当前位置: 仪器信息网 > 行业主题 > >

如何降低产品损耗

仪器信息网如何降低产品损耗专题为您整合如何降低产品损耗相关的最新文章,在如何降低产品损耗专题,您不仅可以免费浏览如何降低产品损耗的资讯, 同时您还可以浏览如何降低产品损耗的相关资料、解决方案,参与社区如何降低产品损耗话题讨论。

如何降低产品损耗相关的耗材

  • 低损耗反射镜
    这款低损耗反射镜是欧洲进口的全球领先的激光高反镜片,又称为低损耗激光反射镜或低损耗高反镜或低损耗激光高反镜,它采用全球领先的离子束镀膜技术,提供接近于100%的反射率。Low loss HR mirrors are also referred to as IBS mirror due to ion-beam coating technology. The mirrors provide maximum reflectance at certain wavelength range and certain angle of incidence (AOI).IBS technology stands out by multiple advantages against other coating techniques. Due to fully automated control of deposition process coatings distinguish by high repeatability, sharper features, tighter tolerances. IBS thin films feature higher density, durability, high-damage-threshold, impenetrable to water vapor, which make them resistant to environmental conditions such as heat, humidity and pressure.IBS coatings distinguish by nearly all specification being supreme to the ones provided by other coating technologies. It allows to minimize scatter in the dielectric layers which is limiting factor, then reflectivity higher than 99,9% is targeted. Our selection of ion-beam sputtered coatings covers wavelength range of 343 - 1550 nm.Provide maximum reflectance at certain wavelength range and certain angle of incidence (AOI)Coatings are provided by ion beam sputtering (IBS) techniqueResistant to environmental conditionsVarious dimensions are available on requestMass production capabilities: 1’000 pieces per monthHigh repeatabilityReflectivity higher than 99,9%
  • UltraFast Innovations (UFI) 高功率低损耗激光反射镜
    UltraFast Innovations (UFI) 高功率低损耗激光反射镜&bull 在 1030nm 和 1064nm 处反射率 99.99%&bull 在 1064nm、100Hz、8ns 下激光损伤阈值为 50 J/cm2&bull 纳秒、皮秒和飞秒激光脉冲的通用设计&bull 提供直径达 200mm 的定制选项产品介绍UltraFast Innovations (UFI) 高功率低损耗激光反射镜提供 99.99% 的反射率和业界领先的损伤阈值。激光级的表面质量和表面平坦度在 1030nm 和 1064nm 处具有 0fs2 群延迟色散 (GDD),使这些反射镜非常适合苛刻的激光应用要求。这些反射镜的 s 偏振光反射率 99.99%,p 偏振光反射率 99.98%,可用于纳秒、皮秒和飞秒激光器。耐用的介质膜经过测试,可确保在 1064nm、100Hz、8ns 下的高激光损伤阈值 50 J/cm2。UFI 高功率低损耗激光反射镜采用熔融石英衬底,具有出色的热稳定性,直径为 25.4mm,可轻松集成到 1030nm 或 1064nm 激光系统中。如果您的应用需要定制尺寸或镀膜的高功率低损耗激光反射镜,请与我们联系。 技术数据订购信息波长范围 (nm)DWL (nm)Dia. (mm) 厚度 (mm)AOI (°)产品编码1000 - 1100 1030, 1064 25.40 +0.00/-0.05 12.70 ±0.054515-961
  • 降低荷电效应控温样品杯
    控温样品杯应用低真空技术,在控温的同时将样品周围相对湿度控制在高水平,显著降低样品中水分的蒸发、升华,延长敏感样品的观测窗口时间。控温样品杯可以对样品进行冷冻或加热,改变样品周围湿度、气压。同时利用低真空技术,减小电子束轰击造成的荷电效应和样品损伤。优点:阻止样品中水分的丧失,避免因脱水而造成的样品形变;保持样品原始形貌 ; 可以长时间观测生物、有机样品 ;降低电子束损伤。样品尺寸:直径25mm;高5mm控温范围:- 25℃ ~ + 50℃ 降温速率:20℃/min
  • AOI 45deg 超高低损耗反射镜 1500-1600nm
    损耗极低的激光光学器件,对于要求极低损耗的镀膜光学器件应用, 筱晓光子可提供R 99.995 %、总损失小于10 ppm的反射镜。此类超级反射镜片可用于环形激光器陀螺仪组件或光腔衰荡应用。对超抛光基材加工低吸收、低散射镀膜时,我们会采用改进型IBS镀膜机。而为了保证清洁度,此类机器会存放在专用的超清洁室内,并且与生产相关的基材预处理和后期处理流程全部在此清洁室内完成。 此外,超清洁室内还配置有多种测量设备,如检测流程所使用的白光表面光度仪和高分辨率显微镜。利用定制光腔衰荡设置可以确定反射量(精度可达小数点后四位)以及损耗。 而测定以上数值必须使用表面粗糙度小于 1 ? rms的超抛光基材。为了保证反射镜成品的品质,还会使用白光表面光度仪进行质量检测 中心波长1572nm 技术参数产品特点:低损耗可定制不同尺寸入射角:0deg/45deg可选 应用领域:TDLAS 光腔衰荡基材以及镀膜参数:材质红外级熔融石英 Infrasil形状圆形直径(?)12.7,25.4 mm ,50.8(-0.1 mm)厚度(t)6.35 mm (±0.1 mm)边缘厚度 6.35 mm平行度5? 光学参数 正面(S2)光学参数 背面(S1)形状凹面形状平面曲率半径1,000 mm (±1 %)倒角0.3 mm (±0.1 mm)倒角0.3 mm (±0.1 mm)测试区 ?e20测试区 ?e20曲面容差3/0.2(0.2) [L/10 @546.1nm]曲面容差3/-(0.2) [L/10 reg. @546.1nm]清洁度5/2x0.04 L1x0.004清洁度5/2x0.04 L1x0.004 内部测试区?e 10清洁度 5/2x0.0161st 工作范围 高反射(45°,15572nm)99.995%1st 工作范围 减反射(0°,1450-1650nm)0.2%类别:高反射率偏振:unpol.入射角 45°波长范围:1572 nm高反射 99.995 %类别 减反射偏振 unpol. 入射角 0°波长范围 1450 - 1650 nm AR / HT 0.2 %2nd 工作范围 T(0°,1550nm)~0.005% 类别:透射率偏振: unpol.入射角 45°波长范围:1550 nmHT ~ 0.005 % 镀膜曲线:HRs,p(45°,1570-1580nm)99.995%
  • GATTA-STED NANORULER 受激辐射损耗超分辨标准纳米尺
    GATTA-STED NANORULER作为第一种超分辨率显微镜技术,STED(受激辐射损耗技术)方法彻底改变了光学显微镜。有了GATTA-STED系列的纳米尺子,现在终于有了足够的校准探针。单色纳米尺子携带两个由高量子产率染料ATTO 647N密集排列而成的荧光标记。我们提供50纳米,70纳米,90纳米和120纳米尺寸的标记距离。此外,我们还提供了一种新的设计,包含两个不同荧光团的三个发射点,可以获得非常引人注目的图像。多色纳米尺有三个发射点,尺寸为140 nm (ATTO 647N和ATTO 594)。我们还可以根据您的要求设计特殊的解决方案。所有的纳米样品将在一个密封的玻璃载片上,你可以舒服地直接放在你的显微镜上。订购选单
  • 降低荷电效应样品杯
    降低充电效应样品杯包含一限压孔,可将特定量的空气导入样品腔,使得样品附近气压升高,降低样品表面的充电效应,同时保持电子腔内的高真空,使系统稳定运行。降低充电效应样品杯专为不导电样品设计,为用户免去了额外的预处理过程。各种不导电样品,如纸张、聚合物、有机材料、陶瓷、玻璃以及涂层等,均可借助降低充电效应样品杯,得到其原始形貌的图像。适用于高分辨率成像,可用于观测粉末,薄膜,及各种不规则形状的三维样品。降低充电效应样品杯可直接观察不导电的样品,无需喷金样品尺寸:直径25mm;高30mm
  • LTS1500 光损耗测试仪光纤通讯 Loss Test Set-LTS
    LTS1500 光损耗测试仪光纤通讯 Loss Test Set-LTSThe FTE-4000 TTI Hand Held Variable Optical Attenuator is available in two models, with 40 dB attenuation level or 80 dB attenuation level to meet single mode testing requirements. Like the rest of the FTE line, the VOA has an onboard help feature. The FTE-4000 has a built in output power monitor to assist in setting the appropriate attenuation levels and a sweep mode which can scan the attenuation across desired levels. It is rugged with a splash proof housing with a highly protective boot. The FTE-4000 can assist in the testing of system budget compliance, balancing transmitter power and adjusting receiver attenuation settings.Features? Integrated Power Meter? Up to 80 dB Attenuation? Typical Insertion Loss 2dB (40dB Model)? Remotely Program Sweep Settings? Adjustable step sizes? USB PC Interface w/Remote Operation? Absolute/Relative Attenuation Settings? Calibrated at 1310/1550? Sealed Rugged Case? Lowest Cost Hand Held VOA? 4” Color DisplayOrdering InformationFTE-4000-4040 dB Variable Optical AttenuatorFTE-4000-8080 dB Variable Optical AttenuatorFTE-4000 SpecificationsAttenuation RangeFTE-4000-4 2 to 40dBFTE-4000-8 4 to 80dBWavelength Range1310, 1550 nmResolution.01 dBUncertainty+/- 0.5 dBRepeatability+/- 0.1 dBInsertion Loss2 dBReturn Loss50 dBMax Input Power27 dBmGraphical Display4 in Color TFTDimensions7.75 x 4.5 x 2.25 inchesWeight2 lbsBatteryRechargeable NiMH - 6 hours operating timePower100-240 universal US, GB, EU, AU MainsEnvironmental Operation-10°C to + 40°CAccessories IncludedUniversal power supply. FC and SC adaptors,CertSof VI Software, USB Cable and Manual
  • 自助餐点菜台加湿器
    自助餐点菜台加湿器 新闻资讯报道:蔬菜如何保湿保鲜?是现在很多超市卖场、酒店餐饮等行业最为关注的一个问题!大家都应该知道,一般的新鲜蔬菜摆放在超市卖场的展示架或是酒店餐饮的菜台上,往往会在较短的时间内就失水,失去原有的新鲜度,营养成份等,如不采取有效的措施是很难长时间保持新鲜的,这无疑会销售带来许多负面的影响,除了降价处理外,只有丢弃了,不仅会造成经济上的损失,更是一种浪费! 为此,有的人会往蔬菜上面喷水,这样虽然能够短时间内保持蔬菜新鲜度,但附着于蔬菜表面的水滴非但不能够被吸收,反而堵塞了蔬菜表面的微小透气毛孔,直接造成了蔬菜的腐烂。 针对这一问题,正岛电器研制开发了适用于蔬菜保鲜保湿的正岛ZS-20S自助餐点菜台加湿器及ZS系列超声波喷雾加湿器,可产生漂浮于蔬菜上方的极细水雾,直接给蔬菜进行补充水分,既不会在蔬菜上残留水滴,又可长久保持蔬菜时刻如同新鲜采摘般。同时水雾缭绕的景观更能吸引顾客,实现销售增长的同时将损耗降到最低。 正岛ZS-20S自助餐点菜台加湿器及ZS系列超声波喷雾加湿器产品,对于其他加湿方式的加湿器而言,具有【雾化颗粒细】 、【使用能耗低】 、【雾化能效高】,【加湿速度快】的显著优势,避免由于湿度过大,造成浪费,以达到节约水电的目的。对超市蔬菜保鲜产生的成效: 1、延长蔬菜水果寿命、保持蔬果鲜嫩色泽、提高蔬果的视觉效果;2、保留蔬果原有口感,防止蔬果枯萎变黄、延长蔬菜的新鲜度;3、避免蔬果水分和重量的流失,增加蔬果在货架上的保鲜期;4、吸引顾客购买欲望、增加超市购买人气,增大超市销售利润; 点击此处查看自助餐点菜台加湿器全部新闻图片 备注:该系列产品可与环境试验设备以及环境监测仪器等温湿度相关仪器设备配套使用,也可作为其中的一个核心配件!欢迎您来电咨询自助餐点菜台加湿器的详细信息!工业用加湿器种类有很多,不同品牌工业用加湿器价格及应用范围也会有所不同,而我们将会为您提供全方位的售后服务和优质的解决方案。 正岛ZS-20S自助餐点菜台加湿器及ZS系列超声波喷雾加湿器控制方式,技术参数与选型参考: 查看更多自助餐点菜台加湿器的详细信息尽在:正岛电器本站新闻记者核心提示:运用正岛ZS-20S自助餐点菜台加湿器及ZS系列超声波喷雾加湿器,为新鲜蔬菜进行定时或不定时的喷雾加湿,使其在长时间存放过程中,时刻看上去就像清晨刚从菜地里摘下来一样新鲜。其喷出的雾气即可以降低温度,还可以补充新鲜蔬菜的水分,而且对整个新鲜蔬菜区域有造景功能,达到吸引顾客的效果。 不管是超市卖场,还是酒店餐饮,一到两个月中因新鲜蔬菜失水失鲜所受到的损耗,就有可能相当于在正岛ZS-20S自助餐点菜台加湿器及ZS系列超声波喷雾加湿器的全部投入成本,可以减少蔬菜、瓜果、鲜肉、海鲜等农产品30%-50%的自然损耗。 正岛ZS-20S自助餐点菜台加湿器及ZS系列超声波喷雾加湿器,具有超细雾气加湿,不滴水以及低能耗的显著优势,不会出现加湿不均匀,也不会出现加湿过量等问题,现已被各大卖场超市普遍推广和使用,并受到一致好评。以上关于自助餐点菜台加湿器的全部新闻资讯是正岛电器为大家提供的!
  • 安捷伦 G2591B Agilent 5977A 系列 GC/MS EI 源 惰性 活性降低
    部件号:G2591BAgilent 5977A 系列 GC/MS EI 源 惰性 活性降低EI 调谐选项 调谐”菜单以及“调谐和真空控制”视窗中提供若干关于调谐选择的选项。最上面两个选项是指运行部分或整个活动调谐的机制。其他菜单选项是具有特定目的的调谐,如下所述。 Agilent 5977A 系列离子源调谐选项说明调谐菜单项(默认调谐文件 *.U )说明MSD 调谐运行主动调谐中内置的调谐类型。快速调谐通过微调确保可接受的响应、分辨率以及精确质量数。自动调谐 (Atune.U)Agilent 5973 惰性 MSD 及 5975 系列基于推斥极的标准调谐。Extraction 源调谐 (Etune.U)与 Extractor EI 源配合使用提供超高灵敏度。使用惰性或不锈钢离子源时于 Atune 相当。BFB 自动调谐 (BFB_Atune.U)配合使用 Atune 可满足 US EPA BFB 调谐标准。需要使用 6 mm 拉出极板/提取透镜,并在基于推斥极的标准调谐模式下运行。低质量数自动调谐 (Lomass.U)除调谐的质量数为 69、131 和 219 而非 69、219 和 502 外,其他均与自动调谐相同。该调谐方式适合于低分子量化合物的应用分析以及分子量低于 250 D 的天然气体分析。标准谱图调谐 (Stune.U)确认整个质量数范围的标准响应。具体来说,PFTBA 碎片质量数 69 是基峰,质量数 219 的响应介于 35%-99% 之间,质量数 502 的响应 1%。这是一种低灵敏度的调谐方式,它是为了更好地匹配现有的使用 5971 或 5972MSD 时建立的数据库。DFTPP适用于 US EPA 的半挥发性化合物分析(8270 方法)中特定的目标化合物调谐。BFB适用于半挥发性化合物分析的特定目标化合物调谐。与 BFB 自动调谐提供的灵敏度和稳定性不同。为已创建的SOP 提供连续性,适合于偏好特定化合物调谐方式的用户。访问 www.agilent.com/chem/library,参见应用简报 5991-0029CHCN,了解有关半挥发性化合物分析的推荐程序。 Agilent 5977A 系列 GC/MS EI 源源优点部件号(备件)不锈钢经济G2591D惰性活性降低G2591BExtractor EI 源活性降低G2591C灵敏度最高
  • FTE5000 损耗测试仪 带ORL和视频探头
    FTE5000 损耗测试仪 带ORL和视频探头The FTE-5000 combines four functions for testing optical networks together in one unit. It brings together a -55dB ORL meter, power meter, laser source and video scope capability with IEC61300-3-35 method “B” Pass/Fail End face Grading Map (probe sold separately). The FTE-5000 is a full featured ORL Loss Test Set. It has 4” super bright color touch screen display with large easy to read characters. It performs optical return loss measurements to -55db at up to three wavelengths and is an automated loss test set with dual or triple wave Light sources. The power meter uses an InGaAs detector which is calibrated at 850,1300, 1310, 1490, 1550 and 1625nm, with a dynamic range of -77dBm. These units are available in single, dual, triple or quad wavelength configurations and displays measurements up to three wavelengths at one time. In the Autotest mode, the master unit changes wavelengths at a fixed rate and informs the slave unit of the wavelength currently being measured. Use this method to test up to three wavelengths at a time and store the loss measurements for each of the lasers fired during the test. Up to 5000 tests may be stored and recalled via the unit’s USB port. Use TTI’s CertSoft PC application software for downloading stored data and organizing the information or use the Android Bluetooth virtual instrument application for remote operation. The information from OTDR, LTS, ORL and video scope may be combined to offer a comprehensive report for all of your network testing needs. The FTE-5000 also includes a video scope (probe sold separately). Use the video scope to ensure the integrity and cleanliness of the connectors being tested. Use the modulation feature to perform fiber identification function. The power meter will identify modulated signals at 270, 1000 and 2000 Hz produced a modulate light source. Features?Optical Loss/ORL Tester?ORL Measurement Range to -55 dB ?PM with -77 dBm Dynamic Range ?IEC61300-3-35 method “B” Video Scope (Probe Sold Separately)?Auto Test Up To Three Wavelengths ?Automated Loss Measurements ?Auto Wavelength Switching ?Universal PM and LS Adapters?Storage for 5,000 Test ?Bright Color Display?Rechargeable NiMH Batteries?USB Interface ?Free Report Software ?On-Board Help FeatureOrdering InformationFTE-5000-8513 LTS with 850/1300nm Light Source and Video Scope (Probe Sold Separately)FTE-5000-1315LTS with 1310/1550nm Light Source and Video Scope (Probe Sold Separately) FTE-5000-345LTS with 1310/1490/1550nm Light Source and Video Scope (Probe Sold Separately)FTE-5000-QUADLTS with 850/1300/1310/1550nm Light Source (No Video Scope Capability)VIS300Video Probe for use with FTE-7000, FTE-1700 and FTE-5000 seriesGeneral SpecificationsDisplay4 in Color TFTStorage Locations5000Battery/Operating Time4 AA Rechargeable NiMH / 6 hrsPower Requirements Wall Mount, Universal 100-240V 47-63 Hz 9 VDC Center Positivewith, US, UK, Continental Europe, and Australian PlugsOperating Temperature Range -10 to 45 CDimensions(w/o rubber boot ) 7.62” L x 3.88” W x 1.56” H (194mm L x 99mm W x 40mm H) Weight 0.52 KgAccessories ProvidedFC, ST, SC adaptors for both Power Meter and Light Source, rubber boot, battery, power supply/charger, manual and software on CD and USB cable Power Meter SpecificationsDetector TypeInGaAsConnector Type 2.5mm InterchangeableDynamic Range+5 to -77dB (CATV - +25 to -57dB)Auto Test Range0 to -40dBCalibrated Wavelengths 850,1300,1310,1490,1550,1625nmUnits of MeasurementdBm, dB, mW, μW and nWPower Measurement Uncertainty± 0.18 dB under reference conditions, ± 0.25 dB from 0 to -65 dBm,± 0.35 dB from 0 to +5 dBm and from -65 to -77 dBmUnits of Measurement dBm, dBResolution.01 dBModulation Modes DetectedCW, 270 Hz, 1000 Hz, 2000 HzLight Source SpecificationsFiber TypeSingle Mode, Multimode Wavelengths Available850,1300,1310,1490,1550 and 625 nm ±20nm as Unit is Equipped Output Power0 dBm, 1mw (-3dBm @ 1625nm)Output Stability± .05 dB / 24 hrs @ constant temp,, ± .02 dB/C temperature coefficientLaser Safety ClassificationClass I Safety Per FDA/CDRH and IEC-825-1 RegulationModulation ModesCW, 270 Hz, 1000 Hz, 2000 HzSpectral Width3nm typ.ORL MeterOptical Return Loss Dynamic Range0-55 dBORL WavelengthsSM Source WavelengthsOptical Return Loss Accuracy± 1dB @ -40db reflectionResolution0.01 dB
  • AA 氢化物模块 VGA 77。单独的氢化物模块专门用于汞的测定以降低交叉污染。
    氢化物发生器附件 (VGA77) 适用于检测 ppb 级汞和形成氢化物元素。单独的氢化物模块专门用于汞的测定以降低交叉污染。 与 VGA 77 兼容
  • 液相色谱配套产品/Arcus5自动进样系统
    仪器特性☆全敞开式透明设计,每一个细微机械动作均一览无遗☆全电脑控制,所有操作均可通过电脑软件实现,并可与国内外任何液相色谱系统兼容☆易损件超长使用寿命和传统的进样针不同,该进样针采取侧孔进样的方式,进样孔不在进样孔尖头顶部,而以一个微小孔开在侧面,可以有效防止样品瓶盖垫塑料散粒进入样品针,另外在样品针两边分别开有微孔槽,可防止抽液中产生气泡☆多重只能画功能1、ARCUS 5自动进样器在设计研发中采用了多项专利技术,具备了多重保护措施,能够尽可能的降低操作不当对自动进样器的损伤。1)压力传感单元时刻监视检测管路中压力变化。当取样针有堵塞现象时,能及时停止运行并报警,有效防止因管路堵塞而产生的不可预测的故障。2)缺瓶传感单元为了避免操作人员的失误影响仪器的正常操作,或损坏仪器,配置了缺瓶传感器,当仪器的压瓶架探测不到样品瓶的时候,系统会自动提示停止采样或跳过此位置采集下一个样品瓶。3)顶针传感单元当进样针探测到样品托盘上有硬物货样品瓶倒置,进样针不能顺利扎入时会自动抬起,避免由于误操作引起的进样针损坏。4)漏液传感单元主要对进样阀漏液进行检测,避免由于漏液原因导致的进样不准确。2、托盘自动识别单元为了满足用户的不同需求,Acrus 5 自动进样器可以选配三种不同规格的托盘,并可自动识别左右两个托盘的规格以及自动定位不同编号样品瓶X、Y位置,避免了样品托盘编号设置错误而导致的取样位置定位错误。3、完善的自我诊断及记录功能1)开机快速自检,各坐标轴迅速定位校准,计量泵工作状态检测2)高压流通阀使用次数记录样品数量最大2mL×108瓶或选配进样方式三种进样方式(全定量环进样,部分进样,微量进样)进样体积0.1uL~50uL(标配为25uL定量环)进样重现性全定量环进样RSD0.25% 部分定量环进样RSD0.5%(连续进样 ,进样量﹥10ul) 无损耗进样RSD0.8%(连续进样 ,进样量5ul) 样品残留0.05% 以下最大压力40MPa(常规),60MPa(超高效系统)自动保护功能缺瓶报警,顶针报警,管路阻塞报警,泄漏报警样品冷却半导体制冷装配(选配)体积/重量300(w)×450(D)×320(H), 约25kg
  • 酸纯化仪CH-II硝酸盐酸氢氟纯化降低金属元素
    酸纯化器一、产品简介酸纯化器:亦称高纯酸蒸馏纯化器、酸蒸馏器、亚沸腾蒸馏装置,简称酸纯化器(南京-瑞尼克-科技)是超净化实验产品,后期提取的高纯酸、高纯水可以配套我们公司Teflon系列的器皿使用。二、工作原理酸纯化器是利用热辐射原理,采用环保节能加热片加热,保持液体温度低于沸点温度蒸发,再将其酸蒸气冷凝从而制备高纯水和高纯酸等高纯试剂。三、产品说明 可以满足ICP、ICP-MS低的检测限需要及苛刻的分析应用中提供实验室级超纯酸,容器均采用Teflon耐腐蚀无吸附塑料,可以处理HNO3、HCL、HF等实验室的常用酸。实验证明将金属杂质含量约10PPB的酸经过一次蒸馏后,金属杂质含量可以降低到0.01PPB左右。若对酸要求更高,可增加提纯次数。用于地质、光伏、质检、半导体材料、第三方检测等行业的痕量、超痕量分析。四、高纯酸蒸馏纯化器特点 1、酸纯化器是制备高纯水和高纯酸或试剂的氟塑料仪器,它具有技术,结构合理,安装简单,(安装在实验室的通风厨中)、操作方便,维修简便等特点。2、石英亚沸蒸馏水器虽避免了玻璃杂质的污染,但价格昂贵,容易破碎,对有些强酸有局限;离子交换水,又因有机物质的溶解带入有机物的干扰。3、我公司的酸纯化器全部采用聚四氟乙烯材质及FEP试剂瓶,无石英部件,无污染和腐蚀,因此能降低空白值,在进行测定(原子吸收光谱、气相色谱、同位素、ICP-MS等)痕量元素及微量有机物时,是重要的配套仪器设备。五、技术参数1.自动控制功率,易于编辑的温度控制程序;2.用于痕量分析中超纯酸(HNO3、HCL、HF)的制备;3.采用高纯的TeflonFEP 、PTFE 、PFA 材质;4.可以排除废液,可视液位;全部特氟龙材质;5.控温:±1℃,控温范围:室温-200℃;6.酸纯化过程在密闭环境下进行,避免仪器本身实验环境二次污染,整个流程没有酸气逸出;7.可持续加酸,取纯酸;不怕蒸干,具有过热保护功能;不用冷却水;8、规格参考表:品名型号规格(ml)材质产率(ml/h)功率(W)电压酸纯化器CH-I500FEP、PTFE30-45 350 220V/50Hz酸纯化器CH-II1000FEP、PTFE45-60酸纯化器CH-III2000FEP、PTFE60-80酸纯化器CH-IIIT4000FEP、PTFE 100六、产品特征1.用纯度较高的PTFE,FEP,PFA的材质的容器PTFE,TeflonFEP PFA材质的容器组合而成,无腐蚀,且纯化过程都在密闭的环境下进行,减少实验室污染;2.采环保节能加热片加热,温度可控,稳定,连续,均匀,样品回收率高; 3.酸纯化系统体积小,安全,可置于实验室的通风橱; 4.操作简便、可拆卸、废液清洗方便; 5.将金属杂质含量约10PPb的酸经过一次蒸馏后,金属杂质含量可以降低到0.01PPb左右;6.用于痕量分析中超纯酸的制备,通过纯化低成本的酸试剂到高纯酸,节省成本多达90%。7.数据参考:经我公司酸纯化器亚沸蒸馏后,经ICP-MS检测出HNO3中杂质的含量:元素测量浓度(ng/g=ppb)分析方法元素测量浓度(ng/g=ppb)分析方法Be<0.01ICP-MSCe<0.01ICP-MSSc<0.01GFAASPr<0.01GFAASV<0.02ICP-MSNd<0.01ICP-MSCr<0.22ICP-MS Sm<0.01ICP-MSCo<0.03ICP-MSEu<0.01ICP-MSCu<0.29ICP-MSGd<0.01ICP-MSZn<0.07ICP-MSTd<0.01ICP-MSCa<0.02GFAASDy<0.01GFAASRb<0.02ICP-MSHo<0.01ICP-MSSr<0.1ICP-MSEr<0.01ICP-MSY<0.01ICP-MSTm<0.01ICP-MSZr<0.01ICP-MSYb<0.01ICP-MSNb<0.01GFAASLu<0.01GFAASMo<0.05ICP-MSHf <0.01ICP-MSCd<0.05ICP-MSTa<0.01ICP-MSSn<0.1ICP-MSW<0.01ICP-MSCs<0.01ICP-MSTl<0.01ICP-MSBa<0.05GFAASPb<0.05GFAASLa<0.01ICP-MS
  • 安捷伦 G2591C Agilent 5977A 系列 GC/MS EI 源 Extractor EI 源 活性降低 灵
    部件号:G2591CAgilent 5977A 系列 GC/MS EI 源 Extractor EI 源 活性降低 灵敏度最高EI 调谐选项 调谐”菜单以及“调谐和真空控制”视窗中提供若干关于调谐选择的选项。最上面两个选项是指运行部分或整个活动调谐的机制。其他菜单选项是具有特定目的的调谐,如下所述。 Agilent 5977A 系列离子源调谐选项说明调谐菜单项(默认调谐文件 *.U )说明MSD 调谐运行主动调谐中内置的调谐类型。快速调谐通过微调确保可接受的响应、分辨率以及精确质量数。自动调谐 (Atune.U)Agilent 5973 惰性 MSD 及 5975 系列基于推斥极的标准调谐。Extraction 源调谐 (Etune.U)与 Extractor EI 源配合使用提供超高灵敏度。使用惰性或不锈钢离子源时于 Atune 相当。BFB 自动调谐 (BFB_Atune.U)配合使用 Atune 可满足 US EPA BFB 调谐标准。需要使用 6 mm 拉出极板/提取透镜,并在基于推斥极的标准调谐模式下运行。低质量数自动调谐 (Lomass.U)除调谐的质量数为 69、131 和 219 而非 69、219 和 502 外,其他均与自动调谐相同。该调谐方式适合于低分子量化合物的应用分析以及分子量低于 250 D 的天然气体分析。标准谱图调谐 (Stune.U)确认整个质量数范围的标准响应。具体来说,PFTBA 碎片质量数 69 是基峰,质量数 219 的响应介于 35%-99% 之间,质量数 502 的响应 1%。这是一种低灵敏度的调谐方式,它是为了更好地匹配现有的使用 5971 或 5972MSD 时建立的数据库。DFTPP适用于 US EPA 的半挥发性化合物分析(8270 方法)中特定的目标化合物调谐。BFB适用于半挥发性化合物分析的特定目标化合物调谐。与 BFB 自动调谐提供的灵敏度和稳定性不同。为已创建的SOP 提供连续性,适合于偏好特定化合物调谐方式的用户。访问 www.agilent.com/chem/library,参见应用简报 5991-0029CHCN,了解有关半挥发性化合物分析的推荐程序。 Agilent 5977A 系列 GC/MS EI 源源优点部件号(备件)不锈钢经济G2591D惰性活性降低G2591BExtractor EI 源活性降低G2591C灵敏度最高
  • 原装进口942339380021美国热电-赛默飞大样品杯
    原装进口942339380021美国热电-赛默飞大样品杯Thermo热电原子吸收石墨管货号:942339395031942339395031 Graphite Cuvettes, Ridged and Uncoated (10) 普通石墨管(10支/盒) 942339395071 Graphite Cuvettes, Ridged and Coated (10) 涂层石墨管(10支/盒) 942339395041 Extended Lifetime Cuvettes (10) 长寿命石墨管(10支/盒) 942349020101 Omega ELC with Platform (10) Omega平台石墨管(10支/盒) 942339395161 Graphite Contact Cones(Zeeman) 石墨锥 (对)942339395011 Graphite Contact Cones 石墨锥 (对)942339380031 小样品杯 1000个/包942339380021大样品杯 50个/包原装进口942339380021美国热电-赛默飞大样品杯赛默飞Thermo 原子吸收光谱仪型号:ICE3000 AAS原子吸收光谱仪、ICE3300AAS原子吸收光谱仪、ICE3400AAS原子吸收光谱仪、ICE3500AAS原子吸收光谱仪 热电石墨管使用注意:1、 在安装新的石墨管之前, 检查接触件的情况(电极)。经过正常的工作运行, 接触件也会受到磨损。这样的磨损会使管件在使用中松懈,从而导致因接触不良而引起运行和结果错误。如果接触件表面发生切削磨损,坑洼,被灼烧, 或者其它磨损, 必须立即更换。运行装有破损接触件的仪器会导致错误的结果, 并且还会极大地降低管件的使用寿命。2、在安装过程中, 请使用干净的塑料套(最好是PTFE)将管件从包装箱中取出。千万不可用手来直接接触管件! 否则将使管件受到污染, 并且很有可能使诸如钙, 钠, 和钾元素的读数结果上升。3、使用合适的气体和流速。过度降低运行成本将会降低产品的使用寿命, 和增加产品受到污染的可能性。4、 一旦管件安装完毕, 在正式使用之前, 要根据仪器厂家提供的产品说明书对管件预运行一次。5、 避免管件的过度加热, 过度加热将会严重地降低其使用寿命。6、当运行从较低温度转向用于分析诸如Ni, Cr, V 或者Ti的较高温度时, 也许会发生由于冷的部件引起的暂时污染而导致的“记忆影响”。在这样的情况下, 建议您在新的较高温度之下, 先采用最大气体流速对空白试剂运行几个循环, 从而去除系统中的污染。7、在管件接近使用寿命期限时, 需注意适时更换。否则将会大大增加接触件受到破坏的可能性。8、使用硫酸将会极大地降低石墨管的使用寿命。 北京龙天韬略科技有限公司同时提供国外知名原装分析测试配件耗材如美国珀金埃尔默PE、美国瓦里安Varian、美国热电Thermo、岛津Shimadzu、美国安捷伦Agilent、瓦里安Varian、美国巴克Buck、美国贝尔德Baird、美国沃特世Waters、德国耶拿Analytic Jena、澳大利亚GBC。
  • 冻存袋外壳
    冻存袋外壳介绍 Entegris为一次性生物制药应用提供灵活的一次性密封 解决方案。这些解决方案使您能够保护和存储高价值 的工艺解决方案,降低产品丢失、污染和质量受损的 风险。为进一步扩大我们的产品组合,我们提供适配 Aramus一次性冻存袋的冻存袋外壳。应用冻存袋外壳由优质不锈钢和重型塑料材料制成,在处理过程中提供更好的原料药 (BDS) 保护,更连续的冷冻/解冻,并降低储存密度。坚固的不易损坏结构可降 低一次性袋子结构中的张力,并提供减震保护。应用 &bull 原料药储存和运输 &bull 高价值中间体的保护和储存 &bull 干冰运输 &bull 散装产品填充低温控制单元支架 冷冻控制单元(CCU)支架可与冻存袋外壳一起使用。 CCU便于在标准的静态或鼓风冷冻机中进行受控冷冻。特点和优势不锈钢顶底结构使快速和均匀的冻结和解冻提供最大的耐久性和强度,保护高价值的工艺流体免受产品损失坚固、封闭的设计为贵重的原料药提供防损坏保护高密度设计减少所需容量,节省宝贵的冷柜空间适用于所有2D一次性袋允许用户保持其冻结/运输/解冻流程,防止流程中断适应部分灌装量,增加了工艺灵活性柔软的3D泡沫镶嵌提供一次性冻存袋的完全固定和振动阻尼,进一步保护敏感化合物一次性产品提供方便的处理并易于回收
  • 冻存袋外盒
    冻存袋外盒介绍 Entegris 为您提供高价值样品过程控制中的保护和存储 解决方案,同时降低产品损失、污染和质量受损的风 险。为了进一步扩展我们的产品组合,我们提供了与 Aramus&trade 一次性袋组件一起使用的 LN2(液氮)盒。 在体积较小的情况下,Aramus 一次性冻存袋袋组件可 以与 LN2 盒结合使用,使其在处理时具有刚性,并在 冷冻、储存和解冻操作期间提供更好的保护。 Aramus 一次性 2D 袋由高品质、伽马稳定的含氟聚合 物制成,可为关键工艺流体和最终产品提供高纯度、 出色的兼容性和更高的安全性保护。创新的单层技术 不含固化剂、抗氧化剂、增塑剂或粘合剂,大大降低 了对过程流体污染的可能性。应用用于生物反应器强化的细胞库 干细胞冷冻保存 原料药或中间体的低温储存 低温产品运输 过程采样和归档特点和优势薄而轻的铝制结构缩短冷冻时间,节省宝贵的冷冻室空间坚硬、耐用的结构提供用于堆叠或架起低温袋的结构,降低处理风险提供标准冻存袋外盒尺寸适用于许多市售的冰柜和架每个盒子都与相应的 Aramus 袋组件几何形状配合使用可定制的 Aramus 包组件允许修改几何形状以优化您应用的表面积与体积比低成本配件低温运输和储存的经济解决方案
  • Second skin乳胶检查手套(加强型微粉麻面)
    柔软、舒适的同时,增强了手套克重,降低了手套的损耗,是款性价比极高的产品。 订货信息 型号 规格 包装 颜色 单位 价格 1203A 乳胶手套.微粉.特小 10盒/箱×100只/盒 淡黄 箱 ¥460.00 1203B 乳胶手套.微粉.小号 10盒/箱×100只/盒 淡黄 箱 ¥460.00 1203C 乳胶手套.微粉.中号 10盒/箱×100只/盒 淡黄 箱 ¥460.00 1203D 乳胶手套.微粉.大号 10盒/箱×100只/盒 淡黄 箱 ¥460.00
  • Aramus&trade 一次性 2D 冻存袋组件
    Aramus&trade 一次性 2D 冻存袋组件一次性(SU)系统的利用率持续增长,SU组件的 纯度问题及其对高价值最终产品的潜在影响也 是如此。从组装失败导致的产品高成本损失到在 不断变化的全球监管环境中保持合规性的挑战, 每个方面都需要采取保护措施。 Entegris为您的流程带来了新的保证水平。我们 设计的Aramus&trade 一次性组装产品将微电子行业 的高纯度、完整性和性能标准与生命科学的法规 和质量要求相结合。Entegris为您提供保护和存 储高价值的工艺解决方案,降低产品损坏、污染 和质量下降的风险。 Aramus&trade 一次性2D袋由伽马稳定强的含氟聚合 物制成,为关键工艺流体和最终成品提供了更高 的纯度、卓越的兼容性和较好的安全性。创新的 单层技术不含固化剂、抗氧化剂和增塑剂或粘合 剂,因此大大降低了工艺流体污染的可能性。这 些部件可承受较宽的工作温度范围(-196℃至 121°C[-321°F至250°F]或更低),而不会对薄膜 产生负面影响,它们在冷冻应用中也非常耐用。 Aramus&trade 一次性组件采用ISO® 5级洁净室制造, 为您的工艺提供高纯度、高性能、高质量和安全 性的保障。应用领域 &bull 冷冻产品的储存和运输 &bull 细胞培养冷冻和储存 &bull 批量产品填充 &bull 关键缓冲区和媒体存储 &bull 流程采样和存档 &bull 下游生物处理功能与优势工作温度范围较宽在各种工艺温度下依旧保持性能。减少袋子破损概率,可在低温应用中使用至-196°C(-321°F)或更低,而不会对袋子或安装产生负面影响。单层, 含氟聚合物结构单层设计不会分层,降低了分层引起的材料故障和产品损失的风险。 与各种化学品表现出较强的兼容性,包括强酸、强碱、油性、脂 质和有机物,而不会影响材料或产品。伽马稳定氟聚合物薄膜可承受25-40 kGy的标准伽马灭菌。高纯度含氟聚合物材料减少引入最终产品的潜在污染物(粘合剂等)的含量含氟聚合物膜的高疏水性减少吸收活性药物成分和关键制剂赋形剂的可能,减少产量损失占比。 具有颗粒含量低,生物负载低和内毒素的表现低,可提高纯度。在经过ISO5级认证的洁净室中制造经过穿着培训和处理程序培训的操作员可加强污染控制。减轻污染并保持低生物负载水平的组件。多种连接选项整合到已经验证的流程中提供更大的灵活性。
  • TORAST-H Bio Vial 样品瓶
    TORAST-H Bio Vial在分析低浓度样品或稀少样品时,TORAST-H Bio Vial 是一个极好的选择。该系列样品瓶采用特殊的表面钝化工艺,有效的避免疏水性物质及离子类物质被样品瓶内表面吸附。产品特色● 有效避免有机物质的吸附● 降低珍贵、稀少样本由于吸附造成的损耗● 特别适用于肽段、碱性物质的存储分析订货信息:TORAST-H Bio Vial 样品瓶● 颜色:未添加 ● 材质:聚丙烯 ● 未灭菌Name货号体积包装TORAST-HTM Bio Vial with cap370-04350-00300μL100pk?● Avoid sunlight and store at room temperature. ● Cap does not have low adsorption treatment.
  • Agilent LC/MS 离子源 G1978B
    产品特点:Agilent LC/MS 离子源用于所有应用的 LC/MS 离子源有效的离子化是成功质谱分析的关键性第一步。安捷伦科技是离子源技术的领导者,我们提供满足各种应用的 LC/MS 离子源。安捷伦的离子源使用如正交雾化等高效技术和高温、对流干燥气,以获得最佳性能、可靠性和使用简便性。安捷伦组合离子源* 在一次运行同时获取正负模式下的电喷雾离子源和大气压化学电离数据,使通量最大化, 消除了重新分析的可能* 通过在 100% 的时间采集两种离子化模式的数据大大减少了数据和灵敏度的损失* 与某一特定离子源中的谱图完全一致* 强大的红外线发射器且允许很宽的液相色谱流动相流速范围,同样,它也能帮助显著降低干燥气的损耗量订购信息:安捷伦组合离子源说明6000 系列部件号旧的 MS 系列部件号组合离子源G1978BG1978A
  • RO膜
    R.O逆渗透膜的脱盐率一般均在95%以上。如一般城市自来水的电导率为0.003M&Omega · cm(300&mu S/cm)左右,通过逆渗透膜过滤后可降低到0.03~0.1M&Omega · cm(10~30&mu S/cm),可大大降低离子交换柱的消耗,提高使用寿命。R.O逆渗透系统因为孔径极小,还可拦截几乎所有的有机物,降低产水中总有机碳(TOC)的值。
  • 多模光纤跳线,FC/PC或SMA接头至裸纤
    多模光纤跳线,FC/PC或SMA接头至裸纤特性一端为裸纤的多模光纤跳线另一端为FC/PC(2.0 mm窄键)或SM905接头多模光纤纤芯?400 μm,跳线长度为3 m?3 mm橘色松套管光纤镀有?730 ± 30 μm Tefzel® 膜可以定制跳线这些多模光纤跳线由FT400EMT阶跃折射率多模光纤构成,一端为FC/PC或SMA905接头,另一端为经过平切的裸纤。库存标准跳线的长度为3 m。FC/PC或SMA905终端具有长为15 cm的?3 mm松套管。跳线的裸纤端镀有?730 ± 30 μm的蓝色Tefzel膜,且平切角为0°。每根跳线包含一个防尘帽,以防灰尘落入FC/PC或SMA905接头或其他损害。其他用于FC/PC终端的CAPF塑料光纤保护帽和CAPFM金属螺纹光纤保护帽,以及用于SMA终端的CAPM塑料光纤保护帽和CAPMM金属螺纹保护帽都单独出售。跳线的平切端包含一个塑料保护套。请注意,这类跳线还不能熔接。不过,使用Thorlabs的Vytran® 切割机和熔接机可将跳线中的光纤熔接到实验装置中。这些跳线不适合需要光纤传输高光功率的应用,因为过高的功率会使接头中使用的环氧树脂受热过度而造成损害。详细信息请看损伤阈值标签。Thorlabs还提供除无接头光纤之外的其他跳线选项,它们可以兼容高功率。下表中包含了相关链接。如果需要长度较短的光纤,Thorlabs推荐使用适合切割大芯径光纤的S90R红宝石光纤刻划刀,以及T21S31光纤剥除工具。我们也提供光纤终端清洁和修理套件。有关光纤抛光和切割的详细步骤和其他信息,请看我们的光纤终端指南。 跳线的裸纤端In-Stock Multimode Fiber Optic Patch Cable SelectionStep IndexGraded IndexFiber BundlesUncoatedCoatedMid-IROptogeneticsSpecialized ApplicationsSMA FC/PC FC/PC to SMA Square-Core FC/PC and SMAAR-Coated SMA HR-Coated FC/PC Beamsplitter-Coated FC/PCFluoride FC and SMALightweight FC/PC Lightweight SMA Rotary Joint FC/PC and SMAHigh-Power SMA UHV, High-Temp. SMA Armored SMA Solarization-Resistant SMAFC/PC FC/PC to LC/PC多模光纤教程在光纤中引导光光纤属于光波导,光波导是一种更为广泛的光学元件,可以利用全内反射(TIR)在固体或液体结构中限制并引导光。光纤通常可以在众多应用中使用;常见的例子包括通信、光谱学、照明和传感器。比较常见的玻璃(石英)纤维使用一种称之为阶跃折射率光纤的结构,如右图所示。这种光纤的纤芯由一种折射率比外面包层高的材料构成。在光纤中以临界角入射时,光会在纤芯/包层界面产生全反射,而不会折射到周围的介质中。为了达到TIR的条件,发射到光纤中入射光的角度必须小于某个角度,即接收角,θacc。根据斯涅耳定律可以计算出这个角:其中,ncore为纤芯的折射率,nclad为光纤包层的折射率,n为外部介质的折射率,θcrit为临界角,θacc为光纤的接收半角。数值孔径(NA)是一个无量纲量,由光纤制造商用来确定光纤的接收角,表示为:对于芯径(多模)较大的阶跃折射率光纤,使用这个等式可以直接计算出NA。NA也可以由实验确定,通过追踪远场光束分布并测量光束中心与光强为zui大光强5%的点之间的角度即可;但是,直接计算NA得出的值更为准确。光纤的全内反射光纤中的模式数量光在光纤中传播的每种可能路径即为光纤的导模。根据纤芯/包层区域的尺寸、折射率和波长,单光纤内可支持从一种到数千种模式。而其中zui常使用两种为单模(支持单导模)和多模(支持多种导模)。在多模光纤中,低阶模倾向于在空间上将光限制在纤芯内;而高阶模倾向于在空间上将光限制在纤芯/包层界面的附近。使用一些简单的计算就可以估算出光纤支持的模(单模或多模)的数量。归一化频率,也就是常说的V值,是一个无量纲的数,与自由空间频率成比例,但被归为光纤的引导属性。V值表示为:其中V为归一化频率(V值),a为纤芯半径,λ为自由空间波长。多模光纤的V值非常大;例如,芯径为?50 μm、数值孔径为0.39的多模光纤,在波长为1.5 μm时,V值为40.8。对于具有较大V值的多模光纤,可以使用下式近似计算其支持的模式数量:上面例子中,芯径为?50 μm、NA为0.39的多模光纤支持大约832种不同的导模,这些模可以同时穿过光纤。单模光纤V值必须小于截止频率2.405,这表示在这个时候,光只耦合到光纤的基模中。为了满足这个条件,单模光纤的纤芯尺寸和NA要远小于同波长下的多模光纤。例如SMF-28超单模光纤的标称NA为0.14,芯径为?8.2 μm,在波长为1550 nm时,V值为2.404。衰减来源光纤损耗,也称之为衰减,是光纤的特性,可以通过量化来预测光纤装置内的总透射功率损耗。这些损耗来源一般与波长相关,因光纤的使用材料或光纤的弯曲等而有所差异。常见衰减来源的详情如下:吸收标准光纤中的光通过固体材料引导,因此,光在光纤中传播会因吸收而产生损耗。标准光纤使用熔融石英制造,经优化可在波长1300 nm-1550 nm的范围内传播。波长更长(2000nm)时,熔融石英内的多声子相互作用造成大量吸收。使用氟化锆、氟化铟等氟氧物玻璃制造中红外光纤,主要是因为它们处于这些波长范围时损耗较低。氟化锆、氟化铟的多声子边分别为~3.6 μm和~4.6 μm。光纤内的污染物也会造成吸收损耗。其中一种污染物就是困在玻璃纤维中的水分子,可以吸收波长在1300 nm和2.94 μm的光。由于通信信号和某些激光器也是在这个区域里工作,光纤中的任意水分子都会明显地衰减信号。玻璃纤维中离子的浓度通常由制造商控制,以便调节光纤的传播/衰减属性。例如,石英中本来就存在羟基(OH-),可以吸收近红外到红外光谱的光。因此,羟基浓度较低的光纤更适合在通信波长下传播。而羟基浓度较高的光纤在紫外波长范围时有助于传播,因此,更适合对荧光或UV-VIS光谱学等应用感兴趣的用户。散射对于大多数光纤应用来说,光散射也是损耗的来源,通常在光遇到介质的折射率发生变化时产生。这些变化可以是由杂质、微粒或气泡引起的外在变化;也可以是由玻璃密度的波动、成分或相位态引起的内在变化。散射与光的波长呈负相关关系,因此,在光谱中的紫外或蓝光区域等波长较短时,散射损耗会比较大。使用恰当的光纤清洁、操作和存储存步骤可以尽可能地减少光纤jian端的杂质,避免产生较大的散射损耗。弯曲损耗因光纤的外部和内部几何发生变化而产生的损耗称之为弯曲损耗。通常包含两大类:宏弯损耗和微弯损耗宏弯损耗造成的衰减微弯损耗造成的衰减宏弯损耗一般与光纤的物理弯曲相关;例如,将其卷成圈。如右图所示,引导的光在空间上分布在光纤的纤芯和包层区域。以某半径弯曲光纤时,在弯曲外半径的光不能在不超过光速时维持相同的空间模分布。相反,由于辐射能量会损耗到周边环境中。弯曲半径较大时,与弯曲相关的损耗会比较小;但弯曲半径小于光纤的推荐弯曲半径时,弯曲损耗会非常大。光纤可以在弯曲半径较小时进行短时间工作;但如果要长期储存,弯曲半径应该大于推荐值。使用恰当的储存条件(温度和弯曲半径)可以降低对光纤造成yong久性损伤的几率;FSR1光纤缠绕盘设计用来zui大程度地减少高弯曲损耗。微弯损耗由光纤的内部几何,尤其是纤芯和包层发生变化而产生。光纤结构中的这些随机变化(即凸起)会破坏全内反射所需的条件,使得传播的光耦合到非传播模中,造成泄露(详情请看右图)。与由弯曲半径控制的宏弯损耗不同,微弯损耗是由制造光纤时在光纤内造成的yong久性缺陷而产生。包层模虽然多模光纤中的大多数光通过纤芯内的TIR引导,但是由于TIR发生在包层与涂覆层/保护层的界面,在纤芯和包层内引导光的高阶模也可能存在。这样就产生了我们所熟知的包层模。这样的例子可在右边的光束分布测量中看到,其中体现了包层模包层中的光强比纤芯中要高。这些模可以不传播(即它们不满足TIR的条件),也可以在一段很长的光纤中传播。由于包层模一般为高阶模,在光纤弯曲和出现微弯缺陷时,它们就是损耗的来源。通过接头连接两个光纤时包层模会消失,因为它们不能在光纤之间轻松耦合。由于包层模对光束空间轮廓的影响,有些应用(比如发射到自由空间中)中可能不需要包层模。光纤较长时,这些模会自然衰减。对于长度小于10 m的光纤,消除包层模的一种办法就是将光纤缠绕在半径合适的芯轴上,这样能保留需要的传播模式。在FT200EMT多模光纤与M565F1 LED的光束轮廓中,展现了包层而不是纤芯引导的光。入纤方式多模光纤未充满条件对于在NA较大时接收光的多模光纤来说,光耦合到光纤的的条件(光源类型、光束直径、NA)对性能有着极大影响。在耦合界面,光的光束直径和NA小于光纤的芯径和NA时,就出现了未充满的入纤条件。这种情况的常见例子就是将激光光源发射到较大的多模光纤。从下面的图和光束轮廓测量可以看出,未充满时会使光在空间上集中到光纤的中心,优先充满低阶模,而非高阶模。因此,它们对宏弯损耗不太敏感,也没有包层模。这种条件下,所测的插入损耗也会小于典型值,光纤纤芯处有着较高的功率密度。展示未充满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤过满条件在耦合界面,光束直径和NA大于光纤的芯径和NA时就出现了过满的情况。实现这种条件的一个方法就是将LED光源的光发射到较小的多模光纤中。过满时会将整个纤芯和部分包层裸露在光中,均匀充满低阶模和高阶模(请看下图),增加耦合到光纤包层模的可能性。高阶模比例的增加意味着过满光纤对弯曲损耗会更为敏感。在这种条件下,所测的插入损耗会大于典型值,与未充满光纤条件相比,会产生较高的总输出功率。 展示过满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤未充满或过满条件各有优劣,这取决于特定应用的要求。如需测量多模光纤的基准性能,Thorlabs建议使用光束直径为光纤芯径70-80%的入纤条件。过满条件在短距离时输出功率更大;而长距离(10 - 20 m)时,对衰减较为敏感的高阶模会消失。键槽对准FC/PC和FC/APC跳线键槽对准FC/PC和FC/APC跳线带有2.0 mm窄键或2.2 mm宽键,可以插入匹配元件对应的槽中。键槽对准对于正确对齐所连光纤跳线的纤芯至关重要,能够zui大程度地减少连接的插入损耗。例如,Thorlabs精心设计和制造用于FC/PC和FC/APC终端跳线的匹配套管,以确保正确使用时能够实现良好的对准。为了达到zui佳对准,需将跳线上的对准键插入对应匹配套管上的槽中。Thorlabs提供带有2.2 mm宽键槽或2.0 mm窄键槽的匹配套管。宽键槽匹配套管2.2 mm宽键槽匹配套管兼容宽键和窄键接头。但是,将窄键接头插入宽键槽时,接头可在匹配套管内轻微旋转(如左下方的动画所示)。这种配置对于FC/PC接头的跳线是可以接受的,但对于FC/APC应用,我们还是建议使用窄键槽匹配套管,以实现zui优对准。窄键槽匹配套管2.0 mm窄键槽匹配套管能够实现带角度窄键FC/APC接头的良好对准,如右下方的动画所示。因此,它们不兼容具有2.2 mm宽键的接头。请注意,Thorlabs制造的所有FC/PC和FC/APC跳线都使用窄键接头。宽键匹配套管和接头之间的匹配窄键匹配套管和接头之间的匹配 宽键槽匹配套管和窄键接头窄键接头插入宽键槽匹配套管之后,接头还有旋转空间。对于窄键FC/PC接头而言,这一点可以接受,但对于窄键FC/APC接头而言,这会产生很大的耦合损耗。 损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤 空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2 = Pi x (1.5μm)2 = 7.07 μm2= 7.07 x 10-8cm2 SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber: 7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (实际安全水平)SMF-28 Ultra Fiber: 8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理论损伤阈值) 8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。 光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗S90RM119L03FC/PCb toFlat Cleave不锈钢插芯陶瓷插芯产品型号公英制通用M118L03
  • 平凸型柱镜
    圆柱透镜圆柱透镜能在一个维度上聚焦或展开光。典型应用包括激光扫描仪,全息,光学信息处理/计算,光谱学,染料激光和扫描共焦显微镜。CVI激光光学柱面透镜制造精度高,损伤阈值高,能在工业,OEM和研究应用中的高激光功率条件下保证元件的性能。这些精密镜头具有高表面精度,能达到20-10表面质量,能理想应用于大功率激光和降低散射以获得更好的信号噪声性能的应用。可镀宽带增透膜,支持定制。平凸型柱镜用于在一个维度上聚光。 正柱面透镜可以将输入准直光聚焦到一条线上,将光点变换为线图像或改变图像的纵横比。 适用于激光线聚焦,激光投影,光束整形以及狭缝和线检测器阵列的照明。透镜材料N-BK7和熔融石英。表面质量10-10。波段:193nm-1550nm。损伤阈值:10 J/cm2, 20 nsec, 20 Hz @ 1064 nm提供高能量低损耗的增透膜。镀膜后透过率大于99%。
  • 多模光纤旋转接头跳线
    多模光纤旋转接头跳线特性铰接式旋转接头可以防止扭转时对光纤的损坏?200微米或400微米纤芯的多模光纤可选SMA905或FC/PC(2.0 mm窄键)接头可定制跳线转动极其平滑SM05螺纹(0.535"-40)旋转接头用于固定安装Thorlabs的多模(MM)光纤旋转接头跳线是任何需要旋转一个光纤接头的实验的整体式解决方案。内置的旋转接头允许连接在旋转节上的光缆自由转动,而保持其它光缆不动,从而降低实验中发生损伤的危险。相比将旋转接头和跳线分离的方案,无透镜设计使插入损耗更低,旋转透射变化更小。这种旋转接头经过精密加工,并带有密封轴承,可以进行极其平滑的转动,具有很长的使用寿命以及在转动时的低信号强度振动特性。该旋转接头具有SM05(0.535英寸-40)安装螺纹,可以兼容我们的?1/2英寸光学元件安装座。使用我们的C059TC夹具,通过卡入式安装这些跳线,可以快速安装连接器?0.59英寸的主体。这些跳线采用FT200EMT型?200 μm纤芯或FT400EMT型?400 μm纤芯、数值孔径0.39的光纤。有一种1米长光纤,它的旋转接头两侧有标准的FT020橙色套管,光纤端是一个FC/PC或SMA接头。每一根旋转接头跳线包括两个保护盖,用于防止灰尘和其它有害物质落入插芯端。额外的用于SMA接头的CAPM橡胶或CAPMM金属盖,以及用在FC/PC接头的CAPF塑料或CAPFM金属盖也可单独购买。相比未端接的光纤,这些跳线的zui大功率因连接而受到限制。光遗传学我们也供应用于光遗传学的旋转接头跳线。它们用在该领域是因为它们对运动样品提供便利。这些跳线不同之处是它们带低剖面金属头的更轻的黑色插芯,在旋转接头的样品一侧插入针头连接。它们为连接光源和移植的光针头提供完整方案,并且兼容Thorlabs所有光源和光遗传学设备。Thorlabs供应用于活体刺激的齐全的光遗传学设备,包括:用于光遗传学的可移植光纤针头、光纤跳线和旋转接头跳线以及LED和激光光源。 旋转接头上的SM05外螺纹兼容我们的SM05螺纹元件安装座,比如这里的LMR05透镜安装座。旋转接头在两个光纤的金属套管紧邻处采用尾部耦合设计减少插入损耗定制旋转接头跳线旋转接头跳线的光纤引线为yong久性连接到旋转接头上,以保证更高的性能,并且提供整体式的光纤光学元件解决方案。为了和更广范围的实验装置,我们还提供定制具有不同纤芯和NA的光纤的旋转接头跳线。我们还可以制造不同接头或者不同长度光纤的跳线。为了能够达到zui佳性能,我们建议纤芯直径为200微米或更大的光纤。In-Stock Multimode Fiber Optic Patch Cable SelectionStep IndexGraded IndexFiber BundlesUncoatedCoatedMid-IROptogeneticsSpecialized ApplicationsSMA FC/PC FC/PC to SMA Square-Core FC/PC and SMAAR-Coated SMA HR-Coated FC/PC Beamsplitter-Coated FC/PCFluoride FC and SMALightweight FC/PC Lightweight SMA Rotary Joint FC/PC and SMAHigh-Power SMA UHV, High-Temp. SMA Armored SMA Solarization-Resistant SMAFC/PC FC/PC to LC/PC规格SpecificationsItem #RJPS2RJPF2RJPS4RJPF4Connector TypeSMA (10230Aa)FC/PC (30230C1b)SMA (10440Aa)FC/PC (30440C1b)Fiber TypeFT200EMTFT400EMTFiber Core Size?200 μm?400 μmFiber NA0.39 ± 0.02Wavelength Range400 - 2200 nmLength1 m on Both Sides of Rotary JointFiber Jacket?2 mm, Orange (FT020)Rotary Joint SpecificationsInsertion Loss Through Rotary Joint 2.0 dB (Transmission 63%)Variation in Insertion Loss During Rotation±0.4 dB (Transmission ±8%)Start-Up Torque 0.01 N?mRPM (Max)c10,000Lifetime Cycle200 - 400 Million RevolutionsOperating Temperature 50 °Ca. 与用于?2 mm套管的190088CP消应力套管连接。b. 与用于?2 mm套管的190066CP消应力套管连接。c. 仅针对旋转接头部分中的轴承所测的数据。光纤规格Item #Fiber TypeNACore / CladdingCore DiameterCladding DiameterCoating DiameterMax Core OffsetBend Radius (Short Term / Long Term)RJPF2 and RJPS2FT200EMT0.39 ± 0.02Pure Silica / TECS Hard Cladding200 ± 5 μm225 ± 5 μm500 ± 30 μm5 μm9 mm / 18 mmRJPF4 and RJPS4FT400EMT400 ± 8 μm425 ± 10 μm730 ± 30 μm7 μm20 mm / 40 mm多模光纤教程在光纤中引导光光纤属于光波导,光波导是一种更为广泛的光学元件,可以利用全内反射(TIR)在固体或液体结构中限制并引导光。光纤通常可以在众多应用中使用;常见的例子包括通信、光谱学、照明和传感器。比较常见的玻璃(石英)纤维使用一种称之为阶跃折射率光纤的结构,如右图所示。这种光纤的纤芯由一种折射率比外面包层高的材料构成。在光纤中以临界角入射时,光会在纤芯/包层界面产生全反射,而不会折射到周围的介质中。为了达到TIR的条件,发射到光纤中入射光的角度必须小于某个角度,即接收角,θacc。根据斯涅耳定律可以计算出这个角:其中,ncore为纤芯的折射率,nclad为光纤包层的折射率,n为外部介质的折射率,θcrit为临界角,θacc为光纤的接收半角。数值孔径(NA)是一个无量纲量,由光纤制造商用来确定光纤的接收角,表示为:对于芯径(多模)较大的阶跃折射率光纤,使用这个等式可以直接计算出NA。NA也可以由实验确定,通过追踪远场光束分布并测量光束中心与光强为zui大光强5%的点之间的角度即可;但是,直接计算NA得出的值更为准确。光纤的全内反射光纤中的模式数量光在光纤中传播的每种可能路径即为光纤的导模。根据纤芯/包层区域的尺寸、折射率和波长,单光纤内可支持从一种到数千种模式。而其中zui常使用两种为单模(支持单导模)和多模(支持多种导模)。在多模光纤中,低阶模倾向于在空间上将光限制在纤芯内;而高阶模倾向于在空间上将光限制在纤芯/包层界面的附近。使用一些简单的计算就可以估算出光纤支持的模(单模或多模)的数量。归一化频率,也就是常说的V值,是一个无量纲的数,与自由空间频率成比例,但被归为光纤的引导属性。V值表示为: 其中V为归一化频率(V值),a为纤芯半径,λ为自由空间波长。多模光纤的V值非常大;例如,芯径为?50 μm、数值孔径为0.39的多模光纤,在波长为1.5 μm时,V值为40.8。对于具有较大V值的多模光纤,可以使用下式近似计算其支持的模式数量:上面例子中,芯径为?50 μm、NA为0.39的多模光纤支持大约832种不同的导模,这些模可以同时穿过光纤。单模光纤V值必须小于截止频率2.405,这表示在这个时候,光只耦合到光纤的基模中。为了满足这个条件,单模光纤的纤芯尺寸和NA要远小于同波长下的多模光纤。例如SMF-28超单模光纤的标称NA为0.14,芯径为?8.2 μm,在波长为1550nm时,V值为2.404。衰减来源光纤损耗,也称之为衰减,是光纤的特性,可以通过量化来预测光纤装置内的总透射功率损耗。这些损耗来源一般与波长相关,因光纤的使用材料或光纤的弯曲等而有所差异。常见衰减来源的详情如下:吸收标准光纤中的光通过固体材料引导,因此,光在光纤中传播会因吸收而产生损耗。标准光纤使用熔融石英制造,经优化可在波长1300 nm-1550 nm的范围内传播。波长更长(2000nm)时,熔融石英内的多声子相互作用造成大量吸收。使用氟化锆、氟化铟等氟氧物玻璃制造中红外光纤,主要是因为它们处于这些波长范围时损耗较低。氟化锆、氟化铟的多声子边分别为~3.6 μm和~4.6 μm。光纤内的污染物也会造成吸收损耗。其中一种污染物就是困在玻璃纤维中的水分子,可以吸收波长在1300 nm和2.94 μm的光。由于通信信号和某些激光器也是在这个区域里工作,光纤中的任意水分子都会明显地衰减信号。玻璃纤维中离子的浓度通常由制造商控制,以便调节光纤的传播/衰减属性。例如,石英中本来就存在羟基(OH-),可以吸收近红外到红外光谱的光。因此,羟基浓度较低的光纤更适合在通信波长下传播。而羟基浓度较高的光纤在紫外波长范围时有助于传播,因此,更适合对荧光或UV-VIS光谱学等应用感兴趣的用户。散射对于大多数光纤应用来说,光散射也是损耗的来源,通常在光遇到介质的折射率发生变化时产生。这些变化可以是由杂质、微粒或气泡引起的外在变化;也可以是由玻璃密度的波动、成分或相位态引起的内在变化。散射与光的波长呈负相关关系,因此,在光谱中的紫外或蓝光区域等波长较短时,散射损耗会比较大。使用恰当的光纤清洁、操作和存储存步骤可以尽可能地减少光纤jian端的杂质,避免产生较大的散射损耗。弯曲损耗因光纤的外部和内部几何发生变化而产生的损耗称之为弯曲损耗。通常包含两大类:宏弯损耗和微弯损耗。宏弯损耗造成的衰减微弯损耗造成的衰减宏弯损耗一般与光纤的物理弯曲相关;例如,将其卷成圈。如右图所示,引导的光在空间上分布在光纤的纤芯和包层区域。以某半径弯曲光纤时,在弯曲外半径的光不能在不超过光速时维持相同的空间模分布。相反,由于辐射能量会损耗到周边环境中。弯曲半径较大时,与弯曲相关的损耗会比较小;但弯曲半径小于光纤的推荐弯曲半径时,弯曲损耗会非常大。光纤可以在弯曲半径较小时进行短时间工作;但如果要长期储存,弯曲半径应该大于推荐值。使用恰当的储存条件(温度和弯曲半径)可以降低对光纤造成yong久性损伤的几率;FSR1光纤缠绕盘设计用来zui大程度地减少高弯曲损耗。微弯损耗由光纤的内部几何,尤其是纤芯和包层发生变化而产生。光纤结构中的这些随机变化(即凸起)会破坏全内反射所需的条件,使得传播的光耦合到非传播模中,造成泄露(详情请看右图)。与由弯曲半径控制的宏弯损耗不同,微弯损耗是由制造光纤时在光纤内造成的yong久性缺陷而产生。包层模虽然多模光纤中的大多数光通过纤芯内的TIR引导,但是由于TIR发生在包层与涂覆层/保护层的界面,在纤芯和包层内引导光的高阶模也可能存在。这样就产生了我们所熟知的包层模。这样的例子可在右边的光束分布测量中看到,其中体现了包层模包层中的光强比纤芯中要高。这些模可以不传播(即它们不满足TIR的条件),也可以在一段很长的光纤中传播。由于包层模一般为高阶模,在光纤弯曲和出现微弯缺陷时,它们就是损耗的来源。通过接头连接两个光纤时包层模会消失,因为它们不能在光纤之间轻松耦合。由于包层模对光束空间轮廓的影响,有些应用(比如发射到自由空间中)中可能不需要包层模。光纤较长时,这些模会自然衰减。对于长度小于10 m的光纤,消除包层模的一种办法就是将光纤缠绕在半径合适的芯轴上,这样能保留需要的传播模式。在FT200EMT多模光纤与M565F1 LED的光束轮廓中,展现了包层而不是纤芯引导的光。入纤方式多模光纤未充满条件对于在NA较大时接收光的多模光纤来说,光耦合到光纤的的条件(光源类型、光束直径、NA)对性能有着极大影响。在耦合界面,光的光束直径和NA小于光纤的芯径和NA时,就出现了未充满的入纤条件。这种情况的常见例子就是将激光光源发射到较大的多模光纤。从下面的图和光束轮廓测量可以看出,未充满时会使光在空间上集中到光纤的中心,优先充满低阶模,而非高阶模。因此,它们对宏弯损耗不太敏感,也没有包层模。这种条件下,所测的插入损耗也会小于典型值,光纤纤芯处有着较高的功率密度。展示未充满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤过满条件在耦合界面,光束直径和NA大于光纤的芯径和NA时就出现了过满的情况。实现这种条件的一个方法就是将LED光源的光发射到较小的多模光纤中。过满时会将整个纤芯和部分包层裸露在光中,均匀充满低阶模和高阶模(请看下图),增加耦合到光纤包层模的可能性。高阶模比例的增加意味着过满光纤对弯曲损耗会更为敏感。在这种条件下,所测的插入损耗会大于典型值,与未充满光纤条件相比,会产生较高的总输出功率。展示过满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤未充满或过满条件各有优劣,这取决于特定应用的要求。如需测量多模光纤的基准性能,Thorlabs建议使用光束直径为光纤芯径70-80%的入纤条件。过满条件在短距离时输出功率更大;而长距离(10 - 20 m)时,对衰减较为敏感的高阶模会消失。损伤阀值激光诱导的光纤损伤Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值ConnectorsJacketRJPS2FT200EMT200 ± 5 μm225 ± 5 μm0.399 mm / 18 mm
  • MPI晶圆测试配件TITAN&trade 探针
    产品概要:MPI公司通过引入独特的TITAN-RC探针来扩展RF TITAN探针的系列。新的探针模型的特点是触头宽度减小了33%,减小到20μm,TITAN-RC探针与进一步减小RF器件和IC的焊盘尺寸的行业趋势完全吻合,大大降低了下一代商用RF和毫米波硅器件和IC的测试成本,它可以为铝焊盘金属化小至30 x 35μm的硅器件获得准确且可重复的测量结果。基本信息: ME MS技巧 MPI TITAN&trade 探针经过精准制造,具有完美匹配的50Ω的MEMS触点。由于出色的探头电气特性(最小的插入损耗和串扰以及高的回波损耗),它们可确保在较宽的频率范围内提供无与伦比的校准和测量结果。 独特的接触结构与市场上的其他针尖不同,由于独特的突起式针尖设计,MPI TITAN&trade RF探头可提供出色的实时可视性。首次,即使对于没有经验的操作人员,也无需使用探头对准标记,就可以将RF探头高精度地定位在校准标准件或DUT 上。技术优势:1、提供宽范围的Probe选择:DC-220Ghz2、单双信号规格3、针距范围 50 μm 至 1250 μm4、至高 10 瓦功率型射频组件的特性量测5、TITAN-RC版本探针具有GSG尖端配置,探针间距为50μm至150μm应用方向:应用于晶圆校准和测量。
  • VSS200掺铒光纤
    VSS200系列-掺铒光纤量青光电代理的Verrillon VSS200系列掺铒光纤光纤有多种设计形式,可以是多模也可以是单模,可以单涂层也可以多种复合涂层。包含:Polyimide, Silicone-PFA,和 Carbon,这些都可以多种复合涂层。 Verrillon 碳涂层(Carbon-coated)光纤相比较一般商业类型光纤具有超高的密封性。Verrillon还可以根据客户的要求提供多支密封光纤加金属套管服务。 特征:l 高数值孔径设计,低弯曲损耗。l 降低噪音系数。l 在EDFA上的优越性能。 产品参数:
  • 溶出度仪沉降篮篮子储存器
    月旭为美国QLA公司在中国区的总代理,溶出度仪的各关键组成配件产品,均可以提供符合各种法规、匹配各品牌厂家溶出仪的全系列规格。各种材质、各种尺寸,欢迎来电垂询!我们提供一个非常方便的存储器用来存储未在使用的篮子,因此极大的降低了篮子的损坏。 优势:1、能够满足各种主流溶出仪品牌(Agilent, Distek, Erweka,Hanson, Pharmatest, Sotax,Riggtek)的篮子;2、满足USP测试要求,保证篮子不发生变形和弯曲;3、O型圈保证篮子紧紧的贴在存储器上,而不至于滑落;4、完全可以叠起存放,不至于占用太多的存储空间;5、成本 费用仅仅是损坏一个篮子的价格。
  • SHP-16二元高压梯度泵
    SHP-16二元高压梯度泵适用于高通量快速检测。具有更高的耐压,配合100Hz的采样频率和高精度进样器,可以充分提高分析效率,降低溶剂损耗,SHP-16二元高压梯度泵配合高性能比例阀能够实现准确的流量输出和梯度精度,稳定的压力控制可以将压力脉动控制在10psi以内,从而得到更优良的定性重复性,同时内置后冲洗组件可以清洗柱塞杆上残留的盐结晶,延长密封圈的使用寿命,有效控制维护费用。
  • Metcal 的 GT 系列焊接系统
    Metcal 的 GT 系列焊接系统是使用感应式加热技术的可调温产品。事实证明,这款产品, 只需要 120W 的功率就可以超过市场上 250W 功率的产品 (功率超出35%) 。相较于电阻式加热, 这款产品优异的性能,让生产线上的操作员在使用时, 不但可以提升绩效,还可以使用分体式烙铁头来降低生产成本。除此之外,如果优先考虑加热性能,GT 系统也兼容一体式烙铁头,以满足高热能的需求。 在电子产品的生产中,工程师在评估手工焊接产品性能时,需要特别关注三个关键系数 : 升温时间、焊接时间和回温时间。这三个系数将定义生产线上适合使用的产品, 并有助于在生产过程中大幅提升产能和降低废品的产生。 升温时间是通过烙铁在开始使用时的加热速度,或者是它“醒来”并从支架中取出的时间来判定。升温时间至关重要是因为生产时间每天都可能因为它而流失。市场上很多的焊接产品初始升温需要 10 秒的时间,这样 会导致生产效率低下。扩展到一个 (或多个) 班次中,可以很明显的看出,很多时间会因为等待升温而浪费。 焊接时间有时被称为温度稳定性,取决于焊接一个特定的焊点需要多久。当烙铁头与焊点接触时,温度稳定性直接关系到烙铁头在焊接过程中由于热传导而损失热能的同时,如何保持稳定的温度。在此过程中,性能较差的产品,温度会明显下降,并且很难恢复到需求温度,从而延长了整个焊接过程。在对热能需求较高的应用中尤其如此。 回温时间是指烙铁头在完成一个焊点后返回到设定温度并准备好开始下一个焊点的时间。类似升温时间,回温时间在不同的模组之间也会产生较大的差异,从而导致一天损失 10 秒至几小时的生产时间。 在评估性能时,大多数工程师首先考虑的是主机的功率。虽然在外部条件完全相同的情况下,150W 的产品性能会胜过 75W 的产品,但外部条件完全相同的情况出现的机率很小。会影响这一变量的因素还包括加热体与烙铁头相距的位置,加热技术的类型,甚至相同的加热技术在工艺设计上的差异。因此,产品的功率只是其中一个考量因素。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制