当前位置: 仪器信息网 > 行业主题 > >

韧性

仪器信息网韧性专题为您整合韧性相关的最新文章,在韧性专题,您不仅可以免费浏览韧性的资讯, 同时您还可以浏览韧性的相关资料、解决方案,参与社区韧性话题讨论。

韧性相关的资讯

  • 如何应对极端天气 专家:提升城市韧性
    应对自然灾害是国际社会面临的共同挑战,也是全球重点关注的民生问题,与日常生活以及社会发展息息相关。近日,在成都举行的灾害科学与灾害治理论坛,聚焦了全球面临的重大自然灾害风险和挑战这一议题,设置了气候变化灾害效应及其应对、重大自然灾害物理机制与动力过程、自然灾害风险管理、防灾减灾与可持续发展等四个专题板块,邀请了7个国家的18位世界知名科学家作主题报告。该论坛也是第四届世界科技与发展论坛16场平行论坛之一。中国科学院院士、巴基斯坦科学院外籍院士崔鹏表示,近年来,受极端天气影响,全球自然灾害发生频率显著增加,灾害影响日趋严重,希望通过国际科学界的携手合作,共同加强灾害科学基础理论研究,推动国际防灾减灾领域的对话合作,传播灾害风险最新认知,交流灾害风险防范经验,促进应对自然灾害能力的提升,共建安全、韧性、绿色、可持续的“宜居地球”和“人类命运共同体”,服务人居环境安全与社会经济高质量发展,助力打造新安全格局和新发展格局。当天,围绕着近几年出现的极端天气情况,多位专家对于其带来的影响、灾害的规律以及应对的措施提出自己的看法。“2020年江淮超强梅雨及长江流域性大洪水、郑州2021年7.20特大暴雨洪涝、2022年长江流域百年不遇的严重干旱,反映出在全球变化的大背景下,极端天气水文事件呈现出增多趋强的趋势。”中国工程院院士张建云表示,正是因为全球变暖改变了全球大气环流,加强了水循环过程,夏季风增强,为这些极端天气水文事件的发生提供了有利的气候背景。应对气候变化,他认为,要积极采取减排措施,尽快实现“双碳目标”,减缓气候变化的影响。同时加强能力建设,强化流域城市防洪除涝和供水等基础设施,提升承载体应对极端灾害的韧性。对于长江极端干旱灾害的孕育与发生,中国科学院院士夏军表示,既有自然气候演变的随机性,也有全球气候变化的影响,机制复杂。“需要多学科联合探索研究,提高认知预测能力,同时在不确定的情况下,要进一步加强适应性管理应对措施,来减少灾害的损失。”其中,工程措施和非工程措施的结合非常重要,缺一不可。既要有国家水网水库群的工程措施,也要有预警预报、调度及保险和法规组成的非工程措施。“同时加强多部门的协同创新和合作,提高预测能力,积极推动大坝安全前提下的动态汛限水位条例的改进,提升应对水旱灾害的综合管理能力,进而推动中国和全球水文气象及防灾减灾的科学发展与进步。”夏军表示。据悉,第四届世界科技与发展论坛由中国科学技术协会、中国科学院、中国工程院和四川省政府联合主办,成都市政府承办。灾害科学与灾害治理论坛围绕“认识灾害风险,营造宜居地球”的主题,旨在促进灾害科学基础研究,推动全球防灾减灾科技协同,有效应对自然灾害风险,营造安全、绿色、韧性的人居环境。
  • ACCSI 2023多方共议:科学仪器如何赋能强韧性城市
    仪器信息网讯 “韧性城市”写入“十四五”规划和2035年远景目标纲要,这是我国五年规划中首次提及“韧性城市”这一概念。北京市提出到2025年建成50个韧性社区、韧性街区或韧性项目,形成可推广、可复制的韧性城市建设经验;全国两会上,人大代表围绕加强韧性城市建设、提高城市防内涝综合能力提交建议……近年来,建设韧性城市受到越来越多关注,提高城市韧性、增强抗风险能力,正成为现代城市建设管理的重大课题。如何通过科学仪器技术赋能,筑牢城市生命线?由仪器信息网(www.instrument.com.cn)主办,中国仪器仪表学会分析仪器分会、南京市产品质量监督检验院、我要测网(woyaoce.cn)、北京怀柔仪器和传感器有限公司等单位协办,中国仪器仪表行业协会、中国仪器仪表学会等单位支持的“韧性城市发展论坛”于5月19日在怀柔召开。作为第十六届中国科学仪器发展年会(ACCSI2023)同期活动,北京市、怀柔区及怀柔科学城管委会相关领导、相关委办局分管领导、怀柔区韧性城市建设相关参与单位代表、ACCSI2023参展科学仪器行业相关厂商等汇聚一堂,通过报告演讲、圆桌讨论、现场互动等形式,围绕“韧性城市”建设过程中,科学仪器行业能够发挥的作用,以及韧性城市建设赋能产业发展等议题进行探讨,共同为科技赋能城市更新,构建强韧性城市保障体系献计献策。论坛现场北京市怀柔区应急管理局副局长李长富主持论坛北京市怀柔区经济和信息化局局长杨惠芬论坛伊始,北京市怀柔区经济和信息化局局长杨惠芬开场致辞,并向与会领导和嘉宾表示诚挚欢迎。她表示,韧性城市建设已成为发展传感器产业的重要抓手。未来,怀柔区将坚持生态文明理念,坚持全面创新改革,深度推动科技与经济、科技与城市有机融合,加快传感器产业迭代升级,打造未来城市发展新典范。希望与会嘉宾今后可以更多参与到怀柔区建设中,成为推动怀柔韧性城市示范区和传感器产业全面高质量发展的重要力量。北京市应急管理局党委委员、副局长、一级巡视员刘斌北京市应急管理局党委委员、副局长、一级巡视员刘斌发表致辞称,北京市已完成韧性城市顶层设计,并将怀柔区作为全市唯一区级试点,希望怀柔区在建设韧性城市过程中持续发力、不断创新,形成更加高效和顺畅的协调发展机制,力争早日建成“怀柔模式”样本,将怀柔经验推广到全市,为建设更高水平的平安北京,保障人民生命财产安全提供坚实保障。清华大学公共安全研究院首席科学家苏国锋在韧性城市发展报告环节,清华大学公共安全研究院首席科学家苏国锋就《城市生命线安全监测预警》这一话题作主题报告。他向与会嘉宾阐述道,清华大学公共安全研究院团队在国家部委和地方省市的鼎力支持下,充分发挥产学研体系化优势,将城市生命线、安全韧性城市等城市安全理论研究、工程示范应用、仪器装备和传感器研发作为重点工作任务,突破城市安全和传感器技术领域“卡脖子”技术,创新研发并在多个城市落地实施城市生命线安全监测和韧性城市建设工程体系,提供系统性、可复制、可推广的解决方案。今后研究院将进一步加大技术和模式创新,为新时代城市安全建设提供坚实科研和技术保障。辰安科技高级副总裁吴鹏辰安科技高级副总裁吴鹏以《用科技赋能城市更新,构建强韧性的城市安全保障体系》为题发表演讲。他表示,辰安科技不断探索韧性城市发展模式,致力打造可复制、可推广的标杆案例,正面向全国推广应用。团队去年在怀柔区应急、区城管、区消防救援支队以及区经信局的大力支持下已经完成怀柔区韧性城市一期建设,重点建设燃气安全专项、消防安全专项两大应用场景和韧性城市技术迭代平台和综合运行监测中心,组建了一支专业的运营服务队伍。今后辰安科技将加强与产业上下游企业的合作互动,加强技术迭代平台赋能,充分依托怀柔韧性城市应用场景示范基地,全面推进韧性城市场景建设。清华大学公共安全研究院副研究员孙占辉清华大学公共安全研究院副研究员孙占辉从创新技术的角度阐述了韧性城市基层治理在怀柔区的实践案例。他先是分享了怀柔韧性城市一期建设成果,之后从理念、制度、技术迭代、服务、成效和未来拓展方向多个维度详细介绍了怀柔基层治理模式创新经验。他表示,以韧性城市建设为基础、以城市运行监测为抓手、以基层服务为支撑,建设具有怀柔特色的综合性、全方位、系统性、现代化的城市安全保障体系,通过韧性城市建设带动相关高端仪器和传感器产业聚集发展,不断增强人民群众的获得感、幸福感、安全感。在嘉宾演讲环节,以《城市燃气事故零死亡目标及实现路径》为题,中国城市燃气协会副秘书长马长城带来行业知识分享;北京市科学技术研究院科研处处长朱伟研究员发表题为《数字化技术推进韧性城市建设路径研究与应用》的主题报告;西人马联合测控科技有限公司董事长聂泳忠从企业角度分享了智能传感器与数据采集器赋能新测控技术的创新成果与应用实践。在最后的圆桌论坛环节,行业专家和企业代表围绕“韧性城市建设赋能产业发展”主题,从韧性城市前沿理论、工程实践以及未来产业发展方向等方面分享前沿观点、碰撞思维火花。清华大学公共安全研究院研究员陈涛、北京埃德尔博珂工程技术有限公司 CEO毋焱、华为OpenHarmony 使能部副部长陈鹏、埃睿迪信息技术(北京)有限公司总裁王燕为发言嘉宾,辰安城市智能副总经理曹诗嘉主持。清华大学公共安全研究院研究员陈涛教授指出,韧性城市概念大、涉及范围广,将会对传感器应用及其他产业带来具有更大想象力的拉动空间与带动作用。同时,韧性城市作为巨大的科技试验场,对传感器的技术产品亦提出了高标准、严要求,从根本上促进了传感器产业的技术迭代创新。从大的层面来看,韧性城市是一个全面数字化的过程,未来将会大幅提升城市安全保障能力和人民幸福指数,继而对数字中国建设形成有效助力。论坛现场,辰安科技下属子公司辰安城市智能与北京市长城伟业投资开发有限公司 、芯怀视界(北京)科技有限公司、北京新敏兴业环境科技有限公司、北京慧达智造科技发展有限责任公司、北京市万智生科技有限公司分别签订战略合作协议,旨在共同推动韧性城市和传感器产业的高质量发展与融合共建,进一步打造开放包容的城市安全建设生态体系。韧性城市示范项目旨在通过深入构建全方位、多尺度、立体化的韧性城市,丰富仪器设备和传感器产业在监测预警、防灾减灾、应急救援、城市管理、生态环境等诸多环节领域的应用场景和内涵。怀柔区坚持场景驱动,紧扣市场需求,立足北京、面向全国,聚焦怀柔韧性城市应用场景建设,搭建底层共性技术迭代平台,创建技术与市场相结合的商业模型,建立产业物联网与消费互联网的交汇,形成以场景促产业发展的新模式,带动以龙头企业为牵引的上下游产业集聚发展,助力怀柔高端仪器和传感器产业集聚区建设。
  • 美国FTC质构仪对牛肉棒的韧性检测
    牛肉棒的韧性检测(量化硬度韧性等质构特征与消费者可接受的咬、嚼和撕度紧密关联)检测背景:一家大型牛肉条和牛肉干生产商正在寻找一种可量化的、一致的方法来测量并最终更好地控制其产品的质地。目前的方法只涉及简单的视觉检查和非常主观的人类感官评价。制造商收到了消费者的投诉,说有些牛肉棒咬起来太难嚼了。制造商需要为他们的理想产品制定一个基准参考或标准,以便他们可以比较其他产品(如太耐嚼)。在我们测试之前,他们只使用感官分析来确定产品的咬合力,然而,他们想要一种方法来量化数据并可视化口味的差异以及理想样品和不理想样品的差异。一种一致和可重复的测量和控制质构的方法是必不可少的。测试结果:所有测试都是使用TMS-Pro进行的,TMS-Pro带有250N测压元件和剪切刀片夹具,采用Warrner-Bratzlerdesign,这是评估肉制品韧性的行业标准。底部的图表展示了从4种不同牛肉棒产品的运行样本中收集的数据。图表显示了4种口味之间的显著差异。在对每种口味进行多次测试后,制造商可以得到该特定口味的“标准”或基线。然后,他们可以将这个数字(峰值力)与被认为“太有嚼劲”的产品进行比较。实验结论:快速和简单的测试,给出可重复的,客观的结果,几乎实时处理客户现在将有一种量化的方式来显示配方变化造成的纹理差异
  • YJL006金属韧性试验技术培训人员参观纳克基地
    中实国金国际实验室能力验证研究中心于2007年9月17—19日在首都体育馆宾馆举办了YJL006金属韧性试验技术培训班,参加培训的人员参观了纳克永丰生产基地,并现场观看了我公司仪器化冲击试验机、断口图象分析仪的应用演示。 国际钢铁工业分析委员会主席王海舟教授出席开课仪式并致辞。国家钢铁材料委员会委员、多项力学标准的起草人梁兴邦教授、全国试验机标准化技术委员会委员王春华教授以及国家钢铁材料测试中心张庄教授担任授课教师。 此次培训包括:YJL006金属韧性试验技术测试基础、仪器设备与操作技术、标准方法应用以及数据处理四部分内容。经考核合格后颁发上述四个模块的考核合格证书及YJL006金属韧性试验技术上岗资格证书。 参加培训班的包括水利部水工金属结构质量检验测试中心、中国兵器工业集团、国家金属制品质量监督检验中心、邢钢、济钢、新钢、太钢、首钢技术中心、马钢、天钢、天铁、武钢等20余家单位,30余人参加培训课程。 screen.width-300)this.width=screen.width-300" border=0 screen.width-300)this.width=screen.width-300" border=0
  • 武强:“双碳”目标下,能源发展如何更具韧性
    “双碳”目标的郑重承诺,是中国以实际行动推动构建人类命运共同体的具体体现,充分彰显了中国的国际责任与大国担当,赢得了国际社会的广泛关注和高度认可。自“双碳”目标提出以来,各级政府、企业、行业等纷纷积极响应,相关政策、路线图、发展规划等相继出台和落实。  作为世界上最大的发展中国家、能源消费国和碳排放国,“双碳”目标对我国能源高质量发展提出了更高要求,特别在当前能源供需紧张、替代能源存在不确定性、俄乌冲突、地缘政治博弈等诸多因素影响下,如何在国家能源安全得到有效保障的前提下,寻求更具韧性、包容性和可持续性的能源生产与消费方式,是实现“双碳”目标的关键。  1.煤炭生产占比的变化规律有待分析  要精准地认清我国能源战略态势,必须客观综合分析一次性主要能源在消费和生产上的占比演化规律,不可偏废。多年来,煤炭在我国一次性能源消费与生产结构中的占比下降幅度并没有保持一致步调,2021年二者占比相差高达12.1%——显然,导致如此大占比差异的主要原因,并非风能和光伏等可再生能源的大幅增加,而是大量石油和天然气进口所致。然而,由于国际形势和地缘政治复杂多变,以及国际能源市场不确定性增加等因素,这种能源供应模式给国家能源安全带来了一定的隐患和挑战——也就是说,煤炭消费量占比降低,可能威胁到国家能源安全。因此,若只强调煤炭在一次性能源消费结构中占比逐年下降的趋势和规律,而不分析其在生产中的占比变化规律,则很难全面和科学地把握我国能源战略形势。  2.可再生能源“热”背后需要“冷”思考  以化石能源为主的发电结构并非我国所特有,世界多数发达国家虽然早已实现了碳达峰,但其电力生产仍以化石能源为主。各国经验表明,能源资源禀赋与技术优势的不同,决定了世界各国能源清洁低碳转型路径存在差异。在建设以风光为主的可再生能源电力系统过程中,不仅要强调装机容量规模,更应该实事求是地验证核实其真实发电量,揭示严重不匹配的机理,解决严重不匹配的难题。从全生命周期的视角来看,可再生能源项目本身并非绝对清洁绿色和低碳友好,应从全生命周期过程,对可再生能源项目所产生的经济、社会和生态环境效益进行全面综合评估。  3.精准、柔性地配置能源消费与生产  在品位和时空域精准配置能源消费与生产,是节约能源、提高资源配置效率的重要举措。浅层地热能与建筑物(群)“供暖-制冷-生活热水”三联供配置,以及光伏与建筑物(群)照明等供电配置,是能源消费与生产在品位上精准配置的典型模式。在空间域上,河北、山西、内蒙古、甘肃、青海、宁夏等地拥有丰富的风能和太阳能资源,可柔性配置于本地燃煤发电机组,用来调峰填谷,实现风能与太阳能发电连续稳定输出。风光互补发电系统、川渝地区“丰多枯少”的水电与丰富的天然气资源配置,则是能源在时间域上柔性配置的代表。  4.对煤炭行业进行科学定位  煤炭行业目前虽已不是“朝阳产业”,但也绝不是“夕阳产业”——这是当前对煤炭行业发展现状和未来的科学定位。  在“双碳”目标愿景下,煤炭工业如何转型升级、实现高质量发展,关键在于煤炭工业能否进行“自我革命”,即打造煤炭工业升级版,推动煤炭绿色高效益地勘查开发与清洁低碳利用。在可再生能源成为我国主体能源之前,煤炭作为我国基础兜底主体能源的战略地位,应在全社会达成一定共识,才能够保障我国能源的安全、平稳供给,切不可顾此失彼——否则,曾经出现的拉闸限电等乱象就可能再现,使得经济社会发展减速,影响减碳目标落实。  5.构建“三足鼎立”的能源发展战略  未来,我国应构建可再生能源—化石能源—提效节能“三足鼎立”的能源发展战略,实现可再生能源规模化利用、化石能源低碳化使用、提效节能系统化实施。以提效节能为例,若2020年我国单位GDP能耗与世界平均水平相当,则能源消耗可减少约17.6亿吨标准煤,CO2排放可减少约42.6亿吨。因此,如果能淘汰落后产能,持续调整与优化产业结构,改善能源利用方式,提高能源利用效率等,我国完全可以在不增加或微增加能源供给总量的条件下,使用现有能源供给量,即可满足未来经济社会高质量发展的能源需求。  6.建立“双模驱动”的能源生产与消费体系  根据我国能源资源禀赋特点和未来科技发展水平预测,“先进煤电+CCUS(CCS)”和“风光+调节(储能、调峰、分布柔性电网)”两大基本模式,将是实现国家未来经济社会发展和“双碳”目标过程中最重要的能源供给方式。具体来说,在2030年碳达峰前,以“先进煤电+CCUS(CCS)”为主体能源、以“风光+调节(储能、调峰、分布柔性电网)”为辅助能源应该是我国的主要能源供给模式 2030-2050年间,能源供给将逐渐过渡到“风光+调节(储能、调峰、分布柔性电网)”与“先进煤电+CCUS(CCS)”共存协同模式 2050年以后,“风光+调节(储能、调峰、分布柔性电网)”将成为我国的主体能源供给模式。  在“双碳”目标愿景下,要实现我国在本世纪中叶全面建成社会主义现代化强国的宏伟目标,必须准确把握和处理好碳减排与国家能源安全和经济社会发展之间的关系。作为遏制全球气候变化、实现我国经济结构转型与产业升级的必然选择,“双碳”目标符合我国发展根本利益,但“双碳”目标并非简单地靠减掉或增加某种能源来实现。如果扔掉手中已经端牢的能源饭碗,而盲目去谈“双碳”目标实现路径,将给国家能源安全带来隐患。因此,应基于我国现阶段经济社会发展实际、资源禀赋特征、能源科技水平、外部环境等,科学研判并制定符合国情的柔性“双碳”路径,持续优化“可再生能源规模化利用、化石能源低碳化使用和提效节能系统化实施”三足关系,合理构建“先进煤电+CCUS(CCS)”与“风光+调节(储能、调峰、分布柔性电网)”两大能源供给模式,建立具有我国能源特色的“三足鼎立、双模驱动”的能源生产与消费体系,才能确保我国平稳有序地实现安全减碳和经济社会可持续发展并行不悖。
  • Master Bond开发了双组份无溶剂体系的高韧性环氧树脂,可耐受重复热循环测试
    p    strong Master Bond(硕士邦德)有限公司开发了一款 span style=" color: rgb(255, 0, 0) " 双组份、无溶剂、高韧性 /span 的环氧树脂体系,命名为Supreme 62-1。它可在 span style=" color: rgb(255, 0, 0) " -60 span style=" color: rgb(255, 0, 0) font-family: 宋体,SimSun " ℉ /span 至+450 span style=" color: rgb(255, 0, 0) font-family: 宋体,SimSun " ℉ /span (-51℃至+232℃) /span 的温度范围内使用。最值得注意的是,即使在高温下,Supreme 62-1也具有对多种 span style=" color: rgb(255, 0, 0) " 酸、碱、燃料和溶剂的化学抗性 /span 。它可被用作 span style=" color: rgb(255, 0, 0) " 航空、电子、光学和特种OEM应用领域的粘合剂/密封胶 /span 。 /strong /p p    span style=" color: rgb(31, 73, 125) " i “Master Bond Supreme 62-1具有 strong span style=" color: rgb(31, 73, 125) " 出众的韧性,使其适于粘合不同热膨胀系数的基材,及使其耐受重复热循环 /span /strong ”,高级产品工程师Rohit Ramnath谈到。“这种配方还表现出 strong 8000-9000psi的抗拉强度及450000-500000psi的拉伸模量 /strong 。基于其同时具有的 strong 耐热性及高机械强度外结构 /strong ,我们在需要结构胶合不同基材的许多应用领域均推荐使用Supreme 62-1。” /i /span /p p   Supreme 62-1易于使用,在混合100g批量时具有优越的、超过 span style=" color: rgb(255, 0, 0) " 12小时 /span 的长适用期。代表性固化时间从 span style=" color: rgb(255, 0, 0) " 140-158 span style=" color: rgb(255, 0, 0) font-family: 宋体,SimSun " ℉ /span (60-70℃)时的4到6小时、176-212 span style=" color: rgb(255, 0, 0) font-family: 宋体,SimSun " ℉ /span (80-100℃)时的20到40分钟至257 span style=" color: rgb(255, 0, 0) font-family: 宋体,SimSun " ℉ /span (125℃)时的10到20分钟 /span 均可供选择。这一化合物具有 span style=" color: rgb(255, 0, 0) " 5-10%的伸长率和75-85的邵氏硬度 /span 。固化后环氧树脂的体积电阻率超过 span style=" color: rgb(255, 0, 0) " 1014ohm span style=" color: rgb(255, 0, 0) font-family: 宋体,SimSun " · /span cm /span 。Supreme 62-1可以半品脱、1品脱、1夸脱、1加仑和5加仑的桶装规格购买。预混、冷冻注射器以及枪包这类特种包装形式可用于简化粘合剂处理、减少损耗及提高生产速率。 /p p style=" text-align: center " img title=" 1-1.jpg" src=" http://img1.17img.cn/17img/images/201806/insimg/b3e0b7b0-96ee-4311-93b3-414da7bfba2a.jpg" / /p p style=" text-align: center " Master Bond抗热循环粘合剂 /p p   Master Bond Supreme 62-1是一种双组份、抗高温的环氧化合物,可耐受多次热循环与振动。它提供可靠的电绝缘性,以及对包括溶剂、酸和碱在内的各种化学物质的防护。它在混合后适用期长,并有便捷的固化时间以供选择。 /p p   查看更多关于Master Bond耐热循环粘合剂的讯息请联系技术支持的电话: span style=" color: rgb(0, 176, 240) " +1-201-343-8983 /span ,传真: span style=" color: rgb(0, 176, 240) " +1-201-343-2132 /span 和邮箱: span style=" color: rgb(0, 176, 240) " technical@masterbond.com /span /p
  • 兼顾超强韧性和延展性 首款3D打印纳米结构高熵合金问世
    美国马萨诸塞大学阿默斯特分校和佐治亚理工大学科学家在最新一期《自然》杂志在线版发表论文称,他们采用3D打印方法,制作出一种双相纳米结构高熵合金(HEA),其强度和延展性优于现有其他先进的3D打印材料,有望催生可用于航空航天、医学、能源和运输等领域的高性能部件。通过先进3D打印制造的高熵合金在多个尺度上具有层次结构,表现出更高强度和良好的延展性。图片来源:佐治亚理工学院官网过去15年,HEA越来越受欢迎。HEA是由5种或5种以上等量或大约等量的金属制成的合金,具有许多理想的性质,因此在材料科学及工程领域备受重视。3D打印技术目前已用于材料开发领域,基于激光的3D打印可以产生大的温度梯度和高冷却速率,而传统方法很难做到这一点。此次,研究人员将HEA与先进的3D打印技术——激光粉末床熔融结合,开发出具有前所未有性能的新材料。由于该工艺使材料熔化和凝固速度非常快,所得到材料的微观结构与传统方法制造出的材料大相径庭。新材料的微观结构看起来像一种网状结构,由名为面心立方(FCC)和体心立方(BCC)的纳米层状结构交替组成,这些层被嵌入微尺度共晶团中,分级纳米结构HEA使两相能够协同变形。研究人员表示,这种不寻常微观结构的原子重排使其拥有超高强度和更高的延展性,与传统金属铸件相比,新材料的强度提升了3倍,延展性不减反增。使HEA拥有更强韧性和更好延展性有助于研制出机械效率高且节能的轻质结构。研究团队还开发出了双相晶体塑性计算模型,以了解FCC和BCC纳米片层所起的作用,以及它们如何协同工作以增加材料的强度和延展性。结果显示,BCC纳米片层具有极坚固的特性,这对于实现合金卓越的强度—延展性协同作用至关重要。未来,科学家们有望利用3D打印技术和HEA研制出可广泛应用于生物医学、航空航天等领域的高性能部件。
  • 创新进化,韧性向前——2023中国医药创新100峰会上海召开
    2023年4月27日,上海——由中国医药企业管理协会指导,E药经理人、赛默飞世尔科技(以下简称:赛默飞)共同主办的“2023中国医药创新100峰会”在上海隆重召开。全球经济复苏承压,国内经济调整的当下,过去靠资本推动的医药创新发展模式正在面临转型。在研发层面,由于扎堆布局、原创能力不足等问题引发的创新药在市场上的倾轧日趋严重,固有的研发投入与产出关系备受挑战。面对当前新变局,中国医药创新需要加速创新与国际化布局升级。因此,本届峰会以“创新进化韧性向前”为主题,邀请创新100强为代表企业的40余位富有洞见和影响力的意见领袖与企业家、科学家、投资人齐聚一堂,思索产业未来,引领产业发展。赛默飞中国区总裁冯时瀚(Hann Pang)先生致辞本次峰会由主论坛、前沿技术领袖论坛之新型抗体、前沿技术领袖论坛之细胞与基因治疗三大模块组成。中国医药企业管理协会执行会长吴海东、主办方代表赛默飞中国区总裁冯时瀚为本届峰会召开做了开幕致辞,赛默飞董事长、总裁兼首席执行官葛士柏 (Marc N. Casper) 也通过视频形式致辞。在峰会主论坛,多位本土生物医药企业负责人通过主题演讲向与会者介绍了中国医药创新未来的格局走向、企业的国际化发展布局与路径,以及创新战略升级的思路及策略。 中国创新的进化升级离不开整个创新生态的升级,赛默飞作为赋能科技进步的全球领导者,中国区总裁冯时瀚以“加速创新,创领共生”为主题,向在场嘉宾介绍了赛默飞助力中国医药创新发展的策略及解决方案,并发布了全新的在华发展承诺——“创领共生”,进一步强调赛默飞以全球资源及创新技术携手本地伙伴共同推动本土科技进步,通过赋能本土产业生态,打造更健康、更清洁、更安全的本土发展战略。除了主题报告交流之外,大会还邀请了诸多知名生物医药企业就“穿越周期,洞悉医药创新未来”话题展开讨论,探讨了当前面临的挑战、医药创新发展的态势、未来的产业格局等话题。2023中国医药创新100峰会现场此外,本届峰会专门设立新型抗体、细胞与基因治疗两场分论坛,邀请了近30位行业代表人物就两大赛道的技术创新、商业化策略、生产工艺创新等内容进行了分享交流。在峰会召开的同时,由E药经理人、赛默飞联合创新药企发起成立的“中国医药创新100联盟”组织(简称“创百汇”)还召开了“创百汇2023年度工作会议暨Pharma & Biotech BD合作研讨会” ,在会议上选举了文德镛、夏瑜担任新一届联席主席,并为新加入的30余位理事颁发了证书。创百汇在2021年中国医药创新100峰会成立,目前已经有150余位中国医药创新企业的创始人、首席科学家加入,已经成为了国内具有影响力的创新技术交流、合作的组织平台。本届峰会还升级了定位,由原来的“见证中国医药崛起,汇聚中国创新实力”升级为“定义创新趋势,洞悉产业发展未来”,其意是希望通过聚焦具有代表性的创新100强企业群体,剖析医药创新发展规律,让头部创新企业的领袖定义创新趋势,通过交流共识,探讨创新发展的未来趋势,为后来者拨云见日,推动产业更好的发展。“中国医药创新100联盟” 成员代表现场合影“今年赛默飞再次参与主办该峰会,旨在更好地帮助本土医药企业加速创新,全方位推动中国医药创新产业生态建设”,赛默飞中国区总裁冯时瀚(Hann Pang)表示:“生物医药产业是近年来中国成长性最好、发展最活跃的领域之一。随着近年来‘健康中国’建设的深入推进,本土医药企业持续加速创新研发、加快高质量发展步伐。赛默飞长期看好中国创新医药发展前景,并以‘创领共生’的全新本土发展承诺,进一步深化本土化战略,助力建设更健康、更清洁、更安全的美好中国。”# # #关于赛默飞世尔科技赛默飞世尔科技是赋能科技进步的全球领导者。公司年销售额逾400亿美元。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战、提高实验室生产力、通过提供诊断以及研发制造各类突破性的治疗方法,从而改善患者的健康。我们全球的员工将借助于一系列行业领先的品牌——Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific、Unity Lab Services、Patheon和PPD,为客户提供领先的创新技术、便捷采购方案和全方位的制药服务。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国自1982年在中国设立第一个销售办事处至今,赛默飞世尔科技已正式进入中国40余年。我们在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、济南等地设立了12个商业办公室,员工人数超过7000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有10家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了5个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海和苏州的3个中国创新研发中心,拥有110多位专业研究人员和工程师及100多项专利。创新中心专注于垂直市场的产品研究和开发,结合中国市场的需求和国内外先进技术,研发适合中国用户的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有8个服务中心以及2800余名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站: www.thermofisher.cn
  • 海尔生物Q1业绩增长21.87%,复杂形势下展现强劲发展韧性
    海尔生物2023年第一季度财报出炉,营收6.87亿元,同比增长21.87%。回顾海尔生物2019年10月上市以来同期业绩增长数据——2022年第一季度业绩同比增长36.22%,2021年同比增长15.46%,纵观整个生命科学仪器市场,海尔生物2023年第一季度的数据仍显示了其强劲的发展势头。2023年第一季度生命科学板块增幅 19.02%,医疗创新板块增幅 24.89%;物联网方案业务同比增长 23.34%。国内市场同比增长 17.77%,海外市场同比增长 31.19%。海尔生物聚焦“设备+平台+服务”模式升级,重点围绕以下三个方面展开:1、新产品方案布局加快。面向科研和制药用户,自动化样本库、生物培养、离心制备、实验室耗材等系列品类不断细分丰富,逐渐成为增长新动力;面向医院用户,随着厚宏智能科技并购落地,用药自动化方案矩阵进一步完善,市场竞争力持续提升;面向公共卫生用户,AI 自动化疫苗工作站、数字化公共卫生体检等方案涌现,在方案升级和场景延伸上继续 发力;面对血/浆站用户,海尔血技(重庆)二期工厂投产,产能提升的同时也支持了血液安全新 品类的拓展。报告期内,公司荣获中国工业领域最高奖“中国工业大奖”,并获评国家级绿色工厂。2、市场体系进一步完善。在国内,着力拓宽实验室新网络,加快下沉医疗基层网络。在海外,截至报告期末突破 800家网络,欧洲等区域当地化销售团队加强,智慧血液管理、血浆分离等方案在非洲、南亚等区域医疗用户实现突破,太阳能疫苗项目在埃塞俄比亚、乌干达等区域相继交付。2023 年第一季度国内市场同比增长 17.77%,海外市场同比增长 31.19%。 3、推进数字化战略。公司致力于推动数字化与产业链的深度融合,支持研发、采购、制造、市场、物流等全流程价值链优化,实现内部经营管理提效。2023 年第一季度公司毛利率提升至 51.02%。
  • 高精密3D打印:未来微型机器人研制的重要手段
    机器人技术是一门快速发展的高新技术,在许多领域得到了日益广泛的应用,并对人类社会产生着日益重大的影响。微型机器人(Micro-Robotics)是指集成了微型作业工具、各种微小型传感器,具有通用编程能力的小型移动机构,而微机电系统和微驱动器的出现和发展为微型机器人的诞生提供基础。诞生背景 微型机器人出现是和微机电系统(MEMS)的发展是分不开的,可以说微型机器人就是可编程通用的微型机电系统工程。20世纪80年代后期,随着大规模和超大规模集成电路的迅速发展,微电子技术与机械、光学等学科的交叉融合促进了MEMS技术的迅速发展。和微机电系统一样,微型机器人的发展和微驱动器的发展也是紧密相关的。1987年美国加州大学伯克利分校取得一项轰动世界的突破性成就,首次研制出了转子直径为60~120μm的微型静电动机,随后MIT也研制出了100μm的静电动机。发展现状近年来, 采用MEMS 技术的微型卫星、微型飞行器和进入狭窄空间的微机器人展示了诱人的应用前景和军民两用的战略意义。以日本(三菱电子公司、松下东京研究所和Sumitomo电子公司等)为代表的许多国家在这方面开展了大量研究,重点发展进入工业狭窄空间微机器人、进入人体狭窄空间医疗微系统和微型工厂。在国家自然科学基金、863高技术研究发展计划等的资助下, 清华大学、上海交通大学、哈尔滨工业大学、广东工业大学、上海大学等科研院所针对微型机器人和微操作系统进行了大量研究,并分别研制了原理样机。目前国内对微型机器人的研究主要集中在三个领域:面向煤气、化工、发电设备细小管道探测的微型机器人;针对人体、进入肠道的无创诊疗微型机器人;面向复杂机械系统非拆卸检修的微型机器人。发展瓶颈微型机器人结构尺寸微小,器件精密,可进行微细操作,具有小惯性、快速响应、高谐振频率、高附加值等特点。然而微型机器人并不是简单意义上普通机器人的微小化,而是集成有传感、控制、执行和能量的单元,是机械、电子、材料、控制、计算机和生物医学等多学科技术的交叉融合。而且建立微型机器人需要更为微小的驱动器、执行器、传感器、处理器等,由此展开的对微型机器人微部件的加工和研制,将有利于实现更高意义上的微系统集成。然而,传统的加工工艺远远满足不了这些微小部件加工需求,因此研究人员将目光逐步转移到近些年来非常火热的增材制造工艺。增材制造又称3D打印技术,它摒弃了传统加工工艺过程复杂、成本高、难度大等特点,能够快速、灵活设计各种复杂结构。而高精密微纳3D打印技术又成为微型机器人不可或缺的手段。3D打印技术在微型机器人的应用2019年4月,多伦多大学微型机器人实验室在《Science Robotics》刊登了一篇关于3D打印微型机器人的文章。研究人员将磁性元素钕的颗粒嵌入到柔性材料中,并通过3D打印技术设计二十多种不同形状的磁性机器人结构。研究人员使用一对强力的磁铁来翻转机器人特定部位钕的极性,使它们在磁场中发生排斥和吸引作用,并通过紫外线照射将这些磁性粒子锁定在相应的位置。通过特定的编程程序,控制微型机器人不同部位的极性,使其达到爬行、蠕动、翻滚、收缩等运动效果。文章链接:https://robotics.sciencemag.org/content/4/29/eaav4494现阶段,微型机器人大多还处于实验室或原型开发阶段,因此,现在所见到的微型机器人较为简单,但同时也能执行一些基本的操作指令,离实用化还有相当长的距离。未来随着技术的发展,会出现各种复杂三维的微型机器人,并且能够在各种复杂环境中作业。这同时亟需一种更为精密微细的加工工艺。下图是深圳摩方材料科技有限公司利用陶瓷3D打印机加工的微型齿轮,最小细节0.092mm。( BMF microArch S240陶瓷3D打印机加工的微型齿轮,最小细节可达0.092mm )一般而言,微型机器人整体尺寸不超过100mm,细节尺寸可以达到微米甚至纳米级别,这就对加工精度和自由度提出极高要求。传统的CNC加工工艺成本昂贵,灵活度低,一般适合大零部件的加工。而MEMS加工工艺过程复杂,垂直方向加工受限,适合二维加工。而3D打印技术,作为当前发展非常迅速的制造工艺,具有低成本、高效率、一体化加工成型的特点。虽然一直以来材料是3D打印技术难点之一,研究人员逐步开发一些功能性材料,比如掺杂磁性粉末颗粒增强磁性。并且也可以通过后期表面处理来弥补材料方面的不足,比如表面金属化、溅射镀膜、翻模等工艺。目前,能够实现高精度3D打印的工艺屈指可数,其中面投影微立体光刻(PμSL)工艺是其中之一。该工艺以深圳摩方材料科技有限公司为代表,已经研发出多款型号机型,并且实现商业化生产,为国内外多个大型公司提供高精密加工方案。下图是该公司10um精度设备nanoArch S140通过在高强度韧性树脂中掺杂磁性粉末颗粒(质量比20%)加工的磁性抓手以及磁性弹簧阵列结构。( 磁性抓手,最小壁厚可达0.070mm )( 磁性弹簧阵列,最小线径可达0.099mm )
  • 高精密3D打印:未来微型机器人研制的重要手段
    机器人技术是一门快速发展的高新技术,在许多领域得到了日益广泛的应用,并对人类社会产生着日益重大的影响。微型机器人(Micro-Robotics)是指集成了微型作业工具、各种微小型传感器,具有通用编程能力的小型移动机构,而微机电系统和微驱动器的出现和发展为微型机器人的诞生提供基础。诞生背景 微型机器人出现是和微机电系统(MEMS)的发展是分不开的,可以说微型机器人就是可编程通用的微型机电系统工程。20世纪80年代后期,随着大规模和超大规模集成电路的迅速发展,微电子技术与机械、光学等学科的交叉融合促进了MEMS技术的迅速发展。和微机电系统一样,微型机器人的发展和微驱动器的发展也是紧密相关的。1987年美国加州大学伯克利分校取得一项轰动世界的突破性成就,首次研制出了转子直径为60~120μm的微型静电动机,随后MIT也研制出了100μm的静电动机。发展现状近年来, 采用MEMS 技术的微型卫星、微型飞行器和进入狭窄空间的微机器人展示了诱人的应用前景和军民两用的战略意义。以日本(三菱电子公司、松下东京研究所和Sumitomo电子公司等)为代表的许多国家在这方面开展了大量研究,重点发展进入工业狭窄空间微机器人、进入人体狭窄空间医疗微系统和微型工厂。在国家自然科学基金、863高技术研究发展计划等的资助下, 清华大学、上海交通大学、哈尔滨工业大学、广东工业大学、上海大学等科研院所针对微型机器人和微操作系统进行了大量研究,并分别研制了原理样机。目前国内对微型机器人的研究主要集中在三个领域:面向煤气、化工、发电设备细小管道探测的微型机器人;针对人体、进入肠道的无创诊疗微型机器人;面向复杂机械系统非拆卸检修的微型机器人。发展瓶颈微型机器人结构尺寸微小,器件精密,可进行微细操作,具有小惯性、快速响应、高谐振频率、高附加值等特点。然而微型机器人并不是简单意义上普通机器人的微小化,而是集成有传感、控制、执行和能量的单元,是机械、电子、材料、控制、计算机和生物医学等多学科技术的交叉融合。而且建立微型机器人需要更为微小的驱动器、执行器、传感器、处理器等,由此展开的对微型机器人微部件的加工和研制,将有利于实现更高意义上的微系统集成。然而,传统的加工工艺远远满足不了这些微小部件加工需求,因此研究人员将目光逐步转移到近些年来非常火热的增材制造工艺。增材制造又称3D打印技术,它摒弃了传统加工工艺过程复杂、成本高、难度大等特点,能够快速、灵活设计各种复杂结构。而高精密微纳3D打印技术又成为微型机器人不可或缺的手段。3D打印技术在微型机器人的应用2019年4月,多伦多大学微型机器人实验室在《Science Robotics》刊登了一篇关于3D打印微型机器人的文章。研究人员将磁性元素钕的颗粒嵌入到柔性材料中,并通过3D打印技术设计二十多种不同形状的磁性机器人结构。研究人员使用一对强力的磁铁来翻转机器人特定部位钕的极性,使它们在磁场中发生排斥和吸引作用,并通过紫外线照射将这些磁性粒子锁定在相应的位置。通过特定的编程程序,控制微型机器人不同部位的极性,使其达到爬行、蠕动、翻滚、收缩等运动效果。现阶段,微型机器人大多还处于实验室或原型开发阶段,因此,现在所见到的微型机器人较为简单,但同时也能执行一些基本的操作指令,离实用化还有相当长的距离。未来随着技术的发展,会出现各种复杂三维的微型机器人,并且能够在各种复杂环境中作业。这同时亟需一种更为精密微细的加工工艺。下图是深圳摩方材料科技有限公司利用陶瓷3D打印机加工的微型齿轮,最小细节0.092mm。( BMF microArch S240陶瓷3D打印机加工的微型齿轮,最小细节可达0.092mm )一般而言,微型机器人整体尺寸不超过100mm,细节尺寸可以达到微米甚至纳米级别,这就对加工精度和自由度提出极高要求。传统的CNC加工工艺成本昂贵,灵活度低,一般适合大零部件的加工。而MEMS加工工艺过程复杂,垂直方向加工受限,适合二维加工。而3D打印技术,作为当前发展非常迅速的制造工艺,具有低成本、高效率、一体化加工成型的特点。虽然一直以来材料是3D打印技术难点之一,研究人员逐步开发一些功能性材料,比如掺杂磁性粉末颗粒增强磁性。并且也可以通过后期表面处理来弥补材料方面的不足,比如表面金属化、溅射镀膜、翻模等工艺。目前,能够实现高精度3D打印的工艺屈指可数,其中面投影微立体光刻(PμSL)工艺是其中之一。该工艺以深圳摩方材料科技有限公司为代表,已经研发出多款型号机型,并且实现商业化生产,为国内外多个大型公司提供高精密加工方案。下图是该公司10um精度设备nanoArch S140通过在高强度韧性树脂中掺杂磁性粉末颗粒(质量比20%)加工的磁性抓手以及磁性弹簧阵列结构。( 磁性抓手,最小壁厚可达0.070mm )( 磁性弹簧阵列,最小线径可达0.099mm )—— END ——官网:https://www.bmftec.cn/links/10
  • BCEIA 2017新品盘点之GC篇:智能化、人性化、定制化
    p   仪器信息网讯 2017年10月10日,第十七届北京分析测试学术报告会及展览会(BCEIA 2017)在北京国家会议中心开幕,500余家来自国内外企业参展。本届展会展品涵盖光谱、质谱、色谱、关键零部件、环境检测仪器以及生命科学等多类仪器,众多知名品牌展示了最新的产品。 /p p   作为国内规模最大的展览会,两年一届的BCEIA会议已成为分析行业新品展示的首选会议。本届展会上,仪器信息网编辑对展示的2017年推出的气相色谱产品进行了梳理。 /p p   整体而言,本届展会上气相色谱新产品在智能化、操作更加人性化、用户定制化三个方面表现突出。智能化主要体现在国产气相色谱产品上,展示的国产新品中以增加了EPC/EFC电子流量控制单元为推广特色,如天美GC7980Plus、北分瑞利SP-3510,而进口产品中岛津的Nexis GC-2030采用了最新一代精准电子流路控制器AFC-2030;操作更加人性化体现在岛津Nexis GC-2030色谱柱安装操作中采用的“Click Tek连接器”设计以及国产GC产品的触摸屏设计;定制化产品非色谱仪器独有,2017年推出的气相色谱产品中,岛津公司的Nexis GC-2030和Nexgen GC产品设计上呈现了定制化概念。 /p p   然,本届展会上气相色谱新产品的新特点同时也透露出一个信息,即国产色谱仪器刚刚走向智能化的阶段,进口仪器已经在如何更加贴合用户需求方面对仪器性能、操作、体验等方面加以改进。总体而言,技术差距是国内气相色谱产品发展的“硬伤”。 /p p   以下为仪器信息网编辑收集整理的部分BCEIA 2017展览会上展示的2017年推出的气相色谱仪新产品。 /p p   (排名不分先后) /p p    strong 岛津Nexis GC-2030气相色谱仪 /strong /p p style=" TEXT-ALIGN: center" strong img title=" Nexis GC-2030.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/68051f6c-3eac-436b-824a-672d975905da.jpg" / /strong /p p   Nexis GC-2030采用全新设计的“Click Tek连接器”,通过智能锁、智能规以及智能扣,实现了徒手安装/更换色谱柱,从而极大的简化了进样口的维护工作 采用了最新一代精准电子流路控制器AFC-2030,可实现载气恒线速度控制,恒流控制、恒压控制以及其他多种载气控制模式,再配以独立CPU处理器,降低了流速及压力波动,进而有效降低检测器噪音 可配置多种检测器,包括介质阻挡放电等离子体检测器(BID-2030)、氢火焰离子化检测器(FID-2030)、电子捕获检测器(ECD-2010 Exceed)以及火焰光度检测器(FPD-2030) Nexis GC-2030具有卓越的扩展性能,可为特定领域如汽油分析系统、天然气分析系统、无机气体分析系统、有机化合物分析系统等GC自定义系统的配置提供支持,减少方法开发等繁琐流程 采用全新的LabSolutions工作站,完全整合LC和GC的功能,同时保持与GCsolutions的兼容性,快速批处理功能简化了繁琐的创建进样序列的过程。 /p p    strong 岛津 Nexgen GC气相色谱仪 /strong /p p style=" TEXT-ALIGN: center" strong img title=" Nexgen GC.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/acbf2f0b-09cc-4cda-9045-e18dff1b5fac.jpg" / /strong /p p   Nexgen GC内含两套可独立温控的柱盒系统及两个FID检测器,相当于一台多维GC,相比于市面上现有多维GC的体积,Nexgen GC的体积仅为其1/3。Nexgen GC通过岛津独有的保留时间锁定中心切割技术和新的高速升温技术,可轻松实现对复杂样品的更好分离效果 Nexgen GC配有专用小型化和高效色谱柱,该系统柱温升温采用对平板加热,直接接触到板柱的方式,实现了小型化,并且节约能源。升温速率不受高低温度域的影响,均可达到70℃/min的直线升温,并可快速降温,但该系统色谱柱需根据用户实际需求进行开发 Nexgen内部同时搭载了岛津先端流路切换原件,该流路切换原价采用了新MEMS芯片设计,可实现流路高精度切换,以达到反吹,中心切割等功能。 /p p    strong 天美GC 7980 Plus气相色谱仪 /strong /p p style=" TEXT-ALIGN: center" strong img title=" GC 7980 Plus.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/4f59bba2-c28d-495b-b991-d1690345445d.jpg" / /strong /p p   GC 7980 Plus引入了赛里安部分核心技术,与中国制造完美结合,配备了EFC模块和高灵敏度FID检测器,可以进行高灵敏度、高精度和高可靠性的痕量分析。该产品压力控制全量程范围内精度0.1%,压力设定分辨率0.001psi,流量控制重复性0.5%。FID检测器为陶瓷喷嘴,降低峰形拖尾,对极性和高沸点被分析物提供更准确的结果。 /p p    strong 天美 赛里安456C/436C气相色谱仪 /strong /p p style=" TEXT-ALIGN: center" strong img title=" 456C.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/925274f6-a8bf-4f03-8b9d-0029461d1aaa.jpg" / /strong /p p   赛里安456C/436C继承了原瓦里安(Varian) 气相色谱性能稳定、坚实耐用的特点,配置高精度EFC模块,电子气路控制压力设定分辨率为0.001psi、系统压力控制范围为0-150psi,配置了9寸全彩触摸屏,检测器数据采集频率600Hz,采用多功能网络化控制软件等。 /p p    strong 北分瑞利SP-3510气相色谱仪 /strong /p p style=" TEXT-ALIGN: center" strong img title=" 北分瑞利.jpg" src=" http://img1.17img.cn/17img/images/201710/insimg/e8c0f252-34ed-418c-a0df-e3dcaf75acf5.jpg" / /strong /p p   SP-3510配置了更加直观、人性化的触控显示屏幕,并能够实现三路注样器和三路检测器的独立控制,提高了单台仪器的应用广度,主要应用于石油化工、环保、食品以及电力行业。该款产品可配置电子流量控制系统,预计2017年年底或2018年初正式上市。 /p p   在本届展会上,小编发现,综合性仪器供应商如安捷伦、岛津、赛默飞产品展示方式已经从传统的仪器原理线如色谱、质谱、光谱等转变为融合所有种类仪器按照行业领域进行展示,各类气相色谱产品也因特色应用被融合在行业领域展示板块。 /p p br/ /p
  • 科学家研制纳米“铁磁纸” 可制造微型机器人
    [导读]目前,美国科学家成功研制出一种叫做“铁磁纸”的纳米等级材料,它是用纳米等级铁磁微粒灌注在普通纸张上,这种材料可用于制造微型机器人、研究人体细胞的微型镊子等。 腾讯科技讯(编译/悠悠)据美国科学日报报道,日前,美国普渡大学的研究人员成功研制一种磁性“铁磁纸”,它可用于制造手术仪器中的低成本“微型发动机”,研究细胞的微型镊子,微型机器人以及小型扬声器等。 美国科学家成功研制出一种叫做“铁磁纸”的纳米等级材料   这种特殊材料是采用矿物油和氧化铁“磁纳米微粒”浸透在普通纸张或者报纸上形成的,然后这种带有纳米微粒的纸张可在磁场中应用。电子计算机工程兼生物医学工程师教授芭芭克-齐伊(Babak Ziaie)说:“纸张是一种多孔基体,因此我们可以在纸张上承载一些特殊的物质,使其具备独特的功能。”   该新材料以低成本方式制造小型立体扬声器,微型机器人或者具有多种用途的发动机,其中包括控制细胞的镊子和最低程度侵入手术的柔韧性机械手指。齐伊说:“由于铁磁纸非常柔软,并不会对人体细胞或者组织构成损害,而且制造起来非常便宜。你可以剪裁一小块,用于制造微型发动机。”   一旦普通纸张上浸入“铁磁流体”混合物,纸张就覆盖着一层生物塑料薄膜,它具有一定程度的抗水性,避免液体蒸发,并能显著提高强度、硬度和弹性等机械性能。这项新材料的详细资料将于1月24日至28日在香港召开的第23届微电子机械系统IEEE国际会议上公布。   由于这项技术成本并不昂贵,不需要特殊的实验室制造,它可普遍地应用于大学和高校制造微型机器人和其他工程科学器件。这种纳米等级磁性微粒可从商业途径获得,磁性微粒的直径仅有10纳米,相当于人体头发的万分之一。铁磁纳米微粒中含有铁原子。   齐伊说:“或许你未曾使用过纳粒微粒,但是它们要比其他较大的微粒更容易使用,而且价格更便宜,纳米微粒的价格也非常低廉。”   研究人员使用一种叫做磁场排放扫描电子显微仪研究纳米微粒如何灌注在某些纸张中,齐伊说:“所有类型的纸张都可以使用,但是新闻报纸和柔软的纸张特别适合,这是由于它们具有很好的多孔性。”   研究人员现使用该材料制造小型悬臂致动器,这种结构非常类似于潜水艇,可在磁场中通过震动实现移动。齐伊说:“悬臂致动器非常普通,它们通常是由硅材料制成,而硅材料价格较高,要求在特殊的清洁室内制造完成。因此使用价格低廉的‘铁磁纸’是非常好的选择,它要比当前使用的硅材料价格便宜100倍。”   目前,研究人员还将铁磁纸制造成折纸,从而研究更为复杂的设计。
  • 安捷伦科技推出临床前MRI系统 新的应用程序包和人性化的工作流程变化研究
    安捷伦科技推出临床前MRI系统 新的应用程序包和人性化的工作流程变化研究 安捷伦科技(NYSE: A) 2012年5月6日在澳大利亚墨尔本召开的国际医学磁共振学会的年度会议上推出了nScope eMRI临床前成像系统。运用新的nScope eMRI系统,安捷伦正在转变科研人员对于疾病的认识。 nScope eMRI系统最新进入安捷伦MRI产品线,它的特点是采用改进的界面,具有了无与伦比的易用性。优化的软件包结合特定的用户需求,重新设计的工作流程可以确保简单而人性化的操作。 &ldquo 成像通用协议保留了一个实验系统充分的灵活性,同时又朝着临床系统的易于使用性迈出了重要的一步&rdquo 英国爱丁堡大学临床科学学院教授伊恩.马歇尔说道,&ldquo 对希望获得生物医学成果又不陷入技术细节问题的新用户来说特别有用。&rdquo nScope eMRI系统是针对需要从MRI磁共振成像中获得有用信息的研究人员,该系统的设计具有明确的目标,使他们成像方面的研究方向变得越来越简单 &ldquo 我们很高兴我们能够将瓦里安原有的产品塑造成一个生物研究领域的基础工具,&rdquo 安捷伦副总裁研究产品总经理Regina Schuck说道,&ldquo 这个新的产品是安捷伦在生命科学领域致力于成为领导者的关键一步。&rdquo 所有临床前研究人员都会享受到易用性的进展,它包括了完整的标本生命支持,精确的激光制导样品定位,以及人性化的工作流程。这个MRI的软件已经改进了图像的浏览工具,并且具有一组经过验证的适合于大脑和心脏的常规成像实验的通用协议。对于高级用户,这里有一个为DNP实验用户设计的CSI工具,可以推动他们的13C研究的发展。 需要获得更多信息,请访问:www.agilent.com/lifesciences/eMRI. 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是化学分析、生命科学、电子和通信领域的技术领导者。公司的 18,700 名员工为 100 多个国家的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。需要了解安捷伦科技的信息,请访问:www.agilent.com.cn 。
  • 晶泰科技携手ABB机器人|打造柔性智能自动化实验室,突破研发效率瓶颈
    晶泰科技与 ABB 机器人联合打造柔性自动化、智能化的未来实验室,让自动化设备成为科研人的手中利器,成为突破各科研领域效率瓶颈的日常工具。ABB GoFa 复合协作机器人将帮助晶泰科技旗下新品牌 “晶泰智造” 提升实验串联环节的效率,面向生物医药、化学化工、新能源新材料,智能检测等应用场景提供更高水平的解决方案。在 ABB 的支持下,晶泰智造针对行业痛点及相关业务需求,正式推出 3 款标准化产品(桌面型固体加样仪、智能合成工作站、智能结晶工作站),为推进商业实验室自动化装备普及和发展贡献力量。实验室自动化是不可阻挡的趋势,人工智能时代,高质量大体量的实验数据是算法验证和迭代的重要路径。实验室自动化可以加快实验速度、提升时间利用率,减少耗材的使用量并提升实验通量,生成质量更高的、标准化、规范化的数据,提高实验结果的可重复性和准确性。在自动化的帮助下,过去花大量时间执行繁琐重复实验的研究人员,可以将时间投入于思考实验的各种影响条件、进行数据分析和反应的顶层设计等具有更高价值的工作。晶泰科技是一家以人工智能(AI)和机器人驱动创新的科技公司,致力于实现生命科学和新材料等领域的数字化和智能化革新。2023 年,晶泰科技旗下自动化方向的新品牌 “晶泰智造” 正式推出,其使命正是让自动化设备成为科研人的手中利器,颠覆几十年不变的传统实验方式,让更多的人远离有害的实验环境,从繁琐重复的操作中解放出来。打造未来实验室,实现科研模式的革新以提升创新效率及社会福祉,是晶泰智造更长远的目标。自动化实验设备产生高质量大规模的数据将成为推动 AI for Science 高质量发展的重要基石,突破人工智能算法的数据瓶颈,以实践反哺科学,使 Design-Make-Test-Analyze 研发循环更为迅速和高效。晶泰科技于 2019 年开启探索实验室智能化自动化的自主研发之路,并于2022年 与 ABB 展开战略合作。双方基于良好的合作基础,充分发挥各自优势及资源,共同深耕自动化和智能化实验室解决方案。通过数年的研发积淀,晶泰科技在 ABB GoFa 协作机器人等优质合作方的支持下开发了一系列实验室自动化解决方案,覆盖石油化工、化学制药、生物医药、食品药品检测、新材料、新能源等行业药物研发所需要的自动化实验流程,为算法和模型训练提供高质量的标准化数据输入,加速验证迭代。对于双方的合作,晶泰科技自动化产品总监张晨曦表示,“我们通过和 ABB 合作,采用机器人与人协作的模式,大幅提高了实验室的效率。我们希望将晶泰科技的智能软硬件系统和行业经验与 ABB 机器人的技术优势相结合,携手为药物研发等行业开发更多创新性的解决方案,扩大自动化与机器人技术在创新药物和材料的研发过程中的应用,为更多实验室开启智能的自动化之旅。”目前,晶泰智造创新的实验室自动化工作站可根据需求,搭配不同模块组合,完成一种或多种不同的实验步骤及实验种类,让实验研究 “以人为本”。ABB GoFa 机器人集成于晶泰智造的智能合成工作站、智能结晶工作站、制备站、稀释过滤站、反应站、UPLC 测试站、手套箱工作站、卫星仓及自主移动小车等多功能柔性化工作站中,可 7*24 小时不间断工作,为实验室研发人员服务,帮助加快实验研究提质增效。ABB 机器人业务部协作机器人产品线全球负责人 Jose-Manuel Collados 说道,“ABB 与晶泰科技的合作是激动人心的,这是 GoFa 协作机器人在全球范围内一次成功的应用。通过与晶泰科技的合作,ABB 机器人将在实验室自动化这条充满机遇的行业新赛道上走得更快、更远、更稳。同时,我们未来也将加速拓展应用,期待 ABB 机器人能够在各个创新领域大放异彩。”ABB 机器人与晶泰科技的战略合作还在继续,未来将推出更多不同功能的协作机器人实验室自动化工作站,共同建立能够应对药物研发等领域 “工程学挑战” 的生态系统。通过机器人打造大规模高柔性实验室,解放双手,产生高质量数据,真正赋能研发创新之路。关于晶泰科技晶泰科技是一家以人工智能(AI)和机器人驱动创新的科技公司。2014 年创立于美国麻省理工学院(MIT),致力于实现生命科学和新材料领域的数字化和智能化革新。公司基于量子物理、人工智能、云计算及大规模实验机器人集群等前沿技术与能力,为全球生物医药、化工、新能源、新材料等产业提供创新技术、服务及产品。关于ABB 机器人ABB 机器人与离散自动化是一家专注于提供机器人、自主移动机器人和机械自动化解决方案等全套产品组合的公司,通过ABB自主软件设计与集成,为客户创造更高价值。我们致力于帮助汽车、电子、物流等不同领域、不同规模的企业增强发展韧性、提升运营效率、提高生产柔性,助其迈向互联、协作的未来工厂。ABB 机器人与离散自动化拥有超过 1.1 万名员工,遍布于全球 53 个国家的 100 余个地区。
  • 新型超强韧石墨烯材料有望替代碳纤维
    p style=" text-indent: 2em " 发表在最新一期美国《国家科学院学报》上的研究显示,北京航空航天大学程群峰教授课题组和美国得克萨斯大学达拉斯分校雷· 鲍曼团队受到天然珍珠母力学结构的启发,制备出微观结构类似于珍珠母的有序层状石墨烯结构。 /p p style=" text-indent: 2em " 程群峰对新华社记者说,此前将石墨烯单片机械堆叠成较厚的宏观材料耗时费力。例如制备人头发厚度的石墨烯薄膜,需要堆叠15万层单片石墨烯,且片层间界面作用较弱,力学性能较差。 /p p style=" text-indent: 2em " 珍珠母具有高强度、高韧性的力学性能,主要得益于内部规整的层状结构和离子键、共价键、氢键等丰富的界面作用。研究人员采用化学制备法而非机械堆叠制备出这种材料。他们借鉴了珍珠母的层状连接方式,通过在氧化石墨烯层间引入共价键、共轭键等不同键连的交联分子,将石墨烯纳米片牢固地“缝合”在一起,制造出强韧一体化的高导电石墨烯薄膜。 /p p style=" text-indent: 2em " 程群峰说,这种薄膜材料的拉伸断裂强度是普通石墨烯薄膜的4.5倍,韧性是后者的7.9倍。 /p p style=" text-indent: 2em " 研究人员介绍,传统碳纤维材料的制备条件需超过2500摄氏度,但新材料可在45摄氏度以下的室温进行制备,强度与碳纤维复合材料相当,成本更加低廉,易实现商业规模化制备。 /p p style=" text-indent: 2em " 程群峰说,这种廉价、低温的高性能多功能石墨烯纳米复合材料在航空航天、汽车、柔性电子器件等领域具有广泛应用前景。 /p p style=" text-indent: 2em " 论文通讯作者鲍曼说,薄膜有望最终取代飞机、汽车等设备使用的碳纤维复合材料。 /p
  • 标准解读 | 《汽车用高强韧类高真空压铸铝合金材料技术条件》
    近日,中国汽车工程学会正式发布团体标准《汽车用高强韧类高真空压铸铝合金材料技术条件》(T/CSAE 198-2021)。该标准由汽车轻量化技术创新战略联盟提出,苏州有色金属研究院有限公司牵头,联合中铝材料应用研究院有限公司、广东鸿图科技股份有限公司、安徽江淮汽车集团股份有限公司、中铝山西新材料有限公司、南通鸿劲金属铝业有限公司、重庆长安汽车股份有限公司、东风汽车集团有限公司等多家整车及材料企业共同研制。根据《中国汽车产业发展报告(2020)》的数据显示,2005年~2017年,我国交通行业的二氧化碳排放量始终保持稳定增长态势,占比从8%增长到10%。随着汽车保有量的增长,道路交通的碳排放增长速度较高。根据公安部统计的最新数据显示,2020年全国汽车保有量达2.81亿辆,已有70座城市的汽车保有量超过百万辆。汽车保有量的增长,导致交通行业碳排放量增长速度要远高于其他行业。相关预测显示,到2025年交通运输行业的碳排放量将在现有的基础上增加50%。2020年10月,由工信部指导编制的《节能与新能源汽车技术路线图2.0》明确指出,我国汽车产业碳排放将于2028年左右提前达峰,至2035年,碳排放总量较峰值下降20%以上。在汽车行业,推动节能减排首要的任务之一是实现汽车的轻量化。目前我国正加快汽车轻量化进程,大力发展新能源汽车尤其是电动汽车,主要是通过车身连接件、电池托盘等结构件的铝化实现轻量化的目标。这些结构件对强度和韧性均提出了较高的要求,采用真空压铸技术和高强韧压铸铝合金制备汽车结构件越来越被主机厂接受。但是,我国目前仅有针对传统非承载压铸件的压铸铝合金材料标准,严重制约了我国汽车轻量化特别是新能源汽车的快速发展。因此,在这种背景下,汽车轻量化技术创新战略联盟提出制定汽车用高强韧类高真空压铸铝合金材料的团体标准,旨在通过本标准规范汽车用铝合金结构零件对压铸铝合金的整体要求,推动汽车轻量化行业的快速发展。本标准规定了汽车用高强韧类高真空压铸铝合金材料的术语和定义、技术要求、试验方法、检验规则、标志、包装、贮存和运输。在术语和定义方面,通过定义一种压铸前快速抽出型腔中的气体,使模具型腔中的真空度不超过50mbar,确保液态金属在高压作用下,以极高的速度充填模具型腔,并在一定压力作用下冷却凝固而得到铸件的成形工艺,引出高强韧类高真空压铸铝合金材料,并将其定义为抗拉强度大于180MPa,屈服强度大于120MPa,同时伸长率大于8%,且适合于高真空压铸成形的铸造铝合金材料。在技术要求方面,主要从外观质量、化学成分、力学性能、含氢量、夹渣量、断口组织、显微组织七个方面对该压铸铝合金材料进行规定,其中化学成分对合金的Si、Fe、Mn、Mg、Sr、Cu、Ti等元素进行了规定,同时对杂质的单项和杂质的总和进行了规定。在力学性能方面包括金属型铸造和高真空压铸条件下单铸试棒的室温拉伸性能、硬度、冲击韧性及疲劳性能,并给出了推荐的的热处理工艺和力学性能。在含氢量方面规定了铸锭针孔度等级和含氢量的最大值,具体包括建议铸锭针孔度等级不低于二级,合金液中含氢量不超0.2ml/100gAl。在夹渣量方面,若客户对夹渣量有要求时,应在订货单或合同中注明具体等级,并规定不应低于二级,同时利用测渣仪进行定量判定,夹渣量等级满足90s内通过的铝合金液超过2200g或者夹渣统计不超过0.15mm2/kg铝液。在试验方法方面,化学成分的试验方法按照GB/T7999-2015的规定执行。力学性能的检测方法中,拉伸性能的试验方法按GB/T 228.1-2010的试验要求的规定执行,硬度的试验方法按GB/T229-2020中的规定执行,冲击韧性的试验方法按GB/T 231.1-2018的规定执行,疲劳性能的试验方法按GB/T3075-2008的规定执行。本标准充分考虑了汽车行业用到的高强韧类铸造铝合金材料,适用于汽车薄壁结构件用高强韧真空压铸铝合金材料标准,也适用于其它高强韧类铸造铝合金的评价内容、评价方法及评价标准,可为主机厂及压铸件供应商在汽车车身结构件方面提供选材及检测要求基准,对于规范其在汽车结构件上的应用有重要的指导意义。
  • 磁性微型机器人三维精准定位!振动样品磁强计提供关键数据支撑
    磁性微型机器人广泛应用于生物医学工程领域,其特殊的结构和特性有助于实现精准药物传递、无创诊断和基于细胞的治疗等医疗工作。然而,目前控制此类微型机器人运动的技术依赖于同质磁场的驱动,容易受到微型机器人特性和周围环境的影响。当周围环境或微观机器人本身的特性发生改变时,这些驱动方式缺乏通用性和适应性,并且由于电磁驱动系统和微型机器人位置的独立控制,微型机器人的移动容易出现短暂的延迟。针对上述问题,大邱庆北科学技术院的Sarmad Ahmad Abbasi 团队提出了一种通过电磁线圈产生的梯度场对磁性微型机器人进行基于机器学习的位置控制的方法。该方法通过直接驱动线圈电流模拟一个微型机器人运动的环境,从而控制微型机器人在规定工作区域内的三维位置。在模拟训练结束后,上述机器学习过程转移到反映现实世界复杂性的物理电磁致动系统中使用,相比于传统数学模型计算,该方法更精确、更高效。该成果以《Autonomous 3D positional control of a magnetic microrobot using reinforcement learning》为题发表在Nature Machine Intelligence上[1]。图1 磁性微型机器人通过驱动磁场模拟控制三维位置示意图 本文中,作者使用了美国知名低温设备制造商Lake Shore Cryotronics, Ltd.新推出的振动样品磁强计,对该微型机器人的磁化强度进行了表征,用以计算模拟环境中所使用的驱动磁场大小。该设备基于7400系列VSM成熟的产品设计基础上,推出了全新8600系列VSM系统。8600系列以提高产品性能和用户体验为目标,对其各部分的测量元件和操作部件都进行了全新优化升级,在提升灵敏度和磁场分辨率的情况下,还增强了设备的操作性。一、主机部分Lakeshore 8600系列VSM✔ 更优异的性能8600系列VSM采用创新设计,在降低测量噪声的同时还提高了采样速度。系统具有15 nemu的超高灵敏度、1 mOe的磁场分辨率、自带10000 Oe/s的超快磁场变化率和高达10ms/pt的数据采集速度,绘制一个完整的磁滞回线只需30秒。100ms/point 时无样品背景噪声测试,噪声峰值119.5 nemu - 800 nemu(左);10s/point 时无样品背景噪声测试,噪声峰值13 nemu - 50 nemu(右)✔ 更人性化的操作8600系列产品升级的另一个核心是设备的可操作性。Lake Shore公司将自研的QuickLIGN&trade 安装组件内置于该系列产品中,极大地简化了样品安装和更换的流程,单手即可完成操作。同样,QuickLIGN&trade 安装组件与8600系列VSM的所有变温选件兼容,使得安装和配置温度选件5分钟内即可完成。此外,8600系列的VSM磁体内置了ExactGAP&trade 功能,设置了6个可重复的固定间隙,无需进行重新校准。QuickLIGN&trade 安装组件ExactGAP&trade 可重复磁极间隙调整功能✔ 更强大的操作软件8600系列VSM 配备了全新的测量软件,界面简单,只需几步操作即可实现设置、执行程序、实验测量和数据处理等功能。软件包含一个完整的脚本引擎,用户可以使用提供的标准协议脚本或自行创建脚本,设定自定义实验条件进行测量。当与变温选件(86-OVEN, 86-CRYO, 或86-SSVT)联用时,该软件可以自动检测接入系统的变温选件,并与集成的705气体控制器配合使用,从而在4.2 K~1273 K的整个温区中提供自动化的VSM测量。系统软件还具备处理扩展和补偿数据、校准退磁和斜率因子、规范样品质量和体积、从测量数据中修正及扣除衬底数据以及计算及显示导数曲线等功能,进一步提升了实验的准确性和效率。 8600系列VSM操作软件界面✔ 一阶反转曲线功能FORC一阶反转曲线(FORC)是一种新型磁学测量方法,主要适用于测量含有诸多磁性矿物的自然样品,确定磁性矿物矫顽力的分布以及磁性矿物颗粒之间磁相互作用的强弱,帮助区分磁性矿物的种类和磁畴转换。FORC测量需要较高的磁场变化率和数据采集速率,8600系列VSM的标配系统自带FORC测量功能,可以满足测量参数的需求。FORC的测量结果还可以通过2D图像实时显示,测量结果更直观。一阶反转曲线(FORC)测量数据二、 变温选件Lakeshore的8600系列VSM配备了三种不同的变温选件:SSVT一体化变温选件、CRYO低温恒温器选件和Oven高温选件,以满足不同的温度需求。变温选件采用GlideLOCKTM设计,软件可以自动检测变温选件的安装,操作十分简便。GlideLOCKTM变温选件和温度控制器Lakeshore VSM变温选件温度范围SSVT一体化变温选件:100 - 950K(左);低温恒温器变温选件 4.2-450K(中)Oven高温炉选件:303-1273K(右)三、矢量线圈组件Lakeshore 8600系列VSM同样提供了矢量线圈组件,配合振动头的旋转功能,可以进行磁性材料各向异性测量表征,从而确定其矢量磁化分量和电感张量。矢量线圈组件可以进行室温测量,也可以与变温选件联用进行变温测量。室温矢量测量(左);与SSVT选件联用的变温矢量测量(右)关于 Lake Shore Cryotronics, Ltd.: 美国Lake Shore公司(www.lakeshore.com)是知名的极端温度和磁场条件下高精度测量和控制解决方案的创新者。主要产品包括低温探针台、振动样品磁强计、霍尔效应测量系统、M81同步源测量系统、Janis系列低温恒温器、低温控温仪、低温温度传感器、高斯计及霍尔传感器等。Lake Shore公司一直致力于推动科学发展,其产品解决方案不断创新,应用领域从物理实验室到深太空科学探索不断发展。相关产品1、Lake Shore 8600系列振动样品磁强计
  • 聚光动态 | 聚光科技创始人姚纳新一行莅临江苏、山东指导工作
    近日,聚光科技各营销大区召开2022年三季度总结及年终冲刺会议,总结分析前三季度工作情况,明确四季度经营目标,部署重点工作,全力冲刺确保高质量完成全年目标任务。聚光科技创始人姚纳新、总经理韩双来、总经办副主任王舒娴、营销管理部总监程婷婷、人力资源部总监赵玲等出席会议。会议上,姚纳新充分肯定了各大区的工作成绩并指出:“国家大力支持科学仪器产业发展,正是实现国产替代的好时机,聚光科技作为自主创新高端仪器装备头部企业,走的是一条‘长坡厚雪’的赛道,坡很长,雪很厚,市场发展前景广阔,我们要全力以赴抓住机遇、迎接挑战。”在良好的行业背景下,如何有效拓展市场、高质量服务客户,姚纳新从“核心力竞争力”提升、产品“多领域”全系发展、“以客户为中心”服务模式、完善“自我纠错”体系等方面给予指导。 提升核心竞争力,增强“硬+软”实力重点提升三大核心竞争力,完善高端分析仪器产品技术和解决方案,将服务渗透到各行各业。第一,创新能力,坚持“创新精神”与“匠心精神”双轮驱动,不断攻克“卡脖子”技术,实现国产替代;第二,完善的营销和服务网络,打造“无漏洞”销售网络,提供“全生命周期”的360°全方位优质服务。第三,成熟可靠的供应链体系,坚持质效并重,为客户提供满意的产品和服务。 产品多领域全系发展,打造“高端仪器装备门户”坚持产品多领域全系发展,以自主创新为核心,不断提升产品力,深化解决方案,搭建深度定制平台,以更好更全的产品体系和应用服务,满足各行各业客户多样化需求,打造成为客户的“高端仪器装备门户”。 坚持以客户为中心,全面升级服务质量坚持以客户为中心,挖掘客户的深层次需求,不断从卖产品、卖解决方案到卖服务转变升级。充分发挥聚光平台优势,深化与突破业务创新模式,由点到面网格化布局,加速各大区市场渗透力。 完善自我纠错体系,持续动态发展以客户最高满意度为目标,不断完善自我纠错体系,持续动态发展,整合自身资源,为客户提供最优质的服务,提高市场占有率;要不断学习创新,加强自身素质培养,提升自我价值,应对瞬息万变的市场。最后,姚纳新表示高端科学仪器产业发展,就如“一江春水向东流”,是符合事物发展客观规律的,是势不可挡的。公司会从技术创新、应用场景、客户服务、品牌建设等全方面多维度修炼内功,提供有力支持;营销队伍是公司的“火车头”,需坚持不懈、保持韧性,不断提升自身能力,全力打好年底的“收官之战”。
  • 利用仪器化划入表征材料的断裂韧度
    仪器化划入方法已经成功应用于测试各种材料(包括硬的合金、陶瓷、金属、岩石[1]和软的高分子聚合物、碱硅酸盐凝胶[2]等)的断裂韧度(跨越两个数量级)在材料科学与工程领域具有巨大应用前景,尤其是评估微米级材料或多尺度复合材料(比如碎屑-橡胶混凝土[3]、再生混凝土[4]、水泥[5]、页岩[1, 6, 7],骨头[8]、功能梯度和复合涂层[9])的断裂性能,其诸多优势包括:结果与传统方法(比如单边缺口试样的三点弯曲、紧凑拉伸)测量值一致;重复性好;材料体积小;设备操作、数据分析简单;近乎无损检测(微米级划入测试划入深度一般在十几微米);尤其是试样制备简单,不需要预制缺口或裂纹;测试成本和周期都大大减小[10]。仪器化划入过程的实物图和示意图见图 1[11]。在仪器化划入过程中,利用侧向力和压入深度可以计算出材料的断裂韧度。仪器化划入表征断裂韧度主要有两种理论:一种是线弹性断裂力学(linear elastic fracture mechanics or LEFM);另一种是能量尺寸效应理论(microscopic energetic size effect laws or ESEL)。理论都是假设在压头前端存在沿水平扩展的裂纹,见图 2[12]。这种裂纹模式在直刚刀压头划入石蜡的实验中体现得最好,见图 3[13]。对于直压头:三维裂纹的横截面是长方形。能量释放率可以由J-积分计算,再结合断裂准则,即可以建立利用侧向力和压入深度计算断裂韧度的关系式。图 1 仪器化划入测试实物图及示意图:(a)直钢刀压头划入石蜡;(b)倾斜直钢刀压头划入测试示意图;(c)Rockwell C压头划入薄膜材料;(d)轴对称压头划入示意图(压入深度d,压头尖端圆角半径R,侧向力FT,划痕方向x)图 2 利用轴对称压头划入过程的侧视图(左图)和正视图(右图)。x 是划痕方向,FT 是水平侧向力,FV 是竖直正压力,d 是压入深度,n 是压头与材料接触界面朝材料外侧的单位法向,A 是承载侧向力的面积投影,p 是压头与材料接触界面的周长图 3 石蜡在直钢刀压头仪器化划入过程中压头前端水平扩展的裂纹:(a)实验结果;(b)理想的裂纹形状示意图(具有长方形横截面的三维裂纹,需要裂纹长度l、刀具宽度w、压入深度d 三个尺寸表征)不同的学者提出了不同的分析方法,断裂韧度Kc 可以通过拟合仪器化划入的实验数据获得[10, 14-19]:其中Λ=A/(2P)是名义长度,p 和A 分别是周长和水平投影面积(见图 2),都是压入深度d 的函数[12]。利用线弹性断裂力学可以直接计算出断裂韧度Kc已知压头几何形状可以得到p(d)和A(d),f=2p(d)A(d) 即压头形状函数:对于圆锥压头,f 与d3 成正比;对于圆球压头,f 与d2 成正比。图 4是利用Rockwell C压头划入钢材的结果[20]。示意图见图 4(a)。在划入过程中,施加线性增大的正压力FV,如图 4(b),同时记录侧向力FT 和压入深度d。数据与划痕残余形貌一一对应,形貌见图 4(c),并且可以利用声发射分析断裂过程,如图 4(d)。图 4 利用圆锥压头分析钢材料的断裂韧度:(a)圆锥压头仪器化划入过程示意图(划痕方向沿X 轴,FV 和FT 分别是正压力和侧向力);(b)划入过程中在施加线性加载的正压力的同时记录侧向力;(c)划痕残余形貌;(d)侧向力和压入深度的关系(左轴)和声发射(右轴)当圆锥部分起主导作用时,FT/d3/2趋近于一条水平线,这说明划入过程由断裂机制控制,声发射信号也直接验证了断裂的发生。可见,利用划入方法测试材料的断裂韧度需要适合的加载条件,只有当载荷足够大,断裂机制占主导时才能应用线弹性断裂力学的公式计算断裂韧度,但是过大的载荷会产生很多扩展方向不同的裂纹,使得只有一条裂纹扩展的假设不成立。声发射信号是确定断裂发生的有效手段,可以用于区分断裂的程度(剧烈的断裂会使得声发射信号饱和),寻找适合的加载力范围。FT/d3/2一直在波动,这种锯齿状数据是切削的典型特征,与传统测试(比如紧凑拉伸中只有一个裂纹产生)明显不同,划入过程中会产生很多裂纹,所以有必要对平稳段的数据取平均[21]。仪器化划入方法已经成功应用于各种材料的断裂韧度表征[22, 23],比如:高分子材料(聚碳酸酯PC[18]、改性石墨烯添加的环氧树脂基复合材料[24])、玻璃(熔融石英硅[25]、K9玻璃[26])、金属(紫铜[27, 28])、半导体材料(单晶硅和碳化硅[29])等。表 1比较了部分材料的仪器化划入测试结果与传统方法测试结果,划入法测试与传统方法测试结果大体一致,差异很有可能是由于材料的各向异性和不均匀造成的,因为划入法表征的是表面微观区域的力学性能,传统方法测试的是宏观力学性能。所以划入法可以表征材料断裂韧度的分布,适合于异质复合材料各组织以及界面的力学性能表征,研究不同尺度结构的断裂性能,这些都是先进材料及微纳米器件发展迫切需要解决的关键测试表征技术,尤其在表面微观力学领域有广阔的应用前景。表 1 利用仪器化划入方法表征各种材料的断裂韧度(MPa• m1/2)压头(形状尺寸)及方法材料(牌号):划入法测的断裂韧度(传统方法测试值)单位(国家)[参考文献]Rockwell C压头(2θ=120°,R=200 μm),线弹性断裂力学铝合金(AA 2024):34.4±3 (32~37)热塑性聚合物(Delrin Grade 150):2.5±0.2 (2.9±0.5)麻省理工学院(美国)[20] Rockwell C 压头(2θ=120°,R=200 μm),线弹性断裂力学钠钙玻璃:0.71±0.03 (0.70)耐热高硼硅玻璃:0.68±0.02 (0.63)热塑性聚合物(Delrin 150E) :2.75±0.05 (2.8)热塑聚碳酸酯:2.76±0.02 (2.69)铝合金(2024-T4/T351) :28.8±1.3 (26~37)AISI-1045:62.2±2.6 (50)AISI-1144:62.2±2.6 (57~67)Titanium 6Al-4V:77.0±3.4 (75)麻省理工学院(美国)[22]直钢刀压头,线弹性断裂力学(LEFM)和能量尺寸效应方法(ESEL)石蜡:0.14 (0.15)水泥:0.66~0.67 (0.62-0.66)侏罗纪石灰岩:0.56 (ESEL), 0.34 (LEFM)A-51w:0.82 (ESEL), 0.81 (LEFM)B-4w:0.74 (ESEL), 0.72 (LEFM)B-12w:0.78 (ESEL), 0.78 (LEFM)麻省理工学院(美国)西北大学(美国)伊利诺伊大学厄巴纳-香槟分校(美国)[21]直钢刀压头、Rockwell C线弹性断裂力学水泥(直钢刀压头):0.66±0.05 (0.67)钢材(Rockwell C压头):40±0.2 (50)麻省理工学院(美国)[11]直钢刀压头能量尺寸效应方法水泥:0.66(0.65~0.67)伊利诺伊大学厄巴纳-香槟分校(美国)[23]Rockwell C压头线弹性断裂力学(LEFM)和能量尺寸效应方法(ESEL)塑料(Delrin):3.26 (LEFM),2.85 (ESEL)聚碳酸酯(Lexan):2.87 (LEFM),2.38 (ESEL)熔融石英硅:0.96 (LEFM),0.96 (ESEL)传统测试结果:塑料(2.8)、聚碳酸酯(2.2)、熔融石英硅(0.8)科罗拉多大学(美国)麻省理工学院(美国)[28]Rockwell C压头能量尺寸效应方法聚缩醛 :3.16 (2.8)石蜡:0.14 (0.14)聚碳酸酯(Lexan 934):2.8 (2.69)铝:32.53 (32)伊利诺伊大学厄巴纳-香槟分校(美国)[40]圆球压头线弹性断裂力学熔融石英硅:0.7 (0.68~0.75)K9玻璃:0.85 (0.82)福州大学(中国)[45,46]Rockwell C压头线弹性断裂力学聚碳酸酯:2.3 (2.2)福州大学(中国)[43]作者简介刘明,福州大学机械工程及自动化学院教授,福建省闽江学者特聘教授、福州大学旗山学者海外人才、福建省高层次境外引进C类人才,全国钢标准化技术委员会力学及工艺性能试验方法分技术委员会金属材料微试样力学性能试验方法工作组(SAC/TC183/SC4/WG1)委员、ISO 14577系列国际标准制修订国内工作组成员。1985年出生于哈尔滨市,哈尔滨工业大学本科、硕士,肯塔基大学(美国)博士,法国巴黎高科矿业工程师学校材料研究所博士后、华盛顿州立大学(美国)博士后。主要研究领域为微观力学及仪器化压入划入测试方法。作者邮箱:mingliu@fzu.edu.cn 参考文献[1] A.-T. Akono, P. Kabir, Microscopic fracture characterization of gas shale via scratch testing, Mechanics Research Communications, 78 (2016) 86-92.[2] C.V. Johnson, J. Chen, N.P. Hasparyk, P.J.M. Monteiro, A.T. Akono, Fracture properties of the alkali silicate gel using microscopic scratch testing, Cement and Concrete Composites, 79 (2017) 71-75.[3] A.-T. Akono, J. Chen, S. Kaewunruen, Friction and fracture characteristics of engineered crumb-rubber concrete at microscopic lengthscale, Construction and Building Materials, 175 (2018) 735-745.[4] A.-T. Akono, J. Chen, M. Zhan, S.P. Shah, Basic creep and fracture response of fine recycled aggregate concrete, Construction and Building Materials, 266 (2021) 121107.[5] J. Liu, Q. Zeng, S. Xu, The state-of-art in characterizing the micro/nano-structure and mechanical properties of cement-based materials via scratch test, Construction and Building Materials, 254 (2020) 119255.[6] M.H. Hubler, F.-J. Ulm, Size-Effect Law for Scratch Tests of Axisymmetric Shape, Journal of EngineeringMechanics, 142 (2016).[7] A.-T. Akono, Energetic Size Effect Law at the Microscopic Scale: Application to Progressive-Load Scratch Testing, Journal of Nanomechanics and Micromechanics, 6 (2016) 04016001.[8] A. Kataruka, K. Mendu, O. Okeoghene, J. Puthuvelil, A.-T. Akono, Microscopic assessment of bone toughness using scratch tests, Bone Reports, 6 (2017) 17-25.[9] H. Farnoush, J. Aghazadeh Mohandesi, H. Cimenoglu, Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition, J Mech Behav Biomed Mater, 46 (2015) 31-40.[10] A.T. Akono, N.X. Randall, F.J. Ulm, Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals, J. Mater. Res., 27 (2012) 485-493.[11] A.-T. Akono, F.-J. Ulm, An improved technique for characterizing the fracture toughness via scratch test experiments, Wear, 313 (2014) 117-124.[12] A.T. Akono, F.J. Ulm, Fracture scaling relations for scratch tests of axisymmetric shape, J. Mech. Phys. Solids, 60 (2012) 379-390.[13] A.-T. Akono, F.-J. Ulm, Z.P. Bažant, Discussion: Strength-to-fracture scaling in scratching, Eng. Fract. Mech., 119 (2014) 21-28.[14] G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, in: H.L. Dryden, T. von Kármán, G. Kuerti, F.H. van den Dungen, L. Howarth (Eds.) Advances in Applied Mechanics, Elsevier, 1962, pp. 55-129.[15] H.M. Hubler, F.-J. Ulm, Size-effect law for scratch tests of axisymmetric shape, J. Eng. Mech., 142 (2016) 04016094.[16] A.-T. Akono, Energetic size effect law at the microscopic scale: Application to progressive-load scratch testing, J. Nanomech. Micromech., 6 (2016) 04016001.[17] D. Zhang, Y. Sun, C. Gao, M. Liu, Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter, Wear, 444–445 (2019) 203158.[18] M. Liu, S. Yang, C. Gao, Scratch behavior of polycarbonate by Rockwell C diamond indenter under progressive loading, Polymer Testing, 90 (2020) 106643.[19] M. Liu, Microscratch of copper by a Rockwell C diamond indenter under a constant load, Nanotechnol. Precis. Eng., 4 (2021) 033003.[20] A.T. Akono, P.M. Reis, F.J. Ulm, Scratching as a Fracture Process: From Butter to Steel, Phys. Rev. Lett., 106 (2011) 204302.[21] A.-T. Akono, G.A. Bouché, Rebuttal: Shallow and deep scratch tests as powerful alternatives to assess the fracture properties of quasi-brittle materials, Eng. Fract. Mech., 158 (2016) 23-38.[22] 刘明, 李烁, 高诚辉, 利用圆锥压头微米划痕测试材料断裂韧性, 摩擦学学报, 39 (2019) 556-564.[23] 刘明, 李烁, 高诚辉, 利用微米划痕研究TiN涂层的失效机理, 计量学报, 41 (2020) 696-703.[24] S. Li, J. Zhang, M. Liu, R. Wang, L. Wu, Influence of polyethyleneimine functionalized graphene on tribological behavior of epoxy composite, Polymer Bulletin, (2020).[25] M. Liu, Q. Zheng, C. Gao, Sliding of a diamond sphere on fused silica under ramping load, Materials Today Communications, 25 (2020) 101684.[26] M. Liu, J. Wu, C. Gao, Sliding of a diamond sphere on K9 glass under progressive load, Journal of Non-Crystalline Solids, 526 (2019) 119711.[27] D. Zhang, Y. Sun, C. Gao, M. Liu, Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter,Wear, 444-445 (2020) 203158.[28] C. Gao, M. Liu, Effects of normal load on the coefficient of friction by microscratch test of copper with a spherical indenter, Tribology Letters, 67 (2019) 8.[29] 刘明, 侯冬杨, 高诚辉, 利用维氏和玻氏压头表征半导体材料断裂韧性, 力学学报, 53 (2021) 413-423.
  • 国资部公示第四批“百人计划”人员情况
    据国土资源部消息:国土资源部百名优秀青年科技人才计划资助的杨天南等9人已通过评估验收,现将人员名单及其资助期内获得的有关研究成果予以公示。如有异议,可自公示之日起两周内向国土资源部科技与国际合作司或向推荐单位提出。提出异议者,必须采取书面形式,写明提出异议的事实依据、本人真实姓名、工作单位、地址(含邮政编码)及联系电话等。   公示时间:2009年12月22日-2010年1月5日   联系人:国土资源部科技与国际合作司 马梅 徐浩   联系电话:(010)66558426 66558427   附:第四批部“百人计划”通过验收人员基本情况表 姓名 推荐单位 资助选题名称 杨天南 中国地质科学院地质研究所 苏鲁大陆深俯冲的上盘基底变形效应 朱弟成 成都地质矿产研究所 西藏南西部二叠纪玄武岩的区域对比及意义 周建春 中国土地勘测规划院 我国征地补偿标准研究 葛晓立 国家地质实验测试中心 江苏地区多环芳烃的环境地球化学特征及其环境效应研究 陈晓东 中国地质科学院地球物理地球化学勘查研究所 高温超导磁强计在电偶源瞬变电磁法中的应用研究 曾令森 中国地质科学院地质研究所 韧性剪切变形与剪切带地球化学动力学的研究 朱锦旗 江苏省国土资源厅 平原地区(苏锡常)地下水开采引发地裂缝灾害预测技术 方 慧 中国地质科学院地球物理地球化学勘查研究所 介质含水率与探地雷达信号关系研究 张志军 中国地质博物馆 石炭纪有翅昆虫的起源和辐射
  • 超长碳纳米管,具有超耐疲劳性
    p 超强超韧和超耐疲劳性能的材料在航空航天、军事装备、防弹衣、大型桥梁、运动器材、人造肌肉等众多领域都面临巨大的需求。碳纳米管是典型的一维纳米材料,也是目前已知的力学强度最高和韧性最好的材料,其宏观强度和韧性均比目前广泛使用的碳纤维和芳纶等材料高出一个数量级以上。然而,由于其小尺寸特性以及难以被测试的特点,单根碳纳米管的疲劳行为以及疲劳破坏机制研究是该领域长期未能搞清楚的难题。由于疲劳可以在应力水平远低于静态断裂强度的情况下发生,探究疲劳行为和潜在的破坏机制对于新材料的应用和长期可靠性评估具有重要意义。 /p p 清华大学化工系魏飞教授和张如范副教授团队首次以实验形式测试了厘米级长度单根超长碳纳米管的耐疲劳性。相关成果以《超耐久性的超长碳纳米管》Super-durable Ultralong Carbon Nanotubes为题,于北京时间8月28日在线发表在Science上。论文通讯作者为清华大学化工系魏飞教授和张如范副教授,第一作者为清华大学化工系2016级博士生白云祥,其他参与研究的作者包括清华大学化工系硕士生岳鸿杰、博士生申博渊、孙斯磊,清华大学航天航空学院李喜德教授、徐志平教授、王海东副教授以及博士生王进、王识君。 /p p 为开展单根厘米级长度碳纳米管的疲劳力学行为测试,研究团队设计搭建了一个非接触式声学共振测试系统(non-contact acoustic-resonance-test,ART)。与基于电子显微镜的纳米材料测试系统相比,ART系统具有多方面优势,该系统不仅避免了电子束导致的样品损伤,也使得厘米长度的一维纳米材料的疲劳测试成为可能,同时还解决了小尺寸样品夹持以及高周次循环载荷的施加问题。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/707985f2-b550-4548-8fd2-93d9b63b7f67.jpg" title=" WPS图片-修改尺寸.png" alt=" WPS图片-修改尺寸.png" / /p p 图1. 超长碳纳米管的结构和疲劳测试方案 /p p 研究人员发现,碳纳米管具有十分优异的耐疲劳性。碳纳米管的耐疲劳性受到温度的影响,随着温度的升高而下降。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/03f5233e-64b7-445d-b109-463ad187bb7a.jpg" title=" WPS图片-修改尺寸(1).png" alt=" WPS图片-修改尺寸(1).png" / /p p 图2. 室温下的超长碳纳米管的耐疲劳性 /p p 同时,研究人员还对疲劳破坏的机制进行了探究。结果发现,与一般传统材料的疲劳损伤累积机制不同,其疲劳破坏呈现出整体破坏性,未发现损伤累积过程,初始缺陷的生成对碳纳米管的疲劳寿命起主导作用。 /p p img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/0fc5bc6f-f72c-4bfc-bf5a-71ce4dd46051.jpg" title=" WPS图片-修改尺寸(2).png" alt=" WPS图片-修改尺寸(2).png" / /p p 图 3. 不同温度下的碳纳米管耐疲劳性 /p p 这项工作揭示了超长碳纳米管用于制造超强超耐疲劳纤维的光明前景,同时为碳纳米管各领域相关应用的寿命等设计提供了参考依据。 /p p br/ /p
  • 上海微系统所成功开发柔性单晶硅太阳电池技术
    早在上世纪五十年代,美国贝尔实验室的研究者就发明了单晶硅太阳电池,利用单晶硅晶圆实现了太阳光能转换成电能的突破,并成功用于人造卫星,当时的光电转换效率仅有5%左右。近几年,研究人员通过材料结构工程和高端设备开发的协同创新,将单晶硅太阳电池的光电转换效率提高到26.8%,接近理论极限29.4%,制造成本和综合发电成本大幅度下降,在我国大部分地区达到平价上网。同时,单晶硅太阳电池在光伏市场的占有率也上升到95%以上。除了常规太阳电池在地面光伏电站和分布式光伏的大规模应用以外,柔性太阳电池在可穿戴电子、移动通讯、车载移动能源、光伏建筑一体化、航空航天等领域也具有巨大的发展空间,然而目前尚未开发出商用的高效、轻质、大面积、低成本柔性太阳电池满足该领域的应用需求。中国科学院上海微系统与信息技术研究所的研究团队通过高速相机观察发现,单晶硅太阳电池在弯曲应力作用下的断裂总是从单晶硅片边缘处的“V”字型沟槽开始萌生裂痕,该区域被定义为硅片的“力学短板”。根据这一现象,研究团队创新地开发了边缘圆滑处理技术,将硅片边缘的表面和侧面尖锐的“V”字型沟槽处理成平滑的“U”字型沟槽,改变介观尺度上的结构对称性,结合有限元分析、动态应力载荷下的分子动力学模拟和球差透射电子显微镜的残余应力分析,发现单晶硅的“脆性”断裂行为转变成“弹塑性”二次剪切带断裂行为。同时,由于圆滑处理只限于硅片边缘区域,不影响硅片表面和背面对光的吸收能力,从而保持了太阳电池的光电转换效率不变。该结构设计方案可以显著提升硅片的“柔韧性”,60微米厚度的单晶硅太阳电池可以像A4纸一样进行折叠操作,最小弯曲半径达到5毫米以下;也可以进行重复弯曲,弯曲角度超过360度。相关成果于5月24日在《自然》(Nature)杂志发表,并被选为当期的封面文章。论文通讯作者、上海微系统所研究员狄增峰介绍道:“对于具有表面尖锐‘V’字型沟槽的太阳电池硅片断裂行为的认识,启发了研究团队针对硅片边缘区域进行形貌改变,将尖锐‘V’字型沟槽处理成圆滑‘U’字型沟槽,从而让弯曲应变能够有效分散,有效抑制了应变断裂行为,提升了硅片的柔韧性,最终实现了高效、轻质、柔性的单晶硅太阳电池。”论文通讯作者、上海微系统所研究员刘正新介绍道:“由于圆滑策略仅在硅片边缘实施,基本不影响太阳电池的光电转化效率,同时能够显著提升太阳电池的柔性,未来在空间应用、绿色建筑、便携式电源等方面具有广阔的应用前景。”该工作通过简单工艺处理实现了柔性单晶硅太阳电池制造,并在量产线验证了批量生产的可行性,为轻质、柔性单晶硅太阳电池的发展提供了一条可行的技术路线。研究团队开发的大面积柔性光伏组件已经成功应用于临近空间飞行器、建筑光伏一体化和车载光伏等领域。该工作的第一完成单位为中国科学院上海微系统所,第一作者为上海微系统所副研究员刘文柱、长沙理工大学副教授刘玉敬、沙特阿美石油公司博士杨自强和南京师范大学教授徐常清。理论计算与北京航空航天大学副教授丁彬和南京师范大学教授徐常清合作完成。残余应力分析与长沙理工大学教授刘小春和副教授刘玉敬合作完成。高速相机拍摄硅片瞬间断裂过程由阿美石油公司博士杨自强完成。
  • 《食品用塑料自粘保鲜膜》强制性新标准九月实施
    用保鲜膜把食品一包,然后放进微波炉加热或冰箱冷藏,这样的生活习惯已很平常。可保鲜膜分为哪几种?是不是所有的保鲜膜都可以在微波炉内加热?这些问题你注意过吗?9月1日起,由国家质检总局和国家标准委联合发布的国家强制性新标准GB 10457-2009《食品用塑料自粘保鲜膜》将正式实施。专家提醒,保鲜膜种类不同适用范围也不同,认清“真面目”,才能正确使用,使厨房生活安全又健康。   新国标扩大了原材料范围,将食品用保鲜膜分为聚乙烯 (PE)膜、聚氯乙烯(PVC)膜、聚偏二氯乙烯(PVDC)膜等三类。其中,PE材质的保鲜膜主要用于食品包装,在超市采购的半成品都用的这种包装,它的防潮性、透气性好,适于包装短期存放的花生、饼干、新鲜果蔬、冷冻食品等,但其阻气性较差,不宜用来包装对阻气性特别是阻氧要求较高的油脂类等食品 PVC材质的保鲜膜只能有限使用,可以用来包装蔬菜等,但不能直接包装肉食、熟食及油脂食品,且不得微波加热、不得高温使用 PVDC膜则用于包装熟食、火腿等,它的成本高,因此市面上较少见。   依据新标准,保鲜膜应标识产品的材质或种类、氧气透过率、二氧化碳透过率、透湿量及净卷重的公称值 保鲜膜应标有食品用字样 对于聚氯乙烯自粘保鲜膜(PVC)应标有“不能接触带油脂食品”、“不得微波炉加热”、“不得高温使用”等使用警示语 如保鲜膜宣称可微波炉加热使用时,应标志“可微波炉使用”、加热方式及最高耐温温度等。   目前大连市几家大型超市销售的部分品牌保鲜膜已更换了新包装,旧包装产品正逐步退出市场。市质监局标准化信息中心专家告诉记者,消费者在购买保鲜膜时,只要掌握一定方法,还是可以辨别其种类的。肉眼看:PE材质的透明性较差,颜色发白,被覆盖的食物看上去模糊不清 PVC材质的光泽度好,看上去清晰透彻,对光照有点淡黄色。用手拉:PE材质的较为柔软,但韧性较差,拉伸后可断裂 PVC材质的韧性强,能够大幅度拉宽拉长却不会折断,而且容易粘在手上。用火烧:PE保鲜膜点燃后,火焰呈黄色,迅速燃烧,有蜡烛燃烧的味道 而PVC保鲜膜用火点燃后火焰呈黄绿色,没有滴油现象,离开火源后会熄灭,而且有强烈刺鼻的异味。用水浸:由于两者的密度不同,PE保鲜膜浸入水中后会浮上来,而PVC保鲜膜浸入水中会沉下去。
  • 宁波材料所以“微交联法”创制高弹性铁电材料
    8月4日,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队在《科学》(Science)上,发表了题为Intrinsically elastic polymer ferroelectric by precise slight crosslinking的研究文章。该研究提出了铁电材料的本征弹性化方法,即采用微交联法使铁电聚合物从线性结构转变为网络状结构,通过精准调控交联密度在实现弹性化的同时,降低结构改变对材料结晶性能的影响,开创性地同时将弹性与铁电性赋予同一材料。基于此,该研究创制了一种兼具弹性与铁电性,且具有较好的耐机械疲劳和铁电疲劳性能的弹性铁电聚合物。铁电材料是功能材料,通常是指在一定温度范围内具有自发极化且极化方向可随外加电场改变进行翻转或重新定向的晶体材料,其核心为自发极化。极化是极性矢量,由于晶胞中原子构型使得正负电荷重心沿该方向发生相对位移,形成电偶极矩,使得整个晶体在该方向上呈现极性,这个方向称为特殊极性方向。这对晶体的点群对称性施加了限制,在32个晶体点群中只有10个具有特殊极性方向,即1(C1)、2(C2)、m(Cs)、mm2(C2v)、4(C4)、4mm(C4v)、3(C3)、3m(C3v)、6(C6)、6mm(C6v)。只有属于这些点群的晶体才具有自发极化,即铁电材料必为晶体材料。这种特殊的晶体点群赋予了铁电材料诸多性能,使其在数据存储和处理、传感和能量转换以及非线性光学和光电器件等方面有诸多应用。而晶体在受到应力时能够产生的弹性回复是极小的,通常小于2%,这是传统铁电材料多表现为脆性(无机)或塑性(有机)的原因。可穿戴设备、柔弹性电子和智能感知等领域的快速发展,对于使用的材料提出了越来越高的要求即需要在复杂形变下依旧保持稳定的性能。电子器件使用的材料根据导电性可分为导体、半导体和绝缘材料,而导体和半导体目前已实现弹性化。而铁电材料作为绝缘材料中性能最丰富的功能材料之一,目前尚未实现弹性化,这限制了铁电材料在柔弹性电子等领域的应用。铁电材料的铁电性主要来源于其结晶区,但晶体本身几乎不具备弹性,因而铁电性和弹性难以在同一种材料中兼顾。铁电材料的弹性化方法通常有三种——结构工程、共混和本征弹性化。通过结构工程制备的样品只能在预应变值范围内进行形变,需要复杂的制造技术且难以降低器件尺寸。在采用无机铁电材料与弹性体共混方式制备的复合材料中,无机铁电材料的铁电畴杂乱无章,需要经过有效极化后才能表现出铁电性。由于无机铁电与弹性体的电阻率相差较大,在极化过程中电场主要施加在电阻率更大的弹性体中,导致弹性体相的电击穿和电机械击穿。因此,本征弹性化可能是铁电材料弹性化的唯一途径。本征弹性化能够促进材料的发展,使其具备可大规模溶液制备的能力、提高设备密度和材料的耐疲劳性等。有机铁电材料包括有机小分子铁电材料和以PVDF(聚偏氟乙烯)为代表的聚合物铁电材料。铁电聚合物的铁电性主要来源于分子链两侧由极性相差较大的原子或基团形成由一侧指向另一侧的偶极子。铁电聚合物的特点是具有高柔韧性、易于制造成复杂形状、机械坚固性和极性活性。聚合物中的铁电性是20世纪70年代在聚偏氟乙烯中发现的,是电能、机械能和热能之间有效交叉耦合的平台。因此,兼具铁电性和柔韧性的铁电聚合物可能是铁电弹性化的最佳候选对象。在过去几年,化学交联法在导体和半导体的本征弹性化过程中取得了显著进展。由于强的铁电响应需要高的结晶度,而好的弹性回复需要低的结晶度,因此传统的化学交联方法很难同时兼顾铁电响应和弹性回复。为此,该团队提出了“弹性铁电材料”的概念,设计了精确的“微交联法”在铁电聚合物中建立网络结构。选择聚(偏氟乙烯-三氟乙烯)(P(VDF-TrFE),55/45mol%)作为反应基体材料,选择带有软而长链的聚氧化乙烯二胺(PEG-diamine)作为交联剂材料,使用低交联密度(1%~2%)赋予线性铁电聚合材料弹性的同时保持较高的结晶度。研究表明,交联后的铁电薄膜结晶相以β相为主,结晶均匀分散在聚合物交联网络中。在受力时,网络状结构能够均匀地将外力分散并且更多地承受应力,避免结晶区受到破坏。实验结果显示,交联后铁电薄膜在70%的应变下依旧具有较好的铁电响应,剩余极化约4.5μC/cm2并在拉伸过程中能够保持稳定,且具有较好的耐机械和铁电翻转疲劳性,提高了可靠性和使用寿命,拓展了使用范围。可见,“微交联法”是实现铁电弹性化行之有效的方法。该方法利用简单的化学反应实现了铁电性与弹性的良好匹配,为铁电材料弹性化提供了新思路。未来,研究团队将扩展此类方法,探索微交联法对于材料弹性化研究的普适性,并对制备的弹性铁电材料在可穿戴电子设备以及能量转换和存储、介电驱动等方面的应用进行探索。研究工作得到卢嘉锡国际合作团队项目、国家自然科学基金、浙江省钱江人才计划和浙江省尖兵领雁项目等的支持。铁电材料专家、东南大学教授熊仁根受邀在同期《科学》PERSPECTIVE专栏发表评论文章,认为这是突破性的工作,开辟了“弹性铁电”这一全新学科,并展望了弹性铁电材料可能的应用场景和未来的发展方向。图1. 弹性铁电的概念和合成策略示意图图2. 应变下弹性铁电的铁电响应。A为全弹性器件;B、C为全弹性器件在0%和70%的应变;D为在1kHz下0~70%应变下的P-E回滞曲线;E为不同应变下的名义Pmax、Pr和Ec和校正后的真实Pr。实验表明交联铁电薄膜在不同拉伸应变下均具有稳定的铁电响应。
  • OPTON的微观世界|第10期 从合金的断口看材料的塑性性能
    ——不同断口在SEM下的微观分析 前期回顾上期我们探索了蚂蚁在扫描电子显微镜下的形貌。从整体形貌到细节上的形貌,详细的描述了蚂蚁身体上的各个结构的形貌以及功能。本期我们继续借助扫描电子显微镜研究不同加工条件下合金的断口,以表征其塑性性能。序 言合金通常要经过铸造、压力加工(如轧制、挤压、锻造、拉丝以及冲压等)和热处理等过程,以获得优良的组织,制成合适的型材和工件,应用在国民经济等各种领域。在产品批量生产前,通常利用一系列的拉伸试验以检验材料的一些力学性能。从拉伸试验过程中,可以得出一系列的拉伸曲线,以表征材料的本征弹性、塑性、韧性等。在拉伸曲线的最后阶段,试样在外力作用下丧失连续变形,就会断成两段。试样的断裂过程包括裂纹的萌生和裂纹的扩展两个基本过程。金属材料的断裂过程在工程上有很大的实际意义。桥梁、轮船、汽车、宇航器的断裂行为给国民经济带来了巨大的危害。金属材料的抗断裂行为主要取决于两大因素。一是外因。如应力状态、温度、湿度等。二是内因。如显微组织和化学成分等。人们可以通过调整合金的化学成分,改善加工参数以及热处理方案,以提高材料的性能指标。人们在追求合金的高强度的同时,越来越关注材料的塑性和韧性等。本文主要通过一些合金的断口的微观形貌来分析材料的塑性指标。材料的断裂主要分为两大类:塑性断裂和脆性断裂。塑性断裂又叫延性断裂,断裂前发生大量的宏观塑性变形;脆性断裂过程中,几乎没有宏观塑性变形,但是在局部区域内存在一定的微观塑性变形。本文选取了四种不同变形量的铝合金的断口,观察其形貌组织,以表征其塑性指标。 20%变形量下的合金断口——形貌分析从图1可以看出,20%变形量下样品的断口主要是韧窝解理型断口,在解理断口的周围有一些韧窝。一般来说,韧窝越大,分布越多,材料的塑性性能越好。在较低的倍数下,有解理台阶和微裂纹的形成。解理裂纹继续扩展过程中,解理台阶相互汇合,形成“河流花样”。在较高的放大倍数下,可以从这些解理断口看出试样的晶粒呈长条状分布,这些长条状晶粒的尺寸多为15um左右,主要是由于加工变形造成的。在这些长条状晶粒的周围分布着少量的小晶粒,这些小尺寸晶粒的尺寸多为5um左右,主要是由于局部再结晶造成的。此外,在有的解理断口中还含有少量的第二相颗粒或孔洞。这些孔洞可能是由于在断裂过程中,晶体内部的第二相颗粒的脱落留下的位置造成的。图1 20%变形量下合金的断口形貌图 30%变形量下的合金断口——形貌分析图2 30%变形量下合金的断口形貌图从图2可以看出,30%变形量下样品的断口主要是韧窝解理型断口。与20%变形量下样品相比,30%变形量下样品的韧窝增多,表征在较大的变形量下,材料的塑性增强。主要表现在两个方面,一是韧窝的体积增大,二是韧窝的数量增多。在较高的放大倍数下,从这些解理断口看出呈长条状分布的变形晶粒,这些长条状晶粒的尺寸多为10um左右。在这些长条状晶粒的周围分布着少量再结晶晶粒,这些小尺寸晶粒的尺寸多为3um-5um左右。此外,在这些解理断口分布区域还有一些撕裂棱和第二相颗粒的分布。 50%变形量下的合金断口——形貌分析从图3可以看出,50%变形量下样品的断口主要是韧窝解理断口。有明显的解理台阶以及“河流花样”。在较高的放大倍数下,从解理断口的形貌可以看出长条状晶粒的周围分布着大量的近乎等轴的再结晶晶粒。这些长条状晶粒较少,且其尺寸多在7um-10um范围内,这些小尺寸晶粒的尺寸多为5um左右。表明材料发生了明显的再结晶。在这些解理断口中有第二相颗粒的分布,且这些颗粒尺寸较20%变形量下的颗粒尺寸要小一些。表明第二相颗粒的固溶强化作用增强,材料的力学性能以及塑性会有一定的改善。在这些几乎等轴的晶粒边缘含有一定的韧窝。这些韧窝的体积较小,可能是由于大变形量下颗粒尺寸较小,形成的韧窝也比较小。图3 50%变形量下合金的断口形貌图 60%变形量下的合金断口——形貌分析从图4可以看出,60%变形量下样品的断口主要是韧窝解理断口,在解理断口的周围有一些韧窝。从解理断口可以看出晶粒都呈近乎等轴分布,且这些晶粒的尺寸较50%变形量下的晶粒尺寸较大。这表明再结晶过程已经较充分进行,并且发生了一定程度的再结晶晶粒长大的行为,这不利于材料的塑性性能。在部分几乎等轴的解理断口中含有细小的第二相颗粒。这些第二相颗粒起到了很好的固溶强化的作用,对材料的塑性性能也有一定的益处。图4 60%变形量下合金的断口形貌图后记通过扫描电子显微镜下不同变形条件下的合金的断口形貌观察,可以看出随着变形量的增加,合金的再结晶程度增加,晶粒的尺寸逐渐减小,第二相的颗粒也会发生一定的碎化。材料的塑性会有一定的提高。但是,当变形量到达一定数值时,部分再结晶晶粒会发生一定的长大,可能对合金的塑性性能有一定的损害。当然,材料的力学性能与多种外因和内因有关。我们在选择合适的加工工艺同时,可以通过调节合金的成分、改善合金的热处理工艺等,获得优良的塑性性能。
  • 食品的未来(上集)——人如其食,那么我们应该以何为食?
    食物之于人类不仅关系密切而且富于情调,这些往往会影响到我们对食物本身、食物来源以及食物对健康和环境影响的判断。要想深入了解我们的食品生产和消费习惯,获得改造食物系统以及应对食品相关挑战的必要手段,更多更好的数据非常关键。我们需要从根本上改变食品生产方式;我们还必须认识到,气候变化对我们的食物系统构成巨大威胁,构建系统韧性已经成为必然选择。更多更好的数据对于应对这些挑战以及提高食品生产和加工效率至关重要。技术含量低而且亟需数据支持在过去几十年,几乎我们生活的方方面面都取得了巨大的技术进步,但初级食品生产仍然是主要依靠经验法则的低技术领域,而与工业化食品加工依靠传感器和测量实现的精确系统化过程相去甚远。在决定吃什么、吃多少以及什么时候吃时,我们依靠的仍然是直觉。除了食物本身,我们也应该更多去了解与食物相关的数据,因为现在,很多人对于入口食物的选择并不正确。改变错误观念对于食物来源,我们也经常会做出错误的选择。很多人认为购买本地生产的食品对环境更加友好,这种看法可以理解,但事实未必如此。与实际生产所消耗的能源和其他资源(如水)相比,运输和包装在食品碳足迹中所占的比重很小。所以说,吃什么食物比食物的来源更重要。人们认为可持续生产的本地食品更好,更健康,而工业化生产的食品不怎么样;他们还觉得乳品店和面包房要好于食品厂,而实际上无论面包还是奶酪都是深度加工的食品。标签传递数据不管是脂肪含量还是过敏相关信息,在如今的食品标签上查找这类信息总要费尽周折。所以要想更好地量化和了解从农场到餐桌的食品生产相关影响,就必须简洁明了。可以预见的是,未来我们购买的每一种食品都会使用简单的数字标识碳足迹,就像家用电器标注A-F能耗等级一样。显然,想要找到改变习惯的办法,想方设法传递和交流这类数据信息非常关键,但目前我们还没做到这一点。计算这类数据仍然非常复杂,并且也没有现成的标准。但网上购物的日益普及为我们提供了新的机会:我们可以通过对过去四周采购食品的碳足迹汇总数据报告逐月的环境影响。这不仅涉及到碳,还可以涵盖水资源和土地利用以及对生物多样性的影响!这些都需要对整个供应链进行测量,而且数据还需要实现从生产到加工,再到消费和回收的双向流动。测量、计算和掌握计算食品生产和消费对气候真实影响的复杂程度难以置信。比如说,我们虽然可以准确测量和计算使用现成原料生产一份即食食品消耗多少能源或水资源,但计算种植所有这些原料对气候造成的总体影响则是一个完全不同的问题,所涉及的因素纷纭复杂。比如所用能源如何生产?使用的是哪种水资源?运输里程多远?运输方式如何?而且还有更重要的,农田管理方式如何?使用的是什么肥料?是否涉及到毁林造田?我们对整个供应链进行的测量越多,就越能够了解哪些方面需要改进。新的工具和技术可以帮助我们收集必要的数据,从而能够更好地了解农田、牧场和渔场当前的情况。比如,地球上很薄的一层表土层中所含的碳要比大气中的碳高出很多,我们通过测量和监测就可以鼓励采用有助于将碳原地封存的耕作方法。在本系列第二部分,我将讨论食品的未来,以及在寻找满足口腹之欲的同时保护地球环境的新方法过程中,技术所发挥的作用。
  • 药品铝塑泡罩密封性检测仪的应用重要性
    药品铝塑泡罩密封性检测仪的应用重要性在现代制药行业中,药品包装不仅承载着保护药品免受外界污染、保持药品稳定性的重任,还直接关系到用药的安全性与有效性。其中,药品铝塑泡罩作为一种广泛应用的包装形式,以其优良的阻隔性、美观性和便于携带的特点,成为了众多药品,尤其是固体口服制剂的首选包装材料。药品铝塑泡罩通过铝层的高阻隔性和塑料层的韧性相结合,有效阻止了氧气、水分、光线及微生物的侵入,从而延长了药品的保质期。为什么要对药品铝塑泡罩进行密封性测试?尽管药品铝塑泡罩在设计上已经充分考虑了密封性能,但在实际生产、运输及储存过程中,由于材料缺陷、加工不当、环境温湿度变化等因素,仍有可能导致包装密封性受损。一旦密封失效,外部空气、水分及微生物就可能侵入包装内部,引发药品氧化、受潮、变质甚至污染。因此,对药品铝塑泡罩进行严格的密封性测试,是确保药品质量与安全不可或缺的一环。测试目的与意义三泉中石的药品铝塑泡罩密封性检测仪MFY-05S,主要目的在于评估药品铝塑泡罩包装的实际密封效果,确保其在整个生命周期内都能有效阻隔外界环境,保护药品不受污染。通过测试,可以及时发现并解决包装密封性问题,防止不合格产品流入市场。药品铝塑泡罩密封性检测仪的色水法原理在密封性检测中的应用在众多密封性检测方法中,色水法因其操作简便、直观有效而广受欢迎。该方法利用真空室中放置的含有色水(如亚甲基蓝溶液)的环境,通过对真空室抽真空,使试样内外产生压差,模拟包装在实际使用中可能遇到的压力变化。在释放真空后,观察试样的形状恢复情况及色水是否渗入包装内部,以此判断试样的密封性能。具体操作为:首先,将待测药品铝塑泡罩样品放置于装有亚甲基蓝溶液的真空室中,确保样品完全浸没或部分接触色水。随后,启动真空泵对真空室进行抽气,使室内压力低于外界大气压,此时若包装存在泄漏,内外压差将驱动色水渗入包装内部。待达到预定真空度并保持一段时间后,释放真空,观察并记录样品的形状恢复情况、是否有色水渗入及渗入程度。根据观察结果,可以准确判断药品铝塑泡罩的密封性能是否符合要求。药品铝塑泡罩密封性检测仪的应用重要性防止污染与变质:药品铝塑泡罩作为药品的直接包装,其密封性直接关系到药品是否会受到外界空气、水分、光线及微生物的污染。MFY-05S药品铝塑泡罩密封性检测仪,能够准确评估泡罩包装的密封性能,确保药品在储存和运输过程中免受污染,保持其原有的质量和疗效。良好的密封性能可以有效隔绝外部环境对药品的影响,延缓药品的氧化、分解等化学反应过程,从而延长药品的保质期。这对于需要长期储存的药品尤为重要。综上所述,药品铝塑泡罩密封性检测仪及其所采用的色水法原理,是保障药品质量与安全的重要技术手段。作为专业从事药品包装玻璃安瓿检测仪器的行业领先者-济南三泉中石实验仪器有限公司,紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在药品包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国家标准体系的建立添砖加瓦。
  • 葛子义等人EES:24% PCE!柔性钙钛矿太阳能电池
    由于钙钛矿层中的缺陷,机械耐久性和长期运行稳定性是柔性钙钛矿太阳能电池(f-PSC)商业化的关键因素。中国科学院葛子义和Li Wei等人合成了一系列具有不同分子偶极子的-CN添加剂,包括2'-氟-[1,1'-联苯]-3,5-二腈(1F-2CN)、2',6'-二氟-[1,2'-联苯]-3,5-二腈(2F-2CN)和2',3',4'-三氟-[1,6'-联苯]-3,5-三腈(3F-2CN)。 添加剂中的两个-CN基团可以与Pb2+缺陷配位,氟原子可以调节添加剂的偶极矩,并与带电荷的FA+基团形成氢键。因此,添加剂成功缝合了钙钛矿晶界处的缺陷,并释放了晶界应力,导致低杨氏模量和高机械柔韧性。同时,添加剂可以削弱电荷载流子与纵向光学声子之间的相互作用,并促进载流子的提取和传输。 此外,分子偶极更强的2F-2CN可以更好地提高f-PSCs效率和稳定性。因此,基于1F-2CN-、2F-2CN-和3F-2CN-的f-PSC分别具有21.87%、23.64%、24.08%和23.30%的功率转换效率(PCE)。得益于钙钛矿膜,含有改性添加剂的未封装f-PSC具有优异的机械可靠性以及良好的光、热和空气稳定性。 本研究采用Enlitech QE-R产品进行量测。
  • 利用维氏硬度压痕裂纹表征材料的断裂韧度
    可以利用维氏硬度压痕裂纹计算材料的断裂韧度,尤其适合表征硬脆材料的断裂性能。学者提出了很多半经验半定量的关系式。裂纹主要有巴氏(Palmqvist或径向)和中位(Median)裂纹两种形式,有些公式适用于特定的裂纹形式,有些公式对两种(Both)裂纹形式都适用。微米硬度实验设备简单,测试方便,分析直接,不仅在工程实践中有广泛应用,也是评估材料断裂韧度的有效工具。断裂韧度作为衡量材料抵抗裂纹扩展能力的力学性能指标通常用临界应力强度因子KⅠC表示,单位为MPam0.5。字母K为应力场强度因子,反映的是裂纹尖端区域应力场强弱;字母C指的是裂纹扩展的临界情况;下标罗马数字Ⅰ是指裂纹扩展形式为张开型,脆性材料的裂纹扩展类型为Ⅰ型。测量材料KⅠC的方法主要有:山形切口梁法(C. N. B)、单边预裂梁法(S. E. P. B)、表面弯曲裂纹法(S. C. F)、单边切口梁法(S. E. N. B)、单边V形切口梁法(S. E. V. N. B)、短V形切口杆法(S. R)、双扭法(D. T)、双悬臂梁法(D. C. B)、微米划痕法、纳米压痕法和维氏压痕法等。S. R、D. C. B和S. E. P. B法的测试试样难生产、成本高,难以广泛使用;S. E. N. B、S. E. V. N. B和C. N. B法加工试样缺口较困难;D. T法试件的几何尺寸会对测量值产生影响;S. C. F法必须要去除足够深度的表面层来消除残余应力场,才能保证KⅠC不被高估;微米划痕法需要考虑压头的磨损以确保测试结果的准确性;而压痕法具有制备试样简单、测试效率高、以及综合成本低等优点,已被广泛应用于表征陶瓷材料、硬质合金和玻璃材料的断裂韧度。虽然基于Griffith-Irwin平衡断裂力学的压痕法可以反映材料断裂的特征,有效表征材料的断裂韧度,但是使用压痕法确定KⅠC仍然存在不足,依然有争论,比如:诸多半经验半定量的公式在实际应用中受到裂纹模式(径向,中位,横向等)多样复杂的影响,计算的KⅠC结果不可靠;不适用于低泊松比的材料。如何根据不同的材料、不同的压头选择适合的公式和载荷,是当前利用压痕裂纹法表征材料断裂韧度亟需解决的问题。各种依据维氏硬度压痕裂纹长度计算断裂韧度的表达式列于表1,对于不同的裂纹模式有不同的表达式。裂纹主要有两种类型,见图1:一种是基于半椭圆型的中位裂纹(Median crack);另一种是基于半月状的巴氏裂纹(Palmqvist crack)或径向裂纹(Radial crack)。可以基于曲线拟合的方法得到同时适用于两种(Both)裂纹模式的表达式。典型硬脆材料的压痕裂纹见图2,需要测量压痕的接触半径a和裂纹长度c,可以计算得到l=c-a。维氏硬度HV可以由载荷F除以残余压痕面积AV得到:式中,AV考虑了压痕的倾斜表面(sin68°可以由压头形状获得),而不是压痕的投影面积;d (= 2a) 是压痕两个对角线长度的平均值;当F和d的单位分别是mN和μm时,维氏硬度的单位是GPa。值得注意的是工程上使用的维氏硬度没有单位,而且相关标准里面也没有单位,这不利于各种测试方法的比较,无法有效服务于科学研究。可见,即使维氏硬度如此基础、简单、成熟,仍然有待进一步发展。由于仪器化压入的兴起,压入硬度HIT是根据投影面积定义,并且努氏硬度HK也是根据投影面积计算,传统的维氏硬度HV可以通过投影面积转换成梅氏硬度(Meyer hardness)HMV(=2F/d2), 便于各种硬度之间的比较。表1中的维氏硬度HV也可以转换成HMV。表 1 利用维氏硬度HV计算材料的断裂韧度Kc[1]注: ϕ = 3, β2 = 0.059[15], Φ = -1.59-0.34ξ-2.02ξ2+11.23ξ3-24.97ξ4+16.32ξ5, ξ = lg(c/a). E是材料的弹性模量. Hv可以在每个载荷下多次测量取平均值,作为某一载荷下的Hv.图 1 维氏硬度压痕裂纹模式示意图图 2 典型硬脆材料的维氏硬度压痕裂纹[1, 15, 16]作者简介刘明,福州大学机械工程及自动化学院教授,全国钢标准化技术委员会力学及工艺性能试验方法分技术委员会金属材料微试样力学性能试验方法工作组(SAC/TC183/SC4/WG1)委员,ISO 14577系列国际标准制修订国内工作组成员。1985年出生于哈尔滨市,哈尔滨工业大学材料科学与工程学院本科、硕士,2012年12月获肯塔基大学(美国)材料科学与工程专业博士学位,法国巴黎高科矿业工程师学校材料研究所博士后,华盛顿州立大学(美国)博士后。2015年4月入职福州大学机械工程及自动化学院机械设计系力学教研室,获评福建省闽江学者特聘教授、福州大学旗山学者海外人才、福建省高层次境外引进C类人才,主要研究领域为微观力学及仪器化压入划入测试方法。作者邮箱:mingliu@fzu.edu.cn QQ:290716672 微信:hasanzhong参考文献[1] M. Liu, D. Hou, Y. Wang, G. Lakshminarayana, Micromechanical properties of Dy3+ ion-doped (Lu Y1-x)3Al5O12 (x = 0, 1/3, 1/2) single crystals by indentation and scratch tests, Ceramics International, 49 (2023) 4482-4504.[2] K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. Mater. Sci. Lett., 2 (1983) 221-223.[3] Z. Laiqi, H. Yongan, H. Lei, L. Jun-pin, Determination of empirical equation of fracture toughness for Mo5SiB2 alloy by indentation method, Trans. Mater. Heat Treat., 38 (2017) 178-183.[4] M. Laugier, New formula for indentation toughness in ceramics, J. Mater. Sci. Lett., 6 (1987) 355-356.[5] D. Shetty, I. Wright, P. Mincer, A. Clauer, Indentation fracture of WC-Co cermets, J. Mater. Sci., 20 (1985) 1873-1882.[6] B.R. Lawn, M. Swain, Microfracture beneath point indentations in brittle solids, J. Mater. Sci., 10 (1975) 113-122.[7] K. Tanaka, Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model, J. Mater. Sci., 22 (1987) 1501-1508.[8] B.R. Lawn, E.R. Fuller, Equilibrium penny-like cracks in indentation fracture, J. Mater. Sci., 10 (1975) 2016-2024.[9] A.G. EVans, E.A. Charles, Fracture toughness determinations by indentation, J. Am. Ceram. Soc., 59 (1976) 371-372.[10] K. Niihara, R. Morena, D. Hasselman, Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Lett., 1 (1982) 13-16.[11] G. Anstis, P. Chantikul, B.R. Lawn, D. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64 (1981) 533-538.[12] C. Terzioglu, Investigation of some physical properties of Gd added Bi-2223 superconductors, J. Alloys Compd., 509 (2011) 87-93.[13] J. Lankford, Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method, J. Mater. Sci. Lett., 1 (1982) 493-495.[14] J.E. Blendell, The origins of internal stresses in polycrystalline Al2O3 and their effects on mechanical properties, Massachusetts Institute of Technology, 1979, pp. 1-47.[15] M. Liu, Z. Xu, R. Fu, Micromechanical and microstructure characterization of BaO-Sm2O3–5TiO2 ceramic with addition of Al2O3, Ceramics International, 48 (2022) 992-1005.[16] 刘明, 侯冬杨, 高诚辉, 利用维氏和玻氏压头表征半导体材料断裂韧性, 力学学报, 53 (2021) 413-423.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制