当前位置: 仪器信息网 > 行业主题 > >

人干细胞因子

仪器信息网人干细胞因子专题为您整合人干细胞因子相关的最新文章,在人干细胞因子专题,您不仅可以免费浏览人干细胞因子的资讯, 同时您还可以浏览人干细胞因子的相关资料、解决方案,参与社区人干细胞因子话题讨论。

人干细胞因子相关的论坛

  • 重组细胞因子分类及应用概述

    一、细胞因子的概念细胞因子(cytokine)是由机体多种细胞分泌的小分子蛋白质,通过结合细胞表面的相应受体发挥以调节免疫应答为主的生物学作用。细胞因子具有 非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢 等。二、细胞因子的命名细胞因子按其来源可分为:由单个核吞噬细胞产生的细胞因子称为单核因子(monokine);由淋巴细胞产生的细胞因子称为淋巴因子 (lymphokine)等。按其作用可分为干扰素、集落刺激因子、肿瘤坏死因子、生长因子和趋化因子等。部分由不同细胞分泌的细胞因子,其基因及编码蛋 白与结构清楚者,在免疫调节、造血和炎症中发挥重要作用,又称为白细胞介素(interleukin,IL)。也可以依据结构或者其受体结构分类,我们的 趋化因子目前没有受体产品。三、细胞因子的特征1、低分子量;一般为<60kD的多肽或糖蛋白。多以单体形式存在,少数为二聚体,三聚体。2、天然细胞因子由抗原、丝裂原或其他刺激物活化的细胞所分泌,通过旁分泌(paracrine)、自分泌(autocrine)或内分泌(endocrine)方式在局部发挥短暂作用。3、一种细胞因子可由多种细胞产生,同一种细胞可产生多种细胞因子。4、需通过与靶细胞表面相应受体结合后发挥其生物学效应。5、具有高效性、多效性、叠性、拮抗性、协同性和网络性。四、细胞因子的分类1、白细胞介素(interleukin,IL-s)最初是指由白细胞产生又在白细胞间发挥作用的细胞因子。2、干扰素(interferon,IFN)最早发现的细胞因子,有干扰病毒感染和复制的能力。分α、β和g三种类型。3、肿瘤坏死因子超家族(tumor necrosis factor,TNF)1975年发现的一种能使肿瘤发生出血坏死的物质。4、集落刺激因子(colony-stimulating factor,CSF)指能够刺激多能造血干细胞和不同造血祖细胞增殖分化,在半固体培养基中形成相应细胞集落的细胞因子。包括G-CSF(粒细胞)、M-CSF(巨噬细胞)、 GM-CSF(粒细胞、巨噬细胞)、Multi-CSF(多重)(IL-3)、红细胞生成素(EPO)、干细胞生长因子(SCF)、血小板生成素 (TPO)等。5、趋化因子(chemokine)主要功能是招募血液中的单核细胞、中性粒细胞、淋巴细胞等进入特定的淋巴器官和组织以及感染发生的部位。根据趋化因子近N端半胱氨酸(Cys)的位置、排列方式和数量,可分为CC、CXC、C、CX3C四个亚家族。6生长因子(growth factor,GF)生长因子(GF)是具有刺激细胞生长作用的细胞因子。五、细胞因子的生物学活性1.介导自然免疫、参与抗肿瘤和抗感染2.调节T、B细胞活化、生长和分化,介导细胞免疫和体液免疫3.刺激造血生成、刺激骨髓祖细胞生长和分化为各种成熟血细胞4.在炎症、感染和内毒素血症中的作用5.在超敏反应和自身免疫病中的作用6.细胞因子通过激活其相应受体(CKR),导致细胞的增殖与分化或分泌某种蛋白质。六、四种蛋白表达体系比较表达细胞优点缺点原核E. coli繁殖快、成本低、产量高遗传背景及基因表达调控机制清楚易于大规模培养,成本低廉蛋白常为包涵体,纯化困难无糖基化(分泌蛋白,细胞膜上蛋白不可用),生物活性不定无翻译后修饰,内毒素含量高酵母Pichia使用简单,表达量高,His-tag便于纯化,一定的翻译后加工可进行糖基化修饰,操作简单,适合大规模生产可诱导表达,也可分泌表达,产物便于纯化有时会出现蛋白切割问题糖基化不能满足要求昆虫High-5产量高 ,翻译后加工与哺乳动物相似对于部分有毒性或较难表达蛋白有优势无内毒素污染蛋白活性不如哺乳动物适合表达激酶等定位于细胞内的真核蛋白哺乳CHO HEK293完善的翻译后加工,活性接近天然蛋白周期长、技术要求高表达产量低

  • 重组细胞因子类药物研究的现状与发展前景

    细胞因子(cytokine)是由免疫细胞及相关细胞产生的一类调节细胞功能的高活性、多功能的多肽分子,不包括免疫球蛋白、补体和一般生理性的细胞产物。细胞因子通常由淋巴细胞、单核巨噬细胞、成纤维细胞、内皮细胞等相关细胞产生,按其功能及与免疫学的关系可分为:⑴具有抗病毒活性的细胞因子,如干扰素(interferon,IFN);⑵具有免疫调节活性的细胞因子,包括白细胞介素(interleukin,IL)类的IL 2、IL 4、IL 5、IL 7、IL 9、IL 10和IL 12,以及β型转化生长因子(transforming growth factor β,TGF β);⑶具有炎症介导活性的细胞因子,包括以肿瘤坏死因子(tumor necrosis factor,TNF)及IL 1、IL 6和IL 8为代表的结构相似的小分子趋化因子;⑷具有造血生长活性的细胞因子,包括IL 3、IL 11、集落刺激因子(colony-stimulating factor,CSF)、促红细胞生成素(erythropoietin,EPO)、干细胞因子(stem cell factor,SCF)和白血病抑制因子(leukemia inhibitory factor,LIF)等。 重组细胞因子是利用基因工程技术生产的细胞因子产品,作为药物用于治疗肿瘤、感染、造血障碍等,可收到良好的疗效。近十多年来,重组细胞因子类药物的研制有较快发展,相关的新药陆续上市。本文重点介绍各类药物的研究进展、不同表达系统的表达水平和基因来源情况,以及各类重组细胞因子的基本特点和适应症。 国内外研究动态和市场现状 目前国内市场上主要的国产重组细胞因子类药物包括乙肝疫苗、IFN、IL 2、G-CSF、重组链激酶(recombinant streptokinase, rSK)、重组表皮生长因子(recombinant endothelial growth factor,rEGF)等15种基因工程药物。组织溶纤原激活剂(tissue plasminogen activator,T-PA)、IL 3、重组人胰岛素、尿激酶等十几种多肽药物正处于临床Ⅱ期试验阶段,单克隆抗体的研制已从实验阶段进入临床阶段。正在开发研究中的项目包括采用新的高效表达系统生产重组凝乳酶等40多种基因工程新药。 在欧美市场上,对现有重组药物进行分子改造而开发的某些第二代基因药物已经上市,如重组新钠素、胞内多肽等。另外,重组细胞因子融合蛋白、人源单克隆抗体、反义核酸,以及基因治疗、新的抗原制备技术、转基因动物生产等,均取得了实质性的进展。国外生物医药的目前发展动向,主要反映在以下几方面。 与血管发生有关的细胞因子 肿瘤血管生长因子(tumor angiogenesis factors,TAF)包括研究较多的血管内皮生长因子(vascular endothelial growth factor,VEGF)、成纤维细胞生长因子(fibroblast growth factor,FGF)、血小板源生长因子(platelet-derived growth factor,PDGF)等,它们促进肿瘤新生微血管的生长。临床研究表明,阻断VEGF受体2(VEGFR 2)和PDGF受体β(PDGFR β)等,可达到通过抗血管生成来治疗肿瘤的目的。1998年,美国科研人员发现两种用于治疗癌症的血管发生抑制因子(即抗血管生长因子)和内皮抑制素,以及一种抗血管生长蛋白,即血管抑制素(vasculostatin),都有较好的疗效。另外,VEGF、FGF和血管生长素(angiopoietin)等能够通过刺激动脉内壁的内皮细胞生长来促进形成新的血管,从而对冠状动脉疾病和局部缺血产生治疗作用。

  • 细胞因子及其受体的分类有哪些?

    [font=宋体]细胞因子一般是通过与细胞表面相应的细胞因子受体结合而发挥生物学作用。细胞因子与其受体结合后,会启动复杂的细胞内分子相互作用,最终引起细胞基因转录的变化。[/font][font=宋体]已知的细胞因子受体绝大多数是[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url],由胞外、跨膜和胞质区组成。胞外膜区是识别结合细胞因子的部位,胞质区在受体激活后启动信号转导。下面为大家介绍下细胞因子及其受体的分类有哪些?[/font][font=宋体] [/font][b][font=宋体]一、细胞因子的分类[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]([/font][font=宋体]一[/font][font=Calibri])[/font][font=宋体]根据细胞种类不同分类[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体])淋巴因子[/font][font=Calibri](lymphokine) [/font][font=宋体]主要由淋巴细胞产生,包括[/font][font=Calibri]T[/font][font=宋体]淋巴细胞、[/font][font=Calibri]B[/font][font=宋体]淋巴细胞和[/font][font=Calibri]NK[/font][font=宋体]细胞等。重要的淋巴因子有[/font][font=Calibri]IL-2[/font][font=宋体]、[/font][font=Calibri]IL-3[/font][font=宋体]、[/font][font=Calibri]IL-4[/font][font=宋体]、[/font][font=Calibri]IL-5[/font][font=宋体]、[/font][font=Calibri]IL-6[/font][font=宋体]、[/font][font=Calibri]IL-9[/font][font=宋体]、[/font][font=Calibri]IL-10[/font][font=宋体]、[/font][font=Calibri]IL-12[/font][font=宋体]、[/font][font=Calibri]IL-13[/font][font=宋体]、[/font][font=Calibri]IL-14[/font][font=宋体]、[/font][font=Calibri]IFN-[/font][font=宋体]γ、[/font][font=Calibri]TNF-[/font][font=宋体]β、[/font][font=Calibri]GM-CSF[/font][font=宋体]和神经白细胞素等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体])单核因子[/font][font=Calibri](monokine) [/font][font=宋体]主要由单核细胞或巨噬细胞产生,如[/font][font=Calibri]IL-1[/font][font=宋体]、[/font][font=Calibri]IL-6[/font][font=宋体]、[/font][font=Calibri]IL-8[/font][font=宋体]、[/font][font=Calibri]TNF-[/font][font=宋体]α、[/font][font=Calibri]G-CSF[/font][font=宋体]和[/font][font=Calibri]M-CSF[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体])非淋巴细胞、非单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞产生的细胞因子 主要由骨髓和胸腺中的基质细胞、血管内皮细胞、成纤维细胞等细胞产生,如[/font][font=Calibri]EPO[/font][font=宋体]、[/font][font=Calibri]IL-7[/font][font=宋体]、[/font][font=Calibri]IL-11[/font][font=宋体]、[/font][font=Calibri]SCF[/font][font=宋体]、内皮细胞源性[/font][font=Calibri]IL-8[/font][font=宋体]和[/font][font=Calibri]IFN-[/font][font=宋体]β等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]([/font][font=宋体]二[/font][font=Calibri])[/font][font=宋体]根据主要功能的不同分类[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体])白细胞介素[/font][font=Calibri](interleukin, IL) 1979[/font][font=宋体]年开始命名。由淋巴细胞、单核细胞或其它非单个核细胞产生的细胞因子,在细胞间相互作用、免疫调节、造血以及炎症过程中起重要调节作用,凡命名的白细胞介素的[/font][font=Calibri]cDNA[/font][font=宋体]基因克隆和表达均已成功,已报道有三十余种[/font][font=Calibri](IL-1[/font][font=宋体]―[/font][font=Calibri]IL-38)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体])集落刺激因子[/font][font=Calibri](colony stimulating factor, CSF) [/font][font=宋体]根据不同细胞因子刺激造血干细胞或分化不同阶段的造血细胞在半固体培养基中形成不同的细胞集落,分别命名为[/font][font=Calibri]G([/font][font=宋体]粒细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]M([/font][font=宋体]巨噬细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]GM([/font][font=宋体]粒细胞、巨噬细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]Multi([/font][font=宋体]多重[/font][font=Calibri])-CSF(IL-3)[/font][font=宋体]、[/font][font=Calibri]SCF[/font][font=宋体]、[/font][font=Calibri]EPO[/font][font=宋体]等。不同[/font][font=Calibri]CSF[/font][font=宋体]不仅可刺激不同发育阶段的造血干细胞和祖细胞增殖的分化,还可促进成熟细胞的功能。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体])干扰素[/font][font=Calibri](interferon, IFN) 1957[/font][font=宋体]年发现的细胞因子,最初发现某一种病毒感染的细胞能产生一种物质可干扰另一种病毒的感染和复制,因此而得名。根据干扰素产生的来源和结构不同,可分为[/font][font=Calibri]IFN-[/font][font=宋体]α、[/font][font=Calibri]IFN-[/font][font=宋体]β和[/font][font=Calibri]IFN-[/font][font=宋体]γ,他们分别由白细胞、成纤维细胞和活化[/font][font=Calibri]T[/font][font=宋体]细胞所产生。各种不同的[/font][font=Calibri]IFN[/font][font=宋体]生物学活性基本相同,具有抗病毒、抗肿瘤和免疫调节等作用。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体])肿瘤坏死因子[/font][font=Calibri](tumor necrosis factor, TNF) [/font][font=宋体]最初发现这种物质能造成肿瘤组织坏死而得名。根据其产生来源和结构不同,可分为[/font][font=Calibri]TNF-[/font][font=宋体]α和[/font][font=Calibri]TNF-[/font][font=宋体]β两类,前者由单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞产生,后者由活化[/font][font=Calibri]T[/font][font=宋体]细胞产生,又名淋巴毒素[/font][font=Calibri](lymphotoxin, LT)[/font][font=宋体]。两类[/font][font=Calibri]TNF[/font][font=宋体]基本的生物学活性相似,除具有杀伤肿瘤细胞外,还有免疫调节、参与发热和炎症的发生。大剂量[/font][font=Calibri]TNF-[/font][font=宋体]α可引起恶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url],因而[/font][font=Calibri]TNF-[/font][font=宋体]α又称恶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]素[/font][font=Calibri](cachectin)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5[/font][font=宋体])转化生长因子[/font][font=Calibri]-[/font][font=宋体]β家族[/font][font=Calibri](transforming growth factor-[/font][font=宋体]β [/font][font=Calibri]family, TGF-[/font][font=宋体]β [/font][font=Calibri]family) [/font][font=宋体]由多种细胞产生,主要包括[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]1[/font][font=宋体]、[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]2[/font][font=宋体]、[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]3[/font][font=宋体]、[/font][font=Calibri]TGF[/font][font=宋体]β[/font][font=Calibri]1[/font][font=宋体]β[/font][font=Calibri]2[/font][font=宋体]以及骨形成蛋白[/font][font=Calibri](BMP)[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6[/font][font=宋体])生长因子[/font][font=Calibri](growth factor,GF)[/font][font=宋体]如表皮生长因子[/font][font=Calibri](EGF)[/font][font=宋体]、血小板衍生的生长因子[/font][font=Calibri](PDGF)[/font][font=宋体]、成纤维细胞生长因子[/font][font=Calibri](FGF)[/font][font=宋体]、肝细胞生长因子[/font][font=Calibri](HGF)[/font][font=宋体]、胰岛素样生长因子[/font][font=Calibri]-I(IGF-1)[/font][font=宋体]、[/font][font=Calibri]IGF-[/font][font=宋体]Ⅱ、白血病抑制因子[/font][font=Calibri](LIF)[/font][font=宋体]、神经生长因子[/font][font=Calibri](NGF)[/font][font=宋体]、抑瘤素[/font][font=Calibri]M(OSM)[/font][font=宋体]、血小板衍生的内皮细胞生长因子[/font][font=Calibri](PDECGF)[/font][font=宋体]、转化生长因子[/font][font=Calibri]-[/font][font=宋体]α[/font][font=Calibri](TGF-[/font][font=宋体]α[/font][font=Calibri])[/font][font=宋体]、血管内皮细胞生长因子[/font][font=Calibri](VEGF)[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]7[/font][font=宋体])趋化因子家族[/font][font=Calibri](chemokinefamily) [/font][font=宋体]包括四个亚族[/font][font=Calibri]:(1)C-X-C/[/font][font=宋体]α亚族,主要趋化中性粒细胞,主要的成员有[/font][font=Calibri]IL-8[/font][font=宋体]、黑素瘤细胞生长刺激活性[/font][font=Calibri](GRO/MGSA)[/font][font=宋体]、血小板因子[/font][font=Calibri]-4(PF-4)[/font][font=宋体]、血小板碱性蛋白、蛋白水解来源的产物[/font][font=Calibri]CTAP-[/font][font=宋体]Ⅲ和β[/font][font=Calibri]-thromboglobulin[/font][font=宋体]、炎症蛋白[/font][font=Calibri]10(IP-10)[/font][font=宋体]、[/font][font=Calibri]ENA-78 (2)C-C/[/font][font=宋体]β亚族,主要趋化单核细胞,这个亚族的成员包括巨噬细胞炎症蛋白[/font][font=Calibri]1[/font][font=宋体]α[/font][font=Calibri](MIP-1[/font][font=宋体]α[/font][font=Calibri])[/font][font=宋体]、[/font][font=Calibri]MIP-1[/font][font=宋体]β、[/font][font=Calibri]RANTES[/font][font=宋体]、单核细胞趋化蛋白[/font][font=Calibri]-1(MCP-1/MCAF)[/font][font=宋体]、[/font][font=Calibri]MCP-2[/font][font=宋体]、[/font][font=Calibri]MCP-3[/font][font=宋体]和[/font][font=Calibri]I-309[/font][font=宋体]。[/font][font=Calibri](3)C[/font][font=宋体]型亚家族的代表有淋巴细胞趋化蛋白。[/font][font=Calibri](4)CX3C[/font][font=宋体]亚家族,[/font][font=Calibri]Fractalkine[/font][font=宋体]是[/font][font=Calibri]CX3C[/font][font=宋体]型趋化因子,对单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞、[/font][font=Calibri]T[/font][font=宋体]细胞及[/font][font=Calibri]NK[/font][font=宋体]细胞有趋化作用。[/font][/font][font=宋体] [/font][font=宋体]细胞因子检测是判断机体免疫功能的一个重要指标!已被广泛用于疾病的诊断、病程观察、疗效判断及细胞因子治疗监测等。[/font][font=宋体] [/font][b][font=宋体] [/font][/b][font=宋体]二、[/font][b][font=宋体]细胞因子受体分类[/font][font=宋体] [/font][/b][font=宋体][font=宋体]根据细胞因子受体的结构,可分为不同的家族或超家族,包括免疫球蛋白([/font][font=Calibri]Ig[/font][font=宋体])超家族、[/font][font=Calibri]I[/font][font=宋体]型细胞因子受体、[/font][font=Calibri]II[/font][font=宋体]型细胞因子受体、肿瘤坏死因子受体[/font][font=Calibri](TNFR)[/font][font=宋体]超家族和趋化因子受体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]①免疫球蛋白([/font][font=Calibri]Ig[/font][font=宋体])超家族[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]免疫球蛋白超家族([/font][font=Calibri]IgSF[/font][font=宋体])是指分子结构中具有与免疫球蛋白相似域的分子超家族。[/font][font=Calibri]IgSF[/font][font=宋体]的所有成员都含有[/font][font=Calibri]1[/font][font=宋体]~[/font][font=Calibri]7[/font][font=宋体]个[/font][font=Calibri]Ig[/font][font=宋体]样结构域,每个[/font][font=Calibri]Ig[/font][font=宋体]样结构域含有约[/font][font=Calibri]70[/font][font=宋体]~[/font][font=Calibri]110[/font][font=宋体]个氨基酸残基。它的二级结构是由两条反平行β[/font][font=Calibri]-[/font][font=宋体]折叠状链形成的反平行β[/font][font=Calibri]-[/font][font=宋体]片状平面,每条反平行β[/font][font=Calibri]-[/font][font=宋体]片状链含有[/font][font=Calibri]3[/font][font=宋体]~[/font][font=Calibri]5[/font][font=宋体]个反平行β[/font][font=Calibri]-[/font][font=宋体]折叠。每条反平行β片链由[/font][font=Calibri]5[/font][font=宋体]~[/font][font=Calibri]10[/font][font=宋体]个氨基酸残基组成。β片内侧的疏水氨基酸可稳定[/font][font=Calibri]Ig[/font][font=宋体]的折叠。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]大多数[/font][font=Calibri]Ig[/font][font=宋体]域有一个二硫键垂直连接两个β片,构成二硫键的两个半胱氨酸约含[/font][font=Calibri]55[/font][font=宋体]~[/font][font=Calibri]75[/font][font=宋体]个氨基酸。少数[/font][font=Calibri]Ig[/font][font=宋体]域,如[/font][font=Calibri]CD2[/font][font=宋体]的第一域、[/font][font=Calibri]LFA-3[/font][font=宋体]和[/font][font=Calibri]PDGFR[/font][font=宋体]的第四域、[/font][font=Calibri]CD4[/font][font=宋体]的第三域等,均缺乏二硫键。这种多肽链的球形结构的折叠称为免疫球蛋白折叠([/font][font=Calibri]Ig fold[/font][font=宋体])。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]②[/font][font=Calibri]I[/font][font=宋体]型细胞因子受体[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=Calibri]I[/font][font=宋体]型细胞因子受体又称造血素受体,是表达在细胞表面的跨膜受体,能识别细胞因子并对其作出反应,具有[/font][font=Calibri]4[/font][font=宋体]条α[/font][font=Calibri]-[/font][font=宋体]螺旋链。这些受体具有某些保守的胞外域,缺乏内在的蛋白酪氨酸激酶活性。[/font][/font][font=宋体][font=宋体]保守的胞外域有大约[/font][font=Calibri]200[/font][font=宋体]个氨基酸的长度,其中在氨基末端区域含有四个位置保守的半胱氨酸残基和一个位于跨膜域近端的保守氨基酸基团([/font][font=Calibri]WSXWS[/font][font=宋体])。这四个半胱氨酸是维持受体结构和功能完整性的关键。[/font][font=Calibri]WSXWS[/font][font=宋体]共识序列是细胞因子受体功能性蛋白与蛋白相互作用的识别位点。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]③[/font][font=Calibri]II[/font][font=宋体]型细胞因子受体[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]II[/font][font=宋体]型细胞因子受体又称[/font][font=Calibri]IFN[/font][font=宋体]受体,是表达在某些细胞表面的跨膜蛋白,它与一组选定的细胞因子结合并作出反应。通常Ⅱ型细胞因子受体是具有高亲和力和低亲和力成分的异二聚体或多聚体。这些受体一般由两条肽链组成,胞外区由[/font][font=Calibri]200[/font][font=宋体]个氨基酸残基组成,并含有[/font][font=Calibri]4[/font][font=宋体]个不连续的半胱氨酸。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]④[/font][font=Calibri]TNFR[/font][font=宋体]超级家族[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]肿瘤坏死因子受体([/font][font=Calibri]TNFR[/font][font=宋体])超家族成员是细胞因子受体的一个蛋白质超家族,共享一个半胱氨酸丰富域([/font][font=Calibri]CRD[/font][font=宋体]),由三个二硫键围绕[/font][font=Calibri]CXXCXXC[/font][font=宋体]的核心基团形成一个拉长的分子。目前[/font][font=Calibri]TNFR[/font][font=宋体]家族有[/font][font=Calibri]12[/font][font=宋体]个成员,包括[/font][font=Calibri]55kDa[/font][font=宋体]和[/font][font=Calibri]75kDa[/font][font=宋体]的[/font][font=Calibri]TNFR[/font][font=宋体],低亲和力的[/font][font=Calibri]NGFR[/font][font=宋体],人[/font][font=Calibri]B[/font][font=宋体]细胞抗原([/font][font=Calibri]CD40[/font][font=宋体])和[/font][font=Calibri]Fas[/font][font=宋体]抗原。该家族的共同特点是其胞外区有[/font][font=Calibri]Cys[/font][font=宋体]([/font][font=Calibri]4-6[/font][font=宋体])丰富的假重复基团,每个基团含有[/font][font=Calibri]40[/font][font=宋体]个氨基酸残基。细胞内域较短,由[/font][font=Calibri]44[/font][font=宋体]~[/font][font=Calibri]221[/font][font=宋体]个氨基酸残基组成,无同源序列。[/font][/font][font=宋体] [/font][font=宋体]⑤趋化因子受体[/font][font=宋体] [/font][font=宋体][font=宋体]趋化因子受体是在某些细胞表面发现并与趋化因子相互作用的细胞因子受体。人类已发现[/font][font=Calibri]20[/font][font=宋体]种不同趋化因子受体,为[/font][font=Calibri]7[/font][font=宋体]次跨膜的[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体,并在细胞内与[/font][font=Calibri]G[/font][font=宋体]蛋白偶联进行信号转导,是[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体家族成员之一。趋化因子受体与相应的配体结合后,引发细胞内钙([/font][font=Calibri]Ca2+[/font][font=宋体])离子通量(钙信号传导)。既而引起细胞反应,包括趋化作用过程开始,将细胞运送到生物体内的理想位置。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多细胞因子详情可以查看义翘神州[url=https://cn.sinobiological.com/category/cytokine-protein][b]细胞因子蛋白[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/category/cytokine-protein[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=宋体] [/font]

  • 细胞因子和重组蛋白溶解必读(一)

    我们知道,PeproTech的所有细胞因子和蛋白均为冻干粉,这使得运输非常便捷,只要常温即可。而且,细胞因子和蛋白冻干粉非常稳定,在-20℃或-80℃条件下可保存数年。冻干粉在使用前需进行溶解,然后以液体形式加到培养体系或注射入动物体内。溶解步骤非常关键,因溶解不好会导致细胞因子或蛋白的失活,这也是很多用户在实际使用中经常遇到的问题。 那么,应该如何进行正确的溶解呢? 下面我们以Recombinant Human IL-4 (重组人IL-4,产品编号:200-04)的说明书为例,对细胞因子或蛋白的溶解方法进行详细的阐述。 拿到重组人IL-4的说明书后,您会发现有一段关于Reconstitution(重悬)的叙述,这段内容含有溶解相关的所有信息。 1. Centrifuge the vial prior to opening.第1步:开盖前离心试剂管 PeproTech的细胞因子或蛋白冻干粉装盛在塑料管中,为无菌包装。冻干粉在运输过程中可能会因颠簸而漂散并粘贴于管壁或管盖上,所以在打开塑料瓶盖前,需将冻干粉通过离心收集到管底,以便用很小体积的液体即可将冻干粉完全溶解。 有很多用户会问一个问题,即应该用多少转速、多长时间离心试剂管,才能达到良好的收集效果?答:有些小型高速离心机(多为进口品牌)的面板上有一个Spin键,按了此键后,离心机会自动快速上升到其最大速度(10000rpm或12000rpm),上升到最高点后速度即刻下降,直至停止旋转,整个过程大约30s。这个Spin键足以很好的将细胞因子或蛋白收集到管底。 但有些实验室没有这样的高速离心机,只有最高转速为4000-4500rpm的离心机。这种情况下,需3000-3500rpm离心5min,也能达到类似的效果。 2. Reconstitute in water to a concentration of 0.1-1.0 mg/ml. Do not vortex.第2步:用无菌水重悬至0.1-1.0 mg/ml,不可振荡。 这个步骤即为溶解步骤,非常重要。 1) 一定要用推荐的溶液重悬(或溶解)冻干粉 用于溶解细胞因子或蛋白的溶液千差万别。此例中的重组人IL-4需用水溶解,而重组人IL-2 (产品编号:200-02)则需用100mM Acetic Acid (醋酸)溶解,重组人TGF-beta1 (产品编号:100-21)需用10mMCitric Acid (柠檬酸),pH3.0溶解,重组人FGF-basic(产品编号:100-18B)需用5mMTris,pH7.6溶解,重组人FGF-10(产品编号:100-26)需用5mMSodium Phosphate(磷酸钠),pH7.4溶解,重组IL-13(产品编号:200-13)需用20mMMHCl溶解。(注:即使同一重组细胞因子或蛋白,不同批次的溶解方法也可能有所不同,因此上面的叙述仅供参考。具体应该如何溶解应以相应批次的官方说明书为准)。后续的文章中将对各种溶解液的配制方法进行详细的阐述,望继续关注。 经常有用户会问,为什么会有这么多种溶解方法?答:我们知道,蛋白的溶解性与很多因素有关,其中比较重要的是pH值和离子强度。PeproTech的细胞因子或重组蛋白在出厂前均经严格测试,说明上所标明的溶解液是能够将该细胞因子或重组蛋白完全溶解的液体。如果您所用的溶解液的pH值和离子强度与说明书中所标明的不符,很多时候会造成细胞因子或重组蛋白不能完全溶解或者根本无法溶解,这样所配得的细胞因子或重组蛋白必然活性不够或丧失。 有不少用户没注意说明书上的描述,而是根据习惯,直接用PBS或培养液(1640或DMEM等)等溶解细胞因子或蛋白的冻干粉。这样做可以吗?答:有时可以,要看具体情况。PeproTech的大多数细胞因子或蛋白冻干粉的溶解液不是PBS,此时千万不能用PBS或培养液直接来溶解,具体原因在上面已经叙述过。而有部分细胞因子,如重组人KGF(产品编号:100-19)和重组人FGF-23(产品编号:100-52)等,说明书上的溶解液即为1x PBS,此时用PBS溶解完全没问题,那么用培养液溶解也是可以的,不过最好还是用先用PBS溶解,然后再用培养液稀释。

  • 细胞因子和其它试剂

    我这里有多种细胞因子和诊断试剂,可关注我们的网站:www.leeyond.com也可电话咨询:0592-5093271吴小姐

  • 【分享】人肝细胞生长因子受体(HGFR/ c-MET)酶联免疫分析(ELISA)

    试剂盒使用说明书本试剂仅供研究使用 目的:本试剂盒用于测定人血清,血浆及相关液体样本中肝细胞生长因子受体(HGFR/ c-MET)的含量。实验原理: 本试剂盒应用双抗体夹心法测定标本中人肝细胞生长因子受体(HGFR/ c-MET)水平。用纯化的人肝细胞生长因子受体(HGFR/ c-MET)抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入肝细胞生长因子受体(HGFR/ c-MET),再与HRP标记的羊抗人抗体结合,形成抗体-抗原-酶标抗体复合物,经过彻底洗涤后加底物TMB显色。TMB在HRP酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的肝细胞生长因子受体(HGFR/ c-MET)呈正相关。用酶标仪在450nm波长下测定吸光度(OD值),通过标准曲线计算样品中人肝细胞生长因子受体(HGFR/ c-MET)浓度。试剂盒组成:试剂盒组成48孔配置96孔配置保存说明书1份1份封板膜2片(48)2片(96)密封袋1个1个酶标包被板1×481×962-8℃保存标准品:1350ng/L0.5ml×1瓶0.5ml×1瓶2-8℃保存标准品稀释液1.5ml×1瓶1.5ml×1瓶2-8℃保存酶标试剂3 ml×1瓶6 ml×1瓶2-8℃保存样品稀释液3 ml×1瓶6 ml×1瓶2-8℃保存显色剂A液3 ml×1瓶6 ml×1瓶2-8℃保存显色剂B液3 ml×1瓶6 ml×1瓶2-8℃保存终止液[align=cente

  • T细胞培养的原理及方法:探索细胞因子在免疫反应中的关键作用

    [font=宋体][font=Calibri][url=https://cn.sinobiological.com/research/car-t-therapy/car-t-cell-culture][b]T[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/research/car-t-therapy/car-t-cell-culture][b]细胞培养[/b][/url]是指在体外模拟体内环境,使[/font][font=Calibri]T[/font][font=宋体]细胞能够生存、生长和繁殖的一种技术。在[/font][font=Calibri]T[/font][font=宋体]细胞培养中,细胞被置于无菌、适宜温度、酸碱度和一定营养条件的环境中,以保持其活力和功能。[/font][font=Calibri]T[/font][font=宋体]细胞培养被广泛应用于免疫学、生物医学和药物研发等领域,是研究[/font][font=Calibri]T[/font][font=宋体]细胞功能、探索免疫反应机制的重要手段。通过[/font][font=Calibri]T[/font][font=宋体]细胞培养,科学家可以观察和分析[/font][font=Calibri]T[/font][font=宋体]细胞的增殖、分化、凋亡以及细胞因子分泌等过程,了解其在免疫应答中的作用。同时,[/font][font=Calibri]T[/font][font=宋体]细胞培养也为疾病治疗和预防提供了新的思路和手段,如免疫疗法、疫苗研发和细胞治疗等。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体][font=Calibri]T[/font][font=宋体]细胞培养的原理[/font][/font][/b][font=宋体][font=宋体]是通过复合抗体孵育标记脾脏细胞中除[/font][font=Calibri]T[/font][font=宋体]细胞以外的其他细胞,再用磁珠结合抗体,然后用磁极吸附磁珠,那剩下的就是没有结合磁珠的[/font][font=Calibri]T[/font][font=宋体]细胞了。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]t[/font][font=宋体]细胞培养方法包括以下步骤:[/font][/font][/b][font=宋体][font=宋体]①抗体包被培养板:用无菌[/font][font=Calibri]PBS[/font][font=宋体]制备[/font][font=Calibri]5~10 μg/mL[/font][font=宋体]的[/font][font=Calibri]CD3[/font][font=宋体]抗体,然后在[/font][font=Calibri]96[/font][font=宋体]孔板的条件孔中,每孔加入[/font][font=Calibri]50 μL[/font][font=宋体]抗体溶液。[/font][/font][font=宋体][font=宋体]②接种细胞:在抗体包被的培养板中接种[/font][font=Calibri]T[/font][font=宋体]细胞,然后将培养板置于[/font][font=Calibri]37[/font][font=宋体]℃培养箱中[/font][font=Calibri]2[/font][font=宋体]小时或者提前一天准备培养板,置于[/font][font=Calibri]4[/font][font=宋体]℃过夜。[/font][/font][font=宋体][font=宋体]③洗涤和消化:在接种细胞之前,用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]将培养孔中的[/font][font=Calibri]50 μL[/font][font=宋体]抗体吸出,然后用[/font][font=Calibri]200 μL PBS[/font][font=宋体]洗涤培养孔并弃去[/font][font=Calibri]PBS[/font][font=宋体]。重复此步骤以去除所有未交联的抗体。[/font][/font][font=宋体][font=宋体]④细胞消化:将细胞培养瓶竖立放置,吸走培养基,如果培养基中的脱落细胞较多,说明细胞现在很容易脱落,只要加入[/font][font=Calibri]1ml[/font][font=宋体]的[/font][font=Calibri]PBS+EDTA[/font][font=宋体]([/font][font=Calibri]0.02%[/font][font=宋体]),来回轻微晃动培养瓶直到细胞完全脱落,加入[/font][font=Calibri]10mlMEM[/font][font=宋体],混匀,不能吹打,分装[/font][font=Calibri]2[/font][font=宋体]瓶。如果细胞没长满就脱落,则只需加入[/font][font=Calibri]5mlMEM[/font][font=宋体],不分装。如果培养瓶中的细胞贴壁较牢固,培养基上清没有细胞脱落碎片,且细胞长满达到[/font][font=Calibri]80[/font][font=宋体]%以上,吸走培养基,加入[/font][font=Calibri]5ml[/font][font=宋体]的[/font][font=Calibri]PBS+EDTA[/font][font=宋体]([/font][font=Calibri]0.02%[/font][font=宋体]),迅速轻微晃动,竖立培养瓶,吸走,加入[/font][font=Calibri]1ml0.05%[/font][font=宋体]胰酶,[/font][font=Calibri]37[/font][font=宋体]度消化不超过[/font][font=Calibri]3min[/font][font=宋体],细胞完全消化脱壁,取出加入[/font][font=Calibri]10ml[/font][font=宋体]培养基轻微吸打混匀,分装[/font][font=Calibri]2[/font][font=宋体]瓶。[/font][/font][font=宋体][font=宋体]⑤培养:将分装的[/font][font=Calibri]T[/font][font=宋体]细胞接种到新培养瓶中,通常[/font][font=Calibri]T25[/font][font=宋体]加[/font][font=Calibri]10~12ml[/font][font=宋体]培养基培养,[/font][font=Calibri]2~3[/font][font=宋体]天左右换液一次,若培养基变黄及时换液,以维持一个相对稳定的培养条件,有利于细胞活正常生长。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]不管是我们实验室中常规的细胞培养,还是临床上的[/font][font=Calibri]CAR-T[/font][font=宋体]细胞治疗等,提高[/font][font=Calibri]T[/font][font=宋体]细胞的增殖和持久性,以及增强细胞再免疫抑制性[/font][font=Calibri]TME[/font][font=宋体]中的功能,都离不开细胞因子。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]细胞因子是由免疫细胞(如单核、巨噬细胞、[/font][font=Calibri]T[/font][font=宋体]细胞、[/font][font=Calibri]B[/font][font=宋体]细胞、[/font][font=Calibri]NK[/font][font=宋体]细胞等)和某些非免疫细胞(内皮细胞、表皮细胞、纤维母细胞等)经刺激而合成、分泌的一类具有广泛生物学活性的小分子蛋白质。具有调节固有免疫和适应性免疫、血细胞生成、细胞生长、[/font][font=Calibri]APSC[/font][font=宋体]多能细胞以及损伤组织修复等多种功能。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]细胞因子可被分为白细胞介素[/font][font=Calibri](IL)[/font][font=宋体]、干扰素[/font][font=Calibri](IFN)[/font][font=宋体]、肿瘤坏死因子[/font][font=Calibri](TNF)[/font][font=宋体]、集落刺激因子[/font][font=Calibri](CSF)[/font][font=宋体]、趋化因子、生长因子[/font][font=Calibri](GF)[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]细胞因子[/font][font=宋体]γ链共受体家族包括[/font][font=Calibri]IL-2[/font][font=宋体]、[/font][font=Calibri]IL-4[/font][font=宋体]、[/font][font=Calibri]IL-7[/font][font=宋体]、[/font][font=Calibri]IL-9[/font][font=宋体]、[/font][font=Calibri]IL-15[/font][font=宋体]和[/font][font=Calibri]IL-21[/font][font=宋体],它们在[/font][font=Calibri]T[/font][font=宋体]细胞分化、增殖和内环境稳定中起着关键作用。他们受体包括共同的γ链(γ[/font][font=Calibri]c[/font][font=宋体])和一个各自单独的受体链,下游信号激活[/font][font=Calibri]STAT[/font][font=宋体]信号通路。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/resource/featured-review/t-cell-culture-cytokines-treatment][b]细胞因子[/b][/url]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/featured-review/t-cell-culture-cytokines-treatment[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=Calibri] [/font]

  • 90万!中国疾病预防控制中心营养与健康所人多细胞因子(炎症因子)检测试剂盒采购项目

    [font=inherit]一、项目基本情况[/font]项目编号:TC240V00S项目名称:中国疾病预防控制中心营养与健康所人多细胞因子(炎症因子)检测试剂盒采购项目预算金额:90.000000 万元(人民币)采购需求:[table=100%][tr][td][align=center][font=inherit]包号[/font][/align][/td][td][align=center][font=inherit]包名称[/font][/align][/td][td][align=center][font=inherit]数量[/font][/align][/td][td][align=center][font=inherit]最高限价单价(万元)[/font][/align][/td][td][align=center][font=inherit]最高限价总价(万元)[/font][/align][/td][td][align=center][font=inherit]是否允许进口[/font][/align][/td][/tr][tr][td][align=center]1[/align][/td][td][align=center]人多细胞因子(炎症因子)检测试剂盒[/align][/td][td][align=center]50盒(4000人份)[/align][/td][td][align=center]90[/align][/td][td][align=center]90[/align][/td][td][align=center]是[/align][/td][/tr][/table]合同履行期限:交货期:接到采购人通知后60日内交货本项目( 不接受 )联合体投标。[font=inherit]二、申请人的资格要求:[/font]1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无3.本项目的特定资格要求:1.提供产品属于医疗器械的,根据产品分类应按《医疗器械监督管理条例》,办理医疗器械注册证或者办理备案,供应商须提供医疗器械注册证或备案凭证(复印件加盖供应商单位公章)。2.提供产品属于医疗器械的,中华人民共和国境内制造商应按《医疗器械监督管理条例》办理医疗器械生产许可证或者办理备案。供应商为制造商的须提供医疗器械生产许可证或备案凭证(复印件加盖供应商单位公章),供应商为代理商的须提供医疗器械经营许可证或备案凭证(复印件加盖供应商单位公章)。[font=inherit]三、获取招标文件[/font]时间:2024年01月31日 至 2024年02月07日,每天上午9:00至11:00,下午13:30至17:00。(北京时间,法定节假日除外)地点:http://www.365trade.com.cn方式:支持网上发售售价:¥300.0 元,本公告包含的招标文件售价总和[font=inherit]四、提交投标文件截止时间、开标时间和地点[/font]提交投标文件截止时间:2024年02月21日 10点00分(北京时间)开标时间:2024年02月21日 10点00分(北京时间)地点:中招国际招标有限公司(北京市海淀区学院南路62号中关村资本大厦)会议室[font=inherit]五、公告期限[/font]自本公告发布之日起5个工作日。[font=inherit]六、其他补充事宜[/font][align=left]1.本项目需要落实的政府采购政策[/align][align=left]1.1 中小企业、监狱企业及残疾人福利性单位;[/align][align=left]1.2 政府采购节能产品、环境标志产品;[/align][font=inherit]七、对本次招标提出询问,请按以下方式联系。[/font]1.采购人信息名 称:中国疾病预防控制中心营养与健康所地址:北京市西城区南纬路27号联系方式:于老师:010-662370412.采购代理机构信息名 称:中招国际招标有限公司地 址:北京市海淀区学院南路62号院1号楼6层(601-615室)、9层(903-915室)联系方式:范君、曹武宁、卢燕、梅建伟3.项目联系方式项目联系人:范君、曹武宁、卢燕、梅建伟电 话:  010-62108225

  • Nature:科学家从人卵细胞培养出胚胎干细胞

    10月6日出版的新一期英国《自然》杂志刊登报告说,美国研究人员用人类卵细胞培养出了胚胎干细胞,虽然这项成果还存在一些缺陷,但已是“黄禹锡造假事件”后最接近培养出正常人类胚胎干细胞的成果。这一成果可能引起有关克隆问题的新一轮大争论。http://www.bioon.com/biology/UploadFiles/201110/2011100911202350.jpg(图片来自原文)将体细胞中的遗传物质植入卵细胞中,将其培育成为胚胎干细胞甚至最终培养出新的个体,就是常说的克隆技术,著名的克隆羊“多利”就是用这种技术得到的。2004年,韩国研究人员黄禹锡曾宣称用这种方法培育出了人类胚胎干细胞,引起一时轰动,但后来证明这是一起造假事件。此后,许多科研人员都进行了这方面的尝试,但一直没有成功。相关研究面临的障碍是,如果先将人类卵细胞中的遗传物质去掉,再植入另一个体细胞的遗传物质,这样得到的卵细胞分裂几次后就会停止发育。而美国纽约干细胞基金实验室等机构的研究人员报告说,如果留下一部分原有卵细胞中的遗传物质,再另外加上体细胞的部分遗传物质,这样得到的卵细胞可以发育到具有70至100个细胞的囊胚阶段,达到可以提取胚胎干细胞的阶段。胚胎干细胞具备发育成各种组织和器官的潜力,如果能够培育出人类胚胎干细胞,就意味着能够培育出属于某个人自己的组织和器官,可用于个性化的医疗。当然这也会引起有关克隆人的争议。本次研究虽然能够培育出人类胚胎干细胞,但也存在一些缺陷。最重要的是这些细胞中存在3组染色体,即卵细胞原有的1组染色体和来自体细胞的2组染色体,而正常的人类细胞只有2组染色体。因此,这种人类胚胎干细胞还不具备实用性。但是《自然》杂志同时发表的社论指出,这是自“黄禹锡造假事件”后最接近培养出可用人类胚胎干细胞的成果,在大方向上证明这仍然是一条可行的道路。社论认为,这将引起新一轮的有关克隆人的大争论,甚至提出联合国有必要开始考虑制订监管克隆的规章制度。

  • 抽丝剥茧,解析干细胞的命运

    在分子水平上到底发生了什么才会使得干细胞成为一种细胞类型而非另一种?在什么时间点它被注定了细胞命运?而它又是如何被注定命运的呢?直到现在这些问题仍是待解之谜。近日来自加州理工学院的一个研究团队在新研究追踪了确保干细胞分化成为免疫系统重要细胞T细胞的逐步发育过程,这一成果标志着我们在理解干细胞命运方面又向前迈出了重要的一步。相关研究论文在线发布在4月13日的《细胞》杂志上。该研究的首席研究员、加工理工学院生物学教授Ellen Rothenberg说:“这是第一次这样详细地,一步一步地解析自然发育的过程,检测了基因组中所有基因的活性。这意味着就基因而言,该系统中的所有的东西都无所遁形。“文章的第一作者是Rothenberg实验室的研究生Jingli A. Zhang,他现在是加州理工学院的博士后学者。在这篇文章中,研究人员针对多能造血前体细胞展开了研究。多能造血前体细胞是一类干细胞样细胞,表达各种各样的基因,并能够分化形成多种不同的血液细胞类型,包括免疫系统细胞。从整个小鼠基因组着手,实验室试剂研究人员精确筛查了这一前体细胞转变为命中注定的T细胞过程中所有发挥了作用的基因,并鉴别了在发育过程中这些基因各自开启的时间点。同时,研究人员还追踪了可引导前体细胞通往各种替代信号通路的基因。研究结果还揭示了T细胞发育过程促进其他命运的基因关闭的时间和方式。Rothenberg 解释说:“T细胞基因是否是在促进一些特异性替代的基因关闭之前开启的?或是以其他的顺序?哪些基因首先开启?哪些基因首先关闭?这些一直是我们过去想了解的问题。在大多数全基因组研究中,你很难有培养基能力了解发育进程中第一、第二、第三等等逐步发生的事件。而如果你想了解这样一个复杂的过程建立这些前后关系是绝对至关重要的。”在新研究中,研究人员对生成T细胞的一系列分子事件中的五个阶段进行了解析,包括细胞定型前两个阶段、定型阶段以及定型之后的两个阶段。他们鉴别了在所有这些阶段表达的基因,包括大量编码转录因子的基因,这些转录因子在开启或关闭特定基因中起重要作用。他们发现大部分调控转换发生在第二阶段和第三阶段之间,此时T细胞定型开启。大量激活未定型干细胞相关基因的转录因子基因关闭,而其他一些激活T细胞发育下一阶段所需基因的转录因子基因开启。研究人员不仅检测了在不同的阶段哪些基因获得了表达,还鉴别了有可能导致这些基因在特定时间表达的因素。转录因子自身的表达就是一个关键的调控元素。除此之外,研究人员还颇有兴趣地鉴别了基因的调控序列,基因上的这部分序列主要是充当转录因子的停泊位点。采用常规的分子生物学技术通常很难鉴别在小鼠和人类中的这些序列,研究人员耗费了10年的时间致力于构建出实验室仪器单个基因调控序列的综合图谱。为了构建出可能的调控序列图谱,Jingli A. Zhang对表观遗传学标记进行了研究。通过鉴别表观遗传学标记添加或清除的DNA区域,Rothenberg研究小组为研究人员鉴别T细胞发育过程中大量开启或关闭基因的调控序列铺平了道路。Rothenberg说从某种意义上说,她的团队采用的是一种反向的方法来解析这些对照序列的定位问题。“我们要说的是,如果我们能够根据生成的RNA推断出在某个时间点开启的基因,我们就应该能够观测这一基因周围的这些DNA序列,解析是否同时还有DNA序列添加或丢失了表观遗传学标记。如果我们能找到它,那将成为用于开启这一基因的真正的热点候选调控序列,”Rothenberg说。

  • CDE发布人源干细胞产品非临床研究技术原则!

    为规范和指导人源干细胞产品的非临床研究与评价,在国家药品监督管理局的部署下,药审中心组织制定了《人源干细胞产品非临床研究技术指导原则》(见附件)。根据《国家药监局综合司关于印发药品技术指导原则发布程序的通知》(药监综药管〔2020〕9号)要求,经国家药品监督管理局审查同意,现予发布,自发布之日起施行。特此通告。附件:人源干细胞产品非临床研究技术指导原则国家药监局药审中心2024年1月12日[img=image.png]https://img1.17img.cn/17img/images/202401/uepic/a610bf49-b82c-4320-873c-6c1274fee8d6.jpg[/img][img=image.png]https://img1.17img.cn/17img/images/202401/uepic/ccf3627b-39a8-486c-bf29-43f6161c0e82.jpg[/img][来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 流式细胞术详解 21.22章节 &参考文献

    95%。目前细胞分选主要用于研究,临床应用较少。血液学应用最多的是造血干细胞的研究,最近随着造血理论的深入研究关于造血干细胞究竟是否都是CD34+细胞出现一些争论,实验研究证明, CD34-造血干细胞较CD34+造血干细胞更具造血潜能,这些实验研究所用的CD34- 和CD34+细胞就是通过细胞分选获得的。小鼠造血干细胞分选一般按lin-c-Kit+CD34+/ lin-c-Kit+CD34-分选,人造血干细胞分选一般按lin-CD34+/ lin-CD34-分选。 为避免某些遗传性血液病如海洋性贫血、异常血红蛋白病的纯合子出生,产前诊断非常重要,这些疾病的主要靶细胞是红细胞,而孕妇血循环中存在着胎儿有核红细胞,只是数量非常少,利用流式细胞仪可从孕妇血液中分选出胎儿有核红细胞(分选条件:CD45-GPA+)进行基因分析,作出产前诊断。利用流式细胞仪分选免疫担当细胞进行细胞免疫学研究也是目前的热门课题。总之,流式细胞仪能够分选出你想得到的任何一亚群细胞,只要你想得到的某一亚群细胞有合适的单克隆抗体标记,流式细胞仪的分选功能将得到越来越多的科学研究和临床应用。二十二. 流式细胞术在血液学中的应用 其他流式细胞仪可能在两方面对骨髓增生异常综合症(MDS)有用,一是测定CD34阳性细胞数,以监测病情,二是测定核蛋白增殖因子(PCNA),有报告PCNA再在生障碍性贫血、骨髓增生异常综合症、白血病三种疾病中表达有明显差异,可辅助鉴别诊断。 此外流式细胞仪也可检耐药蛋白,如肺耐药相关蛋白(LRP)、多药耐药蛋白(MRP)、 P170等。 流式细胞仪也可检测细胞因子,细胞内细胞因子如白介素系列(IL-1—IL-14),肿瘤坏死因子(TNF),干扰素(IFN)等,[/color

  • 干细胞科研领域的牛人们

    榜样的力量是无穷的。每个领域都有取得杰出成就的成功人士,他们也是后生崇拜学习的偶像。科研领域也不例外。作为目前最热门的研究领域--干细胞,该领域的大牛都有谁?他们都在做什么?笔者总结了一下这个领域的牛人,分为国际篇、华人篇和国内篇三部分介绍。本文仅代表笔者的个人观点,欢迎补充。一 、国际篇http://www.bioon.com/biology/UploadFiles/201103/2011030320555014.jpg山中伸弥 (Shinya Yamanaka)http://www.gladstone.ucsf.edu/gladstone/site/yamanaka/5年前,提起Shinya Yamanaka,可能只有做胚胎干细胞的人略有耳闻,而现在他的名字在科研领域可谓是家喻户晓。虽然在iPS之前,他也做出了一些重要的工作,如发现Nanog和Eras在小鼠胚胎干细胞中的作用(2003,Cell;2003,Nature),但这些跟iPS相比,再好的工作光芒都会被掩盖,即使是CNS(Cell,Nature,Science)级别的工作。传统的观点认为核移植是获得个体特异的多能干细胞的主要途径,但该方法技术难度高,成功率低,至今没有获得人的核移植胚胎干细胞。笔者至今仍记得2007年初(刚进实验室)看到Shinya Yamanaka于2006年发表在Cell上关于iPS的论文时的兴奋心情。我立刻意识到这项工作的重要性,虽然他们最初的结果并不完美,当时获得的iPS细胞按现在的标准只能算是半成品,因此部分人对这项工作的看法是半信半疑。直到一年后,Shinya Yamanaka和Rudolf Jaenisch同时在Nature上报道获得可以生殖系传递的iPS细胞,基本上打消了人们对这个发现的质疑,而随后越来越多的工作进一步证实这个发现。虽然这两年内他的产出不多(2010年有分量的工作只有一篇PNAS),但仅凭2006年那篇论文已经使他成为诺贝尔奖最热门的候选人。http://www.bioon.com/biology/UploadFiles/201103/2011030320561312.jpgRudolf Jaenischhttp://www.wi.mit.edu/research/faculty/jaenisch.html提到Rudolf Jaenisch,在干细胞领域可谓是人尽皆知。1967年从德国慕尼黑大学获得博士学位,现就职于美国麻省理工学院(MIT)的whitehead 研究所,他是该研究所的创始人之一。Rudolf Jaenisch在一系列领域都做出了有影响的工作,包括基因敲除小鼠、表观遗传学研究、核移植、iPS等,并将这些领域的几乎所有的重要问题都解决,唯一的遗憾是自己开创的领域不多。笔者有幸听过一次他的讲座,也同他有过简短的交谈,给人总体印象是一个典型的德国人,比较严肃。他曾经担任过国际干细胞学会的主席。http://www.bioon.com/biology/UploadFiles/201103/2011030320570463.jpg他的许多学生都成为优秀的科学家,如诺华(中国)生物医学研究有限公司的副总裁李恩;近年内的学生有哈佛大学的Konrad Hochedlinger、Alex Meissner 和Kevin Eggan、斯坦福大学的Marius Wernig以及即将去以色列任职的Jacob Hanna等。他的学生无疑是最成功的"牛二代"。http://www.bioon.com/biology/cell/476456.shtml

  • 胎盘干细胞

    胎盘亚全能干细胞定义:   亚全能干细胞自胚胎形成的第5到7天开始出现,能分化形成200 多种人体组织器官细胞,但不能形成一个完整的人体。胎盘亚全能干细胞是来源于新生儿胎盘组织的一族亚全能干细胞,其在发育阶段与胚胎干细胞接近,具备分化形成三个胚层的组织细胞的能力,但不会形成畸胎瘤。   胎盘亚全能干细胞的主要特性与功能:   胎盘亚全能干细胞是取自胎盘组织的一类亚全能干细胞,胎盘亚全能干细胞具有以下特性:   1. 具有强大的增殖能力和多向分化潜能,在适宜的体内或体外环境下具有分化为间充质干细胞,上皮干细胞、神经干细胞、肝干细胞,肌细胞、成骨细胞、软骨细胞、基质细胞等多种细胞的能力。可以用来修复受损或病变的组织器官,治疗心、脑血管疾病、神经系统疾病、肝脏疾病、骨组织病、角膜损伤、烧伤烫伤、肌病等多种疾病。   2.具有免疫调节作用,通过负性免疫调节功能,抑制机体亢进的免疫反应,使机体免疫功能恢复平衡,从而可以用来治疗造血干细胞移植之后的免疫排斥反应以及克隆氏病、红斑狼疮,硬皮病等自身免疫系统疾病。   3.胎盘亚全能干细胞定向培养的间充质干细胞是人体微环境的重要组成部分,移植间充质干细胞可以改变造血微环境,重建免疫系统,促进造血功能恢复,与造血干细胞共移植能显著提高白血病和难治性贫血等的治疗效果。   4.具有来源方便,细胞数量充足,易于分离、培养、扩增和纯化,传代扩增30多代后仍具有干细胞特性。   胎盘亚全能干细胞的用途:   胎盘作为理想的亚全能干细胞来源,在抗衰老及疾病治疗领域显示了其独特的功能,治疗疾病种类如下:   心脑血管系统疾病   糖尿病   肝肾损伤   脑及脊髓神经损伤   自身免疫性疾病   移植物抗宿主病   与造血干细胞共移植治疗血液病   缺血性血管病   肺及其它组织器官纤维化   抗衰老,恢复健康体态   胎盘亚全能干细胞的储存流程:   在新生儿娩出、胎盘剥离子宫排出后,由接生的医生尽快按照干细胞库胎盘标准采集规程进行胎盘的采集,然后放置在干细胞库特定的装置工具中,在限定时限内运送到干细胞库,由专业的技术人员进行亚全能干细胞的分离、提取、培养、检测等技术流程,直到根据最终检测结果来确认所获得的干细胞是否具有长期保存的价值。   保存和期限   目前国际上通用的干细胞保存技术是将获得的干细胞储存在-196℃深低温状态,医学研究与临床实践证明保存一百多年的细胞仍然具有活性。干细胞保存已有几十年的历史,胎盘干细胞库在与客户签订的合同期限内对干细胞库中所保管的胎盘亚全能干细胞活性负责。   安全性   胎盘的采集简便易行,不会引起母亲和新生儿任何不适的感觉或产生任何不良的影响。过去胎盘通常作为废物丢弃,而从胎盘中提取亚全能干细胞进行保存,是宝贵的生命资源再生。   而干细胞行业数据显示,胎盘亚全能干细胞基因稳定、不易突变,动物实验证明无致瘤性,使用安全可靠,对适应症范围疾病治疗效果好,优于传统医疗手段。   胎盘亚全能干细胞的优势   1.取材方便,原料来源充足,是生命资源的再生。   2.分化能力强可以定向诱导分化为间充质干细胞、血管干细胞、上皮干细胞、神经干细胞和肝干细胞等多种干细胞。   3.数量充足,使用方便,增殖能力强,培养后数目可达10亿,可以供多人多次使用。   4.在人群中使用不需要配型,不会产生免疫排斥反应,同时,血缘关系越亲近,生物利用度会越高,使用的效果越好。   5.治疗疾病范围广,抗衰老,恢复健康体态,心脑血管系统疾病,糖尿病,肝肾损伤,脑及脊髓神经损伤,自身免疫性疾病,移植物抗宿主病等多种疾病。

  • 肌肉干细胞促肌肉生长和修复机制

    肌肉能提供干细胞来促进肌肉的生长和受伤肌肉的再生,但肌肉干细胞必须驻留在特殊的部位才能有助肌肉的生长和修复。德尔柏林布吕克分子医学中心(MDC)发育生物学家Dominique Bröhl和Carmen Birchmeier教授已经阐明这些干细胞是如何定植于肌肉干细胞“巢穴”中的。肌肉干细胞也被称为卫星细胞,位于平滑肌细胞的质膜和周围基底层之间。可发育分化为成肌细胞,后者可互相融合成为多核的肌纤维,形成骨骼肌最基本的结构。http://www.bioon.com/biology/UploadFiles/201209/2012091813042153.jpg在本研究中,Bröhl博士和教授Birchmeier表明,小鼠的肌肉祖细胞缺乏Notch信号后,不能定植于干细胞“巢穴”。相反,肌肉祖细胞会定植于肌纤维之间的组织中。发育生物学家认为,这是肌肉弱化的原因。干细胞定植于错误的地方就不再像以前那样拥有多种生物学功能,难以有助于肌肉生长。此外,Notch信号通路在肌肉的发育过程中具有第二大功能。它可以通过抑制肌肉发育促进因子MyoD防止干细胞分化成肌肉细胞,从而确保肌肉中总会存在能保存有修复和再生功能的干细胞“巢穴”。这项工作对肌肉再生和肌肉无力的研究具有重大意义。这实验势必为肌肉严重损伤和肌肉萎缩的患者提供新的希望!多么希望此技术能在中国普及。

  • 骨髓间充质干细胞分离培养经验

    骨髓间充质干细胞总结 2003年8月,为给大家提供一个网上交流干细胞研究经验的平台,我们干细胞版设立了骨髓间充质干细胞培养讨论区,经过近三个月的讨论学习,我们既学习丰富了自己的知识体系,也对间充质干细胞尤其是分离培养方面有了更为详实的认识,为了大家阅读的方便,我们决定把本版中的相关内容,同时参考部分书目和文献,做一总结。一、骨髓间充质干细胞的分离 目前常用的分离MSC的方法有全骨髓法和密度梯度离心法,全骨髓法即根据干细胞贴壁特性,定期换液除去不贴壁细胞,从而达到纯化MSC的目的。密度梯度离心法即根据骨髓中细胞成分比重的不同,提取单核细胞进行贴壁培养。随着对MSC表面抗原认识的深入,有人利用免疫方法如流式细胞仪法、免疫磁珠法等对其进行分离纯化,但经过流式或磁珠分选后的细胞出现了增殖缓慢等一些问题,加之耗费较大和技术的难度,在某种程度上限制了这些方法的广泛应用。1. 直接培养法(全骨髓培养法) 1987年,Friedenstein等发现在塑料培养皿中培养的贴壁的骨髓单个核细胞在一定条件下可分化为成骨细胞、成软骨细胞、脂肪细胞和成肌细胞,而且这些细胞扩增20-30代后仍能保持其多向分化潜能,这类细胞即为骨髓间充质干细胞(BMSC),其工作对今后MSC的研究具有重要意义,不仅证实了骨髓MSC的存在,而且创建了一种体外分离和培养MSC的简便可行的方法,得到了广泛的应用。culture-spirit采用直接贴壁法,24-36小时首次换液,换液时用PBS洗两次,7-10天传第一代,以后2-3天传代。培养基采用Hyclone的DMEM/F-12(1:1),血清是天津TBD的FBS(顶级),得到了较好的培养结果。布兰卡根据自己培养大鼠MSC的经验,详细介绍了实验步骤:(1)接种后60-80分钟,换液去除悬浮细胞(2)原代培养24 h,48 h各换液一次(3)观察细胞情况,在原代培养7天左右时,如观察到成片的典型形态的细胞,在瓶底用Marker笔标记,0.25%胰酶消化,镜下观察控制,约5-10分钟(室温太低时应放置到孵箱中),加入全培养基终止消化,瓶体朝上,吸管轻轻吹打4-8分钟,尤其是标记部位。不要用力吹打,以免把贴壁较牢的成纤维细胞,上皮样细胞吹打下来。(4)传代到新瓶中,加入少量培养基,孵箱静置20-30分钟后,MSC大多牢固贴壁。瓶底朝上,轻轻吹打,丢弃悬浮以及贴壁不牢的细胞(大多是上皮样细胞),加入全培养基开始传代培养,如观察仍有较多杂细胞,可重复上述步骤。(5)经上述处理后,原代的那瓶细胞仍有一些MSC生长,可继续按原代培养,如观察到MSC的克隆,仍可按上述步骤纯化处理。(6)原代或传代的细胞如观察的少量成片的杂细胞,可直接镜下瓶底标记后,超净台里用长吸管尖端机械刮除,吸出去掉。菊花与刀用的是全骨髓培养法,直接用含10%的FBS培养基冲洗大鼠的股骨和胫骨,为了避免冲起许多气泡应缓慢冲,冲的次数不应太多。冲洗后不用离心直接接种在培养瓶里,48 h~72 h后首次换液,一般7~10天可传代。天之饺子介绍的小鼠MSC的分离方法:取6 w小鼠的股骨和胫骨,直接用含培养基冲出骨髓,一定要尽量把干垢端的骨髓冲干净。冲洗后不离心直接接种在培养瓶里,24-48 h后去悬浮,再接下来的每3-4天换液一次,直到需要传代。2. 密度梯度离心法 裴雪涛等用比重为1.073 g/ml的percoll分离(400 g×20 min)人骨髓MSCs,取界面处细胞层,离心后洗涤以2×105/cm2的密度接种,72 h后更换培养液,弃掉未贴壁细胞,以后每3 d换液一次。细胞长到80%汇合时1:1传代。菊花与刀利用PERCOLL密度1.073分离大鼠MSC 时,用2400 rpm×20 mins后可见中间有一层约1~2 mm厚的白色层,仔细用吸管吸取这一层再用PBS离心2遍即可加培养基和胎牛血清培养即rMSCs。周进明等利用密度为1.082的percoll分离小鼠MSCs,500g×30min离心后,取中间的单个核细胞层,PBS洗两次,接种于IMDM培养基,1 d后换液,去掉非贴壁细胞,以后每3-4天换液。jetter用过FICOLL,FERCOLL,上海二分厂的淋巴细胞分离液分离MSC细胞效果都不错,当然所获细胞群的纯度不一,Percoll最纯,而上海二分厂的淋巴细胞分离液所获细胞群的传代能力优秀(35 PASSAGE)。本版的部分园友认为MSC贴壁培养得到的细胞不均一,但是多能分化能力和增殖力好,percoll分离得到的细胞较为均一,多能分化性和增殖力不如贴壁培养的,尤其是增殖力相差很远,有人添加bFGF或/和表皮生长因子发现可以增强增殖能力。二、骨髓间充质干细胞的培养 天之饺子认为,间质干细胞的培养一定要用塑料培养瓶,不能用玻璃的。因为象间质干这类的基质细胞不易贴玻璃,而且现在买的进口好品牌的培养瓶都涂有一层促细胞贴壁的物质,多数园友培养时都添加10-15%胎牛血清。分离培养结果的差异可能是由于各个研究小组标本来源、采用的分离方法不同从而所获得的细胞不同,或者用来检测的细胞代数不同,或者培养过程中用的胎牛血清不同,导致MSCs获得或失去这些表面标记物的表达。三、骨髓间充质干细胞的特性 体外培养的MSC体积小,成梭形,核浆比大。不表达分化相关的细胞标志,如I、II、III型胶原、碱性磷酸酶或Osteopontin;也不表达SH2、SH3、CD29、CD44、CD71、CD90、CD106、CD120a、CD124、CD166和多种表面蛋白,这群细胞特性稳定,扩增一代和两代后的细胞同质性分别达到95%和98%。MSC联系传代培养和冷冻保存后仍能具有多向分化潜能,而且保持正常的核型核端粒酶活性,但不易自发分化,在体外特定的诱导条件下,MSC可以分化为骨、软骨、脂肪、肌腱、肌肉、神经等多种细胞。四、其他相关内容 Jiang将从成人以及成年大鼠和小鼠骨髓分离的间充质干细胞(CD45-TER119-)命名为多潜能成年祖细胞,他们证明,MAPC高表达端粒酶,而且随着细胞的扩增,端粒的长度不变,单个MAPC来源的细胞群不仅能在体外向3个胚层的细胞分化,而且能在体内能够向各种组织细胞分化,相比较而言,形态与MSC相似的体外培养的皮肤成纤维细胞则不具有类似的分化潜能。参考文献 生理学报2003.55(2):153-159 人骨髓间充质干细胞在成年大鼠脑内的迁移及分化中华放射医学与防护杂志.2002,22(3).-167-169 培养小鼠骨髓间充质干细胞及其移植后在体内的定位分布Exp Biol Med Vol. 226:507 520, 2001 Mesenchymal Stem CellsNATURE |VOL 418 | 4 JULY 2002 Pluripotency of mesenchymal stem cells derived from adult marrow干细胞生物学 裴雪涛 主编

  • 干细胞研究或迎来“黄金时代”

    10多年来,干细胞疗法一直被认为能够给那些遭受遗传和退行性疾病折磨的人带来希望。而就在几天前,随着两个研究团队在于日本横滨召开的国际干细胞研究学会(ISSCR)年会上宣告了他们在人类临床研究中取得的成果——一项聚焦于罕见的遗传神经病,另一项则着眼于老年人的视力丧失,这一希望又朝着现实迈出了一步。  美国加利福尼亚州纽瓦克市干细胞公司报告了用人体神经干细胞治疗梅氏病(PMD)所取得的鼓舞人心的研究成果。PMD是一种渐进式的致命疾病,该病通过基因突变抑制了髓鞘的正常生长,后者是大脑中包裹神经纤维的一种保护物质。缺乏髓鞘,神经信号便会流失;病人,通常是婴儿,便会经历运动协调能力退化以及其他神经病症状。据干细胞公司负责研究的副总裁Ann Tsukamoto介绍,该公司之所以选择PMD来测试其神经干细胞技术,缘于目前尚没有这种疾病的治疗方法,且通过基因检测和磁共振成像能够确诊这种疾病。她说:“这便为最有效的早期介入创造了一个机会。”  该公司建立了一个从成熟神经组织中分离出的高度纯化的神经干细胞库。研究人员将这些神经干细胞注入啮齿动物体内后,它们并没有形成肿瘤,事实上,这些细胞在小鼠的大脑中游走,并分化成不同类型的神经细胞,其中就包括分泌能够保护神经纤维的髓鞘的细胞。Tsukamoto介绍说,当神经干细胞被注入小鼠后,它们表现出了“强大的移植和迁移能力,并形成新的髓鞘”。  该公司如今正赞助对4名PMD婴幼儿患者进行该技术的初期安全试验。加利福尼亚大学旧金山分校的研究人员,向每位患者大脑中的4个区域中的每一个区域移植了7500万个神经干细胞,并随之进行了免疫抑制治疗,这样受体才不会排斥外来的细胞。Tsukamoto报告说,在试验过程中并没有出现安全隐患。此外,在18个月后进行的磁共振成像显示,在轴突周围形成了新的髓鞘,并且对患者进行的临床观察表明,他们的运动机能保持稳定或出现了小幅提升。干细胞公司如今正计划进行更大规模的试验。Tsukamoto表示,一旦这种疗法被证明是有效的,它将带来多发性硬化、大脑性麻痹和阿尔茨海默氏症的神经干细胞新疗法。  在这次会议上,神户市日本理化研究所(RIKEN)发育生物学中心的干细胞研究人员Masayo Takahashi,报告了她的研究小组在针对与年龄相关的黄斑变性(AMD)的临床前研究所取得的进展。在AMD中,视网膜色素上皮(RPE)细胞的生长出现了问题,并且位于视网膜下部的血管出现了渗漏。这些情况导致眼睛中心部位的视力下降。Takahashi的研究小组研制出一种方法,即用外科手术摘除有问题的血管,同时用源自病人自身细胞的新RPE细胞替代受损的RPE细胞。利用被称为细胞再编程的一项技术,研究人员采集了病人的皮肤细胞,并将其转化为所谓的诱导多能干(iPS)细胞,这种细胞能够分化成人体中的所有细胞。研究人员随后将iPS细胞转化为RPE细胞。由于iPS方法使用的是病人自身的细胞,因此避免了对免疫抑制药物的需求。  由Takahashi小组生成的RPE细胞表现出了真正人体RPE细胞的特征结构和基因表达模式。她报告说,将它们注入小鼠并没有引发肿瘤,并且这些细胞在移植到猴子体内后存活了6个多月。Takahashi希望在得到必要的批准后,能够在1年内开展人体试验。  英国剑桥研究学院癌症中心的干细胞研究人员Fiona Watt指出,在ISSCR上发表的这些研究结果将帮助该领域“积攒力量”。而美国哈佛医学院的干细胞科学家George Daley则更为乐观。他说,记住这次年会上报告的这些进展;并表示对明年在波士顿召开的2013年ISSCR年会充满期待。

  • 胚胎干细胞培养标准化操作规程(SOP)

    关键词(必填项目):胚胎干细胞培养目的(必填项目):正确规范胚胎干细胞培养背景知识(选填项目):无。原理(选填项目):无主体内容:目录一、细胞二、一般培养-保持胚胎干细胞处于未分化状态培养基细胞复苏冻存细胞明胶包被细胞传代三、体外分化培养基包被有多聚鸟氨酸/纤维结合蛋白的培养板(使用或不使用盖玻片)体外分化方法四、移植细胞的准备细胞多能性胚胎干细胞产生于小鼠胚泡1.表达绿色荧光蛋白(EGFP)的B5-ES细胞。由Dr. Nagy的实验室制备。2.D3-ATCC; CRL-1934. 我们得到时大约传了17代。3.J1-由Dr. Jaenish的实验室友情提供。我们得到时大约传了7-9代。4.J1rtTA-rtTA表达J1细胞,由Dr. Jaenish的实验室友情提供。5.表达黄色荧光蛋白的YC5-ES细胞,由Dr. Nagy的实验室提供。一般培养--维持ES细胞处于未分化状态ES细胞培养用含有ESGRO(白血病抑制因子)的高糖培养基来阻止细胞的分化。为细胞提供包被有0.1%明胶的平板作为粘附细胞的基质。建议每2-3天从达到80%-90%融合的平板按1:8的比率传代细胞一次,细胞传代以后,在将细胞接种在0.1%明胶包被的培养皿之前,通过预先将细胞接种在没有经过包被的组织培养板2个小时,使分化细胞粘附,从而将分化和未分化细胞分开。将细胞全程置于37℃,5%CO2,100%湿度条件下培养。培养基ES:配制一20×不含DMEM,HS,ESGRO的溶液(该溶液也能用于EB培养基--见下文)。分装在50ml FALCON管中,(稀释为2×,每管42ml),贮存在-20℃。通过将21ml该溶液,HS和ESGRO加入450mlDMEM中制备培养基,0.2μm滤膜过滤。贮存于4℃。 注:一瓶DMEM是500ml。贮存液 DMEM(高糖) [/s

  • 【资料】解廷《细胞》子刊解析干细胞重要发现

    来自著名的美国密苏里州斯托瓦斯医学研究所(Stowers Institute for Medical Research),中科院生物物理研究所传染病与免疫学中心,堪萨斯大学医学院,中西大学(Midwestern University)的研究人员揭示了干细胞衰老的奥秘,这一发表在昨天刚刚出版的《Cell Stem Cell》杂志上的文章由中科院海外评审专家解廷(斯托瓦斯医学研究所)领导完成,第一作者是斯托瓦斯医学研究所与中科院生物物理研究所联合培养的博士生潘磊(Lei Pan,音译)。目前普遍认为人类组织衰老与干细胞活性下降和数目减少有关,这些变化在许多譬如皮肤皱纹和器官功能下降等的衰老表现中起着重要的作用。至今为止对于干细胞衰老调控的理解还比较少,但是解廷实验室已经证明了干细胞功能中年龄依赖性得下降有关的特殊因素,以及这些因素的微环境:niche。潘表示,“在这项研究中,我们利用果蝇卵巢生殖干细胞(germline stem cells,GSCs)作为研究模型,证明干细胞功能中年龄依赖性的下降和其niche在干细胞整个衰老过程中扮演着十分重要的角色”,“我们检测了干细胞衰老调控的三个因素,发现并证明衰老过程是受到外在和内在因素调控的”。研究小组首先聚焦在一个称为骨形态发生蛋白(bone morphogenic protein, BMP)的蛋白家族——其在许多组织的发育过程中扮演着重要的角色,他们发现当niche微环境的BMP信号活性随着年龄下降的时候,干细胞增值的能力也会随之降低,干细胞数量也减少了。相反当BMP信号增加,干细胞的寿命以及增值能力也都有所提升。其次研究人员也发现干细胞与niche之间的关联也起到一定作用:强的关联可以延长干细胞的寿命,而降低关联则会增加干细胞衰老。这篇研究报告最后强调了GSCs或者niche中的一个酶(减少自由氧)的过量表达如何延长干细胞的寿命,以及增加干细胞增值的能力。解廷认为,“对成人组织中由于干细胞功能下降导致细胞损耗的长期无效替换也许是人类衰老的一个主要原因”,“如果我们能了解如何通过操纵干细胞和/或niche的功能,来减缓干细胞衰老,我们也许就能够减缓人类衰老,治疗年龄相关性的推行性疾病”。

  • 【资源整理汇总】干细胞原理与技术

    ###一部汇总,大家伙先看着,未完待续###原理与技术干细胞:成体干细胞、胚胎干细胞、诱导多能干细胞(ips)、肿瘤干细胞、分离、培养、鉴定、建系、分选、信号通路、起源、组织工程干细胞的培养《干细胞原理、技术与临床》核心章节131页/赵春华/ http://bbs.bioon.net/bbs/thread-358972-1-1.html分享一本最新出版的肿瘤干细胞的书http://bbs.bioon.net/bbs/thread-299056-1-1.html强烈推荐:一个关于干细胞的powerpoint http://bbs.bioon.net/bbs/thread-296701-1-1.html干细胞电子书免费下载http://bbs.bioon.net/bbs/thread-264289-1-1.html干细胞研究进展消息 http://bbs.bioon.net/bbs/thread-360149-1-1.html干细胞教师用ppt http://bbs.bioon.net/bbs/thread-362296-1-1.html英文版干细胞ppt集锦(很不错的) http://bbs.bioon.net/bbs/thread-272416-1-1.html干细胞从科研走向临床推广http://bbs.bioon.net/bbs/thread-353817-1-1.html干细胞可用于治疗脊髓损伤http://bbs.bioon.net/bbs/thread-353818-1-1.html老外是如何学习做干细胞的--干细胞课程http://bbs.bioon.net/bbs/thread-57973-1-1.html上传几篇大牛写的干细胞综述 http://bbs.bioon.net/bbs/thread-341447-1-1.html一篇干细胞的NICHE的年度综述!http://bbs.bioon.net/bbs/thread-287579-1-1.html上传几篇大牛写的干细胞综述4 http://bbs.bioon.net/bbs/thread-341451-1-1.html关于干细胞的PPT http://bbs.bioon.net/bbs/thread-259255-1-1.html【免费下载】肿瘤干细胞起源及其生物学特性/陈晶等/http://bbs.bioon.net/bbs/thread-358973-1-1.htmlhttp://www.nature.com/sc/journal/v45/n1/full/3101943a.htmlhttp://www.springerprotocols.com/Full/doi/10.1007/978-1-59745-060-7_10?encCode=QkVDOjAxXzctMDYwLTU0Nzk1LTEtODc5&tokenString=lSYIGGltPLruD0lr0AWrWg==&access=deniedhttp://onlinelibrary.wiley.com/doi/10.1002/jnr.20317/fullhttp://www.transplantation-proceedings.org/article/S0041-1345(08)00008-0/abstracthttp://www.nature.com/nprot/journal/v3/n12/full/nprot.2008.194.htmlNature实验方法-大鼠/小鼠少突胶质前体细胞培养 http://bbs.bioon.net/bbs/thread-358977-1-1.html成人胰腺多能干细胞生成与胰腺癌和非胰腺癌后代 http://bbs.bioon.net/bbs/thread-358980-1-1.htmlBMC Neurosci:电针治疗可以促进移植干细胞的存活和分化 http://bbs.bioon.net/bbs/thread-358982-1-1.htmlstem cells:揭示骨髓干细胞和AMSCs相当 http://bbs.bioon.net/bbs/thread-358984-1-1.html【免费下载】Nature Pro:鼠胚胎干细胞的分化 http://bbs.bioon.net/bbs/thread-358985-1-1.htmlStem Cells:Mesenchymal stem cells instruct oligodendrogenic fate decision onhttp://bbs.bioon.net/bbs/thread-358986-1-1.html胚胎干细胞培养标准化操作规程.dochttp://bbs.bioon.net/bbs/thread-311031-1-1.html干细胞的培养方法(图片)http://bbs.bioon.net/bbs/thread-264491-1-1.html人表皮干细胞的培养技术http://bbs.bioon.net/bbs/thread-323841-1-1.html用sphere法培养肿瘤干细胞的protocol http://bbs.bioon.net/bbs/thread-289291-1-1.html日本科学家关于脂肪干细胞的研究http://bbs.bioon.net/bbs/thread-328832-1-1.html

  • 【转帖】干细胞使与衰老有关的肌无力的速度放缓

    干细胞使与衰老有关的肌无力的速度放缓 在小鼠中的一则新的研究报告指出,用干细胞来增加年轻的肌肉可减缓与年龄老化相关的肌无力的进程。 这些发现可能会导致再生性肌肉疗法的出现,这种疗法也许会对罹患肌营养不良症的病人或是那些虚弱的老年人有帮助。 文章的作者提出,如果科学家们能够发现可刺激肌肉中干细胞的小分子或分子组合(这可能会比将干细胞移植到人体内要更容易些),那么这些分子可被用于增进肌肉修复或减少肌肉丧失。 在成年期,损伤后或疾病后肌肉再生主要是靠卫星细胞,这是一种会分裂并参与修复、重新恢复活力和控制骨骼肌组织的干细胞,它可通过发育成为肌肉细胞而令肌肉生长。 Bradley Olwin及其同事在这里利用了干细胞的能力并防止了在幼小的小鼠中某一单一肌肉的与年龄老化有关的消瘦。 在该研究中,研究人员将少数的干细胞移植到肌肉受伤的幼小小鼠体内。 该研究小组在两年后对这些小鼠进行检查时发现,这种手术永久性地改变了移植的细胞,使得它们能够抵抗肌肉中的老化过程。 明确地说,这些移植的细胞能够控制它们所在的肌肉并与肌肉融合以形成新的肌肉纤维。 尽管人们对这一过程的机制还不了解,但这些发现提示,通过模仿这些移植的干细胞的功效,科学家们也许能够防止肌肉功能和重量的丧失,而这些通常是在人类老化时出现的情况。

  • 【转帖】干细胞研究,没白花钱

    在日前举行的第二次中国科协论坛“2009年中国干细胞研究高层战略研讨会”上,同济大学校长裴刚这样评价近10年来,国家对干细胞投入得到的回报,并没有白花钱。对于关注我国科研成果和科技进步的人来说,这句话对科研投入来说,应该是一个再好不过的答案。  文章、实验室、重大项目、人才队伍,这些往往是衡量某项学科的科研水平在国际上所处位置的重要指标。从1999年12月,干细胞研究被评为世界十大科学研究之首,到今年,我国的干细胞研究已经走过了整整10年的历程。  按照裴刚的统计,生命科学是国家重点支持的领域之一,支持的重大项目比例很高,在国际上发表文章的数量接近10%。我国干细胞领域实验室数量大约是50个,有超过一半的人员和经费用于干细胞研究,这50个实验室均在国际顶级杂志上发表过两篇以上的干细胞研究论文。裴刚说:“中国和美国的实验室数量跟中国和美国发表文章的数量比,还是好一些,我告诉大家我们没白花钱。”  干细胞研究的重要性不言而喻。如果说21世纪是生物学的世纪,那么生物学中最前沿、最热门的一个研究领域应当是干细胞的研究。“干细胞是一类具有自我更新和分化潜能的细胞,包括胚胎干细胞和成体干细胞。”因为干细胞的这种特性,所以对很多疾病,如神经退行性疾病、各种血液干细胞疾病等都有很重要的治疗意义。然而,干细胞的来源却一直是难以解决的问题。  在这个聚集了南开大学校长饶子和,北京大学生命科学学院教授、长江学者特聘教授邓宏魁,中国科学院动物研究所所长孟安明等20多位学者的研讨会上,加快建设大动物实验平台成为多位专家的共识。中国研究干细胞的动物模型,不能仅停留在小鼠等小动物上,今后要举全国之力试验大动物——猪、猴子干细胞。由于大动物在生物学的许多方面和人类更为相近,所以在临床应用上更加关键。从小动物模型到大动物模型,再到临床应用,这是一个发展的过程。中国科学院动物研究所研究员、国家杰出青年科学基金获得者周琪在讨论时说:“无论是技术研究还是产业化应用,建立大动物实验基地、建立中国特色的模式动物都是十分必要的,这是我们进行干细胞研究的基础。”  抓住人才、机制创新,似乎每一个学科在谈到发展战略时,都要说这样的两点,干细胞领域亦不例外。对于国家实验室的模式,专家们也有着更高的期许:开放性的招聘,长期稳定的择优支持,国有评估,开放流动。如何把国家的需求、科研水平的提升、人才的培养和投入经费以及科研机制更好地融合,最终达到发展科技的目的,这并不是一件容易的事情,也是每个科研领域应该深入解决的问题。希望等到下一个十年,回顾干细胞领域的研究成果时,“我们没白花钱”这句话,能以更高的国际地位得到诠释。

  • 天士力干细胞创新药获批临床!为上海东方医院首个干细胞成药临床试验项目

    [color=#c00000][i]同济大学附属东方医院再生医学研究所何志颖研究员表示:项目研究从2018年开始,2021年4月Pre-IND,2024年1月18日IND获批!历时6年艰辛。[b]这是东方医院首个干细胞成药临床试验项目,希望能造福于心衰患者![/b][/i][/color]据报道1月18日,天士力公告其一款创新干细胞药物获得国家药监局批准进入临床试验,主治慢性心力衰竭。公告称,公司收到国家药监局核准签发关于[b]人脐带间充质干细胞注射液(B2278注射液)[/b]项目的《药物临床试验批准通知书》,同意开展伴冠状动脉旁路移植术指征的慢性缺血性心肌病导致的慢性心力衰竭的临床试验。[b]人脐带间充质干细胞注射液[b](B2278注射液)[/b]由上海市东方医院(同济大学附属东方医院)研发,2022年8月天士力与东方医院签署《技术转让(合作)合同》受让相关技术及成果,并在全球范围内,优先在中国开展药品注册申报及后续临床试验开发。[/b]临床前研究证明,B2278注射液可通过旁分泌作用调控心肌组织微环境,对于缺血性心肌病中的心肌细胞组织损伤有明显抑制作用,增加动物心功能,促进血管再生,减少心肌凋亡。心力衰竭是由于心脏结构和/或功能异常导致心室充盈和/或射血能力受损的一组临床综合征,是大部分心血管疾病发展的最终阶段,随着年龄增长,心衰患病率和发病率均明显增加。目前对于心力衰竭的治疗主要包括药物治疗、血运重建、细胞和基因治疗,其中冠状动脉旁路移植术(CABG)是常用的血运重建治疗方式,《2022年中国心血管外科手术和体外循环数据白皮书》显示,2022年CABG占心外科手术总量21.1%。上述治疗手段可以在一定程度上延缓心力衰竭的进展,但不能使死亡心肌再生。伴随CABG手术的心肌局部注射干细胞有望通过刺激心脏细胞的增殖和分化、抑制心肌细胞损伤及免疫调节等作用,修复心肌细胞使心肌收缩增强从而对心力衰竭发挥治疗作用。目前国际上获批的干细胞品种已达十余种,但是尚无治疗心衰的干细胞产品上市。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • Nature:酒精分解产物破坏造血干细胞(所以,少喝酒啊)

    2012年8月28日 英国医学研究理事会(MRC)分子生物学实验室的科学家们已经发现,人体内骨髓中的造血干细胞对酒精的主要分解产物是极为敏感的,这可能导致造血干细胞不可逆的DNA损害。相关研究在老鼠身上开展的,其结果发表于国际权威杂志Nature上,新的研究表明这种造血干细胞的DNA损害通常存在两个重要的控制机制:一种可以清除有毒分解产物(乙醛)的酶,一组能够识别和修复受损DNA的蛋白。缺乏这两种保护机制的小鼠由于血液干细胞闭塞导致骨髓造血功能衰竭。调查结果提供了一个解释,为什么有的人患有一种称为范可尼贫血(FA)的罕见遗传性疾病。患有这种疾病的人继承一个或多个FA基因突变,从而导致乙醛引起的DNA损伤得不到修复。因此,FA患者患发育缺陷、骨髓造血功能衰竭、血液和其他癌症的风险极高。这些人缺乏酶ALDH2来消除有毒的乙醛,因此可能对DNA的损伤异常敏感。作者认为,酒精消费量可能会导致造血干细胞永久性损坏,骨髓造血功能衰竭和加速老化,血癌风险增加。MRC分子生物学实验室KJ Patel博士说:造血干细胞是给我们的整个生命周期提供了源源不断的健康的血液细胞,随着年龄的增长,这些重要的干细胞变得不那么有效,因为其DNA受到损伤。我们的研究确定这种DNA损伤的一个重要来源,定义了干细胞用于对付这种威胁的两种保护机制。

  • 【转帖】综述:国际干细胞研究竞争加剧

    11月下旬,美日两个研究小组几乎同时宣布成功地将人体皮肤细胞改造成了几乎可以和胚胎干细胞相媲美的干细胞——“iPS细胞”,它也被通俗地称为“皮肤干细胞” 。它的诞生仿佛给沉寂一时的国际干细胞研究打入了一剂强心剂。 诞生仅一月有余,“iPS细胞”相关科研成果和技术革新就屡见报端,一些国家及科学界对这种细胞表现出强烈的关注,纷纷制订相关的研究计划。 “iPS细胞”到底有什么神奇之处,使国际干细胞研究出现了如此热闹的景象? 科学家让普通体细胞“初始化”,使其具备干细胞功能,这就是“iPS细胞”。“iPS细胞”具有和胚胎干细胞类似的功能,却绕开了胚胎干细胞研究一直面临的伦理和法律等诸多障碍,因此在医疗领域的应用前景非常广阔。这一新技术也被权威科学杂志《自然》、《科学》分别评为今年第一大和第二大科学进展。

  • Nat Commun:新方法更高效地制造诱导性多能干细胞

    研究人员用来产生诱导性多能干细胞(induced pluripotent stem cells, iPSCs)的方法既花时间而且效率又低。按照当前的方法,当把四种转录因子导入成体细胞如皮肤细胞中时,利用上千个皮肤细胞最终只能获得几个iPSCs。为此,在这项新的研究中,来自美国桑福德-伯纳姆医学研究所(Sanford-Burnham Medical Research Institute)的研究人员寻求激酶抑制剂的帮助,其中这些抑制剂阻断激酶---一类在细胞通信、存活和生长等方面发挥着重要作用的酶---的活性。他们发现几个激酶抑制剂当加入到起始细胞(如皮肤细胞)时,有助于产生比标准方法还要多的iPSCs。这些发现将可能加快很多领域的研究,和更好地能够让全世界的科学家们研究人类疾病和开发出新的治疗方法。相关研究结果于9月25日刊登在Nature Communications期刊上。论文通信作者Tariq Rana博士解释道,“获得iPSCs依赖于调节细胞内的通信网络。因此,当开始操作细胞中哪些基因开启或关闭来产生多能性干细胞时,人们很可能激活了许多激酶。因为许多活性的激酶可能抑制iPSCs产生,所以对我们而言,加入激酶抑制剂来降低这种障碍可能就有意义。”

  • 干细胞冻存的成本问题:如何降低价格实现大规模应用?

    干细胞冻存的成本问题:如何降低价格实现大规模应用?

    干细胞冻存作为一种前沿的生物医学技术,具有广泛的应用前景。然而,由于其高昂的成本,限制了其在大规模应用中的普及和推广。因此,如何降低干细胞冻存的价格,实现其大规模应用成为当前的研究热点之一。本文将探讨该问题,并提出解决方案。  1. 利用自动化技术降低人工成本  自动化技术在生物医学领域得到了广泛应用。在干细胞冻存过程中,可以引入自动化设备来取代人工操作,从而降低人工成本。例如,使用机器人系统进行干细胞的收集、分离和冻存操作,不仅可以提高效率,还可以减少人力资源的投入。据统计,引入自动化设备可以将人工成本降低30%以上。[img=液氮罐,690,537]https://ng1.17img.cn/bbsfiles/images/2023/12/202312280913202803_843_3312634_3.png!w690x537.jpg[/img]  2. 优化冻存液配方降低原材料成本  冻存液是干细胞冻存过程中必不可少的一部分,其成本也是导致干细胞冻存价格高昂的主要原因之一。通过优化冻存液的配方,可以降低原材料成本,从而降低整体成本。研究发现,适当调整冻存液中的添加剂种类和浓度,可以达到与传统冻存[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]近甚至更好的保护效果。利用这些新型冻存液配方可以将原材料成本降低20%。  3. 提高冻存设备效能降低能耗成本  冷冻设备是干细胞冻存过程中的重要设备之一,其能耗也是影响干细胞冻存成本的一个因素。目前,随着节能技术的不断发展,新一代的冷冻设备具有更高的效能和更低的能耗。例如,采用新型材料制造的冻存盒可以提高冷却效果,减少能源的消耗。据统计,更新换代的冻存设备可以将能耗成本降低15%以上。  4. 规模化生产降低单位成本  规模化生产是降低任何产品成本的有效手段之一。干细胞冻存也不例外。通过建立大规模的生产线,充分发挥规模效应,可以降低单位产品的成本。此外,规模化生产还可以提高生产效率,缩短生产周期,进一步降低成本。据研究显示,实现规模化生产可以将单位成本降低至少10%。[url=http://www.yedanguan1688.com/]液氮罐[/url]  5. 加强政策支持和行业合作  为了降低干细胞冻存的价格,政府可以出台相关政策,给予资金支持和税收优惠,鼓励企业投入相关研发和生产。同时,促进行业内的合作与交流,共享资源和技术,也是实现价格下降的有效途径。政策支持和行业合作可以进一步推动干细胞冻存技术的发展和普及。[url=http://www.mvecryo.com/]mve液氮罐[/url]  综上所述,要降低干细胞冻存的价格,实现其大规模应用,需要从多个方面着手。通过利用自动化技术降低人工成本,优化冻存液配方降低原材料成本,提高冻存设备效能降低能耗成本,规模化生产降低单位成本,以及加强政策支持和行业合作,可以有效降低干细胞冻存的价格,推动其在生物医学领域的广泛应用。[url=http://www.mvecryo.com/chartmveduwaping/]杜瓦瓶[/url]

  • 什么是CAR-NK细胞疗法?CAR-NK细胞制备过程详解

    [font=宋体][b][font=宋体]什么是[/font][font=Calibri]CAR-NK[/font][font=宋体]细胞疗法[/font][font=Calibri]?[/font][/b][/font][font=宋体][font=宋体]自然杀伤([/font][font=Calibri]NK[/font][font=宋体])细胞是具有高度细胞毒性的非特异性免疫效应细胞,具有消除肿瘤细胞和感染病毒细胞等异常细胞的能力。[/font][font=Calibri]CAR-NK[/font][font=宋体]细胞疗法在血液瘤和实体瘤中发挥显著的效果,与[/font][font=Calibri]CAR-T[/font][font=宋体]疗法相比,[/font][font=Calibri]CAR-NK[/font][font=宋体]细胞疗法更安全,引起细胞因子释放综合征([/font][font=Calibri]CRS[/font][font=宋体])和移植物抗宿主病([/font][font=Calibri]GVHD[/font][font=宋体])的可能性更低,具有更强的抗肿瘤活性,是一个现货免疫细胞的理想选择。[/font][font=Calibri]CAR-NK[/font][font=宋体]细胞的来源广泛,包括脐带血([/font][font=Calibri]UCB[/font][font=宋体])、外周血([/font][font=Calibri]PB[/font][font=宋体])、人诱导多能干细胞([/font][font=Calibri]hiPSCs[/font][font=宋体])、人胚胎干细胞([/font][font=Calibri]hESC[/font][font=宋体])、造血干细胞([/font][font=Calibri]HSC[/font][font=宋体])和[/font][font=Calibri]NK[/font][font=宋体]细胞系。[/font][/font][font=宋体] [/font][font=宋体][b][font=Calibri]CAR-NK[/font][font=宋体]细胞的制备过程:[/font][/b][/font][font=宋体][font=宋体]? 对不同来源的[/font][font=Calibri]NK[/font][font=宋体]细胞进行分离和制备时,可以用[/font][font=Calibri]CAR[/font][font=宋体]表达载体(如慢病毒)进行修饰;[/font][/font][font=宋体][font=宋体]? 在特定的扩增培养基中扩增[/font][font=Calibri]NK[/font][font=宋体]细胞;[/font][/font][font=宋体][font=宋体]? 建立的[/font][font=Calibri]CAR[/font][font=宋体]‐[/font][font=Calibri]NK[/font][font=宋体]细胞通常采用静脉注射,以选择性杀死肿瘤细胞。[/font][/font][font=宋体] [/font][font=宋体][b][url=https://cn.sinobiological.com/category/solutions/car-nk-therapy][font=Calibri]CAR-NK[/font][font=宋体]细胞疗法整体解决方案[/font][/url][/b][/font][font=宋体][font=宋体]义翘神州为制药公司提供综合性的[/font][font=Calibri]CAR-NK[/font][font=宋体]细胞疗法开发解决方案,包括从[/font][font=Calibri]CAR[/font][font=宋体]开发、[/font][font=Calibri]NK[/font][font=宋体]细胞获取和表征、[/font][font=Calibri]NK[/font][font=宋体]细胞活化和扩增、[/font][font=Calibri]NK[/font][font=宋体]细胞纯化、[/font][font=Calibri]CAR-NK[/font][font=宋体]细胞制备到[/font][font=Calibri]CAR-NK[/font][font=宋体]细胞质量控制的每一阶段。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]①[/font][font=Calibri]CAR[/font][font=宋体]开发:[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]CAR[/font][font=宋体]可特异性识别肿瘤细胞表面抗原并与其结合,因此获得高质量[/font][font=Calibri]CAR[/font][font=宋体]是开发中的关键步骤。基于[/font][font=Calibri]15+[/font][font=宋体]年的经验积累和技术沉淀,义翘神州建立了四大抗体开发平台(噬菌体抗体库、杂交瘤、流式单[/font][font=Calibri]B[/font][font=宋体]细胞、[/font][font=Calibri]BeaconB[/font][font=宋体]细胞)满足[/font][font=Calibri]scFv[/font][font=宋体]发现的需求。同时我们还提供用于[/font][font=Calibri]scFv[/font][font=宋体]筛选和[/font][font=Calibri]CAR[/font][font=宋体]亲和力检测的多种[/font][font=Calibri]CAR-NK[/font][font=宋体]靶点蛋白和[/font][font=Calibri]SPR/BLI[/font][font=宋体]亲和力检测服务,支持[/font][font=Calibri]CAR-NK[/font][font=宋体]研究。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]②[/font][font=Calibri]NK[/font][font=宋体]细胞获取和表征:[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]NK[/font][font=宋体]细胞源于脐带血([/font][font=Calibri]UCB[/font][font=宋体])、外周血([/font][font=Calibri]PB[/font][font=宋体])、人诱导多能干细胞([/font][font=Calibri]hiPSCs[/font][font=宋体])、人胚胎干细胞([/font][font=Calibri]hESC[/font][font=宋体])、造血干细胞([/font][font=Calibri]HSC[/font][font=宋体])和[/font][font=Calibri]NK[/font][font=宋体]细胞系。由于[/font][font=Calibri]NK[/font][font=宋体]细胞来源广泛,需要对[/font][font=Calibri]NK[/font][font=宋体]细胞进行分离,清除[/font][font=Calibri]T[/font][font=宋体]细胞、[/font][font=Calibri]B[/font][font=宋体]细胞或其他污染物。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]NK[/font][font=宋体]细胞被定义为[/font][font=Calibri]CD3-CD16+CD56+[/font][font=宋体]的淋巴细胞。根据[/font][font=Calibri]NK[/font][font=宋体]细胞表面标志物[/font][font=Calibri]CD16[/font][font=宋体]和[/font][font=Calibri]CD56[/font][font=宋体]的差异性表达,可将[/font][font=Calibri]NK[/font][font=宋体]细胞划分为两个亚群[/font][font=Calibri]CD56brightCD16dim/[/font][font=宋体]? 和[/font][font=Calibri]CD56dimCD16+[/font][font=宋体]。根据这些不同的表面标志物,利用流式抗体进行检测从而区分[/font][font=Calibri]NK[/font][font=宋体]细胞亚群。义翘神州已开发高质量的[/font][font=Calibri]CD3[/font][font=宋体]、[/font][font=Calibri]CD16[/font][font=宋体]、[/font][font=Calibri]CD25[/font][font=宋体]、[/font][font=Calibri]CD56[/font][font=宋体]和[/font][font=Calibri]KIR2DL1[/font][font=宋体]流式抗体,可有效分离和表征[/font][font=Calibri]NK[/font][font=宋体]细胞群或亚群。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]③[/font][font=Calibri]NK[/font][font=宋体]细胞活化和扩增:[/font][/font][font=宋体] [/font][font=宋体][font=宋体]在外周血白细胞中,只有约[/font][font=Calibri]5%-15%[/font][font=宋体]为[/font][font=Calibri]NK[/font][font=宋体]细胞,如何获得足够的[/font][font=Calibri]NK[/font][font=宋体]细胞仍是患者采用免疫治疗的主要挑战。从[/font][font=Calibri]NK[/font][font=宋体]细胞活化阶段进行高效的[/font][font=Calibri]NK[/font][font=宋体]细胞转导,以诱导细胞增殖。目前[/font][font=Calibri]NK[/font][font=宋体]细胞培养存在多种培养方式,应用最广泛的两种方法为饲养层细胞培养和细胞因子培养。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]GMP[/font][font=宋体]级细胞因子[/font][/font][font=宋体] [/font][font=宋体][font=宋体]相关法规明确规定,对于细胞治疗药物中原材料的选择,应尽量采用符合药典标准的原材料或批准上市的药品,优先级是:药品级>[/font][font=Calibri]GMP[/font][font=宋体]级>[/font][font=Calibri]RUO[/font][font=宋体]级。[/font][font=Calibri]GMP[/font][font=宋体]级细胞因子对于[/font][font=Calibri]NK[/font][font=宋体]细胞的发育和存活具有重要调节作用,如[/font][font=Calibri]IL-21[/font][font=宋体]能诱导[/font][font=Calibri]NK[/font][font=宋体]细胞的成熟,并增强其细胞毒性。[/font][font=Calibri]GMP[/font][font=宋体]级细胞因子作为重要原料应用到[/font][font=Calibri]CAR-NK[/font][font=宋体]药物开发过程中,可在体外扩增过程中高效激活[/font][font=Calibri]NK[/font][font=宋体]细胞。义翘神州严格遵循[/font][font=Calibri]GMP[/font][font=宋体]质量管理体系,成功开发出高质量、高活性的[/font][font=Calibri]GMP[/font][font=宋体]级细胞因子:[/font][font=Calibri]IL-2[/font][font=宋体]、[/font][font=Calibri]IL-7[/font][font=宋体]、[/font][font=Calibri]IL-12[/font][font=宋体]、[/font][font=Calibri]IL-15[/font][font=宋体]、[/font][font=Calibri]IL-21[/font][font=宋体],助力[/font][font=Calibri]CAR-NK[/font][font=宋体]细胞培养。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]④[/font][font=Calibri]CAR-NK[/font][font=宋体]细胞制备:[/font][/font][font=宋体] [/font][font=宋体][font=宋体]慢病毒包装是[/font][font=Calibri]CAR-NK[/font][font=宋体]细胞制备的关键环节。影响慢病毒包装是否成功的因素包括载体系统、转染试剂和慢病毒滴度等。义翘神州提供高品质的无血清[/font][font=Calibri]HEK293[/font][font=宋体]培养基、[/font][font=Calibri]Sinofection[/font][font=宋体]转染试剂和超级核酸酶,用于慢病毒载体的高效转染。同时我们还提供细胞库检测服务和核酸酶残留检测试剂盒,满足[/font][font=Calibri]CAR-NK[/font][font=宋体]细胞制备需求。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]⑤[/font][font=Calibri]CAR-NK[/font][font=宋体]细胞质量控制:[/font][/font][font=宋体] [/font][font=宋体][font=宋体]为确保[/font][font=Calibri]CAR-NK[/font][font=宋体]细胞治疗产品的安全性,需要进行严格的质量控制检测,包括活细胞比例检测、细胞群或亚群检测、[/font][font=Calibri]CAR[/font][font=宋体]阳性率检测和杀伤效力评价等。义翘神州提供高质量的产品和服务,支持[/font][font=Calibri]CAR-NK[/font][font=宋体]细胞质量控制检测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以参看:[/font][font=Calibri]https://cn.sinobiological.com/category/solutions/car-nk-therapy[/font][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制