当前位置: 仪器信息网 > 行业主题 > >

人红细胞生成素受体

仪器信息网人红细胞生成素受体专题为您整合人红细胞生成素受体相关的最新文章,在人红细胞生成素受体专题,您不仅可以免费浏览人红细胞生成素受体的资讯, 同时您还可以浏览人红细胞生成素受体的相关资料、解决方案,参与社区人红细胞生成素受体话题讨论。

人红细胞生成素受体相关的论坛

  • 微量元素与人体健康--钴

    正常成人含钴为1.1~1.5mg。各种动植物中都含有一定量的钴,肝、肾、海洋生物和绿叶蔬菜是钴的良好来源。人类不能直接利用钴合成维生素B12,主要有能合成维生素B12的动物及细菌供给  钴是维生素B12的组成成分,其作用是依靠维生素B12的作用来实现,其缺乏可造成巨幼红细胞贫血。钴还能通过促进红细胞生成素的合成和分泌增加,直接促进血红蛋白的合成,红细胞生成增多。

  • 2012年FDA批准的39个新药

    1. 谷卡匹酶(Glucarpidase)——BTG International Inc.甲氨蝶呤解毒药。甲氨蝶呤为抗叶酸类抗肿瘤药,主要通过对二氢叶酸还原酶的抑制而阻止肿瘤细胞的生长和增殖,其在正常情况下可经肾排泄,但大剂量使用则可能导致肾功能严重受损乃至肾衰竭,而受损的肾脏无法及时清除甲氨蝶呤,使之长时间高水平存在于血液中,可进一步造成肝肾损伤、严重口腔溃疡、肠内膜损伤、皮疹甚至死亡。目前临床上常用的甲氨蝶呤解毒剂为亚叶酸钙,然而对于高剂量甲氨蝶呤所致甲氨蝶呤排泄延迟的缓解不尽理想。是一种应用重组DNA技术,在经遗传工程修饰的大肠杆菌中产生,相对分子质量为83000,其在体内可将甲氨蝶呤转换化为无毒性的代谢产物4-脱氧-4-氨基-N10-甲基蝶酸(DAMPA)和谷氨酸,为体内甲氨蝶呤提供了一条非肾消除途径,从而可有效缓解肾功能障碍用药者的中毒症状。2. 巨大戟醇甲基丁烯酸酯(Ingenol Mebutate)——LEO Pharma AS细胞死亡诱导剂,用于日光性角化病(Actinic Keratosis)的局部治疗。光线性角化病又名老年角化病或日光性角化病,是一种由持续日晒引起的癌前病变,可进一步演变为鳞状细胞癌(Squamous Cell Carcinoma)。巨大戟醇甲基丁烯酸酯是从澳大利亚植物Euphorbia peplus的汁液中提取的活性成分,母核为巨大戟醇,可诱导细胞凋亡,但其治疗AK的具体作用机制尚不明确。3. 阿西替尼(Axitinib)——Pfizer Inc.多靶点激酶抑制剂(VEGFR-1、VEGFR-2、VEGFR-3、PDGFR、cKIT),用于一线治疗失败的晚期肾癌(Renal Cell Carcinoma)。近期获批用于治疗肾癌的药物包括索拉菲尼(2005年)、舒尼替尼(2006年)、坦西莫司(2007年),依维莫司(2009年),贝伐单抗(2009年)、帕唑帕尼(2009年)。4. 中文名未知(Vismodegib)——Genentech Inc. (Roche Group)SMO受体(Smoothened Receptor)拮抗剂(阻断Hedgehog信号通路),用于治疗成人晚期基底细胞癌(Basal Cell Carcinoma)。基底细胞癌是三大皮肤癌之一,另两种为鳞状细胞癌、恶性黑色素瘤,Vismodegib是首个被批准用于治疗基底细胞癌的药物。5. 中文名未知(Ivacaftor)——Vertex Pharmaceuticals Inc.CFTR(Cystic Fibrosis Transmembrane Regulator,囊性纤维化跨膜传导调节蛋白)增效剂,用于治疗G551D突变的囊性纤维化(Cystic Fibrosis)。囊性纤维化是白人中最常见的威胁生命的遗传性疾病,该病CFTR基因突变所引起,CFTR的缺陷或缺失可造成肺部细胞膜上离子流通过量减少,最终导致慢性肺部感染以及渐进性肺损伤。美国约48%的CF患者其CFTR基因上有双拷贝F508del突变,40%的患者有单拷贝F508del突变,约4%的患者则有单拷贝G551D突变。F508del突变的个体,其体内CFTR蛋白不能有效地到达细胞表面;而对于G551D突变的个体,其CFTR蛋白虽存在于细胞表面,但并不能发挥正常作用。Ivacaftor通过增强CFTR的离子运输能力,改善CFTR蛋白的功能。6. 他氟前列腺素(Tafluprost)——Merck & Co. Inc.前列腺素类似物,用于治疗开角型青光眼(Open-Angle Glaucoma)、眼高压症(Ocular Hypertension)。他氟前列腺素能选择性激动前列腺素FP受体(前列腺素有DP、EP、FP、IP、TP五种亚型),促进房水经葡萄膜巩膜流出,降低眼内压。他氟前列腺素是首个不含防腐剂的前列腺素类似物的滴眼药,药效与拉坦前列腺素(Latanoprost)类似,但持续时间更长。7. 中文名未知(Lucinactant)——Discovery Laboratories Inc.肺表面活性剂(西那普肽+ DPPC+ POPG+ PA),用于预防早产儿呼吸窘迫综合征(Respiratory Distress Syndrome)。Lucinactant是在西那普肽(Sinapultide)的基础上,根据天然人肺表面活性剂的特点设计而成的产品,用于模拟人肺表面活化蛋白B。8. 中文名未知(Peginesatide)——Affymax Inc.促红细胞生成剂,用于治疗接受透析的慢性肾脏病(Chronic Kidney Disease)患者的贫血。Peginesatide是一种聚乙二醇肽,可结合并刺激人类促红细胞生成素受体,通过增加血红蛋白,从而升高网织红细胞计数,达到改善贫血的目的。早在1989年,Amgen公司第一个基因重组药物Epogen(促红细胞生成素)获得FDA的批准,用于各种贫血的治疗,2003年销售额达24.4亿美元。之后,Amgen公司第二代促红细胞生成素Arnesp、Johnson &Johnson的Procrit/Eprex均取得巨大成功。Peginesatide的优势在于,患者只需每月注射一次,而Epogen则需每月注射12次。9. 中文名未知(Florbetapir F18)——Avid Radiopharmaceuticals(Eli Lilly)放射性诊断剂,用于阿尔茨海默病(Alzheimer's disease)的诊断。Florbetapir F18是一种分子显影剂,患者注射后进行PET(Positron Emission Tomography)扫描,用于检测患者脑内的β-淀粉样蛋白斑。10. 阿伐

  • 重组细胞因子分类及应用概述

    一、细胞因子的概念细胞因子(cytokine)是由机体多种细胞分泌的小分子蛋白质,通过结合细胞表面的相应受体发挥以调节免疫应答为主的生物学作用。细胞因子具有 非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢 等。二、细胞因子的命名细胞因子按其来源可分为:由单个核吞噬细胞产生的细胞因子称为单核因子(monokine);由淋巴细胞产生的细胞因子称为淋巴因子 (lymphokine)等。按其作用可分为干扰素、集落刺激因子、肿瘤坏死因子、生长因子和趋化因子等。部分由不同细胞分泌的细胞因子,其基因及编码蛋 白与结构清楚者,在免疫调节、造血和炎症中发挥重要作用,又称为白细胞介素(interleukin,IL)。也可以依据结构或者其受体结构分类,我们的 趋化因子目前没有受体产品。三、细胞因子的特征1、低分子量;一般为<60kD的多肽或糖蛋白。多以单体形式存在,少数为二聚体,三聚体。2、天然细胞因子由抗原、丝裂原或其他刺激物活化的细胞所分泌,通过旁分泌(paracrine)、自分泌(autocrine)或内分泌(endocrine)方式在局部发挥短暂作用。3、一种细胞因子可由多种细胞产生,同一种细胞可产生多种细胞因子。4、需通过与靶细胞表面相应受体结合后发挥其生物学效应。5、具有高效性、多效性、叠性、拮抗性、协同性和网络性。四、细胞因子的分类1、白细胞介素(interleukin,IL-s)最初是指由白细胞产生又在白细胞间发挥作用的细胞因子。2、干扰素(interferon,IFN)最早发现的细胞因子,有干扰病毒感染和复制的能力。分α、β和g三种类型。3、肿瘤坏死因子超家族(tumor necrosis factor,TNF)1975年发现的一种能使肿瘤发生出血坏死的物质。4、集落刺激因子(colony-stimulating factor,CSF)指能够刺激多能造血干细胞和不同造血祖细胞增殖分化,在半固体培养基中形成相应细胞集落的细胞因子。包括G-CSF(粒细胞)、M-CSF(巨噬细胞)、 GM-CSF(粒细胞、巨噬细胞)、Multi-CSF(多重)(IL-3)、红细胞生成素(EPO)、干细胞生长因子(SCF)、血小板生成素 (TPO)等。5、趋化因子(chemokine)主要功能是招募血液中的单核细胞、中性粒细胞、淋巴细胞等进入特定的淋巴器官和组织以及感染发生的部位。根据趋化因子近N端半胱氨酸(Cys)的位置、排列方式和数量,可分为CC、CXC、C、CX3C四个亚家族。6生长因子(growth factor,GF)生长因子(GF)是具有刺激细胞生长作用的细胞因子。五、细胞因子的生物学活性1.介导自然免疫、参与抗肿瘤和抗感染2.调节T、B细胞活化、生长和分化,介导细胞免疫和体液免疫3.刺激造血生成、刺激骨髓祖细胞生长和分化为各种成熟血细胞4.在炎症、感染和内毒素血症中的作用5.在超敏反应和自身免疫病中的作用6.细胞因子通过激活其相应受体(CKR),导致细胞的增殖与分化或分泌某种蛋白质。六、四种蛋白表达体系比较表达细胞优点缺点原核E. coli繁殖快、成本低、产量高遗传背景及基因表达调控机制清楚易于大规模培养,成本低廉蛋白常为包涵体,纯化困难无糖基化(分泌蛋白,细胞膜上蛋白不可用),生物活性不定无翻译后修饰,内毒素含量高酵母Pichia使用简单,表达量高,His-tag便于纯化,一定的翻译后加工可进行糖基化修饰,操作简单,适合大规模生产可诱导表达,也可分泌表达,产物便于纯化有时会出现蛋白切割问题糖基化不能满足要求昆虫High-5产量高 ,翻译后加工与哺乳动物相似对于部分有毒性或较难表达蛋白有优势无内毒素污染蛋白活性不如哺乳动物适合表达激酶等定位于细胞内的真核蛋白哺乳CHO HEK293完善的翻译后加工,活性接近天然蛋白周期长、技术要求高表达产量低

  • 重组细胞因子类药物研究的现状与发展前景

    细胞因子(cytokine)是由免疫细胞及相关细胞产生的一类调节细胞功能的高活性、多功能的多肽分子,不包括免疫球蛋白、补体和一般生理性的细胞产物。细胞因子通常由淋巴细胞、单核巨噬细胞、成纤维细胞、内皮细胞等相关细胞产生,按其功能及与免疫学的关系可分为:⑴具有抗病毒活性的细胞因子,如干扰素(interferon,IFN);⑵具有免疫调节活性的细胞因子,包括白细胞介素(interleukin,IL)类的IL 2、IL 4、IL 5、IL 7、IL 9、IL 10和IL 12,以及β型转化生长因子(transforming growth factor β,TGF β);⑶具有炎症介导活性的细胞因子,包括以肿瘤坏死因子(tumor necrosis factor,TNF)及IL 1、IL 6和IL 8为代表的结构相似的小分子趋化因子;⑷具有造血生长活性的细胞因子,包括IL 3、IL 11、集落刺激因子(colony-stimulating factor,CSF)、促红细胞生成素(erythropoietin,EPO)、干细胞因子(stem cell factor,SCF)和白血病抑制因子(leukemia inhibitory factor,LIF)等。 重组细胞因子是利用基因工程技术生产的细胞因子产品,作为药物用于治疗肿瘤、感染、造血障碍等,可收到良好的疗效。近十多年来,重组细胞因子类药物的研制有较快发展,相关的新药陆续上市。本文重点介绍各类药物的研究进展、不同表达系统的表达水平和基因来源情况,以及各类重组细胞因子的基本特点和适应症。 国内外研究动态和市场现状 目前国内市场上主要的国产重组细胞因子类药物包括乙肝疫苗、IFN、IL 2、G-CSF、重组链激酶(recombinant streptokinase, rSK)、重组表皮生长因子(recombinant endothelial growth factor,rEGF)等15种基因工程药物。组织溶纤原激活剂(tissue plasminogen activator,T-PA)、IL 3、重组人胰岛素、尿激酶等十几种多肽药物正处于临床Ⅱ期试验阶段,单克隆抗体的研制已从实验阶段进入临床阶段。正在开发研究中的项目包括采用新的高效表达系统生产重组凝乳酶等40多种基因工程新药。 在欧美市场上,对现有重组药物进行分子改造而开发的某些第二代基因药物已经上市,如重组新钠素、胞内多肽等。另外,重组细胞因子融合蛋白、人源单克隆抗体、反义核酸,以及基因治疗、新的抗原制备技术、转基因动物生产等,均取得了实质性的进展。国外生物医药的目前发展动向,主要反映在以下几方面。 与血管发生有关的细胞因子 肿瘤血管生长因子(tumor angiogenesis factors,TAF)包括研究较多的血管内皮生长因子(vascular endothelial growth factor,VEGF)、成纤维细胞生长因子(fibroblast growth factor,FGF)、血小板源生长因子(platelet-derived growth factor,PDGF)等,它们促进肿瘤新生微血管的生长。临床研究表明,阻断VEGF受体2(VEGFR 2)和PDGF受体β(PDGFR β)等,可达到通过抗血管生成来治疗肿瘤的目的。1998年,美国科研人员发现两种用于治疗癌症的血管发生抑制因子(即抗血管生长因子)和内皮抑制素,以及一种抗血管生长蛋白,即血管抑制素(vasculostatin),都有较好的疗效。另外,VEGF、FGF和血管生长素(angiopoietin)等能够通过刺激动脉内壁的内皮细胞生长来促进形成新的血管,从而对冠状动脉疾病和局部缺血产生治疗作用。

  • 【资料】生活中的化学——认识兴奋剂!

    兴奋剂做为一种短期提高体育成绩,但对身体造成极度危害的药物,已经象幽灵一样附着在人类体育运动许多领域,坫污着人类崇高的体育精神。   那么什么是兴奋剂呢?兴奋剂实际是禁用药物的统称。即凡是能提高运动成绩并对人体有害的药物,都是兴奋剂。目前人们还没有发现既能提高成绩,而不损害身体的兴奋剂,由于兴奋剂的主要功能是用强加的方法来改变身体的机能,而这种改变必将导致身体的平衡遭到破坏,造成自身原有的功能受到抑制进而形成人体对药物的长期依赖,即这种依赖的不可恢复性,甚至导致瘁死的发生。   不同种类的兴奋剂对人机体的的作用是不同的,象刺激剂就对增加反应,提高竞争意识有作用;蛋白同化制剂则增加人体肌肉,增强体能;阻断剂能增加动作稳定性;利尿剂可以减轻体重还可以利用他的强排泄能力掩饰其它的兴奋药物。   早在奥运会初期,参加比赛的某些运动员为了取得好成绩,引用一种有酒和适地灵混合而成饮料以增加中枢神精的兴奋,这是最原始的兴奋剂。到了20世纪的中期,运动员为提高成绩而服用的药物种类也在不断的变化。1984年汉城奥运会百米飞人约翰逊因服用能增强体能,增长肌肉的合成内部醇康利龙而被取消冠军资格。   由于国际体育组织坚定了反兴奋剂的立场,并不断加大反兴奋剂的力度,这就使服用兴奋剂的人转而使用不会被查获的其它类药物。今天的兴奋剂也许并不比20年前兴奋剂能更好的提高成绩,但却更能隐蔽自己。因此检测专家们使用了更先进、更精密的仪器。这台高分辨磁制普仪是目前世界上检测灵敏度最高的设备。它可以检测出每毫升尿含两纳克的药物代谢残留物。   在某种意义上说兴奋剂和检测手段的道高一尺,魔高一丈的斗法已经更加严峻,以至于不能仅仅用传统的尿检来证明运动员是否使用了违禁药物。于是在这届奥运会上正式启用了一种全新的药检方法,这种方法能够准确无误的检察出运动员是否服用了红细胞生成素EPO,而在过去这种违禁药物是最难被传统的药检方法检察出来的,这种经人工基因重组技术生产的药物,与人体自然生成的红细胞生成素几乎没有区别,它是调节人体红细胞繁殖和分化的主要基素,由于它能增加附含氧气的红细胞的形成,从而增强人体的耐缺氧能力,但是长期使用EPO会造成血液粘稠度增大,导致静脉血栓发生,现在EPO再也不能逃过奥运竞赛正义的眼睛。   体育就是一种在大家达成共识的规则框架内,展示人体最佳的体能和技巧的运动,它永恒的魅丽就在于此

  • 【转帖】什么药物撂倒宋红娟? 缺席奥运选拔赛原因终揭晓

    新报讯 北京时间昨天,国际田联公布,曾参加过雅典奥运会的中国女子20公里竞走选手宋红娟已被禁赛四年,原因是在今年2月份她的药检呈阳性。  国际田径联合会表示,宋红娟今年2月24日在北京的促红细胞生成素(EPO)检测呈阳性。现年24岁的宋红娟在2004年全国竞走锦标赛暨奥运选拔赛上,获得了女子20公里竞走冠军,并在雅典奥运会女子20公里竞走比赛中获得第14名,2007年获得世界锦标赛该项目的第15名。  “国际田联保证运动员能有一个公平竞争的环境,”国际田联表示,“中国田协已将宋红娟药物违禁的消息告知国际田联。”根据国际田联规则,中国田协已将宋红娟禁赛到2012年3月25日。根据国家体育总局对国家队选手药物违禁处罚条例规定,所有药检呈阳性的国家队选手都将和其教练一道被终身禁赛。  由于竞走队没有正式的国家队编制,所以宋红娟并未被终身禁赛。同时,她也没有参加奥运选拔赛。

  • 开发出强大的新方法来发现治疗性抗体

    来自美国斯克里普斯研究所(Scripps Research Institute)的研究人员发现一种新技术而应当能够极大地加速开发出医学和科学上有用的抗体。这种发现抗体的新方法比较重要,这是因为抗体是人类治疗中最快成长的一个领域。相关研究近期在线刊登在PNAS期刊上。这项新研究能够允许研究人员搜索大的抗体库和快速地选择具有特定生物效应的抗体。它也能够构建不同寻常的非对称性抗体,并且这些抗体的能力超过自然抗体。研究人员通过利用这种技术找到一种几乎完美地模拟促红细胞生成素(erythropoietin, EPO)活性的不对称性抗体而证实了它的威力。20年之前,科学家们首次开发出产生非常大的组合抗体库并且快速分离出结合到特定靶标上的那些抗体的技术。从那之后,这些技术就被用来寻找治疗癌症、关节炎、移植排斥和其他疾病的抗体。然而,当前的抗体发现技术也有一个大的缺点。尽管他们能够快速地找到紧密结合到一种已知靶标的抗体,但是他们不能快速地确定哪些抗体拥有生物学活性。

  • 红细胞与白细胞的重新定向

    白细胞与红细胞在此重新定向。白细胞(WBC)和红细胞(RBC)是血液中的重要组成部分,在生命体延续发展和生物治疗中具有不同的功能。红细胞,又称红血球,含有一种蛋白质称作血红蛋白。当血红蛋白从肺部吸收氧气时,血液呈红色。随着血液流经全身,血红蛋白向人体组织释放氧气。红细胞的生命周期为4个月,其形如圆盘,中间下凹,边缘较厚,呈圆饼状。白细胞,又称白血球,具有更加复杂的功能。白细胞构成了人体抵抗感染的一种防御机制。有多种不同类型的白细胞,其生命周期和功能各不相同。白细胞还能够产生一种特殊的蛋白质,称作抗体,能够识别并吞噬入侵人体的外来异物。 红细胞白细胞物理特征红细胞呈双凹圆盘状,无核。尺寸大约为6-8 μm。白细胞呈不规则性,但有一个核和外缓冲层。生命周期120天。几天,但在健康人体中可存活数天至数年不等。类型:血液中只有一种红细胞在血液中存在许多类型的白细胞,其功能各不相同:嗜中性粒细胞、T淋巴细胞、B淋巴细胞(巨噬细胞)、嗜酸性粒细胞、嗜碱性粒细胞。循环系统:心血管系统。心血管和淋巴系统总计红细胞700:1白细胞男性每立方毫米460-6200万个;女性每立方毫米4200-5400万个。每立方毫米4000 – 11000个功能:向身体的不同部位提供氧气,并负责运送二氧化碳和其它废物。产生抗体,对感染形成免疫力,有些具有噬菌功能。血液中含量:

  • 【分享】人肝细胞生长因子受体(HGFR/ c-MET)酶联免疫分析(ELISA)

    试剂盒使用说明书本试剂仅供研究使用 目的:本试剂盒用于测定人血清,血浆及相关液体样本中肝细胞生长因子受体(HGFR/ c-MET)的含量。实验原理: 本试剂盒应用双抗体夹心法测定标本中人肝细胞生长因子受体(HGFR/ c-MET)水平。用纯化的人肝细胞生长因子受体(HGFR/ c-MET)抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入肝细胞生长因子受体(HGFR/ c-MET),再与HRP标记的羊抗人抗体结合,形成抗体-抗原-酶标抗体复合物,经过彻底洗涤后加底物TMB显色。TMB在HRP酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的肝细胞生长因子受体(HGFR/ c-MET)呈正相关。用酶标仪在450nm波长下测定吸光度(OD值),通过标准曲线计算样品中人肝细胞生长因子受体(HGFR/ c-MET)浓度。试剂盒组成:试剂盒组成48孔配置96孔配置保存说明书1份1份封板膜2片(48)2片(96)密封袋1个1个酶标包被板1×481×962-8℃保存标准品:1350ng/L0.5ml×1瓶0.5ml×1瓶2-8℃保存标准品稀释液1.5ml×1瓶1.5ml×1瓶2-8℃保存酶标试剂3 ml×1瓶6 ml×1瓶2-8℃保存样品稀释液3 ml×1瓶6 ml×1瓶2-8℃保存显色剂A液3 ml×1瓶6 ml×1瓶2-8℃保存显色剂B液3 ml×1瓶6 ml×1瓶2-8℃保存终止液[align=cente

  • 细胞因子及其受体的分类有哪些?

    [font=宋体]细胞因子一般是通过与细胞表面相应的细胞因子受体结合而发挥生物学作用。细胞因子与其受体结合后,会启动复杂的细胞内分子相互作用,最终引起细胞基因转录的变化。[/font][font=宋体]已知的细胞因子受体绝大多数是[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url],由胞外、跨膜和胞质区组成。胞外膜区是识别结合细胞因子的部位,胞质区在受体激活后启动信号转导。下面为大家介绍下细胞因子及其受体的分类有哪些?[/font][font=宋体] [/font][b][font=宋体]一、细胞因子的分类[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]([/font][font=宋体]一[/font][font=Calibri])[/font][font=宋体]根据细胞种类不同分类[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体])淋巴因子[/font][font=Calibri](lymphokine) [/font][font=宋体]主要由淋巴细胞产生,包括[/font][font=Calibri]T[/font][font=宋体]淋巴细胞、[/font][font=Calibri]B[/font][font=宋体]淋巴细胞和[/font][font=Calibri]NK[/font][font=宋体]细胞等。重要的淋巴因子有[/font][font=Calibri]IL-2[/font][font=宋体]、[/font][font=Calibri]IL-3[/font][font=宋体]、[/font][font=Calibri]IL-4[/font][font=宋体]、[/font][font=Calibri]IL-5[/font][font=宋体]、[/font][font=Calibri]IL-6[/font][font=宋体]、[/font][font=Calibri]IL-9[/font][font=宋体]、[/font][font=Calibri]IL-10[/font][font=宋体]、[/font][font=Calibri]IL-12[/font][font=宋体]、[/font][font=Calibri]IL-13[/font][font=宋体]、[/font][font=Calibri]IL-14[/font][font=宋体]、[/font][font=Calibri]IFN-[/font][font=宋体]γ、[/font][font=Calibri]TNF-[/font][font=宋体]β、[/font][font=Calibri]GM-CSF[/font][font=宋体]和神经白细胞素等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体])单核因子[/font][font=Calibri](monokine) [/font][font=宋体]主要由单核细胞或巨噬细胞产生,如[/font][font=Calibri]IL-1[/font][font=宋体]、[/font][font=Calibri]IL-6[/font][font=宋体]、[/font][font=Calibri]IL-8[/font][font=宋体]、[/font][font=Calibri]TNF-[/font][font=宋体]α、[/font][font=Calibri]G-CSF[/font][font=宋体]和[/font][font=Calibri]M-CSF[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体])非淋巴细胞、非单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞产生的细胞因子 主要由骨髓和胸腺中的基质细胞、血管内皮细胞、成纤维细胞等细胞产生,如[/font][font=Calibri]EPO[/font][font=宋体]、[/font][font=Calibri]IL-7[/font][font=宋体]、[/font][font=Calibri]IL-11[/font][font=宋体]、[/font][font=Calibri]SCF[/font][font=宋体]、内皮细胞源性[/font][font=Calibri]IL-8[/font][font=宋体]和[/font][font=Calibri]IFN-[/font][font=宋体]β等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]([/font][font=宋体]二[/font][font=Calibri])[/font][font=宋体]根据主要功能的不同分类[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体])白细胞介素[/font][font=Calibri](interleukin, IL) 1979[/font][font=宋体]年开始命名。由淋巴细胞、单核细胞或其它非单个核细胞产生的细胞因子,在细胞间相互作用、免疫调节、造血以及炎症过程中起重要调节作用,凡命名的白细胞介素的[/font][font=Calibri]cDNA[/font][font=宋体]基因克隆和表达均已成功,已报道有三十余种[/font][font=Calibri](IL-1[/font][font=宋体]―[/font][font=Calibri]IL-38)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体])集落刺激因子[/font][font=Calibri](colony stimulating factor, CSF) [/font][font=宋体]根据不同细胞因子刺激造血干细胞或分化不同阶段的造血细胞在半固体培养基中形成不同的细胞集落,分别命名为[/font][font=Calibri]G([/font][font=宋体]粒细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]M([/font][font=宋体]巨噬细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]GM([/font][font=宋体]粒细胞、巨噬细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]Multi([/font][font=宋体]多重[/font][font=Calibri])-CSF(IL-3)[/font][font=宋体]、[/font][font=Calibri]SCF[/font][font=宋体]、[/font][font=Calibri]EPO[/font][font=宋体]等。不同[/font][font=Calibri]CSF[/font][font=宋体]不仅可刺激不同发育阶段的造血干细胞和祖细胞增殖的分化,还可促进成熟细胞的功能。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体])干扰素[/font][font=Calibri](interferon, IFN) 1957[/font][font=宋体]年发现的细胞因子,最初发现某一种病毒感染的细胞能产生一种物质可干扰另一种病毒的感染和复制,因此而得名。根据干扰素产生的来源和结构不同,可分为[/font][font=Calibri]IFN-[/font][font=宋体]α、[/font][font=Calibri]IFN-[/font][font=宋体]β和[/font][font=Calibri]IFN-[/font][font=宋体]γ,他们分别由白细胞、成纤维细胞和活化[/font][font=Calibri]T[/font][font=宋体]细胞所产生。各种不同的[/font][font=Calibri]IFN[/font][font=宋体]生物学活性基本相同,具有抗病毒、抗肿瘤和免疫调节等作用。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体])肿瘤坏死因子[/font][font=Calibri](tumor necrosis factor, TNF) [/font][font=宋体]最初发现这种物质能造成肿瘤组织坏死而得名。根据其产生来源和结构不同,可分为[/font][font=Calibri]TNF-[/font][font=宋体]α和[/font][font=Calibri]TNF-[/font][font=宋体]β两类,前者由单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞产生,后者由活化[/font][font=Calibri]T[/font][font=宋体]细胞产生,又名淋巴毒素[/font][font=Calibri](lymphotoxin, LT)[/font][font=宋体]。两类[/font][font=Calibri]TNF[/font][font=宋体]基本的生物学活性相似,除具有杀伤肿瘤细胞外,还有免疫调节、参与发热和炎症的发生。大剂量[/font][font=Calibri]TNF-[/font][font=宋体]α可引起恶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url],因而[/font][font=Calibri]TNF-[/font][font=宋体]α又称恶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]素[/font][font=Calibri](cachectin)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5[/font][font=宋体])转化生长因子[/font][font=Calibri]-[/font][font=宋体]β家族[/font][font=Calibri](transforming growth factor-[/font][font=宋体]β [/font][font=Calibri]family, TGF-[/font][font=宋体]β [/font][font=Calibri]family) [/font][font=宋体]由多种细胞产生,主要包括[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]1[/font][font=宋体]、[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]2[/font][font=宋体]、[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]3[/font][font=宋体]、[/font][font=Calibri]TGF[/font][font=宋体]β[/font][font=Calibri]1[/font][font=宋体]β[/font][font=Calibri]2[/font][font=宋体]以及骨形成蛋白[/font][font=Calibri](BMP)[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6[/font][font=宋体])生长因子[/font][font=Calibri](growth factor,GF)[/font][font=宋体]如表皮生长因子[/font][font=Calibri](EGF)[/font][font=宋体]、血小板衍生的生长因子[/font][font=Calibri](PDGF)[/font][font=宋体]、成纤维细胞生长因子[/font][font=Calibri](FGF)[/font][font=宋体]、肝细胞生长因子[/font][font=Calibri](HGF)[/font][font=宋体]、胰岛素样生长因子[/font][font=Calibri]-I(IGF-1)[/font][font=宋体]、[/font][font=Calibri]IGF-[/font][font=宋体]Ⅱ、白血病抑制因子[/font][font=Calibri](LIF)[/font][font=宋体]、神经生长因子[/font][font=Calibri](NGF)[/font][font=宋体]、抑瘤素[/font][font=Calibri]M(OSM)[/font][font=宋体]、血小板衍生的内皮细胞生长因子[/font][font=Calibri](PDECGF)[/font][font=宋体]、转化生长因子[/font][font=Calibri]-[/font][font=宋体]α[/font][font=Calibri](TGF-[/font][font=宋体]α[/font][font=Calibri])[/font][font=宋体]、血管内皮细胞生长因子[/font][font=Calibri](VEGF)[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]7[/font][font=宋体])趋化因子家族[/font][font=Calibri](chemokinefamily) [/font][font=宋体]包括四个亚族[/font][font=Calibri]:(1)C-X-C/[/font][font=宋体]α亚族,主要趋化中性粒细胞,主要的成员有[/font][font=Calibri]IL-8[/font][font=宋体]、黑素瘤细胞生长刺激活性[/font][font=Calibri](GRO/MGSA)[/font][font=宋体]、血小板因子[/font][font=Calibri]-4(PF-4)[/font][font=宋体]、血小板碱性蛋白、蛋白水解来源的产物[/font][font=Calibri]CTAP-[/font][font=宋体]Ⅲ和β[/font][font=Calibri]-thromboglobulin[/font][font=宋体]、炎症蛋白[/font][font=Calibri]10(IP-10)[/font][font=宋体]、[/font][font=Calibri]ENA-78 (2)C-C/[/font][font=宋体]β亚族,主要趋化单核细胞,这个亚族的成员包括巨噬细胞炎症蛋白[/font][font=Calibri]1[/font][font=宋体]α[/font][font=Calibri](MIP-1[/font][font=宋体]α[/font][font=Calibri])[/font][font=宋体]、[/font][font=Calibri]MIP-1[/font][font=宋体]β、[/font][font=Calibri]RANTES[/font][font=宋体]、单核细胞趋化蛋白[/font][font=Calibri]-1(MCP-1/MCAF)[/font][font=宋体]、[/font][font=Calibri]MCP-2[/font][font=宋体]、[/font][font=Calibri]MCP-3[/font][font=宋体]和[/font][font=Calibri]I-309[/font][font=宋体]。[/font][font=Calibri](3)C[/font][font=宋体]型亚家族的代表有淋巴细胞趋化蛋白。[/font][font=Calibri](4)CX3C[/font][font=宋体]亚家族,[/font][font=Calibri]Fractalkine[/font][font=宋体]是[/font][font=Calibri]CX3C[/font][font=宋体]型趋化因子,对单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞、[/font][font=Calibri]T[/font][font=宋体]细胞及[/font][font=Calibri]NK[/font][font=宋体]细胞有趋化作用。[/font][/font][font=宋体] [/font][font=宋体]细胞因子检测是判断机体免疫功能的一个重要指标!已被广泛用于疾病的诊断、病程观察、疗效判断及细胞因子治疗监测等。[/font][font=宋体] [/font][b][font=宋体] [/font][/b][font=宋体]二、[/font][b][font=宋体]细胞因子受体分类[/font][font=宋体] [/font][/b][font=宋体][font=宋体]根据细胞因子受体的结构,可分为不同的家族或超家族,包括免疫球蛋白([/font][font=Calibri]Ig[/font][font=宋体])超家族、[/font][font=Calibri]I[/font][font=宋体]型细胞因子受体、[/font][font=Calibri]II[/font][font=宋体]型细胞因子受体、肿瘤坏死因子受体[/font][font=Calibri](TNFR)[/font][font=宋体]超家族和趋化因子受体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]①免疫球蛋白([/font][font=Calibri]Ig[/font][font=宋体])超家族[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]免疫球蛋白超家族([/font][font=Calibri]IgSF[/font][font=宋体])是指分子结构中具有与免疫球蛋白相似域的分子超家族。[/font][font=Calibri]IgSF[/font][font=宋体]的所有成员都含有[/font][font=Calibri]1[/font][font=宋体]~[/font][font=Calibri]7[/font][font=宋体]个[/font][font=Calibri]Ig[/font][font=宋体]样结构域,每个[/font][font=Calibri]Ig[/font][font=宋体]样结构域含有约[/font][font=Calibri]70[/font][font=宋体]~[/font][font=Calibri]110[/font][font=宋体]个氨基酸残基。它的二级结构是由两条反平行β[/font][font=Calibri]-[/font][font=宋体]折叠状链形成的反平行β[/font][font=Calibri]-[/font][font=宋体]片状平面,每条反平行β[/font][font=Calibri]-[/font][font=宋体]片状链含有[/font][font=Calibri]3[/font][font=宋体]~[/font][font=Calibri]5[/font][font=宋体]个反平行β[/font][font=Calibri]-[/font][font=宋体]折叠。每条反平行β片链由[/font][font=Calibri]5[/font][font=宋体]~[/font][font=Calibri]10[/font][font=宋体]个氨基酸残基组成。β片内侧的疏水氨基酸可稳定[/font][font=Calibri]Ig[/font][font=宋体]的折叠。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]大多数[/font][font=Calibri]Ig[/font][font=宋体]域有一个二硫键垂直连接两个β片,构成二硫键的两个半胱氨酸约含[/font][font=Calibri]55[/font][font=宋体]~[/font][font=Calibri]75[/font][font=宋体]个氨基酸。少数[/font][font=Calibri]Ig[/font][font=宋体]域,如[/font][font=Calibri]CD2[/font][font=宋体]的第一域、[/font][font=Calibri]LFA-3[/font][font=宋体]和[/font][font=Calibri]PDGFR[/font][font=宋体]的第四域、[/font][font=Calibri]CD4[/font][font=宋体]的第三域等,均缺乏二硫键。这种多肽链的球形结构的折叠称为免疫球蛋白折叠([/font][font=Calibri]Ig fold[/font][font=宋体])。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]②[/font][font=Calibri]I[/font][font=宋体]型细胞因子受体[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=Calibri]I[/font][font=宋体]型细胞因子受体又称造血素受体,是表达在细胞表面的跨膜受体,能识别细胞因子并对其作出反应,具有[/font][font=Calibri]4[/font][font=宋体]条α[/font][font=Calibri]-[/font][font=宋体]螺旋链。这些受体具有某些保守的胞外域,缺乏内在的蛋白酪氨酸激酶活性。[/font][/font][font=宋体][font=宋体]保守的胞外域有大约[/font][font=Calibri]200[/font][font=宋体]个氨基酸的长度,其中在氨基末端区域含有四个位置保守的半胱氨酸残基和一个位于跨膜域近端的保守氨基酸基团([/font][font=Calibri]WSXWS[/font][font=宋体])。这四个半胱氨酸是维持受体结构和功能完整性的关键。[/font][font=Calibri]WSXWS[/font][font=宋体]共识序列是细胞因子受体功能性蛋白与蛋白相互作用的识别位点。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]③[/font][font=Calibri]II[/font][font=宋体]型细胞因子受体[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]II[/font][font=宋体]型细胞因子受体又称[/font][font=Calibri]IFN[/font][font=宋体]受体,是表达在某些细胞表面的跨膜蛋白,它与一组选定的细胞因子结合并作出反应。通常Ⅱ型细胞因子受体是具有高亲和力和低亲和力成分的异二聚体或多聚体。这些受体一般由两条肽链组成,胞外区由[/font][font=Calibri]200[/font][font=宋体]个氨基酸残基组成,并含有[/font][font=Calibri]4[/font][font=宋体]个不连续的半胱氨酸。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]④[/font][font=Calibri]TNFR[/font][font=宋体]超级家族[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]肿瘤坏死因子受体([/font][font=Calibri]TNFR[/font][font=宋体])超家族成员是细胞因子受体的一个蛋白质超家族,共享一个半胱氨酸丰富域([/font][font=Calibri]CRD[/font][font=宋体]),由三个二硫键围绕[/font][font=Calibri]CXXCXXC[/font][font=宋体]的核心基团形成一个拉长的分子。目前[/font][font=Calibri]TNFR[/font][font=宋体]家族有[/font][font=Calibri]12[/font][font=宋体]个成员,包括[/font][font=Calibri]55kDa[/font][font=宋体]和[/font][font=Calibri]75kDa[/font][font=宋体]的[/font][font=Calibri]TNFR[/font][font=宋体],低亲和力的[/font][font=Calibri]NGFR[/font][font=宋体],人[/font][font=Calibri]B[/font][font=宋体]细胞抗原([/font][font=Calibri]CD40[/font][font=宋体])和[/font][font=Calibri]Fas[/font][font=宋体]抗原。该家族的共同特点是其胞外区有[/font][font=Calibri]Cys[/font][font=宋体]([/font][font=Calibri]4-6[/font][font=宋体])丰富的假重复基团,每个基团含有[/font][font=Calibri]40[/font][font=宋体]个氨基酸残基。细胞内域较短,由[/font][font=Calibri]44[/font][font=宋体]~[/font][font=Calibri]221[/font][font=宋体]个氨基酸残基组成,无同源序列。[/font][/font][font=宋体] [/font][font=宋体]⑤趋化因子受体[/font][font=宋体] [/font][font=宋体][font=宋体]趋化因子受体是在某些细胞表面发现并与趋化因子相互作用的细胞因子受体。人类已发现[/font][font=Calibri]20[/font][font=宋体]种不同趋化因子受体,为[/font][font=Calibri]7[/font][font=宋体]次跨膜的[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体,并在细胞内与[/font][font=Calibri]G[/font][font=宋体]蛋白偶联进行信号转导,是[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体家族成员之一。趋化因子受体与相应的配体结合后,引发细胞内钙([/font][font=Calibri]Ca2+[/font][font=宋体])离子通量(钙信号传导)。既而引起细胞反应,包括趋化作用过程开始,将细胞运送到生物体内的理想位置。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多细胞因子详情可以查看义翘神州[url=https://cn.sinobiological.com/category/cytokine-protein][b]细胞因子蛋白[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/category/cytokine-protein[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=宋体] [/font]

  • 离心机如何应用于红细胞压积容量测定

    [b]离心机[/b]如何应用于红细胞压积容量测定摘要:红细胞压积(packedcellvolume,PCV)又称红细胞比容(hematocrit,Hct),是指红细胞在血液中所占容积的比值,测定时将抗凝血在一定的条件下离心沉淀,即可测得每升血液中血细胞所占容积的比值。  1原理[b]离心机[/b]  在100刻度玻璃管中,充入抗凝血至刻度,经一定时间离心后,红细胞下沉并紧压于玻璃管中,读取红细胞柱所占的百分比,即为红细胞压积容量(PCV又称压容、比容)。  2.器材  (1)温氏管:管长11cm,内径约2.5mm,管壁有100个刻度。一侧自上而下标有0~10,供测定血沉用,另一侧标有10~0,供测定比容用。如无这种特制的管子,可用有100刻度的小玻璃管代替。  (2)长针头及胶皮乳头:选用长12~15cm的针头,将针尖磨平,针柄部接以胶皮乳头。也可用细长毛细吸管代替。  (3)水平电动离心机:转速能达4000rpm者。  3.方法  (1)用长针头吸满抗凝血,插入温氏管底部,轻捏胶皮乳头,自下而上挤入血液至刻度10处。  (2)置离心机中,以3000rpm的速度离心30~45min(马的血液离心30min,牛、羊的血液离心45min),取出观察,记录红细胞层高度,再离心45min,如与第一次离心的高度一致,此时红细胞柱层所占的刻度数,即为PCV数值用%表示。  4.注意事[b]离心机[/b]项  (1)温氏管及充液用具必须干燥,以免溶血。  (2)此时,离心机的转速必须达3000rpm以上,并遵守所规定的时间。  (3)用一般离心后[b]离心机[/b],红细胞层呈斜面,读取时应取斜面1/2处所对应的刻度数。血浆与红细胞层之间的灰白层由白细胞与血小板组成,不应计算在内。  5.临床意义  (1)红细胞压积增高:见于各种原因所引起的血液浓缩,使红细胞相对性增多,如急性胃肠炎、肠便秘、肠变位、瓣胃阻塞、渗出性胸膜炎和腹膜炎,以及某些传染病和发热性疾病。由于红细胞压积增高的数值与脱水程度成正比,因此在临床上可根据这一指标的变化而推断机体的脱水情况,并计算补液的数量及判断补液量的实际效果。另外。也见于各种原因所致的红细胞绝对性增多,如真性红细胞增多症、肺动脉狭窄、高铁血红蛋白血症等。  (2)红细胞压积降低:见于各种贫血,但降低的程度并不一定与红细胞数一致,因为贫血有小细胞性贫血、大细胞性贫血及正细胞性贫血之分。

  • 【原创大赛】浅谈体内哺乳动物红细胞微核实验的疑难点

    [align=center]浅谈体内哺乳动物红细胞微核实验的疑难点[/align][align=center]西安国联质量检测技术股份有限公司[/align][align=center]安评中心:闫敏[/align] 本人长时间从事毒理学研究和安全评价工作,主要负责一般毒理和遗传毒理,微核试验属于遗传毒理实验中的一项重要研究,在不断的摸索和实验过程中,总结了几点经验和摸索出的关键点并做以下讨论: 红细胞微核实验经过前几次的失败,总结了存在的问题和可能的影响因素如下: 1.阳性结果不明显 阳性对照使用环磷酰胺,环磷酰胺的水溶液不稳定,配制好后2-3h后有可能就会失效,并且要避光2-8℃保存。有时候实验使用的阳性对照溶液配制时间过长,可能已经失效。一般的阳性对照组溶液均为现配现用,不宜长时间放置,容易变质。 2.取材,制片过程存在问题 a.取骨髓时,肌肉组织未完全剥离,导致挤出骨髓时所含杂质太多;可以用纱布进行擦拭并剔除多余组织和肌肉,得到干净的股骨; b.取骨髓的方式有两种,用止血钳挤或者用注射器捅出骨髓,但是两种方法都不能将股骨损坏,导致取出量少,没有代表性,用小牛血清推片后,镜下阅片细胞量很少,达不到阅片效果。止血钳挤骨髓:剪去股骨大骨一端,用止血钳平行夹住股骨,然后轻轻挤压,骨髓会像牙膏一样挤出来,然后放在玻片上。注射器捅骨髓:剪去股骨两端,用镊子镊住股骨,置于小牛血清上,用注射器来回捅骨髓腔,让骨髓释放在血清中,混匀,推片。 c.推片方法:推片一定要和玻片呈角度,一般为45°,推片向内侧倾斜,向外推片,使小牛血清平铺在载玻片面上。 3.染色问题 a.染液配比浓度高,染色时间过长。一般可采用1:9的比例来配制姬姆萨染液,染色10min,染液使用的PBS缓冲液的ph很重要,保持在6.8,ph偏酸或者偏碱都有可能导致红细胞染色效果不好,无法分辨成熟红细胞和嗜多染红细胞。 b.冲洗染液时一定要彻底,及时,不能让染液残留较多。用流水沿玻片磨砂端冲洗,直至洗出的流水为无色。 以上是在做红细胞微核试验时遇见并解决的问题,科研实验和研究就是在不断的失败和改正中获得成功。

  • 1%猪红细胞配制方法

    如题,哪位大神知道1%猪红细胞的配制方法?跟1%鸡红细胞配制方法一样吗?本中心扩项急用,跪求各位老师指点一二[img]https://simg.instrument.com.cn/bbs/images/brow/em63.gif[/img]

  • 【分享】看著名生物制药企业如何成功 四要素缺一不可

    [center]看著名生物制药企业如何成功 四要素缺一不可[/center]作者: 来源:中国医药报 发布者: 亦云 类别:产业动态 从21世纪以来,以安进公司(Amgen)、基因泰克公司(Genentech)、健赞公司(Genzyme)、生物基因公司(Biogen Idec)等为首的生物制药企业收入增长迅猛,产品研发管线稳固,已经迈入核心制药企业行列。1992年,安进公司产品销售首次突破10亿美元,同年该公司也首次跻身财富500强。2005年,这四家公司的销售收入分别是120.2亿美元、54.9亿美元、24.1亿美元、16.2亿美元,在全球医药企业50强排名中分列13位、20位、35位和42位。2006年,安进公司的销售额约为140亿美元,继续在生物制药公司中排名第一;第二位是基因泰克,销售额近80亿美元;紧随其后的健赞公司的销售额也达到了30亿美元左右。 虽然这些企业与国内企业所面临的外部环境以及所具有的能力、资源各有不同,但研究这些企业的成功要素,仍对我国生物制药企业的成长不无裨益。我们对这些成功企业进行对比分析,发现不同的生物制药公司的成功路径虽然不同,但其成功要素却有相同之处,即都离不开企业家、技术、资本和管理这四个要素,它们构成了生物制药企业成功不可或缺的四个纬度。一个持续的致力于这四个要素的均衡发育和发展,并能做到四者功能耦合和系统协同的企业,可望最终获得成功。 企业家是第一要素 生物制药企业的成功,第一个决定性因素就是主持这个企业经营的企业家是否具备足够的素质、知识和能力。正如安进公司的成功离不开戈登• 宾德,生物基因公司的成功离不开詹姆斯• 文森特一样,企业家在这些公司的成长中发挥了决定性的作用。 生物制药企业的领导者除了要具有雄心壮志、胆识、决断力、号召力、统驭力、体力外,还必须具备卓越的经营管理能力和资本运作能力。这也是由生物制药产业高投入、高风险、高收益、周期长、管理基础薄弱的特点所决定的。如安进公司的戈登• 宾德,健赞公司的亨利• 特默尔,他们不仅具有成熟行业成功的管理经验,同时还是“金融奇才”,在将产品推向市场期间,既能满足研究人员的资本需求,又使投资者镇定自若。 技术是立足之本 生物制药是一种知识密集、技术含量高、多学科高度综合并互相渗透的新兴产业。以基因工程药物为例,上游技术(即工程菌的构建)涉及到目的基因的合成、纯化、测序,基因的克隆、导入,工程菌的培养及筛选;下游技术涉及到目标蛋白的纯化及工艺放大,产品质量的检测及保证。在这样的产业里,研发队伍和知识产权是生物制药企业最重要的资源。 安进公司的重组人红细胞生成素(EPO)和重组粒细胞集落刺激因子(G-CSF)的成功研制并获得专利保护,为该公司的成功奠定了坚实的基础。而研发同样产品的遗传学研究所因输掉了专利诉讼官司而被美国家用产品公司并购。这一生物制药业的经典案例表明,能否拥有或研发出具有知识产权和市场需求的新药产品或新技术,决定了生物制药企业能否立足。

  • 你不曾知道的“兴奋剂之力”

    你不曾知道的“兴奋剂之力”

    奥运赛事正在紧张地进行,有一个敏感的词儿,相信大家也不陌生,那就是兴奋剂。伴随着竞技体育赛事的发展,一些运动员或教练员为了取得更好的比赛名次,会让比赛选手服用兴奋剂。http://ng1.17img.cn/bbsfiles/images/2016/08/201608091003_604061_1610895_3.jpg2015年11月俄罗斯田径界大规模系统性服用兴奋剂的丑闻正式曝光。一直以来,兴奋剂被列为体育禁药,运动员服用兴奋剂会影响赛事的公平并受到严厉惩罚,国际田联对俄罗斯田径队实施全球禁赛,里约奥运会俄罗斯田径项目除克里什娜一位运动员可参赛外全部遭禁。http://ng1.17img.cn/bbsfiles/images/2016/08/201608091004_604062_1610895_3.jpg那么,究竟什么是兴奋剂,兴奋剂到底能帮助运动员提高多少成绩,能使俄罗斯铤而走险大规模使用兴奋剂?今天,小编就来为大家揭秘以下关于兴奋剂的那些事儿。http://ng1.17img.cn/bbsfiles/images/2016/08/201608091004_604063_1610895_3.jpg兴奋剂有多种,促蛋白合成类固醇(Anabolic Steroids)是最常见的一种。它可以触发蛋白质的合成,刺激肌肉的生长,从而达到增加肌肉力量的目的。根据《自然》杂志,这类兴奋剂在和运动共同作用下可以使男性肌肉力量增加38%,女性服用效果更明显。加利福尼亚州立大学的Thomas D. Fahey试验表明,服用类固醇可以使运动员体重平均增加约4磅,去脂体重平均增加约6磅,举重运动员在进行仰卧推举和蹲举时,他们的负重可以分别平均增加约15磅和30磅。http://ng1.17img.cn/bbsfiles/images/2016/08/201608091004_604064_1610895_3.jpg另外一种常见兴奋剂是人类生长激素(Growth Hormone),同样的,它也可以刺激肌肉的生长,但其生长效果仍待商榷。2010年,Meinhardt在《内科医学年鉴》第152期发表的研究证明,服用人类生长激素可以使运动员的冲刺能力增加4%。这看起来似乎微不足道,但对于想要破纪录的运动员来说,人类生长激素可以使他们的速度在每10秒内提高0.1秒。http://ng1.17img.cn/bbsfiles/images/2016/08/201608091004_604065_1610895_3.jpg此外,还有一类血液兴奋剂——促红细胞生成素(EPO)——在提高运动员耐力方面发挥关键性作用。运动员服用它可以提高携带氧气的红细胞的数量,即提高自身的供氧量。1980年,别克发表在《应用生理学》第48卷第4期的实验证明,血液兴奋剂可以使人体耐力增加34%。若运动员服用EPO,他们在跑步机上跑8公里的时间将比之前缩短44秒。即使兴奋剂似乎能让运动员在短时期内突破自己的极限,但也有大量医学研究发现兴奋剂的毒副作用,如类固醇,过量浓度的类固醇会影响男性正常的性功能,导致脱发、不育,甚至乳房发育。于女性而言,过量浓度的类固醇会导致刺激男性特征的发育,使女性脸部、身体毛发量增多、声带加厚、抑制或干扰月经周期等。并且这种改变可能是永久性的。兴奋剂的主要种类和危害↓↓↓http://ng1.17img.cn/bbsfiles/images/2016/08/201608091005_604066_1610895_3.jpg“如果我可以给你一颗药丸,吃了它你可以拿得奥运金牌,但是我要在一年后杀了你,你愿意吗?” 在1967年,约翰斯霍普金斯医学院的教学研究员,马里兰大学副教授,Gabe Mirkin博士曾就此在华盛顿特区举行的公路赛前做过一个调查问卷询问多名运动员。在约100名调查运动员中,超过一半的人选择药丸。由此可见,奥运金牌在运动员心中是极其重要的,这也是为什么即使兴奋剂有巨大的副作用,运动员仍愿意冒着禁赛的巨大风险服用的原因。然而,使用兴奋剂不仅损害奥林匹克精神,破坏运动竞赛的公平原则,还严重危害运动员的健康。因此,国际奥委会严禁运动员使用兴奋剂,奥运会与兴奋剂的斗争始终没有停止过。反兴奋剂斗争史↓↓↓http://ng1.17img.cn/bbsfiles/images/2016/08/201608091005_604067_1610895_3.jpg接下来小编就为大家扒一扒反兴奋剂的那些事儿:尿检兴奋剂的“对立”面尿检的原理十分简单,人体服用或注射药物后,这些药物及其代谢产物在一定的时间内或多或少地会出现在尿液中。检测人员通过对运动员的尿液作定量及定性的检测工作,就能检查出这些运动员是否使用过兴奋剂。而最新的高分辩率质谱仪的出现,使检测技术上有了极大的飞跃和发展。过去停止服用兴奋剂两周后查不出来的,现在即使间隔 50~60 天,也难逃高科技的法网。但是,有的违禁药物目前难以在尿检中查出,如缩氨酸、荷尔蒙及其同类产品像促红细胞生长素(EPO)、人体生长激素(hGH)等,而血检则能弥补这方面的不足。查禁永远落后于兴奋剂的更新在某个意义上,药检措施越严格,越会逼迫兴奋剂更新换代。欺骗者总能寻找到一些新的药物和方法战胜检查系统。合成类固醇药物被查禁,生长激素和红细胞生长素又被广泛运用。容易被检查出的苯丙胺、麻黄素等兴奋剂逐渐减少,取而代之的是更不容易被查出的各种能够增强运动员个人能力的方式。比如,在上世纪 70 年代,血液回输(运动员先从自己身上抽出一部分血液保存起来,临近比赛前再注射回体内,以便增加血红细胞的数量,把更多的氧气输送到肌肉,从而提高运动能力)就开始在奥运赛场上风行。这种方法同样是医生熟悉的,它也是手术中减少输血量的常用预备方法之一,但直到 1994 年冬奥会,国际奥委会才开始进行相关的检测。促红细胞生成素 (EPO) 是近年得宠的新型兴奋剂。它最早是一种治疗贫血等血液疾病的药物,由于它能促进红细胞生成,提高身体的耐力,被很多耐力项目选手用作兴奋剂。早在上世纪 90 年代,EPO 就被列入禁药名单,但在 2000 年悉尼奥运会之前,人们始终无法检测出这种兴奋剂。无怪有人说,奥运赛场不但是体育赛事的赛场,还是生物医药技术的赛场——从目前来看,情势非常严峻。而医生们和医学科学家们,也就这样悄悄地参与到了这样的盛会中,开展了一出猫捉老鼠的竞技。http://ng1.17img.cn/bbsfiles/images/2016/08/201608091005_604068_1610895_3.jpg小编有话说服用兴奋剂的帽子不应该在没有任何调查和证据的时候被扣在任何一位运动员头上,以反兴奋剂之名,行歧视和挑衅之实的行为都是耍流氓!来源:analytica China

  • 【分享】免疫细胞的分离和保存技术

    用体外方法对机体各种具有免疫反应的细胞分别作鉴定、计数和功能测定,是观察机体免疫状态的一种重要手段。为此,须将各种参与免疫反应的细胞从血液或脏器中分离出来。参与免疫反应的细胞主要包括淋巴细胞、巨噬细胞、中性粒细胞等。由于检测的目的和方法有同,分离细胞的需求和技术也异。有的仅需分离白细胞,有的则需分离单个核细胞(mononuclearcell),其中含淋巴细胞和单核细胞(monocyte),有的则需分离T细胞和B细胞以及其亚群。分离细胞选用的方法应力求简便可行,并能获得高纯度、高获得率、高活力的细胞。现用分离细胞群的原则,一是根据各类细胞的大小、沉降率、粘附和吞噬能力加以组分,另一则按照各类细胞的表面标志,包括细胞表面的抗原和受体加以选择性分离。 一、白细胞的分离 (一)血液中红细胞与白细胞比例约600~1000:1,两者的比重不同其沉降速度亦异,通常用两种方法加以分离。 本法是利用血细胞自然沉降率的分离法,采集血液后应及时抗凝,通常选用肝素抗凝法。肝素能阻止凝血酶原转化为凝血酶,从而抑制纤维蛋白原形成纤维蛋白而防止血液凝固。操作原则是将含抗凝血的试管直立静置室温30~60min后,血液分成明显三层,上层为淡黄色血浆,底层为红细胞,紧贴红细胞层上面的灰白层为白细胞,轻轻吸取即得富含白细胞的细胞群,离心洗涤后加入少量蒸馏水或含氯化铵的Gey溶液,经短时间的低渗处理,使红细胞裂解,经过反复洗涤可得纯度较高的白细胞悬液。 (二)聚合物加速沉淀法 本法是利用高分子量的聚合物如明胶、右旋糖酐、聚乙烯吡喀烷酮(polyvinylpyrolidone,PVP)等使红细胞凝集成串,加速红细胞沉降,使之与白细胞分离。本法的细胞获得率比自然沉降法高。

  • 尿液分析仪和手工镜检尿液中红细胞的结果分析

    尿干化学法分析仪和传统显微镜镜检是基于两种不同原理的检验手段,因此检测结果可能存在一定程度的差异。临床中两种诊断血尿方法常配合使用以达到检测效率与质量的统一,总结起来,对检测结果的影响因素主要有以下几方面。  3.1 假阳性 即尿干化学分析仪潜血实验呈阳性,但镜检却呈阴性 。其原因包括:(1)尿液分析仪潜血实验可与完整红细胞阳性反应,也能够与血红细胞释放的血红蛋白(hemoglobin,Hb)进行反应,这与显微镜只能够观察到完整的红细胞存在差异。健康人群尿Hb水平极低,定为阴性;(2)肌红蛋白(myoglobin,Mb)分子中包含Hb基团,当骨骼肌、心肌严重受损,血MB浓度升高,经肾排泄,导致尿液MB水平升高,潜血反应因此呈阳性,而显微镜检查却呈阴性;(3)部分患者尿中存在对热不稳定的酶,也可导致试剂块发生颜色变化,发生潜血反应;氧化性物质的污染也是造成潜血反应假阳性因素;高温或标本存放时间过长导致潜血反应阳性率增高 ;(4)尿试纸条超过保质期,或没有妥善保存、操作不当、仪器故障等均可能造成假阳性。  3.2 假阴性 即尿干化学分析仪潜血实验呈阴性,但镜检却呈阳性。其原因包括:(I)食物、药物影响:某些饮食、药物可引起尿液成份的改变如当尿液中存在大量的维生素时,维生素具有的强还原性使其竞争性结合反应产生的氧,导致尿试纸条无法出现潜血反应即出现假阴性反应;(2)高蛋白、高比重尿样削弱了试剂块潜血反应的敏感度,使能够发生反应的成分被包裹,反应试剂无法接触到,从而出现假阴性结果。  3.3 离心对检测结果的影响 离心中若速度过快,致使有形成分遭到破坏;但过慢时,沉渣中可能无法找到,以至于漏掉。因此对检验结果出现怀疑时,可实验潜血证实进行验证。总之,随着尿干化学分析仪普及,工作效率得到了极大提升,也使检测红细胞敏感度提高,但显微镜镜检也是无法替代的。对于疑似阳性反应的病例,应采用尿沉渣镜检进行复测,以求结论准确,提高检测可靠性。

  • 【技术@创新】科学家:人类血红细胞变形机制 利于治疗疾病

    美国俄亥俄州立大学李巨研究小组首次在分子层面上设计一种模型,能够描述血红细胞是如何从正常的扁圆形缩成子弹形,穿过比它们的正常直径还小的血管。该研究结果在线发表在3月12日的《美国科学院院刊》上。   研究血红细胞如何从柔软的物体变成几乎液化的形态,能够帮助科学家们更好地了解疟疾、镰状细胞贫血症以及球形红细胞贫血症等。  人类血红细胞在其4个月的生命中,要成百万次地挤过细小的毛细血管,以便输送氧气,运走二氧化碳等废物。这是生命必需的过程。血红细胞的直径约为8微米,它们在流动过程中,常常穿过直径只有2微米的血管。血红细胞会拉长成子弹形状,然后在穿过血管后,恢复成本来的扁圆形。  李巨研究小组设计的这种模型显示,血红细胞的细胞骨架在这个变形过程中起到了重要作用。每个血红细胞都有一个细胞骨架,它由一种名为“血影蛋白”的蛋白分子构成,以一种类似毛刷的结构附着在细胞膜内侧。当这层蛋白质结构之间的键接破裂,或者这层结构与细胞膜之间的附着破裂,细胞就会变得更加柔软,从而能够穿过狭窄的通道。  研究人员发现这种变化或者是由于两个血影蛋白分子之间的键被断开,或者是由于血影蛋白与一种细胞膜中的肌动蛋白的键被断开。而加诸机械力(如挤压或者切断)或者化学能(如ATP),都足以断开这些化学键,进而引起细胞骨架的变形。  研究人员将利用该模型进一步研究几种血液疾病,包括疟疾、镰状细胞贫血症以及球形红细胞贫血症等。在疟疾患者中,细胞里的寄生虫会改变细胞膜和细胞骨架,从而使细胞失去原有的弹性,无法穿过血管。在镰状细胞贫血症中,红细胞会变成镰刀状,而在球形红细胞贫血症中,红细胞会变成球形,因而都无法正常地通过血管。  李巨博士1994年毕业于中国科学技术大学少年班。2000年获得麻省理工学院核工程技术系博士学位,之后在该系从事博士后研究工作,2002年成为俄亥俄州立大学助理教授。曾获美国材料学会2006年度青年科学家奖。

  • 【迎奥运系列常识】之一:兴奋剂常识,您了解多少?(19楼是Varian 2000关于兴奋剂的资料)

    [B]兴奋剂[/B]英文名称:stimulant [B]兴奋剂的定义[/B] 兴奋剂在英语中称"Dope",原义为"供赛马使用的一种鸦片麻醉混合剂"。由于运动员为提高成绩而最早服用的药物大多属于兴奋剂药物--刺激剂类,所以尽管后来被禁用的其他类型药物并不都具有兴奋性(如利尿剂),甚至有的还具有抑制性(如b-阻断剂),国际上对禁用药物仍习惯沿用兴奋剂的称谓。因此,如今通常所说的兴奋剂不再是单指那些起兴奋作用的药物,而实际上是对禁用药物的统称。[B]兴奋剂的分类[/B] 1968年反兴奋剂运动刚开始时,国际奥委会规定的违禁药物为四大类,随后逐渐增加,目前已经达到七大类。虽然在分类时的表述有所不同,但基本上是按照这些物质的药理作用来分类的。 [B]一、刺激剂[/B] 这类药物按药理学特点和化学结构可分为以下几中:1、精神刺激药:包括苯丙胺和它的相关衍生物及其盐类2、拟交感神经胺类药物:这是一类仿内源性儿茶酚胺的肾上腺素和去甲肾上腺素作用的物质,以麻黄碱和它们的衍生物及其盐类为代表。3、咖啡因类:此类又称为黄嘌呤类,因其带有黄嘌呤基团。4、杂类中枢神经刺激物质:如胺苯唑、戌四唑、尼可刹米和士的宁等。 刺激剂是最早使用,也是最早禁用的一批兴奋剂,也是最原始意义上的兴奋剂,因为只有这一类兴奋剂对神经肌肉的药理作用才是真正的“兴奋作用”。20世纪70年代以前,运动员所使用的兴奋剂主要都属于这一类。1960年罗马奥运会和1972年慕尼黑奥运会上所查出来的使用兴奋剂有苯丙胺、麻黄素、去甲伪麻黄碱和尼可刹米。[B]二、麻醉止痛剂[/B] 这类药物按药理学特点和化学结构可分为两大类。1、哌替啶类:杜冷丁、安诺丁、二苯哌己酮和美散痛,以及它们的盐类和衍生物,其主要功能性化学基团是哌替啶2、阿片生物碱类:包括吗啡、可待因,狄奥宁(乙基吗啡)、海洛因、羟甲左吗南和镇痛新,以及他们的盐类和衍生物,化学核心基团是从阿片中提取出来的吗啡生物碱。[B]三、合成类固醇类[/B] 作为兴奋剂使用的合成类固醇,其衍生物和商品剂型品种特别繁多,多数为雄性激素的衍生物。这是目前使用范围最广,使用频度最高的一类兴奋剂,也是药检中的重要对象。国际奥委会只是禁用了一些主要品种,但其禁用谱一直在不断扩大。[B]四、利尿剂[/B] 此类药物的临床效应是通过影响肾脏的尿液生成过程,来增加尿量排出,从而缓解或消除水肿等症状。目的:1、通过快速排除体内水分,减轻体重。2、增加尿量,来尽快减少体液和排泄物中其他兴奋剂代谢产物,以次来造成药检的假阴性结果。3、加速其他兴奋剂及其他代谢产物的排泄过程,从而缓解某些副作用。[B]五、β-阻断剂[/B] 以抑制性为主,在体育运动中运用比较少,临床常用于治疗高血压与心律失常等,有心得安、心得平、心得宁、心得舒和心得静等。这类药物是1988年国际奥委会决定新增加的禁用兴奋剂。六、内源性肽类激素 大多以激素的形式存在于人体1、人体生长激素(hGH)2、胰岛素3、红细胞生成素(EPO)4、促性腺素[B]七、血液兴奋剂[/B] 又称为血液红细胞回输技术,20世纪40年代开始使用,原来是用异体同型输血,来达到短期内增加血红细胞数量,从而达到增强血液载氧能力。进入20世纪80年代,发明了血液回输术。有报道说,血液回输引起的红细胞数量等血液指标的升高可延续3个月。1988年汉城奥运会正式被国际奥委会列入禁用范围。

  • 【生活无处不化学】兴奋剂都有哪些?

    11月9日,世界反兴奋剂机构独立委员会当日在瑞士日内瓦发布调查报告证实,俄罗斯田径协会存在大规模使用兴奋剂问题,该独立委员会建议禁止俄罗斯参加2016年夏季奥运会田径比赛。我们平时所说的兴奋剂都有哪些呢?氯三苯乙烯  医疗用途:促进卵的排放,治疗女子不孕症。  体育用途:作为额外补充或在摄取睾丸素之后进行补充,通过反应来刺激“自然”睾丸素的生成。  风险:头痛、神经质和抑郁。硝酸甘油  医疗用途:扩张血管和增强心脏的功能,被用于预防和治疗心绞痛和心力衰竭。  体育用途:在冲刺时刺激爆发力,缩短兴奋的时间,被老年运动员预防性使用,现在又重新“时行”起来。  风险:头痛、高血压和恶心。皮质类固醇  医疗用途:消炎药,治疗风湿和哮喘。  体育用途:去痛、消除疲劳和使人兴奋。非常难以检测出来。  风险:糖尿病、骨质疏松。蛋白合成类固醇  医疗用途:治疗严重的营养缺乏和骨质疏松,用于艾滋病患者、长期卧床不起的病人和被严重烧伤者。  体育用途:促进肌肉的生长发育,与大剂量诺龙结合使用时,可消除使用者不希望出现的副作用。  风险:痤疮、多毛症、偏头痛、鼻子出血、腱炎(指肌肉肿胀而不是腱肿胀)、肌肉破 裂、前列腺癌、精神错乱,甚至是死亡。诺龙  医疗用途:老年人的营养缺乏,消瘦,用于严重烧伤和动过手术的人。  体育用途:促进肌肉的生长发育,增加训练耐力和训练负荷,其效果从未证实过。  风险:痤疮、女子男性化,大剂量使用可能导致癌症、糖尿病、严重的精神错乱等。促红细胞生成素  医疗用途:增加红血球的数目,用于贫血、组织断离、早产儿,用在癌学和血液学方面。  体育用途:增加训练耐力和训练负荷,这在目前的反兴奋剂检查中还查不出来,被经常使用(有人会给一个运动员使用5倍于一个严重病人的剂量)。  风险:形成血栓,死亡。睾丸素  医疗用途:用于睾丸素分泌不足和严重的营养缺乏。  体育用途:增加肌肉的数量。某些为增加肌肉数量而进行锻炼的人使用的剂量甚至会达到治疗剂量的250倍。  风险:痤疮、水肿、减少精子的数量、死亡。支气管扩张剂  医疗用途:治疗和预防哮喘。  体育用途:既可以起到刺激作用(舒喘灵接近肾上腺素),又可以提高呼吸功能。  风险:使心跳加快,大剂量使用会导致头痛和消化系统紊乱。蛋白合成激素  医疗用途:防老化,自从黑通宁(即乙酰甲氧色胺,防老化激素)上市以来美国使用此类药物成风。  体育用途:促进肌肉的生长发育。  风险:像其他蛋白合成激素一样,可能会造成死亡。苯乙酸诺龙  医疗用途:增强运动员肌肉、减缓疲劳。属于合成荷尔蒙睾丸素。  体育用途:增加肌肉的数量。  风险:痤疮、水肿、减少精子的数量、死亡。

  • 三大因素引爆全球生物仿制药市场

    现在的生物仿制药市场规模并不算大,2012年,全球市场规模只达到约16亿美元,但是业界普遍公认,未来的10~15年是生物仿制药的黄金发展期。生物医药领域世界著名咨询公司IMS预测,到2015年全球生物仿制药市场会达到19~37亿美元的规模,更有其他权威机构大胆预测,2017年的这一数字会达到179亿美元。这也促使国内外不少著名药企纷纷投资进军生物仿制药市场。为何生物仿制药在全球范围内变得异常火爆,背后的原因、驱动因素究竟是什么?http://www.ibioo.com/data/attachment/portal/201309/22/095336emfm77zi8mflmlos.jpg高昂的医药成本压力持续已久且席卷全球尤其是欧美的经济危机,使本来就很昂贵、逐年上升的医药成本问题更加突出,尤其在只有3亿人口的美国,尽管人口不到全球的5%,但是其医药开销却高达全球的一半,占美国GDP总量的17.6%,位于全球发达国家之首。因此,本已债台高筑的美欧政府不得不想方设法通过降低药价来降低医疗开支。而价格昂贵的生物药(尤其是抗体药)随着一些原研药专利已经或者即将到期,在2015年后,生物仿制药有望为政府缩减医疗成本增加不少机会。而对于新兴市场国家如巴西、印度和中国而言,生物仿制药同样有很大的发展空间。这些国家都有众多的人口,随着经济的发展和不断提高的医疗保险覆盖人口范围的扩大,对医药需求必然要高于发达国家的增幅。然而,作为发展中国家,其有限的财政预算也迫使政府必须要对上述需要和对创新原研药的需求做一个平衡,在此情况下,生物仿制药胜出几乎是没有悬念的。对于韩国、印度、巴西等国而言,生物仿制药也被视为重要的宏观经济的增长引擎,这些国家通过建立先进制造和研发中心吸引不少外商投资。对于我国而言,这一趋势也日益明显。其中一个例子和信号就是,去年,世界最大的独立生物公司安进高调进入中国,并在上海设立中国分公司,决定要和中国的合作企业一同开发生物仿制药。到期的生物药专利生物仿制药火爆的另外一个重要因素是:不少全球销量最大的生物原研药的专利已经或者不久将到期。这从图一可以清楚看出,全球销售额最高的10种生物药(最高每年82亿美元,最低每年24亿美元),其专利到期时间均集中在2012年到2019年间。仅仅这10种生物药,其销售总额在2011年就高达575亿美元,因此,生物仿制药有巨大的市场潜力并不是空穴来风。值得一提的是,基因泰克(Genentech,现属罗氏)和安进(Amgen)两家公司就分别拥有Top10生物药中的4种和2种,这也充分显示了作为全球最大、最著名的两家生物公司的实力。如果按照生物药的治疗领域来划分,主要集中于以下几个领域:糖尿病(胰岛素)、类风湿性关节炎(主要是靶向肿瘤坏死因子TNF类抗体)以及肿瘤。上述三大治疗领域现在仍然是生物药的最主要的适应症范围,且在全球均有至少上百亿美元的市场。由于此类药物需要长期使用,因此市场前景较好,这也是生物仿制药以后的主要竞争领域。而据最新报道,我国的糖尿病患者已经高达上亿人,占全球的三分之一,所以,可以预见的是,我国将成为治疗糖尿病的胰岛素全球第一大市场。但是胰岛素仿制药属于所谓的第一波(或第一轮)生物仿制药,而上世纪末兴起的第一波生物仿制药中还包括图二中的分子量相对较小的G-CSF(粒细胞集落刺激因子)和EPO(促红细胞生成素),我国本土制药公司均有生产供应国内市场并出口境外。目前,第二波生物仿制药主要是仿制抗体类药物,尤其是图一中的10大抗体药物更是仿制热点目标。对生物药的巨大需求生物仿制药既反映了市场急于寻找昂贵药物的廉价替代品,更反映了市场对生物药这些特殊药的不断增长的巨大需求。自从1982年全球第一个生物药在美国诞生以来,生物药的市场规模以超过化学药的增速迅速扩大,2012年全球生物药已经超过1600亿美元的规模,大约相当于药物市场总规模的16%~17%。由于原研生物药的制造商还会不断发现生物药新的适应症和推出全新的生物药,上述比例预计还将不断增长。据预测,到2017年,全球生物药的规模将达到2520亿美元。在生物药30余年的历史中,标志性生物药包括全球第一个、1982年在美国获批的Humulin(即用于治疗糖尿病的重组胰岛素),阿替普酶(纤维蛋白溶酶原激活药,t-PA)以及EPO、G-CSF和单克隆抗体。值得一提的是,2012年在全球销售额最大的10种药品中,生物药已经超过一半,其中销量冠军是雅培(即现在拆分后的艾伯伟AbbVie)的阿达木单抗(Humira,治疗类风湿性关节炎),2012年的销售额为92.6亿美元,今年有望突破百亿美元大关。自从小分子化学药、著名的降脂药、辉瑞的立普妥(Lipitor)专利到期后,全球药品销售冠军甚至包括亚军就是生物药的天下了。当然,生物仿制药之所以火爆还有其他多种原因,比如近年来,新药研发成本不断攀升(尤其是对于大型药企而言),投资收益比不断下降,不少跨国大型制药公司也在缩减研发开支,在此形势下,开发风险更低的生物仿制药对于一些创新药企而言是无奈又必然的选择。

  • 【分享】生物质谱在糖蛋白结构分析中的应用

    【分享】生物质谱在糖蛋白结构分析中的应用

    生物质谱在糖蛋白结构分析中的应用项目完成人:桑志红 蔡 耘项目完成单位:国家生物医学分析中心 随着人们对糖蛋白参与生命活动机理的日益深入了解,对天然糖蛋白及重组糖蛋白类药物的分析越来越受到重视。重组糖蛋白类药物的质量控制更是直接关系到药物的疗效及至人类的健康。九十年代以来,随着带有反射功能的基质辅助激光解吸附电离飞行时间质谱(MALDI-TOF-MS)和纳升电喷雾串联质谱(nano-ESI-Q-TOF)等具有软电离方式的现代质谱 技术的发展,质谱以其高灵敏度和强有力的分析混合物的能力,提供了生物大分子的分子量、序列、一级结构信息以及结构转换、修饰等方面的信息,使糖基化分析有了重要的进展。 通常研究糖蛋白的方法是把蛋白链上的寡糖切下来,分别研究蛋白部分和寡糖部分的结构,因此无法研究与两部分共同相关的结构问题,也不能区分不同糖基化位点上切下来的寡糖。自90年代初,国外有人开始用质谱法研究糖蛋白的结构,同时描述了各个位点的不均一性。我们用建立的现代生物质谱技术研究糖蛋白一级结构的方法,将其应用与基因重组糖蛋白的结构分析。为糖蛋白结构分析及基因重组糖蛋白类药物的质量控制提供新的手段。一、 生物质谱研究糖蛋白结构方法的建立实验所用仪器为:1.德国BRUKER 公司的REFLEXIII型基质辅助激光解吸附电离飞行时间质谱仪,N2激光器,波长337nm,线性飞行距离150cm,加速电压2kv。2.英国Micromass 公司Q-TOF型电喷雾串联质谱仪。源温80°C,气体流速40L/h,枪头电压650V,检测频率2.4S,氩气碰撞池压力6*10-5mbar。1. 基质的选择,在MALDI-TOF-MS分析中,基质起着相当重要的作用。不同的基质对不同类的物质响应不同,a-氰基-4-羟基肉桂酸用于测定糖蛋白核糖核酸酶B效果相对较好。2. 糖蛋白分子量的测定,糖蛋白核糖核酸酶B由124个氨基酸组成,在34位Asn处连有一个高甘露糖型N-糖链。由于糖链的微不均一性,与普通蛋白质及核酸不同,其分子离子峰在MALDI-TOF-MS 质谱图上表现为一簇峰,各峰之间约相差一个糖基。正是由于这种微不均一性,使得其分子离子峰变宽,灵敏度降低。糖链分子量越大,峰越宽,灵敏度越低,所以一般只有糖链较短,蛋白的质量不太大的糖蛋白才能测定其平均分子量。用MALDI-TOF可直接测定糖蛋白核糖核酸酶B的平均分子量为 15208.6Da。http://ng1.17img.cn/bbsfiles/images/2011/03/201103211511_284179_1604317_3.jpg3. 糖含量的测定,采用O聚糖酶及内糖苷键酶F分别作用于核糖核酸酶 B,只有内糖苷键酶F能够是其分子量发生变化,表明核糖核酸酶B分子中不存在O-连接糖链存在着N-连接糖链。内糖苷键酶F切断N-糖链五糖核心最内侧的GlcNAc-GlcNAc糖苷键,得到含一个GlcNAc的肽链,减去GlcNAc,可以计算出准确的肽链分子量T=13695.6,与糖蛋白平均分子量之差为糖链的平均分子量G=1513.4,平均糖含量为:(糖链大小/糖蛋白分子量)×100%=9.95%。4. 糖基化位点的确定,研究糖基化类型及糖基化位点的策略:采用蛋白酶酶解与糖苷内切酶酶解相结合的方法,通过酶切前后含糖肽片的位移,结合网上数据库检索,可以确定糖基化类型和糖基化位点。以不同类型的糖苷内切酶作用于糖蛋白(N-糖苷键酶或O-糖苷键酶),在MALDITOF-MS 上观察其质量的变化,可以直接确定糖蛋白中是否含有响应类型的糖链,这是我们确定糖蛋白中糖苷键类型的基础。我们采用先将核糖核酸酶B还原烷基化,加Glu-C酶切,产物再用内糖苷肩酶F酶切,可观察到含糖肽段出现位移,将核糖核酸酶B的肽质量指纹图进行数据库检索,证实发生位移的肽段中含有N-糖链特异连接位点,由此确定34位Asn为糖基化位点。另外我们采用内糖苷键酶F及肽-N-聚糖酶F两种酶进行差位酶切法对含糖肽段进行验证,两种酶酶切后分子离子峰的差值除以GlcNAc的质量,结果就是N-糖基化位点的个数5. 质谱测定氨基酸序列, 我们对核糖核酸酶B肽质量指纹谱中的含糖肽段进行了串联质谱测定,首先在一级质谱图中选择离子4972.23,在串联质谱的碰撞活化室以氩气与其碰撞产生碎片,从碎片的质荷比推算出此肽片中的一段氨基酸序列,检索结果为核糖核酸酶B,从而判断其理论序列是否一致。6. 糖链结构的研究,凝集素对糖肽的亲和提取,进一步分析糖肽序列及糖链结构的关键是含糖肽段的提取。核糖核酸酶B中糖链为高甘露糖型,我们选用对其有特异性吸附的伴刀豆球蛋白对其进行提取利用这种简捷的亲和质谱的方法,对糖肽段进行了分析。建立了亲和质谱分析糖肽类物质的方法,为今后糖肽序列分析及糖链结构分析奠定了基础。二、基因重组糖蛋白人促红细胞生成素(rhEPO)的结构分析。 利用以上建立的方法,我们对样品重组人促红细胞生成素进行了分析,断定此样品为非完全糖基化,样品中只存在N-连接的糖链,无O-糖链。应用酶切法用肽-N-聚糖酶处理后,得到两个含糖肽段,进行数据库检索,测得38位及83位为N-糖基化位点,与文献报道相符,结果可靠。因此,该项课

  • [专业外语] 生物专业英语词汇——词素(词根)部分

    一、 表示数量的词素1. haplo,mono,uni :单,一,独 haploid 单倍体 monoxide一氧化碳 monoatomic单原子的2. bi,di,dipl,twi,du :: 二,双,两,偶 biocolor 双色,dichromatic 双色的,diplobacillus 双杆菌 dikaryon 双核体 twin :孪生 dual 双重的3. tri :三,丙 triangle三角 triacylglycerol三酰甘油 tricarboxylic acid cycle 三羧酸循环4. quadri,quadru,quart,tetr,tetra:四 quadrilateral四边的 quadrivalent四价的 quadruped四足动物tetrode四极管 tetracycline四环素5. pent,penta,quique五 pentose戊糖pentagon五角形pentane戊烷quintuple 五倍的 pentose戊糖 pentomer五邻粒6. hex,hexa,sex 六 hexose已糖 hexapod六足动物hexapoda昆虫纲 hexamer六聚体7. hepta,sept(i) 七 heptane 庚烷 heptose 庚糖 heptoglobin七珠蛋白8. oct八 octpus 章鱼 octagon八角形 octane 辛烷 octase 辛糖9. enne,nona九 nonapeptide 九肽 enneahedron 九面体10. deca,deka 十 :decapod 十足目动物 decahedron 十面体 decagram 十克11. hecto, 百 hectometer百米 hectoliter百升 hectowatt 百瓦12. kilo,千 kilodalton (KD) 千道尔顿 kilobase 千碱基 kiloelectron volt 千电子伏特13. deci,十分之一,分 decimeter 分米decigram 十分之一克14. centi,百分之一15. milli,千分之一,毫millimole 毫摩(尔)milliliter 毫升16. micro,百万分之一,微,微小,微量microgram微克 microogranism微生物microecology微生态学micropipet微量移液器17. nano十亿分之一,毫微,纳nanosecond十亿分之一秒nanometer纳米18. demi,hemi,semi半 demibariel 半桶 hemicerebrum 大脑半球semiopaque半透明 semi-allel半等位基因 semi-conductor半导体19. holo 全,整体,完全 holoenzyme 全酶holoprotein全蛋白 holocrine全(质分)泌20. mega巨大,兆,百万 megaspore大孢子,megabasse兆碱基megakaryocyte巨核细胞megavolt兆伏 megalopolitan特大城市21. macro 大,巨大,多macrophage巨噬细胞macrogamete大配子macroelement常量元素 macromolecular大分子22. poly,multi,mult 多,复合polyacrylate聚丙烯酸酯 polymerase 聚合酶 multichain多链的multinucleate 多核的 multicistronic mRNA多顺反子mRNA multicopy多拷贝二、 表示颜色的词素1 chrom颜色 chromophore生色团 chromosome染色体 chromatography色谱法2 melan,melano,nigr 黑melanoma黑素瘤melanin黑色素melanophore黑色素细胞3 xantho,flavo,fla,flavi,lute黄xanthophyl叶黄素 xanthous黄色的,黄色人种xathine黄嘌呤 flavin(e)黄素flavone黄酮 letein黄体素,叶黄素flavin adenine dinucleotide(FAD)黄素腺嘌呤二核苷酸4 erythro, rub, rubrm, ruf,红 erythrocyte红细胞erythromycin红霉素erythropoitin(EPO)促红细胞生成素 5 chloro,chlor绿,氯chlorophyll叶绿素 chloride氯化物chloramphenicol氯霉素6 cyan,cyano 蓝,青紫色,氰cyanophyceae 蓝藻纲 cyanobacteria蓝细菌cyanide氰化物7 aur,glid,chrys金色 aureomycin金霉素chrysose 金藻淀粉 chrysanthemum菊花 glidstone 金沙石 glid 镀金8 leu,leuco,leuk,leuko,blan,alb无色,白色 leucine亮氨酸 leukaemia=leucosis白血病bleaching powder漂白粉 albomycin白霉素三、 表示摄食的词素 1 –vore 食……动物,-vorous食……动物的 algivore食藻动物 carnivore 食肉动物herbivore 食草动物 omnivore 杂食动物 2-phage吃(食)食……生物(体)-phagous吃(食)……的 phage噬菌体phagocyte 吞噬细胞 zoophage食肉动物saprophage腐食者

  • 【转帖】Cell: NK细胞耐受机制综述

    文章出处:Natural killer cell education and tolerance. Cell. 2010. 142:847-856综述背景与主要内容:NK细胞作为继T细胞、B细胞之后的第三大类淋巴细胞,对它的研究已经超过了30年,对其的认识也在一步一步的加深。NK细胞最主要的功能是杀伤病毒感染细胞和转化了的肿瘤细胞,从而起到免疫防御和免疫自稳的作用。从一开始,大家就提出了关于NK细胞如何识别“自我”与“非我”的问题,也就是为什么NK细胞不会杀伤正常的细胞,而专杀病毒感染细胞和肿瘤细胞呢?随着NK细胞众多活化性受体和抑制性受体的发现似乎解释了这一问题,尤其是识别自身MHC I类分子的抑制性受体的发现,认为机体有核细胞都表达MHC I类分子,NK细胞接受自身MHC I类分子的抑制性信号所以不会杀伤自身正常细胞,而病毒感染细胞和肿瘤细胞MHC I类分子下调,NK细胞抑制性信号下降,活化性信号占主导,NK细胞活化从而杀伤这些细胞。但是,随着研究的深入,发现事实并不是如此简单,有些NK细胞并不表达识别MHC I类分子的抑制性受体,或者表达的抑制性受体不识别自身的MHC I类分子。但是这些NK细胞却并不杀伤正常细胞,也不杀伤MHC I类分子缺陷的细胞。另外,无核的红细胞并不表达MHC I类分子,NK细胞也并不杀伤正常的红细胞。虽然自身免疫性疾病有很多,但是没有证据表明NK细胞是导致自身免疫性疾病的主要细胞,自身免疫性疾病一般都是由T细胞或B细胞自身耐受被打破导致的,说明NK细胞自身耐受机制比T细胞和B细胞要完善。逐着研究的深入,对NK细胞耐受的机制的研究也取得了重要突破,本文全面介绍了NK细胞耐受机制研究的重要进展。NK细胞耐受机制(本人总结):1、经典方式:NK细胞表达识别自身MHC I类分子的抑制性受体,机体正常细胞通过表达MHC I类分子抑制NK细胞对机体正常细胞的杀伤。2、NK细胞表达的识别自身配体的活化性受体长期接触机体正常细胞表达的自身配体能够诱导NK细胞耐受。证据1:NKG2D是NK细胞重要的活化性受体,其配体是Rae-1家族,该配体在机体出生前高表达,出生后不表达。所以,NK细胞可以直接杀伤表达Rae-1配体的细胞。但是转基因持续表达该配体的小鼠的NK细胞则表现为对这些配体的耐受,无法杀伤表达该配体的细胞。证据2:Ly49D识别H-2Dd,来源于H-2Dd缺陷小鼠的Ly49D阳性NK可以杀伤表达H-2Dd的细胞。证据3:Ly49H识别MCMV编码的m157,野生型Ly49H阳性NK细胞可以杀伤表达m157的细胞;但是转基因表达m157小鼠来源的Ly49H阳性NK细胞则无法杀伤表达m157的细胞。而且,将野生型Ly49H阳性NK细胞过继转移到转基因表达m157小鼠内,该NK细胞也将耐受,无法杀伤表达m157的细胞。3、正常机体内存在不表达识别自身MHC I类分子的抑制性受体的NK细胞,这些NK细胞在正常机体内表现为耐受状态。在感染或者炎症条件下,这些NK细胞将打破耐受状态,具有较强的杀伤功能,但是,此时这些NK细胞也不会杀伤自身正常的细胞,因为这些NK细胞表达识别其它自身抗原分子的抑制性受体,如识别CD48的CD244抑制性受体,识别LLT1的CD161抑制性受体等。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制