当前位置: 仪器信息网 > 行业主题 > >

乳球蛋白

仪器信息网乳球蛋白专题为您整合乳球蛋白相关的最新文章,在乳球蛋白专题,您不仅可以免费浏览乳球蛋白的资讯, 同时您还可以浏览乳球蛋白的相关资料、解决方案,参与社区乳球蛋白话题讨论。

乳球蛋白相关的资讯

  • 免疫球蛋白的金属螯合色谱分离
    免疫球蛋白(Immunoglobulin,Ig)具有抗体活性,是脊椎动物在对抗原刺激的免疫应答中,由淋巴细胞产生的,能与相应的抗原发生特异性结合的或化学结构与抗体相似的一类球蛋白。它普遍存在于哺乳动物的血液、组织液、淋巴液和体外分泌液中,是主要的液体免疫物质。1890年,德国学者Behring和日本学者北里首次发现免疫球蛋白。随后人们用电泳技术证明了血液中抗体的活性存在于γ区、β2区、β区和α区。为了避免名称上的混乱,1964年WHO命名委员会统一将抗体和一些化学结构、抗原性与其有关的蛋白统称为免疫球蛋白。免疫球蛋白广泛应用于开发新型功能性食品添加剂,仔畜饲料以及生物新药和医药生化诊断、检测试剂等,已经成为研究和商业等部门重要的物质。所以免疫球蛋白的纯化也备受关注。由于免疫球蛋白对金属螯合色谱的亲和力最da,因此可采用增加上样量使其突破饱和点再用强洗脱液洗下吸附的免疫球蛋白。据报道,此法得到的免疫球蛋白的纯度可达95%,活力几乎没有损失。金属螯合色谱是一种利用金属离子与蛋白质中的某些氨基酸,如组氨酸等特有的亲和力进行分离纯化的新型色谱分离技术,它具有条件温和,分离的蛋白质活性回收率较高。同时操作较为简单,具有较高的处理能力,使用寿命也较长,适宜于生物活性蛋白的分离纯化。月旭推出的Chelating Tanrose 6FF金属螯合亲和介质,由亚氨基二乙酸(IDA)偶联到琼脂糖而成,相当于未螯合Ni离子的Ni Tanrose 6FF(IDA)。Chelating Tanrose 6FF介质的配基可提供3个配位位点同金属离子螯合,同时提供三个离子键结合部位高亲和的纯化目的蛋白,亲和力要强。可广泛应用于分离提纯蛋白质和多肽。其原理是利用蛋白质的组氨酸、半胱氨酸和色氨酸的侧链与多种过渡金属离子如Cu2+,Zn2+,Co2+,Fe3+的相互作用,从而达到分离纯化的目的。
  • 预计到2025年全球蛋白检测及定量市场将达到30亿美元
    p   近日,有机构发布最新研究报告显示,到2025年,全球蛋白检测及定量市场有望达到30亿美元。报告指出,未来几年,在低浓度下进行蛋白估算以监控其变化的分析方法将驱动市场增长。 br/ /p p   各国政府和组织通过增加基金投入来鼓励蛋白质组学领域的科学研究,因此,报告预测,未来几年,蛋白检测和定量市场将以显著的速度增长,如Human Proteome Organization, National Cancer Institute (NCI) 和 Genomic Health Inc.等组织提供资金以支持蛋白质组学领域相关的研发和产品开发。 /p p   在分子水平上研究以了解慢性疾病并开发出解决方案的需求不断增加,这些都成为刺激相关组织制定基金研发计划的因素。美国国家癌症研究所(NCI)的公共健康基因组学计划推动了公共卫生癌症研究中的精准医疗和基因组学一体化研究进程,以减少全球癌症研究的负担。 /p p   虽然科技的发展不断简化蛋白估算,但在某种特定条件下,技术手段和实验的高昂成本影响了这些实验和技术手段的应用,例如,研究人员认为用于功能蛋白研究的质谱非常贵并且分析速度也缓慢。在质谱目标分析实验中,每一个靶标都要求有定制化抗体,以用于分析肽的亲和免疫浓缩,这一过程被认为成本很高并且时间较长。 /p p   报告还指出,比色法在实验室分析中使用的试剂和溶液最多,是最主要的分析方法,免疫法和光谱法被预测为同比增长最快的两种方法,而判断市场的依据是FTIR和SMCxPRO等技术的发展。由于采用这些方法,临床诊断有望成为未来几年增长最快的领域。 /p p   就应用领域方面,作为用于药物发现过程中生物分子评估中的科学技术的在药物发现过程中的靶标分析和其他过程的使用最多,而且,报告认为,学术机构是这类科学实验和临床诊断实验室发展最快的组织。 br/ /p p   地域方面,由于大量的蛋白质组学项目的实施,北美地区占了最大的份额,而亚太地区的卫生健康基础设施的改变也带动了市场对此类产品的需求,因此,亚太地区有望成为最赚钱的地区。 /p p   此外,报告认为,配件和试剂由于使用广泛或与仪器配套使用,消耗品的市场也非常可观。 /p p    /p p br/ /p
  • 免疫球蛋白含量测定——安东帕Abbemat系列全自动折光仪
    共同战疫 2020年 免疫球蛋白含量快速测定安东帕Abbemat系列全自动折光仪 随着新型冠状病毒感染的肺炎确诊越来越多,医疗物资需求也越来越大,其中,静注人免疫球蛋白是目前防控新冠状病毒感染肺炎的重要药品之一。人免疫球蛋白人免疫球蛋白是取健康献血员的新鲜血浆或保存期不超过2年的冰冻血浆,每批最少应由1000名以上健康献血员的血浆混合。用低温乙醇蛋白分离法分段沉淀提取免疫球蛋白组分,经超滤或冷冻干燥脱醇、浓缩和灭活病毒处理等工序制得,其免疫球蛋白纯度应不低于90%。然后配制成蛋白浓度为10%的溶液,加适量稳定剂,除菌滤过,无菌灌装制成。人免疫球蛋白作为重要的医疗用品,选择合适的含量检测方法具有重大意义。目前,中国药典明确规定人血浆中蛋白可采用折射仪法进行测定。折光率作为物质浓度和纯度的表征,可用于物质含量的测定。将折光仪用于免疫球蛋白含量的测定,不但操作简单,其快速、准确的优势,可帮助制药企业节约大量时间成本,这在需要大量生产与检测免疫球蛋白的特殊时期,尤为关键!
  • 江西6人注射球蛋白死亡续:家属否认病危说法
    5月29日,国家药监局接到国家药品不良反应监测中心报告,江西南昌大学第二附属医院,在使用标示为江西博雅生物制药有限公司生产的批号为20070514的静脉注射人免疫球蛋白(pH4)后出现严重不良反应事件。国家药监局当即组成调查组赶赴江西,初步检测结果显示,部分样品存在异常,但具体原因尚未查明,调查组正在对此进行进一步的调查和检验。截至目前,除江西南昌大学第二附属医院外,没有其他省份报告使用该批号药品的任何不良反应报告。 中新社发 魏玮 摄 昨天(4日),针对有媒体报道抚州市食品药品监督管理局实验室传出消息,博雅公司原厂免疫球蛋白样品检测无异常,抚州市药监局称他们并不了解具体情况,国家药监局表示目前结果还没有出来,有结果后会第一时间在网上公布。 家属否认病危说法 昨天(4日),本次6人注射免疫球蛋白死亡事件的第1名死者家属余平联系上记者。 5月22日,在南昌打工的陈海英,因病毒性脑炎合并症状癫痫住进南昌大学第二附属医院,当晚6点多注射免疫球蛋白液体,第1瓶注射以后就已经昏迷了,随后在注射第2瓶液体时死亡。 “当天,会诊专家跟我说,病人免疫能力较弱,6瓶一疗程效果可能不会太好,不如一天8瓶冲击一下。”余平说。 据余平介绍,目前已经互相联系到3名死者家属,正在努力联系其他3名死者家属。“目前各家家属都不同意院方此前提出的‘病危说’。”余平说。 结果将在网上发布 昨天(4日),有媒体报道抚州市食品药品监督管理局实验室传出消息,经过小白鼠注射试验,证明博雅公司原厂提取的免疫球蛋白样品不存在异样情况。 据相关部门介绍,调查组目前调查仍然覆盖整个生产流通环节。 昨天(4日),参与协助调查的抚州市食品药品监督管理局表示,目前他们还不清楚情况,对于媒体报道原厂药品检验无异样,他们没看到相关消息,也不清楚消息来源。 6月5日,江西省药监局表示,目前不能透露相关情况,其下属的江西省食品药品检测所称,所有检测都在北京的中检所进行,而调查组目前也不在药监局。 下午,国家药监局方面表示,对于调查组是不是已经离开南昌,他们目前还不知道,最终调查结果出来的时间还不好说,结果出来以后将会在网上及时公布。 新华社消息称,江西省食品药品监督管理局5日通报,所有问题药品在全国范围内得到有效控制。(特派记者 孙勇杰) 致6人死亡球蛋白样本异常 江西公安部门介入调查致6人死亡的静脉注射人免疫球蛋白部分样品存在异常
  • 在线电化学方法实现免疫球蛋白链间/链内二硫键的还原
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Online Electrochemical Reduction of Both Inter- and Intramolecular Disulfide Bridges in Immunoglobulins1。该文章的通讯作者是来自荷兰伊拉斯姆斯大学医学院的Martijn M. Vanduijn研究员。许多蛋白质中都包含着二硫键,二硫键是指连接不同肽链或同一肽链中两个不同半胱氨酸残基的巯基组成的化学键(-S-S-)。在蛋白质分子中,二硫键起着稳定肽链空间结构的作用。二硫键数目越多,蛋白质分子对抗外界影响的能力就越大。维持二硫键的完整有利于蛋白质的液相色谱分离,但却给后端的质谱分析带来了挑战。常规的方法是在质谱分析前期对蛋白质进行变性、还原、烷基化处理,这些前处理过程可以有效的减少二硫键对后续酶切或二级碎裂(MS/MS)的干扰,但却非常繁琐耗时,除了会产生副反应以外,蛋白样品也可能在前处理过程中发生丢失。一个有效的替代方法是采用电化学还原。一个配备金属电极的流通池,仅需要施加适当电压于电极上,流通池中蛋白分子上的二硫键就可以被还原。目前,这种微型电化学反应池已实现商业化,可在线连接至质谱前端,蛋白样品经电化学还原,离子源活化,二级碎裂后可直接进行基于MS/MS谱图的序列匹配。尽管如此,电化学反应池在设计、电极材料组成、流通池的大小以及施加的电势等方面仍在不断的提高与创新。免疫球蛋白(抗体)包含有多个链间/链内二硫键。Simone Nicolardi等人曾在2014年将电化学反应器与FTICR质谱联用用于单克隆抗体的分析,从MS1谱图中可以明显地观察到单克隆抗体由于链间二硫键还原后生成的重链和轻链。然而,由于还原不完全,导致重链/轻链上的链内二硫键仅部分打开。类似的不完全还原在Kasper D. Rand组中电化学还原与氢氘交换质谱联用中也能观察到。这种不完全还原会影响蛋白中肽链的精准测量(一对二硫键引起2 Da的质量偏差),同时,关闭的二硫键也会干扰其跨度区域的二级碎裂,碎裂产物也较难通过计算软件进行预测或分析。本文介绍了一种改进的在线电化学还原方法可以实现单克隆抗体链间/链内的完全还原。装置如图1所示,蛋白样品注入系统后在1μL/min的流速下进行色谱分离,色谱柱后流出液与19 μL/min的补充液(1%甲酸,50%乙腈)在T型管中混合,随后以20 μL/min的流速经过电化学反应池(电化学反应池固有体积为19 μL),最终还原后的反应液进入质谱进行检测。值得注意的是,补充液中的50%乙腈有利于蛋白变性,而1%甲酸则为还原反应提供氢原子,促进还原反应的进行。图1. 在线电化学反应池耦联质谱装置示意图为了考察整个方法的可行性及普遍适用性,作者利用该装置对一系列的单克隆抗体进行了电化学还原和质谱检测。如图2A为贝伐珠单抗在800 mV还原电势下色谱分离的总离子流图(TIC),图2B为图2A中色谱峰所对应的一级质谱图(MS1)。从MS1可以看出有两组电荷态分布分别对应重链和轻链,说明在800 mV电势下,贝伐珠单抗链间二硫键发生了还原,由于还原发生在色谱分离之后,所以重链和轻链产生了共流出,仅在TIC图中观察到一个色谱峰。相比较柱前还原,这种色谱柱后二硫键还原会导致肽链的共流出,质荷比接近的肽链则会产生重叠的电荷分布进而干扰谱图的解析。但这种方法在分析复杂的蛋白样本具有明显有优势,可以将还原后生成的肽链与蛋白母体相关联,方便溯源。图2C则为贝伐珠单抗在不同电势下的还原情况,随着电势的逐渐增加,MS1去卷积谱图上逐渐观察到部分还原生成的重链、轻链或重轻链组合,当电势达到1000 mV时,几乎所有的链间二硫键都实现了还原。对于链内的二硫键,由于还原产生的质量改变较小(轻链包含两个二硫键,还原后质量增加4.032 Da),且存在未还原、部分还原以及完全还原肽链间的信号干扰,所以不太容易从MS1谱图确认链内二硫键的还原情况。但轻重链朝高电荷态偏移(图2D)间接说明链内二硫键在打开,肽链更加舒展,更容易质子化。图2. 在线还原系统分析贝伐珠单抗:A)贝伐珠单抗总离子流图;B)对应色谱峰的一级质谱图;C)在不同还原电势下的一级质谱图(去卷积);D)重链在不同还原电势下电荷态的偏移。为了更加准确地评估链内二硫键的还原情况,作者模拟了不同氧化还原态的贝伐珠单抗轻链19+电荷态的同位素分布情况。如图3A,从上到下分别是模拟的完全还原(4 x SH)、部分还原(SS + 2 x SH)以及未还原(2 x SS)同位素分布。将实验测得同位素分布与模拟的同位素分布进行比对,计算每种氧化还原形式对总信号的贡献占比(图3B)。经过比对发现在1000 mV的电化学还原下是可以实现链内二硫键的完全还原的。因此,最终电化学还原设置为1000 mV。链内二硫键的完全还原可以极大的提高肽链的碎裂效率,获得更加丰富的MS/MS数据用于序列匹配。如图4所示,贝伐珠单抗以及西妥昔单抗的轻链19+电荷态被分离并碎裂。可以看到当施加1000 mV还原电势在质谱分析的前端时,轻链的二级碎片明显增加,特别是横跨链内二硫键的区域(图4,黄色阴影)。此外,在质量匹配的过程中也可以观察到二硫键处于还原状态,考虑还原氢引起的质量增加可以实现更多二级碎片的匹配。图3. A)不同氧化还原态的贝伐珠单抗轻链19+电荷态的同位素分布模拟;B)不同实验条件下的二硫键还原情况图4. MS/MS数据评估链内二硫键的还原情况总之,本文开发了一种在线电化学还原方法能够实现免疫球蛋白链间/链内二硫键的完全还原。该方法能够简化蛋白样品的前处理过程,方便后续的质谱测定。与之前的电化学反应器相比,该系统能实现链内二硫键还原的主要原因可能有以下几点:1、电化学流通池所用的表面材料,之前是全钛的设计,现在是表面镀铂。2、之前是三电极配置(工作电极,参比电极,辅助电极),而现在的设计减少至两个电极,驱动还原的电势适用于这种调整后电极配置。3、补充液的条件(50%乙腈和1%甲酸)对还原有利。此外,该电化学系统仍有需要改进的地方,例如:电化学反应池的体积过大、还原电势过高会影响质谱检测的信噪比等。该方法具有广阔的应用前景,无论是在蛋白质组学还是在结构质谱分析中。撰稿:刘蕊洁编辑:李惠琳原文:Online Electrochemical Reduction of Both Inter- and Intramolecular Disulfide Bridges in Immunoglobulins参考文献1.Vanduijn MM, Brouwer HJ, Sanz de la Torre P, Chervet JP, Luider TM. Online Electrochemical Reduction of Both Inter- and Intramolecular Disulfide Bridges in Immunoglobulins. Anal Chem. 2022, 94(7): 3120-3125. 2.Nicolardi S, Deelder AM, Palmblad M, van der Burgt YE. Structural analysis of an intact monoclonal antibody by online electrochemical reduction of disulfide bonds and Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2014, 86(11): 5376-5382.3.Trabjerg E, Jakobsen RU, Mysling S, Christensen S, Jørgensen TJ, Rand KD. Conformational analysis of large and highly disulfide-stabilized proteins by integrating online electrochemical reduction into an optimized H/D exchange mass spectrometry workflow. Anal Chem. 2015, 87(17): 8880-8888.
  • 葛瑛团队成果:自上而下蛋白质组学表征人类心脏中肌球蛋白特异性表达
    大家好,本周为大家分享一篇预发表的文章,Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  肌球蛋白作为肌节的“分子马达”,产生心肌收缩所必需的收缩力。肌球蛋白轻链1和2 (MLC-1和-2)在调节六聚体肌蛋白分子结构中起着重要的功能作用。轻链中存在“心房”和“心室”亚型,在心脏中呈现出腔限表达。然而,近年来MLC亚型在人心脏的腔室特异性表达受到了质疑。在本文中,作者使用自上而下蛋白质组学质谱分析了成人非衰竭供体心脏的四个心脏腔室中MLC-1和-2心房和心室亚型的表达。  MLC-1v和MLC-2a是在所有供体心脏中呈现出腔限表达模式的MLC异构体。重要的是,作者的结果明确地表明,MLC-1v,而不是MLC-2v,在成年人心脏中是心室特异性的。图1展示了LV(left ventricle)、RV(right ventricle)、LA(left atrium)和RA(right atrium)中MLC异构体的检测和定量。作者发现MLC-1v存在心室特异性表达,而MLC-2v没有特异性,并在心房组织中发现了与MLC-2v和pMLC-2v分子质量相匹配的峰。此外,在所有(n=17)无心脏疾病的捐赠者的每颗心脏的心房组织中都能检测到MLC-2v。MLC-2v占总MLC-2含量的百分比采用单因素方差分析(one-way ANOVA)进行定量分析,认为MLC-2v占总MLC-2含量的百分比具有统计学意义,心室和心房间差异显著,LA和RA间横向差异显著。  图1. MLCs Top-down MS分析  接下来作者使用串联质谱(MS/MS)鉴定了MLC-2v蛋白质序列。位于心房组织MLC-2v上的去酰胺化翻译后修饰(PTM)被定位到氨基酸N13。去酰胺化位点与调控磷酸化位点Ser14相邻。磷酸化位点附近的脱酰胺基团所带来的额外负电荷模拟了MLC-2a在Ser22/23位点的双磷酸化模式(图2C)。心房特异性的MLC-2v去酰胺化可能与心房内心力的产生有关。磷酸化诱导了MLC-2的构象变化,而第二负电荷的加入可能有助于提高钙敏感性并诱导蛋白质进一步的构象变化。  图2. Top-down MS/MS 鉴定  总的来说,自上而下蛋白质组学对整个人类心脏的MLC亚型表达进行了无偏差分析,揭示了之前意想不到的亚型表达模式和PTMs。  撰稿:张颖  编辑:李惠琳  文章引用:Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Ralphe JC, Kamp TJ, Ge Y. Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart. bioRxiv [Preprint]. 2023 Feb 26:2023.01.26.525767. doi: 10.1101/2023.01.26.525767.  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Ralphe JC, Kamp TJ, Ge Y. Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart. bioRxiv [Preprint]. 2023 Feb 26:2023.01.26.525767. doi: 10.1101/2023.01.26.525767.
  • 一种快速测定牛奶中乳清蛋白/酪蛋白比的方法
    21世纪,全球各个国家都处在一个经济、信息、科技多方面高速发展的时期。经济的发展提高了绝大多数人们的生活水平,信息科技的大爆炸拓展了人们的视野和见识,科技的进步为人类的持续发展和安全提供源动力。然而,事物通常都具有两面性,给我们带来便捷和效益的同时,也将衍生诸多问题。食品安全问题愈发严峻,便是当今经济、信息、科技发展的副产物。食品企业追求经济利益最大化时,往往利用一些不法的伪科学手段来降低企业生产成本,损害人们的身心健康安全。层出不穷的食品安全事件,尤其在乳制品行业年年都接连不断地爆发,如同挥之不去的梦魇,在这个信息大爆炸的时代,迅速传播,不断地刺痛着人们越来越越敏感脆弱的神经。 日前,香港商业调查机构CER公司公布报告称,某洋品牌配方奶粉远未达到国际标准甚至是中国所能接受的最低标准,被指最差洋奶粉。质量最差门主要是该品牌1段婴幼儿配方奶粉,乳清蛋白和酪蛋白比例不合格。说明称,乳清蛋白中含有高浓度、比例恰当的必需氨基酸,还含有为新生儿必需的半胱氨酸。乳清蛋白还含有包括免疫球蛋白和双歧因子等免疫因子。对于宝宝而言,乳清蛋白是一种优质蛋白,因为它容易被消化,蛋白质的生物利用度高,从而有效减轻肾脏负担。酪蛋白中含有丰富的必需氨基酸,还含有婴儿特别需求的蛋氨酸、苯丙氨酸及酪氨酸。酪蛋白中结合了重要的矿物元素,如钙、磷、铁、锌等。但是,酪蛋白是一种大型、坚硬、致密、极困难消化分解的凝乳。过量的酪蛋白会产生较高的肾溶质负荷,给宝宝肾脏带来较重的负担,对宝宝是不安全的。 乳清蛋白和酪蛋白各有好处,但合适的比例还是应该以母乳作为黄金标准。母乳中乳清蛋白和酪蛋白的比例为60 : 40(而普通牛奶中乳清蛋白和酪蛋白的比例为18 : 82)。而此次被检测出的该品牌奶粉,乳清蛋白和酪蛋白的比列为41 : 59。国际食品法典委员会(CAC)在&ldquo 婴儿配方食品及特殊医学用途婴儿配方食品&rdquo 标准中,没有对产品中乳清蛋白的比例提出要求,而推荐以必需和半必需氨基酸的含量是否接近母乳作为婴儿配方食品中蛋白质质量的判定依据。其他国家和地区(包括美国、欧盟和澳大利亚、新西兰等)均未规定乳清蛋白在蛋白质中所占比例。我国国家标准GB10765-2010《婴儿配方食品》中,要求&ldquo 乳基婴儿配方食品中乳清蛋白含量应&ge 60%&rdquo ,即以乳或乳蛋白制品为主要原料的婴儿配方食品中,乳清蛋白所占总蛋白质的比例应大于等于60%。该要求主要是参考了母乳中乳清蛋白和酪蛋白的比例,沿用了我国GB10766-1997《婴儿配方乳粉ⅡⅢ》中关于乳清蛋白比例的相关规定。 各种品牌的婴儿奶粉都在宣称"接近母乳",其中乳清蛋白和酪蛋白的比例是一个重要的指标,因为它能提供最接近母乳的氨基酸组合,更好地满足宝宝的成长需要。实际上,牛奶中酪蛋白含量的测定对于乳制品和奶酪制品生产商也都具有重大的经济意义。厂商通过测定酪蛋白含量,可以精确预测利用牛奶生产奶酪的产量。目前,市场上已经有一种快速测定乳清蛋白和酪蛋白比例的方法,是由美国CEM公司提出,在一些实验室应用推广。原理上是利用快速真蛋白测定仪,测得总蛋白含量后,沉淀及过滤酪蛋白,再测量乳清蛋白含量,能够快速精确得出酪蛋白含量,从而确定乳清蛋白和酪蛋白比例。整个过程仅需约15分钟,精确度和重复性相比其它凯氏定氮法和凝胶色谱法等更高,且没有污染性、腐蚀性试剂。这种高效而环保的方法值得推广,使用。 美国 CEM SPRINT 真蛋白质测试仪 更多详情,请联系培安公司: 电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288 Email: sales@pynnco.com 网站:www.pynnco.com
  • 赛默飞推出获IVDR认证的EXENT®解决方案 突破创新单克隆免疫球蛋白检测和监测手段
    近日,赛默飞宣布在获得IVDR认证后推出EXENT®解决方案。该解决方案是一种全面集成的自动化质谱系统,旨在改变单克隆丙种球蛋白病患者的诊断和评估,包括多发性骨髓瘤。据世界卫生组织称,多发性骨髓瘤是全球第二大常见的血液癌症。EXENT解决方案现已在以下国家/地区上市:比利时、法国、德国、意大利、荷兰、西班牙和英国。EXENT解决方案支持临床实验室测量、量化和跟踪特定的内源性M蛋白和外源性治疗性单克隆抗体,并提高血清中的分析灵敏度和特异性。EXENT解决方案易于在实验室的日常工作中实施,并具有三个集成模块:EXENT-iP®500(自动化样品制备仪器);EXENT-iX®500(基质辅助激光解吸电离 - 飞行时间质谱仪 (MALDI-ToF MS)); EXENT-iQ®(一款智能且直观的工作流程软件,包括数据审查)。该分析仪与EXENT®免疫球蛋白同种型 (GAM) 免疫分析相结合,后者是一种高灵敏度和特异性的免疫分析,用于测量和定量IgG、IgA和IgM。赛默飞蛋白质诊断首席科学官Stephen Harding博士指出:“EXENT解决方案代表了单克隆免疫球蛋白检测和监测创新方面的重大突破。”在过去,单克隆丙种球蛋白病的治疗是通过监测M蛋白水平来确定的,这可以表明肿瘤的大小。近年来,随着治疗的显著成功,许多患者使用标准技术将M蛋白浓度降至可检测限度以下。然而,患者群体内依然存在疾病进展的差异。EXENT解决方案填补了对更灵敏分析方法的未满足临床需求,从而区分子集,而无需过早启动侵入性骨 髓活检技术。EXENT解决方案基于Mayo Clinic的知识产权开发,将创新领域的行业领先地位与Mayo在单克隆丙种球蛋白病研究方面的专业知识相结合。EXENT解决方案旨在帮助诊断单克隆丙种球蛋白病,并监测多发性骨髓瘤和华氏巨球蛋白血症患者。EXENT解决方案的主要特点和创新包括:• 增强的分析灵敏度:通过突破灵敏度的限制,支持临床医生和实验室仅使用血清样本就可以监测患者更深层次的反应。• 动态监测独特的M蛋白:随着时间的推移跟踪特定的M蛋白,从而识别新克隆产生的其他M蛋白。• 高级可视化:以直观的方式呈现M蛋白,支持临床医生和实验室就内源性M蛋白做出明智的决策。• 简化且微创的血清检测:通过简单且微创的血清检测,优先考虑患者的舒适度和便利性。• 具有自动算法数据处理功能的智能软件:由具有自动算法数据处理功能的智能软件支持,可最大限度地减少手动工作,提高数据准确性并加快分析速度。• 使用Optilite®分析仪进行定量分析:与Optilite分析仪结合使用,可对M蛋白进行精确定量,以获得全面、准确的结果。今年早些时候,赛默飞完成了对The Binding Site的收购,将蛋白质诊断解决方案(包括单克隆丙种球蛋白病的诊断和监测)添加到其专业诊断产品组合中。
  • 全球蛋白质组学千亿美元市场 中国创新企业能分羹几何
    蛋白质是经过基因表达之后的产物,是生命活动的直接执行者和调控者。蛋白质分子是应用最广泛的一类靶标物质,其中,超过95%的药物靶标,超过55%的临床诊断指标是蛋白质分子。  国家《“十四五”生物经济发展规划》将蛋白质组作为生物经济的重要领域之一,提出发展蛋白质组学技术和检测技术,加快推进生物科技创新和产业化应用,打造国家生物技术战略科技力量,提高重大疾病的诊断和治疗水平。  “蛋白质组学是研究大规模水平上蛋白质的序列结构和功能的系统生物学科,其组成随着生命活动、疾病发生在不断变化。蛋白质组是后基因组时代解读生命本质的重要译码。”近日,青莲百奥CEO李京丽在接受记者采访时介绍称。  弗若斯特沙利文数据预计,当前全球蛋白质组整体市场接近千亿美元,在产业链上游赛默飞等跨国企业质谱仪和试剂供应商为蛋白组学研究提供基础仪器和试剂。2022年以来,海外蛋白质组学的企业陆续在纳斯达克上市,国内蛋白质组的市场热度也一直不断攀升。而目前中国创新企业又能分羹几何?  市场潜力巨大  1994年,Marc Wilkins博士等人提出了“proteome”(蛋白质组)这个术语,将蛋白质组定义为“基因组计划”的延伸。在21世纪初,人类蛋白质组研究在全球开启。2014年,两个独立的国际研究小组分别在《自然》杂志上公布了人类蛋白质组的第一张草图。  在我国,基因组研究发展步伐跟随国际,但在蛋白质组学研究领域,国内研究水平与国际比肩。就在2023年,由中国科学院院士贺福初牵头领衔发起并主导的人体蛋白质组导航国际大科学计划(Proteomic Navigator of the Human Body,简称π-HuB计划),全球科学家通力协作,绘制人类全生命周期图谱,解读人体蛋白质组构成原理与变化规律,实现蛋白质组学驱动的医学范式,共创智慧医学。  据了解,蛋白质组学产业链上游主要包括质谱仪和试剂供应商,如赛默飞、布鲁克、CST等,为蛋白组学研究提供基础仪器和试剂;中游主要包括蛋白组学技术服务的提供商,如景杰生物、中科新生命等,中游企业利用自身的创新技术和平台,为客户提供蛋白质鉴定、定量、修饰、互作等分析服务;下游主要包括蛋白组学技术服务的用户,如高校、科研院所、医院、生物医药企业等,它们通过采购蛋白组学技术服务,进一步从事基础研究、疾病研究、药物研发等活动。  根据弗若斯特沙利文数据预计,我国蛋白质组学市场规模,以31.3%的复合年增长率持续扩大。  不过,李京丽也指出,在上游层面,中国与海外差距较大,主要核心技术如高分辨质谱等,被国外头部企业引领。不过在中下游,国内实力与海外市场差距较小,国内的蛋白质组市场需求也在快速攀升。  值得注意的是,在精准医疗的应用层面蛋白质组具有较大增量,李京丽向记者进一步介绍称,在临床诊断、疾病预测和治疗监测等方面发挥重要作用。通过蛋白组学技术将疾病血液、组织等样品进行数字化,然后采用蛋白质定量、翻译后修饰、蛋白相互作用等数据分析找到关键特征分子,再进行系统研究,找到作为诊断标志物或药物治疗靶点。  另据了解,蛋白质组学技术可以伴随患者全生命周期的健康管理和用药指导。比如,在疾病发生发展过程中,初次确诊,是否复发、用药是否获益、是否耐药等场景的诊断应用。  此外,李京丽指出,相比人的2万个静态基因,人的蛋白质水平是动态的100+万种蛋白变体,蛋白质组维度更精细,基于蛋白质的临床检测还会逐渐增多,无论从存量还是未来增量而言,蛋白质组都有巨大的发展空间。  基于蛋白组学的广泛应用及发展空间,国家政策层面积极支持,资本层面也看好其发展前景。如《“十四五”生物经济发展规划》将蛋白质组作为生物经济的重要领域之一,提出发展蛋白质组学技术和检测技术,加快推进生物科技创新和产业化应用,加快生物技术向多领域广泛融合赋能,加快培育蛋白领域新技术、新产业(300832)、新业态、新模式。  与此同时,近年来也有不少资本向蛋白组学领域倾斜。德联资本在不久前就投资了青莲百奥。德联资本相关负责人向记者分析称,相比于基因组,在蛋白质组领域,中国科学家有更强的话语权,且市场增速较快。同时,蛋白质组与人的健康或疾病状况的关联更直接,其在科研端还有众多未被发现的领域,科学价值很高,可以为科研端市场带来持续不断的增长。2023年,由贺福初院士牵头主导的人类蛋白组导航计划将持续30年,该计划每年可为科研市场带来数亿元的额外经费投入。  “实际上,科研端大量投入的背后,是希望将蛋白质组数据转化为新药研发的靶点或诊断标志物,临床转化是科研投入背后的长期目标,这仍然需要时间,但目的十分明确。当科研发展到一定阶段,如发现一些新的、有效的标志物,谁能将其快速实现商业化,谁就能得到市场的机会。”上述德联资本负责人指出。  填补国内市场空缺  随着精准医学和转化医学的快速发展,越来越多新发现蛋白质生物标志物的检测工作,将为蛋白质组分析带来巨大的市场需求。李京丽指出,我国在蛋白组学领域,急需标准化流程,需要解决相关问题。  据了解,针对国内蛋白质组市场现存的空缺需求,青莲百奥提供针对血液和微量组织样本的多种纳米材料富集试剂盒、蛋白样本前处理工作站、AI生信分析算法等产品,其产品组合的多样性和独特性国内独有。  作为一家创新型的服务平台,青莲百奥属于产业链的中游,提供创新性的解决方案,辐射上下游两端,针对上游提供科学工具产品,下游向临床端及科研端提供服务和产品。  青莲百奥是国内一家专注于蛋白质组学检测的创新性平台型CRO企业,成立于2013年,也是国内较早研究蛋白质组学研究的团队,几名核心创始人参与过人类蛋白质组计划及中国人类蛋白质组计划,从蛋白的功能机制研究,到药物靶点的发现,再到疾病诊断的突破,从实验室到产业化,从研发端到商业化落地,团队在蛋白质组学发展的20年间,是见证者也是实施者。  目前,青莲百奥主要面向医院科研和药企研发,临床需求是其首要解决的客户需求,同时,也率先与LDT头部医院达成战略合作,形成产学研闭环。据了解,青莲百奥核心技术优势在于临床需求的解决方案,对样品的高深度、标准化通量产出,加之数据质控和后期AI算法的优势,使得多年的行业积累,其业务发展已获得良好契机。  “在与临床端合作时,我们首先会确定临床需求,再通过创新性的蛋白组学技术,将临床样本数字化,产出数据矩阵,通过大模型算法找到可能引起疾病发生变化的关键蛋白。之后,将蛋白指标作为诊断或治疗特征,实现蛋白质组学驱动的医学范式转变。”李京丽进一步介绍。  目前,青莲百奥已与多家三甲医院展开合作,包括携手协和医院完成国内首篇空间蛋白质组学研究,探讨病毒感染疾病的机制问题;联合深圳市人民医院,利用热蛋白质组学新技术,发现肺部感染治疗的新抗菌药物;助力北京大学第三医院合作妇产项目,运用独有的纳米材料筛选血浆潜在标志物;此外,青莲百奥更与中国人民解放军总医院进行了多种罕见病的相关合作,开发新的诊断标志物。  2022年以来,海外蛋白质组学的企业陆续在纳斯达克上市,国内蛋白质组的市场热度也一直不断攀升。据记者了解,青莲百奥2023年实现了其独特产品的持续放量,获得商业认可并已实现盈利,也于2023年完成了数千万元的首轮融资。所募集资金将用于“一站式蛋白组学平台”升级建设,加速蛋白质诊疗标志物发现及临床转化。  实际上,蛋白质组在结构、组成、变体数量上更加复杂多样,且蛋白质无法通过技术手段实现扩增,因此蛋白质组检测难度更高,挑战性更大。此外,在临床应用端,临床体液样本往往存在样本量小、通量高、一致性及可溯性要求高的特点,传统蛋白质组检测难以应对其低丰度、高深度、高通量的分析需求,因此亟需新一代的蛋白质组学平台,加速蛋白质组学检测在临床端的应用推广。  企业档案:北京青莲百奥生物科技有限公司是一家专注于蛋白质组学检测的创新性平台型CRO企业,以临床需求为导向、以源头创新为核心驱动力,为蛋白质诊、疗标志物的临床转化提供一站式的完整解决方案。拥有蛋白样本的独创性纳米磁珠富集技术、全流程前处理智能机器人及全自动大数据分析系统。公司聚焦于血液、外泌体、组织切片、单细胞等样品,攻克微量检测限、高深度覆盖、定量准确性、方法标准化、算法智能化等蛋白质检测关键技术环节,全力打造新一代蛋白质组学平台。
  • 蛋白分子质谱诊断先行者许洋:蛋白质谱目前有三种临床应用
    p   用于生物样品分析的蛋白指纹法,该专利技术被国际顶级科学杂志《科学》以及医学界权威杂志《柳叶刀》评为世界蛋白指纹图谱和蛋白质芯片排名第一的技术。针对这项技术的一些问题,火石创造对许洋博士进行了深度的专访。 /p p style=" text-align: center " img width=" 300" height=" 385" title=" 001.png" style=" width: 300px height: 385px " src=" http://img1.17img.cn/17img/images/201711/insimg/ebf3be8e-c0c2-49d6-9891-a76d207d183f.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong   许洋博士 /strong /p p   许洋博士一直致力于蛋白质组学研究开发,怀揣近五十项蛋白分子质谱诊断技术的自主发明专利。2009年他创办了湖州赛尔迪生物医药科技有限公司,凭借专利产品蛋白指纹图谱仪成为行业领头羊,也成为此类器械行业标准的起草者。 /p p strong   火石:请问您为什么做蛋白质谱? /strong /p p   许洋博士:我研究蛋白质谱是偶然也是必然。在美国纽约著名的Sloan-Kettering研究所单克隆抗体实验室早期研究治疗白血病时,我们制造了全世界第一枚人源化单克隆抗体(抗CD33人源化单抗)。后来我又和顶尖美国公司合作第一个将人源化单克隆抗体做成了靶向药。有了扎实的基础,必然能在更窄的蛋白质谱领域做的更好。 /p p   strong  火石:蛋白质谱当前的临床应用情况如何? /strong /p p   许洋博士:只有拿到医疗器械注册证才算进入临床,蛋白质谱目前只有三种临床应用:对肿瘤的筛查 对早期肾脏疾病的分析 在细菌上的鉴定应用。蛋白质谱在国内仍处于非常早期的阶段,且具有垄断性,极少人能做且在做。 /p p strong   火石:作为国家“千人计划”医疗器械特聘专家,您认为蛋白指纹图谱仪在医疗器械中的角色是什么? /strong /p p   许洋博士:蛋白指纹图谱仪分析的大数据可以生动地比喻为人体疾病的健康地图。 /p p   蛋白指纹究竟是什么?把质谱仪的显示屏中的每一个蛋白质都用一个分子量来表达,这些分子量组合起来就叫蛋白指纹。就像每个人的指纹都是不同的,每种疾病的特定蛋白质表达物也不同,称之为指纹图谱。蛋白指纹图谱技术是由蛋白质芯片及分析仪器——表面加强激光解析电离飞行时间质谱仪两部分组成,可以将病人血清中蛋白质成分的变化记录下来,绘制成蛋白指纹质谱图,并显示样品中各种蛋白的分子量、含量等信息。将这张图谱与正常人、某种疾病病人的谱图或基因库中的谱图进行对照,就能最终发现和捕获新的特异性相关蛋白及其特征。这种方法具有微量、精确、简易、快速的特点,适应于基础和临床等各个领域。 /p p   之所以将蛋白指纹图谱仪分析的大数据比喻为人体疾病的健康地图(MAP),是因为既然β2—微球蛋白是11731、人绒毛膜促性腺激素是37580、转甲状腺素蛋白是13761(数字对于计算机的应用更好管理),而每个蛋白质在质谱仪分析中都是数字,它本身就是大数据。任何物质在质谱底下都是数字,综合起来就是大数据。我把大数据串联起来,就能将分子在身体的MAP做出来。譬如一位吸烟的男士来体检,能发现他吸了烟数年之后肺部出现影像学病理性位点,结合质谱仪分析发现相关的疾病标志物,我们能够模拟出肺部疾病的健康地图,即通过质谱仪检测的健康大数据,可以模拟出该患者肺部出现了数个小红点,点击每个红点后都会解释原因,如显示铅、铬等数据是否超标,以及告诉你相应的对策。这样的技术开启了全智能健康4.0时代。 /p p   Tips:β2—微球蛋白(β2—MG)被认为是诊断早期肾功能损伤的敏感指标,尤其对于糖尿病肾病、高血压肾病、红斑狼疮肾炎的早期诊断具有重要参考价值,因此β2—微球蛋白的测定在临床上是有多种价值的。 /p p    strong 火石:您和您的团队在蛋白质组学研究的技术或者方法上有什么突破吗? /strong /p p   许洋博士:蛋白质作为标志物对肿瘤的诊断,确实没有太大的进展。 /p p   一直以来蛋白质组学研究面临的重大瓶颈是蛋白质分离问题:人体内有十万种蛋白质与衍生物,多数可能与疾病有关联,但这十万种蛋白质与衍生物只有分开后,质谱才能分析清楚。此前蛋白质组学技术中最流行、最通用的蛋白质分离方法是双向电泳,基本上能分离近二千种血浆蛋白质,远远不及十万种,所以成为了瓶颈。 /p p   2006年我提出了一个设想:和蛋白有关的抗体至少有一万多种,那为什么不用抗体来分离蛋白质?这件事一直有人在做,但之前都没有人想到用抗体组把一千个蛋白质一次性快速、实时地分离出来。之后就诞生了免疫质谱分析方法(专利号ZL 200610140652.0),可以在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析,还可以同时检测多个生物标志群。用免疫组质谱技术能测定抗原变异片段的分子量。另外,还可以将多种疾病特异性抗原的抗体同时标在一个基质点上。 /p p   Tips:免疫质谱分析方法:质谱与抗体分离技术联合应用即为免疫组质谱(Immunomic mass spectrometry,IMS)。免疫组质谱检测为一组多种(类)抗体与质谱联合来精确地鉴别变异或修饰生物标志群的方法。在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析。可以同时检测多个生物标志群(biomarkers)。 /p p   双向电泳(Two-dimensional electrophoresis):是一种等电聚焦电泳与SDS-PAGE相结合,分辨率更高的蛋白质电泳检测技术。目前是快速成长的蛋白质组学技术中最流行最通用的蛋白质分离方法。目前2D-PAGE能够在同一块凝胶上同步检测和定量数千个蛋白质。 /p p   从整个2015年的政策看,医疗器械行业是受到国家大力扶持的,行业地位与重要性大幅提升,法规向国际化看齐,行业监管不断趋严,医疗器械正成为与药物齐头并进的新兴产业。 /p p    strong 火石:是什么驱动着行业的高增长? /strong /p p   许洋博士:一是需求,老龄化加剧,家庭支付能力增强,导致医疗需求高增长 二是政府加大医疗卫生投入,《医疗器械科技产业“十二五”专项规划》表示,“十二五”期间将扶植形成8~10家产值超过50亿元的大型医疗器械产业集团 三是为配合新医改完善基层医疗建设的目标 四是国内生物技术研发应用进入突破期。 /p p    strong 火石:您认为接下来医疗器械未来发展的特点和前景会是怎么样的? /strong /p p   许洋博士:未来5年,医疗器械和制药占比将会达到1:1。近十年,我国医疗器械市场规模快速增长,国内医疗器械工业总产值从2003年的189亿人民币上升到2013年的1889亿,2013年同比增长21%,增长速度远快于药品。预计在未来5年左右,我国医疗器械行业仍然将保持高速增长。医疗器械行业涉及到医药、机械、电子、塑料等多个行业,中高端医疗器械更是多学科交叉、知识密集、资金密集的高技术产业,研发成本高,决定了只有大型厂商才能在大中型医疗器械方面有所作为。此外,器械“国产化”也会成为必然趋势。 /p p    strong 火石:赛尔迪当前开展的业务、研发的产品有哪些?公司部署战略是怎么样的? /strong /p p   许洋博士:我们现在正在做一张人类的大健康MAP。通过精准医疗计划,基于环境健康大数据,通过蛋白指纹图谱仪完成健康管理。现在的疾病市场最关注的问题分别是:检测0~6岁儿童智力、优生优育(为什么生不出聪明宝宝)、高达5千万的肿瘤人群以及3.5亿的高血压、糖尿病人群。 /p p   其中糖尿病肾病是糖尿病最常见且严重的并发症之一,是糖尿病所致的肾小球微血管病变而引起的蛋白排泄和滤过异常那个渐进性肾功能损害。而微量白蛋白尿即早期糖尿病肾病是可逆的,这不同于大量白蛋白尿即临床糖尿病肾病,因此积极防治早期糖尿病肾病就显得尤为重要。去年底,赛尔迪公司与中国医学科学院北京协和医院签署协议,承担国家对糖尿病肾病体内铅、镉毒素的临床大样本检测。全新升级的蛋白指纹图谱仪,是目前唯一获国家药监局批准、能检测含微量白蛋白、β2—微球蛋白以及泛素3项指标的医疗器械。这对糖尿病肾病的早发现、早治疗具有重大意义。 /p p   赛尔迪接下来将按照个体化精准检测所附带的信息,由这些信息与大数据库交流,提出符合个体化治疗的方案,向个体化精准医学管理方式转变。 /p p   随着大数据时代的来临,“互联网+”概念的提出让医疗健康事业呈现出了新的发展势态和特征。医学知识体系正被大数据、精准医疗所重构,信息化进程提高了知识传递速度与医疗协同效率。 /p p strong   火石:蛋白质组学技术如何助推精准医疗? /strong /p p   许洋博士:常识知道铅、镉会引起糖尿病性肾病。但铅、镉指标不是医院常规检测的项目。如果采取个体化精准治疗,每年常规检查一次体内铅与镉的指标,发现异常就能进行针对性的从尿液排泄的治疗。已经得了肾病正在透析的病人,检测铅与镉指标后进行针对性排泄也会增强治疗效果。利用蛋白指纹图谱仪能够发现早期的肿瘤和心血管标志物,这就会对疾病的治疗带来极大的希望。随着质谱技术在精准医疗的应用,越来越多的个体化标志物将会被发现,人体的蛋白指纹图谱测定将会成为医院的常规工作。 /p p   精准医疗,即考虑每一个体健康的差异,制定个性化的预防和治疗方案。正确的选中一个工具,解决关键问题,这就是精准医疗。基于基因组测序技术、生物医学工具以及大数据工具逐步成熟和完善,精准医疗能够为个体基因特征、环境以及生活习惯进行疾病干预及治疗,但如何尽快与大数据结合才是发展重点。日前我与北京协和医院合作,创立了中国特色的首个百万人疾病与环境毒素数据库与IMS(爱睦世)特检中心:HZIMS2008,首次在复杂疾病系统中构建了基于环境毒素大数据的移动网络数据库的质量控制体系,使我国重大疾病,如高血压、糖尿病、肿瘤的大数据病因学研究处于世界领先。 /p p /p
  • 自然通讯成果|非变性纳米蛋白质组学捕获内源性心肌肌钙蛋白复合物的结构和动态性信息
    大家好,本周为大家分享一篇发表在Nat. Commun.上的文章:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  蛋白质大多都是通过组装成蛋白复合物来执行特定的生物功能,因而表征内源性蛋白复合物的结构和动力学将有助于生命过程的理解。蛋白复合物在其组装、翻译后修饰(Post-translational modifications,PTMs)和非共价结合等方面是高度动态的,在native状态下通常以低丰度存在,这给研究其结构和动态性的传统结构生物学技术(如X-ray和NMR)带来了巨大的挑战。非变性Top-down质谱(nTDMS)结合了非变性质谱和Top-down蛋白组学的优势,目前已发展成蛋白复合物结构表征的有力工具,可以保留蛋白质亚基-配体间的非共价作用和PTMs等重要信息。然而,由于内源性蛋白复合物自身的低丰度特性,导致对其的分离纯化和检测非常困难,所以nTDMS目前仅限用于过表达的重组或高丰度蛋白质的表征。在本研究中,作者开发了一种非变性纳米蛋白质组学(Native nanoproteomics)技术平台,通过使用表面功能化的超顺磁性纳米颗粒(Nanoparticles,NPs)直接富集组织中的蛋白复合物,然后再利用高分辨质谱表征其结构和动态性。这里选用心肌肌钙蛋白(Cardiac troponin,cTn)异源三聚体复合物(~77 kDa)作为研究对象。cTn三聚体复合物是调节横纹肌肌动蛋白收缩的Ca2+离子调节蛋白,由TnC、cTnI和cTnT这3个亚基组成。其中,TnC是Ca2+结合亚基,cTnI是抑制肌动蛋白-肌球蛋白相互作用的亚基,而cTnT细丝锚定亚基。TnC与Ca2+的结合,以及cTnI 亚基的磷酸化,会共同引起细丝上的分子级联事件,诱导心肌收缩所必需的肌动蛋白-肌球蛋白交叉桥的形成。传统结构生物学技术不能有效捕获cTn复合物高度动态的构象变化,并且先前研究用的cTn复合物是由原核细胞表达的,缺乏PTMs的信息。因此,作者开发了native纳米蛋白组学的方法,以实现对人内源性cTn复合物结构和动力学的全面表征。作者首先使用肽功能化的超顺磁性氧化铁NPs富集了人心脏的内源性cTn复合物,同时优化了非变性蛋白提取缓冲液(高离子强度LiCl溶液,生理pH)。富集到的cTn复合物中的3种亚基的含量比例为1:1:1,真实反应了肌节cTn异源三聚体复合物的组成。作者也发现含有750 mM L-Arg,750 mM咪唑和50 mM L-Glu(pH 7.5)的溶液对蛋白复合物的洗脱效果最好,并且不会破坏亚基间的相互作用。该富集方法具有很好的重现性,proteoforms信息得到很好保留,且可以直接用于化学计量分析。总的实验流程如图1所示,洗脱后的cTn复合物经体积排阻色谱(Sze-exclusion chromatography,SEC)除盐和交换至醋酸铵溶液中,随后对cTn复合物进行多种nTDMS分析:1)在线SEC监测复合物 2)超高分辨傅里叶变换离子回旋共振质谱(FTICR-MS)表征复合物的化学计量比和proteoforms 3)捕获离子淌度质谱(TIMS-MS)解析调控复合物构象变化中的非共价作用的结构动态性。  图1. 用于表征人心脏中内源性cTn复合物的native纳米蛋白组学平台。  为了全面表征内源性cTn复合物,作者使用FTICR-MS进行proteoforms测序和复合物表征。图2展示了native状态下检测丰度最高的cTn复合物的电荷态(19+),其中包含了4种独特的proteoforms,这些复合物主要带有单磷酸化的cTnT、单磷酸化和双磷酸化的cTnI,以及结合了3个Ca2+的TnC。这些结果表明人cTn复合物在肌节中以结构多样化的分子组成存在,具有高度异质的共价和非共价修饰,可产生一系列不同的完整复合物。  图2. FTICR-MS分析展示的cTn复合物状态。红色方框中是最高丰度电荷态(19+)的放大谱图,理论同位素分布(红色圆圈)可以与谱图很好叠加,说明结果具有高质量精度(质量偏差在2 ppm 以内)。  作者接着对cTn复合物进行complex-up分析,以研究复合物的化学计量比及其组成。图3a~3b分别显示的是完整cTn三聚体复合物,以及经CAD碎裂后的蛋白亚基谱图。但这里没有检测到cTnI单体,可能是因为cTnI和TnC在native状态下的亲和力很强,且cTnI单体带的电荷不多,导致其在高m/z区域出峰,所以不易被检测到.随后,作者又对解离出的亚基进行complex-down分析。图3c展示了检测到的cTnT的多种proteoforms:未磷酸化的 cTnT、单磷酸化的cTnT(p cTnT)和 C 端 Lys 截断的磷酸化cTnT(pcTnT [aa 1-286]),CAD碎裂谱图也发现cTnT的C端较N端更易暴露在外界溶剂中。图3e则是cTn(I-C)二聚体的谱图,共检测到6种具有不同数量Ca2+结合和磷酸化的proteoforms。二级谱图可将cTnI的两个磷酸化位点准确定位在Ser22和Ser23,同时发现cTnI序列两端都较内部区域更易暴露于溶剂中。但还无法通过nTDMS准确推断Ca2+结合和磷酸化是如何影响cTn复合物的稳定性。作者在此也没有优化FTICR-MS在非常高m/z范围的离子检测,所以也会遗漏带少量电荷的cTn复合物信息。  图3.nTDMS表征人心脏来源的cTn复合物。(a~b)完整cTn复合物和经CAD碎裂后的亚基谱图 (c~d)cTnT单体及其代表性的CAD碎裂谱图 (e~f)cTn(I-C)二聚体及其代表性的CAD碎裂谱图。  人TnC蛋白含有3个钙结合EF-hand基序(结构域 II~IV)。结构域 II与Ca2+结合的亲和力较低,是触发心肌收缩的调控域。结构域 III 和 IV则与Ca2+具有强的亲和力,在心肌舒张和收缩时均始终保持与Ca2+充分结合,但结构域 II只有在收缩时才被Ca2+占据。这里观察到了TnC分别与0、1、2和3个Ca2+结合的情况,通过CAD碎裂也进一步定位了TnC与Ca2+结合的具体氨基酸序列(图4)。研究发现结构域 II的骨架最容易发生碎裂,而结构域 III的骨架最难碎裂。目前结构域 II~IV的序列在UniprotKb中分别对应65DEDGSGTVDFDE76、105DKNADGYIDLDE116和141DKNNDGRIDY152。这里分别将与1、2和3个Ca2+结合的TnC隔离出来进行CAD碎裂(m/z分别为2312、2316和2321),可以更准确地将结构域 III、II和IV的序列分别定位到113DLD115、141DKNND145和73DFDE76(图4c),表明非变性纳米蛋白组学方法在定位非共价金属结合方面具有高分辨能力。  图4.nTDMS定位 TnC与Ca2+结合的结构域。(a)FTICR-MS隔离与不同数量Ca2+结合的TnC单体 (b~c)与两个Ca2+结合的TnC的CAD碎裂谱图,蓝色、红色和黄色方框分别对应结构域 II 、III和IV。  Ca2+与TnC的结合会对cTn复合物的功能和构象有着很大影响。cTn复合物的核心区维持着构象的稳定,但当Ca2+与TnC发生结合时,其柔性区会经历广泛的构象变化,复合物结构会从“closed”状态转变成“opened”状态,这会促进肌动蛋白和肌球蛋白间的相互作用,最终导致心肌收缩。然而,传统结构生物学技术很难捕获cTn复合物与Ca2+结合时的构象变化。因此,作者使用离子淌度质谱来分析cTn复合物的构象变化。TnC亚基和与Ca2+结合的cTn(I-C)二聚体的淌度分离谱图如图5所示。与0~3个Ca2+结合的TnC的碰撞截面(Collision Cross-Section,CCS)值分别为1853、1849、1829和1844 Å2(图5a~5b),TnC构象比IMPACT预测的更为紧凑,但cTn(I-C)二聚体的CCS值与预测的非常接近(图5c~5d)。作者推测TnC与两个Ca2+结合会形成更致密的构象,是因为在静息舒张时Ca2+与结构域 III 和 IV充分结合。当第三个 Ca2+与结构域II结合时,TnC转变为“opened”构象,使其N端与cTnI的C端相结合,进而引发心肌收缩(图5e)。cTn(I-C)二聚体与Ca2+结合时的构象变化也是如此(图5f)。  图5.TnC单体(a~b)和与Ca2+结合的cTn(I-C)二聚体(c~d)的离子淌度分离谱图 (e~f)TnC和cTn(I-C)二聚体与Ca2+结合时的构象变化。  最后,作者通过添加EGTA来剥离cTn复合物中的Ca2+,以进一步研究Ca2+在维持复合物结构稳定性上的作用。图6b~6c是没有EGTA孵育时的cTn复合物的TIMS-MS谱图。cTn复合物的CCS值与理论预测值非常符合。随着EGTA孵育浓度的增加(25、50和100mM),Ca2+逐渐被螯合,cTn复合物的结构也越来越舒展,体现在平均电荷态逐渐增加,以及逐渐在较低m/z范围内出峰,这表明cTn复合物构象的稳定性丢失与EGTA浓度的增加相关(图6d~6f)。虽然100mM EGTA孵育也不敢保证Ca2+的完全剥离,并且cTnI的存在又会增强TnC与Ca2+的结合,但TIMS-MS为我们研究cTn复合物与Ca2+结合时的构象变化提供了一种切实可行的分析手段。  图6.cTn复合物与EGTA孵育时的构象变化。(a)cTn复合物的构象随EGTA孵育浓度的增加发生改变 (b~c)cTn复合物的TIMS-MS谱图 (d~f)cTn复合物与不同浓度EGTA(25、50和100mM)孵育的谱图和CCS分析。  总的来说,本研究开发了一种可用于内源性蛋白复合物富集和结构表征的非变性纳米蛋白组学方法,以获取其组装、proteoforms异质性和动态非共价结合等方面的生物信息。本文采用的功能化NPs可被灵活设计成选择性结合特定的靶蛋白,在富集和洗脱过程中可以很好保持其近似生理条件下的存在状态。更为重要的是,功能化NPs与nTDMS的整合可以作为一种强有力的结构生物学工具,可以作为传统技术的补充,用于内源性蛋白复合物的表征。  撰稿:陈昌明 编辑:李惠琳文章引用:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics  参考文献  Chapman EA,Roberts DS, Tiambeng TN, et al. Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics. Nat Commun. 2023 14(1):8400. Published 2023 Dec 18. doi:10.1038/s41467-023-43321-z
  • 沃特世公司:走在蛋白折叠和大分子复合物的研究前沿
    使用沃特世公司SYNAPT High Definition质谱系统, 利兹大学就所获得的结果发表文章 沃特世(Waters® )公司(股票代码NYSE: WAT) 2007年12月3日宣布利兹大学爱斯布理Astbury结构分子生物学中心使用最近购买的沃特世公司SYNAPT High Definition MS™ (HDMS) 质谱系统,在Journal of the American Society of Mass Spectrometry (JASMS) 美国质谱协会杂志上发表了蛋白研究的成果。 Ashcroft实验室正在使用SYNAPT® HDMS质谱系统研究生物分子功能。在2007年12月刊的一篇文章中,利兹的研究人员描述了对几种蛋白,如细胞色素C和贝塔-2-微球蛋白,的成功分离和分析,Ashcroft希望该成就可以通向对某些生物过程的完全了解,如淀粉纤维形成,细菌纤毛集结以及病毒衣壳的装配,这些过程都与衰老症有关。 蛋白质被人体小心地折叠,经三维长链分子装配而成。当正确地被折叠时,蛋白调节正常身体功能。当某些蛋白被折叠成特殊形状而变成错误折叠时,引起一系列反应,可导致自身聚集和淀粉纤维形成,因此一些高发疾病可能发生,包括老年痴呆症,疯牛病和帕金森氏综合症。在利兹大学,Alison Ashcroft艾利森艾斯克劳福特博士和她的同事Sheena Radford诗娜拉德福德教授就是研究这样一种蛋白,贝塔-2-微球蛋白,试图探索它是如何形成纤维,在透析病人的关节聚集,并与透析相关的淀粉样变性病有关。对这些过程在分子水平的完全了解将有助于治疗方法的设计。 新型质谱为生物学研究带来新领域 作为工具,常规质谱是区分不同质量蛋白质的优秀方法。然而,一个特定蛋白的不同构象或不同的折叠形式具有同一质量数,使用常规的方法是无法区分开来的。这就是沃特世公司SYNAPT HDMS质谱系统和镶嵌其中的离子淌度技术帮助利兹大学的方式。 “一个蛋白可以折叠成紧密的三维结构,或者在某些条件下,蛋白可以打开成伸展的结构。即使这些三维结构拥有相同的质量和质荷比(m/z),SYNAPT HDMS的离子淌度功能可以分离这些蛋白,并告诉您多少蛋白在折叠的形式而多少在非折叠的形式。而且,由于两种蛋白构象的横截面积不同,因为能够基于形状分离,SYNAPT HDMS质谱系统使我们能够区分各种不同的蛋白形状。 ”结果确实令人惊奇。”Alison Ashcroft艾利森艾斯克劳福特博士说,她是生物分子质谱研究员,质谱室主任。 来自沃特世公司的SYNAPT 质谱系统为实验室带来研究聚集过程的新的洞察力。“它为我们的研究提供新一维的空间。我们现在可以对原始状态的蛋白质定量,也可对非折叠或部分折叠的蛋白进行定量。我们也可以监测某种特定的蛋白构象在聚集过程被消耗。这为生物分子在分子水平如何工作提供了重要的新层面。”艾斯克劳福特博士补充道。 沃特世公司于2006年6月在美国西雅图美国质谱年会上推出SYNAPT HDMS质谱系统。它是第一台商业化的,在质量之外,基于尺寸,形状和电荷数分析离子的质谱。 一个管理万亿字节科学数据的决策 在生物技术和生物科学院(BBSRC) 和维尔康姆信托的资助下,艾斯克劳福特实验室拥有五台不同形式的质谱仪器,而管理其产生的数据是一个巨大的挑战。为了更有效地管理数据文件,该实验室选择沃特世公司NuGenesis Scientific Data Management System (SDMS)科学数据管理系统。 “每天在DVD上备份数据已经不需要了。科学数据管理系统SDMS 每天一次从五台质谱仪上将数据自动备份,我们的研究生和博士后可以直接从他们办公室的计算机上看到数据。存档文件对我们很重要,因为政府资助部门要求我们自建成之日起存储五或十年的数据。研究生花四年的时间拿到博士学位,所以他们需要四年或更长时间查看数据,特别是如果在拿到博士学位后要写文章” 艾斯克劳福特博士评论道。 “非分析化学背景的人们认为一台质谱就是一个复杂的称重机器。通常他们没有意识到使用这台仪器可以看到蛋白功能和行为。但是当他们发现了之后,会感到无比惊奇。”艾斯克劳福特博士说。 艾斯克劳福特博士在美国质谱协会杂志的文章全文参考: Monitoring co-populated conformational states during protein folding events using ESI-IMS-MS, D. P. Smith, K. Giles, R. H. Bateman, S. E. Radford,A. E Ashcroft, J. Am. Soc. Mass Spectrom., 2007 Dec 18 (12): 2180 – 90, DOI:10.1016/j.jasms.2007.09.017 文章再版要求请寄至A. E. Ashcroft 博士, Astbury Centre for Structural Molecular Biology, Astbury Building, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT UK,或发电子邮件email: a.e.ashcroft@leeds.ac.uk 关于利兹大学生物科学系,请浏览(http://www.fbs.leeds.ac.uk/) 利兹大学的生物科学系是英国最大的生命科学研究团体之一,拥有将近一百五十名学者和四百多名博士后和研究生。该系目前活跃的研究基金约六千万英镑,资助者包括慈善,研究院,欧盟和企业。该系拥有杰出的研究成果,在上一期政府研究评价检查(HEFCE)中,所有主要评估项目均获得第五级。 关于利兹大学爱斯布理Astbury中心, 请浏览(http://www.astbury.leeds.ac.uk/) 爱斯布理Astbury结构分子生物学中心是利兹大学一个跨学科研究中心。成立该中心的目的是在结构分子生物学的各个领域从事国际水平的研究课题。Astbury中心汇集了五十多位来自利兹大学各学科的学者,拥有共同的学术兴趣。该中心以 W.T.Astbury 的名字命名,他是生物物理学家,在利兹大学长期从事科学研究(1928-1961),工作期间在该领域成立了多个基金会。 艾利森艾斯克劳福特博士,(http://www.astbury.leeds.ac.uk/facil/mass.htm) 是生物分子质谱研究员,利兹大学,生物科学系,爱斯布理Astbury结构分子生物学中心质谱室主任。她的研究着重于开发和使用质谱方法探索生物分子功能。 诗娜拉德福德教授,(http://bmbsgi10.leeds.ac.uk/),是利兹大学,生物科学系,爱斯布理Astbury结构分子生物学中心结构分子生物学教授。她的研究着重于蛋白质折叠,非折叠和聚集机理。 生物技术和生物科学研究院(BBSRC) (www.bbsrc.ac.uk)是英国生命科学资助机构。 政府投资的生物技术和生物科学研究院BBSRC 每年在很大范围的研究领域投资三亿八千万英镑,为英国国民的生活质量做出突出贡献。 维尔康姆信托(www.wellcome.ac.uk)是英国最大的慈善机构。它资助英国国内和国际创新生物医学研究,每年投资额在五亿英镑左右。 (Waters, SYNAPT, High Definition MS, High Definition Mass Spectrometry, NuGenesis 和 HDMS 是沃特世公司商标。)
  • 质谱革命:推动蛋白组学市场快速增长的黄金技术
    蛋白组学是当今生命科学和精准医学的研究热点,目前仍处于早期快速发展阶段。其发展轨迹与早期的基因组学相似,随着时间的推移,蛋白组学在研究和临床中的应用潜力将逐渐释放,有望接近基因组学的市场规模。当前,全球蛋白组学市场规模已达500亿美元,且呈现快速增长趋势。随着资本市场的关注,不断有新公司进入并获得融资,推动了新技术的不断涌现。 蛋白组学技术的扩展与应用 蛋白质组学技术已从最初的蛋白质定性鉴定扩展至多个领域,包括蛋白质定量表达分析、翻译后修饰鉴定和定量、蛋白质互作分析、蛋白质复合物成分解析、空间蛋白质组分析以及单细胞蛋白质组分析。这些技术不仅应用于基础科学研究,更在药物开发、临床医学和转化医学等领域展现出巨大潜力。这一切得益于质谱技术、蛋白质分离技术、生物化学技术和计算机技术的快速发展。 质谱技术:蛋白组学发展的关键 质谱技术是推动蛋白质组学发展的关键技术,特别是在生物标志物发现方面具有黄金标准地位。在全球范围内,只有少数制造商发明了能够区分小至单肽分子的复杂质谱技术,包括布鲁克公司(Bruker)、赛默飞公司(Thermo Fisher Scientific)、安捷伦公司(Agilent)、沃特世公司(Waters)和 Sciex 公司。其中,赛默飞世尔公司在蛋白组学研究质谱市场中拥有超过90%的市场份额,主要归功于其创新的Orbitrap系列。布鲁克公司的TimsTOF系列则是蛋白组学领域增长最快的质谱之一,从赛默飞公司那里获得了市场份额,以约30%的速度增长。质谱技术的持续创新将对蛋白组学的发展产生深远影响。然而,质谱技术的标准化和应用流程的复杂性,尤其是样品制备阶段的缺乏标准化,成为其进一步推广的瓶颈。正是在这一背景下,像Evosep等公司在液相色谱标准化方面取得了突破,逐步占据了60%以上的市场份额。这种创新反映了市场对流程效率提升的迫切需求。与此同时,新兴技术如Seer、Olink和Somalogic通过纳米粒子分离技术和适配体蛋白质检测技术,正在改变传统的蛋白质组学检测方式,显著提高了检测精度和通量。 蛋白组学的产业链 蛋白组学市场已形成涵盖上游质谱仪器和蛋白质组学试剂供应商、中游蛋白组学技术服务公司以及下游蛋白组学终端客户的完整产业链条: 颠覆性技术与企业的崛起 近年来,Seer、Olink、Somalogic、Nautilus和Quantum-Si等企业凭借其颠覆性技术,改变了传统的蛋白组学检测方式,极大地提升了检测的通量、准确性、特异性和敏感性:&bull Seer:发明了一种在液相色谱分离之前对蛋白质进行标准化消化和分离的工作流程。其专有的纳米粒子技术将蛋白质分成4组,增强了低丰度蛋白质的检测。&bull Olink:通过DNA编码连接到蛋白质上,实现蛋白质定量可通过基因测序的基础设施进行。其PEA(临位延伸分析)检测技术在qPCR仪器或Illumina的下一代测序仪上工作,提供高通量和特异性。&bull Somalogic:利用适配体进行蛋白质检测,其SomaScan平台可以识别并检测大量的蛋白质。该公司拥有一个由7000个独特适配体组成的文库,能够在48小时内从单个样品中识别7000种不同的蛋白质。&bull Nautilus:其技术利用专有仪器、流动池和试剂,对样品中95%的蛋白质组进行量化。设计了一个"超密集单分子蛋白质纳米阵列",实现了单分子分辨率。 国内市场的快速发展 在蛋白组学行业,欧美企业布局早,经过多年发展成熟后逐渐得到资本市场认可。包括Seer、Olink、Nautilius、Quantum-Si以及Somalogic在内的多家生物科技公司从2020年开始陆续上市。Seer、Olink、Somalogic是欧美三家蛋白质组学的标杆企业,Seer是其中最年轻的公司,但是为下一代蛋白质组学带来了创新技术和路径。与之相比,国内企业起步较晚,但发展迅速。景杰生物、中科新生命等专注于蛋白组学,而诺禾致源、华大基因、美吉生物、欧易生物等企业也同时提供蛋白组学服务。国内市场规模从2016年的1.2亿元增长到2020年的5.8亿元,年复合增长率高达49.1%,预计2025年将达到22.6亿元。(摘自弗若斯特沙利文分析)与此同时,随着精准医学和转化医学的快速发展,越来越多新发现蛋白质生物标志物的检测工作,将为蛋白质组分析带来巨大的市场需求。我们发现抗体-药物偶联物(ADC)药物正在快速发展,其结合了单克隆抗体的靶向能力和细胞毒性药物的强效性,成为癌症治疗领域的突破性疗法。在ADC药物的研发过程中,蛋白组学起到了至关重要的作用。(点击查看→ADC药物如何精准制导癌症治疗、质谱如何推进ADC药物研发)蛋白组学技术可用于鉴定和验证ADC的靶标蛋白,帮助研究人员筛选出最具潜力的治疗靶点。此外,蛋白组学在分析抗体与抗原的结合位点、优化抗体结构以提高药物效力和降低副作用方面也具有重要价值。总而言之,蛋白组学还是处于发展的黄金时代,质谱技术的不断进步将推动着整个行业的快速前进。随着多组学整合、人工智能赋能、空间蛋白质组学兴起和临床应用加速落地等趋势的出现,蛋白组学将在生命科学、精准医学和药物研发等领域发挥越来越重要的作用。在全球蛋白质组学有着千亿美元市场的机遇下,就需要加强核心技术研发,尤其是在质谱、单细胞和空间蛋白质组学等领域实现突破。同时,积极推动多组学整合,结合基因组学、代谢组学等数据,构建全面的生物学信息网络,深化对复杂疾病的理解。此外,深化国际合作与交流,吸收全球先进技术和经验,增强自身的创新能力,参与全球市场竞争,提升国际影响力。通过这些努力,中国企业将有望在全球蛋白组学市场中分得一杯羹,为生命科学和精准医学的发展做出更大贡献。
  • PALL蛋白纯化填料试用申请活动即将开始
    PALL蛋白纯化填料试用申请活动即将开始 蛋白纯化新选择: 多一次尝试,多一种选择,不同的结果。 PALL蛋白纯化填料试用申请活动即将开始 申请有效期2011年5月4号-2011年6月4号 您是否为蛋白纯化结果不理想而烦恼? 试试PALL的层析填料吧,提供与传统填料不同的层析选择性! 你是否为蛋白纯化过程耗时而烦恼? 试试PALL的高流速层析填料吧,满足您在高流速下高结合性的要求。 您是否为填料的载量不高而烦恼? 试试PALL的Q/S HyperCel 层析填料吧,结合载量大于134-190mg/ml(BSA) 您是否为抗体纯化费时、费经费而烦恼? 试试PALL的MEP HyperCel层析填料吧,单抗纯化步骤,经济而简单 众多填料如何选择?请参考选择推荐。 MEP HyperCel、HEA HyperCel、PPA HyperCel: 混合模式层析填料:能替代传统的疏水层析模式,支持在低盐或者无盐状态下上样,洗脱PH更温和,最大限度保留蛋白生物活性的同时简化下游纯化流程。 MEP HyperCel 同时含亲和层析模式,替代传统的Protein A 亲和层析,优势: 无需调整料液,直接上样:直接从各种培养系统中捕获蛋白。省去微滤、超滤浓缩的步骤。 支持低浓度捕获,即使单抗浓度为50μg IgG/mL也能高效捕获。省掉浓缩的步骤。 温和的条件下洗脱:IgG一般在pH 5.5 to 4.0 的范围洗脱。 有效降低多聚体,同时去除DNA和HCP。 价格更经济。 Ceramic HyperD 系列: 如果您追求超高流速下高结合能力,Ceramic HyperD绝对是首选,在满足高流速下,同样拥有高分辨率。 CM Ceramic HyperD:在具备高流速下的高结合能力外,同时能接受180mM的盐浓度下上样,简化了上样流程,上样前无需脱盐操作。 推荐Ceramic HyperD 混合包装,货号:IEXVP-C001。内含四种1ml预装柱,DEAE、CM、S、Q 任您选择不同的离子交换。(不参加试用活动)。 此次参与试用申请的填料还有Protein A 亲和层析填料,IMAC HyperCel 亲和纯化His标签填料等,如需更多的具体性能的资料,请登录PALL的网站http://www.pall.com/查询。 样品申请货号及数量可见下表,详情请下载产品试用清单(附件一) 层析类型 货号 产品描述 配基 应用 可申请 总数 混合模式(离子交换;疏水层析;亲和层析) 12035-C001 ACROSEP MEP HYPERCEL,1ml 预装柱 甲基嘧啶 ●直接捕获多种不同类型、压型和种属的多抗和单抗; ●酶和重组蛋白; ●重组抗体片段; ●从多聚体中分离单抗单体; ●低盐浓缩物中蛋白的直接捕获 5支 20250-C001 ACROSEP HEA HYPERCEL, 1ml 预装柱 乙胺基 5支 20260-C001 ACROSEP PPA HYPERCEL,1ml 预装柱 苯基 5支 12035-069 MEP HyperCel 5mL, 瓶装 甲基嘧啶 3瓶 20250-012 HEA HyperCel 5mL,瓶装 乙胺基 3瓶 20260-015 PPA HyperCel 5mL,瓶装 苯基 3瓶 24775-075 HA Ultrogel 5mL 羟基磷灰石 交联的琼脂糖和羟基磷灰石 ●免疫球蛋白; ●糖蛋白; ●疫苗 2瓶 亲和层析 20078-C001 ACROSEP PROTEIN A HYPE 1ml 预装柱 重组蛋白A ●免疫球蛋白; ●MAbs 5支 20078-036 Protein A Ceramic HyperD F 5mL瓶装 2瓶 20093-C001 ACROSEP IMAC HYPERCEL 1ml 预装柱 亚胺-乙酰乙酸(IDA) ●His-tag重组蛋白 5支 20093-069 IMAC HyperCel 5mL,瓶装 3瓶 离子交换 20050-C001 ACROSEP CM Ceramic HyperD F,1ml 预装柱 羧甲基(CM) ●重组蛋白; ●质粒纯化; ●蛋白,疫苗; ●Mabs; ●捕获阶段; ●免疫球蛋白纯化 2支 20050-084 CM Ceramic HyperD F,5mL 瓶装 2瓶 20062-C001 ACROSEP S Ceramic HyperD F;1ml 预装柱 磺酸基(S) 2支 PRC05X050SHCEL01 PRC05X050 S HCEL01,1ml 预装柱(工业放大推荐) 2支 20195-013 S Hypercel 5ml瓶装 3瓶 20066-C001 ACROSEP Q Ceramic HyperD F 1ml 预装柱 季氨基(Q) 2支 20196-012 Q Hypercel 5ml 瓶装 3瓶 PRC05X050QHC001 PRC05X050 QHCEL01,1ml 预装柱 2支 20067-C001 ACROSEP DEAE Ceramic HyperD F 1ml 预装柱 二乙基氨基乙基(DEAE) 2支 20067-070 DEAE Ceramic HyperD F 5mL 瓶装 2瓶 申请方式:网上申请 下载并完整的填写产品试验申请单(附件二),Email到Jessie_Jing_Chen@ap.pall.com 经过审核后(完整的填写能方便您拿到样品),送出样品. 6月10号公布配送单号。 配送方式:送货上门或.邮寄 配送时间:2011年6月13号-6月17号 申请要求:1.限高校、科研单位实验室客户;数量有限,每个实验室限申请一种填料。 2.申请的客户承诺开始试用后两个月内,给PALL公司提供使用反馈情况 颇尔公司保留对该活动的解释权。
  • 使用BiopharmaLynx软件分析蛋白完整分子量
    贾伟 沃特世科技(上海)有限公司实验中心 对蛋白药的分子量进行测定,可以在完整蛋白水平,对其进行宏观表征,以初步确定蛋白的表达是否正确。BiopharmaLynxTM软件中,专门设计了对蛋白整体分子量测定及表征的多种功能,它具有以下特点。 ■ 通过原始质谱数据,计算出蛋白分子量。 ■ 自动标注蛋白的各种不同修饰形态。 ■ 以直观方式,比较样品与标品间差异。 ■ 自动计算蛋白质的各种修饰形式间的峰强度比例。 ■ 界面友好、直观,操作简单。 通过原始质谱数据,计算分子质量,是蛋白分子量测定的基本功能。图1中左上为免疫球蛋白IgG的原始质谱数据,右下为软件分析后,得出的IgG分子质量信息。通过BiopharmaLynx软件的自动计算功能,复杂的质谱数据成为了直观的分子量形式。图1中,绿底色图为标准品蛋白的分子质量分布数据,蓝底色图为样品蛋白的分子质量分布图。在BiopharmaLynx给出的结果中,IgG的具有多个分子质量形式,这是由于其含有多种糖基化修饰的原因。 图1. BiopharmaLynx软件的完整蛋白质量分析界面。 图中的紫色线条直观地显示出了样品蛋白与标品的质量分布差异差异。观察紫色线条形态可以发现,样品IgG具有更多的大分子量糖基化修饰形式,而标品蛋白中的小分子量糖型修饰较多。当将鼠标指针放置于峰尖时,将自动出现此处蛋白名称、修饰种类、峰强度、色谱保留时间等信息。通过以上两种信息,可以简单、直观地找到两者的差异之处了。 BiopharmaLynx软件可根据用户设置,对蛋白的不同修饰情况,自动标注。除内置的90种修饰外,用户还可根据需要自行创建修饰方式。特别是,考虑到生物蛋白药的一些具体情况,BiopharmaLynx内置了一些蛋白表达药品常见的蛋白改变修饰,如蛋白C端的Lysine缺失等(图2红色箭头指向)。这些细节设计,会帮助使用者极大地提高工作效率,节省精力。 图2. 使用BiopharmaLynx软件的修饰设置界面。 BiopharmaLynx软件对蛋白各种修饰间的比例也可以直观地给出初步分析结果(图3)。 作为一家在液相与质谱技术都占有领先优势的企业,沃特世更提供了全面的蛋白分子量分析方案,包括色谱柱、色谱梯度方法、质谱条件等一系列已优化完成的实验操作流程(图4)。使用此整体解决方案,仅仅使用0.5微克的IgG蛋白,在4分钟内,就可完成液质数据采集全过程。此方案也包括对还原后IgG的分析方法(图4右上)。 图4. 完整及还原后IgG质量测定解决方案示意图。 参考文献 (1) Rapid Profiling of Monoclonal Intact Antibodies by LC/ESI-TOF MS. Waters Application Note, 2007, 720002393 EN (2) Rapid Screening of Reduced Monoclonal Antibodies by LC/ESITOF MS. Waters Application Note, 2007, 720002394 EN (3) Characterization of an IgG1 Monoclonal Antibody and Related Sub-Structures by LC/ESI-TOF MS, 2007, 720002107 EN (4) Assessing the Quality and Precision of T herapeutic Antibody LC/MS Data Acquired and Processed using Automated Workflows. Poster presented at the ASMS meeting. 2008, 720002687 EN (5) Efficiently Comparing Batc hes of an Intact Monoclonal Antibody using t he Biop harma Lynx Software Package. Waters Application Note, 2008, 720002820 EN 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 了解糖蛋白结构异质性和相互作用:来自native Mass的见解
    大家好,本周为大家分享一篇发表在Current Opinion in Structural Biology上的文章,Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry,通讯作者是英国牛津大学化学系的Carol V . Robinson教授。  蛋白质糖基化的过程会产生具有多种组成、连接和结构的聚糖,这些聚糖具有多种生物学功能。哺乳动物的主要两类糖基化修饰为 N糖和粘蛋白型O糖(图1 a,b)。N-聚糖的分支结构、单糖延伸、岩藻糖基化和唾液酸化是主要特征 粘蛋白型O-聚糖根据其核心结构分为四类。解读聚糖异质性对于了解糖蛋白的结构和功能至关重要。高分辨率nMS在完整水平上提供聚糖组成的全景图,并且将糖蛋白结构的异质性与相互作用的化学计量和功能联系起来。这篇文章集中讨论了利用nMS阐明糖蛋白结构异质性和生物分子功能的最新进展。  图1 糖基化特征可以用native MS方法表征  一、描绘糖型组成异质性  糖蛋白的主要特征包括聚糖占据、N-聚糖分支/延伸、岩藻糖基化和唾液酸化。通过native MS 和糖蛋白组学的方法表征人胎球蛋白糖型,native MS确定全局宏观和微观异质性,而糖蛋白组学描述了位点特异性糖基化信息,可以根据特定于位点的信息对蛋白native MS谱中每种糖型的详细组成进行注释(图1c)。  使用凝集素的亲和纯化质谱(AP-MS)有助于靶向分析糖蛋白上具有感兴趣结构的糖型。例如,特异性识别α1-3岩藻糖残基的凝集素 (AAL),揭示了人类α1-酸糖蛋白(AGP)上的 α1-3岩藻糖残基的化学计量 使用与糖基β1-6分支相互作用的凝集素PHA-L,表明 β1-6 分支在所有 AGP 糖型上的普遍存在。  外切糖苷酶处理在糖组学中广泛用于区分具有不同键的单糖残基。一项最近的工作使用了α-神经氨酸酶、β-半乳糖苷酶、β-N-乙酰氨基葡萄糖苷酶和α-岩藻糖苷酶的组合外切糖苷酶,揭示了 AGP 在完整糖蛋白水平上核心和触角岩藻糖基化的化学计量。对于同时具有 N-连接和 O-连接聚糖的高度糖基化生物治疗药物,例如依那西普、使用外切糖苷酶、内切糖苷酶和蛋白酶的综合酶处理对于全面了解糖蛋白的整体异质性至关重要(图2)。  图2 (a) 依那西普的结构 (b) 唾液酸酶(一种外糖苷酶)和PNGase F(一种内糖苷酶)处理的依那西普的native MS。  2、描绘结构异质性  蛋白质O-糖基化在许多细胞表面蛋白质中普遍存在,如 SARS-CoV-2 刺突蛋白受体结合域 (S-RBD),该蛋白具有核心 1 和核心 2 粘蛋白型O糖。最近的一项突破将软着陆 MS 和扫描隧道显微镜 (STM) 相结合,能够对单个聚糖的构象和结构进行成像。  以前的报告表明,N-聚糖分支和核心岩藻糖基化受到糖基化位点局部构象的限制,远离蛋白质表面的唾液酸化和末梢岩藻糖基化被认为受蛋白质骨架结构的影响较小。随着 nMS 分辨率的进步,通过比较位点特异性和全局异质性直接重新审视这一假设是可行的。如果每个位点上的糖基化事件是独立的,那么全局异质性应该与位点特异性信息一致。对于核心岩藻糖基化IgG和携带简单 N糖的人胎球蛋白,位点特异性糖基化完美地解释了整体异质性。然而,最近对高度分支和唾液酸化的 rhEPO 和 S-RBD 的研究表明,糖基分支上唾液酸化打破了native MS 和糖蛋白组学数据之间的这种相关性。因此,这些情况表明唾液酸化并非完全独立于所有糖基化位点。  3、破译N聚糖生物合成途径 监测N-聚糖宏观和微观异质性提供了对其生物合成途径的见解。N-聚糖分支由一系列N-乙酰胺基葡萄糖转移酶催化,它们将单糖依次连接到糖基的不同分支上。对敲除了个别N-乙酰胺基葡萄糖转移酶基因的细胞表达的糖蛋白进行分析,可以揭示糖基的生物合成偏好。除了N聚糖的分支合成以外,岩藻糖基化过程也可以通过native MS揭示。人类AGP最多能携带11个岩藻糖, 用连续的外切糖苷酶消化和native MS来区分 AGP 上的核心和分支岩藻糖基化N-聚糖,揭示了岩藻糖基化在完整糖蛋白水平上的联系和化学计量(图3)。  图3 (a)人AGP结构。(b)外切糖苷酶处理可区分AGP上N糖的核心和分支岩藻糖基化。(c) 外糖苷酶消化的AGP的native MS揭示了在完整糖蛋白水平上岩藻糖基化的联系和化学计量学。  四、将糖的异质性与糖蛋白相互作用联系起来  通过保留完整的蛋白质与配体/药物的复合物,nMS 为蛋白质相互作用的化学计量和动力学提供了信息。AGP 与抗凝药物华法林的研究表明,单岩藻糖基化可减弱蛋白质-药物相互作用(图4)。  图4 (a)人 AGP在其疏水袋中特异性结合抗凝药物(华法林)。 (b) 将 AGP-华法林复合物的native MS绘制为华法林浓度的函数 (c)华法林浓度和与华法林结合的非岩藻糖基化AGP或单岩藻糖基化AGP的百分数的对应曲线。非岩藻糖基化为蓝色,单岩藻糖基化为红色。 (d) 不同糖型解离常数的比较表明,N-聚糖分支和岩藻糖基化降低了 AGP 对华法林的亲和力。  native MS的分辨率革命已经使糖组学、糖蛋白组学和top-down MS之间建立了联系,以揭示糖基的宏观异质性。未来,蛋白质糖基化的数学模型和多组学方法的整合将为我们理解“不可解析”的糖蛋白复合物提供新的思路。
  • 预测:2022年蛋白纯化及分离市场规模将达到735亿美元
    p   近日,外媒发布研究报告显示,预计到2022年,全球蛋白纯化与分离市场将超过735亿美元,并且,报告期内,年复合增长率为8.3%。 br/ /p p   报告分析了全球蛋白纯化与分离市场的主要驱动因素,包括越来越多需要识别的新配体以及快速试剂盒的使用推动了蛋白纯化市场的研究和发展、自动化蛋白纯化仪器的使用、政府对相关研究机构给予经费支持以及后基因时代促进新型蛋白质组学技术市场的发展。 /p p   与此同时,报告分析了制约该市场发展的可能因素,包括仪器价格高昂且利用率低、“一刀切”纯化试剂盒开发难度大以及阻碍创新和产品改进的不断提高的研发成本。 /p p   此外,报告分析了全球蛋白纯化与分离市场的主流供应商的财务、业务策略以及发展计划等,其中包括赛默飞、默克密理博、荷兰QIAGEN NV公司、美国伯乐、安捷伦、GE医疗、罗氏等。 /p p br/ /p
  • RapiGest SF试剂:促进溶液中蛋白酶解的有利工具
    Ying Qing Yu与Martin Gilar 美国马萨诸塞州米尔福德沃特世公司 简介 本应用纪要中,我们介绍了沃特世专利RapiGest&trade SF试剂的物理化学性质及其应用领域。2002年,我们首次推出RapiGest SF,这一创新产品是帮助酶消解的有利工具,可促进溶液中蛋白的消解,它能够改善样品制备过程中蛋白的溶解度。 RapiGest SF提高酶解速率与完全程度的机理详见图1。温和的蛋白变性可打开蛋白结构并暴露酶切位点,以供酶切。在RapiGest SF溶液中,酶对变性的耐受性优于普通蛋白,并能保持活性。在加入酶之前高温加热RapiGest SF溶液可使球蛋白更为完全变性,之后需将酶与样品一起进行37 ° C的孵育。 图1 蛋白底物在RapiGest SF溶液中变性􀉼 之后对蛋白酶切更为敏感 超过200多家行业内杂志引用了使用RapiGest SF进行样品溶解的案例,大部分为蛋白组学的应用。最近,许多制药实验室使用RapiGest SF用于蛋白药物的确证。因为酶消化的速度的提高并在LC、MS分析前极易清除,RapiGest SF已被多个应用领域广泛接受,其中包括高级序列研究的LC/UV/MS蛋白药物的肽图分析。 讨论 什么是RapiGest SF? RapiGest SF是酸性不稳定表面活性剂,在酸性条件下极易水解。1这种独特的性质,在需要的时候,可用于从溶液中清除表面活性剂。RapiGest SF的结构及其水解副产物见图2。酸性不稳定的性质可在pH2条件下,45分钟内达到完全降解。 该表面活性剂可降解为两个产物:dodeca-2-one和3-(2,3-二羟基丙基)丙磺酸钠。前者与水不能互溶,可通过离心清除。后者在水溶液中溶解度很高,而在反相LC模式下不保留。酶消解后的水溶液可直接进行HPLC、LC/MS或MALDI-TOF MS进行分析。 消解后的清除 样品分析前无需额外去清除表面活性剂(如透析)。在分析前,酶消解后通常经过酸(如甲酸、三氟乙酸(TFA)或盐酸(HCl))的酸化,降解RapiGest SF。建议降解条件pH &le 2。 胰蛋白酶消解的兼容性 胰蛋白酶是最常见的蛋白水解酶,可用于肽图分析和蛋白组学的应用。我们研究了在添加RapiGest SF的情况下胰蛋白酶的活性作用,并与文献中最常见的变性剂的作用做了对比。本检测基于胰蛋白酶诱导N-&alpha -苯甲酰-L-精氨酸乙基乙酯(BAEE)在50 mM重碳酸胺(pH 7.9)中的室温水解。胰蛋白酶活性的变化通过UV 253 nm下测量BAEE水解率进行计算。在选择的变性溶液中,胰蛋白酶活性与对照样品进行对比(非变性剂)。结果见于表1。 表1中的数据说明低浓度下(0.1%) RapiGest SF不抑制胰蛋白酶的活性。这与结构上类似的表面活性剂SDS不同,SDS是很强的变性剂,可会使胰蛋白酶失活。尿素、乙腈或盐酸胍也是胰蛋白酶消化的变性剂。但是乙腈是强洗脱剂会干扰消解样品进行反相LC分析。正如我们所知,尿素可使蛋白共价修饰,盐酸胍也和SDS一样可以使酶失活。 本实验说明蛋白酶的活性受到蛋白溶液中所用变性剂的影响。RapiGest SF在从低到高的浓度下均不改变酶活性,因此,最佳的蛋白消解条件是无需过量酶即可达到酶解的结果。 快速蛋白消解 对蛋白酶解存在抗性的蛋白使用RapiGest SF试剂,可在数分钟内消解完全。完全消解球蛋白、马肌红蛋白只需要5分钟内即可完成。该试剂辅助的消解结果与对照见图3。由于肌红蛋白是球蛋白,众所周知,若没有表面活性剂将难以消解。在对照反应中,与胰蛋白酶孵育9小时后只有少量的蛋白可以消化。使用了RapiGest SF试剂,总体的消解的效率显著提升。 在蛋白药物肽图中的序列覆盖范围更大 RapiGest SF在蛋白组学的样品前处理中广泛使用,是有效的蛋白溶解变性剂。最近越来越多的生物制药实验室在肽图分析中采用了RapiGest SF。一些发表的论文记录了使用RapiGest SF进行蛋白药物消解的优势。4,5经报导的RapiGest SF浓度范围为0.05 -1%,取决于蛋白疏水性与浓度。 我们发现浓度范围为0.05 -1%的RapiGest SF足以使各种大小的蛋白变性,高浓度RapiGest SF适合全细胞蛋白提取的实验。 单抗(mAbs)肽图分析一直以来都因为难以消解这些大疏水蛋白而难以实现。肽图分析的目的是确认蛋白序列并发现所有存在后翻译修饰(PTMs)的蛋白。图4举例说明了RapiGest SF辅助的人单抗消解的实例。样品制备与分析的参数以UPLC® 和四级杆Tof质谱分析的参数已列表作为指导。 图4显示实验中总序列覆盖率为98%。数据分析通过BiopharmaLynx&trade v.1.2软件得到。高序列覆盖率(98%)说明单抗完全消解。LC/MS分析中没有发现错误酶切的多肽或完整未被酶切的蛋白。剩下的2%未确认的序列为少数二个氨基酸的肽或单个氨基酸(R或K),而无法在反相柱上保留。 样品制备 人单抗样品(10 &mu L, 21 mg/mL)在含有0.1% (w/v) RapiGest SF 的50 &mu L 50 mM重碳酸铵中溶解。将2 &mu L 0.1 M的二流苏糖醇(DTT)加入样品,样品在50 ° C加热30分钟,加入4 &mu L 0.1 M的碘代乙酰胺,在样品冷却至室温后样品在黑暗中静至40分钟。 样品中加入8 &mu g胰蛋白酶(胰蛋白酶浓度= 1 &mu g/&mu L),样品在37 ° C孵育过夜。消解样品与1%甲酸与10%乙腈混合(1:1,v:v)。用Milli-Q水(Millipore)稀释至5 pmol/&mu L后进行LC/MS分析。 LC 条件 LC 系统 沃特世 ACQUITY UPLC® 系统 色谱柱 ACQUITY UPLC BEH 300 C18 肽分离专用柱, 2.1 x 100mm (P/N = 186003686) 柱温 40 ° C样品进样 2 &mu L (10 pmol) 溶液A 0.1% 甲酸水溶液 溶液B 0.1% 甲酸乙腈溶液 流速 200 &mu L/min 梯度 0-2分钟:2%B 2 &ndash 92分钟:2 -35% B 92 -102分钟:35 - 50% B 102.1 -105 分钟:90% B 105.1-110分钟:2% B MS条件 MS系统 沃特世SYNAPT&trade MS (V型) 毛细管电压 3.2 kV 源温度 120 ° C 去溶剂温度 350 ° C 去溶剂气 700 L/hr MS 扫描速率 1 秒/次 锁定质量通道 100 fmol/&mu L Glu-Fib多肽(m/z 785.8426, z = 2),流速20 &mu L/min 与其他的蛋白酶合用 我们测试了RapiGest SF与多种蛋白酶的适配性,如Asp-N, Lys-C与Glu-C。在酶解前使用RapiGest SF变性蛋白获得了有效的消解结果。 蛋白去糖基化的用途 RapiGest SF也用于测试其它酶,如PNGase F,该酶用于酶切糖蛋白N-连接的糖基。2图6说明了去糖基化鸡蛋卵清蛋白。在RapiGest SF介质中PNGase F消解2小时后观察到了完全的去糖基化反应。 结论  RapiGest SF促进了蛋白酶解的速度与完全程度,能够得到蛋白药物序列覆盖率很高的肽图分析。  RapiGest SF是适用于蛋白组学、糖蛋白与生物制药应用的领域  几乎无需消解后样品处理,简单样品酸化,足以从溶液中去除RapiGest SF。多种情况下LC/MS分析前只需简单稀释。  RapiGest SF简化了样品制备方法,可提高分析通量;使用该方法提高实验室工作效率并提高数据质量。 参考文献 1. Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC. Enzyme-friendly, mass spectrom- etry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal. Chem. 2003 75: 6023-6028. 2. Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC, A complete peptide mapping of membrane proteins: a novel surfactant aiding the enzymatic digestion of bacteriorhodopsin. Rapid Commun.Mass Spectrom. 2004 18: 711-715. 3. Yu YQ, Gilar M, Kaska J, Gebler JC. A rapid sample preparation method for mass spectrometry characterization of N-linked glycans. Rapid Commun. Mass Spectrom. 2005 19: 2331-2336. 4. Bailey MJ, Hooker AD, Adams CS, Zhang S, James DC. A platform for high- throughtput molecular characterization of recombinant monoclonal antibodies, J. Chrom. B. 2005 826: 177-187. 5. Huang HZ, NicholsA, Liu DJ. Direct identification and quantification of aspartyl succinimide in an IgG2 mAb by RapiGest SF assisted digestion. Anal. Chem. 2009 81 (4): 1686-1692.
  • 远慕生物:血红蛋白测定哪些方法?
    1.氰化高铁血红蛋白HiCN测定法:除SHb外推荐参考方法,具有操作简单、显色快、结果稳定可靠、读取吸光度后可直接定值等优点。致命的弱点是氰-化钾(KCN)试剂有剧-毒,使用管理不当可造成公害。氰化高铁血红蛋白测定法操作(1)直接测定法①加转化液:试管内加5ml?HiCN转化液②采血与转化:取全血20μl,加到盛有转化液的试管底部,用上清液反复冲洗吸管3次,充分混合,静置5min。③测定:以符合WH0标准的分光光度计,波长540nm处,光径(比色杯内径)1.000cm,HiCN转化液或蒸馏水调零,测定吸光度(A)。④计算:根据样本的吸光度(A)直接计算出血红蛋白浓度(g/L)(A为测定管吸光度,44为毫摩尔消光系数,64458/1000为1mol/L Hb溶液中所含Hb克数,251为稀释倍数。)(2)HiCN标准液比色法测定HiCN参考液(50g/L、100g/L、150g/L、200g/L),分别测得540nm处的吸光度,以参考液血红蛋白含量为横坐标,吸光度为纵坐标,绘制标准曲线或求出K值。①标准曲线绘制和K值计算②样本吸光度③通过标准曲线查出样本血红蛋白浓度,或用K值计算,血红蛋白浓度Hb(g/L)=K×A。 注意事项(1)HiCN贮存:转化液贮存在棕色有塞玻璃瓶中,不能贮存在塑料瓶中,否则会使CN-丢失,测定结果偏低。HiCN转化液在4℃保存一般可数月,不能在0℃以下保存,因为结冰可使高铁氰-化钾还原,试剂失效。(2)标本:异常血浆蛋白质、高脂血症、白细胞数超过30×109/L、脂滴等可产生浊度,干扰Hb测定。(3)HiCN转化液是一种低离子强度、pH近中性的溶液(7.2±0.2)。样本中白细胞过高或球蛋白异常增高时,HiCN比色液会出现浑浊。(4)氰-化钾试剂是剧,测定后的废液应收集于广口容器中,首先以水稀释废液(1:1),再按每升上述稀释液加次氯酸钠35ml,充分混匀,敞开容器,放置15h以上,使CN-氧化成C02和N2挥发,或水解成C032-和NH4+,再排入下水道。废液不能直接与酸性溶液混合,因为氰化-钾遇酸可产生剧毒的氰氢酸气体。2.十二烷基-硫酸钠血红蛋白SDS测定法:具有操作简单、呈色稳定、准确性和精-确性符合要求、无公害等优点。但由于摩尔消光系数尚未最后确认,不能直接用吸光度计算Hb浓度,而且SDS试剂本身质量差异较大,会影响检测结果。3.HiN3最大吸收峰542nm,显色快,结果稳定。
  • SYNAPT系列高分辨质谱又一力作 | 南开李功玉团队:助力微小差异蛋白构象高效解析
    研究背景蛋白质分子在真实生命条件下的结构和功能特性往往受多种环境因子调控,包括配体分子、缓冲条件以及各种类型翻译后修饰等。作为一种常见的翻译后修饰,蛋白不稳定聚糖修饰,例如糖基化中的唾液酸化修饰,在各种生物过程中发挥着至关重要的作用。然而,由于天然可变性和环境敏感性,在完整蛋白水平研究唾液酸化修饰的构效关系一直缺乏合适的结构分析手段。论文简介近日,南开大学李功玉课题组(研究方向:大分子结构质谱分析)与福州大学李金宇课题组(研究方向:计算化学生物学与药物化学)合作,发展《糖型分辨去折叠离子淌度质谱》方法,利用课题组自主开发的《结构质谱指引下的分子动力学模拟》技术,成功揭示了唾液酸化修饰与糖蛋白构象稳定性之间的复杂关系(Chem. Sci. 2024, DOI: 10.1039/D4SC03672G)。该研究通过对唾液酸化模式、化学计量学信息及其对构象稳定性影响的综合分析,系统阐明唾液酸化调节蛋白质动态三维结构的分子机制,为蛋白低丰度翻译后修饰结构的快速高效解析提供一种新思路。该工作是李功玉课题组在《构象分辨质谱分析》领域的应用方法学拓展与深化,通过发展全离子去折叠、非变性离子淌度质谱和全原子分子动力学模拟技术,使构象分辨质谱分析从小肽(Angew. Chem. Int. Ed. 2023, e202314578 Chem. Sci. 2023, 5936-5944 Anal. Chem. 2023, 2221-2228)跨越至大蛋白(Chem. Sci. 2024, DOI: 10.1039/D4SC03672G Anal. Chem. 2023, 10895-10902 Anal. Chem. 2022, 2142-2153),成功实现微小差异的蛋白动态构象的快速高效分辨分析,有效提高了结构质谱解析气相蛋白动态构象的结构分辨率(Nat. Commun. 2019, 10, 5038),属于化学测量学领域质谱分析方向的前沿研究课题。研究亮点开发了一种糖型分辨蛋白构象去折叠策略,通过课题组前期报道的全离子去折叠 (AIU) 与非变性离子淌度质谱 ( Native IM-MS ) 联用技术,实现了对不同糖型蛋白质构象的稳定性快速分析和动态去折叠过程的可视化追踪(Chem. Sci. 2024, DOI: 10.1039/D4SC03672G)。通过自主构建的定量分析构象参数,定量揭示唾液酸化对蛋白构象稳定性的调控作用,首次发现唾液酸化可以稳定蛋白质构象,并限制其动态构象转变(Chem. Sci. 2024, DOI: 10.1039/D4SC03672G)。将课题组前期(Chem. Sci. 2023, 5936-5944)提出的《结构质谱指引下的分子动力学模拟》新思路,首次拓展至大蛋白( 80 kDa)结构解析。利用这种独创结构质谱解析平台,课题组近期成功解析蛋白气相去折叠的新型分子机制(Chin. Chem. Lett. 2024, in press),发现富含片层的结构域优先去折叠,并观察到 β-片层到 α-螺旋的动态转变,同时证明 α-螺旋比 β-片层具有更高的稳定性。该方法具有较强的广泛适用性,未来可应用于几乎所有蛋白体系。研究内容首先,为了表征不同胎球蛋白的唾液酸化模式,作者进行了基于 EThcD 的自下而上的糖蛋白质组学实验,图 1b 总结了牛胎球蛋白(bFT)和人胎球蛋白(hFT)的位点特异性糖基化模式。值得注意的是,具有两个唾液酸的糖型在 bFT 中占主导地位,而具有一个唾液酸的糖型在 hFT 中最为丰富(图 1c)。图1. bFT 和 hFT 的糖基化模式为了探究完整蛋白质结构与特定糖型之间的联系,作者开发了一种糖型分辨去折叠策略,该方法结合了非变性离子淌度质谱(Native IM-MS)与全离子去折叠(AIU)技术。通过优化转移池电压, hFT 的氧鎓离子和主要蛋白形式(电荷状态 12+ 、 13+ 和 14+)都得到了很好的分离,通过糖型分辨去折叠实验确定的糖型也与糖蛋白组分析一致(图 2b)。为了更加直观地比较蛋白质构象,作者为每种糖蛋白生成了 AIU 指纹图谱。实验结果表明,随着唾液酸数量的增加,第二个构象与第三个构象之间的 CCS 值差异逐渐缩小。此外,三唾液酸化的 hFT 具有四个构象,而其他唾液酸形式则具有五个构象,由此说明唾液酸的数量可能与胎球蛋白的构象灵活性有关(图 2c)。图2. 糖型分辨全离子去折叠可视化图谱为了进一步阐明唾液酸化诱导的蛋白质结构变化,作者量化了一系列的构象参数,包括 CCS 、 AIU50 等。第一个构象转变(T1)的 AIU50 值随着唾液酸个数增加而升高(图 3b 和 3f),这意味着唾液酸化会稳定糖蛋白结构,作者推测这可能是通过促进唾液酸和蛋白质结构域之间的额外静电相互作用和氢键作用实现的。值得注意的是,在 hFT 的第二个转变(T2)中观察到了相反的趋势,作者推测可能是唾液酸化在一定程度上促进了蛋白质的构象灵活性(图 3f)。之后,作者利用展开曲线来量化去折叠比例,并绘制了关于唾液酸化构象稳定性和动态转换的图谱。通过监测 CCS 变化百分比与碰撞电压的关系,绘制了展开曲线(图 3c 和 3g)。展开曲线显示,随着唾液酸数量的增加,去折叠起始能量逐渐增加,这表明存在明显的依赖唾液酸数量的展开趋势。同时,糖型分辨去折叠策略放大了构象差异, bFT 和 hFT 的 RMSD 分别为 5.9%~20.8% 和 7.7%~20.9% (图 3d 和 3h)。这些发现凸显了基于 AIU 方法在表征由不稳定的聚糖修饰诱导的细微构象变化方面的优势。图3. 糖型分辨去折叠定量分析胎球蛋白构象稳定性最后,为了研究唾液酸化与蛋白质结构之间的相互作用,作者使用唾液酸水解酶对 bFT 进行消化,同时通过分子动力学模拟进一步阐明了气相中 Asn99 和 Asn156 唾液酸化对蛋白动态构象变化的影响。唾液酸化与去唾液酸化牛胎球蛋白的 MD 结果都表现出四个构象,且具有可接受的 CCS 误差(图 4d)。唾液酸化亚型(646.8 K)的熔解温度(Tm)高于去唾液酸化亚型(642.1 K),表明唾液酸化有助于维持蛋白质构象(图 4e)。对去折叠中间体中 α-helix 和 β-sheet 结构占比的分析表明,唾液酸化有利于维持 bFT 中二级结构的适当折叠(图 4f)。加热过程中的代表性展开特征(图 4g )表明唾液酸化聚糖可以包裹并紧实蛋白质结构。综上,作者认为末端唾液酸化稳定了胎球蛋白构象并限制了其动态结构波动。图4. 唾液酸化对胎球蛋白构象的稳定作用该研究为深入理解蛋白质不稳定聚糖修饰的结构和功能提供了新的见解,为疾病诊断和治疗提供了新的理论基础。同时,该研究也为开发新的蛋白质结构解析方法提供了新的思路。相关研究成果以“Sialylation-induced stabilization of dynamic glycoprotein conformations unveiled by time-aligned parallel unfolding and glycan releasing mass spectrometry”(《构象分辨质谱助力微小差异蛋白构象高效解析》)为题在线发表于化学领域重要期刊、英国皇家化学会旗舰期刊 Chemical Science 上。 南开大学化学学院 2022 级硕士研究生王雅梅、科研助理贾翼菲以及南通大学刘以畅博士为该文共同一作。李功玉研究员和李金宇教授为本文共同通讯作者。美国威斯康星大学麦迪逊分校李灵军教授和刘源博士对本项目提供了重要的技术支持。本文主要质谱数据均采集于天津《物质绿色创造与制造海河实验室》结构质谱分析平台。本研究工作获国家重点研发计划、国家高层次人才计划、国家自然科学基金和中央高校基本科研业务费等项目资助。另附:南开大学李功玉课题组(详细信息请参考课题组主页:李功玉课题组 ( x-mol.com ))常年招聘科研助理和师资博士后,欢迎对大分子结构质谱感兴趣的同仁联系(ligongyu@nankai.edu.cn),重点引进具有有机合成化学、计算化学、细胞生物学和蛋白质组学等背景的相关研究方向人才。论文信息Sialylation-induced stabilization of dynamic glycoprotein conformations unveiled by time-aligned parallel unfolding and glycan releasing mass spectrometryYifei Jia, Yichang Liu, Yamei Wang, Jinyu Li* and Gongyu Li*Chem. Sci., 2024https://doi.org/10.1039/D4SC03672G作者简介 王雅梅 硕士研究生南开大学本文第一作者,2022 年本科毕业于南京师范大学,同年保送至南开大学化学学院攻读硕士学位(导师:李功玉研究员),研究课题主要聚焦疾病相关蛋白的结构质谱解析新方法开发。 刘以畅 讲师 南通大学 本文共同第一作者,2022 年于福州大学获物理化学博士学位(导师:李金宇教授),现任南通大学药学院讲师,研究方向为计算化学生物学与药物化学。 李功玉 研究员南开大学本文通讯作者,南开大学化学学院,特聘研究员、博士生导师。国家高层次青年人才计划入选者、国家重点研发计划青年项目首席科学家。2017 年博士毕业于中国科学技术大学化学系,随后在密西根大学和威斯康星大学麦迪逊分校完成博士后研究,于 2021 年 2 月加入南开大学化学学院,研究方向为大分子结构质谱分析。 李金宇 教授福州大学本文共同通讯作者,教授、博士生导师,福州大学化学学院院长助理。2011 年于荷兰阿姆斯特丹大学和法国里昂高等师范学院获化学与材料学双硕士,2015 年于德国亚琛工业大学医学院获生物学博士学位,同年于德国于利希研究中心先进模拟研究院从事博士后研究,2016 年加入福州大学化学学院、生物药光动力治疗技术国家地方联合工程研究中心。研究方向为蛋白质计算化学生物学理论方法开发与应用。本文说明了离子淌度技术在蛋白构象研究中的重要作用。沃特世一直致力于不断开发创新质谱相关技术,如特色离子淌度技术、特色成像技术等,同时以“助力客户成功”为使命,期待更多的用户合作及科学成果!
  • 婴幼儿食品和乳品中乳清蛋白的测定
    乳清蛋白是采用先进工艺从牛奶中分离提取出来的珍贵蛋白质,以其具有高生物价、高消化率、高蛋白质功效比和高利用率等优点,被誉为“蛋白zhi王”,是公认的人体优质蛋白质补充剂之一。其含量的高低决定了婴幼儿奶粉的品质,相关国标通过酸水解以后的氨基酸来评价乳清蛋白的含量,月旭科技推出的检测方法检测更加快捷可靠。样品前处理称取0.1g试样(含蛋白质7.5mg-25mg的样品),于水解管中,在冰水浴中冷却 30min后加入2mL已经冷却的过甲酸溶液,盖好瓶塞后置于0℃±1℃冰箱中,冰浴16h。向各水解管中加入0.3mL氢溴酸,振摇后冰浴 30min,在60℃±2℃氮吹仪上浓缩至干。向水解管内加入6moL/L盐酸10mL,冲入氮气1min 后,拧紧螺丝盖,将水解管放在110℃±1℃的恒温干燥箱内水解24h后取出冷却至室温。将水解液用超纯水转移并定容至25mL容量瓶中,混匀,滤纸过滤。吸取滤液1mL于60℃±2℃氮吹仪上浓缩至干,残留物用1mL超纯水溶解,待衍生。标准品溶液用超纯水配置磺基丙氨酸、天冬氨酸、丙氨酸、脯氨酸、苯丙氨酸标准品溶液1μmoL/mL,待衍生。衍生方法分别将月旭科技氨基酸衍生方法包中 A、B两种衍生试剂用稀释剂稀释至原来浓度的 1/5;精密量取混标溶液及样品溶液各160μL,加入稀释后的衍生溶液 A、B 各100μL,混匀,室温反应60min;然后加入正己烷溶液 400μL,旋紧盖子后振摇10s,室温静置分层,取下层液200μL,加入800μL水中,混匀;再移取200μL加入到800μL水中,混匀,用0.45μm 有机滤膜过滤,即得。色谱条件色谱柱:月旭Ultimate® AQ-C18(4.6×250mm,3μm)。柱温:40℃;紫外检测器:254nm; 流速:1.0mL/min; 进样量:5μL。谱图和数据1. 磺基丙氨酸、天冬氨酸、丙氨酸、脯氨酸、苯丙氨酸标准品溶液1μmoL/mL。2. 样品水解结论用月旭Ultimate® AQ-C18(4.6×250mm,3μm)色谱柱,在该色谱条件下测定,能满足实验需求。
  • 乳清蛋白含量新国标遭质疑:空有指标无检测标准
    乳清蛋白含量新国标有指标规定无检测标准 卫生部正研制新检验方法   雅培事件新闻追踪   南方日报讯 最近雅培奶粉身陷“质量门”事件,再度引发了人们对新国标的质疑。在新国标中明确规定乳清蛋白与酪蛋白比例指标,该指标被部分专家认为是判别奶粉是否易为幼儿消化。然而令人困惑的是,新国标里没有该项目的检测标准,在日常监管中,也非常规抽查项目。对此,国家食品安全风险评估中心也承认,由于采用现行乳清蛋白测定方法的测定结果与实际含量存在一定的误差。据悉,目前卫生部正在组织研制新的乳清蛋白的检验方法。   最近雅培与香港CER公司的“口水战”,引发人们对我国新国标乳清蛋白和酪蛋白比例指标的争议。根据我国国家标准规定,婴幼儿配方奶粉中这个比例应为6:4,而CER公司检测的结果是41:59,故CER检测报告得出雅培涉事奶粉“质量最差”。   记者昨天从国家食品安全评估中心获悉,我国《婴儿配方食品》国标中,确有要求以乳或乳蛋白制品为主要原料的婴儿配方食品中,乳清蛋白所占总蛋白质的比例应大于等于60%。“该要求主要是参考母乳中乳清蛋白和酪蛋白的比例”,国家食品安全风险评估中心在一则《对婴儿配方食品中乳清蛋白比例的说明》中称,乳清蛋白是蛋白质的一种,为人体提供必需氨基酸等成分。   值得一提的是,虽然目前婴幼儿配方奶粉新国标中规定有乳清蛋白与酪蛋白的比例要求,在日常监管部门的抽查中,这并不是一个常规抽查项目。有乳品专家指出,目前国内缺少配方奶粉工艺标准,甚至连检测标准都没有。   国家食品安全风险评估中心也坦承,目前卫生部正在组织有关单位研制新的乳清蛋白的检验方法。
  • 格物致和完成近亿元A轮融资,用于蛋白组学技术平台研发
    近日,格物致和生物科技(北京)有限公司(以下简称“格物致和”)宣布完成近亿元A轮融资,由元禾原点与杏泽资本联合领投,取势资本担任独家财务顾问。本轮融资所募资金将主要用于公司在蛋白组学和空间组学方向系列自主创新技术平台的持续研发,并加速自主研发的新一代超敏单分子蛋白检测系统及相关神经退行性疾病标志物检测试剂盒的开发和注册申报。格物致和成立于2019年11月,围绕脑科学及肿瘤等领域,以科研和临床应用为导向,依托团队自主研发和资源整合的核心优势,已策略性地布局超敏蛋白检测、高通量转录组、空间蛋白组等技术平台的开发,并将围绕神经疾病的早筛早诊及伴随检测,陆续推出系列可广泛适用于临床检测的创新产品,以填补国内该领域的空白。公司聚集了一批在精准医学领域拥有丰富经验且具备全球化视野的管理和研发人才,具有强大的研发、运营和商业化落地能力。创始人许俊泉曾在博奥生物集团任职多年,历任博奥生物生命科学事业部总经理、首席运营官、首席财务官、博奥晶典首席执行官,和深圳微芯生物科技股份有限公司董事长。许俊泉拥有20余年科研和临床诊断从业经验,曾带领团队取得II、 III类IVD证书超过30项;本人荣获国内外授权专利50项(美国授权专利25项);发表高水平SCI学术论文10余篇。格物致和在研数字ELISA检测平台具有fg级别的检测灵敏度,整个平台系统包括数字ELISA微流控芯片、检测仪器和配套软件以及相关检测试剂盒。整个平台系统的研发涉及多个交叉学科,包括微流控技术、自动控制、显微成像、计算图形学、表面化学、抗体开发及蛋白标记检测等相关技术。格物致和在微流控芯片设计、加工以及检测仪器平台的开发方面具备深厚的理论知识和产业经验,核心成员曾成功研发并产业化数款微流控和微液滴芯片平台系统。格物致和进一步从清华大学授权转化了具有自主知识产权的高通量转录组检测技术,该技术是一种基于高通量测序和特征基因表达谱的全景式高通量分子功能筛选和研究方法,具有通量高、全自动操作、速度快等优点。未来格物致和将结合公司微流控设计、光学检测/系统集成、高通量转录组检测、蛋白超敏检测等全面的技术能力,推动下一代基于转录组和蛋白组检测的空间组学技术进入科研、诊断和新药研发领域,为科研及临床,尤其是神经科学领域,提供全球领先的技术和产品。对于本轮融资,格物致和创始人兼CEO许俊泉先生表示:非常荣幸能够获得本轮投资人的认可,充足的资金支持使得我们能够引进更多的人才,加大研发投入并加速产品的产业化步伐。未来20年,中国体外诊断行业将是创新驱动的市场。秉承原创驱动的核心竞争力,格物致和将持续推动完善底层技术和检测体系,加速蛋白组学和空间组学等多组学技术的研发和产业化,为脑科学研究提供更多创新性的技术和产品。元禾原点合伙人胡晓方博士表示: 生物体内,蛋白是功能的最终执行者,随着全球蛋白组学的快速发展,微量蛋白标志物的筛选工具已然成熟,我们认为超高灵敏度的蛋白检测将成为未来的重要发展方向。格物致和团队兼具海外创新技术视野和国内产业化开发落地能力,快速构建完备的超敏蛋白检测技术平台。我们期待与格物致和合作,帮助公司加速成长并将产品快速商业化。杏泽资本管理合伙人强静博士表示:杏泽资本致力于促进中国生命科学企业创新与成长,以推动社会产业进步与发展为己任,体外诊断是杏泽重点关注的技术领域,其中蛋白组学/空间组学是具有发展前景的一个方向。许俊泉先生和团队拥有极其丰富的生命科学领域专业知识背景和产业经验。我们很高兴此次能和格物致和携手合作,与元禾原点一起支持公司完成近亿元的A轮融资。杏泽资本将凭借其团队丰富的行业经验和全球资源网络,助力格物致和为人类健康带来更大价值。我们期待公司在未来将迎来更远大的发展,相信公司在创始团队的带领下,成为世界领先的蛋白组学和空间组学方向的自主创新技术平台型公司。
  • 植物蛋白结构与功能调控创新团队综述了植物蛋白基乳化剂稳定机理、乳化性提升技术及应用研究进展
    植物蛋白结构与功能调控创新团队发表的最新研究进展回顾了植物蛋白乳化剂具有乳化性能的原理、影响因素,分析了蛋白质乳化性现有的表征及修饰方法,总结并展望了植物蛋白乳化剂在食品工业中的应用,以及其存在的主要差距与未来的发展方向,为植物蛋白乳化剂未来研究与应用提供了参考价值。乳化性是植物蛋白最重要的性质之一,因蛋白具有两亲性,可稳定油-水界面,形成乳状液,且因其具有健康、环境友好等优势,已被广泛应用于改善食品乳化性,其稳定的乳液也被应用于封装生物活性物质等方面,由此衍生出了众多新的乳化性表征与改善方法。该文章回顾了植物蛋白乳化剂具有乳化性能的机理,从天然因素、环境和加工因素等方面分析讨论了影响植物蛋白乳化性的原因。植物蛋白乳化性可通过LB膜、三相接触角、石英晶体微天平等方式进行表征;由于大多数植物蛋白的水溶性差、复杂性和环境敏感性导致其乳化性能有限,为了改善植物蛋白的乳化,通常使用物理、化学以及酶法对蛋白质进行修饰;植物蛋白由于具有与小分子乳化剂相似的乳化特性,可用于肉制品、沙拉酱、蛋黄酱、冰淇淋等食品的加工中,且植物蛋白稳定的乳液亦可用于负载风味物质、生物活性物质等。该文还提出,未来植物蛋白乳化特性的研究应探索新兴蛋白来源以及蛋白、多糖和其他功能化合物之间的相互作用机制,研发植物蛋白修饰的高新技术与最佳工艺条件,以提高植物蛋白的乳化能力,拓展其应用空间。此外,还应提高植物蛋白在食品中的利用率,并确保其适口性和可接受性。该研究成果在线发表在食品领域国际顶级期刊Food Hydrocolloids(JCR一区,IF:10.7)上。植物蛋白结构与功能调控创新团队2022级硕士研究生张鑫煜与王强研究员为论文共同第一作者,石爱民研究员为通讯作者。该综述得到了中国农业科学院青年创新专项(Y2022QC11),农业科技创新项目(CAAS-ASTIP-2022-IFST)的资助。原文链接:https://doi.org/10.1016/j.foodhyd.2023.109008植物蛋白乳化性的影响因素、表征方法、改性方法及应用示意图
  • 首都儿科研究所3308.30万元采购流式细胞仪,核酸蛋白分析,细胞计数器,PCR
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 [公开]临床检测用试剂采购项目公开招标公告 北京市-朝阳区 状态:公告 更新时间: 2023-12-25 招标文件: 附件1 附件2 [公开]临床检测用试剂采购项目公开招标公告 2023-12-25 项目概况 临床检测用试剂采购项目 招标项目的潜在投标人应在北京市政府采购电子交易平台获取招标文件,并于2024-01-15 09:30(北京时间)前递交投标文件。 一、项目基本情况 项目编号:11000023210200070751-XM001 项目名称:临床检测用试剂采购项目 预算金额:3308.304 万元(人民币) 采购需求: 包号 品目号 标的名称 采购包分品目预算金额(万元) 数量(盒) 1 1-1 血小板聚集功能检测试剂盒(光学比浊法) 755.9786 15 1-2 血小板聚集功能检测试剂盒(光学比浊法) 30 1-3 反应杯 1 1-4 搅拌珠 1 1-5 非衍生化多种氨基酸、肉碱和琥珀酰丙酮测定试剂盒(串联质谱法) 6 1-6 样本萃取液及流动相溶剂包(串联质谱法) 6 1-7 琥珀酰丙酮样本前处理液(串联质谱法) 6 1-8 样本释放剂 56 1-9 维生素检测仪用样本处理液VB6 180 1-10 维生素检测仪用样本处理液VB1/C 180 1-11 维生素检测仪用样本处理液VB2 180 1-12 维生素检测仪用样本处理液VB9/B12 180 1-13 维生素检测仪用样本处理液VA/D/E 180 1-14 样本稀释液 180 2 2-1 结核分枝杆菌特异性细胞免疫反应检测试剂盒(酶联免疫斑点法) 82.8036 120 2-2 埃可病毒IgG抗体检测试剂盒(酶联免疫法) 12 2-3 埃可病毒IgM抗体检测试剂盒(酶联免疫法) 12 2-4 柯萨奇B组病毒IgG抗体检测试剂盒(酶联免疫法) 12 2-5 柯萨奇B组病毒IgM抗体检测试剂盒(酶联免疫法) 12 2-6 结核杆菌IgG抗体检测试剂盒(胶体金法) 10 2-7 肺炎支原体IgM抗体检测试剂盒(胶体金法) 150 2-8 乙型肝炎病毒核酸测定试剂盒(PCR-荧光探针法) 15 2-9 丙型肝炎病毒核酸检测试剂盒(PCR-荧光探针法) 24 2-10 结核分枝杆菌核酸检测试剂盒(PCR-荧光探针法) 2 2-11 抗角蛋白抗体(AKA)检测试剂盒(间接免疫荧光法) 6 2-12 抗角蛋白抗体(AKA)检测试剂盒(间接免疫荧光法) 5 2-13 抗核周因子(APF)检测试剂盒(间接免疫荧光法) 6 2-14 抗核周因子(APF)检测试剂盒(间接免疫荧光法) 5 2-15 抗环瓜氨酸多肽抗体测定试剂盒(酶免法) 20 2-16 自身免疫性糖尿病抗体谱检测试剂盒(免疫印迹法) 20 2-17 抗肾小球基底膜抗体测定试剂盒(酶免法) 10 2-18 抗β2糖蛋白I抗体Ig(G、A、M)测定试剂盒(酶免法) 20 2-19 抗心磷脂抗体IgG测定试剂盒(酶免法) 20 2-20 抗心磷脂抗体IgM测定试剂盒(酶免法) 20 2-21 HLA-B27基因分型测定试剂盒(PCR-SSP法) 30 3 3-1 降钙素原检测试剂盒(时间分辨荧光免疫法) 212.8377 120 3-2 结核分枝杆菌rpoB基因和突变检测试剂盒(实时荧光PCR法) 1 3-3 呼吸道病原菌核酸检测试剂盒(恒温扩增芯片法) 400 3-4 骨钙素-N端肽测定试剂盒(酶联免疫法) 4 3-5 食物特异性IgG抗体检测试剂盒(酶联免疫法) 30 3-6 结核感染T细胞检测试剂盒(体外释放酶联免疫法) 48 4 4-1 巨细胞病毒IgM抗体检测试剂盒(化学发光法) 253.5547 12 4-2 单纯疱疹病毒1+2型IgM抗体检测试剂盒(化学发光法) 12 4-3 弓形虫IgM抗体测定试剂盒(化学发光法) 12 4-4 风疹病毒IgM抗体检测试剂盒(化学发光法) 12 4-5 EB病毒早期抗原IgG抗体测定试剂盒(化学发光免疫分析法) 40 4-6 EB病毒衣壳抗原IgG抗体测定试剂盒(化学发光法) 40 4-7 EB病毒衣壳抗原IgM抗体检测试剂盒(化学发光法) 404-8 EB病毒核抗原IgG抗体测定试剂盒(化学发光免疫分析法) 40 4-9 增强液 24 4-10 清洗液 24 4-11 反应杯 20 4-12 光路检测试剂盒 4 4-13 免疫球蛋白A测定试剂盒(散射比浊法) 63 4-14 免疫球蛋白G测定试剂盒(散射比浊法) 63 4-15 免疫球蛋白M测定试剂盒(散射比浊法) 63 4-16 多项蛋白质控品(高值) 10 4-17 多项蛋白质控品(中值) 10 4-18 多项蛋白质控品(低值) 10 4-19 多项蛋白定标品 10 4-20 SCS清洁液 5 4-21 稀释杯 7 4-22样本密度分离液 60 4-23 样本稀释液 60 4-24 缓冲液 60 4-25 反应杯 5 4-26 免疫球蛋白G1测定试剂盒(散射比浊法) 48 4-27 免疫球蛋白G2测定试剂盒(散射比浊法) 48 4-28 免疫球蛋白G3测定试剂盒(散射比浊法) 48 4-29 免疫球蛋白G4测定试剂盒(散射比浊法) 48 4-30 α肿瘤坏死因子测定试剂盒(化学发光法) 90 4-31 全自动免疫检验系统用底物液 75 4-32 探针清洗液 50 4-33 探针清洁试剂盒 5 4-34 一次性样本杯 50 4-35 白介素-1β测定试剂盒(化学发光法) 90 4-36白介素2受体测定试剂盒(化学发光法) 90 4-37 白介素-6测定试剂盒(化学发光法) 90 4-38 白介素-8测定试剂盒(化学发光法) 90 4-39 白介素-10测定试剂盒(化学发光法) 90 5 5-1 绝对计数管 269.9333 194 5-2 淋巴细胞亚群检测试剂(流式细胞仪法-6色) 194 5-3 CD45RA检测试剂 23 5-4 CD4检测试剂 23 5-5 白细胞分化抗原CD38检测试剂(流式细胞仪法-APC) 24 5-6 白细胞分化抗原CD3检测试剂(流式细胞仪法-APC) 35 5-7 CD25检测试剂 24 5-8 流式细胞分析用溶血素 36 5-9 流式细胞分析用鞘液 48 6 6-1 七项呼吸道病原体核酸检测试剂盒 (双扩增法) 731.48 320 6-2 三项呼吸道病毒核酸检测试剂盒 (双扩增法) 15 6-3 肺炎支原体/肺炎衣原体核酸检测试剂盒(双扩增法) 14 6-4 甲/乙型流感病毒核酸检测试剂盒(RNA恒温扩增-金探针层析法) 800 6-5 肺炎支原体核酸检测试剂盒(RNA恒温扩增-金探针层析法) 600 7 7-1 自身免疫性肝病IgG类抗体检测试剂盒(欧蒙印迹法) 657.2161 40 7-2 自身免疫性肝病相关抗体谱IgAGM检测试剂盒(间接免疫荧光法) 10 7-3 自身免疫性肝病相关抗体谱IgAGM检测试剂盒(间接免疫荧光法) 8 7-4 抗中性粒细胞胞浆/抗肾小球基底膜抗体IgG检测试剂盒(间接免疫荧光法) 20 7-5 抗中性粒细胞胞浆/抗肾小球基底膜抗体IgG检测试剂盒(间接免疫荧光法) 10 7-6 抗中性粒细胞胞浆/抗肾小球基底膜抗体IgG检测试剂盒(间接免疫荧光法) 36 7-7 抗双链DNA抗体IgG检测试剂盒(间接免疫荧光法) 32 7-8 抗双链DNA抗体IgG检测试剂盒(间接免疫荧光法)12 7-9 抗双链DNA抗体IgG检测试剂盒(间接免疫荧光法) 22 7-10 抗双链DNA(dsDNA-NcX)抗体IgG检测试剂盒(酶联免疫吸附法) 90 7-11 抗核抗体谱(IgG)检测试剂盒(欧蒙印迹法) 105 7-12 抗核抗体IgG检测试剂盒(间接免疫荧光法) 45 7-13 抗核抗体IgG检测试剂盒(间接免疫荧光法) 20 7-14 抗核抗体IgG检测试剂盒(间接免疫荧光法) 32 7-15 SXL初始稀释管(国产) 6 7-16 setup clean 系统清洗液 20 7-17 抗蛋白酶3(PR3-hn-hr) 抗体IgG检测试剂盒(酶联免疫吸附法) 60 7-18 抗髓过氧化物酶抗体IgG检测试剂盒(酶联免疫吸附法) 60 7-19 抗肺炎衣原体抗体IgM检测试剂盒(酶联免疫吸附法) 10 7-20 抗EB病毒衣壳抗原IgG抗体亲合力检测试剂盒(酶联免疫吸附法) 60 7-21 抗组织谷氨酰胺转移酶抗体IgA检测试剂盒(酶联免疫吸附法) 12 7-22 抗组织谷氨酰胺转移酶抗体IgG检测试剂盒(酶联免疫吸附法) 12 7-23 抗麦胶蛋白(GAF-3X)抗体IgG检测试剂盒(酶联免疫吸附法) 12 7-24 抗麦胶蛋白(GAF-3X)抗体IgA检测试剂盒(酶联免疫吸附法) 12 7-25 总IgE酶标二抗 21 7-26 总IgE校准品 7 7-27 总IgE曲线质控品 35 7-28 特异性IgE酶标二抗 35 7-29 特异性IgE校准品 9 7-30 特异性IgE曲线质控品 35 7-31 特异性IgE校准品配套试剂 35 7-32 清洗液 280 7-33 全自动免疫检验系统用底物液 100 7-34 全自动免疫检验系统用终止液 100 7-35 消毒剂 10 7-36 总IgE检测试剂(荧光免疫法) 750 7-37 户尘螨d1过敏原特异性IgE检测试剂(荧光免疫法) 360 7-38 粉尘螨d2过敏原特异性IgE检测试剂(荧光免疫法) 360 7-39 猫皮屑e1过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 50 7-40 狗皮屑e5过敏原特异性IgE检测试剂(荧光免疫法) 50 7-41 德国小蠊i6过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 56 7-42 烟曲霉m3过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 150 7-43 链格孢m6过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 240 7-44 普通豚草w1过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 80 7-45 艾蒿w6过敏原特异性IgE检测试剂(荧光免疫法) 150 7-46 小麦f4过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 60 7-47 花生f13过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 40 7-48 蟹f23过敏原特异性IgE检测试剂(荧光免疫法) 60 7-49 虾f24过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 60 7-50 动物皮毛屑混合exl过敏原特异性IgE检测试剂(荧光免疫法) 240 7-51 食物混合fx5过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 160 7-52 屋尘混合hx2过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 75 7-53 霉菌混合mx2过敏原特异性IgE检测试剂(荧光免疫法) 400 7-54 杂草类花粉混合wx5过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 400 7-55 食物混合fx1过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 80 7-56 杂草类花粉混合wx7过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 240 7-57 牛奶f2过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 120 7-58 芝麻f10过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 30 7-59 蛋白f1过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 120 7-60 大豆f14过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 40 7-61 过敏原特异性IgE抗体检测试剂盒(吸入组1/荧光免疫法) 400 7-62 过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 150 7-63 普通白桦树t3过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 150 7-64 梯牧草g6过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 40 7-65 百幕达草g2过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 40 7-66 刺柏t6过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 150 7-67 枫叶梧桐,伦敦悬铃木t11过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 120 7-68 葎草w22过敏原特异性IgE抗体检测试剂盒(荧光免疫法) 150 7-69 幽门螺杆菌抗体分型检测试剂盒(免疫印迹法) 35 7-70 百日咳杆菌核酸检测试剂盒(PCR-荧光探针法) 110 7-71 肺炎支原体及肺炎衣原体核酸联合检测(PCR-荧光探针法) 10 7-72 嗜肺军团菌核酸检测(PCR-荧光探针法) 10 7-73 肺炎支原体核酸及耐药突变位点检测试剂盒(荧光PCR法) 15 7-74 肺炎支原体核酸检测试剂盒(RNA恒温扩增) 20 7-75 解脲脲原体核酸检测试剂盒(RNA恒温扩增) 3 7-76 生殖支原体核酸检测试剂盒(RNA恒温扩增) 3 7-77 样本保存液 3 7-78 外周血淋巴细胞培养基 2800 8 8-1 13种呼吸道病原体多重检测试剂(PCR毛细电泳片段分析法) 226.1 140 8-2 BK病毒核酸定量检测试剂盒(PCR-荧光探针法) 40 8-3 JC病毒核酸定量检测试剂盒(PCR-荧光探针法) 40 9 9-1 人巨细胞病毒核酸定量检测试剂盒(PCR-荧光法) 83.23 500 9-2 EB病毒核酸扩增(PCR)荧光定量检测试剂盒 600 9-3 肠道病毒EV71/CA16/EV核酸检测试剂盒(PCR-荧光探针法) 35 9-4 柯萨奇病毒A6型核酸检测试剂盒(PCR-荧光探针法) 15 9-5 柯萨奇病毒A10型核酸检测试剂盒(PCR-荧光探针法) 15 9-6 甲型流感病毒核酸检测试剂盒(PCR-荧光探针法) 4 9-7 乙型流感病毒核酸检测试剂盒(PCR-荧光探针法) 4 9-8 甲型H1N1流感病毒(2009)RNA检测试剂盒(PCR-荧光探针法) 2 9-9 人感染H7N9禽流感病毒RNA检测试剂盒(荧光PCR法) 2 10 10-1 呼吸道病毒核酸六重联检试剂盒(PCR荧光探针法) 35.17 20 10-2 25-羟基维生素D检测试剂盒(酶联免疫法) 40 10-3 骨碱性磷酸酶检测试剂盒(酶联免疫法) 10 10-4 神经元特异性烯醇化酶(NSE)检测试剂盒(酶联免疫法) 20 简要技术需求或服务要求:详见第五章《采购需求》中各包技术要求。 合同履行期限:详见第五章《采购需求》中各包技术要求 本项目不接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目预留部分采购项目预算专门面向中小企业采购。对于预留份额,提供的货物由符合政策要求的中小企业制造、服务由符合政策要求的中小企业承接。预留份额通过以下措施进行: 本采购项目第6包、第8包为专门面向中小企业采购包件。投标人所投产品的制造商应当为中小企业(中型、小型和微型)或监狱企业或残疾人福利性单位。 3.本项目的特定资格要求: 投标产品属于医疗器械的,投标人如为代理商,投标人应具有合法的医疗器械经营资格;投标人如为制造商,使用自身生产的产品投标时,投标人应具有合法的医疗器械生产资格。 三、获取招标文件 时间:2023-12-25 至 2024-01-02 ,每天上午09:00至11:30,下午13:30至16:00(北京时间,法定节假日除外) 地点:北京市政府采购电子交易平台 方式: 供应商持CA数字认证证书登录北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取电子版招标文件。并在中国通用招标网(http://cgci.china-tender.com.cn/)进行免费注册报名。 售价:¥0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 2024-01-15 09:30(北京时间) 地点:北京市丰台区西三环南路14号院首科大厦A座4层405号中技国际招标有限公司会议中心 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目需要落实的政府采购政策: (1) 鼓励节能、环保政策:依据《财政部发展改革委生态环境部市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知(财库(2019)9号)》执行。 (2) 扶持中小企业政策: 1)本采购项目第6包、第8包为专门面向中小企业采购包件。投标人所投产品的制造商应当为中小企业(中型、小型和微型)或监狱企业或残疾人福利性单位。 2)本项目第1、2、3、4、5、7、9、10包评审时小型和微型企业产品享受10%的价格折扣。监狱企业视同小型、微型企业。残疾人福利性单位视同小型、微型企业。不重复享受政策。 (3) 本项目采购标的接受进口产品情况:本项目是否接受进口产品见第五章《采购需求》。 2.申请人的资格要求补充: (1) 被“信用中国”网站(www.creditchina.gov.cn)列入失信被执行人和重大税收违法案件当事人名单的、被“中国政府采购网”网站(www.ccgp.gov.cn)列入政府采购严重违法失信行为记录名单(处罚期限尚未届满的)的供应商,不得参与本项目的政府采购活动。 (2) 单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一包的投标或者未划分包的同一招标项目的投标。 1)本条所指单位负责人为同一人指单位法定代表人或者法律、行政法规规定代表单位行使职权的主要负责人。 2)本条所指控股关系指单位或股东的控股关系。控股股东指: a.出资额占有限责任公司资本总额百分之五十以上或者其持有的股份占股份有限公司股本总额百分之五十以上的股东; b.出资额或者持有股份的比例不足百分之五十,但其出资额或者持有的股份所享有的表决权已足以对股东会、股东大会的决议产生重大影响的股东。 3)本条所指管理关系指不具有出资持股关系的其他单位之间存在的管理与被管理关系。 注:本条所指的控股、管理关系仅限于直接控股、直接管理关系,不包括间接控股或管理关系。 (3) 为本采购项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商及其附属机构,不得再参加本采购项目的投标活动。 (4) 按照招标公告要求购买了招标文件。 (5) 符合法律、行政法规规定的其他要求。 3.本项目采用电子化与线下流程结合招标方式,请供应商认真学习北京市政府采购电子交易平台发布的相关操作手册,办理CA认证证书、进行北京市政府采购电子交易平台注册绑定,并认真核实数字认证证书情况确认是否符合本项目电子化采购流程要求。 CA认证证书服务热线 010-58511086 技术支持服务热线 010-86483801 3.1办理CA认证证书 供应商登录北京市政府采购电子交易平台查阅 “用户指南”—“操作指南”—“市场主体CA办理操作流程指引”,按照程序要求办理。 3.2注册 供应商登录北京市政府采购电子交易平台“用户指南”—“操作指南”—“市场主体注册入库操作流程指引”进行自助注册绑定。 3.3驱动、客户端下载 供应商登录北京市政府采购电子交易平台“用户指南”—“工具下载”—“招标采购系统文件驱动安装包”下载相关驱动。 供应商登录北京市政府采购电子交易平台“用户指南”—“工具下载”—“投标文件编制工具”下载相关客户端。 3.4 获取电子招标文件 供应商持CA数字认证证书登录北京市政府采购电子交易平台获取电子招标文件。未在规定期限内通过北京市政府采购电子交易平台获取招标文件的投标无效。 3.5编制电子投标文件(本项目不适用) 供应商应使用电子投标客户端编制电子投标文件并进行线上投标,供应商电子投标文件需要加密并加盖电子签章,如无法按照要求在电子投标文件中加盖电子签章和加密,请及时通过技术支持服务热线联系技术人员。 3.6提交电子投标文件(本项目不适用) 供应商应于投标截止时间前在北京市政府采购电子交易平台提交电子投标文件,上传电子投标文件过程中请保持与互联网的连接畅通。 3.7电子开标(本项目不适用) 供应商在开标地点使用CA认证证书登录北京市政府采购电子交易平台进行电子开标。 4.本项目资金情况:财政性资金,资金已落实。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:首都儿科研究所 地址:北京市朝阳区雅宝路2号 联系方式:季老师,010-85695224 2.采购代理机构信息 名 称:中技国际招标有限公司 地 址:北京市丰台区西营街1号院通用时代中心C座9层 联系方式:强文晓、孙薇,010-81168541 3.项目联系方式 项目联系人:强文晓、孙薇 电 话: 010-81168541 招标公告.docx 采购需求.docx
  • 月旭推出球状蛋白亲水改性硅胶色谱柱-Ultimate SEC
    Ultimate® SEC色谱柱是硅胶基质的体积排阻色谱柱,也可以称之为&ldquo 球状蛋白亲水改性硅胶柱&rdquo (中国药典门冬酰胺酶指定色谱柱)。其色谱填料为高纯度、具有良好稳定性的硅胶微球表面键合亲水性聚合物。月旭公司采用特殊的表面修饰技术,确保了该填料具有良好的稳定性和批与批之间的重现性。 Ultimate® SEC填料采用独特的化学键合技术,在硅球表面键合了亲水性聚合物以及亲水性二醇基官能团。双重键合机制使水溶性高分子聚合物、蛋白、生物酶、多肽等生物样品的非特异性吸附极小,因而可广泛应用于水溶性聚合物及生物大分子的分离和测定。 Ultimate® SEC色谱填料的特点 1) Ultimate® SEC色谱填料由含二醇基官能团的刚性球形硅胶微球表面覆盖亲水性高分子聚合物所组成; 2) Ultimate® SEC色谱填料内径为5 &mu m或3 &mu m的硅胶微球,能够获得最高的分离效率。 3)Ultimate® SEC 120 Å 小孔径色谱柱适合分离头孢类等极性目标物;300 Å 适合分离蛋白、多肽等生物大分子; 4) Ultimate® SEC产品目前有120 Å 、300 Å 、500 Å 和1000 Å 四种孔径规格的色谱柱。 Ultimate® SEC色谱填料的技术参数 Ultimate® SEC色谱柱使用注意事项 1)使用前,请把色谱柱用纯水冲洗40-60个柱体积,以确保柱填料能够充分被润湿,防止色谱柱在使用过程中造成固定相塌陷; 2)色谱柱在用纯水流动相分析时,需要充分地用纯水流动相平衡色谱柱,待基线充分平稳后进样分析; 3)由于该类型色谱柱一般用的流动性是纯水相的缓冲盐,因而色谱柱在使用完以后需要用纯水流动相充分冲洗色谱柱,以保证缓冲盐被充分的清除,防止缓冲盐对色谱柱固定相造成的伤害; 4)长时间不使用色谱柱时, 该类型色谱柱保存方式类似于常规的色谱柱,即高比例的有机溶剂-水溶液中,一般有机溶剂的比例为90%。 Ultimate® SEC色谱柱可替代市场上同类型产品 1) Ultimate® SEC 120 Å 可替代的其他厂家色谱柱有:日本东曹Tosoh公司的TSK gel G2000SWxl、日本昭和电工Shodex公司的 PROTEIN KW-802.5、Sepax SRT SEC-150等; 2) Ultimate® SEC 300Å 可替代的类型有: 日本东曹Tosoh公司的TSK gel G3000SWxl、日本昭和电工Shodex公司的 PROTEIN KW-803、Sepax SRT SEC-300等; 3) Ultimate® SEC 500Å 可替代的类型有:日本东曹Tosoh公司的TSK gel G4000SWxl、Sepax SRT SEC-300、日本昭和电工Shodex公司的PROTEIN KW-804; Ultimate® SEC型色谱柱性能评价 色谱柱:Ultimate SEC(7.8× 300 mm,5 &mu m,300 Å ); 流动相:150 mM磷酸盐缓冲溶液,pH 7.0(具体配置方法为:称取17.997 g磷酸二氢钠,用超纯水定容至1000 mL,然后用1 M氢氧化钠调节至所需pH值); 检测波长:214 nm; 流速:0.8 mL/min; 柱温:室温(25 oC); 进样量:10 &mu L。 样品处理方法:四种标准物质的浓度均为1.0mg/mL,解冻至室温后直接进样; 四种标准物质色谱图(1.甲状腺球蛋白;2.牛血清蛋白;3.核糖核苷酸酶A;4.尿嘧啶)
  • 奥素科技完成近亿元A轮融资|启动单细胞蛋白组学领域加速键
    1月2日,佛山奥素博新科技有限公司(以下简称奥素科技)宣布完成近亿元A轮融资。本轮融资由鲁信创投领投,老股东启明创投、线性资本、同创伟业等持续加码,凯乘资本(WinX Capital)担任财务顾问。本轮融资后,奥素科技将进一步加速在单细胞蛋白组学领域的商业化推广,提供差异化的产品和服务,填补实验室样本预处理、功能发现及验证等需求的空白,力争将中国制造的先进生命科学仪器推向全球市场。奥素科技成立于2021年,具有全球领先的有源数字微流控液滴操控平台,在两年多时间内已连续获得四轮融资,股东包括诸多顶级VC及知名产业投资人。公司推出的第一款商业化产品Boxmini™ SCP,是全球首款全流程微流控片上单细胞蛋白组学样本前处理工具,高效协助用户实现高通量、快速、精确的微量样本控制,一站式完成复杂的单细胞蛋白质样本前处理工作,且对无标记和TMT标记处理方案均可适配,产品推出后备受市场关注。对于本次融资,奥素科技创始人兼CEO马汉彬博士表示:“将消费电子半导体技术引入到生命科学领域,奥素团队已经完成了0到1的积累:特别是在单细胞蛋白质组学样本前处理应用场景,我们通过有源数字微流控微芯片上纳升样本精准操控及全流程集成能力,获得了海内外多位头部PI的认可并产生了对整个领域有促进意义的实验结果;在单细胞多组学、微生物及合成生物学等其他领域,奥素也将与不同的下游伙伴携手前行,加速新产品的开发及商业化落地。我们将在新老股东的支持下,利用产品技术优势,迅速开拓海内外市场,以单细胞蛋白质组学产品为突破点,通过开放式数字微流控共享平台打造半导体技术的生物芯片生态,让生命科学实验室及医疗检验自动化快速迈入消费电子时代。”此前,在仪器信息网第六届细胞分析网络大会(iCCA2023)的【单细胞分析技术】专题会场中,马汉彬研究员分享《 基于有源数字微流控的单细胞分选和操控系统》的主题报告。(详情点击)马汉彬 中国科学院苏州生物医学工程技术研究所 研究员马汉彬研究员课题组也在2023年成功研发出了一套基于大面积薄膜晶体管开关阵列的有源数字微流控平台,在Analytical Chemistry发表并被选为当期的封面论文。(详情点击)本轮领投方,鲁信创投副总经理邱方表示:“鲁信创投作为国有控股的专业创投机构,一贯秉持以创业投资形式,支持我国自主的研究平台、仪器设备成果应用转化,将实现我国高水平科技自立自强的任务放在首位。奥素科技掌握有源数字微流控的核心底层技术,有潜力将实验室自动化推进到一个全新的局面,形成新的研究平台。公司推出的单细胞蛋白组学产品,为单细胞多组学等前沿研究提供先进工具,在包括鲁信已投企业在内的下游客户中引起强烈关注,体现出国产科学仪器的高水平自立自强,即将迎来新的局面。鲁信创投将支持奥素科技,打好科学仪器设备国产化攻坚战。”启明创投合伙人陈侃表示:“启明创投作为上轮领投方,已连续两轮增资奥素科技。公司凭借强大的研发能力和优秀的执行力,快速的推出了单细胞领域的尖刀产品,面向一片蓝海市场。我们对公司未来充满信心,继续助力公司海外市场的商业化,期待奥素科技将“中国智造”先进科学仪器推向世界。”线性资本董事总经理郑灿表示:“线性资本作为天使轮领投方,坚定认为投资要找到正确的人。我们亲眼见证了马汉彬博士从一名科研工作者向现代企业家的转变。马汉彬博士的为人、科学素养、前沿视野和企业家精神令我们印象深刻。在他带领下,公司首先推出了具有划时代意义的单细胞蛋白质组学解决方案,为全球蛋白组学领域研究再填一把火。我们本轮继续增持,推动奥素科技向先进科学仪器标杆企业迈进。”同创伟业北京医药基金合伙人郗砚彬表示:“我们始终认为,奥素科技的数字微流控芯片系统,有望成为下一代生命科学微反应器的关键载体,持续为科学研究、医药工业等提供创新解决方案。公司的单细胞蛋白组学产品,将蛋白组学研究推进到了切实可行的单细胞颗粒度,使客户能够不再受工具所限,以全新的角度验证所知和探索未知。我们本轮继续增持,期待奥素科技能够让先进技术在应用层面全面开花。”凯乘资本创始合伙人邹国文表示:“凯乘资本很荣幸连续第三轮担任奥素科技融资的财务顾问,见证了奥素从初创、一路飞速发展及商业化;作为数字微流控行业头部企业,奥素能够穿越市场周期,在不到三年的时间连续获得四轮融资,充分体现了资本端对公司的高度认可。期待奥素在下游领域的进一步拓展,成为世界领先的生命科学工具企业。”关于鲁信创投:鲁信创投是山东省鲁信投资控股集团有限公司控股的省内最大、国内具有重要影响力的专业创投机构,是国内资本市场首家上市的创投机构(股票代码:600783.SH)。成立20余年以来,管理运作各类基金已达40余只,基金规模约200亿元,覆盖医疗健康、军民融合、先进制造、电子信息、新能源、新材料等细分产业,境内外上市公司40余家,在医疗健康领域先后投资了思路迪、硅基仿生、中科新生命、爱博泰克、唯迈医疗、美东汇成、英赛斯、荣昌生物等一批优秀企业。
  • “乳品真蛋白检测技术研究与方法筛选”成果通过教育部鉴定
    4月23日,教育部组织同行专家,对中国农业大学完成的“乳品真蛋白检测技术研究与方法筛选”项目进行了成果鉴定。   课题负责人傅泽田教授向来自国家食品质量监督检验中心、农业部奶及奶制品质量监督检验测试中心、中国计量科学研究院、中国疾病预防控制中心营养与食品安全所、北京市理化分析测试中心、北京市食品安全监控中心和北京市营养源研究所等单位的专家进行了课题研究工作报告。食品学院侯彩云教授做了技术研究汇报。   据介绍,早在2004年“阜阳劣质奶粉事件”发生之际,该课题组就将研究重点瞄准了乳品中有可能非法添加的非乳成分检测技术,并针对现行国家标准中所存在的对其中的非蛋白含氮物无法有效鉴别的问题,将生鲜乳中真蛋白检测技术的研究纳入了由副校长傅泽田教授主持的国家“863”项目“生鲜农产品质量安全可追溯系统研究与示范”的研究内容。   2008年“三鹿肾结石奶粉事件”被曝光后,课题组第一时间积极与有关部门联系,得到了农业部农产品质量安监局相关部门的支持,及时推出了可以对乳品中真实的蛋白质含量进行测定的标准:NY/T 1678-2008。该标准是迄今国内外与“蛋白质”相关的标准中,唯一不会将三聚氰胺误判为“蛋白质”的标准。   课题组提出了一种在对乳品中的真蛋白进行测定的同时,可以对其中是否含有三聚氰胺的现象予以同步监测的方法。该方法无需对样品进行特殊的处理,较现行的三聚氰胺标准测定方法操作更加简便和有效,在非应急的正常生产过程中,也可以对乳品的质量安全进行实时风险评估。在此基础上,课题组提出了“真蛋白率”和“蛋白差”的概念,为间接测定乳品中的水解蛋白以及非蛋白氮含量、进一步规范乳品的生产提供了必要的技术保障。   专家们听取汇报后,观看了现场演示,认真审查了技术文件资料,经质询讨论,充分肯定了课题组所提出的乳品真蛋白三氯乙酸-双缩脲比色分析方法以及可同时测定乳品真蛋白和三聚氰胺的毛细管电泳分析方法,并一致认为课题组研制开发的乳品真蛋白数字分析与图像检测系统填补了国内外乳品领域空白,达到国际先进水平。鉴定委员会还建议课题组进一步开展深入研究,拓宽应用领域,加快成果的推广应用,为切实保障乳品质量安全奠定必要的技术基础。
  • 郝海平/叶慧团队联合王南溪揭示人类蛋白组乳酰化修饰
    细胞中的信号转导在很大程度上依赖于蛋白质氨基酸侧链的翻译后修饰状态。当翻译后修饰发生在不同位点、占据不同比例和产生多样的修饰组合,这会使得同一个底物蛋白被“装扮”成了构象、功能、结合伴侣、定位存在巨大差异的蛋白质变体。这激发了研究者们研究蛋白质翻译后修饰的热情。近年来,人们对经典的翻译后修饰如磷酸化、糖基化、乙酰化、泛素化、甲基化等已经有了深入了解。然而,有趣的是在赖氨酸残基上仍旧不断有新的酰化修饰如巴豆酰化、丁酰化、丙二酰化、琥珀酰化被发现。同样在赖氨酸残基上,2019年芝加哥大学赵英明教授课题组首次报道了在组蛋白上发现了乳酰化,并且证明组蛋白乳酰化修饰是由乳酸衍生而来的,该修饰在不同的生物学场景中具有和组蛋白乙酰化不重叠的转录调控功能。这无疑是解答了细胞是如何感知代谢变化、启动转录调节机制的一项重要发现。但是有趣的问题尚待解答:乳酰化是一种广泛存在于人类细胞、组织中的翻译后修饰吗?乳酰化可能发生在人类非组蛋白的赖氨酸残基上吗?非组蛋白的乳酰化修饰水平如何,是否具有生物学调控作用?为了解答这些问题,中国药科大学郝海平/叶慧团队联合南京中医药大学王南溪教授进行了探索。他们的最新研究成果Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome于2022年6月27日发表在Nature Methods。该工作首次鉴定并确证了携带乳酰化修饰赖氨酸的多肽所产生的特征环状亚胺离子,应用该离子从现有的非富集、大规模的人类蛋白质组数据资源中挖掘出全新的乳酰化修饰底物蛋白和位点的信息,并通过向代谢酶定点引入乳酰化修饰,初步确证了乳酰化发生在人类的非组蛋白底物上同样具有重要的调控功能。该研究的灵感来自于对蛋白组翻译后修饰研究的规律总结:磷酸化、乙酰化等翻译后修饰均可产生具有诊断意义的特征离子。乳酰化修饰是否也会产生诊断离子?为了验证此猜想,该团队提出在共享的海量人类蛋白质组数据库中探究乳酰化修饰是否存在新的底物。然而,从非富集的蛋白质组数据中检索修饰位点的假阳性率极高,若能发现修饰特异性的特征离子则能通过谱图筛选,显著降低赖氨酸位点存在修饰的假阳性率,揭示真实的修饰靶标,指导后续的生物学功能探索。基于此需求,该团队通过合成和研究模型乳酰化肽段的谱图,首次发现了携带乳酰化修饰赖氨酸的多肽在质谱碰撞室中经过二级断裂会形成链状亚胺离子,该离子经过脱氨环化再形成次生碎片——环状亚胺离子。该团队通过分析化学修饰和生物样本中富集出的阳性乳酰化肽段,再以近十万条人类蛋白质组的非修饰合成肽段谱图作为阴性对照,确证了环状亚胺离子指征乳酰化修饰的灵敏度和特异性,能作为判定数据库搜索获得的乳酰化修饰新位点的金标准。基于该诊断离子策略,研究者从现有的非富集、大规模人类蛋白质组数据资源中挖掘了大量全新的乳酰化修饰底物蛋白及其位点的信息,特别是从2020年Nature Methods[7]发表的多种人类细胞系的蛋白质组热稳定性Meltome Atlas数据资源里发现乳酰化修饰高度富集在糖酵解通路代谢酶这一现象。其中,乳酰化修饰的代谢酶ALDOA在多种人类肿瘤细胞系中具有保守性且修饰占位比高,引发了乳酰化修饰能调节代谢酶活性等功能,进而调控糖酵解通路的猜想。郝海平、叶慧团队进一步联合王南溪课题组,利用先进的化学生物学技术——基因密码子扩展技术,首次实现向靶蛋白ALDOA定点引入乳酰化修饰,发现修饰后酶活性显著降低,揭示了乳酸蓄积后,通过共价修饰糖酵解通路中上游代谢酶,抑制糖酵解活跃度的反馈调节机制,对生物化学领域现有的“终产物抑制”的调控模式进行了补充。综上,该研究表明乳酰化是广泛存在于人类组织、细胞中的一种非组蛋白特异性的翻译后修饰,对非组蛋白的底物蛋白也具有调控功能。该分析策略可为揭示乳酸更多的共价修饰靶标,阐释乳酰化修饰的动态变化与乳酸紊乱在炎症、肿瘤等重大慢性疾病发生发展中的重要作用之间的因果关系,进而发现新的疾病治疗靶点提供线索。2019级博士研究生皖宁和2018级硕士研究生王念为本论文的共同第一作者,叶慧研究员、郝海平教授、王南溪教授为本文的共同通讯作者。该工作获得了王广基院士和江苏省药物代谢动力学重点实验室以及谭仁祥教授和中药品质与效能国家重点实验室(培育)的大力支持。示意图 环状亚胺离子示踪技术揭示保守的乳酰化修饰人醛缩酶,该修饰具有酶活抑制作用作者简介:郝海平教授主要从事代谢调控与靶标发现/确证研究、中药及天然药物体内过程及作用机理研究。提出了“反向药代动力学”、代谢处置导向的作用靶标与机理研究的学术思想;在胆汁酸、色氨酸等内源活性代谢调控研究中取得重要研究成果。在Cell Metab, Nat Commun, Trends Pharmacol Sci等发表代表性工作。叶慧研究员致力于组学技术驱动的小分子靶标发现研究。旨在通过发现疾病状态下紊乱的内源性代谢物的结合靶标蛋白,阐明其调控模式,发现具有转化价值的治疗靶点。代表性工作发表于APSB, Redox Biol, Anal Chem, Mol Cell Proteomics等。王南溪教授的研究兴趣集中在通过基因密码子扩展等技术开发新的蛋白质研究工具,从而探索生命过程和开发生物技术药物。代表性工作发表于JACS, Angew等。郝海平/叶慧团队长期招收具有生物信息学、代谢调控、靶标发现等背景的博士生/硕士生,简历投递邮箱:haipinghao@cpu.edu.cn和cpuyehui@cpu.edu.cn;欢迎报考王南溪教授的博士生/硕士生,简历投递邮箱:nanxi.wang@njucm.edu.cn。文章发表链接: https://www.nature.com/articles/s41592-022-01523-1
  • 岛津发布独特柱后衍生技术测定乳品中“皮革水解蛋白”
    &ldquo 三聚氰胺毒奶&rdquo 的阴影尚未从消费者的心中散去,&ldquo 皮革毒奶&rdquo 又开始威胁消费者的生命安全。在三聚氰胺成为严打对象后,又有不法企业为提高乳制品中的蛋白质含量,在乳制品中混入皮革水解蛋白,制造出&ldquo 皮革毒奶&rdquo 。 皮革水解蛋白就是利用已经废弃的皮革制品或动物毛发,水解之后制成粉状,因其氨基酸或者说蛋白含量较高,故人们称之为&ldquo 皮革水解蛋白粉&rdquo 。 &ldquo 皮革水解蛋白粉&rdquo 中含有的有毒物质被人体吸收、积累,可导致中毒,使关节疏松肿大,甚至造成儿童死亡。 为此,中国农业部2月12日下发2011年度生鲜乳制品质量安全监测计划,其中除要检测三聚氰胺外,还要检测&ldquo 皮革水解蛋白&rdquo 和碱类物质。据称,皮革水解蛋白的检测难度比三聚氰胺更大,因为它本来就是一种蛋白质。当前,国内多数参考1978年版《ISO:3496-1978肉与肉制品L(-) - 羟脯氨酸含量测定》使用分光光度法测定乳品。主要检测方法是检查牛奶中是否含有羟脯氨酸,这是动物胶原蛋白中的特有成分,在乳酪蛋白中则没有,所以一旦验出,则可认为含有皮革水解蛋白。 已经在消费者心中树立起&ldquo 食品安全卫士&rdquo 形象的岛津公司,长期关注中国的乳制品安全问题,为中国用户提供了一系列的乳制品检测解决方案。其中,岛津上海分析中心结合岛津独特的氨基酸分析系统和欧洲药典收录的氨基酸分析方法,率先开发出柱后衍生液相色谱分析乳制品中L(-) - 羟脯氨酸的检测方法。 该方法使用岛津氨基酸柱后衍生系统锂型分析柱建立了牛奶制品中24种氨基酸的高效液相色谱柱后衍生分析方法,柱后衍生及样品测定为全自动完成,消除了柱前衍生不同操作人员引入的人为误差,大大简化了样品前处理步骤,节约了时间,是一种可靠快速的检测方法。本方法可以直接用于检测牛奶中24种氨基酸。 岛津公司今后将一如既往地关注中国乳制品安全问题,继续实践&ldquo 为了人类和地球的健康&rdquo 这一公司经营理念。 有关岛津&ldquo 高效液相色谱柱后衍生方法测定乳制品中皮革水解蛋白&rdquo 的详细内容,请参见http://www.instrument.com.cn/netshow/SH100277/down_161189.htm。 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制