术的开发与推广,现已研发出国际先进的小动物活体三维成像系统。 为了加速动物活体成像技术的发展,进而推动整个生命科学研究行业的进步,博鹭腾特举办《第一届华南动物活体成像应用研讨会暨小动物活体三维成像系统发布会》。【会议流程】08:30-09:00 | 签到入座09:00-09:05 | 主持人开场09:05-09:10 | 领导致辞 张俊修 广东省食品医药行业联合党委书记09:10-09:15 | 领导致辞 朱才毅 广东省实验动物学会秘书长09:15-09:20 | 总经理致辞 罗文波 博士 广州博鹭腾生物科技有限公司09:20-09:40 |《活体成像技术在纤维化疾病研究中的应用》 苏金 教授 广州医科大学呼吸疾病国家重点实验室09:40-10:00 |《光学分子影像技术在乳腺外科手术导航中的应用》 邱斯奇 博士 汕头市中心医院10:00-10:20 |《常见肿瘤动物模型构建以及应用》 聂晶 博士 湖南斯莱克景达实验动物有限公司10:20-10:35 | 茶歇10:35-10:55 |《活体成像仪在动物模型构建及临床前评价中的应用》 谢水林 副研究员 华南理工大学10:55-11:15 |《近红外荧光成像用于食管癌术中导航的研究》 李丹 副研究员 中山大学11:15-11:25 | 新产品发布仪式11:25-11:45 |“AniView Kirin”介绍 小动物活体三维成像系统11:45-12:00 | 合影【举办单位】指导单位:广东省医药行业协会 广东省实验动物学会 主办单位:广州博鹭腾生物科技有限公司协办单位:广州云星科学仪器有限公司
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制