当前位置: 仪器信息网 > 行业主题 > >

人网膜素

仪器信息网人网膜素专题为您整合人网膜素相关的最新文章,在人网膜素专题,您不仅可以免费浏览人网膜素的资讯, 同时您还可以浏览人网膜素的相关资料、解决方案,参与社区人网膜素话题讨论。

人网膜素相关的资讯

  • 岛津成像质谱显微镜应用专题丨视网膜药物分析
    高分辨率成像质谱应用于大鼠视网膜中氯喹的分布分析 在药物研发过程中,候选化合物的体内药代动力学分析是非常关键的步骤。该分析不仅可以掌握其药效药理,还可以得到和毒性评价有关的信息。通常,使用放射性自显影技术(Autoradiography: ARG)和荧光色素标记细胞的方法进行分析。但是,使用ARG的方法成本高,而且一方面这些方法无法区别原药和代谢物,另一方面标记物质的行为可能与未标记物存在差异。 因此,最近成像质谱分析法,即不进行标记即可对候选化合物进行检测的方法备受瞩目。质谱成像法除了能够在无标记的情况下对各种物质的分布进行分析,还能够使用同一切片同时分析原药及其代谢物,有望在今后的药物研发领域得到应用,取得新的突破。本文为您介绍使用成像质谱显微镜iMScope TRIO对氯喹给药后大鼠视网膜进行检测的示例。 1.大鼠视网膜中氯喹的高空间分辨率成像在本次分析中,对给予抗疟剂药物氯喹的大鼠视网膜进行分析。图1为氯喹的结构式。使用氯喹标准品进行分析,对基质及测定模式进行优化,表1为组织切片的分析条件。图1 氯喹的结构式 表1 分析条件 使用成像质谱显微镜iMScope TRIO进行高空间分辨率成像,发现在约10μm厚的视网膜色素上皮周围有氯喹的分布(图2和图3)。 图2 组织切片上的MS/MS质谱图图3 光学图像和MS/MS质谱图像 在测定氯喹时,如果使用成像质谱分析法常用的MS模式,因受到生物体衍生杂质带来的离子抑制、干扰的影响,无法得到清晰的MS图像(此处数据省略)。在本次分析中,通过iMScope TRIO的MS/MS模式进行测定,提高灵敏度,能够获得10μm的高空间分辨率下的MS/MS图像。 2.大鼠眼球中氯喹的高速成像在药代动力学研究过程中,为了阐明药物分子在细胞及器官水平的特征分布区域,分别需要在高空间分辨率及中等空间分辨率获得药物分子的分布信息。本实验使用MS/MS模式测定在中等分辨率(50μm)下测定大鼠眼球整体的氯喹分布情况,分析条件如表2所示。 表2 分析条件图4 组织切片上氯喹的MS/MS产物离子质谱图,激光直径50μm 虽然使用了更大的激光直径,有可能带来存在噪音高、离子抑制等问题,iMScope TRIO依然能够检测得到具有较高信噪比的氯喹特征碎片,并获得清晰的质谱图像。成像质谱实验的采集速度取决于目标检测区域中所包含的点数。iMScope TRIO能够独立更改激光直径及采集间隔等参数,从而能够轻松控制采集速度及图像尺寸,并且不会影响数据质量。 3.基质涂敷方式的比较在氯喹成像质谱分析中,比较了2种不同的MALDI基质涂敷方式。图5显示了有升华法获得的成像结果(基质升华方式的示意图如图6所示)。基质升华有iMLayer升华仪自动完成,而喷雾方式由手动完成。喷雾方式获得成像结果如图7所示。对比两种方式的检测结果,升华法获得了更加清晰尖锐的氯喹分布图像,而喷雾的结果则看起来会有一些扩散,如图7所示。前处理方式的优化依然取决于组织切片的特性以及所使用的基质类型。如示例中的结果,前处理步骤对最终成像结果的图像质量有显著的影响,不仅仅是切片制备的条件同时基质涂敷的过程也很重要。图5 升华法获得的氯喹分布质谱图像图7 喷雾法获得的氯喹分布质谱图像图6 基质升华方式示意图 4.在相同切片上进行MS和MS/MS成像分析成像质谱分析中,在同样位置只能采集一次数据。但是,使用iMScope TRIO可以调整激光直径及采集间隔,因此可以在采集点之间留下未采集区域,从而实现更多次的成像分析。图8显示了使用激光直径为5μm,采集间隔为10μm时,在同一采集区域内进行4次成像分析的方式。 图8 在同一测定区域进行1次MS分析及3次MS/MS分析的数据采集设置方式示例 文献题目《High spatial Resolution Imaging by iMScope TRIO -Imaging of Chloroquine Distribution in Rat Retina-》使用仪器岛津iMScope TRIO 声明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。
  • 许国旺团队合作成果:糖尿病视网膜病变可通过血液代谢标志物检测与发现
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 近日,中国科学院大连化学物理研究所研究员许国旺团队与上海交通大学附属第六人民医院贾伟平团队、中科院上海生命科学研究院研究员吴家睿团队合作,在糖尿病视网膜病变的早期发现方面取得新进展,发现了12-羟基花生四烯酸(12-HETE)和2-哌啶酮(2-piperidone)适用于糖尿病视网膜病变的诊断,尤其适合早期筛查。相关研究近日发表于Advanced Science。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/b2ace437-6b49-465c-af3b-35195092e4ec.jpg" title=" 11111.jpg" alt=" 11111.jpg" / /p p style=" text-align: center " 糖尿病视网膜病变可通过血液代谢标志物的检测 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 糖尿病在世界各地的发病率不断上升,造成社会、财政和医疗系统负担不断加重。国际糖尿病联合会预计,到2045年全球糖尿病患病人数将高达7亿人。中国糖尿病的患病人数已高居全球首位。糖尿病视网膜病变是糖尿病最常见、最严重的微血管并发症之一,也是成年人视力降低和致盲的主要原因,严重影响着全球成千上万人的生活质量。糖尿病视网膜病变的筛查和早期诊断对该病的预防和治疗尤为重要。目前的筛查和诊断仍依赖于视网膜成像,该方法人力、物力、财力消耗大,且依赖专业眼科医生的操作及对视网膜图像的判读,不利于大规模的快速筛查。因此,探索一种快速、高效、简便的体外诊断技术对糖尿病视网膜病变的早期发现和诊断有重要价值。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 本项研究共纳入905名受试者的血清样本,基于多平台代谢组学数据,全面揭示了糖尿病视网膜病变发生发展过程中异常的代谢特征和紊乱的代谢通路。通过多变量/单变量统计分析,研究人员发现并验证了一个新型组合标志物(12-HETE和2-piperidone),实现了糖尿病视网膜病变的快速、精准的体外诊断,其灵敏度高达80.5%~89.4%、特异性高达91.9%~93.3%,受试者工作曲线下面积AUC=0.928-0.946。该组合标志物在疾病的早期诊断中也表现出明显优势,其灵敏度高达81.6%~92.9%、特异性高达90.1%~93.3%、AUC=0.925-0.958,使糖尿病视网膜病变只需要进行血液检测就可快速及早发现病变原因,为糖尿病视网膜病变血液检测提供了可靠、高效、便捷的新方法。 /p p style=" text-indent: 2em " 点击链接了解原文: a href=" https://onlinelibrary.wiley.com/doi/10.1002/advs.202001714" target=" _blank" https://onlinelibrary.wiley.com/doi/10.1002/advs.202001714 /a /p
  • 通过高分辨成像质谱分析大鼠视网膜中氯喹的分布
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在药物研发过程中,候选化合物的体内药代动力学分析是非常关键的步骤。该分析不仅可以掌握其药效药理,还可以得到和毒性评价有关的信息。通常,使用放射性自显影技术(Autoradiography: ARG)和荧光色素标记细胞的方法进行分析。但是,使用ARG的方法成本高,而且一方面这些方法无法区别原药和代谢物,另一方面标记物质的行为可能与未标记物存在差异。因此,最近成像质谱分析法,不进行标记即可对候选化合物进行检测的方法备受瞩目。质谱成像法除了能够在无标记的情况下对各种物质的分布进行分析,还能够使用同一切片同时分析原药及其代谢物,有望在今后的药物研发领域得到应用,取得新的突破。本文介绍使用成像质谱显微镜iMScope i TRIO /i 对氯喹给药后大鼠视网膜进行检测的示例。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/c4265e4a-c078-4017-93d2-68a9d4eafbd5.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " 图1 氯喹的结构式 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 大鼠视网膜中氯喹的高空间分辨率成像 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在本次分析中,对给予抗疟剂药物氯喹的大鼠视网膜进行分析。图1为氯喹的结构式。使用氯喹标准品进行分析,对基质及测定模式进行优化,表1为组织切片的分析条件。使用成像质谱显微镜iMScope i TRIO /i 进行高空间分辨率成像,发现在约10 μm厚的视网膜色素上皮周围有氯喹的分布(图2和图3)。在测定氯喹时,如果使用成像质谱分析法常用的MS模式,因受到生物体衍生杂质带来的离子抑制、干扰的影响,无法得到清晰的MS图像(此处数据省略)。在本次分析中,通过iMScope i TRIO /i 的MS/MS模式进行测定,提高灵敏度,能够获得10 μm的高空间分辨率下的MS/MS图像。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b1a9ec68-3837-45b5-a422-9f98ed4422b0.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8fad9a5c-304b-4f86-b070-8ec12bb1a38d.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " 图2 组织切片上的MS/MS质谱图 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4ba84009-2ef8-4ef5-92af-f47ac86ebdb9.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center " 图3 光学图像和MS/MS质谱图像 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 大鼠眼球中氯喹的高速成像 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在药代动力学研究过程中,为了阐明药物分子在细胞及器官水平的特征分布区域,分别需要在高空间分辨率及中等空间分辨率获得药物分子的分布信息。本实验使用MS/MS span style=" text-indent: 2em " 模式测定在中等分辨率(50 μm)下测定大鼠眼球整体的氯喹分布情况,分析条件如表2 所示。虽然使用了更大的激光直径,有可能带来存在噪音高、离子抑制等问题,iMScope /span i style=" text-indent: 2em " TRIO /i span style=" text-indent: 2em " 依然能够检测得到具有较高信噪比的氯喹特征碎片,并获得清晰的质谱图像。成像质谱实验的采集 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 速度取决于目标检测区域中所包含的点数。iMScope i TRIO /i 能够独立更改激光直径及采集间隔等参数,从而能够轻松控制采集速度及图像尺寸,并且不会影响数据质量。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/12e37b19-cce0-4e12-a91f-8af4b67f0802.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-indent: 2em " strong span style=" text-align: justify text-indent: 2em " 基质涂敷方式的比较 /span /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在氯喹成像质谱分析中,比较了2 种不同的MALDI 基质涂敷方式。 图5 显示了由升华法获得的成像结果(基质升华方式的示意图如图6 所示)。基质升华由iMLayer 升华仪自动完成,而喷雾方式由手动完成。喷雾方式获得成像结果如图7 所示。对比两种方式的检测结果,升华法获得了更加清晰尖锐的氯喹分布图像,而喷雾的结果则看起来会有一些扩散,如图7 所示。前处理方式的优化依然取决于组织切片的特性以及所使用的基质类型。如示例中的结果,前处理步骤对最终成像结果的图像质量有显著的影响,不仅仅是切片制备的条件,基质涂敷的过程也很重要。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3e80c956-c24a-4b4f-b277-ff7fa0b9a5ad.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center " 图6 基质升华方式示意图 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 在相同切片上进行MS 和MS/MS 成像分析 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 成像质谱分析中,在同样位置只能采集一次数据。但是,使用iMScope i TRIO /i 可以调整激光直径及采集间隔,因此可以在采集点之间留下未采集区域,从而实现更多次的成像分析。图8显示了使用激光直径为5μm,采集间隔为10μm时,在同一采集区域内进行4次成像分析的方式。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7029ec9e-44bf-483d-a071-a1651cfc8ffb.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: center " 图4 组织切片上氯喹的MS/MS产物离子质谱图,激光直径50μm /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/b8099d01-93e1-49aa-9926-907aeab7a6d9.jpg" title=" 8.png" / /p p style=" text-align: center " 图5 升华法获得的氯喹分布质谱图像 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/c8b163cf-961b-4c26-8d20-902c68beed0f.jpg" title=" 9.png" / /p p style=" text-align: center " 图7 喷雾法获得的氯喹分布质谱图像 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/d51c038b-8e0c-4efa-8ecf-87c964a43b83.jpg" title=" 10.png" / /p p style=" text-align: center " 图8 在同一测定区域进行1次MS分析及3次MS/MS分析的数据采集设置方式示例 /p p br/ /p
  • 德国耶拿紫外成功应用于医院中对蛛网膜下腔出血的病理分析
    近年来,随着医学的不断发达,各种高新医疗检测仪器进入各大医院。其中包括大家比较熟知的CT,B超等,这些方法在确诊病理的同时,对人体也存在很大的伤害。因此,病理分析在医药行业依旧占据着非常重要的地位,此法同样常用来确诊各种病理。病理分析法是指通过化学、微生物学、血液学及分子病理学等实验室方法对人体流体,诸如血液、血清和组织等进行分析,进而确定一些病理。 近日来,德国耶拿分析仪器股份公司总部的应用工程师们致力于采用紫外与以前常规的病理分析相结合,在提高分析速度的同时,更增加测定的准确性。目前,德国耶拿公司的SPECORD系列紫外已成功应用于医药专业中病理的分析,在上两周已正式进入UK各大医院。 更多详情请到http://www.instrument.com.cn/download/shtml/211403.shtml网站中下载德国总部应用工程师提供的应用文章。此文章中阐述了对于蛛网膜下腔出血这样的病例进行分析的应用实例。得此病的病人的反应一般是剧烈的头疼,对于这类病例,医院以前一般是采用CT来进行确诊,但是采用CT进行确定具有一定的局限性: (1)在发病早期CT不能检测出来;(2)需要在失血的前12 h内进行测定;(3)对病人身体有伤害。而如今采用SPECORD进行病理诊断,非常快速,对病人无伤害,而且从病人身上采样后即使放置一个星期仍可进行测定,为医院和病人都带来了非常大的益处。
  • 别怕近视恼人,安东帕为您指点迷津
    眼镜的折光指数是矫正视力缺陷的关键指标。随着人们对电子显示屏、智能手机使用的增加,以及人口老龄化的影响,全世界近50%的人口具有屈光异常相关问题。应运而生的现代高科技聚合材料具有更高的折光率,使得眼镜和隐形眼镜的厚度变得更薄。为什么会近视?眼睛是我们很重要的感觉器官之一,它能够感知电磁波位于400nm至700nm之间的光的刺激和颜色。视觉是否清晰很大程度上取决于光束在视网膜上的投影准确程度,其焦点的变化会直接导致呈现在视网膜上的图像是否清晰。当焦点在视网膜前面,我们称之为近视;当焦点在视网膜后面,我们则称之为远视。值得一提的是,晶状体或角膜的变化会导致视差。晶状体并不是一个坚硬的东西,它能够被肌肉弯曲。在老化的过程中,晶状体会失去弯曲特性,这会导致阅读区域出现问题。折光率主要影响的是光通过角膜和晶状体后的方向和角度。任意折光指数的微小变化都会导致视觉瓣膜开合,这是由于液体的流失或者盐浓度的变化所导致的。在接下来的介绍中,你将了解更多关于折光指数在视力矫正和质量控制方面的重要性。折光仪在眼镜行业的应用框架眼镜几百年前,眼镜的发明让视力问题得以改善,眼镜会改变射入晶状体的光束角度,从而使焦点回到视网膜上。不同平滑深度或折射率的眼镜允许修正不同的屈光度值, 当折射率越高,眼镜平滑度则越小,镜片越薄,这取决于眼镜折射率越高,光的折射率就越大的原理。隐形眼镜隐形眼镜的出现始于1936年,当时人们尝试将一种聚甲基丙烯酸甲酯(PMMA)材料直接用于人眼。能否将隐形眼镜用于人眼主要与其折光指数有关,折光指数的大小决定了隐形眼镜矫正指数。现代隐形眼镜有不同的材料可供选择。主要有添加NVP或MMA的甲基丙烯酸-2-羟基聚合物和硅基聚合物。此外,隐形眼镜的另一个重要参数是含水量,隐形眼镜通常放置在储存液中以防止干燥,折射率也可用来测定镜片的含水量。眼药水眼药水主要用于治疗和预防眼睛干涩,在人的眼睛和角膜上覆盖着一层薄薄的水膜,这种薄膜可以防止眼睛受到环境和细菌的影响,水膜还含有少量的盐。此外,同样的溶液通常被用作隐形眼镜的储存溶液。人造晶状体像白内障这样的疾病会使人逐渐丧失视力,其主要原因是人的晶状体变得模糊。幸运的是,现代医学允许使用人造晶状体,因此视力得以恢复。当然,新晶状体必须覆盖原本晶状体的折射率范围,以获得清晰的视觉。消除色差在光谱范围内,不同的光折射强度会导致色差的产生,这在眼科尤其需要预防。它将一束白光分解成不同颜色,因而看到的图像是模糊的,这个问题也可能是由太阳眼镜引起的。对此我们可利用Abbemat MW折光仪测量眼镜在不同波长下的折射率。阿贝数可以用来衡量这种情况的指标,通过调整几何材质可以避免或尽量减少色差产生。有趣的是,折光仪在眼科的应用为眼镜和水凝胶的制造商带来了巨大的利益,这是因为折光仪能够对他们整个供应链上的产品进行快速和简单的质量控制,不仅仅是用于隐形眼镜聚合物的质量控制,还有隐形眼镜的储存溶液和最终产品的质量控制。更重要的是,Abbemat 系列的折光仪完全符合21CFR part11。安东帕折光仪提供了完整的解决方案Abbemat 系列折光仪安东帕Abbemat家族为眼科产品的质量控制提供多种解决方案,只需一台设备即可完成对隐形眼镜的质量、含水量、以及储存液盐度监控,为客户带来巨大的利益。对于上述所提到的各种眼镜行业的检测需求,安东帕都有相应的解决方案以满足用户的需要。针对框架眼镜、隐形眼镜和人工眼镜应用,我们建议使用安东帕Abbemat 300及以上型号,搭配固体压片,以保证较佳的测量结果。针对消色差的应用,则需要使用安东帕Abbemat MW型号。若仅仅为了监控眼药水和隐形眼镜中液体的质量,安东帕所有折光仪都可以满足。安东帕Abbemat折光仪家族测试过程01样品前处理若样本是液体,如隐形眼镜液,只需滴一滴样本在棱镜上即可。而眼镜、聚合物和所有类型的镜片都应该放在测量区域的中间,并使用固体压片压紧,直到仪器显示出稳定的折射率。02进行测量选择您的方法,如折射率或盐度。点击开始即可开始测量。如需在不同波长下的测量,只需改变波长重复测量即可。03遵循ISO-18369-4标准测量Abbemat MW型号折光仪满足新版标准的测量需求。04消色差特殊分析消色差或样品的色散可以用阿贝数表示,这个数值利用在三种不同波长下测得折射率代入公式计算得出。参考文献1. IS/ISO 18369-4: Ophthalmic Optics – Contact Lenses, Part 4: Physicochemical Properties of Contact Lens Materials2. STAPLETON, Fiona, et al. Silicone hydrogel contact lenses and the ocular surface. The ocular surface, 2006, 4. Jg., Nr. 1, S. 24-43.3. FONN, Desmond DUMBLETON, Kathryn. Dryness and discomfort with silicone hydrogel contact lenses. Eye & contact lens, 2003, 29. Jg., Nr. 1, S. S101-S104.4. D22IA050EN-B_ApplReport_Dispersion_Abbe_Number: https://extranet.anton-paar.com/extranet/wwwportal.nsf/api.xsp/download?app=docs&id=EF2289DB44324241C12577A4004B642B5. GERABEK, Werner E., et al. (Hg.). Enzyklopädie Medizingeschichte. Walter de Gruyter, 2011. S. 2116. PEARSON, Richard M. EFRON, Nathan. Hundredth annik-word !important "/
  • Lumenera发布Lumenera Lt545R 500万像素CMOS相机新品
    Lt545RPregius全局快门CMOS USB 3.1 Gen 1相机Teledyne Lumenera Lt545R相机采用SONY的高性能全局快门CMOS IMX250传感器,以最佳的图像质量和非常快的帧速率输出图像。Lt545R从SONY Pregius® 传感器提供最快的全分辨率图像,加上Teledyne Lumenera久经考验和可靠的USB 3.1 Gen1技术。可以使用硬件或软件触发来同步图像捕获。FPGA支持的性能,以及用于帧缓冲的板载存储器,即使在最苛刻的机器视觉系统中也能确保可靠的图像传输。Lt545R相机产品亮点彩色或黑白SONY IMX250 CMOS 500万像素全局电子快门传感器2/3“光学格式,可选择黑白或彩色高速USB 3.1 Gen 1接口,实现快速图像传输和简化连接P-Iris连接器,用于支持精确的镜头光圈控制紧凑,坚固的外形尺寸为44 x 44 x 61 mm带锁口的工业微型USB接口,和Hirose GPI/O连接器,用于供电和控制外围设备以及同步照明感兴趣区域(ROI)选项可提供更高的帧速率可选择8或12位像素数据支持多种数据速率,每种都针对最低噪声性能进行了优化关于PREGIUS® 全局快门CMOS技术SONY最新推出的Pregius全局快门CMOS传感器在像素设计方面综合了CCD与CMOS各自的优势,出色的性能令人赞叹不已。Pregius传感器采用了类似于CCD的模拟像素设计,但是其后端却与CMOS传感器十分相似。这种架构充分发挥了CCD传感器的优点(优秀的成像性能– 包括出色的色彩还原、低噪声以及高动态范围),同时又不失CMOS传感器的所有数字处理优点(内置模拟数字转换、图像校正、数字输出以及高速成像),从而提供了一种可替代传统CCD传感器的低功耗、低成本方案。传统的CMOS传感器逐列收集模拟信号,然后进行传输来实现模拟数字转换。Pregius CMOS传感器中采用的SONY Exmor技术为每列模拟信号配备独立的模拟数字转换器,从而实现了全局触发传感器。芯片会立刻执行转换,因此缩短了可增加噪声的合成处理时间。由此形成的图像噪声要远少于传统CMOS传感器。即插即用无需图像采集卡Lt545R相机紧凑,坚固的设计,外形尺寸44 x 44 x 61毫米,允许轻松集成到狭小的空间和系统。带锁扣的USB 3.1 Gen 1布线接口确保数据和电源的传输以及简单的即插即用安装,相机和主机系统之间的距离可达100米。 不需要昂贵的图像采集卡。符合USB3 Vision标准。推荐的应用运动捕捉Motion Capture人脸识别Face Recognition生物识别Biometrics智能交通Intelligent Transpotation System自动驾驶车辆Autonomous Self-driving Vehicles超快3D扫描Ultra-fast 3D Scanning眼底成像/视网膜成像Fundus/Retinal Imaging医学显微成像Medical Microscopy Imaging生命科学显微成像Life Science Microscopy Imaging数字病理扫描Digital Pagholoty Scanning数字显微扫描Digital Microscopy Scanning活细胞成像Live Cell Imaging细胞计数Celling Counting凝胶成像 (Gel Documentation)荧光成像 (Fluorescence Imaging)生物发光 (Bioluminescence)高光谱成像Hyperspectral Imaging多光谱成像Multispectral Imaging近红外成像NIR Imaging粒子图像测速Particle Image Velocity Measurement工业和工厂自动化Industrial and Factory Automation机器视觉Machine Vision订购选项Lt545RM 500万像素黑白相机Lt545RC 500万像素彩色相机La2000PK- 电源适配器和GPIO连接器(仅电源)*La2000PIOK- 带GPIO电缆的电源适配器(IO引线和直流电源连接器)*LuSDK软件开发套件(网络下载)定制订购选项SCI – 科学等级WOCG – 相机传感器上没有任何保护玻璃WOIR – 镜头座内安装AR / AR玻璃技术规格图像传感器:SONY IMX250, 彩色,黑白芯片尺寸:2/3”像素大小:3.45 x 3.45 μm分辨率:2464 x 2056 pixelsROI控制:Yes帧数:75 fps at 2464 x 2056位数:8 bit or 12 bit曝光时间:25μs to 71.6m (snapshot) 14μs to 9.6s (video)像素合并:YES增益:1 to 256x灵敏度:Mono: 5.0 DN/(nJ/cm2), Color: 4.5 DN/(nJ/cm2)(Global and channel gains at unity)动态范围:73 dB满阱容量:~10,800 e-相对响应率:63%@ 530nm peak color, 69%@ 540nm peak mono读出噪声:~2.36e-暗电流噪声:1.5 e-/s (at 22 oC ambient, 35 oC internal camera)数据接口:USB 3.1, micro locking connector镜头接口:C-Mount尺寸质量:44 x 44 x 61 mm, 140 g创新点:Teledyne Lumenera的USB 3.1 Gen 1 Lt下x45R相机系列基于Sony的Pregius™ 全局快门CMOS技术,可通过CMOS传感器提供类似CCD的性能,并具有更高的帧速率和清晰无失真图像。 Teledyne Lumenera提供了几种基于SONY第二代IMX传感器的GS CMOS相机型号,分辨率从3MP到12MP。 产品亮点: 全局快门CMOS CMOS传感器具有类似CCD的性能,并提高了帧速率 P-Iris连接器,用于支持精确的光圈镜头控制 高灵敏度3.45 um像素(是现有的第一代传感器5.86 um的1.1倍) 高动态范围,高速,低读取噪声?2e- 无光晕清晰度:即使画面中存在强光源,也能提供无光晕的静止图像 容USB3 Vision兼 Windows和Linux SDK Lumenera Lt545R 500万像素CMOS相机
  • Lumenera发布Lumenera Lt945R 890万像素CMOS相机 新品
    Lt945RPregius全局快门CMOS USB 3.1 Gen 1相机Teledyne Lumenera Lt945R相机将先进的Teledyne Lumenera技术与SonyPregiusIMX255 CMOS全局快门传感器相结合。它的小尺寸和轻便设计意味着Lt945R非常适合机器视觉,生命科学和无人机的应用。 Lt945R采用FPGA技术并集成帧缓冲,提供快速,可靠的图像传输。Lt945R相机产品亮点彩色或黑白SONY IMX255 CMOS 890万像素全局电子快门传感器1“光学格式,可选择黑白或彩色高速USB 3.1 Gen 1接口,实现快速图像传输和简化连接P-Iris连接器,用于支持精确的镜头光圈控制紧凑,坚固的外形尺寸为44 x 44 x 61 mm带锁口的工业微型USB接口,和Hirose GPI/O连接器,用于供电和控制外围设备以及同步照明感兴趣区域(ROI)选项可提供更高的帧速率可选择8或12位像素数据支持多种数据速率,每种都针对最低噪声性能进行了优化关于PREGIUS全局快门CMOS技术SONY最新推出的Pregius全局快门CMOS传感器在像素设计方面综合了CCD与CMOS各自的优势,出色的性能令人赞叹不已。Pregius传感器采用了类似于CCD的模拟像素设计,但是其后端却与CMOS传感器十分相似。这种架构充分发挥了CCD传感器的优点(优秀的成像性能– 包括出色的色彩还原、低噪声以及高动态范围),同时又不失CMOS传感器的所有数字处理优点(内置模拟数字转换、图像校正、数字输出以及高速成像),从而提供了一种可替代传统CCD传感器的低功耗、低成本方案。传统的CMOS传感器逐列收集模拟信号,然后进行传输来实现模拟数字转换。Pregius CMOS传感器中采用的SONY Exmor技术为每列模拟信号配备独立的模拟数字转换器,从而实现了全局触发传感器。芯片会立刻执行转换,因此缩短了可增加噪声的合成处理时间。由此形成的图像噪声要远少于传统CMOS传感器。即插即用无需图像采集卡Lt945R相机紧凑,坚固的设计,外形尺寸44 x 44 x 61毫米,允许轻松集成到狭小的空间和系统。带锁扣的USB 3.1 Gen 1布线接口确保数据和电源的传输以及简单的即插即用安装,相机和主机系统之间的距离可达100米。 不需要昂贵的图像采集卡。符合USB3 Vision标准。推荐的应用人脸识别Face Recognition生物识别Biometrics智能交通Intelligent Transpotation System摄影测量Photogrammetry测量学Surveying眼底成像/视网膜成像Fundus/Retinal Imaging医学显微成像Medical Microscopy Imaging生命科学显微成像Life Science Microscopy Imaging数字病理扫描Digital Pagholoty Scanning数字显微扫描Digital Microscopy Scanning活细胞成像Live Cell Imaging细胞计数Celling Counting荧光成像Fluorescence Imaging生物发光BioluminescenceDNA测序DNA Sequencing数字PCR Digital PCR高光谱成像Hyperspectral Imaging多光谱成像Multispectral Imaging近红外成像NIR Imaging工业和工厂自动化Industrial and Factory Automation机器视觉Machine Vision订购选项Lt945RM 890万像素黑白相机Lt945RC 890万像素彩色相机La2000PK- 电源适配器和GPIO连接器(仅电源)*La2000PIOK- 带GPIO电缆的电源适配器(IO引线和直流电源连接器)*LuSDK软件开发套件(网络下载)定制订购选项SCI – 科学等级WOCG – 相机传感器上没有任何保护玻璃WOIR – 镜头座内安装AR / AR玻璃技术规格图像传感器:SONY IMX255, 彩色, 黑白芯片尺寸:1″像素大小:3.45 x 3.45 μm分辨率:4112 x 2176 pixelsROI控制:Yes帧数:42 fps at 4112 x 2176位数:8 bit or 12 bit曝光时间:32μs to 71.6m (snapshot) 15μs to 15.5s (video)像素合并:YES增益:1 to 256x灵敏度:Mono: 5.0 DN/(nJ/cm2), Color: 4.5 DN/(nJ/cm2)(Global and channel gains at unity)动态范围:72.7 dB满阱容量:~10,500 e-相对响应率:63% @ 530 nm peak color, 67% @ 560nm peak mono读出噪声:~2.41e-暗电流噪声:1.3 e-/s (at 22 oC ambient, 35 oC internal camera)数据接口:USB 3.1, micro locking connector镜头接口:C-Mount尺寸质量:44 x 44 x 61 mm, 140 g创新点:Teledyne Lumenera的USB 3.1 Gen 1 Lt下x45R相机系列基于Sony的Pregius™ 全局快门CMOS技术,可通过CMOS传感器提供类似CCD的性能,并具有更高的帧速率和清晰无失真图像。 Teledyne Lumenera提供了几种基于SONY第二代IMX传感器的GS CMOS相机型号,分辨率从3MP到12MP。产品亮点:全局快门CMOSCMOS传感器具有类似CCD的性能,并提高了帧速率P-Iris连接器,用于支持精确的光圈镜头控制高灵敏度3.45 um像素(是现有的第一代传感器5.86 um的1.1倍)高动态范围,高速,低读取噪声?2e-无光晕清晰度:即使画面中存在强光源,也能提供无光晕的静止图像容USB3 Vision兼Windows和Linux SDKLumenera Lt945R 890万像素CMOS相机
  • Lumenera发布Lumenera Lt1245R 1200万像素CMOS相机新品
    Lt1245RPregius全局快门CMOS USB 3.1 Gen 1相机产品规格书 工业和科学相机宣传册Teledyne Lumenera Lt1245R采用索尼全局快门CMOS传感器中最大的SonyPregius® IMX253传感器。Lt1245R采用FPGA技术并集成帧缓冲和Teledyne Lumenera先进的图像处理技术,可从小尺寸的相机中提供高分辨率图像。 这使得Lt1245R非常适合机器视觉,生命科学,无人机和ATI应用。Lt1245R相机产品亮点彩色或黑白SONY IMX253 CMOS 1200万像素全局电子快门传感器1.1“光学格式,可选择黑白或彩色高速USB 3.1 Gen 1接口,实现快速图像传输和简化连接P-Iris连接器,用于支持精确的镜头光圈控制紧凑,坚固的外形尺寸为44 x 44 x 61 mm带锁口的工业微型USB接口,和Hirose GPI/O连接器,用于供电和控制外围设备以及同步照明感兴趣区域(ROI)选项可提供更高的帧速率可选择8或12位像素数据支持多种数据速率,每种都针对最低噪声性能进行了优化关于PREGIUS® 全局快门CMOS技术SONY最新推出的Pregius全局快门CMOS传感器在像素设计方面综合了CCD与CMOS各自的优势,出色的性能令人赞叹不已。Pregius传感器采用了类似于CCD的模拟像素设计,但是其后端却与CMOS传感器十分相似。这种架构充分发挥了CCD传感器的优点(优秀的成像性能– 包括出色的色彩还原、低噪声以及高动态范围),同时又不失CMOS传感器的所有数字处理优点(内置模拟数字转换、图像校正、数字输出以及高速成像),从而提供了一种可替代传统CCD传感器的低功耗、低成本方案。传统的CMOS传感器逐列收集模拟信号,然后进行传输来实现模拟数字转换。Pregius CMOS传感器中采用的SONY Exmor技术为每列模拟信号配备独立的模拟数字转换器,从而实现了全局触发传感器。芯片会立刻执行转换,因此缩短了可增加噪声的合成处理时间。由此形成的图像噪声要远少于传统CMOS传感器。即插即用无需图像采集卡Lt1245R相机紧凑,坚固的设计,外形尺寸44 x 44 x 61毫米,允许轻松集成到狭小的空间和系统。带锁扣的USB 3.1 Gen 1布线接口确保数据和电源的传输以及简单的即插即用安装,相机和主机系统之间的距离可达100米。 不需要昂贵的图像采集卡。符合USB3 Vision标准。推荐的应用人脸识别Face Recognition生物识别Biometrics智能交通Intelligent Transpotation System摄影测量Photogrammetry测量学Surveying眼底成像/视网膜成像Fundus/Retinal Imaging医学显微成像Medical Microscopy Imaging生命科学显微成像Life Science Microscopy Imaging数字病理扫描Digital Pagholoty Scanning数字显微扫描Digital Microscopy Scanning活细胞成像Live Cell Imaging细胞计数Celling Counting荧光成像Fluorescence Imaging生物发光BioluminescenceDNA测序DNA Sequencing数字PCR Digital PCR高光谱成像Hyperspectral Imaging多光谱成像Multispectral Imaging近红外成像NIR Imaging工业和工厂自动化Industrial and Factory Automation机器视觉Machine Vision订购选项Lt1245RM 1200万像素黑白相机Lt1245RC 1200万像素彩色相机La2000PK- 电源适配器和GPIO连接器(仅电源)*La2000PIOK- 带GPIO电缆的电源适配器(IO引线和直流电源连接器)*LuSDK软件开发套件(网络下载)定制订购选项SCI – 科学等级WOCG – 相机传感器上没有任何保护玻璃WOIR – 镜头座内安装AR / AR玻璃技术规格图像传感器:SONY IMX253, 彩色, 黑白芯片尺寸:1.1″像素大小:3.45 x 3.45 μm分辨率:4112 x 3008 pixelsROI控制:Yes帧数:30 fps at 4112 x 3008位数:8 bit or 12 bit曝光时间:32μs to 71.6m (snapshot) 14μs to 15.5s (video)像素合并:YES增益:1 to 256x灵敏度:Mono: 5.0 DN/(nJ/cm2), Color: 4.5 DN/(nJ/cm2)(Global and channel gains at unity)动态范围:74 dB满阱容量:~10,500 e-相对响应率:61% @ 530 nm peak color, 68% @ 570nm peak mono读出噪声:~2.41e-暗电流噪声:1.2 e-/s (at 22 oC ambient, 35 oC internal camera)数据接口:USB 3.1, micro locking connector镜头接口:C-Mount尺寸质量:44 x 44 x 61 mm, 140 g创新点:Teledyne Lumenera的USB 3.1 Gen 1 Lt下x45R相机系列基于Sony的Pregius™ 全局快门CMOS技术,可通过CMOS传感器提供类似CCD的性能,并具有更高的帧速率和清晰无失真图像。 Teledyne Lumenera提供了几种基于SONY第二代IMX传感器的GS CMOS相机型号,分辨率从3MP到12MP。 产品亮点: 全局快门CMOS CMOS传感器具有类似CCD的性能,并提高了帧速率 P-Iris连接器,用于支持精确的光圈镜头控制 高灵敏度3.45 um像素(是现有的第一代传感器5.86 um的1.1倍) 高动态范围,高速,低读取噪声?2e- 无光晕清晰度:即使画面中存在强光源,也能提供无光晕的静止图像 容USB3 Vision兼 Windows和Linux SDK Lumenera Lt1245R 1200万像素CMOS相机
  • Digital WB在基因治疗眼科疾病动物模型中应用
    眼部疾病基因治疗仍面临很多挑战,评估疗法的安全性风险,验证有效性,更好地支持临床试验研究开展,需要开展系统性地非临床研究。在药理学、药代动力学和毒理学等非临床研究中,选择合适的动物模型来检测目的基因表达和相关的生物学活性非常重要。本文介绍了转基因目的蛋白表达检测技术,详细说明了新技术Digital WB在不同临床前动物模型上应用进展。 近几年,眼科领域的基因治疗临床试验项目数量激增,包括基因替换、基因编辑和基因沉默多个技术方面。眼睛作为免疫豁免器官,视网膜感光细胞和视网膜色素上皮细胞是几种遗传性视网膜疾病基因疗法的重要靶细胞。遗传性视网膜营养不良(Inherited retinal dystrophies, IRDs)是可导致进行性视网膜退化的遗传缺陷性罕见疾病,常见的IRD相关基因缺陷超过200种。作为基因治疗的理想候选者,2017年美国FDA首次批准了视网膜Voretigene Neparvovec基因疗法(Luxturna, Spark Therapeutics),用于治疗RPE65.1双等位基因突变引起的罕见眼科疾病,称为Leber先天性黑蒙。这个里程碑意义的决定为眼科疾病基因疗法打开了大门。目前大部分临床研究疗法目标是通过导入正常功能基因,从而恢复缺陷基因编码蛋白质的正常表达。如治疗色盲的CNGA/CNGB,治疗无脉络膜症的CHM/REP1,治疗Leber 先天性黑蒙的RPE65,治疗X连锁视网膜色素变性(x-linked retinitis pigmentosa)的RPGR。 尽管眼睛对其他器官有相对优势,但眼部疾病基因治疗仍然具有挑战性如基因疗法生产、临床试验设计和长期安全性方面。需系统地开展非临床研究来评估安全性风险,验证有效性机制,以支持临床试验研究。在体内和体外模型中研究产品与治疗靶点的相关作用机制和效应,选择生物相关性模型来检测目的基因表达和生物学活性非常重要。对于眼部疾病可探索选择临床前研究模型如细胞系模型、人诱导多能干细胞(hiPSC)衍生的视网膜类器官疾病模型、啮齿动物和非人灵长类动物等,根据生物学相关性和测定时间可在不同阶段综合选择特异性评估模型。小鼠动物模型案例1:Digital WB检测小鼠眼角膜内转基因蛋白和相关蛋白表达水平 先天性遗传性角膜内皮营养不良 (congenital hereditary endothelial dystrophy, CHED)是一种罕见的原发于角膜内皮的常染色体隐性遗传病,临床特征为出生时或生命早期出现双侧弥漫性角膜水肿和混浊。由于膜转运蛋白 SLC4A11功能丧失而导致内皮细胞凋亡。本研究采用124只小鼠,53只Slc4a11+/+作为对照,71只眼前房注射AAV9- Slc4a11和空AAV载体。 为了测定病毒转导效率,即AAV9-HA-Slc4a11 转导至 Slc4a11-/- (KO) 动物的角膜内皮细胞效率,AAV9-Slc4a11具有血凝素(Hemagglutinin,HA)标签,通过Digital WB检测HA标签表达水平来反应转导水平。结果显示年轻和年老动物组都实现了AAV载体转导的蛋白质表达,而且水平相当。 Slc4a11-/- (KO)小鼠眼角膜乳酸流出减少,导致乳酸在基质中累积,随着年龄增长而进展。乳酸转运蛋白MCT1、2和4在角膜内皮细胞中具有活性。采用Digital WB(WES Immunoassay)检测小鼠眼角膜内皮层细胞蛋白质表达,在年轻动物中,观察到MCT1和2蛋白质表达水平轻微上调,而MCT4表达显著增加。在年长动物中,乳酸转运蛋白表达升高,但水平改变不显著。 综合多角度研究,揭示了在年轻动物组,AAV9- Slc4a11将CHED表型如角膜水肿、内皮细胞丢失、线粒体氧化应激、乳酸转运蛋白表达和角膜乳酸浓度逆转恢复到正常野生型动物水平。年长动物没有逆转表型,但是仍能阻止疾病进展。这些都表明了采用基因治疗可能对CHED表型进行功能性挽救,更重要的进行早期干预治疗。 本研究充分证明了,在AAV基因治疗小鼠眼角膜样本中,Digital WB可利用微量眼角膜样本准确定量角膜内皮细胞中蛋白质表达水平变化。案例2:Digital WB用于AMD小鼠模型RPE和视网膜中小分子量蛋白质表达分析 自噬(Autophagy)在年龄相关性黄斑变性(AMD)疾病进展中起着重要作用。靶向自噬在具有早期AMD特征的小鼠模型中可减缓功能障碍。研究表明,针对增强自噬途径具有治疗早期 AMD 潜力。采用野生型小鼠(WT)和缺乏APEO(载脂蛋白E)小鼠进行对比研究,APOE对照小鼠的视网膜功能降低,与早期AMD表型一致,可作为AMD研究模型。实验设计是5个月时,在饮用水中加入二甲双胍(0.4 g/kg/天)或海藻糖(3 g/kg/天)给WT 和 APOE小鼠,而对照组只接受饮用水。13 个月时,对 (A-B) RPE 和 (C-D) 视网膜样本,采用Digital WB分析LC3B 表达水平,GAPDH作为上样对照。作为溶酶体自噬过程中标志物,LC3-II:LC3-I 比率动态变化可反应自噬过程中生成和降解的动态过程。结果揭示了APOE 小鼠的 LC3-II:LC3-I 比率较高,表明自噬减慢。但用海藻糖或二甲双胍治疗的 APOE 动物中,LC3-II:LC3-I 比例恢复到 WT 水平,增强了自噬作用。参考下图: 免疫组织化学实验结果也显示光感受器和视网膜色素上皮 (RPE) 中 MAP1LC3B/LC3(微管相关蛋白1轻链-3β)和 LAMP1(溶酶体相关膜蛋白 1)标记减少,这与增加的LC3-II:LC3-I 比率和多个自噬途径中蛋白质表达改变相关,表明自噬减慢。用二甲双胍或海藻糖处理 APOE 小鼠可改善视网膜功能丧失,增强眼组织中 LC3 和 LAMP1 表达,并将 LC3-II:LC3-I 比率恢复到 WT 水平。 通过Digital WB检测小鼠RPE和视网膜中LC3-II和LC3-I蛋白表达水平变化。LC3-II和LC3-I是小分子蛋白质,由于带电基团修饰,分子量大的LC3-II在电泳分离时,会留在更小分子量处。由于两个蛋白分子量差异仅有2kD,传统WB分析有技术难点,采用Digital WB可分析微量样本和小分子量蛋白质的优势,满足视网膜样本中小分子量膜蛋白质分析需求。非人灵长类动物模型案例1:美国AGTC公司利用Digital WB检测NHP体内转基因目的蛋白表达水平 干性年龄相关性黄斑变性(Dry age-related macular degeneration, dAMD)约占AMD病例的80%~90%,主要有玻璃体疣和视网膜色素上皮异常改变,疾病进展相对缓慢。dAMD致病机制尚未明确,可能与炎症、细胞退化与萎缩、氧化应激、脂质代谢障碍等多种因素相关,其治疗方案极其有限。目前临床阶段研发药物主要以靶向补体系统、氧化应激和炎症反应相关机制为主。近年研究发现,编码关键补体调节因子CFH(The Complement factor H)和CFI (The Complement factor I)的基因遗传突变与干性AMD的发生和发展密切相关,这些蛋白质天然调节补体系统以维持平衡。CFH编码蛋白质H因子是补体旁路激活途径中起重要作用的负调控因子,可调控降低炎症反应减缓dAMD发展。 美国AGTC公司采用新颖设计,将编码CFH的20个短重复序列缩减为18个,这个新型CFH变异体称为tCFH,已在小鼠模型上完成概念验证,并在体外实验中证明了其具有与野生型CFH相同生物活性。在非人类灵长类动物(NHP)上进一步研究体内活性,采用Digital WB检测NHP模型上RPE和视网膜的CFH和tCFH表达水平,采用AAV载体携带变异体基因可在体内实验中实现缩短补体因子表达,本项目已在准备IND申报中。 美国Spark therapeutics公司发表了AAV载体基因治疗庞贝病(PD)临床前小鼠和非人灵长类动物(NHP)最新研究成果(Nature Communication, 2021),采用Digital WB检测血浆中hGAA转基因蛋白表达。Digital WB技术可用于非人灵长类动物模型中样本检测,评估眼科疾病基因治疗项目中转基因目的蛋白质表达水平,评估疗效。“全自动Digital WB技术是眼部疾病蛋白质表达定量的重要工具 Jess全自动数字化蛋白质表达定量分析系统 (Digital WB) 是Bio-Techne集团旗下蛋白质分析品牌ProteinSimple所有。系统利用毛细管电泳免疫学分析技术,可从微量样品中自动吸取、分离、捕获蛋白质,并通过化学发光或荧光检测目的蛋白含量。针对眼部疾病基因治疗应用技术优势Digital WB技术适合眼科基因治疗体外和体内各种模型中转基因目的蛋白表达定量分析,用于视网膜细胞系、iPSC衍生视网膜色素上皮细胞(RPE)和类器官、小鼠动物模型和非人灵长类动物模型的关键蛋白质分析。适合于基因治疗研发的不同阶段对转基因目的蛋白及相关信号通路蛋白检测需求。满足类器官和视网膜微量样本蛋白质分析需求,Digital WB技术样本量需求是传统Western Blot几十分之一,只需要3 μL样本量就可实现多重蛋白质表达检测,特别适合眼部疾病微量珍贵样本蛋白质分析。Digital WB精准定量检测,传统Western Blot只能满足样本半定量需求,重复性比较差。基因治疗某些目的蛋白表达与临床治疗效果相关联,可作为替代生物标志物,建立量效关系。要求目的蛋白分析检测标准需要提高,要求技术需要经过严格验证,Digital WB可满足这些需求。符合基因治疗产业对自动化标准化和效率的需求,面对行业激烈竞争,需要提升研发效率。Digital WB实现了全自动化和标准化,软件符合FDA 21 CFR Part 11合规性需求。系统3个小时完成一批次蛋白质分析,比传统Western Blot快4倍,大大提高了实验效率,同时减少人力成本。 Digital WB自动化程度高、重复性好、灵敏度高和具有较宽动态检测范围,这些特点满足眼部疾病基因治疗项目不同阶段的目的蛋白定量需求。Digital WB已被国内外知名基因治疗机构采用如Biogen, Sarepta Therapeutics, MeiraGTx,ATGC, Spark Therapeutics,Regenxbio,CRISPR Therapeutics, Editas Medicine, Bluebird bio,杭州嘉因生物、中国食品药品检定研究院等,必将在基因治疗研发阶段、非临床研究和临床研究阶段发挥更大的作用。扫描下方二维码,获取更多关于Digital WB资料
  • Digital WB在基因治疗眼部疾病细胞和类器官模型中应用
    遗传性视网膜营养不良(Inherited retinal dystrophies, IRDs)是可导致进行性视网膜退化的遗传缺陷性罕见疾病,常见的IRD相关基因缺陷超过200种。近几年,眼科领域的基因治疗临床试验项目数量激增,包括基因替换、基因编辑和基因沉默多个技术方面。2017年美国FDA首次批准了视网膜Voretigene Neparvovec基因疗法(Luxturna, Spark Therapeutics),用于治疗RPE65.1双等位基因突变引起的罕见眼科疾病,称为Leber先天性黑蒙。这个里程碑意义的决定为眼科疾病基因疗法打开了大门。目前大部分临床研究疗法目标是通过导入正常功能基因,从而恢复缺陷基因编码蛋白质的正常表达。在非临床研究和临床研究中,检测转基因目的蛋白表达是基因疗法开发的一个关键方面。 目前,有多种技术可实现目的蛋白表达定量检测包括配体结合法(Ligand binding assay,LBA)如酶联免疫吸附方法(ELISA)、液相色谱-质谱(LC-MS)、流式细胞术、蛋白质免疫印迹(Western Blot)和组织染色技术。每种技术都有各自优势和局限,如目的蛋白为分泌性表达,可采用ELISA方法检测细胞培养上清液或体液系统中目标蛋白含量;如目的蛋白不能分泌表达,可采用Western Blot或质谱方法;如需要检测细胞膜蛋白,可采用流式细胞术;如要确定蛋白质在细胞和组织内分布,可采用免疫荧光检测。 在体内和体外模型中研究基因治疗产物与治疗靶点的相关作用机制和效应,选择生物相关性模型来检测目的基因表达和生物学活性非常重要。对于眼部疾病可探索选择临床前研究模型如细胞系模型、人诱导多能干细胞(hiPSC)衍生的视网膜类器官疾病模型、啮齿动物和非人灵长类动物等,根据生物学相关性和测定时间可在不同阶段综合选择特异性评估模型。眼部疾病细胞模型案例1:iPSC衍生视网膜色素上皮细胞(RPE)中低丰度大分子量蛋白质表达检测 从三名Stargardt病人皮肤活检样本产生多个iPS细胞系,这些患者都携带一个致病性ABCA4基因变异。采用RNA-Sep和Digital WB分析正常对照和患者细胞衍生的RPE。这个细胞模型与活检组织相比,可用于评估难以检测的非表达变异体,患者来源的细胞可能更密切地反映患者体内发生的剪接和编辑事件,可用于病人药物敏感性研究,指导临床试验。采用全自动Digital WB技术分析pABCA4蛋白质表达,制备了20 μg 总蛋白 dRPE 细胞匀浆,阳性和阴性对照分别是20 μg野生型和 ABCA4 敲除小鼠视网膜匀浆。参考下图,小鼠视网膜(Mouse ret)在野生型(WT)中pABCA4表达丰度很高,敲除(KO)小鼠没有表达。人类对照(NHDF)具有比WT小鼠视网膜更高表观分子量,同时有更高的表达丰度。与对照相比,所有患者细胞系(H、J和S)中均可检测到pABCA4 ,但这些低丰度pABCA4蛋白可能被降解,作为截短蛋白或降解产品形式存在(除S2外)。与mRNA表达谱结果一致,S2细胞系具有相对正常的pABCA4表达水平和修饰后成熟膜蛋白的分子量。本研究利用了Digital WB对低丰度和大分子量蛋白质分析检测能力。案例2:眼角膜内皮细胞信号通路中多重蛋白质表达检测 本研究采用人源和鼠源细胞,分别是敲低了SLC4A11表达水平的原代人角膜内皮细胞(primary human corneal endothelial cells, pHCEnC),即SLC4A11 (SLC4A11 KD pHCEnC);还有Slc4a11+/+和Slc4a11-/-鼠角膜内皮细胞系(murine corneal endothelial cells, MCEnC),即 Slc4a11-/- MCEnC和Slc4a11+/+ MCEnC。比较转录组学分析揭示了SLC4A11 KD pHCEnC和Slc4a11-/- MCEnC中细胞代谢和离子转运功能抑制以及线粒体功能障碍,导致ATP生产减少。AMPK-p53/ULK1通路激活也表明线粒体功能障碍和线粒体自噬。稳态 ATP 水平降低和随后 AMPK-p53 通路激活提供了代谢功能缺陷和转录组改变之间的联系,以及 ATP 不足以维持 Na+/K+-ATPase角膜内皮泵的证据,这是 SLC4A11 相关角膜内皮营养不良特征性水肿的原因。所以SLC4A11缺陷角膜内皮中分子作用导致内皮功能障碍,是先天性遗传性角膜内皮营养不良 (congenital hereditary endothelial dystrophy, CHED) 和Fuchs 角膜内皮营养不良的主要特征。 下图结果表明SLC4A11缺陷角膜内皮中AMPK-p53 通路激活,采用Digital WB检测信号通路中各蛋白质表达水平。图B说明与 scRNA pHCEnC 对照相比,SLC4A11 KD pHCEnC 中 p53 Ser15 磷酸化水平增加,表明p53转录翻译后激活。图C在Slc4a11-/- MCEnC晚期传代中观察到相似结果(p53 Ser18磷酸化增加,对应于人p53 Ser15)。图C和D结果表明在Slc4a11-/- MCEnC 早期和晚期传代中总 p53 水平增加,代表p53转录激活。进一步研究磷酸化和p53转录激活的激酶,根据报道AMPK介导 Ser15(小鼠中Ser18)磷酸化和p53转录激活,图B和C实验结果也说明AMPKα的Thr172磷酸化增加,AMPKβ1的Ser182磷酸化没有变化。图E和F,与 scRNA pHCEnC 相比,AMPK 另一种下游底物 Unc-51 样自噬激活激酶 1 (ULK1) 在SLC4A11 KD pHCEnC中磷酸化水平(Ser555)增加。综合这些结果表明,ATP水平下降导致AMPK及其下游底物p53 和 ULK1 激活,分别导致转录组改变和线粒体自噬增加。同样,鉴于 SLC4A11 在预防氧化损伤中的作用,SLC4A11 缺失导致线粒体 ROS 产生增加,随后线粒体功能障碍和线粒体自噬增加。此发病机制支持使用Slc4a11-/-小鼠作为SLC4A11相关角膜内皮营养不良的模型,评估各种治疗方法的转化潜力。 基于Digital WB技术的全自动蛋白质表达分析系统Jess可实现化学发光和荧光两种检测模式,是多重蛋白质表达分析有力工具。2022年,ProteinSimple发布了Stellar全自动双色荧光蛋白质表达检测方案,特别适合同步分析细胞信号通路磷酸化蛋白和总蛋白表达,将细胞信号通路研究工具带到一个新高度。iPSC衍生视网膜类器官模型案例1:Digital WB检测iPSC衍生的视网膜类器官中视紫红质表达含量 美国NIH研究人员利用成纤维细胞重编程获得诱导多能干细胞(iPSC),再分化产生视网膜类器官。通过转录组学分析,确定了视网膜类器官发育过程中调节信号,在体外生成了更成熟视网膜,可促进疾病建模和基因治疗研究。本研究采用Digital WB技术揭示了不同培养条件下类器官培养物种视紫红质(Rhodopsin)表达差异。下图结果表明,DHA处理的类器官在32天时视紫红质表达增加了30%,而亚油酸(LA)处理类器官视紫红质表达降低,这表明DHA处理的类器官中视紫红质表达增加不是脂肪酸添加带来的。案例2:AAV基因治疗的RetGC-GUCY2D视网膜类器官疾病模型 Leber先天性黑蒙可由多种不同突变基因导致包括RPE65、CEP29、GUCY2D和CRX等。其中Leber先天性黑蒙1型由GUCY2D基因突变导致,可导致严重视力损害或失明。GUCY2D基因正常拷贝编码了一种鸟苷酸环化酶(RetGC),其是感光器生理学中关键酶之一,视网膜中光敏杆状细胞和视锥细胞使用该酶将光转换为电化学信号。 英国MeiraGTx公司研究人员利用CRISPR/CAS9 技术生成 RetGC 敲除 (RetGC KO) 视网膜类器官,iPSC衍生视网膜类器官分化后,将RetGC KO 视网膜类器官与同一细胞系的野生型类器官进行对比研究。总共设计了四种 AAV 载体来测试RetGC 蛋白在光感受器中的恢复情况,所有载体采用AAV7递送。CMV 和视紫红质激酶 (RK) 两个启动子,并评估了WoodChuck肝炎病毒翻译后调控元件 (WPRE) 影响。采用Digital WB检测6组类器官中RetGC蛋白表达水平。实验结果揭示,与非转导样本组比,所有载体设计均以不同效率产生RetGC蛋白。加入WPRE似乎显示出效力降低趋势,通过其他量化指标验证了这个趋势。 Digital WB相比传统Western blot,只需要几十分之一样本量就可实现类器官等珍贵样本中蛋白质定量检测,而且重复性更高和速度更快,非常适合眼部疾病类器官模型的转基因目的蛋白及相关通路蛋白表达分析。“全自动Digital WB技术是眼部疾病蛋白质表达定量的重要工具 Jess全自动数字化蛋白质表达定量分析系统 (Digital WB) 是Bio-Techne集团旗下蛋白质分析品牌ProteinSimple所有。系统利用毛细管电泳免疫学分析技术,可从微量样品中自动吸取、分离、捕获蛋白质,并通过化学发光或荧光检测目的蛋白含量。针对眼部疾病基因治疗应用技术优势Digital WB技术适合眼科基因治疗体外和体内各种模型中转基因目的蛋白表达定量分析,用于视网膜细胞系、iPSC衍生视网膜色素上皮细胞(RPE)和类器官、小鼠动物模型和非人灵长类动物模型的关键蛋白质分析。适合于基因治疗研发的不同阶段对转基因目的蛋白及相关信号通路蛋白检测需求。满足类器官和视网膜微量样本蛋白质分析需求,Digital WB技术样本量需求是传统Western Blot几十分之一,只需要3 μL样本量就可实现多重蛋白质表达检测,特别适合眼部疾病微量珍贵样本蛋白质分析。Digital WB精准定量检测,传统Western Blot只能满足样本半定量需求,重复性比较差。基因治疗某些目的蛋白表达与临床治疗效果相关联,可作为替代生物标志物,建立量效关系。要求目的蛋白分析检测标准需要提高,要求技术需要经过严格验证,Digital WB可满足这些需求。符合基因治疗产业对自动化标准化和效率的需求,面对行业激烈竞争,需要提升研发效率。Digital WB实现了全自动化和标准化,软件符合FDA 21 CFR Part 11合规性需求。系统3个小时完成一批次蛋白质分析,比传统Western Blot快4倍,大大提高了实验效率,同时减少人力成本。 Digital WB自动化程度高、重复性好、灵敏度高和具有较宽动态检测范围,这些特点满足眼部疾病基因治疗项目不同阶段的目的蛋白定量需求。Digital WB已被国内外知名基因治疗机构采用如Biogen, Sarepta Therapeutics, MeiraGTx,ATGC, Spark Therapeutics,Regenxbio,CRISPR Therapeutics, Editas Medicine, Bluebird bio,杭州嘉因生物、中国食品药品检定研究院等,必将在基因治疗研发阶段、非临床研究和临床研究阶段发挥更大的作用。扫描下方二维码,获取更多关于Digital WB资料参考文献:
  • 复旦大学魏大程团队研发半导体性光刻胶,实现特大规模集成度有机芯片制造
    近日,复旦大学高分子科学系、聚合物分子工程国家重点实验室魏大程团队设计了一种新型半导体性光刻胶。2024年7月4日,该成果以《基于光伏纳米单元的高性能大规模集成有机光电晶体管》(“Photovoltaic nanocells for high-performance large-scale-integrated organic phototransistors”)为题发表于《自然纳米技术》(Nature Nanotechnology)。光刻胶又称为光致抗蚀剂,在芯片制造中扮演着关键角色,经过曝光、显影等过程能够将所需要的微细图形从掩模版转移到待加工基片上,是一种光刻工艺的基础材料。传统光刻胶仅作为加工模板,本身不具备导电、传感等功能。该成果则报道了一种半导体性的光刻胶设计策略,通过掺杂光活性粒子进行光电功能化,可以通过微电子制造业通用的光刻技术进行光电晶体管的大规模高分辨率制备,实现了大规模有机光电芯片的集成,将集成度和光响应度提高了两个数量级以上。现代信息科技的飞速发展对功能芯片集成度的要求越来越高。目前硅基芯片的制程工艺已经达到了3纳米的节点,集成密度已经超过2亿个晶体管每平方毫米。硅基芯片单片集成的集成度从小规模集成度(SSI)、中规模集成度(MSI)、大规模集成度(LSI)、超大规模集成度(VLSI)和特大规模集成度(ULSI)(集成器件数量分别大于2、26、211、216、221)不断迈向更高的水平。相比之下,基于有机半导体材料的有机芯片克服了无机半导体固有的刚性,凭借其与软组织良好的机械相容性,在可穿戴电子学、生物电子学等新兴领域具有广阔的应用前景。然而,目前有机芯片的集成度远远落后于硅基芯片。通过溶液加工(丝网印刷、喷墨打印)或真空蒸镀等方法制备出的有机芯片,其集成度通常不超过大规模集成度(LSI)水平。这是因为有机半导体导电通道由范德华力堆叠形成,在复杂制造流程的溶剂和热处理过程中易受到损伤,导致芯片性能随小型化而急剧降低。尤其当特征尺寸降低到微米及以下时,小型化和性能的折中显著地限制了高集成有机芯片的发展。图1:(a)光刻胶组成;(b)光刻胶聚集态结构;(c)在不同衬底上加工的有机晶体管阵列;(d)有机晶体管阵列结构示意图及光学显微镜照片;(e)有机光电晶体管成像芯片(PQD-nanocellOPT)与现有商用CMOS成像芯片以及其他方法制造有机成像芯片的像素密度对比。在这项工作中,魏大程团队报道了一种新型半导体性光刻胶的设计策略,该材料包含光引发剂、交联单体、导电高分子,可以通过光交联形成纳米尺度的互穿网络结构,同时实现了亚微米级的光刻图案化精度、良好的半导体性能和工艺稳定性。这种半导体性光刻胶可以通过添加不同的活性粒子来功能化。为了实现高灵敏的光电探测能力,研究者开发了一种具有光伏效应的核壳结构纳米粒子,添加到半导体性光刻胶中。纳米光伏粒子在光照下会产生光生载流子,电子被内核捕获,对半导体导电通道产生原位光栅调控,大幅提升了器件的响应度。作为展示,研究者利用光刻技术在全画幅尺寸芯片上集成了2700万个有机晶体管并实现了互连,实现了特大规模集成度(ULSI)的制造水平。该阵列(4500×6000像素)集成密度达到3.1×106 units/cm2,光响应度达到6.8×106 A/W。研究者将高密度阵列转移到柔性衬底上,实现了仿生视网膜应用,在基于神经网络的图像识别算法中展现出比传统CMOS器件更高的性能。此外,该团队还研发出具有化学传感功能、生物电传感功能的光刻胶。由于开发的功能化半导体光刻胶使用半导体产业通用的光刻技术进行加工,所以与商业微电子制造流程高度兼容,具有很大的应用前景。未来该团队也会积极寻求产业界的合作,希望能够推动科研成果的实用化。图2:(a,b)人眼和仿生视网膜的结构示意图;(c)在5&thinsp ×&thinsp 5 晶体管阵列上展示光电突触性能;(d)基于神经网络的图像识别算法中仿生视网膜与传统CMOS光电探测器的性能对比。“我们正在积极寻求产业界合作,希望能够推动科研成果的应用转化。未来,这种材料一方面能够用于制造高集成度柔性芯片,另一方面由于其光刻兼容性,还有可能实现有机芯片与硅基芯片的功能集成,进一步拓展硅基芯片的应用。”团队负责人魏大程说。
  • 新型人工虹膜感光能力堪比人眼 可自行对光线反应
    p   据《新科学家》杂志网站近日报道,芬兰科学家利用受热会改变形状的橡胶材料研制出一种全新人工虹膜,能像人眼一样,无需外部控制即能自行对光线作出反应。发表在最新一期《先进材料》杂志上的这一最新成果,可用来改进相机拍照性能,并最终用于修复人眼受损部位或控制微型机器人对周围环境的应对能力。 /p p   在人和许多动物的眼睛内,瞳孔是光线进入眼球的入口,而虹膜能通过调节瞳孔大小控制进入眼睛的光线量。当光线太强时,虹膜会收缩以缩小瞳孔,保护敏感的视网膜 当光线较暗时,虹膜会张开让更多的光线进入眼睛。照相机就是使用了原理类似的人工虹膜,其内置光圈会通过外置传感器来感应外界光量,判断何时开启或关闭,在拍照时对光线进行调整。 /p p   芬兰坦佩雷理工大学科学家阿瑞· 普瑞玛基开发的这款全新人工虹膜,首次拥有对照射光线的自我调节能力,而无需植入光线传感器进行外部控制。他们选择了一种受热后会改变形状的液晶状橡胶材料,并用其制成直径14毫米的薄盘,从圆盘中间向接近圆盘外缘处径向切割12个花瓣。当处于黑暗环境下,花瓣会向外弯曲卷起,在圆盘中留下瞳孔状圆洞。 /p p   他们还向橡胶材料中加入了一种红色荧光染料,用蓝光或绿光照射时,荧光染料会变热,诱导花瓣卷曲回来并关闭“瞳孔”。“当用光照射时,人工虹膜会改变形状,这种自我调节能力还是首次出现,我们为此非常兴奋。”普瑞玛基说。 /p p   研究人员表示,现有治疗眼疾的人工虹膜都不能改变瞳孔的大小,只能帮助患者在白天看清物体,但在晚上或其他黑暗环境下仍然无法看清东西,新人工虹膜向攻克这些难题迈出了第一步。未来一旦实现对花瓣尺寸的更精确控制,就可植入人眼,还患者一个光明的世界。 /p p    strong 总编辑圈点 /strong /p p   人眼真是一台精密至极的光学仪器。人类试图模拟它,但即使科技发展到今天,还是难以将它的功能完全实现。人工耳蜗,人工虹膜,人工心脏瓣膜……科研人员研发各种新材料,尝试用技术为人体做修补,在这条路上走得越来越成功。这次的人工虹膜,虽然还没有成熟到可以植入人眼的地步,但它首次拥有了自我调节能力,也给未来的眼疾患者带来希望。虽然它尚不具备人体虹膜的精巧,不过,若用于机器增加其视觉灵敏度,倒也是个不错的选择。 /p
  • 面对高端科学仪器被“卡脖子”的局面,江苏科研人员如何破局?
    科学仪器,被称为科学家的“眼睛”,不仅是认识未知世界的工具,也是科技创新的基础和重要成果。前不久,江苏省成立国产科学仪器应用示范中心(材料化学)。江苏还首次在国内采用“揭榜挂帅”方式,推进高校院所与企业加强国产科学仪器供需合作。一系列新动作表明,江苏省正在自主研制国产科学仪器设备。面对高端科学仪器被“卡脖子”的局面,江苏科研人员如何破局?《科技周刊》记者进行多方探访。大国重器,方兴未艾科学仪器是创新实力的体现,在很大程度上决定着基础研究和新技术、新产品开发的广度与深度。因此,其也被称为“大国重器”。据不完全统计,诺贝尔自然科学类奖项中,超过60%的物理学奖、70%以上的化学奖和约90%的生理学或医学奖的研究成果,都是借助各种先进仪器完成的。近年来,江苏作为国家重大科学仪器设备开发专项的首批试点省份之一,长期承担为全国发展探路的使命。以项目实施为牵引,江苏现已推动江苏天瑞、昆山禾信质谱、苏大维格等多家企业获得国家重大专项项目18项,项目总经费8.3亿元,其中国家专项资金3.6亿元,在科学仪器自主研发方面取得一定成效。“但要清楚地看到,目前一些关键领域、重点行业、重大项目上,科学仪器仍然长期依赖进口。”中国科学院院士张玉奎曾公开表示,由于科学仪器研发周期长、技术壁垒高,国产科学仪器自主研发相对滞后,我国科学研究高度依赖国外的科学仪器,成为一道“卡脖子”的难题。省大型科学仪器信息公示数据显示,江苏利用财政资金购置的50万元以上大型科学仪器设备,近6800台套来自于进口,国产设备占比仅25%。“总体来讲,江苏科学仪器行业整体起步较晚、基础薄弱,国产科学仪器主要集中在中低端市场,高端仪器研发面临较大难题,大型科学仪器国产化率低。”江苏省科技厅相关负责人坦言,科学仪器研发难度大、周期长,国产仪器在工艺、材料、系统、稳定性、可靠性上与进口仪器相比差距大,科学仪器研发从基础理论到制造工艺再到上下游产业链,都有很长的路要走。国产替代,进程加速经过数十年沉淀和积累,近年来我省一大批高端科学仪器装备实现了自主研制。作为科技创新的主力军,高校一直在寻找促进科学仪器的自主研发的破局之策。今年10月份,江苏省科技资源统筹服务中心与南京理工大学成立国产科学仪器应用示范中心(材料化学)。南京理工大学国有资产与实验室管理处处长薛素林介绍,南京理工大学现有仪器设备10万余台套,学校具有良好的国产仪器设备使用基础,在50万以上设备的存量资产中,国产设备占比45%。记者了解到,南京理工大学也有多项国产自研科学仪器已投入使用。南京理工大学研发的多模态定量相位显微镜,是全球首台“计算成像”显微镜商业化仪器,无需染色标记,能够记录活细胞实时动态图像与数据,并且采用小型化结构设计。该成果在光学顶级期刊PhotoniX上发表首篇工程化文章,拥有独立的自主知识产权,获中国光学工程学会技术发明奖一等奖。学校分析测试中心研发的三维重构透射电镜样品杆及纳米针尖制样系统,已开发了两台套商业化设备,包括360°倾转全角度视野的三维重构透射电镜样品杆和能将铁杵“削”成纳米针尖的全自动智能化制样设备。相关成果发表在Nature Communications等国际知名期刊上,也获得自主知识产权。“我们将持续扩大国产设备的占比。”薛素林说,如此次设立的材料化学类国产科学仪器应用示范中心,学校积极与国产科学仪器企业开展合作,引进江苏鼎竑、国仪量子、厦门海恩迈等厂家的国产科学仪器。高校之外的科研院所研发“战线”上,科学仪器国产化也在一路奋进。近日,2023年度中国仪器仪表学会科学技术奖颁奖活动在北京国家会议中心举行。中国科学院苏州医工所作为第一完成单位、史国华研究员作为第一完成人申报的“超广角单细胞分辨眼科光学成像技术与仪器”项目荣获本年度中国仪器仪表学会技术发明一等奖。项目共同完成单位包括苏州微清医疗器械有限公司、中国科学院光电技术研究所、中国标准化研究院。“项目团队历经十余年的关键技术攻关,在眼科光学成像方法、创新模型、先进仪器方面实现了重大突破:发明了多通道、光谱成像的多模态共聚焦眼底扫描成像方法,将成像分辨率从10μm提升至 2μm,实现了视网膜最基本视觉单元‘感光细胞’的活体高分辨率成像,从而在单细胞的分辨率尺度上,实现视网膜结构信息、血氧含量与血流动力学等多参量信息的获取,将长期以来国际公认的视网膜血氧测量的管径极限从50μm突破至 26μm,达到三级毛细血管的尺度,为从单细胞与微血管尺度的形态和功能信息,表征致盲疾病的发生与发展,提供了技术基础。”史国华研究员介绍。据介绍,该仪器先后通过了美国FDA、欧盟CE、中国CFDA的注册认证,单次成像视场达160°,光学分辨率最高5μm,相比于国际最先进同类仪器的德国海德堡HRA产品,成像视场提高50%,分辨率提升1倍。仪器仪表学会鉴定组专家认为:项目成果主要技术指标达国际领先水平,使我国先于国际社会确立了视网膜单细胞与微血管分辨的疾病诊断体系。揭榜挂帅,放心去闯众所周知,科学仪器开发周期长投入大,资金难题是第一道“拦路虎”。不久前,南京航空航天大学举行2023年“揭榜挂帅”技术转移品牌活动科学仪器专场,江苏省首次在国内采用“揭榜挂帅”方式,推进高校院所与企业加强国产科学仪器供需合作。该次活动围绕生物医药、电子信息、先进制造等领域,面向江苏省征集发布高校院所和企业关于国产科学仪器研发需求和成果超60项。博睿康科技(常州)股份有限公司、苏州纽迈分析仪器股份有限公司等进行了需求路演,总意向投入金额近7000万元。博睿康科技(常州)股份有限公司拿出6000万元,向全社会征集数字脑电图机的相关技术。“我们希望借助智慧诊疗提升癫痫诊疗技术,比如癫痫术中脑功能区快速定位,建立癫痫脑电图数据库,研究智慧诊疗算法等。”该公司产品经理齐越告诉记者。为了解决科学仪器研发的资金难题,江苏银行在专场活动上发布了技术“交易贷”科技金融产品升级方案,尤其是重点推出服务于国产科学仪器的“仪器贷”产品,进一步支持科学仪器国产化研发与应用,推动科学仪器向社会开放共享,有效解决科学仪器研发企业资金需求。“大批量生产工业检测仪器对资金需求量比较大,我们非常希望得到信贷支持,助力研制准确可靠的仪器产品。”苏州纽迈分析仪器股份有限公司目前正在扩大工业检测仪器产能,公司技术部经理石志东对“仪器贷”充满了期待。与“揭榜挂帅”技术转移品牌活动科学仪器专场活动发挥同样效能的,是两个“中心”的成立。在国产科学仪器应用示范中心(材料化学)成立之前,由江苏省科技资源统筹服务中心与中国药科大学合办的国产科学仪器试验验证中心(生物医药)先行成立。两个中心各自承担什么职能?“国产科学仪器试验验证中心(生物医药),旨在打造集应用、验证、研发、改进及培训于一体的综合性试验平台,以验促研、以用促改,通过综合性能检验,推动关键技术攻关,提升国产科学仪器市场竞争力。”江苏省科技资源统筹服务中心副主任孙兴莲介绍,中心推动高校院所、科研机构和企业多方联动建设,集技术试验、技术验证、技术研究和技术转化为一身,促进国产科学仪器迭代更新,提升性能指标、可靠性和稳定性。南京理工大学副校长何勇表示,材料化学国产科学仪器应用示范中心设立,将进一步推动材料化学类科学仪器国产化的研发与推广应用,同时充分发挥江苏省科技资源统筹服务平台优势,汇聚政产学研协同创新合力,从整体上提升国产科学仪器质量,助力关键科学技术领域从“跟跑”“并跑”迈向“领跑”,推动材料化学类大型科学仪器的“进口替代”。国产科学仪器应用示范工作如何开展,将采用怎样的研发、合作新模式?“中心的国产设备将由对应机组的专业老师开放运行,一是与中心现有的进口设备进行验证比对,形成阶段性使用报告,反馈设备厂商共同改进提升,二是面向全校开放共享,通过降低测试费标准、保障机时等措施,鼓励广大师生使用国产仪器,转变传统思维,以使用促提升。”薛素林补充道。
  • 文献分享 | Echo Revolve在海马体突触传递和突触可塑性调节研究的应用
    经过20世纪生命科学的快速发展,我们对疾病、遗传生命本质等方面的认识都有了长足的进步,但还有一个领域仍有太多的未解之谜困扰着我们,那就是神经科学,我们仍未了解意识是如何产生的?大脑是如何进行认知的?记忆产生的具体机制是什么?当然也包括神经系统相关疾病的发病机制,如阿尔兹海默症的发病机理等等,这些问题的解决对整个人类发展都具有重要意义,科学家也在不断探索,以期获得真相。意识是如何产生的?这是作者最好奇的问题,在作者的观点中意识很大程度上是和记忆相关,记忆已经证实是源于突触的微小改变,脑内电活动的改变引发第二信使分子传递信号,产生突触蛋白的修饰,这些暂时性变化最终转化为突触结构的永久变化后,长时程记忆就产生了。在对记忆的研究过程中人们在海马中发现了记忆产生相关的LTP(长时程增强)和LTD(长时程抑制),因为海马细胞构筑和组成体系简单,且海马可以从大脑中移出切成脑片,在体外可以存活数小时,可以进行电流刺激并记录突触反应,因此成为研究突触传递的理想部位。▲ 图1:海马微环路我们的身体是一个整体,激素、外界刺激、大脑活动等都会影响我们的记忆产生,在《The FASEB Journal》期刊杂志上发表的一篇题为《Rapid actions of anti‐Müllerian hormone in regulating synaptic transmission and long‐term synaptic plasticity in the hippocampus》的文章就将激素与大脑认知发育和功能联系了起来,分析了抗缪勒氏管激素(Amh)与突触传递及突触可塑性的关系。研究人员通过PCR、Western Blot检测Amh基因及其受体在雄性和雌性小鼠海马中的表达情况,同时采用ECHO正倒置一体荧光显微镜对免疫荧光染色材料观察其真实表达情况(如下图)。图中可以看出,CA1神经元的胞体和树突均为Amh阳性(图2A,C),而仅在CA3神经元胞体出现Amh阳性染色(图2E,G)。Amhr2在CA1(图2B,C)和CA3(图2F,G)的表达模式与Amh相似。表明Amhr2与Amh在神经元胞体和树突共定位(图2D,H)。▲ 图2:anti-Müllerian激素(Amh)和配体特异性II型受体(Amhr2)在小鼠海马中的蛋白定位。冠状切片使用荧光标记,Amh(红色 A、E) Amhr2(绿色 B,F)和DAPI(核染色 蓝色 C、G)。在每个面板的左上角插入框中显示了框区域的高倍图像。A和E显示阿蒙氏角(cornu Ammonis, CA) 1和CA3 对Amh染色阳性。B、F显示CA1、CA3对Amhr2染色阳性。D和H显示 Amh-和amhr2阳性染色共定位于细胞体和树突(箭头)。进一步分析发现,外源Amh蛋白增加了突触传递和长期突触可塑性。Amh暴露也增加了CA1突触的兴奋性突触后电位。这些结果表明,Amh可能在学习和记忆方面发挥作用,并可能是认知发育和功能的性别差异的原因。Echo Revolve正倒置一体显微镜Echo Revolve展现了其非凡的灵活性,可以轻松地实现正置和倒置显微镜转换,创新性地把正倒置显微镜合二为一,开启了显微镜Hybrid时代。▲ Echo Revolve正倒置一体显微镜☑ 视网膜屏显示技术:比拟目镜人眼观察效果。☑ 全视野观察: 更清晰,更方便。☑ 多通道荧光:多达4个EPI荧光通道,无须暗室,就可以轻松快速地完成多色荧光显微分析。☑ 自动化操作:通过iPad Pro点触操控相机及荧光通道之间的切换,实现了完全自动化操作。☑ App应用软件:基于IOS的Echo App是与Apple团队合作研发的专业显微镜软件。☑ 精湛的工艺尽显高端品质:实现非凡的性能。|申请试用|我们的仪器可以申请试用哦!扫描下方二维码关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 海大攻克国际性难题 3至5年造出完整人工角膜
    长达9年的科研攻关,一朝透出曙光   7月2日,由中国海洋大学角膜组织工程实验室研制的组织工程人角膜内皮(简称人工角膜内皮),已经成功完成兔、猫和猴的角膜移植实验,这在国际上尚属首次,表明角膜中的重要部分之一——角膜内皮已经可以人工“制造”,有望年底或明年初进入临床实验。此外,该实验室已初步获得了人工角膜上皮,下一步计划制造出完整人工角膜。   移膜兔猫猴状态都很好   昨日下午,记者来到位于中国海洋大学的角膜组织工程实验室,据海洋生命学院副院长、实验室主任樊廷俊教授介绍,由该实验室研制的人工角膜内皮,继去年在新西兰兔角膜内皮移植成功后,今年又在家猫和猕猴角膜内皮移植中获得成功。截至昨日,所移植的人工角膜内皮已使新西兰兔角膜维持透明385天、家猫角膜维持透明203天、猕猴已维持角膜透明113天,这在国际上尚属首次!   “这些兔子、猫和猴子,都分别在实验动物中心里面饲养,现在状态都很好。 ”樊廷俊说,实验动物眼睛角膜的内皮层被撕除,然后移植入角膜组织工程实验室自己制造出来的人工角膜内皮,在百天以后,兔、猫和猴的角膜仍然保持透明,攻克了移植人工角膜内皮无法使角膜长期保持透明的国际性难题。记者看到,一只“移膜猫”的眼睛清澈透明,一点儿看不出移膜来。   计划造出完整人工角膜   据介绍,目前,该实验室已与青岛一家生物技术有限公司合作完成了第III类医疗器械的生产车间的建设,并获得了第III类植入材料及人工器官的生产许可证,为组织工程人角膜内皮的产业化生产做好了准备。   记者了解到,在造出人工角膜内皮后,樊廷俊和他的研究团队又将目光瞄向了完整人工角膜,他们的研究是在国家科技部“十五”863课题、“十一五”863重大课题和企业委托开发课题的资助下完成的。目前,他们与青岛中皓生物工程有限公司合作,开始了完整人工角膜的制造技术研究,已成功造出人工角膜上皮,计划于3-5年内造出完整人工角膜并完成其动物移植实验。   相关链接:角膜移植僧多粥少 一朝成功善莫大焉   “据世界卫生组织统计,现在全世界有白内障患者近3000万人,我国白内障患者500余万人 全世界有角膜盲患者6000余万人,我国患者500余万人,仅我国每年就有新增盲人约45万人。在角膜盲患者中,青壮年约占70%、儿童约占15%,他们长期蒙受失明的痛苦折磨,无法正常生活、学习和劳动,还给家人和社会带来了巨大的精神和经济负担。 ”樊廷俊教授表示,角膜移植手术可以帮助角膜盲患者重见光明,但由于捐献角膜的数量有限,因此角膜移植一直是僧多粥少,多数患者因得不到移植角膜而无法复明。据介绍,“人工角膜内皮作为人角膜内皮的等效替代物,不仅可以用于我国100余万、全世界1200余万角膜内皮盲患者的临床治疗,而且还可以用于白内障患者术后角膜内皮细胞失代偿的临床治疗。 ”   新闻揭秘:制造出人工角膜内皮克服了两个技术难题   樊廷俊介绍说,海大科研人员从2002年开始课题研究,到2009年科研成果通过教育部组织的鉴定,获得“国际首创,达到了国际领先水平”的鉴定结论,再到今年完成动物实验阶段,即将进入临床实验。然而,想要制造出人工角膜内皮,需要找到合适的“种子”和“运载工具”,这可不是容易事。寻找适宜的“种子细胞”和“运载工具”是摆在研发人员面前的两个技术难题。   在“十五”期间,海大科研人员通过改变培养条件、培养方法和培养液的配方,首次建立了非转染、无致瘤性的人角膜内皮细胞系,成功解决了“种子细胞”的来源问题。经过反复实验后,海大科研人员采用“去上皮层修饰羊膜”作为载体支架,在解决“运载工具”的问题。   相关知识 看到五彩世界靠着透明角膜   角膜是位于眼球最前面的半球形、表面光滑的透明组织,主要由角膜上皮层、前弹力层、基质层、后弹力层和内皮层组成。健康的角膜完全透明且具有一定的曲率半径和屈折力,加上晶状体的屈光力就可以使光线准确聚焦在眼底的视网膜上,使我们看到五彩缤纷的世界。
  • 中科院光电所启动一国家重大仪器专项
    4月16日,2012年国家重大科学仪器设备开发专项“自适应光学高分辨率活体成像仪及其应用”项目在中科院光电技术研究所正式启动。该仪器研制成功后,将有望为我国数百万不可逆致盲眼病患者带来福音。   在视网膜中,感光细胞、双极细胞核神经节细胞是在视觉通路中的三大神经元,它们也是视觉通路中最容易受损伤的细胞。视网膜色素变性、青光眼、老年黄斑变性、糖尿病性视网膜病变以及多种物理化学因素都有可能导致视网膜神经元蜕变或凋亡,最后导致视力下降、甚至失明。世界卫生组织统计数据显示,目前全世界有盲人近4500万人,视力障碍患者达1.35亿人。其中,视网膜神经元病变导致失明的人占全球盲人的第二位。多数视网膜神经元病变如果早期发现,是可以控制的。然而,由于分辨率达不到细胞分辨程度,也无法克服人眼相差对成像的影响,国内外现有的检查技术均不能在活体细胞尺度发现最早期的视网膜细胞异常改变。   针对这一需求,光电所将自适应光学技术原理与光学相干层析和共焦显微技术相结合研发具有细胞分辨尺度的自适应光学活体成像仪。新仪器将有望成为医生的“慧眼”。利用新仪器,医学研究人员可以从细胞水平对以青光眼为代表的神经性病变、以糖尿病视网膜病变为代表的血管性病变、以视细胞退行性改变为代表的视功能损伤进行早期诊断,进而寻求有效手段进行干预,使眼病患者避免由于视功能的严重损害而导致丧失劳动能力和生活能力。   自适应光学高分辨力活体成像仪项目由光电所进行仪器研发,上海复旦大学眼耳喉鼻科医院、温州医学院、四川大学华西医学中心、中国标准化研究院、成都科奥达公司进行相关的应用开发及产业化推广工作。
  • 石墨烯和脑模型项目获欧盟20亿欧元巨额资助
    人类脑计划联合负责人Henry Markram,该项目脱颖而出获得欧盟巨额的经费支持。图片来源:Denis Balibouse   石墨烯研究和人类脑计划项目分别从欧盟主持的迄今为止最大经费规模的竞赛中脱颖而出,赢得10亿欧元“巨奖”。欧盟委员会将召开新闻发布会,正式宣布获胜者名单,每个获胜项目将获得高达10亿欧元的资金支持。   “这是欧洲有史以来最难的一场科学竞赛,让我们为获胜者干杯!”FuturICT项目协调人Dirk Helbing说,虽然FuturICT最终在角逐中失败。   日前,欧盟启动“未来新兴技术旗舰项目”,有6个项目进入最后一轮角逐,不过,欧盟委员会日前证实只有4个项目仍然坚持比赛。1月24日,其中两个项目——“智慧生活守护天使”和FuturICT——相关参与者对《科学》杂志透露,他们并不在获胜名单中。这样一来,只剩下石墨烯项目和人类脑计划成为冠军得主。   根据旗舰项目相关计划,在开始的两年半里,两支获胜队伍将一共获得1.08亿欧元的经费。但由于大学和产业伙伴也会赞助部分资金,这样折合算来,每个项目在启动阶段将获得超过7000万欧元。   “一般而言,在欧洲,一个研究员的成本大约是每年10万欧元,这些钱相当于700人年的花费。”石墨烯项目协调人、瑞典查尔姆斯理工大学的Jari Kinaret提到,“这是一笔相当大的经费。”启动阶段过后,这两个项目每年有望获得1亿欧元的资金。   石墨烯是一种新材料,引起了许多科学家的兴趣,因为它能够传导光和电。该石墨烯项目旨在开发这种材料在能源和数字技术等领域的应用。尽管拒绝在结果发布会前承认其项目获胜,但是Kinaret假设了一旦获奖意味着什么:“我们将启动在通讯技术方面的应用研究,例如幻想收音机,它能够在今天无法应用的频率下运行。”稍后,他们还将从事诸如人造视网膜和其他“生物植入物”等方面的应用研究。   人类脑计划则试图使用超级计算机模拟科学家掌握的有关人类大脑的所有事情,包括脑细胞、化学特性和连接性等。该计划由瑞士洛桑联邦理工学院神经系统学家Henry Markram负责整合协调工作。有科学家指责Markram的构想不切实际,例如借以洞悉神经退行性疾病如何能被更好地治疗等。   “实际上,这些项目并不是因为其创新性而赢得巨额资金支持的。”瑞士苏黎世联邦理工学院物理学和社会学家Helbing表示。他提出的项目FuturICT预想建立一个“行星式神经系统”来收集和分析大规模数据,从而模拟现代社会以及预测流行病蔓延和下一场金融危机等。   Helbing指出,FuturICT能够促使社会学家、工程师和其他科学家以一种史无前例的方式联合起来,但最重要的是欧盟能否敢于做这件事。
  • Nature Cancer|北大张泽民团队合作利用单细胞技术揭示卵巢癌腹水对肿瘤原发和转移病灶微环境的重塑作用
    高级别浆液性卵巢癌(HGSOC)是最常见的卵巢癌病理亚型,75%以上的患者首诊时已是晚期,常伴有广泛的网膜转移和腹水产生。此外,免疫检查点阻断等免疫治疗手段仅在10%左右的卵巢癌病人中起效。研究表明,卵巢癌腹水中的成纤维细胞亚群可以通过激活肿瘤细胞中的JAK/STAT通路以影响患者的预后及其对免疫治疗的响应。然而,卵巢癌腹水环境中的其它细胞类群对其肿瘤微环境的影响方式和途径仍不明确。7月24日,北大张泽民教授课题组与上交大附属新华医院汪希鹏课题组、上海免疫学研究所李子逸博士以“Single-cell analyses implicate ascites in remodeling the ecosystems of primary and metastatic tumors in ovarian cancer”为题在Nature Cancer杂志联合发表了研究论文,揭示了卵巢癌腹水对肿瘤原发和转移病灶微环境的重塑作用。研究人员对5个肿瘤相关部位,包括原发性卵巢肿瘤(Pri.OT)、网膜转移瘤(Met.Ome)、腹水、盆腔淋巴结(PLN)和外周血(PB),进行了单细胞转录组测序和T细胞受体(TCR)测序,共将223,363个高质量单细胞编入五个主要细胞谱系,并通过规范标记表达进行注释,从而描画出了 OC TME 的综合图谱。B细胞和CD4 T细胞在PLN中占主导地位;而淋巴细胞和单核细胞构成了PB样本的主要细胞成分;在Pri.OT和Met.Ome中鉴定出了五种主要细胞系,而且大多数细胞类型的富集模式在这两个部位之间没有明显差异,这表明原发性和转移性肿瘤细胞的发展都需要类似复杂的TME。腹水经常出现在晚期卵巢癌患者中,与化疗反应有关,腹水中含有大量免疫细胞和基质细胞,其中,CD8 T 细胞、巨噬细胞和树突状细胞(DCs)是腹水的主要成分,表明腹水中存在炎性微环境。5个部位的单细胞测序描画了晚期卵巢癌图谱与非恶性细胞不同,由推断拷贝数变异(inferCNV)定义的肿瘤细胞表现出很强的患者间异质性。值得注意的是,所有腹水样本中都发现了肿瘤细胞,平均比例为 2.7%(53499 个样本中的 1444 个),这与 OC 肿瘤细胞更倾向于 "播种"到腹腔而不是通过血管扩散的观点一致,凸显了腹水与 OC腹腔内扩散之间的紧密联系。此外,推断CNV分析表明,在Met.Ome中发现的肿瘤细胞亚克隆也可在Pri.OT中检测到,表明这些亚克隆是腹膜转移的致瘤群体。通过对单细胞转录组和 T 细胞受体(TCR)的系谱追踪和轨迹推断,研究人员鉴定了多个具有不同分布模式的T细胞群,并揭示了OC中T细胞从腹水到肿瘤组织的潜在动态特征。他们发现腹水富集的记忆T细胞(CD8 GZMK T++EM和 CD4 T+CM)可能是TIL的潜在重要补充库,包括CD8 T+EX和 CD4 T+H1样细胞,特别是对于Met.Ome。这些结果暗示了腹水在T细胞浸润期间塑造OC的TME的潜在作用。此外,作者描述了腹水和肿瘤组织中巨噬细胞的功能状态和本体,肿瘤富集的巨噬细胞偏向于单核细胞来源的本体,而腹水中的巨噬细胞更多来源于组织驻留巨噬细胞(RTM)。HGSOC 中肿瘤富集巨噬细胞和腹水富集巨噬细胞的两种不同功能状态此外,研究人员还鉴定了恶性腹水中的 MAIT细胞和树突状细胞,以及原发性肿瘤中的两个内皮亚群,通过比较不同化疗响应情况的患者治疗前样本中细胞亚群的分布情况,发现肿瘤原位灶中VCAM+内皮细胞占比较高的HGSOC患者对化疗敏感,而IL13RA1+内皮细胞的占比高则提示患者对化疗耐药,这可能是治疗效果的一个重要评价指标。总之,该研究提供了女性恶性腹水生态系统的全貌,为其与肿瘤组织的联系提供了有价值的见解,并为OC疗效评估和治疗耐药性的潜在标志物的开发提供了重要参考。卵巢癌(OC)是一种异质性疾病,由具有不同组织学亚型、分子生物学和微环境特征的恶性肿瘤组成,是致死率最高的妇科恶性肿瘤,占女性癌症死亡人数的 5%。在所有 OC 类型中,高级别浆液性卵巢癌(HGSOC)是最常见的组织学亚型,占 OC 患者的 70%以上。一旦确诊,超过 75% 的 HGSOC 患者病情已到晚期,并伴有广泛转移和腹水。据报道,由于网膜的脂肪结构和腹膜循环,OC 患者通常会向网膜转移。虽然化疗加贝伐单抗的治疗可延长患者的 5 年生存期,但总体疗效仍然有限。此外,免疫检查点抑制剂等免疫疗法在临床试验中的客观反应率仅为 10%,而由于肿瘤浸润淋巴细胞(TILs)的比例和质量不同,OC 亚型往往对免疫疗法表现出不同的反应。因此,描述 OC 的肿瘤微环境(TME)特征至关重要,因为肿瘤微环境中的多种细胞成分在疾病进展和治疗反应中发挥着重要作用。
  • 【瑞士步琦】天然抗氧化剂的保护伞——使用步琦微胶囊造粒仪制备叶黄素微球和微胶囊
    1简介叶黄素是植物中常见的天然类胡萝卜素。外表为红橙色,具有天然抗氧化性能,因此也具有氧敏感性;此外,叶黄素基本上也不溶于水。叶黄素和类胡萝卜玉米黄质素存在于人类眼部视网膜中,对视觉非常重要。本研究的目的是保护抗氧化剂免于氧化,并使其在水中分散。因此,利用微胶囊造粒仪 B-390/B-395 Pro 仪器搭配气流振动喷嘴和同心喷嘴分别制备叶黄素微球和微胶囊。制备的微球呈球形、大小均匀,微胶囊由内核和外壳两种不同成分组成。如 下图所示,微球和微胶囊均呈现均匀的球形形貌。含叶黄素的微球模型含叶黄素的微胶囊模型2实验设备和材料实验设备:步琦微胶囊造粒仪 B-390/B-395 Pro实验材料:1.5%(w/w)和1.8%(w/w)海藻酸钠溶液0.1 M CaCl2样品1:7.5g 叶黄素粉末分散于 142.5g 浓度为 1.5% 的海藻酸钠溶液中样品2:5g 叶黄素粉末溶于 100mL 花生油中,磁力搅拌均匀3实验过程实验1:使用气流振动喷嘴制备包埋叶黄素的海藻酸钙基质的微球,仪器参数如下 表1所示。表1:实验 1 的过程参数。仪器微胶囊造粒仪 B-390气流振动喷嘴750 μm(核)/1.5 mm(壳)频率870 Hz进样(外置注射泵)样品1:5.45 mL/min压力1013 mbar喷嘴气体流量1 L/min分散电压0 V振幅9固化液0.1 M CaCl2搅拌温和搅拌(无旋涡)实验2:使用同心喷嘴制备包埋叶黄素油的核壳结构海藻酸钙微胶囊,仪器参数如下 表2 所示。表2:实验 2 的过程参数。仪器微胶囊造粒仪 B-395 Pro同心喷嘴450 μm(核)/ 700 μm(壳)频率300 Hz进样核:样品2(注射泵进样)壳:1.8 %海藻酸钠溶液(压力瓶进样)核进样速度11.5 mL/min压力300 mbar分散电压0 V振幅9固化液0.1 M CaCl2搅拌温和搅拌(无旋涡)4实验结果本实验成功使用气流振动喷嘴制得球型叶黄素微粒,如下图(a)所示。图中叶黄素粉末嵌入在海藻酸钙微球内部,微球直径尺寸在 300μm 到 600μm 之间。与叶黄素微球相比,实验2 制备的核壳结构叶黄素微胶囊如下图(b)所示。通过使用同心喷嘴,海藻酸盐基质形成的外壳可以将叶黄素油完全包覆,形成保护层,微胶囊直径在 1200μm 到 1400μm 之间。(a)使用气流振动喷嘴制得的叶黄素微球(b)使用同心喷嘴制得的叶黄素微胶囊5结论本研究提出两种使用微胶囊造粒仪包埋油溶性物质的可行方法,步琦微胶囊造粒仪 B-390 和 B-395 Pro 可用于制备含叶黄素的球型微粒和微胶囊。
  • 2021年诺奖热门:光遗传学背后的科学家们
    光可被细菌、藻类等低等生命和人类等高等动物通过视紫红质系统而感知。20世纪70年代后,几种细菌和藻类通道视紫红质的发现为光控系统的诞生奠定了基础。光遗传学最初由米森伯克于2002年首次实现并于2005年由迪塞罗斯(也译作代塞尔罗斯)和博伊登进一步完善,其应用极大地增强了对大脑功能的理解。 光遗传学可使科学家借助光来精确开闭特异神经元从而达到操纵神经元活性和动物行为的目的。光遗传学技术已被证明是在细胞和系统层面研究健康和病理大脑活性的一个非常强大且有用的工具。文章系统介绍了光遗传学诞生的历史背景、重大事件、发展过程、应用领域及重要价值等。 光对生命具有举足轻重的地位,“万物生长靠太阳”。对大部分植物而言,它们借助光合作用合成营养物质并释放出氧气,而动物则依靠这些营养物质和氧来维持生存。此外,光还可以指导细菌和植物的向光性,控制植物生长和开花时间。 对于人类和其他动物而言,借助光来观察和感知这个 “光明” 世界。该过程由 “眼睛” 完成,称为视觉。大部分视觉健康的人都可通过眼睛清晰地观察到这个世界,看到周围的花花草草和五光十色的世界。那么,我们是如何观察到这些事物的呢?文艺复兴后,人们对光的本质进行探索,从而对光的成像机制有了新认识,自然对视觉形成机制也产生浓厚兴趣。 视紫红质 视觉研究可追溯到18世纪。荷兰科学家列文虎克(Antonie Philips van Leeuwenhoek)借助显微镜观察眼视网膜结构,鉴定出视网膜色素上皮细胞(retinal pigment epithelium,RPE)、视杆细胞和视锥细胞等,并推测这些细胞与视觉形成相关。1851年,德国解剖学和生理学家缪勒(Heinrich Müller,1820—1864)首次报道视网膜视杆细胞显红色这一现象 [1]。遗憾的是,缪勒错误地认为红色由血液造成。尽管如此,缪勒仍被看作视觉生理研究的先驱。缪勒在视觉生物学领域作出诸多贡献,如首次描述视网膜神经胶质细胞,这类细胞也因此获名“缪勒细胞”。 博尔(Franz Boll,1849—1879)是一位德国生理学家,对视觉形成具有浓厚兴趣。1876年11月,博尔也观察到红色视杆细胞,并认定红色源于其含有一类特殊物质,纠正了缪勒早期的错误。博尔还发现视杆细胞的红色受光影响,光照可导致红色褪去,而在暗处又重新恢复,进一步说明红色物质与视觉形成相关。遗憾的是,博尔的早逝(年仅30岁)使研究没有进一步开展。 1877年1月,博尔的同胞、另一位德国著名生理学家屈内(Wilhelm Friedrich Kühne,1837—1900)进一步纠正博尔的不足,认定视网膜感光物质应为紫红色,并创造 “视紫红质(rhodopsin)” 一词。屈内还取得另一项重大发现,即胆酸可使视杆细胞内的视紫红质释放到溶液里,并基于这一原理首次从牛视网膜完成视紫红质的纯化 [2],屈内也因此成为视觉生理领域的奠基人之一(图1)。虽然已确定视紫红质参与视觉形成,但具体分子机制仍不清晰,直到20世纪30年代才有突破。图1 视紫红质的发现 视黄醛循环 1931 年, 美国眼科专家尤德金(Arthur Yudkin,1892—1957)开始对视网膜成分进行分析,发现其含有一种维生素A样物质。其实,人们很早就知道维生素A缺乏可影响视觉形成,最常见的一种疾病叫夜盲症,但对维生素A如何参与视觉却知之甚少。 1932 年, 美国生理学家瓦尔德(George Wald, 1906—1997)来到德国瓦伯格(Otto Heinrich Warburg,1931年诺贝尔生理学或医学奖获得者)实验室开始全面研究视紫红质。瓦尔德首先借助光谱分析法证明青蛙、绵羊、牛等完整视网膜中存在维生素A,接着使用氯仿提纯视紫红质,化学显色反应表明所含物质与维生素A非常相似。 为进一步证实结论,瓦尔德加入瑞士著名科学家卡雷尔(Paul Karrer,1937年诺贝尔化学奖获得者)的实验室,而卡雷尔分离并确定了维生素A的结构。经过3个月研究,瓦尔德最终确定视紫红质中确实含有维生素A,从而表明视紫红质包含两部分:视蛋白(opsin)和维生素A [3]。随后,瓦尔德又加入德国海德堡迈耶霍夫(Otto Fritz Meyerhof,1922年诺贝尔生理学或医学奖获得者)实验室继续开展视觉形成研究。 一次偶然事件为研究带来重大契机!当时正逢假期,许多实验室人员都去度假,恰在此时运抵300只青蛙。实验室助理原本想丢弃,而瓦尔德则主动要求留下来用作实验材料。瓦尔德从青蛙视网膜提取到足够量的视紫红质,进一步分析后惊奇地发现所含的维生素A与卡雷尔所得维生素A尽管大部分性质相似,但仍有些许差异,因此将这种物质重新命名为视网膜色素(retinene)。瓦尔德还发现视网膜色素与维生素A之间可发生转变,并通过后来详细的结构分析确定了两者间的差异,因此视网膜色素更名为视黄醛,而维生素A则称为视黄醇 [4]。 20世纪50年代,瓦尔德和同事经过近20年探索,最终解析出视觉形成的 “视黄醛循环” 机制:静息状态下,视杆细胞内视蛋白与11-顺视黄醛结合形成视紫红质;光线照射可使11-顺视黄醛发生异构化转变为全反式视黄醛,从而与视蛋白分离,这个过程激活视蛋白,启动下游信号转导最终到达大脑视觉中心;全反式视黄醛可被运输到视网膜色素上皮细胞内经过几步化学反应重新生成11-顺视黄醛;11-顺视黄醛回到视杆细胞再次与视蛋白结合形成视紫红质,从而完成一次视觉感知过程(图2)。瓦尔德的发现很好地诠释了视黄醛参与视觉形成的机制,因此他分享了1967年诺贝尔生理学或医学奖。图2 瓦尔德与视黄醛循环 后续研究还揭示了视蛋白作用机制。视蛋白是一种G-蛋白偶联受体(G protein coupled receptor,GPCR)。光通过改变视黄醛结构而激活视蛋白后,可进一步使异三聚体G蛋白激活,从而使磷酸二脂酶活化,催化cGMP水解为5’-GMP而减少cGMP含量;细胞内受cGMP调控的离子通道关闭,导致细胞膜电位出现变化,最终传导至视觉中心而实现光的感知。 从这个过程可以看出,哺乳动物视紫红质的作用机制较为复杂,作为机体视觉感知过程尚可接受,如果将它们应用到其他系统则困难重重,因此有必要寻找更简单的感光系统 [5]。 细菌感光 最初认为只有高等动物才存在视觉系统,但这一观念在20世纪60年代发生改变。1967年,德裔美国生理学家斯托克尼乌斯(Walther Stoeckenius,1921—2013)成为加州大学旧金山分校的教授,重点研究生物膜(如红细胞膜和线粒体膜)结构 [5]。由于生物膜材料获取比较困难,具有电子显微镜背景的斯托克尼乌斯决定用生物化学方法研究盐生盐杆菌(Halobacterium halobium)细胞膜组成。随后两位新同事的到来壮大了实验室的力量。 厄斯特黑尔特(Dieter Oesterhelt,也译作奥斯特黑尔特)是一位训练有素的德国化学家,跟随吕南(Feodor Lynen,1964年诺贝尔生理学或医学奖获得者)获得博士学位,由于学术休假的缘故来到美国;布劳罗克(Allen Blaurock)是一位刚毕业的英国生物物理学家,原来在国王学院威尔金斯(Maurice Wilkin,1962年诺贝尔生理学或医学奖获得者)实验室从事X射线衍射研究 [6]。 厄斯特黑尔特和布劳罗克借助X射线衍射技术观测细菌细胞膜紫色组分时,意外观察到一种清晰的衍射图像,说明其含有一种高度有序的生物分子。厄斯特黑尔特还观察到紫色物质在添加有机溶剂后颜色变黄。此时,布劳罗克回忆起在国王学院研究青蛙视网膜过程中也观察到类似的颜色变化,这一提示促使厄斯特黑尔特大胆假设该物质可能也是视紫红质。为证实这一假说,首先需解答的问题是其含不含视黄醛。 从细菌中寻找视黄醛这一近乎疯狂的想法促使厄斯特黑尔特立即启动验证工作。借鉴青蛙视紫红质的研究方法,厄斯特黑尔特发现细菌的紫色物质具有类似的物理和化学性质,并且还含有视黄醛。基于这些特性,厄斯特黑尔特和斯托克尼乌斯于1971年确定这是一种新型视紫红质,根据来源将其命名为细菌视紫红质(bacteriorhodopsin,BR)(图3)[7]。图3 细菌视紫红质 斯托克尼乌斯经过进一步研究后发现,细菌视紫红质是一种光依赖的离子通道。更大的突破在1975年,英国剑桥大学分子生物学实验室的亨德森(Richard Henderson,2017年诺贝尔化学奖获得者)解析了细菌视紫红质的三维结构,从而对视紫红质的作用有了更深入的认识。 1972年,重组DNA技术的发明为生命科学带来一场革命,同时也积极推动了细菌视紫红质研究的发展。研究人员将细菌视紫红质转入宿主细胞,结果发现光照可引起氢离子外流,从而证明其为一种光控的氢离子通道。1977年,研究人员在细菌中又发现另一种视紫红质——卤视紫红质(halorhodopsin),后续证明其介导氯离子细胞内流 [8]。 一系列的研究表明,即使简单如细菌这样的单细胞生物也存在 “视觉系统”,标志着一个新领域——低等生物视紫红质的诞生,从而促使科学家去寻找其他视紫红质。 藻类趋光 班贝格(Ernst Bamberg)是一位德国生物物理学家,从20世纪70年代开始研究细菌视紫红质的生物学功能,并利用体外实验证实BR是一种光激活氢离子通道。随着基因工程技术的发展和完善,生命科学的研究模式发生根本性改变,膜蛋白研究不再需要繁琐困难的提取过程,只需将外源基因在特定宿主细胞表达即可。 90年代,已加入德国法兰克福马普研究所的班贝格与从美国回来不久的德国电生理学家纳格尔(Georg Nagel)决定合作,共同研究细菌视紫红质在完整细胞中的生物功能。1995年,他们合作将细菌视紫红质基因成功转入非洲爪蟾卵母细胞,进一步精确证实光激活质子泵的电压依赖性 [9]。2001年,他们进一步在非洲爪蟾卵母细胞中证实卤视紫红质是一种氯离子通道(图4)。班贝格与纳格尔的合作一方面建立了视紫红质功能研究平台,另一方面也初显光遗传学雏形,即将外源视紫红质在靶细胞表达。图4 藻类视紫红质 19世纪,绿藻(Chlamydomonas)等藻类就被发现具有向光性和受光调控的特性,但对这些现象背后的原因知之甚少。直到20世纪80年代,大量事实表明藻类也长 “眼睛”,即细胞膜存在感光物质,称为 “光受体”。 80年代初,德国生物物理学家赫格曼(Peter Hegemann)在博士就读期间就决定研究光受体。赫格曼和学生以莱茵衣藻(Chlamydomonas reinhardtii)为材料,借助电生理实验表明光的确可诱导藻类细胞产生电流 [10]。赫格曼决定采用生物化学方法将光受体蛋白纯化后研究其性质。遗憾的是,十余年辛苦努力最终以失败告终。根本原因在于光受体是一种膜蛋白,含量低、稳定性差且异质性高,这些都是蛋白质纯化的大忌。赫格曼不得不转换研究思路来解决这个难题。 2001年,绿藻基因组测序的完成为问题的解决带来转机。赫格曼通过全面搜索和比对绿藻基因组数据库,从中发现两个候选基因与细菌视紫红质具有较高同源性。 为加快研究进程,赫格曼决定寻求合作。他在获悉纳格尔的研究工作后,积极沟通并与其达成合作协议。赫格曼小组负责克隆两种绿藻视紫红质候选基因,并将其送给纳格尔开展功能研究;纳格尔则将基因转入人肾胚细胞HEK293并实现正确表达。功能研究表明,它们的活性均受光调控,并且介导阳离子如钠离子、钙离子等的摄入(图4),因此将其分别命名为通道视紫红质(channelrhodpsin,ChR)1和2 [11-12]。与ChR1相比,ChR2光激活时间更短,且离子通透性更强,因此更适合于研究。更为重要的是,赫格曼还推测这些通道视紫红质不仅可在普通细胞表达,而且也可在神经元中表达并影响电生理活性。这一论断直接催生了光遗传学。 至此,研究人员已经鉴定出三类光控视紫红质,分别是细菌视紫红质(介导氢离子输出)、通道视紫红质(介导阳离子输入)和卤视紫红质(介导氯离子输入)。它们在神经功能研究方面具有何种应用价值呢?这要从神经兴奋说起。 神经兴奋 大脑是神经系统的中枢,是机体最复杂和最神秘的器官。知觉、运动、兴奋、情感、语言、学习和记忆等过程基本都在大脑特异区域完成。大脑由上百亿神经元(亦称神经细胞)构成,这些神经元之间通过特定方式实现彼此间交流,以达到协调控制机体各种行为的目的。神经元活性受电信号影响。 正常情况下,神经元细胞膜内外两侧阴阳离子分布不均匀(这种现象称为极性):膜内钾离子浓度远高于膜外,膜外钠离子浓度又远高于膜内,最终形成一个外正内负的状态。未受刺激时(静息状态),规定膜外电位为0,则哺乳动物神经元膜内电位为负值,约-70mV,称为静息电位;外界刺激可导致离子通道打开,由于离子移动而引起膜两侧离子浓度发生变化,电位差也随之改变。如果-70mV向0方向改变,则称去极化(电位为0意味着内外无离子浓度差距,极化消失);相反,-70mV向更大负值变化则称超极化(意味着离子分布不均匀加剧)。 一般而言,去极化伴随神经元激活,而超极化则意味着神经元抑制,因此通过改变神经元细胞膜内外离子分布可实现精准控制神经元活性的目的。 1979年,美国索尔克研究所著名科学家、DNA双螺旋提出者之一克里克(Francis Crick,1962年诺贝尔生理学或医学奖获得者)在《科学美国人》发表一篇文章 [13],对脑科学未来的发展进行展望。古典神经生物学家通常采用电极刺激大脑特定区域神经元的方式来影响行为,克里克认为这种方法破坏性大且精确性不高,比如无法准确区分不同的神经元,这些因素导致所得结果准确性差。 为此,克里克提出应开发一种精确控制神经元活性的方法,允许研究根据需要只对特定神经元打开或关闭,同时不影响非相关神经元。具有分子生物学背景的克里克进一步指出可以对神经元细胞进行遗传改造,从而使它们可对外界信号(如光刺激)产生精准性应答。这一理念建立了光遗传学的思想雏形。 尽管光控细胞行为的理念已经提出,但真正实现则需要有可行的工具。2002年,这一想法终于首次变为现实。 神经光控 米森伯克(Gero Andreas Miesenböck)是一位奥地利神经科学家,跟随鲁斯曼(James Edward Rothman,2013年诺贝尔生理学或医学奖获得者)开展博士后研究。他主要借助荧光系统来检测神经元内囊泡运输,因而对光产生浓厚兴趣。 1999年,米森伯克建立自己的实验室,开始独立的科研生涯,目光锁定神经生物学。米森伯克对整个神经生物学领域一知半解,可以说有点 “门外汉” 的味道,但是恰恰这个因素反而使他在光遗传学方面首先完成突破,因为他不会受主流观点所羁绊。生命科学研究的基本策略在于首先控制某种因素(干预),然后依据结果确定因果关系,如敲除特定基因后动物出现某种表型异常(如个子变矮),据此可认为该基因参与了某个过程(如肢体发育)。 然而,由于神经系统自身的复杂性,长期以来神经生物学家主要依赖形态观察,而缺乏更多有效的干预手段。米森伯克想改变这一现状,他完全从一个生物学家的视点来看待这个问题,因此想为神经元安装一套感光系统(遗传学操作),然后借助光照(光学)来达到控制神经元的目的 [14]。为尽快实现这一目标,米森伯克邀请鲁斯曼的另一位学生、自己的师弟泽梅尔曼(Boris Valery Zemelman)加入团队,启动光控神经元活性的研究计划(图5)。
  • 中国科大揭示光感知调控血糖代谢的神经机制
    对栖息于这颗蓝色星球上的生命而言,光是一切生命产生的源动力,也是生命体最重要的感知觉输入之一。同时生命体根据外界环境条件控制体内营养物质的代谢平衡是生存的必须,而代谢紊乱会产生严重疾病,哺乳动物已经进化出了精确和复杂的调控网络用于持续动态调控血糖代谢。大量公共卫生调查显示夜间过多光源暴露显著增加肥胖和糖尿病等代谢疾病风险,那么光作为最重要的外部环境因素,其是否直接调控血糖代谢?其中涉及哪类感光的细胞、何种神经环路以及外周靶器官,这些方面的问题一直没有得到解答。   1月20日,中国科学技术大学生命科学与医学部教授薛天研究团队在《细胞》(Cell)上,在线发表了题为Light modulates glucose metabolism by a retina-hypothalamus-brown adipose tissue axis的研究成果。该工作发现了光直接通过激活视网膜上特殊的感光细胞,经视神经至下丘脑和延髓的系列神经核团传递信号,最终通过交感神经作用于外周的棕色脂肪组织,直接压抑了机体的血糖代谢能力。值得指出的是,这项工作不但在小鼠动物模型上系统回答了光调节血糖代谢的生物学机理,在人体试验上也发现了同样的现象,显示光调节血糖代谢可能广泛存在于哺乳动物界。   研究人员首先对小鼠和人执行葡萄糖耐受性检测(GTT),发现数个小时的光暴露显著降低了人和鼠的血糖耐受性。哺乳动物光感受主要依赖于视网膜上的各类感光细胞。除了经典的视锥(Cones)视杆(Rods)细胞介导图像视觉感知之外,光也能直接激活视网膜上的第三类感光细胞视网膜自感光神经节细胞(ipRGC),它依靠自身表达的视黑素(Melanopsin)对波长靠近480nm的短波长蓝光敏感。ipRGC支配诸多下游脑区进而调控如瞳孔对光反射、昼夜节律、睡眠和情绪认知功能。光降低血糖耐受性通过何种感光细胞介导?通过基因工程手段,研究人员逐一使视网膜各类感光细胞丧失感光能力,发现光诱发血糖不耐受由ipRGC感光独立介导(图1)。   接着研究人员进一步探究视网膜至脑内的哪些核团参与光调节糖代谢。下丘脑是调控机体代谢的重要区域,其中与ipRGC有较密集连接的是下丘脑视交叉上核SCN和视上核SON核团。已知数周异常光照模式能够通过影响节律中枢SCN,造成生物钟节律失调,进而间接影响到血糖代谢功能。研究人员分别损毁或利用化学遗传手段操控ipRGC投射的SCN和SON核团,发现了光急性降低血糖耐受性这一过程独立于生物钟节律系统,而由ipRGC-SON的神经环路直接介导(图1)。   结合大量神经环路示踪和操控手段,研究人员进一步发现ipRGC→SONOXT(视上核内催产素(Oxytocin)能神经元)→SONAVP(SON内抗利尿激素(Vasopressin)能神经元)→PVN(下丘脑室旁核)→NTSVgat(孤束核的GABA能抑制性神经元)→RPa(中缝苍白核)这样一条脑内六级长程神经环路介导光降低血糖耐受性(图1)。   光影响血糖代谢必然通过外周血糖代谢的器官来执行,考虑到在环路水平上光降低血糖耐受通过中缝苍白核RPa,该核团是调节棕色脂肪组织(BAT)活性的交感前运动神经的主要部位。因此研究人员将研究锁定在棕色脂肪组织,而棕色脂肪组织的重要作用之一是代谢葡萄糖或脂肪,直接产热以维持体温稳态。研究人员发现光能显著压抑棕色脂肪组织的温度,进一步通过阻断交感神经对棕色脂肪组织的投射、以及利用热中性环境温度压抑棕色脂肪组织活性的手段,确定了光降低血糖耐受性是通过压抑脂肪组织消耗血糖的产热所导致(图1)。   夜行性的小鼠和昼行性的人类在诸多光调控的生理过程中表现既有相反也有相同的效应。光是否同样降低人的血糖耐受?研究人员分别使用ipRGC敏感的蓝光与ipRGC不敏感的红光,测试人在不同波长光线照射下的血糖耐受性。结果显示在蓝光照射下人的血糖耐受性显著下降。进一步研究人员将被试者处于热中性温度环境中(热中性温度下棕色脂肪组织活性被压抑)进行了血糖耐受性测试,结果显示光不再压抑血糖耐受。上述实验提示光降低人的血糖耐受性可能也是由ipRGC感知光线且通过影响棕色脂肪组织的活性所介导(图2)。   对这项工作的几点启示:   Nothing in biology makes sense except in the light of evolution,光压抑血糖代谢这一神经生理功能可能用于动物快速响应不同太阳辐照条件,以维持体温稳态。在户外环境中太阳光可以为动物提供大量的热辐射,这可以满足部分的体温维持需求,而在动物进入洞穴或树荫等诸多太阳光辐照显著降低的环境中时,机体就需要迅速响应这种辐照减少带来的热量输入损失。光通过这条“眼-脑-棕色脂肪”通路快速减低脂肪对葡萄糖的利用以降低产热,在光辐照减少的时候,棕色脂肪不再被光压抑,快速代谢血糖来维持体温稳态。   冷暖光也许并非单纯心理作用,可能存在生理基础。日常生活中短波光环境(蓝)让人感觉到凉爽,而长波光环境(红)让人觉得温暖,因此它们才被赋予了冷暖光的定义。冷暖色一直被定义为心理上的冷热感受。这项研究发现对短波长光敏感的ipRGC在蓝光下压抑脂肪组织产热,而在红光下脂肪组织处于活跃状态。因此我们在进入蓝光环境下产生的那种“冷”的感觉,有可能是由于脂肪产热被压抑而产生的真实感受。 这条光调控脂肪组织活性的环路可能是心理上冷暖光的生理结构基础。   工业化时代的代谢疾病—人造光源增加机体代谢负担。该项工作在人体的研究结果显示,昼夜节律会造成夜间人体的糖代谢能力相较白天更低,而光压抑血糖代谢是直接叠加在节律造成的夜间血糖代谢能力下降之上的(图2)。因此在夜间同时有光暴露的条件下,人体血糖代谢能力最差。工业化社会中,人类长时间的在夜间暴露于人造光源之下,加上现代人夜间饮食习惯给机体带来双重代谢负担进而可能诱发代谢疾病。大量公卫卫生学证据已经证实了这一点,最近瑞金医院宁光院士团队涉及近10万人的研究显示,夜间长期暴露于人造光下会增加血糖紊乱及糖尿病的患病风险。   这项光调节血糖代谢的机制研究,提示现代人健康生活应关注光线环境的健康,针对夜间光污染造成的罹患代谢疾病风险提高,应考虑生活环境中夜间人造光线的波长、强度和暴露时长。这项工作发现的感光细胞、神经环路和外周靶器官可为将来干预此过程提供潜在靶点。   研究工作得到国家自然科学基金、科技部、科学探索奖、中科院稳定支持基础研究领域青年团队项目、中国科大等的支持。合肥学院科研人员参与研究。图1.在小鼠上,光激活ipRGC-SONOXT-SONAVP-PVN-NTSVgat,压抑RPa和支配脂肪的交感神经,进而压抑棕色脂肪产热降低血糖耐受性。图2.在人上,光可能通过同样的神经环路机制压抑棕色脂肪产热降低血糖耐受性。相较于白天,夜晚人的血糖耐受性更低。
  • 蛋白质组学在病毒入侵宿主中的研究
    2020年初,一场突如其来的疫情打乱了大家的生活节奏。面对来势汹涌的疫情,全国上下正在积聚力量,全力战胜新型高致病性冠状病毒(2019-nCoV)。医护人员、解放军战士、志愿者们纷纷奔赴武汉,与疫魔竞速,守卫着国民的生命安全,致敬最美逆行者!同时疫情研究者一样没有停下自己的脚步,特别是在分子水平,我们调研了基于Orbitrap超高分辨的蛋白质组学和结构组学技术在病毒学研究中的应用,谨以此文致敬白衣天使和深耕医学研究的学者。Orbitrap技术促进病毒机理研究病毒与宿主共同进化,获得捕获和操纵宿主细胞过程进行复制的机制传播。同样,宿主细胞会通过部署防御机制或通过适应感染环境。在整个感染过程中,细胞严重依赖于时空调控的病毒-宿主蛋白-蛋白相互作用的形成。 蛋白质组学方法与病毒学的结合促进了对病毒复制、抗病毒宿主反应和病毒对宿主防御的颠覆机制的深入研究。而Orbitrap技术依靠其高灵敏度、高精度,高通量等特性在该方面表现出色。案例一:Orbitrap技术深度挖掘病毒-宿主蛋白质相互作用2019年Viruses杂志上发表了基于组学技术研究宿主变化的综述,质谱技术中基于亲和纯化分离蛋白质复合物随后进行MS分析(AP-MS)的方法可以用于分离病毒-病毒和病毒-宿主多蛋白复合物,可识别间接和直接的蛋白质相互作用,提供相互作用事件的瞬时信息,或跟踪单个病毒基因产物的过表达,以深入了解单个蛋白质的功能;表达蛋白质组学技术(定量蛋白质组学和翻译后修饰组学)可以研究病毒蛋白的组成,宿主在病毒入侵过程中蛋白质和翻译后修饰的动态变化。(Viruses 2019, 11, 878 doi:10.3390/v11090878)迄今为止,基于蛋白质组学方法的进展已经为识别数量惊人的病毒-宿主蛋白关联铺平了道路,科学家基于这些数据构建了包含了5000多种病毒成分和宿主细胞之间的非冗余蛋白相互作用数据库。这些有价值的信息库包括相互作用蛋白数据库、VirHostNet(http://virhostnet.prabi.fr/)、VirusMentha(Nucleic Acids Res. 2015 43(D1):D588–D592)、IntAct-MINT(Nucleic Acids Res. 2015 43(D1):D583–D587)和Uniprot。 案例二:Orbitrap技术揭示新型塞卡病毒宿主因子Pietro,Scaturro, Alexey, et al. Nature, 2018 寨卡病毒(ZIKV)最近成为全球健康问题,由于它的广泛传播和与严重的联系新生儿神经症状和小头症。然而,与致病性相关的分子机制关于ZIKV的大部分仍然未知。 技术路线:利用赛默飞 LTQ-Orbitrap和Orbitrap Q Exactive HF质谱进行全蛋白质组学和修饰蛋白质组学(实验路线见下图a),研究对象为神经细胞系SK-N-BE2和NPC细胞,表征细胞对病毒的反应,在蛋白质组和磷酸化蛋白质组水平上的变化,利用亲和蛋白组学方法鉴定ZIKV蛋白的细胞靶点。使用这种方法,找到了386个与zikv相互作用的蛋白质,导致宿主在神经发育受损,视网膜缺陷和不孕。此外,确定了寨卡病毒感染后1216个磷酸化位点存在上调或下调,来自AKT, MAPK-ERK和ATM-ATR信号通路中,为防范ZIKV感染扩散提供机制基础。在功能上,系统地理解了ZIKV诱导后的宿主的蛋白质和细胞通路水平的扰动,并对感染后细胞施加Rock抑制剂药物干预,利用非标定量蛋白质组学方法分析差异蛋白进行验证(下图热图),补充这一空白。技术路线图案例三:Orbitrap技术深入探寻寨卡病毒病毒与宿主的相互作用Etienne Coyaud, et al. Molecular & Cellular Proteomics,2018,技术路线技术路线:本文利用生物素识别以及IPMS亲和纯化结合MS 方法,研究寨卡病毒侵染后病毒与宿主细胞蛋白质的相互作用(技术路线见上图),实验结果揭示了1224个蛋白3033多肽形成的相互作用网络(见下图a)。相互作用包括多肽加工和质量控制、囊泡方面的作用运输,RNA处理和脂质代谢。40%的 作用都是以新报道的相互作用。通过数据挖掘分析,揭示过氧化物酶体在ZIKV感染中的关键作用。病毒宿主蛋白相互作用网络图 温馨提示:积极防护 保护自己 戴口罩 勤洗手
  • 人工智能已经开始在医学上应用
    p   在5月初谷歌(GOOG, Google)大型开发者大会上,首席执行官桑达尔· 皮查伊(Sundar Pichai)上台,详细阐述了其最新的人工智能研究有朝一日将如何帮助医生发现心脏病。此外,人工智能系统对心脏病的判断是基于对患者视网膜的扫描——一种已知的为人们的心脏健康提供线索的方法——几乎和传统的血液测试一样准确。 /p p    strong 一个人工智能的心脏测试 /strong /p p   “在我看来,这显然是医学的下一个自然步骤,”约翰· 霍普金斯医学院奥斯勒医学培训项目主任桑杰· 德赛博士说。 /p p   谷歌的视力测试使用了一种名为机器学习的人工智能,它试图教计算机系统如何通过将大量数据输入到算法中来做出决策。 /p p   为了做到这一点,谷歌给它的算法图像提供了正常视网膜和那些有心脏病迹象的人的图像,这是一种叫做计算机视觉的方法。在训练算法之后,它能够查看视网膜的个别图像,并确定这些图像是属于健康的患者还是可能患有心脏病的患者。 /p p    strong 糖尿病视网膜病变可通过计算机视觉技术识别。 /strong /p p   谷歌之前曾使用机器学习来证明它可以识别有糖尿病视网膜病变风险的个体,如果不进行治疗,这种疾病会导致不可逆的失明。在训练了算法之后,这个搜索巨人说,它的机器学习系统在识别疾病症状方面和训练有素的眼科医生一样准确。 /p p    strong 另一种机器学习算法识别乳腺组织中的肿瘤。 /strong /p p   计算机视觉技术在成像方面非常有用,但它远不是研究人员在医学领域使用人工智能的唯一方法。 /p p   在斯坦福大学医学院,乔什· 诺尔斯博士是使用病人的电子健康记录(EHRs)来识别之前未被诊断出患有家族性高胆固醇血症(FH),遗传心脏病影响1 250人,结果在一个高的机会早发性心脏病和心脏病如果不及时治疗。据诺尔斯说,美国大约有100万人患有FH,但只有10%的人被确诊。 /p p   乔什· 诺尔斯博士正在帮助使用人工智能和机器学习来识别潜在的心脏病人。(资料来源:Norbert von der Groeben/斯坦福医学院) /p p   “这个项目背后的想法是,我们知道有很多FH患者还没有被诊断出来。”但如果我们找到了它们,我们就可以治疗它们。 /p p   FH是一种常染色体显性疾病,这意味着如果你有FH,你就从父母那里继承了它,可以传给你的孩子。因此,确定一个病人可以让医生帮助多个家庭成员。 /p p   为了确定某人是否患有FH,诺尔斯说,斯坦福大学的研究人员将所有患有和没有FH的患者的医疗记录,包括文本记录、处方、诊断测试和药物,输入一个分类算法,利用这些数据识别出与FH患者一致的模式。 /p p   “这就像你的电子邮件系统学习垃圾邮件一样,”诺尔斯解释道。“你给它看一堆垃圾邮件的例子,它就知道垃圾邮件是什么。 /p
  • 西安光机所研制成功光学相干断层影像仪
    日前,高速光学相干断层影像仪(OCT)由中科院西安光学精密机械研究所研制成功。   据研发人员介绍,该样机可高速、无损采集人眼视网膜活体断层影像,分辨率比现有眼科超声高10倍以上,并可快速重建出3D眼底结构图,为疾病更早期、更准确的诊断提供便利。借助该设备,医生只需简单操作,即可在1秒之内扫描出一幅人眼视网膜的三维断层影像。医生可在该影像数据基础上对病人的视盘、黄斑等参数进行数字化分析,使诊疗更加精准。   OCT是一种高分辨率的生物活体成像技术,其原理是对进入生物体后被不同密度的组织反射、干涉的光加以信号解调,进而成像。OCT检查无需任何外加显影剂,具有无辐射、无创、分辨率高、安全性高的特点,主要用于眼底黄斑区及视神经疾病的诊断,特别适用于老年性黄斑变性、青光眼、糖尿病视网膜病变、高度近视性眼底病变等疾病,拥有CT或超声无法替代的功能,俗称眼科CT。   OCT系统融合干涉光学、弱信号探测、色散补偿、图像处理等多种技术,是典型的交叉学科和系统工程。西安光机所科研团队通过改善各个环节的光学及硬件设计,在保证图像信噪比前提下,实现了每秒5万次的线扫描,超过国外同类高端眼科OCT的最快速度,在硬件上为实现快速3D扫描奠定了基础。
  • 为了不纠结要不要给孩子戴防蓝光眼镜,他花千元买了7款回来测了个究竟
    身边有很多朋友经常跑过来问我:要不要给孩子戴防蓝光眼镜啊?哪款防蓝光眼镜好啊?随着问的人越来越多,不废话,老规矩:买样品-评测-科普!样品购买费用:1357.56元人民币 有100元以下的,200元以下的,300元以下,400元以下4个档次的。本次评测由团队里的小杨和王二在老爸实验室自己动手测试在正式评测前,先给大家科普下市面上常见的两种类型的防蓝光眼镜,一种是在镜片表面镀了一层可以反射短波蓝光的膜层,从而实现防护功能。镜片本身是无色透明的,但会有反光,我们评测的7款中有3款是这样的。另外四款的镜片利用了渗色原理,通过渗透的方法把色素渗入镜片材料中(也就是彩色镜片),由色素来吸收蓝光,镜片本身有淡黄底色。下面就是我们用到的主要测试仪器——照明护照Pro,价值9000多元。下面开始正式评测为了模拟儿童平时在家玩手机/电脑/平板的场景,我们大致测得人眼距离屏幕一般为25.0cm,带上眼镜时,镜片到眼睛距离大致为1.0cm。接下来,我们用光谱精灵测试了手机、平板、电脑、环境光(正常的室内照明)的光谱图,3款电子产品的屏幕调到了最亮并且距离光谱精灵25.0cm。通过相对强度光谱图,我们可以看出:1、LED灯也会有蓝光发出,而且蓝光波峰在450nm左右。2、手机、平板、电脑也会发出蓝光,并且波峰位置的波段跟LED灯的蓝光波峰的波段相同3、可以看出此次评测中的手机、平板、电脑的蓝光强度排列是:平板电脑?笔记本电脑手机接着我们就开始测试7款防蓝光眼镜在分别对着3种电子产品的情况下过滤蓝光的情况。以下为实际所测得的光谱图手机平板电脑ipad笔记本电脑经过分析我们得到结果如下:备注:微弱:蓝光强度相对减弱<5%;弱:蓝光强度相对减弱5%-30%;中:蓝光强度相对减弱>30%根据测试情况来看,有淡黄底色的眼镜阻隔蓝光的效果总体上比透明镜片要好,虽然美观度稍差一点,但基本能阻隔至少20%的蓝光。看来市面上还真的是有防蓝光眼镜的,但,我们真的有必要佩戴防蓝光眼镜吗?老爸评测的态度是:1. 儿童还处在生长发育期,不建议日常采用防蓝光措施。2. 成人也不需要额外的防蓝光措施,如果出现视疲劳等症状,只需要多远眺,减少连续用眼时间即可。为什么不建议大家使用防蓝光眼镜?原因一:蓝光波段里有部分蓝光是有益的455到500纳米之间的蓝光是有益的,具有调节昼夜节律、产生暗视力以及影响屈光发育等重要作用,当前儿童近视的高发与户外活动缺乏有关,室内的光线与自然光相比蓝光有所欠缺。所以多增加户外活动对防控近视都是非常有帮助的。另外,蓝光会影响人体的生物钟。白天,蓝光比较多,而傍晚则显著减少,所以人会形成白天工作、晚上休息的习惯。另外,到达视网膜的蓝光,也会影响我们的心理健康,这就是为什么光线疗法能成功地运用到治疗冬季抑郁和失眠中。原因二:国家标准缺失通过前面的实验,我们发现有些防蓝光眼镜使蓝光波段的透射比确实有一定的降低,但如果下降太多,就会引起我们眼睛所看到的物体颜色过度失真,同时还会引起视物不清晰。所以并不是镜片能阻隔蓝光的程度越大越好。由于防蓝光眼镜兴起晚,因此人们对防蓝光眼镜的防护功能还缺少大量的临床试验证据。所以对于防蓝光眼镜,现阶段的医学界、眼镜行业都还没有明确的定论。老爸评测虽然不建议佩戴防蓝光眼镜,但是有些蓝光还是要防的有害蓝光波长在415-455纳米,波长短,能量高也是最接近紫外线的可见光,又被称为短波蓝光或者高能短波蓝光,能够直接穿透晶体直达眼底视网膜上,并对视网膜形成威胁。国外也有研究表明:短时间短波蓝光会造成视网膜色素上皮的不可逆死亡1-2 min of 408 nm and 25minutes of 430 nm are sufficient to cause irreversible death of photoreceptorsand lesions of the retinal pigment epithelium.[1]国家卫生和计划生育委员会在2013年4月15日发布的《儿童眼及视力保健技术规范》中指出:儿童持续近距离注视时间每次不宜超过30分钟,操作各种电子视频产品时间每次不宜超过20分钟,每天累计时间建议不超过1小时。2岁以下儿童尽量避免操作各种电子视频产品。眼睛与各种电子产品荧光屏的距离一般为屏面对角线的5~7倍,屏面略低于眼高。所以平时我们要多注意用眼习惯,控制自己使用电子产品的时长,保护好自己的眼睛,而不是依赖于防蓝光眼镜。眼镜店里的雕虫小技,很多人都上过当去眼镜店配眼镜,可能会见到商家拿出验钞票的蓝光笔照射镜片,商家说法是:穿过镜片的蓝光越少,就代表蓝光被减弱得越多,从而说明镜片的防蓝光效果越好。这个方法靠谱吗?我们用商家附赠的蓝光笔照射这7款样品。测试结果为:7款样品都能够阻隔蓝光笔发出的蓝光。可我们上面评测却发现7款样品中只有部分眼镜有一些防蓝光效果,那这是怎么回事呢?随后我们给这个蓝光笔进行了单独的光谱检测。(蓝光笔发出的蓝光的图谱)结果发现蓝光笔的光谱中心波长为400nm左右,而这个波段完全不是我们刚刚所测的电子屏幕光的主要波段(450nm左右)。我们评测的7款防蓝光眼镜是可以过滤400nm以下的蓝光,但对于450nm的蓝光就有点吃力了。所以这正是商家的狡猾之处,利用蓝光的波段差异进行忽悠人的防蓝光判定,结果只能呵呵。【文章转自:老爸评测】
  • 人与动物微量元素国际大会首次在中国举行
    9月19日,第14届国际人与动物微量元素大会(TEMA)在湖北省恩施市举行。本次大会重点进行硒、铁、锌、铜4种元素的专题交流。   在开幕式暨仙居恩施国际硒资源开发利用研讨会上,有关专家和学者分别就硒的化学、代谢、需求及调节作用 硒的生物标记及人体对硒需求的检测等进行了学术报告。会议内容涉及地质地理学、医学地理学、地球化学、环境科学等20多个学科。   这是TEMA大会首次在欧美以外的国家召开,大会由国际人与动物微量元素学术委员会主办,恩施市人民政府、华中科技大学、湖北省硒资源开发利用促进会承办。
  • 查个色素要花300块 食品检测难倒投诉人
    近日,江苏省食品安全宣传周启动,在活动现场,保健品成为投诉的热点,而不少市民认为检测费确实成了投诉的一道难题。昨天记者还获悉,江苏将聘请20名食品安全公众监督员,对食品企业进行明察暗访。   难题   检测费用高难倒投诉人   市民马先生遇到一个难题,他说:&ldquo 家里买了个保健品,东西吃下去后不舒服,我想拿去检测下。&rdquo 不过由于检测费要自掏腰包,马先生表示,如果费用过高,他可能就不找这个麻烦了。   目前,各类商品的检测费用标准不一。以检测食品中是否添加了色素为例,每一种色素检测的费用200-300元左右,而每一次检测如果需要检测5种以上色素,那么即使只检测一个很小的食品,费用有时就超千元。   检测部门表示,由于检测中需要使用进口设备和药剂,再加上人力成本,目前费用降不下来。   监督   公众监督员将&ldquo 明察暗访&rdquo   昨天记者了解到,江苏将聘请20名食品安全公众监督员,对食品企业进行明察暗访。   据悉,这次被聘任的省级食品安全公众监督员有20名,他们中有人大代表、政协委员、媒体记者、社团组织代表、专家学者、院校师生、社区市民代表等。他们将通过一定的方式,如:听取相关工作信息、到食品种养殖、生产流通、餐饮消费等企业进行明察暗访等,参与食品安全工作,帮助政府有关监管部门收集社情民意、发现风险隐患、宣传法规常识、举报违法违规等,建立健全食品安全社会监督机制。   进展   小龙虾标准有望年内制定   目前,包括小龙虾在内的11种食品安全标准,正在广泛征求意见,有望年内完成制定。小龙虾的标准有可能包括水质、重金属、农药残留等等,将为公众放心食用小龙虾提供一个保险。据悉,江苏今年还未发现由龙虾引起的&ldquo 横纹肌溶解综合征&rdquo 。   在昨天的启动仪式上,江苏省政府副省长毛伟明指出,做好食品安全工作,离不开全社会的大力支持和广泛参与。希望广大食品生产经营者从我做起,切实承担起食品安全第一责任人的责任,以守法诚信经营实现更大发展。
  • 艾伯维完成高达17.5亿美元合作!开展RGX-314基因疗法为上亿视力疾病患者谋福音
    近日,艾伯维和REGENXBIO公司宣布,将共同合作开发和商业化RGX-314。RGX-314是一种潜在的一次性基因疗法,用于治疗湿性年龄相关性黄斑变性 (wAMD)、糖尿病性视网膜病变 (DR) 和其他慢性视网膜疾病。  根据协议条款,艾伯维将向REGENXBIO支付 3.7 亿美元的预付款,REGENXBIO有可能获得高达13.8 亿美元的额外开发、监管和商业里程碑。REGENXBIO和艾伯维将平均分享 RGX-314 在美国的净销售额的利润, AbbVie 将就 RGX-314 在美国以外的净销售额向 REGENXBIO 支付分层特许权使用费。该交易预计将于 2021 年底完成,但须满足惯例成交条件,包括适用的监管批准。  RGX-314由 NAV AAV8 载体组成,该载体编码旨在抑制血管内皮生长因子 (VEGF) 的抗体片段。RGX-314 被认为可抑制VEGF通路,通过该通路,新的渗漏血管生长并导致视网膜的液体积聚。VEGF是一种刺激血管生长的蛋白,而wAMD的病理表现为新生和异常的血管在黄斑下不受控制地生长,导致肿胀、出血和/或纤维化,造成快速和严重的视力丧失,因此眼部注射anti-VEGF药物也是临床上治疗wAMD的主要手段。而RGX-314作为一款基因疗法,将编码anti-VEGF抗体片段的基因送入细胞,提供了只需一次性注射即可治疗wAMD的可能。  目前,REGENXBIO正在推进RGX-314两种不同的眼部给药途径研究,通过标准化的视网膜下输送程序以及输送到脉络膜上腔,同时,也正在一项利用视网膜下给药的关键试验中对wAMD 患者进行评估。  此次达成合作的基因疗法所针对的视力疾病正在成为导致人们失明的重要原因。其中,湿性年龄相关性黄斑变性的特征是由于视网膜中形成新的渗漏血管而导致视力丧失。在美国、欧洲和日本,wAMD是视力丧失的重要原因之一,仅在这些地区就有多达 200 万人患有wAMD。目前的抗 VEGF 疗法已经显着改变了湿性 AMD 的治疗前景,由于它们能够防止大多数患者视力丧失的进展,因此成为了治疗护理标准。然而,这些疗法需要终生反复眼内注射,以保持疗效,由于治疗的负担,随着时间的推移,患者的视力通常会随着治疗频率的降低而下降。  糖尿病视网膜病变 (DR) 是糖尿病的严重并发症之一,也是全球24至75岁成年人视力丧失的主要原因。仅在美国, DR就影响了大约 800 万人,而根据相关数据显示,全球这一疾病的患者人数已超1亿,在糖尿病患者中的发病率能够达到40%以上。这一疾病的严重程度范围会随着非增殖性糖尿病视网膜病变 (NPDR) 变为增殖性糖尿病视网膜病变 (PDR),随着病情的发展,很大一部分患者会出现威胁视力的并发症,包括糖尿病性黄斑水肿 (DME) 和新血管形成所导致的失明,目前对DR患者的治疗选择包括“观察等待”、抗VEGF治疗、视网膜激光或手术治疗。  此次艾伯维与REGENXBIO的合作,将帮助更多患者扫除视力障碍以及毁灭性的视力减退。
  • J of Extracellular Bio. :ExoView直接检测房水中的极微量外泌体,助力小儿眼部疾病研究
    小儿眼病的病情准确诊断与监测一直是临床上的一大难题,往往需要通过临床症状来评判。因此,小儿眼病的诊断评估急需新的分子诊断技术的帮助。房水是眼球眼房中,介于角膜和晶状体之间的无色透明水样液体,主要作用为屈光、为眼内组织提供营养和氧气、排出其代谢产物和维持眼内压。使用前房穿刺术可以安全地取出房水,作为液体活检样本用于诊断和监测眼病。 研究表明,外泌体在视觉系统中可能有重要作用,如外泌体与青光眼和黄斑变性的病理生理相关。由于血-视网膜屏障存在,房水中的外泌体主要由眼内组织分泌,使得外泌体在眼病研究中更具有针对性。先前的研究中并未涉及房水外泌体的来源与分布,且由于技术手段的限制,至今尚未将房水外泌体与小儿眼病联系起来。 基于以上研究成果与客观需要,研究组获取了患有不同眼病,包含先天性白内障(CAT),先天性青光眼(GLC),小儿视网膜疾病(PRD)和视网膜母细胞瘤(Rb)的19个不同患者的房水样本,再将Rb患者根据治疗情况分为经过初步治疗(诊断+初步切除)(Rb_Tn)和经过主动治疗(二次切除+化疗)(Rb_Tx)两组,使用全自动外泌体荧光检测分析系统 ExoView的配套芯片,通过抗原抗体结合捕获了房水中的特异性外泌体,无需纯化,直接检测了房水中存在的不同亚群的外泌体的含量。 在非肿瘤眼病(CAT+GLC+PRD)和Rb_Tx组中,CD63+外泌体数量显著高于其他表型,表明房水CD63+外泌体占大多数(图1c)。Rb_Tn组的外泌体数量要高于Rb_Tx,说明在化疗前房水中可能含有大量肿瘤分泌的外泌体(图1d)。图1 ExoView检测不同患者样本的外泌体跨膜蛋白的表达。(a)不同眼病样本的外泌体荧光图像(红色:CD63;绿色CD81;蓝色:CD9);(b)不同患者样本经过IgG阴性对照标准化的荧光颗粒计数表;(c)(d)不同组别样本经过IgG阴性对照标准化的荧光颗粒计数的柱形图。 对不同组别的各个外泌体亚群进行统计分析发现,非肿瘤眼病(CAT+GLC+PRD)和Rb_Tx组中,仅表达CD63的外泌体数量多,Rb_Tn组的亚群则更加多样化(图2b&图2c); CAT/GLC/PRD/Rb_Tx组中CD63+外泌体在CD63捕获位点中比例高(图2d&图2e),而在Rb_Tn组的比例则显著小于其他组,但CD9+/CD63+,CD63+/CD81+和CD9+/CD63+/CD81+则相对更多(图2f)。以上结果说明,仅表达CD63的外泌体是房水中所特有的,Rb_Tn组的其他亚群则与肿瘤相关,肿瘤的治疗改变了外泌体的亚群组成比例。图2 ExoView检测不同组别样本的外泌体跨膜蛋白的共定位(a)荧光图像示例(红色:CD63;绿色CD81;蓝色:CD9);(b)(c)不同组别的各个外泌体亚群数量;(d)(e)(f)不同组别的各个外泌体亚群比例。 为确认ExoView芯片捕获的是膜结构完整的外泌体,研究人员将两份样本经Triton-X 100处理破坏外泌体膜结构后,再使用ExoView检测。与未经处理的样本对比,荧光颗粒计数有显著下降,证明实验检测到的外泌体是脂双层结构完整的外泌体(图3)。 图3 Triton-X100处理过的房水样品的跨膜蛋白表达。 在人的其他体液,如血浆和淋巴液中,CD63+外泌体占比仅为≤10%,而房水中CD63+外泌体的含量很高,说明CD63+外泌体可能是房水特有的。有研究表明,鼠视网膜色素上皮分泌的CD63+外泌体参与了巨噬细胞的细胞间通信。因此,CD63+外泌体可能与眼部的免疫调节相关。Rb患者房水中表型更加多样化的外泌体来源可能是肿瘤细胞;经治疗后,CD63+外泌体比例上升,说明眼部趋向正常,因此,CD63+外泌体,以及肿瘤相关外泌体亚群的含量有作为肿瘤病情监测指标的潜力。在今后的研究中,使用ExoView检测含有更多种蛋白标志物和内容物的外泌体,可以检测并识别更多疾病相关的蛋白标志物和内容物,助力小儿眼病的诊断和治疗。 本研究中,科学家借助美国NanoView Biosciences公司研发的全自动外泌体荧光检测分析系统ExoView,直接检测病人样本中微量的外泌体,无需纯化,操作简单。一次结果直接输出外泌体粒径,数目,蛋白表型,不同亚群的含量。多角度全方位的佐证了外泌体或可作为液体活检样本用于诊断和监测眼病。也说明了ExoView的无需纯化,全面表征的特点是临床液体活检,尤其是微量检测的一大利器。 为了更好的服务中国客户;Quantum Design中国子公司在北京建立了专业的客户服务中心,正式推出专业的全方位外泌体表征测试服务,您只需要少量样品即可获得全方位的外泌体表征数据: 欢迎各位老师垂询:010-85120280。前10名订购服务的老师,可享受8折优惠!扫描上方二维码,即刻订购吧!服务推出至今,短短一年时间已经助力多个单位客户发表高水平文献:☛ 上海大学肖俊杰课题组在《Journalof extracellular vesicles》发表文章 ☛ 中国科学院深圳技术研究院杨慧课题组发表在《Lab on a Chip》发表文章 ☛ 北京天坛医院张力伟课题组、纳米科学中心梁兴杰课题组、北京航空航天大学陈军歌课题组在《Advanced Science》发表文章☛ 同济大学附属上海市肺科医院、上海思路迪转化医学团队在《Journal of Nanobiotechnology》发表文章【参考文献】[1] Peng, C. C., Im, D., Sirivolu, S., Reiser, B., Nagiel, A., Neviani, P., ... & Berry, J. L. (2022). Single vesicle analysis of aqueous humor in pediatric ocular diseases reveals eye specific CD63‐dominant subpopulations. Journal of Extracellular Biology, 1(4), e36.
  • 眼科疾病的曙光:实验室培育出了视神经细胞
    约翰霍普金斯大学的研究者开发出了一种方法,能将人体干细胞转变为视网膜神经细胞,这是一种位于视网膜内能将视觉信号传递给大脑的神经细胞。这类细胞的死亡或者紊乱能引起视力丧失,譬如青光眼和多发性硬化症(MS)。“我们的研究不仅让人们更深入的了解了视神经的生物学功能,也为开发防治视力疾病的药物提供了细胞模型,”研究者Donald Zack博士表示,他是约翰霍普金斯大学医学院的眼科教授。“并且,这也有利于开发细胞移植方法来来恢复青光眼或者MS患者的视力。”整个实验的详细过程发表于《科技报告》杂志上,通过修饰一系列的人体胚胎干细胞使其具有荧光特性,以区别视网膜神经细胞,然后使用此类细胞来区分生成的细胞。研究者们使用一种叫做CRISPR-Cas9的基因组编辑技术,向干细胞DNA中插入了荧光蛋白基因。这种红色的荧光蛋白只有在另一个基因BRN3B (POU4F2)表达的情况下才会表达。BRN3B通过成熟的视网膜神经细胞表达,所以一旦干细胞变成了视网膜神经细胞,它就会在显微镜下显红色。接下来,他们运用荧光激活细胞筛选法来分离纯化新生成的视网膜神经细胞。Zack表示,新生成的细胞表现出了与自然生成的视网膜神经细胞一样的生物学和物理特性。研究者也发现,在实验的第一天添加一种叫做毛喉素的化学物质,有助于提高视网膜神经细胞的生成效率。研究者提醒到,毛喉素广泛用于减肥和肌肉塑形,也常作为中药治疗各种紊乱,但是对于防治视力损失和其它一些紊乱并不一定安全有效。“在培养的第30天,显微镜下能看到明显的成簇的荧光细胞,”首席研究者Valentin Sluch博士表示,他以前是霍普金斯大学生物化学、细胞分子生物系的学生,现在任职于诺华公司。Sluch在加入诺华之前就完成了该研究。“第一次成功的时候我很高兴,”Sluch说道。“我几乎跳了起来,然后跑去告诉我一个同事。就好像马上就能分离出细胞进行研究一样,这在以前是不可能的。”“我们知道,这仅仅是个开始,”Zack补充道。在随后的研究中,他的实验室旨在找出其它与视神经细胞生存和功能相关的基因。“我们希望这些细胞能为治疗青光眼和其它类型的视神经疾病提供新的方法。”为了能够利用这些细胞治疗MS,Zack正与Peter Calabresi合作,他是霍普金斯大学多发性硬化症研究中心的主管、神经病学教授。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制