当前位置: 仪器信息网 > 行业主题 > >

人生长分化因子

仪器信息网人生长分化因子专题为您整合人生长分化因子相关的最新文章,在人生长分化因子专题,您不仅可以免费浏览人生长分化因子的资讯, 同时您还可以浏览人生长分化因子的相关资料、解决方案,参与社区人生长分化因子话题讨论。

人生长分化因子相关的论坛

  • 重组细胞因子分类及应用概述

    一、细胞因子的概念细胞因子(cytokine)是由机体多种细胞分泌的小分子蛋白质,通过结合细胞表面的相应受体发挥以调节免疫应答为主的生物学作用。细胞因子具有 非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢 等。二、细胞因子的命名细胞因子按其来源可分为:由单个核吞噬细胞产生的细胞因子称为单核因子(monokine);由淋巴细胞产生的细胞因子称为淋巴因子 (lymphokine)等。按其作用可分为干扰素、集落刺激因子、肿瘤坏死因子、生长因子和趋化因子等。部分由不同细胞分泌的细胞因子,其基因及编码蛋 白与结构清楚者,在免疫调节、造血和炎症中发挥重要作用,又称为白细胞介素(interleukin,IL)。也可以依据结构或者其受体结构分类,我们的 趋化因子目前没有受体产品。三、细胞因子的特征1、低分子量;一般为<60kD的多肽或糖蛋白。多以单体形式存在,少数为二聚体,三聚体。2、天然细胞因子由抗原、丝裂原或其他刺激物活化的细胞所分泌,通过旁分泌(paracrine)、自分泌(autocrine)或内分泌(endocrine)方式在局部发挥短暂作用。3、一种细胞因子可由多种细胞产生,同一种细胞可产生多种细胞因子。4、需通过与靶细胞表面相应受体结合后发挥其生物学效应。5、具有高效性、多效性、叠性、拮抗性、协同性和网络性。四、细胞因子的分类1、白细胞介素(interleukin,IL-s)最初是指由白细胞产生又在白细胞间发挥作用的细胞因子。2、干扰素(interferon,IFN)最早发现的细胞因子,有干扰病毒感染和复制的能力。分α、β和g三种类型。3、肿瘤坏死因子超家族(tumor necrosis factor,TNF)1975年发现的一种能使肿瘤发生出血坏死的物质。4、集落刺激因子(colony-stimulating factor,CSF)指能够刺激多能造血干细胞和不同造血祖细胞增殖分化,在半固体培养基中形成相应细胞集落的细胞因子。包括G-CSF(粒细胞)、M-CSF(巨噬细胞)、 GM-CSF(粒细胞、巨噬细胞)、Multi-CSF(多重)(IL-3)、红细胞生成素(EPO)、干细胞生长因子(SCF)、血小板生成素 (TPO)等。5、趋化因子(chemokine)主要功能是招募血液中的单核细胞、中性粒细胞、淋巴细胞等进入特定的淋巴器官和组织以及感染发生的部位。根据趋化因子近N端半胱氨酸(Cys)的位置、排列方式和数量,可分为CC、CXC、C、CX3C四个亚家族。6生长因子(growth factor,GF)生长因子(GF)是具有刺激细胞生长作用的细胞因子。五、细胞因子的生物学活性1.介导自然免疫、参与抗肿瘤和抗感染2.调节T、B细胞活化、生长和分化,介导细胞免疫和体液免疫3.刺激造血生成、刺激骨髓祖细胞生长和分化为各种成熟血细胞4.在炎症、感染和内毒素血症中的作用5.在超敏反应和自身免疫病中的作用6.细胞因子通过激活其相应受体(CKR),导致细胞的增殖与分化或分泌某种蛋白质。六、四种蛋白表达体系比较表达细胞优点缺点原核E. coli繁殖快、成本低、产量高遗传背景及基因表达调控机制清楚易于大规模培养,成本低廉蛋白常为包涵体,纯化困难无糖基化(分泌蛋白,细胞膜上蛋白不可用),生物活性不定无翻译后修饰,内毒素含量高酵母Pichia使用简单,表达量高,His-tag便于纯化,一定的翻译后加工可进行糖基化修饰,操作简单,适合大规模生产可诱导表达,也可分泌表达,产物便于纯化有时会出现蛋白切割问题糖基化不能满足要求昆虫High-5产量高 ,翻译后加工与哺乳动物相似对于部分有毒性或较难表达蛋白有优势无内毒素污染蛋白活性不如哺乳动物适合表达激酶等定位于细胞内的真核蛋白哺乳CHO HEK293完善的翻译后加工,活性接近天然蛋白周期长、技术要求高表达产量低

  • 【分享】人肝细胞生长因子受体(HGFR/ c-MET)酶联免疫分析(ELISA)

    试剂盒使用说明书本试剂仅供研究使用 目的:本试剂盒用于测定人血清,血浆及相关液体样本中肝细胞生长因子受体(HGFR/ c-MET)的含量。实验原理: 本试剂盒应用双抗体夹心法测定标本中人肝细胞生长因子受体(HGFR/ c-MET)水平。用纯化的人肝细胞生长因子受体(HGFR/ c-MET)抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入肝细胞生长因子受体(HGFR/ c-MET),再与HRP标记的羊抗人抗体结合,形成抗体-抗原-酶标抗体复合物,经过彻底洗涤后加底物TMB显色。TMB在HRP酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的肝细胞生长因子受体(HGFR/ c-MET)呈正相关。用酶标仪在450nm波长下测定吸光度(OD值),通过标准曲线计算样品中人肝细胞生长因子受体(HGFR/ c-MET)浓度。试剂盒组成:试剂盒组成48孔配置96孔配置保存说明书1份1份封板膜2片(48)2片(96)密封袋1个1个酶标包被板1×481×962-8℃保存标准品:1350ng/L0.5ml×1瓶0.5ml×1瓶2-8℃保存标准品稀释液1.5ml×1瓶1.5ml×1瓶2-8℃保存酶标试剂3 ml×1瓶6 ml×1瓶2-8℃保存样品稀释液3 ml×1瓶6 ml×1瓶2-8℃保存显色剂A液3 ml×1瓶6 ml×1瓶2-8℃保存显色剂B液3 ml×1瓶6 ml×1瓶2-8℃保存终止液[align=cente

  • 肌肉干细胞促肌肉生长和修复机制

    肌肉能提供干细胞来促进肌肉的生长和受伤肌肉的再生,但肌肉干细胞必须驻留在特殊的部位才能有助肌肉的生长和修复。德尔柏林布吕克分子医学中心(MDC)发育生物学家Dominique Bröhl和Carmen Birchmeier教授已经阐明这些干细胞是如何定植于肌肉干细胞“巢穴”中的。肌肉干细胞也被称为卫星细胞,位于平滑肌细胞的质膜和周围基底层之间。可发育分化为成肌细胞,后者可互相融合成为多核的肌纤维,形成骨骼肌最基本的结构。http://www.bioon.com/biology/UploadFiles/201209/2012091813042153.jpg在本研究中,Bröhl博士和教授Birchmeier表明,小鼠的肌肉祖细胞缺乏Notch信号后,不能定植于干细胞“巢穴”。相反,肌肉祖细胞会定植于肌纤维之间的组织中。发育生物学家认为,这是肌肉弱化的原因。干细胞定植于错误的地方就不再像以前那样拥有多种生物学功能,难以有助于肌肉生长。此外,Notch信号通路在肌肉的发育过程中具有第二大功能。它可以通过抑制肌肉发育促进因子MyoD防止干细胞分化成肌肉细胞,从而确保肌肉中总会存在能保存有修复和再生功能的干细胞“巢穴”。这项工作对肌肉再生和肌肉无力的研究具有重大意义。这实验势必为肌肉严重损伤和肌肉萎缩的患者提供新的希望!多么希望此技术能在中国普及。

  • 组织工程肌腱种子细胞、支架材料和生长因子的研究进展

    【序号】:4【作者】:孙银凤1张国荣【题名】:组织工程肌腱种子细胞、支架材料和生长因子的研究进展【期刊】:中国医学创新. 【年、卷、期、起止页码】:2018,15(04)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7i0-kJR0HYBJ80QN9L51zrPzkailMgzjgNTQgeWpo-Fz_26SEHjmZmMDCcUPLJxDxT&uniplatform=NZKPT

  • 【求助】用高效液相色谱法测人体表皮生长因子,最低配置多少钱?哪个牌子性价比高?

    测定方法色谱柱用十八烷基硅烷键合硅胶为填充剂;以A相(三氟乙酸-水溶液:0.1%三氟乙酸)、B相(三氟乙酸-乙腈溶液:1ml三氟乙酸溶于1000ml乙腈)为流动相,在室温下进行梯度洗脱(0~70%B相)上样量不低于10ug,于波长280nm处检测,以人表皮生长因子色谱峰计算理论塔板数应不低于2000。按面积归一化法计算,人表皮生长因子主峰面积应不低于总面积95.0%。

  • 缓释生长因子羧甲基壳聚糖支架抑菌功能的研究

    【序号】:4【作者】:李蕾1,2林放2施琳颖【题名】:缓释生长因子羧甲基壳聚糖支架抑菌功能的研究【期刊】:重庆医学. 【年、卷、期、起止页码】:2020,49(08)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=6xaVI2TORM0Hu_vbfCnMkBhvVDyD9oixmply0ws95pn8Ru0AtdBpbLxxwrbyokavf_sTbHMQazHAJ3j8Ugj-kONWOW5F9y6NCxpAHVRx68rmyFb6CIzVZS6MUwT77CKkBtrJEHU36OTu-2Ves-NGmlremusOokhN&uniplatform=NZKPT&language=CHS

  • 不同激活剂对富血小板血浆生长因子的影响

    【序号】:3【作者】:刘建香1冯星星2王淑霞【题名】:不同激活剂对富血小板血浆生长因子的影响【期刊】:中国组织工程研究【年、卷、期、起止页码】:2024-05-06【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=hyVvMdIOuYBGBW2aBN8XNcIK_YWKvwLu6n1ba4jg90sDTWdsAwr5PF-kvlYgn3ukoVbtxx9YU9rLXwd8-E9mTxe4kksxVN0JZPNWHRZfNmXVHx1CqE2w9f6uDQw0Sr8dcYasGIuZ_uZoL50wLNgEW5X7ndB_REuQbf32QVH87NDCxWrKng5sM6hM42RBaQC7CLR6sgKbDuN-1Z6c7kNsYg==&uniplatform=NZKPT&language=CHS

  • 富血小板血浆与血小板浓缩生长因子联合治疗慢性溃疡创面的效果研究

    【序号】:6【作者】: 李倩【题名】:富血小板血浆与血小板浓缩生长因子联合治疗慢性溃疡创面的效果研究【期刊】:健康之路. 【年、卷、期、起止页码】:2017,16(12)【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx[/url]?dbcode=CJFD&dbname=CJFDLASN2018&filename=JKZL201712058&uniplatform=NZKPT&v=GTNGCrg792R9ZJLq44J2SxlWNWHjcr84A3qMzpihK09GULZjA9W5CA2Y47NkdXjK

  • 泡沫敷料联合重组人表皮生长因子凝胶在Ⅱ期和Ⅲ期压疮护理中的应用效果

    【序号】:10【作者】: 杨蕾【题名】:泡沫敷料联合重组人表皮生长因子凝胶在Ⅱ期和Ⅲ期压疮护理中的应用效果【期刊】:临床合理用药杂志. 【年、卷、期、起止页码】:2016,9(36)【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2017&filename=PLHY201636041&uniplatform=NZKPT&v=AZ8UYR_r6kWwF-aad8-BRulvrc9il1CjeT5_8F3gQoFVu1s0M6g2bpPXHJ8QoMgy[/url]

  • 美皮康敷料联合重组人表皮生长因子在烧伤创面修复中的应用研究

    【序号】:3【作者】: 梁小玲张慧君梁霞【题名】:美皮康敷料联合重组人表皮生长因子在烧伤创面修复中的应用研究【期刊】:当代护士(下旬刊). 【年、卷、期、起止页码】:2020,27(12)【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2021&filename=DDHZ202012029&uniplatform=NZKPT&v=yD-jZSvU2n1yct1UL_60CAj9k9CiVuUUAEfc0uMITVxvaWEip_VJVoP2QJ_zqpIA

  • 可缓释富血小板血浆生长因子的新型自组装多肽水凝胶制备及性能表征

    【序号】:3【作者】:祁凤英1,2王蕾2李东东【题名】:可缓释富血小板血浆生长因子的新型自组装多肽水凝胶制备及性能表征【期刊】:中国组织工程研究. 【年、卷、期、起止页码】:2024,28(15)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=6xaVI2TORM1swCWGB30yfUSs7gagqZ8OuIiWkV2_s1SHFu-K1KszuTVN3jiF4Ab9hQrTPCOoiwTAoBUscEZgIGyLDzwVbBMulNObHUFG5Ayp20EWIPttGstjxBJ37fe743uLcw4DVrM=&uniplatform=NZKPT&language=CHS

  • 过程工程所开发出安全有效的重组人生长激素缓释微囊

    重组人生长激素(rhGH)在临床上广泛应用于治疗矮小症、严重烧伤、艾滋病患者的脂肪代谢障碍等多种疾病。但rhGH的半衰期短,必须频繁注射才能达到有效的血药浓度,造成患者顺应性差。针对此问题,科研工作者们对rhGH缓释微囊进行了大量的研究,但仍普遍存在微囊粒径不均一、无法持续释放、药物稳定性差等问题;而且,传统的疏水材料微囊在降解过程中产生的酸性产物,会造成注射部位发生炎症,引起严重的副反应。因此,开发安全有效的rhGH缓释微囊具有重要的研究意义。 近日,中科院过程工程研究所马光辉研究员领导的团队开发出了一种粒径均一的rhGH缓释微囊(如图所示)。首先,利用W/O/W复乳液法将rhGH装载于两亲性材料聚乳酸-聚乙二醇共聚物乳液中,并结合快速膜乳化技术实现了微球粒径的均一性。后续的体内大鼠模型实验表明,该制剂能够有效延长rhGH在体内的释放;并且很好地保持了rhGH的活性,大鼠骨骼增长明显,提高了治疗效果。另外,与传统的PLA、PLGA微囊相比,该制剂不产生炎症反应,对心、肝、肾等主要脏器功能无影响,是一种安全的缓释载体。 上述研究成果已发表在Molecular Pharmceutics(2012, 9, 2039−2048)上。该研究工作受到973项目(2009CB930300)和国家自然科学基金(20820102036, 51173187)的资助。http://www.cas.cn/ky/kyjz/201209/W020120907532583468395.jpg新开发出的rhGH缓释微囊

  • 富血小板纤维蛋白中生长因子含量及释放周期的实验研究

    【序号】:1【作者】:林盘玉许放赵良军【题名】:富血小板纤维蛋白中生长因子含量及释放周期的实验研究【期刊】:中国医药科学 .【年、卷、期、起止页码】: 2023 ,13 (05) 【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=hyVvMdIOuYCU93asKDUUPiR9qRG_z7WT_lu7l4e38LtC4jxsYxWiAM5cXX2Hb0DU9J4n6mGOhksP5Xvj_setYtWxmRVp2DOWxdDBWDIK8rCxqH2THxobpqaMgDshKIASc8ZBZBZDhQf781_S_U151QAmdfxAdVmFhYFGWYHg5fO8aVbcv6sH9-XvhLXp7lFC6-IBOWHr4dQ=&uniplatform=NZKPT&language=CHS

  • 细菌生长繁殖的条件

    细菌生长繁殖的条件是充足的营养、合适的PH、适宜的温度和()。 A、酶 B、氧气 C、水分 D、生长因子

  • 锐性清创联合重组牛碱性成纤维细胞生长因子凝胶在慢性创面治疗中的应用

    【序号】:7【作者】: 倪娇娇李勇张莉【题名】:锐性清创联合重组牛碱性成纤维细胞生长因子凝胶在慢性创面治疗中的应用【期刊】:蚌埠医学院学报. 【年、卷、期、起止页码】:2020,45(05)【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2020&filename=BANG202005019&uniplatform=NZKPT&v=jV_KPO1BfFhl-7LT-DSuWYp1U1aAtRhBSnzbgJsbno23FI_wXAq-cDeULWueZ-p6[/url]

  • 【讨论】垃圾焚化对大气有何影响

    为了生存和繁衍,每一种生物都要从周围的环境中吸取空气、水分、阳光、热量和营养物质;生物生长、繁育和活动过程中又不断向周围的环境释放和排泄各种物质,死亡后的残体也复归环境。对任何一种生物来说,周围的环境也包括其他生物。例如,绿色植物利用微生物活动从土壤中释放出来的氮、磷、钾等营养元素,食草动物以绿色植物为食物,肉食性动物又以食草动物为食物,各种动植物的残体则既是昆虫等小动物的食物,又是微生物的营养来源。微生物活动的结果又释放出植物生长所需要的营养物质。经过长期的自然演化,每个区域的生物和环境之间、生物与生物之间,都形成了一种相对稳定的结构,具有相应的功能,这就是人们常说的生态系统。  海洋环境保护指进行海洋污染的调查和监测,了解海洋环境状况,研究海洋污染,海洋开发对海洋环境的影响,以及开展防治海洋污染技术措施的研究和应用等保护海洋环境的活动。1982军中国颁布了《中华人民共利国海洋环境保护法》。  [color=#ff483f][size=4]焚化是将城市垃圾在高温下燃烧,使可燃废物转变为二氧化碳和水,焚化后残灰仅为废物原体积的5%以下,从而大大减少了固体废物量,还可以消灭各种病原体,把一些有毒、有害物质转化为无害物质并可回收热能。由于大城市附近缺乏填埋场所,所以多采用焚化法处理垃圾、废物。[/size][/color]

  • 【金秋计划】基于网络药理学探索升麻三萜皂苷对破骨细胞形成分化的影响

    [font=宋体] [font=宋体]升麻为毛茛科植物大三叶升麻[/font][i]Cimicifuga heracleifolia[/i] Kom.[font=宋体]、兴安升麻[/font][i]C. dahurica [/i](Turcz.) Maxim.[font=宋体]或升麻[/font][i]C. foetida [/i]L.[font=宋体]的干燥根茎,含有三萜皂苷、黄酮、生物碱和色酮等化学成分,具有缓解潮热、抗骨质疏松、抗人类免疫缺陷病毒、抗炎、抗糖尿病、抗疟疾和保护血管等多种生物活性[/font][sup][4][/sup][font=宋体]。同属植物黑升麻[/font][i]C. racemosa[/i] L.[font=宋体]在欧洲广泛应用于防治更年期综合征和骨质疏松症[/font][sup][5][/sup][font=宋体]。有研究表明升麻具有与黑升麻相似的缓解去卵巢大鼠更年期综合征和抗骨质疏松作用,其有效成分为三萜皂苷[/font][sup][6-7][/sup][font=宋体]。升麻三萜皂苷能够增加成骨细胞的骨形成[/font][sup][8][/sup][font=宋体],但其对破骨细胞形成分化和骨吸收的影响及机制尚不清楚。[/font] 破骨细胞为从骨髓巨噬细胞分化的,唯一具有骨吸收功能的细胞。破骨细胞活性增强,骨吸收大于骨形成,骨重建的平衡破坏,导致骨量减少和骨质疏松症的发生[/font][sup][9-10][/sup][font=宋体]。破骨细胞的典型特征为分泌[/font]TRAP[font=宋体]和形成[/font]F-actin[font=宋体]进行骨吸收。[/font]TRAP[font=宋体]是由破骨[/font][font=宋体]细胞分泌的酸性磷酸酶,具有溶解骨矿化基质的作用,是破骨细胞分化成熟的特异性标志酶[/font][sup][11][/sup][font=宋体]。[/font]F-actin[font=宋体]环是破骨细胞特有的进行骨吸收的细胞骨架蛋白,是破骨细胞附着于骨基质表面的重要结构[/font][sup][12][/sup][font=宋体]。培养的破骨细胞通过骨吸收,可在共培养的骨片上形成骨吸收陷窝,其数目和面积常用于表征破骨细胞的骨吸收活性。本研究以[/font]RANKL[font=宋体]及[/font]M-CSF[font=宋体]诱导[/font]BMMs[font=宋体]形成的破骨细胞为模型,观察升麻三萜皂苷对破骨细胞形成、分化和骨吸收的作用,结果表明升麻三萜皂苷阿克特素、升麻环氧醇苷、升麻醇可显著抑制[/font]RANKL[font=宋体]诱导的破骨细胞[/font]TRAP[font=宋体]活性,减少[/font]TRAP[font=宋体]染色阳性的破骨细胞的数目,抑制[/font]F-actin[font=宋体]环的构建,降低破骨细胞在骨片上形成的骨吸收陷窝的数目和面积,显示出了确切的抑制破骨细胞骨吸收的作用。[/font] [font=宋体]破骨细胞由骨髓巨噬细胞分化形成的过程中,受[/font]c-Fos[font=宋体]和[/font]NFATc1[font=宋体]的调控[/font][sup][13][/sup][font=宋体]。[/font]c-Fos[font=宋体]是破骨细胞分化早期所必需的激活蛋白[/font]-1[font=宋体]家族的关键转录因子,可诱导破骨细胞[/font]NFATc1[font=宋体]的表达,调控前破骨细胞最终分化为成熟破骨细胞[/font][sup][14][/sup][font=宋体]。[/font]NFATc1[font=宋体]参与调控破骨细胞特异性基因[/font][i]TRAP[/i][font=宋体]、[/font][i]CTSK[/i][font=宋体]、树突状细胞特异性跨膜蛋白([/font]dendritic cell-specific transmembrane protein[font=宋体],[/font][i]DC-STAMP[/i][font=宋体])和降钙素受体([/font]calcitonin receptor[font=宋体],[/font][i]CTR[/i][font=宋体])等的表达,刺激破骨细胞的形成、分化和骨吸收[/font][sup][15-16][/sup][font=宋体]。升麻三萜皂苷阿克特素、升麻环氧醇苷、升麻醇能够抑制破骨细胞转录因子[/font]NFATc1[font=宋体]和[/font]C-fos[font=宋体]的表达,抑制破骨细胞的形成分化。[/font]CTSK[font=宋体]是破骨细胞分泌的胶原降解酶,可降解骨基质中的胶原纤维[/font][sup][17][/sup][font=宋体]。[/font]MMP9[font=宋体]也是破骨细胞产生的参与骨基质胶原降解的蛋白酶[/font][sup][18][/sup][font=宋体]。升麻三萜皂苷阿克特素、升麻环氧醇苷、升麻醇可显著抑制破骨细胞[/font]MMP9[font=宋体]和[/font]CTSK[font=宋体]的表达,进一步明确了其对破骨细胞骨吸收的抑制作用。[/font] [font=宋体]网络药理学是预测中药活性成分作用靶点及机制的重要手段[/font][sup][19-20][/sup][font=宋体]。本研究应用网络药理学预测了升麻三萜皂苷抑制破骨细胞骨吸收的潜在靶点和机制。[/font]KEGG[font=宋体]分析显示升麻三萜皂苷可能通过调控[/font]IL-17[font=宋体]、[/font]TNF-α[font=宋体]、脂质和动脉粥样硬化、[/font]MAPK[font=宋体]信号通路发挥抑制破骨细胞功能的作用。[/font]IL-17[font=宋体]和[/font]TNF-α[font=宋体]通路是机体调节炎症的重要机制[/font][sup][21][/sup][font=宋体]。衰老和雌激素缺失导致炎性细胞因子水平升高,抑制成骨细胞的骨形成,增加破骨细胞的骨吸收,导致骨量减少和骨质疏松症的发生[/font][sup][22][/sup][font=宋体]。升麻三萜皂苷参与[/font]IL-17[font=宋体]和[/font]TNF-α[font=宋体]通路的调控,表明其可能通过抑制炎症发挥抗骨质疏松的作用。[/font] [font=宋体]升麻三萜皂苷也可能参与脂质和动脉粥样硬化通路的调控。骨髓间充质干细胞在向成骨细胞分化的过程中,成脂和成骨分化程序具有竞争性平衡,促进脂肪生成的机制会主动抑制成骨细胞的形成与分化[/font][sup][23][/sup][font=宋体]。骨髓脂肪细胞可通过分泌破骨细胞活化因子促进破骨细胞的形成、分化和骨吸收作用[/font][sup][24][/sup][font=宋体]。绝经后骨质疏松患者存在骨量减少、成骨细胞的数量和功能下降、骨髓脂肪增加等现象,表明脂肪细胞的分化可能会影响成骨细胞或破骨细胞的形成分化[/font][sup][25][/sup][font=宋体]。[/font][font=宋体]因此,升麻三萜皂苷也可能通过抑制骨髓基质干细胞向脂肪细胞的分化,增加成骨细胞的骨形成、抑制破骨细胞的骨吸收,发挥抗骨质疏松的作用。[/font] MAPK[font=宋体]是[/font]RANKL/RANK/TRAF6[font=宋体]信号传导下游的一条通路[/font][sup][26][/sup][font=宋体],[/font]RANKL[font=宋体]与[/font]RANK[font=宋体]的结合导致[/font]MAPK[font=宋体]的[/font]p38[font=宋体]、[/font]JNK[font=宋体]和[/font]ERK[font=宋体]磷酸化,诱导破骨细胞的形成分化[/font][sup][27][/sup][font=宋体]。[/font]p38 MAPK-[font=宋体]环磷腺苷效应元件结合蛋白([/font]adenosinecyclophosphate-response element binding protein[font=宋体],[/font]CREB[font=宋体])通路在[/font]RANKL[font=宋体]介导的破骨细胞分化中发挥重要作用,[/font]p38 MAPK[font=宋体]抑制剂可抑制[/font]TNF-α[font=宋体]或[/font]RANKL[font=宋体],通过[/font]CREB[font=宋体]磷酸化调节[/font]c-Fos[font=宋体]和[/font]NFATc1[font=宋体]的表达,抑制破骨细胞的形成分化[/font][sup][28][/sup][font=宋体]。[/font]p38[font=宋体]可刺激破骨细胞成熟所必需的小眼相关转录因子([/font]microphthalmia-associated transcription factor[font=宋体],[/font]MITF[font=宋体])的下游激活,调控破骨细胞[/font][i]TRAP[/i][font=宋体]和[/font][i]CTSK[/i][font=宋体]的基因表达[/font][sup][29][/sup][font=宋体]和骨吸收。[/font]ERK[font=宋体]激活是成熟破骨细胞存活的关键[/font][sup][30][/sup][font=宋体],[/font]M-CSF[font=宋体]刺激的[/font]ERK1[font=宋体]和[/font]ERK2[font=宋体]激活,直接磷酸化[/font]MITF[sup][31][/sup][font=宋体],影响破骨细胞的骨吸收活性。[/font]RANKL[font=宋体]诱导破骨前细胞[/font]ERK[font=宋体]的激活,通过[/font]TRAF6[font=宋体]诱导[/font]MMP9[font=宋体]的表达和活性,调节破骨细胞迁移和骨吸收[/font][sup][32][/sup][font=宋体]。[/font]JNK[font=宋体]的激活参与破骨细胞的分化、融合和骨吸收的调节,也通过[/font]B[font=宋体]淋巴细胞瘤[/font]-2[font=宋体]([/font]B-cell lymphoma-2[font=宋体],[/font]Bcl-2[font=宋体])通路调节破骨细胞的凋亡和自噬[/font][sup][33][/sup][font=宋体]。在破骨细胞融合前阶段阻断[/font]JNK[font=宋体]活性会导致[/font]TRAP[font=宋体]阳性细胞(代表融合前阶段的破骨细胞)逆转为[/font]TRAP[font=宋体]阴性细胞(代表破骨细胞前体)[/font][sup][34][/sup][font=宋体]。[/font][font=宋体]本研究发现升麻三萜皂苷阿克特素、升麻环氧醇苷、升麻醇与[/font]ERK1/ERK2[font=宋体]、[/font]JNK[font=宋体]、[/font]p38[font=宋体]均有较好的结合特性,可显著抑制[/font]RANKL[font=宋体]和[/font]M-CSF[font=宋体]诱导[/font]BMMs[font=宋体]分化的破骨细胞[/font]p38[font=宋体]、[/font]JNK[font=宋体]和[/font]ERK[font=宋体]的磷酸化和激活,进一步明确了升麻三萜皂苷通过[/font]MAPK[font=宋体]通路抑制破骨细胞的形成分化和骨吸收的作用机制。[/font] [font=宋体]三萜皂苷是升麻属植物的特征性化学成分,目前已从升麻属多种植物中分离鉴定了[/font]400[font=宋体]余个三萜皂苷类成分,其中[/font]44[font=宋体]个化合物显示出抗骨质疏松、抗肿瘤、抗炎、抗氧化及免疫调节等多种生物活性[/font][sup][35][/sup][font=宋体]。本研究考察了升麻三萜皂苷阿克特素、升麻环氧醇苷、升麻醇抑制破骨细胞骨吸收的作用,并通过网络药理学预测了其作用机制。后续还应该深入研究这些化合物抑制破骨细胞活性的靶点及对成骨细胞的作用及机制,为其临床用于骨质疏松症的防治奠定基础。另外,鉴于升麻属植物含有结构多样的三萜皂苷类成分,应采用现代化学生物学的思路和方法,研究升麻三萜皂苷抗骨质疏松的作用靶点、构效关系及深入的机制,为抗骨质疏松新药的研发提供先导化合物。[/font]

  • 新型温敏型肝素-泊洛沙姆水凝胶包载神经生长因子对糖尿病外周神经损伤修复的作用

    【序号】:2【作者】:李锐1,2李多慧2全大萍【题名】:新型温敏型肝素-泊洛沙姆水凝胶包载神经生长因子对糖尿病外周神经损伤修复的作用【期刊】:中国药学杂志. 【年、卷、期、起止页码】:2019,54(12)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=18Spvz_s8rHEiC_3mtm0aAE94PmAG9VQYLoPN3GQIp7WO5dqHLgpB_dRvf7yB_uJjHbPGxuAz9tDrp9qM3lW26E4RfMolCiifidgxBF8BnVYMobCW1Xg4icr07JR9oFUvOmj28dhEcgRsfrxVW-jDQ==&uniplatform=NZKPT&language=CHS

  • 愿你带着一颗赤诚的心,向阳生长。早安!

    [b]生活千种,人生百态,你怎样看待世界,世界就会怎样对待你。心有阳光的人,不但能给身边的人带去温暖,自己也会被这阳光滋养。愿你带着一颗赤诚的心,向阳生长。早安![/b]

  • 【求助】OMP物质和IGF-1物质具体是同一种东东吗,有没有相关的检测方法???

    OMP物质和IGF-1物质具体是同一种东东吗,,有没有相关的检测方法???OMP物质:OMP发现背景的:2004年初,公众营养与发展中心向蒙牛授予攻关科研课题——改善公众骨健康。在科研攻关过程中,蒙牛发现牛奶中有一种微量存在的天然活性牛奶蛋白,对人体骨密度提高和促进骨骼合成代谢具有独特机理和功效,蒙牛将之命名为OMP(造骨牛奶蛋白). 在克服了科学配比一系列难题后,蒙牛开发出了OMP牛奶。从此之后,蒙牛开始了对OMP牛奶的大力宣传。 OMP的特性说明:OMP是具有细胞分化和增殖功能的蛋白质。主要存在于血液中,大部分由肝脏合成。成骨细胞中含有丰富的OMP,它参与骨代谢的调节。对成骨细胞的增殖、分化、等有重要作用。是一种含有70个氨基酸,分子量为7649的一种蛋白质国内外已有相当长的相关研究历史,也有很多的相关报道。已经科学地证明了它能显著改善骨骼合成代谢,增强骨密度,促进骨量增加,延缓骨骼衰老,使机体骨骼更健康。OMP(造骨牛奶蛋白). 现在有没有标准物质,具体理化性质如何,才能制定相关检测标准。 著名反伪科学斗士:“OMP”其实就是“IGF—1”(胰岛素样生长因子) IGF-1是一种我们叫它胰岛素样生长因子,它是一种蛋白质,分子量不是很大,它存在于身体各个组织器官,都存在。人体中有,人体,动物,我们研究的家畜,甚至各个部位都存在,它是一种胰岛素样生长因子,主要是生长激素在发挥作用的时候,要由它来介导,所以我们叫它生长介质,或者一种生长传导因子。” 两者到底是不是同一种东西呢?大家讨论下

  • 重组细胞因子类药物研究的现状与发展前景

    细胞因子(cytokine)是由免疫细胞及相关细胞产生的一类调节细胞功能的高活性、多功能的多肽分子,不包括免疫球蛋白、补体和一般生理性的细胞产物。细胞因子通常由淋巴细胞、单核巨噬细胞、成纤维细胞、内皮细胞等相关细胞产生,按其功能及与免疫学的关系可分为:⑴具有抗病毒活性的细胞因子,如干扰素(interferon,IFN);⑵具有免疫调节活性的细胞因子,包括白细胞介素(interleukin,IL)类的IL 2、IL 4、IL 5、IL 7、IL 9、IL 10和IL 12,以及β型转化生长因子(transforming growth factor β,TGF β);⑶具有炎症介导活性的细胞因子,包括以肿瘤坏死因子(tumor necrosis factor,TNF)及IL 1、IL 6和IL 8为代表的结构相似的小分子趋化因子;⑷具有造血生长活性的细胞因子,包括IL 3、IL 11、集落刺激因子(colony-stimulating factor,CSF)、促红细胞生成素(erythropoietin,EPO)、干细胞因子(stem cell factor,SCF)和白血病抑制因子(leukemia inhibitory factor,LIF)等。 重组细胞因子是利用基因工程技术生产的细胞因子产品,作为药物用于治疗肿瘤、感染、造血障碍等,可收到良好的疗效。近十多年来,重组细胞因子类药物的研制有较快发展,相关的新药陆续上市。本文重点介绍各类药物的研究进展、不同表达系统的表达水平和基因来源情况,以及各类重组细胞因子的基本特点和适应症。 国内外研究动态和市场现状 目前国内市场上主要的国产重组细胞因子类药物包括乙肝疫苗、IFN、IL 2、G-CSF、重组链激酶(recombinant streptokinase, rSK)、重组表皮生长因子(recombinant endothelial growth factor,rEGF)等15种基因工程药物。组织溶纤原激活剂(tissue plasminogen activator,T-PA)、IL 3、重组人胰岛素、尿激酶等十几种多肽药物正处于临床Ⅱ期试验阶段,单克隆抗体的研制已从实验阶段进入临床阶段。正在开发研究中的项目包括采用新的高效表达系统生产重组凝乳酶等40多种基因工程新药。 在欧美市场上,对现有重组药物进行分子改造而开发的某些第二代基因药物已经上市,如重组新钠素、胞内多肽等。另外,重组细胞因子融合蛋白、人源单克隆抗体、反义核酸,以及基因治疗、新的抗原制备技术、转基因动物生产等,均取得了实质性的进展。国外生物医药的目前发展动向,主要反映在以下几方面。 与血管发生有关的细胞因子 肿瘤血管生长因子(tumor angiogenesis factors,TAF)包括研究较多的血管内皮生长因子(vascular endothelial growth factor,VEGF)、成纤维细胞生长因子(fibroblast growth factor,FGF)、血小板源生长因子(platelet-derived growth factor,PDGF)等,它们促进肿瘤新生微血管的生长。临床研究表明,阻断VEGF受体2(VEGFR 2)和PDGF受体β(PDGFR β)等,可达到通过抗血管生成来治疗肿瘤的目的。1998年,美国科研人员发现两种用于治疗癌症的血管发生抑制因子(即抗血管生长因子)和内皮抑制素,以及一种抗血管生长蛋白,即血管抑制素(vasculostatin),都有较好的疗效。另外,VEGF、FGF和血管生长素(angiopoietin)等能够通过刺激动脉内壁的内皮细胞生长来促进形成新的血管,从而对冠状动脉疾病和局部缺血产生治疗作用。

  • 【转帖】美国和欧盟审查生长激素安全性

    2010年12月,EMA和FDA相继宣布开始对含生长激素药品进行审查,以了解它们是否增加死亡的风险。美国食品药品管理局在一份声明中指出,这个举措是由于法国的一项研究发现,与一般人群相比,一些儿童使用生长激素后“死亡风险小幅增加”。生长激素是一种蛋白质,能刺激组织生长,促进代谢,增加身高。它能用于多种疾病和异常情况导致的矮小身材。FDA表示,它正在对有关可能风险的信息进行审查,一旦完成审查工作,就会发表新的建议。“目前,FDA建议病人按照医嘱继续使用重组人生长激素。”本月早些时候,欧盟官员表示,在获知这项法国研究的初步结果后,他们将对这些药品进行审查,但目前安全性方面没有非常迫切的问题。欧盟官员称,法国的这项名为Sante Adulte GH Enfant(SAGhE)的研究开始于2007年,对1985和1996之间开始使用生长激素的大约7000名儿童进行了分析。这项研究还没有公开发表。FDA称,这项研究发现,这些患者的死亡率增加了30%,在大剂量使用者中尤为明显。使用生长激素的患者中有93人死亡,而按法国一般人群推算的预期死亡数为70。从目前的报道看,生长激素与死亡的关系还不清楚,不能认为生长激素与死亡两者之间一定存在因果关系。因此对于真正需要生长激素的患者,各国药监部门并不禁止其在规定范围内使用。真正需要禁止的,是那些非法添加、滥用生长激素的行为。追求身高的年轻人和家长们也要注意,实在需要治疗,应去正规医院内分泌科就诊,确诊为疾病所致的矮身材,并需要使用生长激素的才能用它来治疗

  • HJ951固体废物SVOC校准曲线平均响应因子

    最近在做HJ 951的方法验证,发现少部分化合物(比如2,4-二硝基苯酚)的相对响应因子的相对标准偏差远大于标准中规定的20%,除非把校准曲线的浓度范围缩的非常小,但是这样的话后面分析样品就非常麻烦。我看了HJ 834土壤的方法,里面提到校准曲线可以用相关系数,但是HJ 951中并没有提及。遇到这种情况该怎么处理,如果用相关系数的话,老师来评审时用土壤的方法要求来解释是否可行?请教站里的各位老师,谢谢。

  • 特里帕肽被发现具有治疗侏儒症新功能 为临床治疗软骨发育不全等侏儒类型疾病提供依据

    最新发现与创新 中国科技网讯 一种治疗骨质疏松的药物特里帕肽(重组人甲状旁腺激素1-34,PTH1-34片段),经皮下注射可缓解侏儒类型的骨骼生长发育障碍。第三军医大学大坪医院野战外科研究所创伤实验室暨骨代谢与修复中心主任陈林教授带领课题组经过4年基础研究,发现了重组人甲状旁腺激素的又一功效,为临床治疗软骨发育不全、致死性软骨发育不全等提供了重要理论依据。日前,相关研究论文发表在国际权威杂志《人类分子遗传》上。 软骨发育不全、尤其是致死性软骨发育不全除手术外,目前尚无有效的治疗方法。虽然生长激素也被用来治疗软骨发育不全,但需要在青春期以前给予生长激素,且长期效果不佳,副作用明显。 陈林课题组在国家973计划项目、国家自然科学基金等多项课题的资助下,利用基因敲入技术建立的模拟上述疾病的小鼠模型,深入研究了软骨发育不全、致死性软骨发育不全的发生机制。实验中发现软骨发育不全模型小鼠生长板软骨细胞增生活性和分化能力降低,伴甲状旁腺激素信号活性降低,而甲状旁腺激素处理可升高甲状旁腺激素信号及降低培养软骨细胞中成纤维生长因子受体3的表达水平与活性。 实验表明,软骨发育不全小鼠注射甲状旁腺激素1-34可降低成纤维生长因子受体3突变对软骨细胞增殖与分化的抑制作用,缓解软骨发育不全的骨骼生长发育障碍,并改善该小鼠成年后的骨量;致死性软骨发育不全小鼠注射甲状旁腺激素1-34后,可使其免于出生后早期死亡。 据陈林介绍,特里帕肽是被美国食品药品监督局批准的治疗骨质疏松药物,已上市10余年。因此,该发现为软骨发育不全和致死性软骨发育不全的生物治疗提供了新的药物选择。(邹争春 记者 陈磊) 《科技日报》(2012-8-10 一版)

  • 细胞因子及其受体的分类有哪些?

    [font=宋体]细胞因子一般是通过与细胞表面相应的细胞因子受体结合而发挥生物学作用。细胞因子与其受体结合后,会启动复杂的细胞内分子相互作用,最终引起细胞基因转录的变化。[/font][font=宋体]已知的细胞因子受体绝大多数是[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url],由胞外、跨膜和胞质区组成。胞外膜区是识别结合细胞因子的部位,胞质区在受体激活后启动信号转导。下面为大家介绍下细胞因子及其受体的分类有哪些?[/font][font=宋体] [/font][b][font=宋体]一、细胞因子的分类[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]([/font][font=宋体]一[/font][font=Calibri])[/font][font=宋体]根据细胞种类不同分类[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体])淋巴因子[/font][font=Calibri](lymphokine) [/font][font=宋体]主要由淋巴细胞产生,包括[/font][font=Calibri]T[/font][font=宋体]淋巴细胞、[/font][font=Calibri]B[/font][font=宋体]淋巴细胞和[/font][font=Calibri]NK[/font][font=宋体]细胞等。重要的淋巴因子有[/font][font=Calibri]IL-2[/font][font=宋体]、[/font][font=Calibri]IL-3[/font][font=宋体]、[/font][font=Calibri]IL-4[/font][font=宋体]、[/font][font=Calibri]IL-5[/font][font=宋体]、[/font][font=Calibri]IL-6[/font][font=宋体]、[/font][font=Calibri]IL-9[/font][font=宋体]、[/font][font=Calibri]IL-10[/font][font=宋体]、[/font][font=Calibri]IL-12[/font][font=宋体]、[/font][font=Calibri]IL-13[/font][font=宋体]、[/font][font=Calibri]IL-14[/font][font=宋体]、[/font][font=Calibri]IFN-[/font][font=宋体]γ、[/font][font=Calibri]TNF-[/font][font=宋体]β、[/font][font=Calibri]GM-CSF[/font][font=宋体]和神经白细胞素等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体])单核因子[/font][font=Calibri](monokine) [/font][font=宋体]主要由单核细胞或巨噬细胞产生,如[/font][font=Calibri]IL-1[/font][font=宋体]、[/font][font=Calibri]IL-6[/font][font=宋体]、[/font][font=Calibri]IL-8[/font][font=宋体]、[/font][font=Calibri]TNF-[/font][font=宋体]α、[/font][font=Calibri]G-CSF[/font][font=宋体]和[/font][font=Calibri]M-CSF[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体])非淋巴细胞、非单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞产生的细胞因子 主要由骨髓和胸腺中的基质细胞、血管内皮细胞、成纤维细胞等细胞产生,如[/font][font=Calibri]EPO[/font][font=宋体]、[/font][font=Calibri]IL-7[/font][font=宋体]、[/font][font=Calibri]IL-11[/font][font=宋体]、[/font][font=Calibri]SCF[/font][font=宋体]、内皮细胞源性[/font][font=Calibri]IL-8[/font][font=宋体]和[/font][font=Calibri]IFN-[/font][font=宋体]β等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]([/font][font=宋体]二[/font][font=Calibri])[/font][font=宋体]根据主要功能的不同分类[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体])白细胞介素[/font][font=Calibri](interleukin, IL) 1979[/font][font=宋体]年开始命名。由淋巴细胞、单核细胞或其它非单个核细胞产生的细胞因子,在细胞间相互作用、免疫调节、造血以及炎症过程中起重要调节作用,凡命名的白细胞介素的[/font][font=Calibri]cDNA[/font][font=宋体]基因克隆和表达均已成功,已报道有三十余种[/font][font=Calibri](IL-1[/font][font=宋体]―[/font][font=Calibri]IL-38)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体])集落刺激因子[/font][font=Calibri](colony stimulating factor, CSF) [/font][font=宋体]根据不同细胞因子刺激造血干细胞或分化不同阶段的造血细胞在半固体培养基中形成不同的细胞集落,分别命名为[/font][font=Calibri]G([/font][font=宋体]粒细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]M([/font][font=宋体]巨噬细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]GM([/font][font=宋体]粒细胞、巨噬细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]Multi([/font][font=宋体]多重[/font][font=Calibri])-CSF(IL-3)[/font][font=宋体]、[/font][font=Calibri]SCF[/font][font=宋体]、[/font][font=Calibri]EPO[/font][font=宋体]等。不同[/font][font=Calibri]CSF[/font][font=宋体]不仅可刺激不同发育阶段的造血干细胞和祖细胞增殖的分化,还可促进成熟细胞的功能。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体])干扰素[/font][font=Calibri](interferon, IFN) 1957[/font][font=宋体]年发现的细胞因子,最初发现某一种病毒感染的细胞能产生一种物质可干扰另一种病毒的感染和复制,因此而得名。根据干扰素产生的来源和结构不同,可分为[/font][font=Calibri]IFN-[/font][font=宋体]α、[/font][font=Calibri]IFN-[/font][font=宋体]β和[/font][font=Calibri]IFN-[/font][font=宋体]γ,他们分别由白细胞、成纤维细胞和活化[/font][font=Calibri]T[/font][font=宋体]细胞所产生。各种不同的[/font][font=Calibri]IFN[/font][font=宋体]生物学活性基本相同,具有抗病毒、抗肿瘤和免疫调节等作用。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体])肿瘤坏死因子[/font][font=Calibri](tumor necrosis factor, TNF) [/font][font=宋体]最初发现这种物质能造成肿瘤组织坏死而得名。根据其产生来源和结构不同,可分为[/font][font=Calibri]TNF-[/font][font=宋体]α和[/font][font=Calibri]TNF-[/font][font=宋体]β两类,前者由单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞产生,后者由活化[/font][font=Calibri]T[/font][font=宋体]细胞产生,又名淋巴毒素[/font][font=Calibri](lymphotoxin, LT)[/font][font=宋体]。两类[/font][font=Calibri]TNF[/font][font=宋体]基本的生物学活性相似,除具有杀伤肿瘤细胞外,还有免疫调节、参与发热和炎症的发生。大剂量[/font][font=Calibri]TNF-[/font][font=宋体]α可引起恶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url],因而[/font][font=Calibri]TNF-[/font][font=宋体]α又称恶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]素[/font][font=Calibri](cachectin)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5[/font][font=宋体])转化生长因子[/font][font=Calibri]-[/font][font=宋体]β家族[/font][font=Calibri](transforming growth factor-[/font][font=宋体]β [/font][font=Calibri]family, TGF-[/font][font=宋体]β [/font][font=Calibri]family) [/font][font=宋体]由多种细胞产生,主要包括[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]1[/font][font=宋体]、[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]2[/font][font=宋体]、[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]3[/font][font=宋体]、[/font][font=Calibri]TGF[/font][font=宋体]β[/font][font=Calibri]1[/font][font=宋体]β[/font][font=Calibri]2[/font][font=宋体]以及骨形成蛋白[/font][font=Calibri](BMP)[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6[/font][font=宋体])生长因子[/font][font=Calibri](growth factor,GF)[/font][font=宋体]如表皮生长因子[/font][font=Calibri](EGF)[/font][font=宋体]、血小板衍生的生长因子[/font][font=Calibri](PDGF)[/font][font=宋体]、成纤维细胞生长因子[/font][font=Calibri](FGF)[/font][font=宋体]、肝细胞生长因子[/font][font=Calibri](HGF)[/font][font=宋体]、胰岛素样生长因子[/font][font=Calibri]-I(IGF-1)[/font][font=宋体]、[/font][font=Calibri]IGF-[/font][font=宋体]Ⅱ、白血病抑制因子[/font][font=Calibri](LIF)[/font][font=宋体]、神经生长因子[/font][font=Calibri](NGF)[/font][font=宋体]、抑瘤素[/font][font=Calibri]M(OSM)[/font][font=宋体]、血小板衍生的内皮细胞生长因子[/font][font=Calibri](PDECGF)[/font][font=宋体]、转化生长因子[/font][font=Calibri]-[/font][font=宋体]α[/font][font=Calibri](TGF-[/font][font=宋体]α[/font][font=Calibri])[/font][font=宋体]、血管内皮细胞生长因子[/font][font=Calibri](VEGF)[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]7[/font][font=宋体])趋化因子家族[/font][font=Calibri](chemokinefamily) [/font][font=宋体]包括四个亚族[/font][font=Calibri]:(1)C-X-C/[/font][font=宋体]α亚族,主要趋化中性粒细胞,主要的成员有[/font][font=Calibri]IL-8[/font][font=宋体]、黑素瘤细胞生长刺激活性[/font][font=Calibri](GRO/MGSA)[/font][font=宋体]、血小板因子[/font][font=Calibri]-4(PF-4)[/font][font=宋体]、血小板碱性蛋白、蛋白水解来源的产物[/font][font=Calibri]CTAP-[/font][font=宋体]Ⅲ和β[/font][font=Calibri]-thromboglobulin[/font][font=宋体]、炎症蛋白[/font][font=Calibri]10(IP-10)[/font][font=宋体]、[/font][font=Calibri]ENA-78 (2)C-C/[/font][font=宋体]β亚族,主要趋化单核细胞,这个亚族的成员包括巨噬细胞炎症蛋白[/font][font=Calibri]1[/font][font=宋体]α[/font][font=Calibri](MIP-1[/font][font=宋体]α[/font][font=Calibri])[/font][font=宋体]、[/font][font=Calibri]MIP-1[/font][font=宋体]β、[/font][font=Calibri]RANTES[/font][font=宋体]、单核细胞趋化蛋白[/font][font=Calibri]-1(MCP-1/MCAF)[/font][font=宋体]、[/font][font=Calibri]MCP-2[/font][font=宋体]、[/font][font=Calibri]MCP-3[/font][font=宋体]和[/font][font=Calibri]I-309[/font][font=宋体]。[/font][font=Calibri](3)C[/font][font=宋体]型亚家族的代表有淋巴细胞趋化蛋白。[/font][font=Calibri](4)CX3C[/font][font=宋体]亚家族,[/font][font=Calibri]Fractalkine[/font][font=宋体]是[/font][font=Calibri]CX3C[/font][font=宋体]型趋化因子,对单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞、[/font][font=Calibri]T[/font][font=宋体]细胞及[/font][font=Calibri]NK[/font][font=宋体]细胞有趋化作用。[/font][/font][font=宋体] [/font][font=宋体]细胞因子检测是判断机体免疫功能的一个重要指标!已被广泛用于疾病的诊断、病程观察、疗效判断及细胞因子治疗监测等。[/font][font=宋体] [/font][b][font=宋体] [/font][/b][font=宋体]二、[/font][b][font=宋体]细胞因子受体分类[/font][font=宋体] [/font][/b][font=宋体][font=宋体]根据细胞因子受体的结构,可分为不同的家族或超家族,包括免疫球蛋白([/font][font=Calibri]Ig[/font][font=宋体])超家族、[/font][font=Calibri]I[/font][font=宋体]型细胞因子受体、[/font][font=Calibri]II[/font][font=宋体]型细胞因子受体、肿瘤坏死因子受体[/font][font=Calibri](TNFR)[/font][font=宋体]超家族和趋化因子受体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]①免疫球蛋白([/font][font=Calibri]Ig[/font][font=宋体])超家族[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]免疫球蛋白超家族([/font][font=Calibri]IgSF[/font][font=宋体])是指分子结构中具有与免疫球蛋白相似域的分子超家族。[/font][font=Calibri]IgSF[/font][font=宋体]的所有成员都含有[/font][font=Calibri]1[/font][font=宋体]~[/font][font=Calibri]7[/font][font=宋体]个[/font][font=Calibri]Ig[/font][font=宋体]样结构域,每个[/font][font=Calibri]Ig[/font][font=宋体]样结构域含有约[/font][font=Calibri]70[/font][font=宋体]~[/font][font=Calibri]110[/font][font=宋体]个氨基酸残基。它的二级结构是由两条反平行β[/font][font=Calibri]-[/font][font=宋体]折叠状链形成的反平行β[/font][font=Calibri]-[/font][font=宋体]片状平面,每条反平行β[/font][font=Calibri]-[/font][font=宋体]片状链含有[/font][font=Calibri]3[/font][font=宋体]~[/font][font=Calibri]5[/font][font=宋体]个反平行β[/font][font=Calibri]-[/font][font=宋体]折叠。每条反平行β片链由[/font][font=Calibri]5[/font][font=宋体]~[/font][font=Calibri]10[/font][font=宋体]个氨基酸残基组成。β片内侧的疏水氨基酸可稳定[/font][font=Calibri]Ig[/font][font=宋体]的折叠。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]大多数[/font][font=Calibri]Ig[/font][font=宋体]域有一个二硫键垂直连接两个β片,构成二硫键的两个半胱氨酸约含[/font][font=Calibri]55[/font][font=宋体]~[/font][font=Calibri]75[/font][font=宋体]个氨基酸。少数[/font][font=Calibri]Ig[/font][font=宋体]域,如[/font][font=Calibri]CD2[/font][font=宋体]的第一域、[/font][font=Calibri]LFA-3[/font][font=宋体]和[/font][font=Calibri]PDGFR[/font][font=宋体]的第四域、[/font][font=Calibri]CD4[/font][font=宋体]的第三域等,均缺乏二硫键。这种多肽链的球形结构的折叠称为免疫球蛋白折叠([/font][font=Calibri]Ig fold[/font][font=宋体])。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]②[/font][font=Calibri]I[/font][font=宋体]型细胞因子受体[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=Calibri]I[/font][font=宋体]型细胞因子受体又称造血素受体,是表达在细胞表面的跨膜受体,能识别细胞因子并对其作出反应,具有[/font][font=Calibri]4[/font][font=宋体]条α[/font][font=Calibri]-[/font][font=宋体]螺旋链。这些受体具有某些保守的胞外域,缺乏内在的蛋白酪氨酸激酶活性。[/font][/font][font=宋体][font=宋体]保守的胞外域有大约[/font][font=Calibri]200[/font][font=宋体]个氨基酸的长度,其中在氨基末端区域含有四个位置保守的半胱氨酸残基和一个位于跨膜域近端的保守氨基酸基团([/font][font=Calibri]WSXWS[/font][font=宋体])。这四个半胱氨酸是维持受体结构和功能完整性的关键。[/font][font=Calibri]WSXWS[/font][font=宋体]共识序列是细胞因子受体功能性蛋白与蛋白相互作用的识别位点。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]③[/font][font=Calibri]II[/font][font=宋体]型细胞因子受体[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]II[/font][font=宋体]型细胞因子受体又称[/font][font=Calibri]IFN[/font][font=宋体]受体,是表达在某些细胞表面的跨膜蛋白,它与一组选定的细胞因子结合并作出反应。通常Ⅱ型细胞因子受体是具有高亲和力和低亲和力成分的异二聚体或多聚体。这些受体一般由两条肽链组成,胞外区由[/font][font=Calibri]200[/font][font=宋体]个氨基酸残基组成,并含有[/font][font=Calibri]4[/font][font=宋体]个不连续的半胱氨酸。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]④[/font][font=Calibri]TNFR[/font][font=宋体]超级家族[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]肿瘤坏死因子受体([/font][font=Calibri]TNFR[/font][font=宋体])超家族成员是细胞因子受体的一个蛋白质超家族,共享一个半胱氨酸丰富域([/font][font=Calibri]CRD[/font][font=宋体]),由三个二硫键围绕[/font][font=Calibri]CXXCXXC[/font][font=宋体]的核心基团形成一个拉长的分子。目前[/font][font=Calibri]TNFR[/font][font=宋体]家族有[/font][font=Calibri]12[/font][font=宋体]个成员,包括[/font][font=Calibri]55kDa[/font][font=宋体]和[/font][font=Calibri]75kDa[/font][font=宋体]的[/font][font=Calibri]TNFR[/font][font=宋体],低亲和力的[/font][font=Calibri]NGFR[/font][font=宋体],人[/font][font=Calibri]B[/font][font=宋体]细胞抗原([/font][font=Calibri]CD40[/font][font=宋体])和[/font][font=Calibri]Fas[/font][font=宋体]抗原。该家族的共同特点是其胞外区有[/font][font=Calibri]Cys[/font][font=宋体]([/font][font=Calibri]4-6[/font][font=宋体])丰富的假重复基团,每个基团含有[/font][font=Calibri]40[/font][font=宋体]个氨基酸残基。细胞内域较短,由[/font][font=Calibri]44[/font][font=宋体]~[/font][font=Calibri]221[/font][font=宋体]个氨基酸残基组成,无同源序列。[/font][/font][font=宋体] [/font][font=宋体]⑤趋化因子受体[/font][font=宋体] [/font][font=宋体][font=宋体]趋化因子受体是在某些细胞表面发现并与趋化因子相互作用的细胞因子受体。人类已发现[/font][font=Calibri]20[/font][font=宋体]种不同趋化因子受体,为[/font][font=Calibri]7[/font][font=宋体]次跨膜的[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体,并在细胞内与[/font][font=Calibri]G[/font][font=宋体]蛋白偶联进行信号转导,是[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体家族成员之一。趋化因子受体与相应的配体结合后,引发细胞内钙([/font][font=Calibri]Ca2+[/font][font=宋体])离子通量(钙信号传导)。既而引起细胞反应,包括趋化作用过程开始,将细胞运送到生物体内的理想位置。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多细胞因子详情可以查看义翘神州[url=https://cn.sinobiological.com/category/cytokine-protein][b]细胞因子蛋白[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/category/cytokine-protein[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=宋体] [/font]

  • 【转帖】分享部分化学分析试液

    分享部分化学分析试液[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=18316]分享部分化学分析试液[/url]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制