当前位置: 仪器信息网 > 行业主题 > >

人类胚胎

仪器信息网人类胚胎专题为您整合人类胚胎相关的最新文章,在人类胚胎专题,您不仅可以免费浏览人类胚胎的资讯, 同时您还可以浏览人类胚胎的相关资料、解决方案,参与社区人类胚胎话题讨论。

人类胚胎相关的资讯

  • 人类胚胎基因编辑实验首获许可
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 2月1日,英国人工授精与胚胎学管理局(HFEA)首次批准了“在人类胚胎上使用基因编辑技术”的实验。研究人员将能深入了解健康的人类胚胎发育过程中出现的各种变化,并在此基础上改善体外人工授精培养的胚胎的发育质量,为不孕患者提供更好的治疗方法。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 据物理学家组织网报道,HFEA在一份声明中称,“我们的伦理委员会已经批准伦敦弗兰西斯· 克里克研究所凯茜博士更新其实验室有关研究的许可证,包括胚胎的基因编辑。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 凯茜花了数十年时间研究人类胚胎的发育过程,试图去了解最开始的那7天:一个受精卵如何发育成包含200到300个细胞囊胚。她说:“这些研究如此重要的原因是,流产和不孕非常常见,但具体原因尚不清楚。弄清楚这一过程中究竟发生了什么及哪里出了错,将对人类生命早期发展有更深入了解,或将提高体外受精成功率。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 凯茜博士打算使用CRISPR/Cas9技术对人类胚胎进行编辑,以减少研究中所需要的胚胎数量。CRISPR技术已经被证实比同类方法更加高效,她相信其团队能够使用该技术成功编辑10个胚胎中的8个。其研究使用的是生育诊所中体外受精后剩下的、捐赠于科学研究的人类胚胎。在经过研究后,这些胚胎会发育到7日后被销毁。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 此举可能会再度引发伦理问题,因为从去年4月开始,基因编辑人类胚胎在全球科学界就引起很大争议。爱丁堡大学动物生物技术教授布鲁斯· 怀特洛说,该项目应该可以“帮助不孕夫妇和减少流产的痛苦”。这所大学人口健康科学信息研究所的莎拉· 陈(音译)则指出,这项研究“触及到一些敏感性问题,因此,HFEA应仔细考虑到研究中的伦理问题。” /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp 总编辑圈点 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 去年,中山大学科学家利用CRISPR技术,修改了几个胚胎的地中海贫血基因,引发广泛关注,成为去年最大科学事件之一。CRISPR这一利器用于人类,引发伦理争议,看来是无可避免了。科学家在何种情况下能被允许操作人类胚胎,还会有长期的讨论交锋。但就像干细胞研究显示的,即使胚胎实验受阻,仍会有别的办法推进基因编辑技术在人体应用。 /p p br/ /p
  • 英首次将人类胚胎干细胞用于三维打印
    据物理学家组织网报道,英国赫瑞瓦特大学和一家干细胞技术公司合作,开发出一种真空阀门式(valve-based)三维(3D)打印技术,首次将3D打印拓展到人类胚胎干细胞范围。这一突破使得利用人类胚胎干细胞来“打造”移植用人体组织和器官成为可能,打印结构还能用于药物测试,加速改良测试过程。相关论文发表在2月5日出版的《生物制造》杂志上。   近几年来,3D打印的方法已逐渐发展到生物制造领域。罗斯林塞拉博干细胞技术公司商业开发经理詹森金说:“通常,实验室培养细胞是在二维平面生长,只有少数细胞能用三维打印方式。人类干细胞太敏感,难以用这种方式来控制。我们是世界上首次将人类胚胎干细胞打印出来并进行培养的。”   打印过程中的关键问题是可控性和减少伤害,这样才能保证细胞与组织的发育能力和正常功能。人类胚胎干细胞来自胚胎早期阶段产生的“干细胞系”,没有明确的发育方向,可以分化为人体内任何类型的细胞。研究小组开发出了一种真空阀式细胞打印机,细胞被装入打印机的两个分离容器,然后按预先编好的程序,被统一打印到一个盘子上。该打印机充分考虑了人类胚胎干细胞的敏感性和脆弱性,能打印出具有高度活性的细胞。   当人类胚胎干细胞被打印出来以后,还要经过多项测试,如检测它们的活性,看其是否还能分化为不同类型细胞 检测细胞的打印密度、特征属性和分布情况,以此评价这种打印方法的精确性。   “我们发现,这种真空阀门打印方式非常温和,足以保持干细胞的发育能力,还能精确打出同样大小的球体。更重要的是,打印出来的人类胚胎干细胞保持了它们的多能性,还能分化成其他类型的细胞。”论文合著者、英国赫瑞瓦特大学的威尔文妙舒(音译)说:“该方法是用气压驱动来打印细胞,通过开关微真空管能控制气压,通过改变喷头直径、入口气压或打开真空管的时间可以精确控制喷出细胞的数量。”   舒还指出,通过打印人类胚胎干细胞生成的3D结构,我们能造出更精确的人体组织模型,这对药物开发、毒性测试都非常有用,因为大部分药物开发都是以人类疾病为目标,用人类组织来实验更有意义。   金表示:“这是一次科学的进步。我们希望这一进步能带来长期的巨大价值,为人们提供可靠的药物而不必用动物做药物试验,提供用于移植的器官而无需捐献,并能消除器官排斥和免疫抑制带来的问题。”
  • 干细胞模型再现人类胚胎早期发育
    据英国《自然》杂志2日发表的一项研究,科学家用人多能干细胞建立了一个模型,可用来研究人类胚胎植入子宫的过程。人胚状体(blastoid)是模拟早期人类胚胎的结构,在研究中能准确再现人类胚胎早期发育的关键阶段,包括黏附在体外子宫细胞上。该模型或有助于推进我们对人类发育早期阶段的认识,以及开发不孕不育的治疗方法或避孕药。  在受精后的一周内,人类胚胎会形成名为胚泡的细胞团,胚泡会植入子宫壁。准确模拟这一发育阶段的模型能支持对胚胎植入和早期发育的研究。利用干细胞构建胚泡的类似物是一种很有前景的方法,但此前的尝试遇到了瓶颈,比如会形成与胚泡不匹配的细胞。  此次,奥地利科学院分子生物技术研究所研究人员尼古拉斯利弗隆及其同事,利用人多能干细胞构建了人胚泡样结构(胚状体)。研究团队鉴定出3个信号通路,抑制它们就能得到有效模拟正常胚泡发育(成功率70%)和能形成正确细胞(成功率97%)的胚状体。  研究报告称,这种人胚状体能在体外特异性地黏附受激素刺激的子宫内膜细胞,让团队能重现直到第13天的围植入期发育过程。  由于该模型效率高、可扩展潜力大。研究人员认为,这种方法能为人类胚胎植入和发育研究提供重要帮助。  干细胞可揭示器官的形成机理,但此前这方面的研究,一直难以帮助我们更深入理解发育胚胎。通常来说,科学家试图培养本身没有干细胞的类器官时,都会用到多能干细胞这种更基本的干细胞类型。科学家既可以从人体胚胎中获得多能干细胞,也可将皮肤细胞或血细胞进行重编程进而培养出干细胞,然后诱导它们模仿特定器官的形成。  不过,这些结构或者说微型器官,通常只复制了真实器官的某些结构和功能而非全部。
  • 人类胚胎着床过程首获解析 单细胞测序技术功不可没
    p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 8月22日,《Nature》杂志上登载了北京大学汤富酬与中国工程院院士、北医三院院长乔杰联合团队研究的突破性进展,利用体外模拟人类着床策略和高精度单细胞测序技术,系统解析了人类胚胎着床过程中的基因表达调控网络和DNA甲基化动态变化过程。 /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " img title=" 微信截图_20190822101206.png" style=" max-height: 100% max-width: 100% " alt=" 微信截图_20190822101206.png" src=" https://img1.17img.cn/17img/images/201908/uepic/68d79771-843c-4dbe-ab62-343a98901e60.jpg" / /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " 人类胚胎体外模拟着床生长过程(图片来源于网络) /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " span style=" color: rgb(0, 176, 240) font-family: 楷体,楷体_GB2312, SimKai font-size: 16px " 论文摘要: /span /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " span style=" color: rgb(0, 176, 240) font-family: 楷体,楷体_GB2312, SimKai font-size: 16px " 胚胎着床是包括人类在内的哺乳动物发育过程中的里程碑事件,生理状态下超过半数以上的人类胚胎由于无法顺利着床导致不孕。既往研究通常使用小鼠和食蟹猴等模式生物对这一过程展开探索,然而调控围着床时期胚胎发育的分子机制和形态学变化特征在不同物种之间存在较大差异,这使得在小鼠等模式生物研究中获得的调控规律较难为人类胚胎发育研究提供有价值的线索。然而,由于人类胚胎着床发生在受精卵形成后一周左右的时间点,这使得研究者们无法获得生理状况下的这一发育阶段的人类胚胎。长期以来,这一人类关键发育阶段一直成为发育生物学研究的黑匣子。为了深入探讨这一过程中的分子动态规律,挖掘调控胚胎着床过程中的潜在分子机制,2019年7月,北大-清华生命联合中心汤富酬课题组携手乔杰课题组合作在Nature在线发表了题为Reconstituting the transcriptome and DNA methylome landscapes of human implantation的研究论文。结合体外模拟人类着床策略和高精度单细胞多组学测序技术(single-cell RNA-seq, single-cell Trio-seq2),首次利用单细胞转录组和DNA甲基化组图谱重构了人类胚胎着床过程,系统解析了这一关键发育过程中的基因表达调控网络和DNA甲基化动态变化过程。 /span /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 在此之前,汤富酬课题组和乔杰课题组长期紧密合作,致力于包括着床前胚胎在内的人类生殖系细胞发育过程中基因表达、表观遗传学调控特征和潜在的机制研究:利用单细胞转录组测序技术、微量细胞DNA甲基化组测序技术、单细胞DNA甲基化高通量测序技术、单细胞多组学测序技术(REF)等一系列单细胞技术对在此研究领域已取得多项研究成果。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 该课题主要依托的技术平台为北京大学生命科学仪器中心(成像平台)和北京大学高精尖中心高通量测序平台。 /p p style=" text-align: center line-height: 1.5em text-indent: 0em margin-bottom: 10px " /p p style=" text-align: center " img title=" ICG官网-测序中心图片.jpg" style=" max-height: 100% max-width: 100% " alt=" ICG官网-测序中心图片.jpg" src=" https://img1.17img.cn/17img/images/201908/uepic/c0188744-623f-4c41-98af-4ea9f2bcf793.jpg" / /p p style=" text-align: center " 北京大学高精尖中心高通量测序平台(图片来源:ICG官网) /p
  • CRISPR技术助中国科学家成功修复人类胚胎中的基因突变
    p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/a316d279-462e-4bdb-8348-3d0fd22fce5f.jpg" title=" 1.png" / /p p style=" text-align: justify " & nbsp & nbsp 近日,这项成果以“Correction of the Marfan Syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos”为题发表在《Molecular Therapy》杂志上。上海科技大学的黄行许教授和广州医科大学附属第三医院的刘见桥教授为这一研究的通讯作者。 /p p style=" text-align: justify " 关于马凡综合症 /p p style=" text-align: justify " & nbsp & nbsp 马凡综合征是一种以结缔组织为基本缺陷的遗传性疾病,也有先天性中胚层发育不良、Marchesani综合征、蜘蛛指征、肢体细长症之称,其典型病症包括周围结缔组织营养不良、骨骼异常、内眼疾病和心血管异常。 /p p style=" text-align: justify " & nbsp & nbsp 据估计,全球每5000人中有1人患有马凡综合症,由于这种遗传疾病会在全身引起问题,因此往往可能是致命的。如果一个人患有马凡综合症,他们的孩子将也有50%的可能会患有此病。 /p p style=" text-align: justify " 在这项新研究中,中国团队从马凡氏综合征患者捐赠的健康卵子和精子着手,利用体外受精技术培养成能自行发育的人类胚胎,然后通过“碱基编辑”技术纠正引起该病症的FBN1(编码原纤维蛋白1)基因中单个碱基的突变,为这种疾病提供了潜在的早期治疗。 /p p style=" text-align: justify " 碱基编辑器 /p p style=" text-align: justify " & nbsp & nbsp 过去的研究曾表明,编辑双链DNA会产生不必要的剪切,甚至于可能会导致癌症。最新研究中并没有使用典型的CRISPR基因编辑技术。相反,他们尝试了一种“碱基编辑器”的技术,可以简单替换单个碱基(例如将A替换为G)。 /p p style=" text-align: justify " & nbsp & nbsp 碱基编辑器是由Broad 研究所的华人学者 David Liu 教授的团队开发,可以让细胞内 DNA 的一种碱基通过简单的化学反应,变成另一种碱基,达到精准编辑基因的目的。 /p p style=" text-align: justify " & nbsp & nbsp 如今最常用的是 CRISPR 基因编辑技术,通过处理后的病毒携带基因片段,进入细胞内 DNA 替换原有基因。这种技术,需要切割 DNA 才能实现基因编辑。而碱基编辑器的突破在于,它不需要切割 DNA,直接在 DNA 上进行化学反应,来精准编辑基因。而此前,CRISPR 基因编辑技术可能会引起随机插入和删除等突变,而碱基编辑器技术则几乎避免了这种情况。 /p p style=" text-align: justify " 更好的方式 /p p style=" text-align: justify " & nbsp & nbsp 鉴于要纠正该病症的突变基因,只需要将FBN1基因中的G改变为健康的A。研究人员试图用碱基编辑纠正导致马凡综合征的突变。 /p p style=" text-align: justify " & nbsp & nbsp 根据这项研究,黄行许教授和刘见桥团队成功纠正了导致18个活的人类胚胎出现马凡综合症的突变。其中16个胚胎仅携带FBN1基因经过修正的版本,而在2个胚胎中发生了额外的编辑。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/insimg/8905cefd-7c05-429f-a588-26ad6bfa4a2d.jpg" title=" 2.png" / /p p /p p style=" text-align: center " 本研究通讯作者黄行许(左),刘见桥(右) /p p style=" text-align: left " & nbsp & nbsp “总的来说,这项初步研究提供了概念上的证明,并开启了基于碱基编辑的基因治疗的潜力,”上海科技大学的研究员黄行许教授说,“尽管如此,距离到临床应用,它还有很长的路要走。” /p p br/ /p
  • 天壤之别!胚胎基因编辑伦理不容,另一项基因编辑技术却在造福人类!
    p style=" text-indent: 2em text-align: justify " 近日刷爆朋友圈的不仅是抗癌“神药”Vitrakvi& reg 的问世,还有一则是首例基因编辑婴儿的诞生! /p p style=" text-align: justify text-indent: 2em " 来自中国深圳的科学家贺建奎向外界公布,一对名为露露和娜娜的基因编辑婴儿于11月在中国健康诞生。 /p p style=" text-align: justify text-indent: 2em " 她们的基因已经经过人为修饰,能够天然抵抗艾滋病。消息一出,舆论哗然,遭到百余位中国科学家发表联署声明谴责,国家相关部委对此已经做出回应,对违法违规行为坚决予以查处! /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/bfe6a416-98de-499b-bf93-960d34dd0bf9.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 541" height=" 230" style=" width: 541px height: 230px " / /p p style=" text-align: justify text-indent: 2em " 人类生殖细胞的基因编辑可能诱发非常严重的伦理问题,即被改写的生殖细胞会影响其子孙后代,甚至随着现象的普及、改变整个人类的基因池。 /p p style=" text-align: justify text-indent: 2em " 因为存在高风险,基因编辑技术并未在人体上广泛应用。过去有少数科学家曾在人类早期胚胎上进行实验,但只是停留在胚胎阶段。& nbsp /p p style=" text-align: justify text-indent: 2em " 2003年颁布的《人胚胎干细胞研究伦理指导原则》规定,可以以研究为目的,对人体胚胎实施基因编辑和修饰,但体外培养期限自受精或者核移植开始不得超过14天,而此次“基因编辑婴儿”如果确认已出生,必将引起一场轩然大波!& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 引发轩然大波的基因编辑到底是一种什么技术? /strong /span /p p style=" text-align: justify text-indent: 2em " 中国农业大学生物化学与分子生物学系教授吴森向中新网记者介绍,DNA结构被发现之后,科学家需要通过一项技术去研究每个基因的功能,基因编辑技术便于上世纪80年代后期应运而生。& nbsp /p p style=" text-align: justify text-indent: 2em " 当时,基因编辑技术被称作基因打靶技术。科学家以小鼠作为模型,通过基因打靶的方法改变小鼠的特定基因,借由观察其表型或者行为变化,研究这个基因的功能。& nbsp /p p style=" text-align: justify text-indent: 2em " 基因编辑技术实际上是基因打靶技术的“升级换代”。“基因编辑是一种重构基因序列的手法,就像一个制作精良的橡皮擦,能针对出了毛病的基因,进行精准的‘擦除’。”同济大学医学院教授、同济大学丽丰再生医学研究院执行院长高正良这样评价基因编辑的作用。& nbsp /p p style=" text-align: justify text-indent: 2em " 吴森表示,在过去30年里,基因打靶技术在基础科学研究领域和生物医学领域的用途非常广泛,做出了很多有价值的研究,包括在肿瘤治疗领域中的CAR-T技术(嵌合抗原受体T细胞免疫疗法)等。& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 为什么CAR-T不违背伦理? /strong /span /p p style=" text-align: justify text-indent: 2em " CAR-T技术实质上也是一种基因工程技术,但是为何不违背伦理?很重要的一点是,该技术是通过对体细胞(即免疫细胞)而非体细胞进行基因编辑,遗传基因不会发生改变,对于人类子孙后代不会造成影响。& nbsp /p p style=" text-align: justify text-indent: 2em " 据欧洲药品管理局资料,CAR-T疗法先后须经专利药品委员会、高级治疗委员会和欧盟委员会批准后方可获得临床应用。在中国,同样需要相关职能部门审核通过,才能进行临床试验及应用。我国的CAR-T细胞治疗研究虽然较国外整体起步较晚,但后期发展突飞猛进。& nbsp /p p style=" text-align: justify text-indent: 2em " 从2012年我国首次在clinicaltrial.gov上登记CAR-T细胞临床试验以来,我国每年新注册的CAR-T项目以数倍的速度爆发式增加,目前我国在clinicaltrial.gov上登记的CAR-T项目超过170项,已经超过美国的103项,成为世界上CAR-T细胞临床试验注册数量最多的国家,文末有招募信息。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/280c8040-d0e2-4a0e-84d7-d65c14acf8b6.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 457" height=" 374" style=" width: 457px height: 374px " / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " CAR-T是一种什么样的技术? /span /strong /p p style=" text-align: justify text-indent: 2em " CAR-T疗法是一种通过T细胞基因改造实现肿瘤靶向杀伤的免疫治疗技术。它通过基因转导技术,把识别肿瘤相关抗原的单链抗体和T细胞活化序列的融合蛋白表达到T细胞表面,经过纯化、体外扩增和活化,输注回患者体内,对抗肿瘤。& nbsp /p p style=" text-align: justify text-indent: 2em " 全称为(Chimeric antigen receptor T-cell therapy)嵌合抗原受体 T细胞疗法,本质上一种肿瘤基因疗法,也是免疫疗法。对于这个中文名您一定还是一头雾水,即便中文名也是看不懂。 /p p style=" text-align: justify text-indent: 2em " 首先,我们必须先对T细胞有初步的认识,T细胞是一种免疫细胞,负责保护身体免于外来病原的攻击。 /p p style=" text-align: justify text-indent: 2em " 而身体裡面的T细胞有又分很多种,其中一种名为细胞毒性T细胞(cytotoxic T cell),它的功能主要是辨识异常的细胞,分泌细胞毒素(如穿孔素、颗粒酶素B),并消灭这些异常细胞。 /p p style=" text-align: justify text-indent: 2em " CAR-T疗法,简单来说就是,我们在原本无法辨识癌细胞的T细胞上,装上一个名为CAR(嵌合抗原受体)的雷达。如此一来,经过改造的T细胞就会像导弹一样,精准的定位癌细胞位置,并将这些癌细胞杀死。 /p p style=" text-align: justify text-indent: 2em " 这样的技术,开启了细胞疗法新的扉页。将来,面对不同的癌症,只要找出适合的雷达-CAR,我们就能请T细胞代劳,替我们对抗癌症。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 原理讲完了,再给您介绍下CAR-T的治疗流程,很easy。 /strong /span /p p style=" text-align: justify text-indent: 2em " 1、分离:从癌症病人身上分离免疫T细胞。 /p p style=" text-align: justify text-indent: 2em " 2、修饰:用基因工程技术给T细胞加入一个能识别肿瘤细胞并且同时激活T细胞的嵌合抗体,也即制备CAR-T细胞。 /p p style=" text-align: justify text-indent: 2em " 3、扩增:体外培养,大量扩增CAR-T细胞。一般一个病人需要几十亿,乃至上百亿个CAR-T细胞(体型越大,需要细胞越多)。 /p p style=" text-align: justify text-indent: 2em " 4、回输:把扩增好的CAR-T细胞回输到病人体内。 /p p style=" text-align: justify text-indent: 2em " 5、监控:严密监护病人,尤其是控制前几天身体的剧烈反应。& nbsp /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/5f16e10d-c481-41a8-9337-3ed0d9b85536.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: justify text-indent: 2em " 目前,已经有两项CAR-T技术获得美国FDA批准上市。 /p p style=" text-align: justify text-indent: 2em " 2017年8月,FDA批准诺华的CAR-T疗法Kymriah(tisagenlecleucel)上市,用于治疗罹患B细胞前体急性淋巴性白血病(ALL),且病情难治或出现两次及以上复发的25岁以下患者,这是人类历史上批准的首款CAR-T疗法。 /p p style=" text-align: justify text-indent: 2em " 紧接着,2个月后,FDA宣布批准了Kite Pharma公司开发的用于治疗特定类型大B细胞淋巴瘤成人患者的CAR-T疗法Yescarta(axicabtagene ciloleucel)上市。 /p p style=" text-align: justify text-indent: 2em " CAR-T疗法无疑已成为肿瘤免疫治疗领域中新的国际研究热点。& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong CAR-T在肿瘤治疗领域有何贡献? /strong /span /p p style=" text-align: justify text-indent: 2em " 提到CAT-T治疗,最出名的就是在2012年被Carl June博士用来治愈了6岁的小女孩Emily Whitehead后,由此被认为是最有希望攻克肿瘤的手段之一,迅速引发了全球性的研发热潮。 /p p style=" text-align: justify text-indent: 2em " 2012年至今,6年过去了,6岁的小女孩已经长成12岁亭亭玉立的少女,那么,Emily的现状怎么样呢? /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/9fa16f1c-61a5-4c42-afe6-1d1af37da321.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 572" height=" 337" style=" width: 572px height: 337px " / /p p style=" text-align: justify text-indent: 2em " 今年8月份,家人刚刚为她庆祝了十二岁生日。除了曾经患过白血病之外,Emily与普通的孩子并无区别,脸色红润,头发蓬松,与小伙伴们在海滩上嬉戏,显得生气勃勃。根本无法想象在6年前,她是一名晚期癌症患者。& nbsp /p p style=" text-align: justify text-indent: 2em " 她是第一个接受CAR-T治疗的孩子,在治疗的早期临床试验中被认为是一种危险的治疗方法。而如今CAR-T已经获得FDA批准用于临床肿瘤治疗后,Emily成为治疗效果的象征,CAR-T疗法的新型癌症免疫疗法挽救了她的生命,并为数以千计的白血病患儿接受该治疗增加了信心。& nbsp /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 中国首例!CLL1新靶点CAR-T治疗10岁转化型急性髓系白血病女孩获成功 /strong /span /p p style=" text-align: justify text-indent: 2em " 广州市妇女儿童医疗中心血液肿瘤科张辉主任团队结合现有治疗手段和经验,并根据小慧白血病细胞的免疫分型特点,大胆尝试了CLL1新靶点的CAR-T临床试验性治疗。 /p p style=" text-align: justify text-indent: 2em " 据悉,CAR-T技术用于急性白血病治疗,已有多个成功案例,但针对CLL1靶点的CAR-T治疗,在全国尚属首次! /p p style=" text-align: justify text-indent: 2em " 治疗两个月后,小慧体内的大部分白血病细胞被成功清除,目前已进入观察期,只需定期复查即可。 /p p style=" text-align: justify text-indent: 2em " 如果顺利度过了18至24个月的观察期,小慧有望和美国的Emily(全球首位接受CAR-T治疗急性淋巴细胞白血病的儿科患者)一样被彻底治愈,恢复健康。(来源:金羊网)& nbsp /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 中、美CAR-T临床试验招募信息 /span /strong /p p style=" text-align: justify " strong span style=" color: rgb(192, 0, 0) " 美国 /span /strong /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 1、EGFR806 CAR T细胞免疫治疗儿童和青少年复发/难治性实体肿瘤 /span /p p style=" text-align: justify " 小儿实体肿瘤:生殖细胞肿瘤、视网膜母细胞瘤、肝母细胞瘤、Wilms肿瘤、横纹肌样瘤、骨肉瘤、尤文肉瘤、横纹肌肉瘤、滑膜肉瘤、透明细胞肉瘤、恶性周围神经鞘瘤、增生性小圆细胞肿瘤、软组织肉瘤、神经母细胞瘤 /p p style=" text-align: justify " 入组医院:西雅图儿童医院 /p p style=" text-align: justify " 入组人数:36 /p p style=" text-align: justify " 截止日期:2021年10月& nbsp /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 2、CD19 + CAR T细胞治疗淋巴恶性肿瘤 /span /p p style=" text-align: justify " 肿瘤类型:白血病、淋巴瘤 /p p style=" text-align: justify " 入组医院:MD安德森癌症中心 /p p style=" text-align: justify " 入组人数:30 /p p style=" text-align: justify " 截止日期:2021年12月& nbsp /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 3、EGFR-vIII CAR-T细胞用于复发性GBM治疗 /span /p p style=" text-align: justify " 肿瘤类型:脑胶质瘤 /p p style=" text-align: justify " 入组医院:杜克癌症研究所 /p p style=" text-align: justify " 入组人数:24 /p p style=" text-align: justify " 截止日期:2021年12月31日& nbsp /p p style=" text-align: justify " strong span style=" color: rgb(192, 0, 0) " 中国 /span /strong /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 1、CAR-T细胞在间皮素阳性实体瘤中的应用研究 /span /p p style=" text-align: justify " 肿瘤类型:成人实体瘤 /p p style=" text-align: justify " 入组医院:解放军总医院 /p p style=" text-align: justify " 入组人数:10 /p p style=" text-align: justify " 截止日期:2019年11月& nbsp /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 2、恶性肿瘤的自体CAR-T / TCR-T细胞免疫治疗 /span /p p style=" text-align: justify " 肿瘤类型:B细胞急性淋巴瘤、白血病淋巴瘤、骨髓性白血病、多发性骨髓瘤、肝癌、胃癌、胰腺癌、间皮瘤、结直肠癌、食道癌、肺癌、胶质瘤、黑色素瘤、滑膜肉瘤、卵巢癌、肾癌 /p p style=" text-align: justify " 入组医院:郑州大学第一附属医院 /p p style=" text-align: justify " 入组人数:73 /p p style=" text-align: justify " 截止日期:2023年3月1日 /p p style=" text-align: justify " span style=" color: rgb(192, 0, 0) " 3、研究评估CAR-T治疗儿童复发或难治性神经母细胞瘤的疗效和安全性 /span /p p style=" text-align: justify " 肿瘤类型:复发或难治性神经母细胞瘤 /p p style=" text-align: justify " 入组医院:南京儿童医院 /p p style=" text-align: justify " 复旦大学附属儿童医院 /p p style=" text-align: justify " 入组人数:22 /p p style=" text-align: justify " 截止日期:2020年9月 /p
  • 《细胞》:科学家首次成功提取大鼠胚胎干细胞
    这将使科学家借助动物模型更方便地对人类顽疾进行研究   美国南加州大学一个科研小组12月24日宣布,他们首次成功地从大鼠胚胎中提取干细胞,这将使科学家借助动物模型更方便地对诸多人类顽疾进行研究。   英国科学家马丁埃文斯早在1981年就成功地从小鼠胚胎中提取出第一个小鼠胚胎干细胞。但大鼠胚胎干细胞的提取尚属首次。   研究负责人、华人科学家应其龙在新闻公报中说,这是干细胞研究领域的一项重大进展,“因为我们知道,与小鼠相比,大鼠在生物学的许多方面与人类更为相近”。应其龙认为,提取大鼠胚胎干细胞研究被证实可行之后,世界许多干细胞实验室的研究方向都将因此而改变。   此前,科研人员尝试提取大鼠胚胎干细胞都因为技术障碍宣告失败。此次,应其龙的科研小组采取了一种特殊的“信号阻断”方法,他们利用特殊的分子抑制大鼠胚胎中3个特定基因发出信号。正常情况下,这3个基因发出的信号是胚胎干细胞分化的“命令”。信号被阻断后,大鼠胚胎干细胞就能够“停下分化的脚步”,保持在原始胚胎阶段。   科研小组认为,能够提取大鼠胚胎干细胞,朝着今后科学家通过基因敲除技术人为地给大鼠胚胎剔除一个或多个基因、培养“定制”大鼠进行疾病研究又向前迈进了一步。   这一成果将发表在定于12月26日出版的《细胞》杂志上。
  • 开创胚胎植入前遗传学的革命
    p   所有科学家的梦想都是对自己所在的领域产生影响,研发新的技术,或做出新的发现,推动研究向前发展。Leeanda Wilton博士甚至已经远远超出了30年前她进入胚胎植入前遗传学领域时设定的目标。她合作开发了不是一种,而是两种基本技术,如今这些技术正促成全球试管婴儿的成功。 /p p   在职业生涯的早期,她与Darren Griffin博士合作,研发出单细胞荧光原位杂交(FISH),这是第一项能让研究人员鉴定出人类胚胎中多个染色体异常的技术。十年后,她又合作开发出比较基因组杂交(CGH),这是array CGH技术(如24sure sup ® /sup Array)的前身。而今,FISH技术成为了染色体易位或倒位携带者诊断胚胎的金标准,这些携带者本人与常人无异,但由于自身染色体结构的异常难以形成正常胚胎而将遭受反复流产失去胎儿的痛苦,或是生育染色体异常患儿为个人家庭及社会带来更沉重的负担,FISH技术在胚胎上进行的有针对性的染色体诊断,选择正常胚胎植入,阻止了悲剧的发生。 /p p   相对于FISH技术有针对性地检测目的染色体,array CGH技术的应用更加令人激动,它实现了在胚胎单细胞水平对全套染色体的筛查,帮助胚胎学家淘汰了那些随机发生的染色体异常胚胎,试管婴儿的成功率因此得到提升,更多有可能经历异常妊娠的高风险人群因此受益。 /p p   正如她所说,“开发出一项新技术,看着它应用于临床,后来又见证了它在全世界的采用,这是很罕见的。”Wilton博士好样的! /p
  • 我国拟立法规范人体基因、人体胚胎相关研究
    p style=" text-indent: 2em " 去年11月底,“基因编辑婴儿”事件引爆网络,各专家与普通群众舆论出现一边倒,认为基因编辑婴儿人类胚胎对人类的伦理和安全方面存在着不可逆转的巨大隐患。 /p p style=" text-indent: 2em " 开展与人体基因、人体胚胎等有关的医学和科学研究,可能带来人体生命健康安全和伦理道德方面的风险,必须有严格的法律规范。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/eb439206-f5a2-4575-801d-d19d4e071f3a.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 300" height=" 400" border=" 0" vspace=" 0" style=" width: 300px height: 400px " / /p p style=" text-indent: 2em " 4月20日提请全国人大常委会审议的民法典人格权编草案作出规定。草案在第二章“生命权、身体权和健康权”中增加一条规定:从事与人体基因、人体胚胎等有关的医学和科研活动的,应当遵守法律、行政法规和国家有关规定,不得危害人体健康,不得违背伦理道德。 strong 这是我国首次在民事立法中作出基础性规定规范此类问题。 /strong /p
  • 我国科学家成功获得人体细胞克隆胚胎
    中广网济南2月2日消息 (记者 柴安东)山东省干细胞工程技术研究中心2月2日宣布,由这个中心李建远教授率领的科研团队,攻克人类胚胎克隆技术,成功克隆出5枚符合国际公认技术鉴定指标的人类囊胚。这一研究成果于2009年1月27日在这一领域国际权威学术期刊《CLONING AND STEM CELLS》杂志网络版发表。   在今天上午召开的“山东省干细胞工程技术研究中心、烟台毓璜顶医院成功获得人类体细胞克隆胚胎介绍会”上,李建元教授向与会专家、学者详细介绍了这一科研成果。据介绍,此次研究者选择了健康卵细胞志愿捐献者12人,经促排卵获得135枚卵细胞,经试验最终成功获取囊胚5枚,其中,4枚囊胚的供体细胞来源于正常人皮肤纤维细胞,1枚来源于帕金森病患者外周血淋巴细胞。   据介绍,李建元教授的研究团队主要采用先进的三维立体偏震光纺锤体成像系统(对细胞无损伤),对卵母细胞纺锤体(核DNA)精确定位后,再用微激光对卵子的透明带打孔,精确剔除卵子细胞核。通过核移植后所获得的囊胚进行DNA遗传多态性位点鉴定,不同细胞阶段克隆胚胎的供体与受体细胞浆中线粒体定量动态学分析和囊胚线粒体遗传多态性位点SNP鉴定。   李教授介绍说,他们掌握的这一先进技术不是为了制造克隆人,而是进行人类治疗性克隆研究,造福人类。   介绍会上,中国科学院动物研究所生殖生物学国家重点实验室首席研究员、我国著名动物克隆专家、中国首例克隆牛专家陈大元教授对这一成果给予高度评价。称该成果不只是应用人类纤维体细胞获得克隆胚胎,更重要的是应用帕金森病患者外周血的淋巴细胞作为供体细胞也成功获得囊胚,这使治疗性克隆研究向前迈进了一大步。   可以预见,不久的将来,目前各种无法治疗的疑难性疾病都有可能通过克隆胚胎提取到与病人遗传基因完全相同的全能型胚胎干细胞,用其衍生而来的全新的功能细胞、组织或器官,来取代病变的细胞、组织、器官,从而避免免疫排异反应的发生,从根本上解决组织器官移植中配型困难与供体不足等瓶颈问题。
  • 外显子测序发现早期胚胎致死基因突变
    p   King Faisal Specialist医院和Fowzan Alkuraya研究中心的团队对辣子两个怀孕有苦难的家庭女性进行了同和性作图和外显子测序,这些女性即使进行体外受精,怀孕也十分困难。研究人员本周在《Genome Biology》上报道了他们的结果,他们发现,TLE6中的突变似乎在早期终止了胚胎发育。胚胎后发育中,其他基因的活性与胚胎杀伤作用的联系已经有所发现,但是研究人员会说,这是第一个在胚胎植入前具有杀伤活性的。 ?? /p p   “我们的数据表明,TLE6突变是一种造成人类女性不孕的罕见突变,并且其是现在已知的,最早的对胚胎具有杀伤力的单个基因的突变,” Alkuraya和他的同事们在文章中这样写道。 /p p   看似健康的精子与看似健康的卵子在胞浆内注射受精失败是十分罕见的,研究人员说,值得注意的是,在20年的体外受精的经验中,他们只记得有8对夫妇出现了这样的情况。而其中两队夫妇是近亲,因此研究人员能够与他们取得联系。研究人员补充道,一个女性患者也有一个受此影响的姐姐。 /p p   两姐妹都来自同一个家庭,这个家庭中的另外的兄弟姐妹都是健康和可孕的,但是她们却经历了多次失败的精子注射。只有三个卵子发育成了两个生殖核,这表明受精正常,但是这些受精卵在1个,2个4个细胞阶段停止了发育。 /p p   研究人员说,其他家庭的女性也表现出了类似的模式,这表明这些女性的表型是胚胎移植前具有杀伤力。 /p p   对于三个女人中的两个,Alkuraya和他的同事们进行了全外显子测序,以寻找他们受精卵中纯合子编码区或者可变剪接体。 /p p   在经过这些信息过滤后,一个新的变体变得清晰明显:在TLE6中出现了纯合子S510Y的替换。 /p p   研究人员进一步报道,这三个女性的受精卵都具有这个突变。她们都有一个相同的单体型,这表明他们具有共同的祖先。 /p p   他们还指出,来自一个家庭的某个兄弟是这个变种的纯合子,但是他是可孕的,这表明这种变异的影响仅仅局限于女性。 /p p   研究人员报道说,在哺乳动物的TLE6同源基因中,其变异残基似乎具有普遍的保守性,此外,使用PolyPhen和SIFT预测,S510Y变体是一种致病的突变。 /p p   Alkuraya和他的同事们补充说,TLE6编码一种蛋白,其是分皮质孕产妇复合物(SCMC)的一部分,而这种在但是是动物卵母细胞的一种结构,其对胚胎早期发育是至关重要的。他们还补充说,这种基因是目前已知的,为数不多的几个哺乳动物的母性效应基因。 /p p   蛋白激酶A是已知的,能够的磷酸化的TLE6,,研究人员怀疑说,氨基酸残基的更换会影响TLE6的磷酸化位点。 /p p   通过一系列的细胞系和免疫印迹分析,他们发现,表达TLE6突变的细胞会出现TLE6磷酸化的损伤。 /p p   同样,通过免疫沉淀反应和免疫印迹分析,他们进一步指出,OOEP,KDHC3L和SCMC之间的结合力减弱了-这是SCMC的另外两个元件。 /p
  • 哈佛学者宣布进行精子基因编辑,10月曾来华寻求胚胎项目合作
    p style=" text-indent: 2em " 据《麻省理工科技评论》11 月 29 日的报道,来自美国哈佛大学的科学家 Werner Neuhausser 对基因编辑技术的科研应用提出了他自己的研究意向,并计划于几周内开展实验。他曾在今年 10 月到访中国,探索在中国研究胚胎的可能性。 br/ /p p   Werner Neuhausser 希望,通过 CRISPR 技术对人类精子进行编辑,修改精子的 ApoE 基因,进而减少新生试管婴儿患有阿尔茨海默症的风险。Neuhausser 及他的团队暂未与中国任何组织或个人达成项目合作。同时,他强调在自己目前的计划中,并不包括婴儿出生这一目标选项。这位来自奥地利的不孕不育专家仍旧对生殖细胞的基因编辑持乐观和开放态度。 /p p   他预测,在不久的将来,人们会在怀孕前对胚胎进行深入的分析、筛选,甚至使用 CRISPR 技术进行编辑。未来,人们可以在诊所完成基因组检测,并获得最健康的孩子。“很可能整个体外受精领域的重心将从生育转向疾病预防。” /p p   对于 CRISPR 断开 DNA 双链进行基因编辑所可能带来的不确定性,该研究团队选择了“基因魔剪”的升级版——碱基编辑。该技术由同样来自哈佛大学的 David Liu (刘如谦)教授开发,这种编辑方法并不需要剪断双链,而是直接对单个碱基进行更改,进而将可能引入的编辑错误风险降到最低。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/357f7695-dd80-4442-b527-d3057e773316.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " Werner Neuhausser (来源:麻省理工科技评论) /span /p p   可就在 Neuhausser 及他的团队即将开始实验之际,12 月初,美国生命科学界收到一则消息:特朗普政府要求受雇于国立卫生研究院(NIH)的科学家停止获取新的人类胎儿组织用于实验。NIH 官员表示,禁令直接影响到 NIH 的两个实验室,并且其中一项关于艾滋病病毒最初如何在人体组织中“定位”的研究更是直接被中断。 /p p   这一禁令的催化剂显然是最近公布的基因编辑婴儿事件。基因编辑婴儿的诞生迫使整个学术共同体直面胚胎编辑问题。在 11 月 29 日于香港举办的第二届人类基因组编辑国际峰会上,多名学者一致表示,现在正是为胚胎基因编辑临床试验制定严格、负责任的转化途径的关键时刻。 /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 有所为,有所不为 /strong /span /p p   随着人类将基因与性状联系起来,越来越多的疾病开始被认定为基因遗传疾病。目前已经确定的单基因遗传疾病超过 6600 种,并以每年数十种的速度递增。在人群中,大约每 10 个人就有一个人携带了至少一种单基因遗传疾病的致病基因。 /p p   但携带不等同于致病,对于一些常染色体隐形遗传疾病来说,当父母双方均携带有致病基因,孩子就有可能患病。这种巧合是不幸的,人们希望用科学的工具进行“纠错”,改写生命,而 CRISPR/Cas9 就是这样一种可以对基因进行编辑的强力工具。 /p p   识别目标序列,进行 DNA 双链切割,凭借精准的切割和低廉的成本,近年来 CRISPR 成为基因编辑技术的主流,几乎席卷整个生物界,被应用于农业、医疗、临床等方方面面的前沿研究中。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/3741ae0e-4195-49af-95e0-8d064b96cff8.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (来源:Genetic Literacy Project) /span /p p   但 CRISPR 并不完美。精准的识别和切割并不意味着完美无瑕,脱靶效应使这个过程变成了一个“黑箱”,在 CRISPR 的“作业”过程中,会发生什么,编辑效率会是多少,谁也不知道。 /p p   不仅如此,人类虽然在不断的认识自我,但从未做到认清自我。我们远比自己想象的更复杂,绝大多数情况下,基因与性状并不是一一对应的关系。这就意味着任何一个基因的增或缺都可能有着意料之外的影响,牵一发而动全身,因而在有万全的把握之前,没有人愿意、也不敢拿人“赌一把”。 /p p   即使是顾虑重重、饱受争议,但基因编辑这项技术却是真实且具有价值的。更不可否认的是,这项技术最终会被应用于人类。 /p p   事实上,人类已经开展了体细胞编辑的临床试验,2017 年 11 月,美国完成了首例人类活体基因编辑实验,目标是治疗一种叫做“亨特综合征”(Hunter syndrome)的代谢性疾病,这是一种由于基因突变导致的遗传性疾病。而就在 一周前,美国 FDA 又通过了另外一项关于先天性黑朦病患者基因编辑的临床试验。 /p p   与在体细胞基因编辑方面形成开放的共识不同,生殖细胞一直是一个颇具争议的话题。对生殖细胞进行基因编辑,意味着这种修改将会随遗传信息传递给下一代。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a89e2418-7dde-4c91-8dec-d61df13a1d02.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (图源:Genetic Literacy Project) /span /p p   Werner Neuhausser 和他的团队希望通过 CRISPR 技术对精子中的 ApoE 基因进行编辑的研究实验计划正是在此时一片批判声中进行着准备工作,预计将会在几周后展开实验将用到来自波士顿 IVF(这是一个大型的国家生育诊所网络)的精子, strong span style=" color: rgb(12, 12, 12) " 该项目最终将不会有胚胎或是婴儿产生 /span /strong 。这项实验的目标是基于之前的研究发现,ApoE 基因与与阿尔茨海默症的患病风险高度相关,遗传了两个高危拷贝的人,最终患有阿尔茨海默症的风险高达 60%。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/1bad067f-b16d-47fa-b62a-6fdd3ab711f7.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (来源:QUARTZ) /span /p p style=" text-align: center " strong 造物?or 救世? /strong /p p   相比于技术上的不完善,道德伦理、社会公平等问题则显得更为棘手,甚至面对这些问题,没有人能够给出确切的答案。 /p p   在技术成熟之后,我们面临的第一个问题将是:一部分掌握技术的人是否有资格代表全人类做出选择,修改人类基因库?没有人可以预见这种基因修改在演化的漫漫长河中意味着什么,况且即便可以预测,也没有个人或团体能够承担这份风险。 /p p   目前,基因编辑根据目的可以划分为治疗和增强两类,通俗的讲,可以将其比喻为“救世”和“造物”。对于罕见的严重遗传缺陷,如果不对患者基因进行遗传修正,新生儿面对的很可能就只有死亡这条路,这是一类目的为治疗或避免疾病发生所进行的基因编辑。而另外一类被称为增强的方法则是对性状的升级,让下一代跑得更快、身体更健康、智力更高,可以说是用科技制造一个 Superman。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/7d4fe0d8-63cf-4618-8ddc-fae71f62353f.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (图源: VERDICT) /span /p p   对于前者,学界的态度是谨慎但值得考虑的,但对后者就没有那么宽容。对于这种严厉的态度,人群中不禁发出这样的疑问:如果基因编辑可以使人生“更完美”,那为什么不可以做? /p p   针对这一疑问,回答却是另一个问句:谁会先用到这种“完美”的工具?换句话说,目前持激进和支持态度的人,会是可能享受到这种科技“福利”的人群么? /p p   对后代进行基因编辑,考量的实际上是孩子背后父母的财力与权力,如果这一问题不加以限定,未来很可能形成“富人靠科技,穷人靠变异”的滑稽局面,如果基因多样性带来的幸存者偏差最终也被消磨掉,社会公平与平等将会有新的定义。 /p p   父母总想给孩子最好的,但孩子会认同这种“好”么?与可以被赋予特定性状的物件、游戏、甚至设定都不同,婴儿同样是或者也将会成为一个具有独立人格的思考者。那么他人是否可以为他做决定,更何况是一个将会伴随一生、决定了整个游戏规则的决定? /p p style=" text-align: center " strong 争论的价值 /strong /p p   当然,技术的发展就是为了应用,换句话说,在基因编辑技术出现之初,基因编辑婴儿的出现就已经可以预见,不过是早晚的事情。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/444c33c5-47b6-448a-93f0-14adc67b05b0.jpg" title=" 6.png" alt=" 6.png" width=" 466" height=" 412" style=" width: 466px height: 412px " / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " (图源:Genetic Literacy Project) /span /p p   但恰恰这个时机的问题,包含了对技术的完善、伦理的讨论等方方面面的考量,其中决定“可以做而不去做”的重要一点,就是对规则的认同。 /p p   锋利的刀刃既能救人也能伤人,而手持科学这把利刃的勇士则需要有更坚定和完整的心智。在科幻故事中,科学怪人甚至可以将致命病毒与流感病毒编辑在一起完成自己的疯狂目标,现实中这将是难以想象的灾难。而目前人类之所以得以安宁,正是因为科学家们坚守心中的底线。 /p p   而此次基因编辑婴儿事件的发生,必将会给整个生命科学界带来一股强力的冲击。短期内人们对于基因编辑的态度可能会变得更为严格甚至抵触,社会上也可能引发相关的争论。也许某一天,此时的某些观点最终被证明是错误的,但这个辩证的认知过程是永不应该被否定的。 /p p    strong span style=" color: rgb(0, 0, 0) " 参考资料 /span /strong /p p   Despite CRISPR baby controversy, Harvard University will begin gene-editing sperm Despite CRISPR baby controversy, Harvard University will begin gene-editing sperm /p
  • MIT2018全球十大突破性技术揭晓 “人造胚胎”、“基因占卜”入选
    p   自2001年以来,《麻省理工科技评论》(MIT)每年都会评选出10项突破性技术。对于“突破”一词到底如何定义?MIT编辑部表示,可能我们的TOP10里面有一些技术尚未得到广泛的应用,而另外的一些已经处于商业化的顶端。我们真正想要的是一种技术,或者说是一种技术的集合,它能够对人们的生活产生深远的影响。今天,MIT公布了2018年“全球十大突破性技术”(10 Breakthrough Technologies)。 /p p style=" text-align: center " img width=" 600" height=" 368" title=" " style=" width: 600px height: 368px " alt=" " src=" http://img1.17img.cn/17img/images/201802/uepic/0ccd8c87-84ff-4a3b-8e45-b274d6c1d17e.jpg" border=" 0" vspace=" 0" hspace=" 0" / br/ /p p style=" text-indent: 2em " 3D金属打印机(3-D Metal Printing)、人造胚胎(Artificial Embryos)、传感城市(Sensing City)、给所有人的人工智能(AI for Everybody)、对抗性神经网络(Dueling Neural Networks)、巴别鱼耳塞(Babel-Fish Earbuds)、零碳排放天然气(Zero-Carbon Natural Gas)、完美网络隐私(Perfect Online Privacy)、基因占卜(Genetic Fortune-Telling)、材料的量子飞跃(Materials’ Quantum Leap)等入选了MIT2018全球十大突破性技术。 /p p style=" text-indent: 2em " strong 人造胚胎(Artificial Embryos) /strong /p p style=" text-align: center " strong span style=" color: rgb(153, 153, 153) " img alt=" " src=" http://img1.17img.cn/17img/images/201802/uepic/f1dfe8c7-4f42-4acd-a749-215c18075ebe.jpg" / br/ /span /strong /p p style=" text-align: center " span style=" color: rgb(153, 153, 153) " UNIVERSITY OF CAMBRIDGE /span /p p style=" text-indent: 2em " strong 突破性: /strong 未使用卵细胞或精子细胞,研究人员仅从干细胞就创造出了胚胎样结构(embryo-like structure),为创造生命提供了一条全新的途径。 /p p style=" text-indent: 2em " strong 重要性: /strong 人造胚胎将使研究人员更加容易地研究人类生命的神秘起源,但这一技术也正在引发新的生物伦理争论。 /p p style=" text-indent: 2em " strong 可用性: /strong 现在 /p p style=" text-indent: 2em " strong 关键研究者: /strong 剑桥大学、密歇根大学、洛克菲勒大学 /p p style=" text-indent: 2em " 在一项重新定义了如何创造生命的突破性研究中,英国剑桥大学的胚胎学家们仅利用干细胞(没有卵子,没有精子,只是从另一个胚胎中取出的细胞)就培育出了逼真的(realistic-looking)小鼠胚胎。 /p p style=" text-indent: 2em " 领导该研究的Magdelena Zernicka--Goetz说:“我们知道,干细胞具有不可思议的能力,但我们真的没有意识到,它们能够如此完美地自我组织(self-organize)。” /p p style=" text-indent: 2em " 不过, Zernicka--Goetz表示,她的“合成”胚胎可能不能发育成小鼠。这也不是Zernicka-Goetz的目标。她想要研究,一个早期胚胎中的细胞如何开始发挥其特殊的作用。她还说,他们的下一步计划是用人类干细胞生成人造胚胎。密歇根大学和洛克菲勒大学的科学家们正在进行相关的研究。 /p p style=" text-indent: 2em " 人工合成的人类胚胎将是科学家们的福音,可以让他们弄清早期发育中发生的各种事件。同时,由于这类胚胎是从易操作的干细胞发育而来的,因此,研究人员将能够利用各种工具(如基因编辑)在它们生长的过程中调查它们。不过, /p p style=" text-indent: 2em " 人造胚胎这一突破技术也引发了伦理问题。如果它们变得与真实的胚胎难以区分,我们该怎么办? 在它们能够感觉疼痛之前(before they feel pain),它们能在实验室里成长多久? 生物伦理学家们说,我们需要在科学竞赛愈演愈烈之前解决这些问题。 /p p style=" text-indent: 2em " strong 给所有人的人工智能(AI for Everybody) & nbsp /strong /p p style=" text-align: center " strong span style=" color: rgb(153, 153, 153) " img alt=" " src=" http://img1.17img.cn/17img/images/201802/uepic/28c2be62-1345-4438-9d72-c98f1fc6d3f1.jpg" / br/ /span /strong /p p style=" text-align: center " span style=" color: rgb(153, 153, 153) " MIGUEL PORLAN /span /p p style=" text-indent: 2em " strong 突破性: /strong 基于云的人工智能技术(Cloud-based AI)使得这项技术的使用更便宜、更容易。 /p p style=" text-indent: 2em " strong 重要性: /strong 目前,AI的使用由少数几家公司主导,但作为一种基于云的服务,它能够被更多的人使用,从而推动经济增长。 /p p style=" text-indent: 2em " strong 可用性: /strong 现在 /p p style=" text-indent: 2em " strong 关键研究者: /strong 亚马逊、谷歌、微软 /p p style=" text-indent: 2em " 迄今为止,人工智能主要是像亚马逊、百度、谷歌和微软这样的大型科技公司以及一些初创公司的“利器”,对许多其他公司和经济领域来说,AI系统太昂贵,且太难完全实现了。 /p p style=" text-indent: 2em " 那么,让AI更普及的解决方案是什么呢?基于云的机器学习工具正在将AI带给更广泛的群体。到目前为止,亚马逊的 AWS 子公司主导着云AI(cloud AI),而谷歌正试图用TensorFlow(一个开源的AI库)来挑战它的地位。拥有自己AI云平台Azure的微软则选择与亚马逊合作,推出了一款开源深度学习库—— Gluon。 /p p style=" text-indent: 2em " 这些公司中的哪一家会成为提供人工智能云服务的领导者,目前还不清楚。但对于赢家来说,这是一个巨大的商机。如果人工智能革命将会在经济的不同领域更广泛地扩散,那么,这些云产品将是不可或缺的。 /p p style=" text-indent: 2em " 目前AI主要应用于科技行业,许多其他行业一直难以利用人工智能技术的发展。医疗、制造以及能源等行业如果能够更全面地推行人工智能技术,那么,这些行业可能将产生巨大的改变。 /p p style=" text-indent: 2em " strong 对抗性神经网络(Dueling Neural Networks) & nbsp /strong /p p style=" text-align: center " span style=" color: rgb(153, 153, 153) " img width=" 600" height=" 441" title=" " style=" width: 600px height: 441px " alt=" " src=" http://img1.17img.cn/17img/images/201802/uepic/4b3da4e4-0c2e-4537-a1ac-07111a1ab6b5.jpg" border=" 0" vspace=" 0" hspace=" 0" / br/ /span /p p style=" text-align: center " span style=" color: rgb(153, 153, 153) " DEREK BRAHNEY /span br/ /p p style=" text-indent: 2em " strong 突破性: /strong 两个AI系统可以通过相互对抗来创造逼真的图像和语音,此前,机器从未有过这种能力 /p p style=" text-indent: 2em " strong 重要性: /strong 这给机器带来类似想象力的能力,可以让它们不再那么依赖人类,同时也把它们变成了一种数字造假工具。 /p p style=" text-indent: 2em " strong 可用性: /strong 现在 /p p style=" text-indent: 2em " strong 主要研究者: /strong Google Brain、DeepMind、Nvidia /p p style=" text-indent: 2em " 人工智能(AI)在识别事物方面变得越来越擅长了:向它展示一百万张图片,它能以惊人的准确性告诉你哪张照片描绘了一个行人穿越街道。但是AI几乎不可能生成行人的图像。如果能做到这一点,它就能创造出大量逼真的合成画面,比如在各种环境下的行人。这样,自动驾驶系统可以在不出门的情况下使用这些图片进行训练。 /p p style=" text-indent: 2em " 但问题是,创造一个全新的东西需要想象力,而这一直困扰着AI。 直到2014年,蒙特利尔大学的一名博士生Ian Goodfellow在一家酒吧的学术辩论中,率先想到了解决方案。这种方法被称为“对抗式生成网络”(GAN),它采用了两种神经网络(人脑的简化数学模型,这是现代机器学习的基础),并在数字版猫捉老鼠游戏中相互对抗。 /p p style=" text-indent: 2em " 这两个神经网络都是在相同的数据集上进行训练的,其中一个被称为“发生器”(generator),负责依照所见过的图片来创造新的图片。另一个被称为鉴别器(discriminator),负责识别它所看到的图片是否像训练时的图片,还是发生器产生的虚假图像。 /p p style=" text-indent: 2em " 渐渐地,发生器可以创造出鉴别器不能识别出的图片。这项技术已经成为AI在过去十年中最有希望的进展之一,它能够帮助机器“骗过”人类。 /p p style=" text-indent: 2em " 目前,GAN已经被用于制作非常逼真的语音和假图片。举个例子,芯片制造商Nvidia的研究人员用明星照片训练出一个GAN系统,而这个系统生成了数百张不存在但看起来很真实的面孔。另一个研究小组则生成了很逼真的梵高作品。进一步训练之后,GAN可以用不同的方式重新创造图片,比如在干净的道路上铺上一层雪,或者把马变成斑马。 /p p style=" text-indent: 2em " 但GAN也不总是完美的,它可能会生成有两套把手的自行车或者,眉毛错位的脸。但由于图片和声音的逼真,一些专家认为,在某种意义上,GAN在某种程度上开始理解它们所见所听。这就意味着,随着想象力的获得,AI也有可能开始理解它在这个世界上所看到的东西。 /p p style=" text-indent: 2em " strong 基因占卜(Genetic Fortune-Telling) & nbsp /strong /p p style=" text-align: center " strong span style=" color: rgb(153, 153, 153) " img width=" 600" height=" 441" title=" " style=" width: 600px height: 441px " alt=" " src=" http://img1.17img.cn/17img/images/201802/uepic/a16c869e-d862-484d-8146-12195a7a1f44.jpg" border=" 0" vspace=" 0" hspace=" 0" / br/ /span /strong /p p style=" text-align: center " span style=" color: rgb(153, 153, 153) " DEREK BRAHNEY /span br/ /p p style=" text-indent: 2em " strong 突破性: /strong 科学家可以使用基因来预测人们未来患心脏病、乳腺癌的风险,甚至可以预测IQ。 /p p style=" text-indent: 2em " strong 重要性: /strong 基于DNA水平的预测技术可能是公共健康领域下一个重要突破,但它也会增加基因歧视风险。 /p p style=" text-indent: 2em " strong 可用性 /strong :现在 /p p style=" text-indent: 2em " strong 主要研究者 /strong :Helix、23andMe、Myriad Genetics、UK Biobank、Broad Institute /p p style=" text-indent: 2em " 将来有一天,婴儿出生时就会得到一份DNA检测报告。这些报告将提供他们患心脏病或癌症的几率,是否对烟草上瘾,以及是否比一般人更聪明的预测。由于大型基因研究的陆续开展,这一天很快就会来临。 /p p style=" text-indent: 2em " 事实证明,最常见的疾病和包括智力等许多行为特征,都不是一个或几个基因的结果,而是许多基因作用的结果。利用正在进行的基因研究的数据,科学家们正在创造他们所谓的“多基因风险评分”。 /p p style=" text-indent: 2em " 尽管新的DNA检测提供的只是概率,而不是精确诊断,但它们仍可以极大地造福医学的发展。比如说,医生可以建议乳腺癌高危的女性多做乳房x光检查,而低风险的女性乳房x光检查则少做些,那么这些检查可能帮助发现更多的真正患癌症的病人,并能够减少 “假警报”的情况。 /p p style=" text-indent: 2em " 此外,制药公司还可以在针对阿尔茨海默病或心脏病等疾病的预防性药物的临床试验中使用这些信息,他们通过挑选患病风险更高的志愿者,从而可以更准确地测试药物的效果。 /p p style=" text-indent: 2em " 但问题是,这些预测远非完美。谁想知道他们未来可能会患上老年痴呆症?如果癌症风险评分低的人推迟接受筛查,然后又患上癌症怎么办? /p p style=" text-indent: 2em " 多基因评分也有争议,因为它们可以预测任何个体特征,而不仅仅是疾病。比如说,他们现在可以预测一个人在智商测试中表现的10%。随着评分技术的提高,DNA智商的预测很可能会成为常规的检测。但是家长和教育工作者将如何使用这些信息呢? /p p style=" text-indent: 2em " 行为遗传学家EricTurkheimer表示,基因数据是把双刃剑。“基因占卜”既让人兴奋,也令人担心。 /p p style=" text-indent: 2em " strong 参考资料 /strong /p p style=" text-indent: 2em " 10 BREAKTHROUGH TECHNOLOGIES 2018 /p
  • 重大突破!科学家用恒河猴的胚胎干细胞在体外分化出功能性精子细胞
    近日,有报道称,20世纪70年代男性平均每毫升精液有9900万个精子,到了2011年,这一数量降至4700万个,降幅高达53%。美国西奈山伊坎医学院环境医学和公共卫生学教授Shanna Swan因此预测,照这一趋势持续下去,到2045年时,男性或将“绝精”。这一说法是否耸人听闻我们还无法下结论,但男性不育症已成为一个全球性的健康问题。全世界至少15%的夫妇受到不孕不育的困扰,其中一半是男性。男性不育的原因包括遗传缺陷、环境毒剂、损伤或治疗后遗症,如碱化化疗。目前还没有治疗不育症的方法。近日,发表在《Fertility and Sterility Science》上的一项研究中,来自美国佐治亚大学领导的研究团队首次利用非人灵长类动物的胚胎干细胞在体外分化出功能性精子细胞。该研究是生殖和发育生物学领域的重大突破,有望在男性无法生成活精子的情况下治疗不育症。在此前的研究中,该研究团队、华东师范大学团队等已经证明利用小鼠干细胞分化出高级生精细胞的能力,但啮齿类动物精子的生成过程与人类截然不同。在这项工作开始之前,研究人员还不清楚这项技术能否应用于人类。由于恒河猴与人类具有相似的生殖机制,而且它们的精子发生在动力学上也与人类更类似,这使其成为探索基于干细胞技术的男性不育疗法的理想和必要模型。在这项新研究中,研究人员通过恒河猴实验首次表明功能性单倍体精子可以完全在体外从非人灵长类多能干细胞分化出来。这一结果代表了在体外生成雄性生殖细胞的重要一步。然而,研究人员表示仍存在一些问题。他们注意到精原干细胞介导的生殖细胞分化不会使TET3基因(通常在成熟精子中表达)表达提升到在恒河猴精子中观察到的水平。也就是说,生成的精子样细胞,就像灵长类动物体内的圆形精子一样,是不成熟的。因此,不能自行激活成熟的卵母细胞。为了克服受精这一障碍,研究人员发现,加入激活因子和纯化的TET3蛋白可以提高生成健康胚胎的效率。总之,这项研究证明了非人灵长类多能干细胞可以分化成生精细胞系,包括可以使非人灵长类卵母细胞受精并发育到囊胚阶段的精子样细胞,该研究还强调了一些减数分裂机制参与了在体外生成单倍体圆形精子细胞样细胞。研究人员表示,可以通过深入了解男性不育症患者精子发生停止的原因,来帮助弥合生殖和发育生物学领域的问题。该研究负责人、佐治亚大学公共卫生学院首席研究员Charles Easley教授说:“这项研究是表明干细胞技术具有可转化性的重要一步。我们正在使用一种与我们更近的物种进行研究,并且在创造健康胚胎方面我们已取得了成功。”今年秋天,研究人员计划进行下一个关键步骤,将这些胚胎植入代孕恒河猴体内,以检查这些体外生成的精子细胞是否能产生健康胚胎。如果这一步成功,研究团队将使用源自恒河猴皮肤细胞的精子样细胞复制这一过程。论文链接:https://www.fertstertscience.org/action/showPdf?pii=S2666-335X%2821%2900066-5
  • 震惊!中外合作研究发现:冷冻胚胎竟然优于新鲜胚胎!
    多囊卵巢综合征(PCOS)的女性患者在体外受精过程中,使用冷冻胚胎比新鲜胚胎更安全,怀孕成功率也越高,根据医学宾夕法尼亚州立大学和中国研究人员合作得出的研究结果。虽然体外受精时优先选用新鲜胚胎,以往的研究表明,冷冻胚胎能提高活产率,降低PCOS患者的卵巢过度刺激综合征和妊娠并发症的发生率。新的研究在中国各地的几个生殖医疗中心开展,1,508名不孕的PCOS患者被随机分配,在其第一个体外受精周期中分别接受新鲜胚胎或冷冻胚胎。实验结果于8月10日发表在《新英格兰医学杂志》上。使用冷冻胚胎降低与使用新鲜胚胎的女性相比,发生卵巢过度刺激综合征的比率分别是1.3%和7.1%。接受冷冻胚胎组的女性婴儿活产率也更高,归因于怀孕期间体重下降较少,而出生体重较高。“患PCOS的女性如果选择性地冻存胚胎,并且在人工受孕时选择冷冻胚胎而不是新鲜胚胎,成功怀孕的机会较高,且造成卵巢过度刺激的几率更小,”宾夕法尼亚州立大学公共健康科学医学院的妇产科教授Richard Legro说: “该方法有希望为PCOS女性提供看得见的好处,所以从业人员应考虑为这些病人冻存所有胚。”体外受精过程中使用激素和药物,过度刺激卵巢使其释放了多个卵子。以往认为这可能给植入环境造成了伤害,尤其是PCOS患者,Legro说。冷冻胚胎移植可以让女性的卵巢在体外受精期间从刺激中恢复过来,也给暴露后的子宫内膜脱落的时间。“通过选择冻存所有胚胎,相当于是为胚胎创造了最佳的、健康的环境,而不是把他们置于受损的环境中。”Legro解释。研究人员报告,与新鲜胚胎移植相比,冷冻胚胎移植与发生两种负面结果的几率较高也有关。先兆子痫和新生儿死亡在冷冻胚胎移植组中更常见。然而,没有患者在怀孕期间有发生重度子痫前期的危险,新生儿死亡率的差异也没有显著统计学差异。对这两种不良后果需要进一步研究,根据Legro称。
  • 安捷伦科技公司拓展在生殖遗传学领域的合作 与比利时大学签署新的两年期协议,专注于检测游离 DNA 和胚胎活检切片中的基因畸变
    安捷伦科技公司拓展在生殖遗传学领域的合作与比利时大学签署新的两年期协议,专注于检测游离 DNA 和胚胎活检切片中的基因畸变 2017 年 1 月 18 日,北京 安捷伦科技公司(纽约证交所: A)今日宣布其正在拓展与比利时鲁汶大学人类遗传学中心和鲁汶大学医院的合作。 人类遗传学中心主席以及人类遗传学领域顶级专家 Joris Vermeesch 将对此次合作进行协调安排。 早期的合作是在安捷伦的 OneSight 软件平台推向市场之前,此平台帮助研究人员观察和探究游离 DNA 测序数据中染色体和亚染色体非整倍性。 近年来,游离 DNA 分析受到了越来越多的关注,不仅是因为其可以用于进行无创产前检测,并且 cfDNA 存在于癌症患者的液体活检切片中。 此外,最近有证据表明 cfDNA 存在于胚胎囊胚液和培养基中,并且可将其用于胚胎植入前的基因筛查。 两个团队还对胚胎植入前基因检测的综合解决方案进行了调查研究,这使实验室能够使用单一测序工作流程在同一胚胎活检中对单基因遗传病和易位携带者以及染色体异常进行胚胎植入前基因筛查 (PGS)。 胚胎植入前基因检测 (PGT) 的开发工作还得到了弗兰德政府的资助。 合作伙伴预计 PGT 分析的商业化解决方案最早将于明年完成,随后将对该 PGT 解决方案对于辨别有丝分裂和减数分裂非整倍体的临床效果进行更加全面的评估,并检测胚胎活检中的单倍体和单亲同二倍体。 这些染色体畸变无法通过现有 PGS 商业化解决方案进行准确检测。 最终目标是使 IVF 群体能够缩短 IVF 治疗周期和达到让婴儿健康安全出生的条件所需的时间。 这些想法一旦得到证实,成本和时间的减少可能将成为获取相关部门报销的主要驱动因素。 “安捷伦非常高兴能够与 Vermeesch 教授拓展合作,在过去的两年中我们与他们建立了密切的合作伙伴关系。 这是一个独特且出色的政府-产业-学术合作伙伴关系案例,旨在将创新研究转化为商业化解决方案,以解决人类生殖遗传领域尚未满足的需求。”安捷伦基因组学部门副总裁兼总经理 Herman Verrelst 讲道。 人类遗传学中心主席 Joris Vermeesch 补充说:“在过去十年中,实验室一直致力于开发用于分析单细胞、胚胎和游离 DNA 的创新方法。与安捷伦的合作使我们能够让产品更具人性化、加快产品的临床应用,并且将产品推广到世界各地。”关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。 安捷伦与全球 100 多个国家和地区的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。 在 2016 财年,安捷伦的净收入为 42 亿美元,全球员工数约为 12500 人。 如需了解安捷伦公司的详细信息,请访问 www.agilent.com。
  • Nature:触发早期胚胎形成的初始分子机制
    Nature:触发早期胚胎形成的初始分子机制 2013-11-21 来源:生物360 作者:koo 61 0 .collect_btn a{float:right margin:0 background:#A90C11 height:25px line-height:25px padding:0 10px color:#FFF} .collect_btn a:hover{ background:#292627 height:25px line-height:25px padding:0 10px color:#FFF} 收藏(0) 添加到书签 -- 任何一名高中生物学新生对于怀孕的基本特征来说都是熟悉的,然而迄今为止,科学家们尚未发现触发发育中的胚胎形成的一连串事件的初始分子机制。 现在,来自耶鲁大学医学院(Yale University School of Medicine)的的遗传学家们在《自然》(Nature)杂志上报告称,他们鉴定出这样的一种生命触发器,就好比是&ldquo 推倒第一个多米诺骨牌让其他的骨牌也跟着倒下的手指,从而启动胚胎产生&rdquo 。 一个世纪以来,科学家们就已经知道母体提供一套遗传指令来驱动早期胚胎发生。这一套临时的母体指令有助引导胚胎如何读取它的基因组。然而,让母体停止对发育初期的胚胎发育进行控制的指令仍然未被发现。 在这项最新研究中,研究人员以斑马鱼为研究对象,测量了在这些指令中,从受精时到对胚胎发育的控制转移到胚胎时这一段时间(就斑马鱼而言,大约3小时;就人而言,大约为24小时)内哪些指令被最频繁地读取。 他们发现,三种蛋白因子--- Nanog、Pou5f1(也被称作 Oct4)和 SoxB1 具有最高的活性,确实是推动生命多米诺骨牌运转起来所必需的。令研究人员吃惊的是,这些因子与让人成体细胞经历重编程过程而转化为诱导性多能干细胞(induced pluripotent stem cells, iPSCs)所需的蛋白因子相同。 研究人员表示,这些因子是成体细胞的青春之源,有助人们理解生命形成中的第一个多米诺骨牌是如何被&ldquo 推倒&rdquo 的。
  • 英国科学家造出优质胚胎干细胞
    (图片来源:英国《每日电讯报》网站)   英国科学家说,他们已经制取了质量一流的“金标”干细胞,这可能引发一波治疗退化性疾病的新方法。   英国《每日电讯报》周二(12月6日)报道称,取自人体胚胎的这些干细胞在明年年底前就可以提供给研究人员用于临床试验。相关论文发表在最新一期的《细胞治疗》杂志上。   研究人员说,此前在人体上进行的胚胎干细胞试验一直使用质量较低的“研究级”干细胞,它们是在经过处理后被重新定为“临床级”的,而新的干细胞在被捐赠出来的时候就具有“临床级”质量,不需要昂贵而又危险的转换过程。   英国伦敦大学国王学院的研究人员把这些干细胞捐给了英国干细胞库。这些干细胞将在这里进行检测,以确保它们安全无害,并且达到了可用于人体试验的质量。   国王学院研究团队的主要成员彼得布劳德说:“就再生医学而言,可以随时投入临床使用的干细胞是每个人都向往的‘圣杯’。”   《每日电讯报》报道称,这些干细胞取自由接受人工授精治疗的患者所捐献的针头大小的胚胎,它们对患者本人不再有任何用处,而且即使不捐献出来也会被扔掉。   更多阅读   英国《每日电讯报》相关报道(英文)
  • 以色列科学家发现胚胎干细胞分化机制
    以色列希伯来大学哈达沙医学院的分子生物学家霍华德• 塞达尔教授和癌症研究专家伯格曼教授,发现了使胚胎干细胞分化为不同组织和器官细胞的机制。   他们研究发现,胚胎干细胞分化过程受一个称为G9a基因的影响,该基因可使让胚胎干细胞分化为不同组织和器官的基因关闭,从而使其无法发挥作用。据认为,该研究成果对今后的干细胞治疗具有重要意义。   胚胎干细胞是早期胚胎中尚未分化的全能细胞,它们与成体细胞不同,具备发育为各种组织和器官的潜力。负责这项研究的塞达尔教授解释说,当胚胎在子宫中着床后,细胞的分化过程即开始了。此时,细胞内有两种控制机制发生作用,一种使细胞保持其全能状态的基因被关闭,另一种使细胞发育为肌肉等特定组织的基因被启动。胚胎干细胞一旦开始分化为不同的组织细胞,便失去其全能性。   目前,一些科学家用成体细胞培育干细胞取得了一定进展,但这项研究也面临较大难度,主要是成体细胞已经失去了胚胎干细胞的特有潜力,很难通过重组使其达到胚胎干细胞的程度。塞达尔教授的这项研究成果为今后干细胞治疗带来了新的希望。科学家将来或许可以利用胚胎干细胞分化机制培育出新的组织和器官,用于取代人体中的病变部分。
  • 无锡将建全球性胚胎干细胞研发检测中心
    “5年内,无锡将建立一个全球性的胚胎干细胞研发中心、检测中心、移植中心、抗衰老中心和应用培训中心。这将为数以万计的肿瘤患者带来福音!”2月11日,江苏省人大代表、远东控股集团董事长蒋锡培向与会者介绍了胚胎干细胞的神奇之处,“我们家门口的一位老人心脏病很多年了,已经不能移植,不能搭桥,甚至不能吃药了,后来接受胚胎干细胞治疗,白了的头发重新变黑,所有心脏功能全部恢复了,真是很神奇啊!”   代表说,传统意义上治疗肿瘤等疾病,主要通过化疗和放疗。这是一种令病人非常痛苦、耗费巨大而成效也未必能尽如人意的方法。现在,有了胚胎干细胞技术,这在治病治疗上,是一项重大的历史性突破。
  • 我国学者利用谱系示踪技术揭示胚胎期冠状动脉的起源
    4月8日,国际学术期刊Circulation Research(《循环研究》)在线发表了中国科学院上海生命科学研究院营养科学研究所周斌研究组的最新研究成果“Endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls”。该研究利用遗传谱系示踪技术发现胚胎期心脏壁上的冠状血管起源于静脉窦而非心室心内膜,从而揭示了心血管研究领域内长期存在的争论性问题,为研究冠状血管的发生发育与再生治疗提供了理论基础。  心血管领域关于胚胎期冠状血管的起源一直存在争论,静脉窦和心室心内膜是最主要也是最具争议的两个起源。周斌组通过利用传统的心内膜标记基因Nfatc1构建了Nfatc1-Cre等工具小鼠,并对心室心内膜进行了谱系示踪实验。研究发现,虽然Nfatc1-Cre可以标记上大量冠状血管,但Nfatc1基因并不仅仅表达在心室心内膜,还表达在胚胎早期的静脉窦内皮细胞中。由此,研究人员对冠状血管的心室心内膜起源提出了质疑。  为了对心室心内膜实现特异性标记,周斌组等研究人员利用单细胞实时定量PCR、原位杂交实验等技术,发现并鉴定了特异性表达在心室心内膜的基因Npr3。通过构建Npr3-CreER等工具小鼠,对心室心内膜开展谱系示踪实验发现,心室心内膜很少贡献到胚胎期冠状血管。通过多种工具小鼠实验,进一步证实静脉窦内皮细胞很可能是胚胎期冠状血管的主要来源。  心内膜细胞和冠状血管内皮细胞虽都是内皮细胞,但两者的基因表达存在很大差异。在该课题中,研究人员还利用多种工具小鼠,分离出了胚胎期心内膜细胞和冠状血管内皮细胞,通过RNA-sequencing实验发现并鉴定出了一系列特异性表达在心内膜细胞或冠状血管内皮细胞上的基因,这对心血管领域内的后续研究具有重要意义。  该课题由张辉在研究员周斌的指导下完成,并得到了合作者斯坦福大学教授Sean M. Wu和南加州大学教授Henry M. Sucov的帮助。该工作得到了中科院、国家科技部、基金委、中组部、上海市科委等经费支持。 文章链接心内膜来源的细胞(红色)很少形成胚胎期心脏壁的冠状血管(绿色)。蓝色为细胞核。
  • 安捷伦参与研究分析诱导成体细胞为胚胎干细胞的机制
    免疫共沉淀芯片和基因表达谱芯片 用于研究Yamanaka因子如何启动细胞多能干性 2009年3月9日,中国上海&mdash 安捷伦科技有限公司(NYSE: A)近日宣布与中科院上海生命科学研究院和同济大学的研究团队合作发现诱导成熟细胞成为具备&ldquo 多能干性&rdquo 的胚胎干样细胞过程中的新机制。 作为文章的合著人之一,安捷伦公司的李坚表示:&ldquo 有关胚胎干细胞生物学特性的新发现无疑是非常有价值的。有关诱导成体细胞为胚胎干样细胞的研究是2006年重大科学发现。我们的研究对这个诱导过程有了一些新的理解。&rdquo 该项研究结果发表在《细胞研究》(Cell Research),标题为《小鼠胚胎干细胞发育信号通路网络中Yamanaka因子的重要调控作用》。 研究人员发现了发育调控网络中的16个信号传导通路,其中的9个通路以往从未被报道参与维持或诱导细胞的多能干性。 该项研究使用了安捷伦公司的免疫共沉淀芯片技术(ChIP-on-chip)结合基因表达芯片数据研究了已知的Yamanaka因子在诱导小鼠细胞多能干性中的作用。 安捷伦通过2008年科研基金项目资助了基因芯片用于该项研究。基因芯片是指在玻璃基片上布放大量DNA探针用于研究基因组的技术。免疫共沉淀芯片技术专门用于研究基因组中&ldquo 启动子区域&rdquo 的特性,该区域控制着各种基因的活性从而决定了细胞的功能。 关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者,公司的19,000名员工在110多个国家为客户服务。在2008财政年度,安捷伦的业务净收入为58亿美元。要了解安捷伦科技的信息,请访问: http://agilent.instrument.com.cn/
  • Cell Research|邓宏魁/李程等课题组合作利用小鼠二细胞胚胎建立具有形成类囊胚能力的新型全能性干细胞
    2022年5月4日,北京大学生命科学学院、生命联合中心邓宏魁课题组与李程课题组、北京大学医学部基础医学院徐君课题组在Cell Research杂志上发表了题为“Derivation of totipotent-like stem cells with blastocyst-like structure forming potential”的研究论文。该研究通过化学小分子筛选组合,建立了一个新的全能性干细胞培养条件,可以支持从小鼠二细胞胚胎及扩展型多能干细胞(EPS细胞)建立全能性干细胞系。这种新型全能性干细胞可在体外长期稳定培养,在分子特征和发育潜能上与小鼠二细胞胚胎高度相似,并且可以在体外被诱导形成在转录组水平上类似于体内囊胚的类囊胚结构。从左到右分别是李程、邓宏魁和徐君(来源:北京大学官网)如何在体外制备全能性干细胞,长期以来一直是干细胞领域的重要科学问题。在小鼠中,只有受精卵及二细胞胚胎具有全能性:单个细胞能够形成一个完整生命个体。随后发育形成的囊胚细胞可以被用于建立多潜能干细胞,滋养层干细胞及原始内胚层干细胞。然而,这些干细胞的发育潜能是受限的,无法同时发育到胚内和胚外组织。近年的研究发现:在小鼠多能干细胞群中存在极少量的表达小鼠二细胞胚胎分子标记MERVL的细胞,被称为二细胞样细胞(2-cell like cells),具有二细胞胚胎的部分分子特征(1)。然而,这种细胞无法在体外进行稳定的培养。此外,最近的研究发现,二细胞样细胞与体内二细胞胚胎仍存在较大差异,作为体外研究全能性的模型仍存在较大局限性(2)。北京大学邓宏魁团队长期以来致力于采用化学小分子调控的手段来建立调控干细胞的发育潜能的新方法(3-6)。2017年邓宏魁团队报道了一个新的小分子组合(LCDM),可以在人和小鼠中建立扩展型多能干细胞(EPS细胞)(4)。EPS细胞具有胚内胚外发育潜能,并且可以被诱导形成类囊胚(Blastoid)结构(7)。然而,与小鼠二细胞胚胎相比,这种细胞的分子特征与二细胞胚胎还有较大差异,细胞的胚外分化潜能也存在局限性,诱导获得的类囊胚结构中存在较高比例的中间态和中胚层样细胞(8)。最近北京大学杜鹏团队、中山大学王继厂团队等报道了全能性干细胞的诱导条件(9-10)。当前,如何直接自小鼠全能性胚胎建立全能性干细胞,仍是全能性干细胞研究的“金标准”。在本研究中,团队通过化学小分子高通量筛选,鉴定了能够在EPS细胞中诱导提高MERVL及Zscan4阳性细胞比例的化学小分子。通过进一步的组合优化,发现了一个可以将EPS细胞诱导为全能性干细胞的小分子组合CD1530,VPA,EPZ004777,CHIR 99021 (CPEC组合),诱导获得的全能性干细胞能长期稳定地在体外培养。更为重要的是,CPEC组合可以在体外支持从小鼠二细胞胚胎直接建立全能性干细胞系。研究者将由CPEC组合支持建立的全能性干细胞命名为全能潜能干细胞(totipotent potential stem cells, TPS细胞)。研究者进一步从转录组、表观特征、嵌合能力等多个方面深入分析了TPS细胞的分子特征和发育潜能。他们发现TPS细胞在单细胞水平上表达大量的全能性特征基因,并且下调了多能性的分子标记。进一步的单细胞转录组分析发现,TPS细胞群中存在一个在转录组水平与中期二细胞胚胎高度相似的细胞亚群(约10%)。他们定量分析了TPS细胞、杜鹏团队报道的TBLC中的全能干细胞亚群、二细胞样细胞与二细胞胚胎的转录组相似度,发现TPS细胞中的全能干细胞亚群与二细胞胚胎的相似程度是最高的。ATAC-seq和全基因组甲基化分析也表明:TPS细胞具备了二细胞胚胎的表观修饰特征。在发育潜能分析方面,他们通过在不同发育阶段的单细胞嵌合实验证明了:单个TPS细胞具备了同时向胚内和胚外发育的能力。为了严格证明TPS细胞在体内的胚外发育潜能,他们对E17.5的嵌合胎盘进行了单细胞转录组分析,结果表明TPS来源的细胞可以分化形成多种胚外滋养层细胞类型。并且,他们发现tdTomato标记的TPS细胞与有GFP标记的受体胚胎形成的嵌合胎盘中,存在大量的tdTomato单阳性嵌合细胞,高表达滋养层细胞的分子标记,排除了由细胞融合导致的假阳性可能。这些结果表明了TPS细胞具备了与二细胞胚胎相似的分子特征和发育潜能。自组装形成类囊胚结构的能力是评估细胞全能性最为关键的功能性标准之一。研究者证明了通过调控早期胚胎发育的信号通路,可诱导TPS细胞高效形成类囊胚结构。单细胞转录组分析表明,TPS诱导的类囊胚结构中存在与小鼠E4.5囊胚中类似的上胚层、滋养外胚层、原始内胚层细胞,并且在转录组水平上高度相似。通过转录组数据的定量分析,研究者进一步比较了TPS-类囊胚结构中的滋养层细胞、小鼠滋养层干细胞/多能干细胞组合诱导类囊胚中的滋养层细胞,发现TPS-类囊胚结构中的滋养层细胞更类似于着床前囊胚中的小鼠滋养外胚层细胞。并且,不同于EPS细胞诱导的类囊胚结构,TPS-类囊胚结构中并不存在大量的中间态细胞及中胚层样细胞。将TPS来源的类囊胚结构植入体内后,可以诱导蜕膜化反应,但是仍无法像正常囊胚那样发育成个体,提示诱导类囊胚的方案仍需优化。最后,研究者分析了CPEC组合在TPS细胞中诱导和调控全能性的分子机制。他们发现抑制HDAC1/2和Dot1L的活性、以及特异激活RARγ通路,对TPS细胞的诱导和维持具有重要作用。有趣的是,当用CPEC组合的小分子联合处理小鼠二细胞胚胎时,他们发现这些小分子处理能在一定程度上帮助维持小鼠胚胎中的全能性分子标记的表达。这些结果表明HDAC1/2、Dot1L、RARγ通路的协同调控对于小鼠全能性调控的重要作用。综上所述,该研究利用化学调控的方法从小鼠二细胞胚胎中建立了新型的全能性干细胞,该细胞具有与二细胞胚胎相似的分子特征及双向发育潜能,能够形成与体内着床前囊胚更相似的类囊胚结构。这一工作不仅为体外研究全能性提供了更为合适和可靠的模型,而且朝着在不同哺乳动物物种中利用全能性胚胎捕捉、维持全能性干细胞的目标迈出了重要的一步。邓宏魁教授,李程研究员,徐君研究员是这一研究成果的共同通讯作者。北京大学徐亚星,赵晶薷,任奕璇,王旭阳和吕钰麟为该研究成果的第一作者。本工作获得了生命科学联合中心、国家重点研发计划项目、国家自然科学基金等支持。
  • Life Tech Ion Torrent 下一代测序技术监测体外受精胚胎
    摘要:基因组生物学与技术(AGBT)大会上牛津大学遗传学家Dagan Wells谈到,新泽西州生殖诊所成功地将新一代测序(NGS)技术应用于检测常规体外受精(IVF)条件下的胚胎。该技术在生殖遗传学的应用创下新高。有几家公司已经推出了针对染色体异常的无创产前诊断;2个研究小组报告了在婴儿无创全基因组检测上的进展。 在基因组生物学与技术(AGBT)大会上牛津大学遗传学家Dagan Wells透露,新泽西州生殖诊所成功地将新一代测序(NGS)技术应用于检测常规体外受精(IVF)条件下的胚胎。Wells认为:&ldquo 新技术的应用有望改变游戏规则,让夫妇在体外受精时能接受更好受孕选择。&rdquo NGS技术在生殖遗传学领域不断有突出表现。这包括之前几家公司已经推出了针对染色体异常(如21三体)的无创产前诊断,婴儿无创全基因组检测上的进展, 另外Stephen Kingsmore等人报告了新生儿的快速全基因分析仅需50小时。 21年前就读于伦敦大学的Wells博士首次开展关于胚胎植入前遗传学诊断(PGD)的研究,他说:&ldquo 目前,新一代测序技术正在为体外受精操作提供标记。&rdquo 如今,他在国立卫生研究院牛津大学生物医学研究中心领导一个实验室,并合作于他之前工作的新泽西州领先的体外受精诊所。 体外受精诊所,如密西根州的Reprogenetics 和 Genesis Genetics,已在PGD领域提供数千个遗传疾病,不过,体外受精胚胎即便没有已知的遗传风险因子,也要接受遗传筛查。Wells称:&ldquo 约一半以上的体外受精的胚胎会出现染色体异常,如果出现异常情况,胚胎大多数情况下是不会移植的,否则会造成孕期流产。由于我们的处理会带来非常高比例的染色体异常,因此能确保不将染色体高度异常的胚胎植入子宫很重要。&rdquo Wells称:&ldquo 最好的方法是,一次体外受精周期只将单一的胚胎植入子宫进行受孕,而那些染色体异常的胚胎看上去和正常的一样,甚至是染色体高度异常也不会对胚胎形态造成任何明显影响。&rdquo 体外受精胚胎的监测技术 为了寻找新技术以提高准确度和降低成本,Wells选取了Life Technology公司Ion Torrent PGM平台(下一代测序技术)。他说:&ldquo 我们希望技术平台能够做到用户友好化,并能应用于诊断系统中而不会出现繁琐的问题。此外,我们还需要技术平台具有快速的特点。由于Ion Torrent系统能适应这些测序需求,因此我们选择了它。&rdquo Wells称:&ldquo 胚胎发育第3天可进行DNA检测,不过第5天就需要植入子宫中。一旦超过5天,胚胎快速发育和子宫不再受孕的风险会增加。因此,速度和准确度都是必需的。&rdquo 此外,许多的IVF诊所由于缺少遗传学专家不能不将细胞送到专门的实验室去检测,这也要耽误1天时间。 测序技术在胚胎监测的新应用 Wells称:&ldquo Ion Torrent PGM 具有与iPhone应用程序一样的非常友好的用户界面,能够将每一个DNA片段分配到染色体区域内,因此我们能计算出每个染色体来源的片段。此外,样本测序的重复性也能保证。&hellip &hellip 我们仅需要每个染色体的数千个DNA片段,而对小染色体而言,约5-10,000的读长在统计学上很有说服力。&rdquo 每一个测序需要的总读长约为15万。Wells称:&ldquo 如果得到5%的基因组覆盖率,我们就会很高兴了,因为这足以用于染色体诊断。&rdquo Wells研究小组已在单芯片上分析了32个胚胎DNA,这一数值增加到100也是可行的。此外,相比于单阵列方法,该技术的成本是较低的,每一个样本需要70美元,而下一代测序价格的下降趋势将加强这一优势。 经过广泛临床前验证后,威尔斯和同事有足够信心对一对夫妇进行基于下一代测序技术的生殖遗传检测,经过遗传数据分析后,两次怀孕的状况都很正常。 Wells称:&ldquo NGS技术(处于初期)的优势体现在:诊断单基因疾病以及发现怀孕障碍症遗传因子。&rdquo
  • 安捷伦推出独有的新一代测序型胚胎植入前基因检测 (PGT) 解决方案
    p ——Agilent OnePGT 解决方案帮助生育专家获得全面见解,提高体外受精 (IVF) 胚胎等级 /p p style=" text-indent: 2em " 2018年11月5日,北京——安捷伦科技公司(纽约证交所:A)日前推出 Agilent OnePGT 全基因组新一代测序 (NGS) 解决方案,用于胚胎植入前基因检测 (PGT)。OnePGT 可在一次组织活检中完成多种单基因疾病 (PGT-M)、易位 (PGT-SR) 和非整倍体 (PGT-A) 的同时检测。安捷伦已于 2018 年 11 月 1–3 日在法国巴黎举办的第 5 届孕前、胚胎移植前和产前基因诊断辩论会 (CoGEN) 上展示 OnePGT 解决方案。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/5c216558-a115-455d-923d-1a05cda61645.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-indent: 2em " OnePGT 可指导实验室在几天内由组织活检材料得到一份内容全面的报告。以安捷伦的 Alissa平台为基础,数据分析由经过优化和认证的流程进行简化,以内置质量控制指标和审计追踪实现基因畸变的自动识别。这款创新解决方案使生育专家能更轻松地获得全面的 PGT 数据,以便提高胚胎等级,从而确定用于移植的最佳质量胚胎。 /p p style=" text-indent: 2em " 安捷伦副总裁兼基因组学事业部总经理 Kamni Vijay 谈道:“OnePGT 提供高度准确而全面的遗传学信息,使生育专家及其协助的夫妻能够就胚胎等级和胚胎选择做出更明智的决策,由此提高成功孕育健康胎儿的几率。安捷伦旨在为实验室提供完善的一体化工作流程,既简单易用,又能提供准确数据帮助获得全面见解。” /p p style=" text-indent: 2em " Vijay 同时指出,对目前只进行一项检测的实验室而言,OnePGT 能在不大幅增加实验室空间与资源占用的前提下,扩展他们在这一朝阳领域的业务量。 /p p 香港中文大学胚胎移植前基因诊断实验室主管蔡光伟教授表示:“采用 Agilent OnePGT 解决方案,我们现在可以同时进行 PGT-M/-A/-SR 检测,利用一次组织活检即可更快获得全面的遗传学信息。单一的通用工作流程不仅可以增加每个胚胎可获得的遗传学信息,还能提高我们实验室的效率,因为只有一个平台需要维护。” /p p style=" text-indent: 2em " 最近的数据表明,初次生育女性的平均年龄已升至 30 岁以上。随着女性受孕年龄的增长,胚胎中染色体畸变的几率也会相应增加,导致胚胎着床率下降,流产率增高。Agilent OnePGT 获得的全面数据可帮助生育专家有更大机会选择活力最强、最健康的胚胎进行后续移植。 /p
  • 人类发育早期阶段可“透视”
    据英国《自然》杂志近日发表的一篇胚胎学论文,英国科学家团队对一个处于原肠胚形成阶段的人类胚胎,进行了详细的细胞和分子研究。原肠胚形成是人类发育早期的一个重要事件,这一阶段对人类发育至关重要,但有时很难研究。研究结果带来了对此的独特认知。  原肠胚形成是人类发育早期阶段的一个决定性时刻。这个过程从受精后14天左右开始,持续约一周左右。人们目前对人类原肠胚形成的理解基本局限于实验模型,无法直接对其开展研究,因为这个阶段的人类胚胎很难获得,部分原因是国际指南之前将培养人类胚胎的时限控制在受精后的14天内。  英国牛津大学科学家山卡尔思林尼瓦斯及其同事,此次分析了一个在自愿终止妊娠后被捐赠用于研究的人类胚胎,该胚胎所处的阶段相当于受精后的第16至19天。作者对胚胎中的细胞类型和这些细胞表达的基因进行了详细的描述,并与实验模型进行了对比。研究团队检测到原始生殖细胞(成为卵子或精子细胞的干细胞)和红细胞等等。他们还发现,神经系统的细胞特化在这个发育阶段尚未开始。  虽然此次只研究了一个胚胎,但研究结果为其他模型系统的实验解读提供了新的背景。研究人员总结指出,这些数据还为人类原肠胚形成这一此前未经探索的人类胚胎发育基本阶段提供了独特认知。
  • 滨松数字病理扫描仪亮相中国解剖学会第十五届组织学与胚胎学青年学术研讨会
    滨松数字病理扫描仪亮相中国解剖学会第十五届组织学与胚胎学青年学术研讨会 中国解剖学会第十五届组织学与胚胎学青年学术研讨会于2017年7月12日至7月13日,在石河子大学举办。本次会议由中国解剖学会组织胚胎学专业委员会主办,新疆石河子大学医学院协办。旨在加强组织学与胚胎学专业同行们之间的教学、学术、技术交流与协作,展示教学改革成效,探讨组织胚胎学未来发展趋势。 滨松数字病理扫描仪NanoZoomer-SQ于本次会议中亮相,由滨松中国与上海千欣仪器有限公司共同出展,为与会专家们展示了独特的“轻便式”数字病理解决方案。 NanoZoomer-SQ于2015年推出,主要实现单张组织切片的全视野扫描。SQ有一个明显的优势,就是结构紧凑(360×380×440 mm,20kg),是滨松NanoZoomer家族中身材最“苗条”的一个,即使在一个超小的实验室,也能进行安放。轻巧的身形,并可直接与手提电脑连接,使其也易于移动,可以满足需在不同地点扫描切片时及时移动的需求。 滨松 NanoZoomer-SQ除了小巧身形博得了与会者专家们的注目外,其与系列中其他大型设备一样优秀的图像质量也获得了专家们的认可。装载器、传感器和光学系统高度集成于设备中,保证了可靠性和坚固性。另外,SQ具有很高的性价比,用户只需较低的成本,即可实现数字切片的远程访问和图像浏览,非常适合希望实现病理切片数字化的中小实验室和基层单位。 通过现场试用,许多与会专家也表示其操作也十分友好简单。NanoZoomer-SQ只需USB3.0标准接口及电源线相接,即可完成安装。在具体进行扫片时,用户只需通过十分直观的自有软件,即可扫描切片并观察结果,负责扫片和观察的人员只需简单的2步操作就能够利用NanoZoomer-SQ完成切片扫描工作。另外,用户也可根据具体的需求进行个性化的定制设置。 随着行业的不断发展,需要更加智能化、高品质的病理切片扫描、储存和共享技术,在本次会议中,滨松通过对“硬件+软件”的一体化和“紧凑、低成本”解决方案的展示,为中小实验室和基层单位数字病理的发展开拓了新的思路和可能。
  • Cell:自我组织的人类心脏类器官
    位于维也纳的奥地利科学院的生物学家Sasha Mendjan和他的团队使用人类多能干细胞培养出芝麻大小的心脏模型,称为心脏样体(cardioids,生物通注),它可以自发地自我组织,在不需要实验支架的情况下发展出一个空心的房间。这项进展,允许创造一些迄今为止最真实的心脏类器官,发表在5月20日的Cell杂志上。此前,科学家们已经通过组织工程制造出了3D心脏类器官,这种方法通常需要组装细胞和支架,就像用砖块和砂浆建造房子一样。但是,这些工程类器官对损害的生理反应不像人类心脏那样,因此往往不能作为良好的疾病模型。“组织工程在很多方面都非常有用,比如,如果你想测量收缩,”Mendjan说。但在自然界中,器官不是这样形成的。在胚胎时期,器官通过一个叫做自组织的过程自发地发育。在发育过程中,细胞组成部分相互作用,随着器官结构的出现和生长而四处移动和改变形状。“自组织是自然形成雪花晶体或鸟类群体行为的方式。这很难设计,因为似乎没有计划,但仍有一些非常有序和有力的东西出现了。”“器官的自组织更有活力,很多事情我们不了解。我们认为这种“隐藏的魔法”的发展,我们还不知道的东西,是目前疾病没有被很好地建模的原因。”Mendjan和他的团队想要通过在盘子里的自组织来模拟发展。他们以特定的顺序激活所有参与胚胎心脏发育的六个已知信号通路,诱导干细胞自我组织。随着细胞分化,它们开始形成不同的层,类似于心脏壁的结构。经过一周的发育,这些类器官自组织成一个有封闭腔的3D结构,类似人类心脏的自发生长轨迹。此外,研究小组还发现心脏样的壁状组织有节奏地收缩,挤压腔内的液体。Mendjan说:“这并不是说我们在使用与其他研究人员不同的东西,而是我们在使用所有已知的信号。”他补充说,不是所有的途径都需要引导干细胞成为心脏细胞。“所以他们想,‘好吧,它们在体外没有必要。’但事实证明,所有这些途径都是必要的。它们对细胞自我组织成器官非常重要。”该团队还测试了心脏类物质对组织损伤的反应。他们用一根冷钢棒冷冻小心脏的部分部位,并杀死该部位的许多细胞。细胞死亡通常是在诸如心脏病发作等损伤后观察到的。研究小组立即发现,心脏成纤维细胞——一种负责伤口愈合的细胞——开始向损伤部位迁移,并产生修复损伤的蛋白质。“我们希望人类的心脏模型能够更加自然地发展,从而能够预测疾病,”Mendjan说,“通过这种方式,制药公司将更愿意将更多药物引入临床试验,因为他们对试验结果更加确定。”该团队计划培育具有多个腔室的心脏类器官,就像在真正的人类心脏中看到的那样。许多先天性心脏病发生在其他心室开始形成的时候,所以多腔模型将帮助医生更好地了解缺陷是如何在胎儿中发展的。
  • 单细胞测序技术助力科学家诱导出人类全能干细胞
    近日,中国科学院和深圳华大生命科学研究院等多家机构的科研人员,通过体细胞诱导培养出了类似受精卵发育3天状态的人类全能干细胞,这是目前全球在体外培养的“最年轻”的人类细胞,是继科学家成功诱导出人类多能干细胞后,再生医学领域的又一颠覆性突破。相关研究成果于北京时间3月22日凌晨在国际顶级学术期刊《自然》(Nature)上发表。 研究者们开发了一种非转基因、快速且可控的“鸡尾酒”细胞重编程方法,能够将人的多能干细胞转化为全能性的8细胞期胚胎样细胞,即相当于受精卵发育3天状态的全能干细胞。该成果将助力实现未来人体器官的体外再生,对解决器官短缺、异体和异种移植排斥反应等问题有着重大意义。 2012年,诺贝尔生理学或医学奖颁发给了成功将已经成熟的体细胞诱导成为囊胚阶段的多能干细胞的日本科学家山中伸弥 (Shinya Yamanaka)。人类囊胚期的细胞是受精卵发育5-6天的状态,其进一步发育的能力比较受限。 而这个研究将该领域往前推进了一大步,首次获得了受精卵分裂仅3天的胚胎细胞。在受精卵发育早期,每天都发生着巨大变化,正是这2-3天,使科学家第一次通过体外诱导得到了人类8细胞期胚胎样全能干细胞。这是迄今为止在体外诱导获得的“最年轻”的人类细胞,具备非常强的发育潜力。这项研究也将有助于解开人类胚胎早期发育的密钥。 “这些全能性的8细胞期胚胎样细胞重建了受精卵仅分裂3次后的胚胎状态,相比过去的多能干细胞,这种细胞可以分化为胎盘组织,并可能发育为更成熟的各类身体组织,为全世界数百万需要进行器官移植的患者带来了福音。”论文的通讯作者,中国科学院Miguel A. Esteban教授、Md. Abdul Mazid博士和李文娟博士表示。 “该进展也是再生医学和单细胞测序技术相结合的完美典范”,论文的另一位通讯作者、深圳华大生命科学研究院刘龙奇博士介绍说,“通过大规模单细胞多组学图谱的方法,对干细胞技术手段在体外或体内获得的细胞或组织进行高效鉴定和机制解析,将极大地加速再生医学领域的发展。” 这是研究人员首次在真正意义上将人多能干细胞“转化”为全能性的胚胎细胞,使得人们可以将“成年”版本的细胞,逆向转化为具有更多可能性的“婴儿期”版本的细胞。并且,由于这次得到的全能细胞更接近早期胚胎的原始状态,若将其用于再生医学,培育得到的器官也将更接近于真实器官的状态,更有利于移植。 这项研究的突破,得益于单细胞测序技术的进步。在过去,研究人员可能得对成千上万个细胞进行处理和培养,成功的概率只有不到百分之十。如今,基于华大自主开发的单细胞建库测序平台(DNBelab C4),结合华大智造的DNBSEQ测序技术,科学家可以以高灵敏度和准确性的方法进行多维的单细胞分析,快速得到具有重要发育潜能的细胞,并研究这些细胞的发育去向。 此外,研究团队还将诱导得到的全能干细胞分类并注射到小鼠体内进行进一步的发育,然后使用华大的单细胞测序技术进行大规模细胞图谱分析。最终,研究人员确定了实验得到的全能干细胞与人8细胞期胚胎细胞高度相似,证明了该细胞的全能性。这为未来使用患者本人细胞进行器官培养,并用于自身器官移植和替换,提供了科学依据。 该研究由中国科学院和深圳华大生命科学研究院牵头,由英国剑桥大学、吉林大学,以及孟加拉国拉杰沙希大学等多个研究团队共同参与。本研究已通过伦理审查,严格遵循相应法规和伦理准则。
  • 人类干细胞与生殖工程重点实验室顺利通过卫生部验收
    近日,卫生部组织专家对依托中南大学组建的人类干细胞与生殖工程重点实验室进行验收。经专家组认真审核,一致同意,该试验室顺利“过关”。   专家组由中国科学院动物研究所刘以训院士、中国医学科学院基础医学研究所王琳芳院士、南方医科大学姚开泰院士、中国医学科学院基础医学研究所章静波教授、华中科技大学朱桂金教授、湖南师范大学生命科学学院张健教授、湖南师范大学生命科学学院梁宋平教授等七人组成,刘以训院士担任验收组组长。   验收会上,实验室主任卢光琇教授就实验室建设情况作了详细的工作汇报。在建设期间,实验室结合人类干细胞与生殖工程的发展需求,建立了“人类胚胎干细胞和诱导性多能干细胞建系与建库及定向诱导分化”、“成体干细胞建系及定向诱导分化”、“人类辅助生殖技术和精子库技术”3个实验平台,并围绕三个方向开展研究工作,全面完成了实验室组建计划书的各项任务,获得国家级科技进步二等奖1项,获教育部科技进步一等奖1项,承担973、863、国家自然科学基金、欧盟及省部级等国际国内科技项目32项,累计科研经费达2800余万元 发表SCI收录期刊论文46篇,其中包括在国际顶尖杂志《Cell Stem Cell》上发表 培养了博士后、博士及硕士研究生141名 举办了国际学术会议2次,接受和派出访问学者40余名。   该实验室于2006年由卫生部正式批文成立,实验室现有总面积有5700平米,仪器设备总资产有3000余万元,目前,实验室已建立了世界上最大的胚胎干细胞库,建立了世界上第一个基因完全纯合的人类孤雌干细胞系 建成了居国际领先行列的辅助生殖与精子库技术体系,完善了辅助技术伦理学模式和管理规范。经过四年的建设,实验室形成了高水平的人类干细胞与生殖工程新技术研究与临床应用体系。   在听取汇报、审阅材料和实地考察之后,专家们认为:该实验室通过四年的建设,超额完成了建设任务书的各项任务,达到了预期的建设目标,取得了良好的成效。最后专家组经过认真讨论,一致同意该实验室通过验收。   本次验收会由卫生部科教司主持,卫生部、省卫生厅及学校科技处相关领导参加了验收会。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制