当前位置: 仪器信息网 > 行业主题 > >

人分泌型磷脂酶

仪器信息网人分泌型磷脂酶专题为您整合人分泌型磷脂酶相关的最新文章,在人分泌型磷脂酶专题,您不仅可以免费浏览人分泌型磷脂酶的资讯, 同时您还可以浏览人分泌型磷脂酶的相关资料、解决方案,参与社区人分泌型磷脂酶话题讨论。

人分泌型磷脂酶相关的资讯

  • 西南大学通过仪器信息网订购远慕人磷脂酶A2(sPLA2)ELISA试剂盒
    上海远慕是国内elisa试剂盒优质供应商,本司代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询! 产品名称:人磷脂酶A2(sPLA2)ELISA试剂盒说明书定量检测试剂盒 规格:48T/96T(仅用于科研,不得用于临床诊断)。 贮藏条件:2-8℃低温保存 有效期:6个月 特异性: 人磷脂酶A2(sPLA2)ELISA试剂盒说明书可同时检测天然或重组的,且与其他相关蛋白无交叉反应。 检测种属:人、大小鼠、兔、羊、猴、猪、豚鼠ELISA检测试剂盒等种属。 西南大学客户通过仪器信息网平台订购远慕人磷脂酶A2(sPLA2)ELISA试剂盒 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当即就下了订单,下面是和客户的沟通记录: 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • 内毒素信号转导分子诱导性改变的介绍
    (一)TLR4分子表达下调将小鼠腹腔巨噬细胞用内毒素预先处理后,再次用内毒素攻击,则此时细胞因子的分泌显著减少,表现出时间和剂量依赖性的特点。在耐受的巨噬细胞中证实,依赖于TLR4-MyD88信号途径的近侧信号转导分子受到影响。用小剂量内毒素刺激巨噬细胞后数小时内,TLR4 mRNA表达显著下调,24h后才恢复正常水平,而膜表面上TLR4分子在1h开始表现出渐进式下降,其抑制性状态持续超过24h。此时的细胞因子分泌下降与TLR4表达下调有关,也是内毒素耐受的发生机制之一。在内毒素耐受中,TLR4的基本调控因子PU.1和干扰素基因序列结合蛋白(interferon consensus sequence binding protein,ICSBP)是如何相互作用影响Tlr4基因转录的目前还不清楚。(二)IRAK分子改变IRAK为IL-1受体的信号转导分子,现证实其也参与TLR家族的信号转导。过量表达IRAK的显性失活形式能抑制LPS的信号转导,而且在lRAK基因缺陷的293细胞中转染野生型IRAK能使细胞对LPS发生反应。Li等对THP-1细胞进行内毒素攻击时,发现内源性IRAK能够被快速激活,初次内毒素刺激时,LPS可促使IRAK与MyD88迅速结合;在内毒素耐受的THP-1细胞中发现,IRAK表达数量显著下降,只有正常水平的20%,在再次内毒素攻击时,无法诱导出IRAK的酶学活性;同时,IRAK与MyD88发生分离不能结合,无法转导LPS的跨膜信号。可见,IRAK从量和质的两个方面下调内毒素的激活效应。(三)NF-κB复合物分子组成的改变内毒素耐受细胞若再次受到内毒素刺激,则不能有效激活NF-κB。未激活的巨噬细胞、NF-κB组成异源二聚体(p50和p65)形式,并与抑制性IκB结合,滞留在胞质内。当细胞初次受到内毒素刺激后,IκB迅速被IκB激酶(IKK)磷酸化,并经泛蛋白-蛋白质酶体的途径降解。在内毒素耐受细胞中,NF-κB复合物主要为p50/p50,后者缺乏反式转录活性,并能抑制基因表达。p50的前体蛋白为p105,经过酶切生成。在内毒素耐受细胞中,由于p105合成显著增加,p50与p50形成二聚体,而p65 mRNA无改变,故不能诱导p65蛋白表达增加,所以p50/p50占优势,p65/ p50比例下降,并抑制相关基因表达。(四)IκB激酶的改变内毒素耐受的细胞中IKK不能被激活,结果IκB无法降解,持续与NF-κB结合,而NF-κB复合物不能从胞质转位进入胞核内使其调控基因表达。可见,IκB激酶也参与了内毒素耐受的发生。(五)蛋白激酶C的改变内毒素可以激活不同的致分裂原活化蛋白激酶(rmitogen-activated protein kinase,MAPK)的级联反应,包括细胞外信号调节蛋白激酶、JNK(c-Jun N-terminal kinase),p38MAPK/反应激酶途径(p38 MAPK/reactivating kinase pathway)。MAPK可以使下游分子的丝氨酸/苏氨酸发生磷酸化。有活性的细胞外信号调节蛋白激酶使下游分子磷酸化并调节其活性,其中包括其他蛋白激酶、细胞骨架、磷脂酶A2和核转录因子(如Elk1/TCF及c-Jun),调节即刻早期基因的表达。内毒素可激活PI-3K,后者分解膜上的脂质后产生DAG和IP3,IPs进一步激活PKC,并发生多种效应。在内毒素耐受细胞中,使用PKC的激活剂如佛波酯,能恢复细胞因子的合成和分泌,可见PKC也参与内毒素耐受效应。(六)G蛋白与内毒素的耐受用百日咳毒素使巨噬细胞G蛋白亚单位Gi的近C端Cys残基发生核糖基化,修饰后的Gi对受体介导的信号转导无反应而处于持久失活状态,此时用内毒素进行刺激可显著降低细胞因子的合成和分泌。可见G蛋白也参与了机体对内毒素反应的调节。总之,在天然内毒素耐受之外,宿主作为一个整体,其中有多种成分共同参与内毒素耐受的发生,而并非某一个成分单独发挥作用,这也表现出了机体反应的协调性。一旦某个成分逃脱抑制的束缚,则会破坏整个耐受的平衡状态,使耐受现象消失,并摆脱原有的耐受状态,继而下传LPS信号转导,对机体产生效应。
  • 血浆甘油磷脂与生活方式和心血管代谢性疾病风险研究获进展
    中国科学院上海营养与健康研究所研究员林旭研究组与中国科学院分子细胞科学卓越创新中心研究员曾嵘研究组合作,分别在Diabetologia、The American Journal of Clinical Nutrition上,发表了题为Associations of plasma glycerophospholipid profile with modifiable lifestyles and incident diabetes in middle-aged and older Chinese、Plasma glycerophospholipid profile, erythrocyte n-3 PUFAs, and metabolic syndrome incidence: a prospective study in Chinese men and women的研究论文。  近几十年来,我国居民的肥胖、代谢综合征及糖尿病等心血管代谢性疾病的患病率快速攀升,威胁居民健康。健康的生活方式是国际公认的预防和控制这类疾病经济有效的方法,但目前人们对其在疾病过程中的复杂影响和调控路径认识有限。近年来,包括脂质组在内的代谢组学技术的快速发展,为发现疾病早期的生物标记物、阐释疾病发生发展相关的代谢通路和调控因素提供了契机。在诸多脂质分子中,甘油磷脂(glycerophospholipid, GPLs)作为哺乳动物细胞膜含量丰富的磷脂,参与了多种生理功能,如细胞信号传导、脂蛋白分泌和代谢,以及内质网、线粒体的功能等。大量动物研究提示,GPL代谢紊乱能引发内质网应激、以及肥胖、胰岛素抵抗、血脂异常等代谢异常。迄今为止,国际上有关GPL与糖尿病、代谢综合征的前瞻性队列研究有限,尤其是在亚洲人群中的研究十分匮乏。  林旭团队与曾嵘团队合作,通过采用高通量靶向液相色谱-电喷雾串联质谱法定量检测了2248名参加“中国老龄人口营养健康状况研究”志愿者的基线血浆脂质组(728种脂质),其中包括160种GPLs。林旭组博士生陈双双和副研究员孙亮等在GPL与糖尿病的相关研究(Diabetologia)中发现:(1)8种GPLs [1种溶血磷脂酰胆碱、6种磷脂酰胆碱(PC)以及1种磷脂酰乙醇胺(PE)],尤其是与脂质从头合成途径(de novo lipogenesis pathway,DNL)脂肪酸相关的PC水平升高可显著增加6年糖尿病发病风险(相对风险比值比:1.13-1.25;图1);(2)其中4种仅包含饱和、单不饱和的脂肪酸酰基链的GPLs[PC(16:0/16:1, 16:0/18:1, 18:0/16:1)和PE(16:0/16:1)]与高精制谷物(大米和面条),低鱼类、奶制品和大豆制品摄入相关的膳食模式呈显著正相关(P 0.001;图2);(3)上述8种GPLs与糖尿病风险之间的正相关性在体力活动水平较低的个体中更为显著(P-inter 0.05;图3)。而在与代谢综合征相关的研究(AJCN) 中则发现:(1)11种GPLs(1种PC、9种PE以及1种磷脂酰丝氨酸)水平的升高可显著增加6年后代谢综合征的发病风险(相对风险比值比:1.16-1.30;图4),而这些GPLs的sn-2位置大部分含有长链或超长链多不饱和脂肪酸(PUFAs);(2)其中7种GPLs与代谢综合征发病风险之间的正相关性在红细胞膜n-3 PUFAs水平较低的人群中更显著(P-inter 0.05;图5)。上述研究提示特定GPL能显著增加6年后糖尿病或代谢综合征的发病风险,但增加体力活动或摄入n-3 PUFAs可能有助于降低其对心血管健康的负面影响。  研究工作得到中科院战略性先导科技专项(B类)、国家自然科学基金及上海市科技重大专项等的资助。  论文链接:1、2
  • 关于文冠果种仁等8种“三新食品”的公告与解读
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对文冠果种仁等2种物质申请新食品原料、β-淀粉酶等3种物质申请食品添加剂新品种、玻璃纤维等3种物质申请食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。国家卫生健康委2023年7月24日一、新食品原料解读材料(一)文冠果种仁文冠果种仁是以无患子科文冠果属文冠果(Xanthoceras sorbifolium Bunge)的种籽为原料,经干燥、磁选、脱壳、筛选等工艺制成。文冠果种仁的主要营养成分包括脂肪、蛋白质、碳水化合物、膳食纤维、维生素等,且含有少量的皂苷和甾醇类等物质。文冠果在我国东北、西北、华北北部地区均有种植,且在内蒙古、甘肃、陕西、山东等地区具有食用历史。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对文冠果种仁的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于文冠果种仁在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。文冠果种仁含脂肪57.18%、蛋白质29.69%、淀粉9.04%,营养价值很高,是我国北方很有发展前途的木本油料植物;种仁榨油出油率30%左右,种子油中神经酸含量约占1.5%~3%,是重要的神经酸资源植物,属二级食用植物油;种子榨油后饼粕是蛋白食品和精饲料的原料。种仁可以直接当水果吃,成熟的文冠果味道跟新鲜核桃一样甘甜。同时,它还可以当蔬菜吃,清炒、凉拌、腌渍各有风味。文冠果油可作为普通食用油。在2020年,国家卫健委对文冠果油终止审查(受理编号:卫食新申字(2020)第0002号),鉴于该产品具有长期人群食用历史,且国家粮食和物资储备局已发布标准《LS/T3265-2019文冠果油》,建议终止审查,按普通食品管理。该原料的食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。(二)文冠果叶文冠果叶是以无患子科文冠果属文冠果(Xanthoceras sorbifolium Bunge)的嫩叶为原料,经杀青、揉捻、干燥等工艺制成。文冠果叶的主要营养成分包括碳水化合物、蛋白质、脂肪等,且含有少量的茶多酚、多糖、皂苷、黄酮类等物质。文冠果在我国东北、西北、华北北部地区均有种植,文冠果叶在我国河北、山西、内蒙古、山东等地区具有食用历史。本申报产品的食用方式为泡饮,推荐食用量为≤6克/天。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对文冠果叶的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于文冠果叶在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。待代用茶的食品安全国家标准发布后,则按照代用茶的标准执行。文冠果嫩芽、嫩叶、花蕾还可以炒制成茶,树叶加工成茶叶,叶片中蛋白质含量高于红茶,咖啡因含量与花茶相似,是市场的一种饮品。二、食品添加剂新品种解读材料(一)β-淀粉酶1.背景资料。弯曲芽孢杆菌(Bacillus flexus)来源的β-淀粉酶申请作为食品工业用酶制剂新品种。日本厚生劳动省、法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化淀粉水解。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB 1886.174)。(二)溶血磷脂酶1.背景资料。李氏木霉(Trichoderma reesei)来源的溶血磷脂酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、法国食品安全局、澳大利亚和新西兰食品标准局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化溶血磷脂的水解。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB 1886.174)。(三)硫酸1.背景资料。硫酸作为食品工业用加工助剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于啤酒、淀粉、乳制品等加工工艺。本次申请扩大使用范围用于油脂加工工艺。美国食品药品管理局、日本厚生劳动省等允许其用于食品。2.工艺必要性。该物质作为食品工业用加工助剂用于油脂加工工艺,中和油脂,去除加工副产物。其质量规格执行《食品安全国家标准 食品添加剂 硫酸》(GB 29205)。三、食品相关产品新品种解读材料(一)玻璃纤维;玻璃棉1.背景资料。该物质在常温下呈固态。《食品安全国家标准 食品接触材料及制品用添加剂使用标准》(GB 9685-2016)已批准该物质作为添加剂用于聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)等多种塑料材料及制品。国家卫生健康委2021年第2号公告已批准该物质用于聚四氟乙烯(PTFE)塑料材料及制品中,最大使用量为25%,此次申请将其使用范围扩大至聚醚醚酮(PEEK)塑料材料及制品,最大使用量为30%。美国食品药品管理局、欧盟委员会和日本厚生劳动省均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质作为一种填充剂,可以提高食品接触用PEEK塑料材料及制品的机械性能。(二)C.I.颜料黑28;铜铬黑1.背景资料。该物质在常温下为黑色粉末状细颗粒,不溶于水。GB 9685-2016已批准该物质作为添加剂用于PE、PP、PS等多种塑料材料及制品。此次申请将其使用范围扩大至食品接触用涂料及涂层。美国食品药品管理局和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质作为着色剂,具有较好的热稳定性和红外吸收以及红外辐射性能,多用于耐高温涂层中,可使涂层承受温度变化而不发生开裂和脱落、提高涂层的辐射换热效率。(三)N-(2-氨基乙基)-β-丙氨酸钠盐与1,4-丁二醇、1,6-二异氰酸根合己烷、1,3-二异氰酸根合甲苯和己二酸的聚合物1.背景资料。该物质在常温下为白色或淡黄色固体。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用黏合剂。2.工艺必要性。该物质作为生产水性黏合剂的主要原料,具有较好的粘结性能。
  • 施一公研究组在《自然》发表论文报道人体γ-分泌酶3.4埃冷冻电镜结构
    p   2015年8月18日,清华大学生命学院施一公教授领导的研究团队于《自然》(Nature)在线发表题为《人源γ-分泌酶的原子分辨率结构》(An atomic structure of human γ-secretase)的文章,报道了分辨率高达3.4埃的人体γ-分泌酶的电镜结构,并且基于结构分析研究了γ-分泌酶致病突变体的功能,为理解γ-分泌酶的工作机制以及阿尔茨海默症(Alzheimer’s disease, AD)的发病机理提供了重要基础。 /p p   阿尔兹海默症是一类神经退行性疾病,又称老年痴呆症,是当今世界面临的最为严峻的老年神经退行性疾病之一。临床表现为脑组织切片中出现淀粉样斑块,神经元逐渐死亡,认知和记忆能力受损,病人逐渐丧失独立生活能力,最后脑功能严重受损直至死亡。美国前总统里根和英国前首相撒切尔夫人都罹患该疾病。统计结果表明,在65岁以上人群中,其发病率高达10%,在85岁以上人群中,发病率更是达到30-50% 我国目前患该病的人口高达500万,约占世界患者总数的四分之一,并且由于预防治疗手段不足,缺乏特效药物,该疾病逐渐有发病年龄提前,发病人数增加的趋势,不但给病人及家属造成极大痛苦,也同时为社会带来沉重负担。 /p p   尽管如此,阿尔兹海默症的发病机理尚有待揭示。目前研究已知β-淀粉样沉淀(β-amyloid)是该病的标志性症状之一。而β-淀粉样沉淀的产生是APP蛋白经过一系列蛋白酶切割产生的短肽聚集而来。在此切割过程中,最关键的蛋白酶是γ-分泌酶(γ-secretase)。γ-分泌酶由四个跨膜蛋白亚基组成,分别为Presenilin(PS1)、Pen-2、Aph-1和Nicastrin。其中,编码PS1蛋白的基因中有200多个突变与AD病人相关,而PS1正是行使酶切功能的关键活性亚基。这些突变有可能导致PS1功能异常而引起阿尔兹海默症的发生。γ-分泌酶在阿尔兹海默症的发病中扮演着重要角色,很多药物的研发直接以γ-分泌酶作为靶点,希望通过调节其活性来治疗疾病。三维结构信息的缺失和突变致病机理的不明使得药物研发受到很大限制,所以获取其三维结构至关重要。但是γ-分泌酶是一个膜整合蛋白复合体,此前预测跨膜螺旋达到19个,其三维结构研究一直存在很多困难,瓶颈是获得性质良好适合结构生物学研究的重组蛋白复合体。 /p p   施一公教授2006年在清华大学建设实验室之初,就将揭示阿尔兹海默症的发病机理作为重点研究方向,其中一个主要环节是解析γ-分泌酶的高分辨率结构,揭示Presenilin突变体的致病机理。他们经过长期不懈的努力,积累了大量经验教训,终于在近年取得一系列重要突破: /p p   2012年12月,施一公研究组在《自然》(Li et al, Nature)报道PS1细菌同源蛋白PSH的晶体结构,并根据同源性首次构建了PS1的结构模型,揭示了PS1的结构折叠,并在结构上初步分析了在阿尔茨海默症病人中发现的PS1突变位点 /p p   2014年6月,施一公研究组与英国MRC分子生物学实验室白晓晨博士和Sjors Scheres研究员合作在《自然》报道了分辨率为4.5埃的γ-分泌酶复合物电镜结构,观察到了其跨膜区域呈马蹄形排布的结构,但是受限于分辨率,无法准确区分各个亚基的具体排布(Lu et al, Nature) /p p   2014年9月,施一公研究组在《美国科学院院刊》(PNAS)发表文章,报道了其中一个亚基Nicastrin同源蛋白胞外结构域的高分辨率晶体结构,推测了Nicastrin在底物招募过程中可能的机制,并且根据同源性构建了人源Nicastrin 胞外结构域的结构,结合该结构与此前解析的PSH晶体结构和4.5埃分辨率电镜结构,他们在γ-分泌酶跨膜区辨认出了PS1,并进一步推测了该复合物近20个跨膜螺旋的组装模式,但该结论仍需高分辨率的结构验证(Xie et al, PNAS) /p p   2015年3月,施一公研究组在PNAS发表论文,报道PS1的细菌同源蛋白PSH具有与γ-分泌酶类似的底物切割活性,并且其酶活也受到γ-分泌酶小分子抑制剂的抑制,并解析了该抑制剂与PSH的复合物结构,揭示了其抑制位点,从而使得PSH可以作为一个研究成本相对低廉的替代品来进行γ-分泌酶调控小分子的初步筛选(Dang et al, PNAS) /p p   2015年4月,施一公研究组在PNAS发表论文,报道人源γ-分泌酶4.3埃的冷冻电镜三维结构。与一年之前的4.5埃结构相比,尽管分辨率只提高0.2埃,但是跨膜区密度质量有了极大提高。此外他们在PS1的N端连接T4-溶菌酶蛋白,从而准确定位出PS1的第一个跨膜螺旋,并在此基础上判断出四个亚基,验证了在2014年PNAS文章中推测的组装方式。此外,他们利用性质非常缓和的去污剂制备样品,证明电镜观察到的结构并未因蛋白纯化和冷冻制备而受到影响。这个结构也是清华大学电镜平台的K2电子探测相机自2014年暑期正常运转之后解析出的最小分子量的结构(Sun et al, PNAS) /p p   最新发表的Nature论文是施一公研究组与英国研究组合作的延续,在获得纯度好、性质均一的蛋白样品的基础上,通过收集更多的数据、大量的计算和升级的分类方法,计算构建出了3.4埃的原子分辨率的γ-分泌酶的三维结构,可以观察到绝大部分氨基酸的侧链以及胞外区部分糖基化修饰和结合的脂类分子。在高分辨结构的基础上,施一公研究组对PS1上的致病性突变体进行了研究,发现这些突变主要集中在两个较为集中的区域内,分别为跨膜区TM2-5以及TM6-9。他们对于其中一些突变体进行了生化性质的研究,发现这些突变会影响γ-分泌酶对于底物APP的酶切活性,然而对切割活性的影响却有所不同,因此对于已有的阿尔兹海默症的发病机理提出了一些新的探讨。 /p p   这项新的研究结果首次在世界上展示了γ-分泌酶的原子分辨率结构,并且在结构信息的基础上分析了人们关心的γ-分泌酶中催化亚基PS1上的致病性的突变,研究了突变体的生化活性,对于更进一步了解γ-分泌酶切割底物的机制以及研究阿尔兹海默症的发病机理具有极为重大的意义,也为开发潜在的治疗阿尔兹海默症的高效药物提供了重要的分子基础。 /p p   在清华大学生命学院隋森芳院士指导下获得博士学位后在英国MRC分子生物学实验室从事博士后研究的白晓晨博士、清华大学生命学院博士后闫创业与博士生杨光辉为本文共同第一作者。本工作获得了科技部、国家自然科学基金委以及生命科学联合中心的经费支持。 /p p   相关论文链接: /p p   http://www.nature.com/nature/journal/v493/n7430/abs/nature11801.html /p p   http://www.nature.com/nature/journal/v512/n7513/full/nature13567.html /p p   http://www.pnas.org/content/111/37/13349.short /p p   http://www.pnas.org/content/112/11/3344.short /p p   http://www.pnas.org/content/112/19/6003.long /p p   http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14892.html /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/noimg/fee42244-dc1a-40b8-9ec8-5cc5f99ec51b.jpg" title=" 图1:人体γ-secretase3.4埃三维结构.jpg" / /p p style=" text-align: center " 图1:人体γ-secretase3.4埃三维结构 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/noimg/b3509646-2d0a-4abf-a2f4-48693029778e.jpg" title=" 图2: PS1与阿尔茨海默病相关突变的结构和生化分析.jpg" / /p p /p p style=" text-align: center " 图2: PS1与阿尔茨海默病相关突变的结构和生化分析 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/noimg/9562dd10-55db-4e59-8b1e-9078925d812b.jpg" title=" 图3:γ-secretase四个亚基跨膜区间的相互作用.jpg" / /p p /p p style=" text-align: center " 图3:γ-secretase四个亚基跨膜区间的相互作用 /p
  • nanoDSF技术助力蛋白结晶的研究
    01研究背景稳定的、高纯度、单分散的生物样品显示出更高的结晶倾向[1]。早期阶段识别那些更有可能产生晶体的结构或变体能够节省大量的人力和时间成本。目前的很多方法,如凝胶过滤、DSF等技术可以帮助识别最优性质的样品,但是存在样品消耗量大或者外源染料与溶剂不兼容等问题。NanoTemper开发的nanoDSF差示扫描荧光技术,基于蛋白的内源荧光检测Tm值,通过Tm值的绝对数值和变化来确定优先结晶的缓冲条件或者蛋白变体等。接下来,我们通过两篇文献来了解nanoDSF如何助力结晶条件的筛选。02案例解读https://doi.org/10.1038/s41467-023-35915-4IF: 16.6 Q1非特异性磷脂酶C (NPC) 是植物特有的一类磷脂酶。尽管对NPCs的研究揭示了其在植物生长发育中的基本作用,但相比于其它磷脂酶(A1/A2/D/PI-PLC)水解底物的分子机制研究,NPCs是迄今为止唯一一类尚未被阐明的磷脂酶。湖北洪山实验室、作物遗传改良全国重点实验室蛋白质科学研究团队联合油菜团队的研究成果解析研究了NPC4的晶体结构和工作机制,为真核生物磷脂水解酶家族的分子机制提供了新见解。 研究中获得了NPC41-415和NPC41-496 两组结晶,对比结晶结果,发现NPC41-415没有磷酸化,且CTD结构域没有观察到电子密度。SDS-PAGE结果显示,蛋白在结晶过程中被部分降解,可能导致晶体中缺少CTD结构域。对比结晶条件发现NPC41-415的结晶中不存在KH2PO4,同时KH2PO4不影响NPC4活性。因此,作者推测KH2PO4可能会增强NPC4的稳定性。NPC4为膜蛋白,一般膜蛋白的表达和纯化得率均比较低,因此需要使用蛋白消耗量少的热稳定分析技术以最大程度的节约膜蛋白样品。nanoDSF技术样品检测浓度可低至5ug/ml,10μl,大大节约蛋白样品。研究人员利用nanoDSF技术检测了KH2PO4对NPC蛋白热稳定性的影响,每个条件仅需5.6ug NPC4蛋白样品。加入KH2PO4后,Tm值从51.1℃提高到55.3℃,表明NPC4在KH2PO4存在下更稳定,也解释了缺少KH2PO4时蛋白降解的原因。图示:KH2PO4提高NPC41-496 稳定性:nanoDSF结果显示,NPC41-496 Tm为51.1℃;在有50mM KH2PO4 存在下提高到55.3℃03案例解读https://doi.org/10.1038/s41598-023-41616-1IF: 4.6 Q2水通道蛋白2(APQ2)调控水的重吸收进而调控机体的水代谢平衡。AQP2基因的点突变可能导致肾性尿崩症(NDI)。为了进一步了解AQP2突变导致NDI的分子机制,作者通过对三种AQP2突变体(T125M、T126M和A147T)进行结晶,以了解突变AQP2的结构和功能关系,为NDI背后的机制提供了分子见解。为了提前了解突变对AQP2蛋白稳定性以及其对后续结晶的影响,研究人员使用nanoDSF技术比较了三种突变体的热稳定性差异。需要注意的是AQP2同样为膜蛋白,其储存溶液中含有去垢剂OGNG等成分,而nanoDSF技术是基于蛋白的内源荧光进行Tm检测,对去垢剂等兼容,无需优化检测条件,可快速获得重复性高的Tm结果。nanoDSF结果显示所有的热变性曲线显示出相似的形状。然而,Tm和Tonset在不同突变体之间存在差异。野生型AQP2的稳定性最高,其次为T126M和T125M, A147T的热稳定性最低。 图示:nanoDSF检测WT AQP2以及其突变体的热稳定性接下来,作者对AQP2以及其突变体进行结晶。在与野生型AQP2相同的条件下,只有T125M和T126M产生了足以用于结构测定质量的晶体,与野生型AQP2的结构高度相似。T126M晶体的衍射分辨率最高,为(~ 3-3.3 &angst ),其次是T125M (~ 3.7-4 &angst )。A147T晶体质量最低,衍射x射线约为5-7 &angst 。结晶结果与三种蛋白质结构的热稳定性非常一致,即蛋白质的热稳定性降低可能会降低其成功结晶的能力[2][3]。03案例小结&技术优势在上述两篇文献中,作者使用nanoDSF技术检测了膜蛋白在不同缓冲条件或者突变体的热稳定性,并且均可与后续的结晶结果对应。nanoDSF对缓冲溶液兼容,如去垢剂,无需额外优化条件,仅需非常少量的样品,即可快速完成Tm检测。明星产品PR Panta更是整合了4大检测模块(DLS、SLS、Backreflection和nanoDSF),仅需一份样品即可获得多种参数,更清楚了解结晶前样品情况,挑选最佳条件蛋白或条件进行结晶。PR Panta蛋白稳定性分析仪[1] Zulauf M, D'Arcy A (1992) J Cryst Growth 122:102–106[2] Dupeux, F (2011) Acta. Crystallogr. D Biol. Crystallogr. 67, 915–919.[3] Deller, M. C. (2016).Acta. Crystallogr. F Struct. Biol. Commun. 72, 72–95.
  • 闪谱发布 SuPerMax 3000FA型多功能酶标仪新品
    SuPerMax 3000FA型多功能酶标仪 ----专为生命科学实验室而打造上海闪谱生物科技有限公司成立于中国科学院上海生物工程中心,与复旦大学、上海交通大学有着良好的合作关系,是一家致力于为生命科学和药物研发工作者提供专业的、高精度、高通量、高性能的微孔板测读分析仪厂商,是国内第一家光栅型酶标仪生产商,SuPerMax型光栅酶标仪系列产品已被广泛应用于药物筛选、分子生物学、免疫学、细胞学、生物化学等多个领域,完全可以取代进口产品,是高性能微孔板测读分析领域的国产领导品牌,是科研单位与生化制药厂的明智选择。SuPerMax 3000FA型主要特点:1、适用于荧光、光吸收检测,具有多种拟合曲线进行分析;2、适用于蛋白酶与激酶、磷脂酶、NADH、GST活性测试;3、适用于蛋白质定量分析,支持UV,NanoOrange,Bradford,Lowry等方法;4、适用于DNA/RNA分析;5、适用于活性氧分析,cAMP分析;6、适用于细胞增殖和细胞毒性测试,MTT,XTT;7、适用于微生物生长、内毒素与细菌浓度分析;8、适用于分子探针实验;9、可进行紫外、荧光光谱扫描;10、激发与发射组件均为高分辨光栅单色仪,可设定最优激发与发射波长;11、内置光栅单色器的波长范围为190-1000nm,具有良好适应性;12、波长分辨率1nm,波长重复性可达0.2nm;13、具有动力学分析模式;14、具有温控孵育系统,温度可达65℃,适应高温试验;15、带有微孔板震荡混匀功能,无需使用外部摇床;16、使用氙灯光源,强度高、发光稳定;17、具有有样品检测探测器和参比探测器,检测精确;18、具有功能强大的数据分析能力的微孔板分析工作站;19、具有仪器参数设置与仪器自检功能,高度自动化;20、使用USB数据接口,便于仪器控制与数据传输;21、全中文界面,适合国内操作人员使用与教学;22、性能不低于进口同类产品,具有极高的性价比; SuPerMax 3000FA型主要指标:荧光性能:n 探测器:光电倍增管(PMT)n 激发波长范围:190nm-1000nm;n 发射波长范围:270nm-850nm;n 波长分辨率:1nm;n 波长带宽:10、20nm可选;n 波长准确度:顶读<0.5fmol(FITC/孔→384板) 底读< 5fmol (FITC/孔→384板)n 检测数量级:顶读> 6个数量级(FITC/孔→384板) 底读>5.5个数量级(FITC/孔→384板)n 读数方式:顶读+底读n 比色皿模块:不存在 光吸收性能:n 检测器:光电池n 波长范围:190nm-1000nmn 波长准确度:±1.0nmn 波长重复性:n 数量: 1或2个n 加液体积:10-1000uL 常规特性n 光源:氙灯n 温度控制:(室温+2℃)至65℃n 振荡方式:线性、十字、圆周n 振荡幅度:高、中、低n 板型:96、384孔(其它孔位可定制) SuPerMax 3000FA型主要组成:1、主机(包括光源、检测器、孵育装置、振荡装置);2、SuPerMax 3000FA型多功能酶标仪工作站软件;仪器附件(选配)1、MF-10型孵育振荡仪;2、加液器组件;3、审计追踪;SuPerMax 3000FA型多功能酶标仪工作站软件界面: 由于技术不断进步,本公司保留设计更改之权利,更改恕不通知敬请谅解。创新点:适用于荧光、光吸收检测,具有多种拟合曲线进行分析,可进行紫外、荧光光谱扫描,激发与发射组件均为高分辨光栅单色仪,可设定最优激发与发射波长,内置光栅单色器的波长范围为190-1000nm,具有良好适应性 SuPerMax 3000FA型多功能酶标仪
  • 日研究人员制成植物人工染色体有助开发新品种
    日研究人员制成植物人工染色体有助开发新品种 日本冈山大学资源植物ELISA试剂盒研究所教授村田稔率领的研究小组25日宣布,他们成功在植物细胞内人工制造出了带有遗传信息的染色体。这一成果将有助于开发新的作物品种。 ELISA试剂盒研究小组使用拟南芥,利用“自顶向下分析法”,通过操控细胞内原有的染色体,并进行改编,制作出了比通常染色体要小的环状人工染色体。即使是自花授粉的种子,也有40%以上继承了这种人工染色体。 ELISA试剂盒研究小组说,利用植物制作出能被下一代继承的人工染色体,这在世界上尚属首次。通过向这种染色体植入特定的基因,就可培育出能抗病虫和抗倒伏的新植物和作物品种。 村田稔说:“利用这种技术,还可以只在水稻生长期间,植入抗病虫和抗倒伏的基因。”Mouse Linker for activation of T cell,LAT ELISA Kit 小鼠T细胞活化连接蛋白(LAT)ELISA试剂盒 规格: 96T/48TMouse lipoprotein lipase,LPL ELISA Kit 小鼠脂蛋白脂酶(LPL)ELISA试剂盒 规格: 96T/48TMouse lipoprotein α,Lp-α ELISA Kit 小鼠脂蛋白α(Lp-α)ELISA试剂盒 规格: 96T/48TMouse lipoprotein-associated phospholipase A2,Lp-PL-A2 ELISA Kit 小鼠脂蛋白相关磷脂酶A2(Lp-PL-A2)ELISA试剂盒 规格: 96T/48TMouse L-Phenylalanine ammonla-lyase,PAL ELISA Kit 小鼠L苯丙氨酸解氨酶(PAL)ELISA试剂盒 规格: 96T/48TMouse L-phenylalanine,LPA ELISA Kit 小鼠苯丙氨酸(LPA)ELISA试剂盒 规格: 96T/48TMouse L-Selectin ELISA Kit 小鼠L选择素(L-Selectin/CD62L)ELISA试剂盒 规格: 96T/48TMouse Luteinizing Hormone-Releasing Hormone,LHRH ELISA Kit 小鼠黄体生成素释放激素(LHRH)ELISA试剂盒 规格: 96T/48TMouse luteotropic hormone,LH ELISA Kit 小鼠促黄体激素(LH)ELISA试剂盒 规格: 96T/48TMouse lymphocyte factor ELISA Kit 小鼠淋巴细胞因子ELISA试剂盒 规格: 96T/48TMouse lymphocyte function associated antigen 3,LFA-3 ELISA Kit 小鼠淋巴细胞功能相关抗原3(LFA-3/CD58)ELISA试剂盒 规格: 96T/48TMouse lymphotactin,Lptn/LTNELISA Kit 小鼠淋巴细胞趋化因子(Lptn/LTN/XCL1)ELISA试剂盒 规格: 96T/48TMouse Lysozyme,LZM ELISA Kit 小鼠溶菌酶(LZM)ELISA试剂盒 规格: 96T/48TMouse Macrophage Colony-Stimulating Factor,M-CSF ELISA Kit 小鼠巨噬细胞集落刺激因子(M-CSF)ELISA试剂盒 规格: 96T/48TMouse Macrophage Inflammatory Protein 1β,MIP-1β ELISA Kit 小鼠巨噬细胞炎性蛋白1β(MIP-1β/CCL4)ELISA试剂盒 规格: 96T/48TMouse Macrophage Inflammatory Protein 1δ,MIP-1δ ELISA Kit 小鼠巨噬细胞炎性蛋白1δ(MIP-1δ/CCL15)ELISA试剂盒 规格: 96T/48T
  • TL2350 快速测定植物油中磷脂含量
    TL2350 快速测定植物油中磷脂含量哈希公司 4 days ago背景介绍植物油中的磷脂含量,是植物油生产中的重要质控指标。在加工工艺中,磷脂的存在会增加脱酸环节中中性油的损失以及脱色白土的用量,同时还会导致加氢催化剂的中毒。在油品储藏环节,磷脂会使油脂反色,同时也会导致大豆油等油品的回味。因此,磷脂作为油品加工工艺中的重要质控指标,一直受到关注。油品的磷脂测定一般采用钼蓝比色法(GB/T 5537-2008),该方法将油品灰化加酸预处理后用分光光度计测定,经典的钼蓝比色法虽然可以准确的测定油品磷含量,但却存在耗时过长,分析效率低的缺点。近年来,中储粮某下属油脂加工企业,开始采用 TL2350 浊度仪用于油品磷脂含量的快速检测,该方法能基本满足油品行业磷脂检测的内部质控要求。应用情况主要仪器及试剂:TL2350,浊度样品瓶(2084900),无磷一级精炼油,已知磷含量油脂,分析纯丙酮。用户采用 TL2350 浊度仪,以不含磷脂的一级精炼植物油为溶剂,将已知磷含量的油样配置为浓度为 50、100、150、200、250mg/kg 的标准油样,用 TL2350 测定标准系列的浊度值并记录和绘制标准曲线,计算回归方程。在大豆油磷脂含量<300mg/kg 时,浊度法测定磷脂含量可获得较良好的重复性,能满足压榨车间磷脂控制的日常监测需求,单个样品的测试时间可缩短至 10min。总结浊度法是一种行之有效的油品磷脂快速测试方法,传统的 GB/T5537 -2008 中单个样品的分析时间至少为 4 小时,而浊度法仅为 10min。该方法适用于磷脂含量小于 300mg/kg 的大豆毛油检测,能满足绝大部分大豆油的生产质控需要。但当油脂类型改变时需单独摸索浊度与磷脂的相关条件。方法的标准曲线需要定期校准,建议校准周期为一周。浊度法与国标法的检测数据差异在工艺许可的范围内,只要定时调准曲线,既可满足日常质控要求。浊度法比较适用于工厂内部的检化验室使用,可及时提供数据,服务压榨车间生产。END哈希——水质分析解决方案提供商,我们致力于为用户提供高精度的水质检测仪器和专家级的服务,以世界水质守护者作为使命,服务于全球各地用户。如您想要进一步了解产品或需要免费解决方案,请通过【阅读原文】与我们联系,通过哈希官微留下您的需求就有机会赢取便携乐扣弹跳杯哦!
  • 外泌体分泌动力学受温度控制
    单分子荧光成像:外泌体分泌动力学受温度控制荧光显微镜的出现,让细胞器的观察成为可能,而如果要观察到更细致的目标,则需要做单分子荧光成像,今天我们就来分享一个今年用TIRF全内反射荧光显微镜做的单分子荧光成像研究:外泌体分泌动力学受温度控制。 为什么使用TIRF全内反射荧光显微镜全内反射荧光显微镜MF53-TIRFTIRF全内反射荧光显微镜是利用光线全反射后形成衰逝波特性,来实现薄区域荧光观察的光学仪器,这种显微镜相比常规荧光显微镜(宽场荧光),背景荧光显著更低,可以实现信噪比更高、细节更丰富的荧光成像,尤其适合应用于细胞膜物质的动态观察。衰逝波①衰逝波是一种光学现象,当激发光以特定角度入射时,会发生全反射现象,所有激发光会被反射,靠近反射面的样品面则会形成一个深度仅几百纳米,光强呈指数衰减的激发光,称为衰逝波。普通荧光成像与TIRF成像对比① 利用衰逝波,TIRF全内反射荧光显微镜可以将激发范围控制在样品面极薄的区域,从而避免了传统荧光显微镜焦面以外的荧光激发形成的模糊光晕,大大提升了信噪比和分辨率。由于衰逝波光强呈指数衰减,因此最合适的应用是细胞膜相关研究。 外泌体分泌动力学受温度控制我们来看一个论文案例,从中了解TIRF全内反射荧光显微镜的应用优势:超高分辨率、动态观察。使用CD63-pHluorin可视化pH敏感蛋白 使用CD63-pHluorin可视化外泌体与质膜融合过程。TIRF全内反射荧光显微镜可以实现单分子动态跟踪观察,为此需要配备高帧率、高灵敏度的显微镜相机,比如MSH12之类背照式sCMOS科学相机。按成像分析,区分外泌体不同活动方式② 单分子荧光成像研究通常涉及数据统计分析等内容,往往需要一定的算法设计来自动化分析和量化处理,比如本论文使用的就是MATLAB脚本,在github可以下载。成像分析可靠性验证,排除溶酶体或囊泡转运② 通过成像分析CD63-pHluorin可视化外泌体与质膜融合,排除溶酶体或囊泡转运。外泌体与质膜融合有多种动力学模式② 算法分析,得出外泌体与质膜融合有多种动力学模式。 外泌体与质膜融合事件受温度控制② 对不同动力学模式进行分析,显示外泌体与质膜融合事件受温度控制。 模型验证② 利用模型验证解释实验观察到的动力学。进一步的动力学分析② 外泌体与质膜融合前先有对接。 结尾总体而言,全内反射荧光显微镜MF53-TIRF是细胞表面物质动态观察的理想仪器,如固定在盖玻片或细胞膜表面上的分子等,在TIRF基础上明美还有dSTORM超分辨成像方案,有兴趣的老师可以跟我们联系。 如您对这篇论文感兴趣,或者有兴趣获取论文使用的MATLAB自动分析处理脚本,请参考应用来源部分信息②。 引用来源:①Fish KN. Total Internal Reflection Fluorescence (TIRF) Microscopy. Curr Protoc. 2022 Aug 2(8):e517. doi: 10.1002/cpz1.517. PMID: 35972209 PMCID: PMC9522316. ②Mahmood A, et al. Exosome secretion kinetics are controlled by temperature. Biophys J. 2023 Apr 4 122(7):1301-1314. doi: 10.1016/j.bpj.2023.02.025. Epub 2023 Feb 22. PMID: 36814381 PMCID: PMC10111348.https://www.mshot.com/article/1828.html
  • 美环境保护局即将展开内分泌干扰物质的化学测试
    近日,EPA(Environmental Protection Agency ,(美国)环境保护局)确立一份内分泌系统干扰物质的化学品名单,囊括134种物质。该清单包括已被安全饮用水法案(SDWA)确定为优先评估的物质及可能存在于饮用水中的一些化学物质,还包括部分农药的有效成分及一些在产品中使用的化学物质,如:溶剂,汽油,塑料,个人护理产品,杀虫剂和包括苯,高氯酸盐,聚氨酯,乙烯乙二醇,红霉素等在内的药品。   公众评论和审查之后,EPA会对这些化学品的制造商发出测试要求,督促他们提交关于相应化学物质是否会干扰内分泌系统中雌激素,雄激素和甲状腺激素调控系统的数据。   2009年10月,EPA已针对首批67种农药化学品发布公告,要求相应公司提供这些化学品的内分泌干扰物筛选计划。2011年初,EPA将发布针对第二批化学物质即上述134种物质的相应要求。
  • 沃特世推出全新Oasis PRiME MCX小柱和样品板,可有效去除生物基质中的磷脂及其它干扰物质
    使用全新样品制备工作流程制备超洁净样品,实现稳定、准确的LC和LC-MS定量分析? 美国马萨诸塞州米尔福德市,2018年1月26日 - 沃特世公司正式推出Waters Oasis PRiME MCX小柱和96孔板,这款产品能够选择性地保留并浓缩碱性化合物,同时去除多达99%的磷脂,而且样品处理速度比传统混合模式固相萃取(SPE)产品提升了一倍。成功去除生物基质中含量最高的干扰物质—磷脂,将不仅有助于研究人员获取准确的信息,还能简化分析操作、提高方法的稳定性并延长仪器正常运行时间。 沃特世的全新Oasis PRiME MCX小柱和样品板,可有效去除生物基质中的磷脂及其它干扰杂质 沃特世公司化学品技术中心首席产品运营经理Kim Haynes表示:“尽管大家都知道样品净化具有减少基质效应、降低检出限等诸多优势,但由于没有时间去开发样品制备方法,许多研究人员会选择省去样品制备步骤。他们希望以尽可能少的步骤,更快地获得准确结果。为此,我们针对Oasis PRiME MCX开发了精简的三步和四步法方案,这些方案不仅能够稳定地、且可重现地制备更洁净的样品,而且相较于传统混合模式SPE速度更快。最终,研究人员可以借助这些优势提升定量结果的可靠性,从而更好地为临床试验、临床研究以及法医毒理学、食品或环境研究提供支持。” Oasis PRiME MCX是一款混合模式(反相和阳离子交换)吸附剂,在定量分析生物基质(如血清、血浆、全血或人类/动物组织,以及牛奶、肉类和鸡蛋等食品样品)中的目标物时,这款吸附剂能够轻松应对此类分析所固有的复杂性。此外,该产品无需活化和平衡即可使用的特点,为研究人员节省了大量的时间和精力。除了能够简化流程外,Oasis PRiME MCX还能制备更洁净的样品,减少了色谱柱堵塞、离子源污染等原因引起的离子抑制效应和仪器停机,从而为研究人员提供了高度一致的结果。另外,样品越洁净,意味着色谱柱的使用寿命就越长。 沃特世小柱和样品板采用经过优化的专利工艺生产,与正压萃取装置或负压真空萃取装置配合使用时,不仅能够大幅提升工作流程的重现性,还能缩短样品处理时间。此外,为进一步保障质量,每一批用于Oasis PRiME MCX小柱和样品板的吸附剂在质控时都使用通用四步磷脂去除方案进行了测试。 目前,沃特世已开始向全球供应Oasis PRiME MCX小柱和96孔板。Oasis PRiME MCX的推出,为处于市场领先地位的沃特世样品制备产品系列Oasis PRiME HLB、Ostro、Sep-Pak、Oasis HLB和Oasis Mixed Mode IEX又增添了新成员。 高品质样品制备成就高品质分析结果 过去十年来,分析仪器技术飞速发展,分析检测限(LOD)已创历史最低记录。LC-MS仪器检测和定量痕量样品成分的能力较之以往也有了显著提升。即便如此,某些样品成分可能仍然无法被检出,而未检出的样品成分自然也就无法进行定性和定量。因此,在当前要想获取高质量的LC-MS数据,样品制备过程比以往任何时候都更加重要。 去除样品中的干扰组分(例如血液或血浆样品中的脂质和色素)是提高质谱仪信号强度和灵敏度的关键,因为这些组分会干扰样品中目标分析物的信号响应。此外,实践证明,去除样品中的基质干扰物质也是延长色谱柱和质谱仪使用寿命的可靠方法。 关于沃特世公司 沃特世公司(纽约证券交易所代码:WAT)是全球领先的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球31个国家和地区直接运营,下设15个生产基地,拥有约7,000名员工,旗下产品销往100多个国家和地区。
  • 创新进展|单进军、谢彤团队构建模拟谱库快速表征一类特殊复杂脂质——心磷脂及其氧化产物
    创新进展近日,南京中医药大学单进军、谢彤团队在Analytica Chimica Acta(分析化学一区,IF: 6.558)正式发表了题为In-silico-library-based method enables rapid and comprehensive annotation of cardiolipins and cardiolipin oxidation products using high resolution tandem mass spectrometer的研究性论文。该文章基于Orbitrap高分辨质谱平台,创新性的通过计算机模拟方式,建立了心磷脂及其氧化产物的质谱谱库。凭借高分辨质谱平台的超高分辨率、亚ppm级质量精度,及Stepped NCE 高能碎裂模式(HCD)获得的丰富二级碎片信息,使得该方法获得模拟谱图与真实检测样本的谱图匹配一致性高。该创新分析方法的建立,对于解决以心磷脂及其氧化物为代表的、具有结构多样性及低丰度分析挑战的代谢物/脂质,进而研究其在疾病发生发展过程中的生物学效应,都有着广泛而深远的参考与借鉴价值,为探索全新的疾病生物标志物带来可能!(点击查看大图)文章赏析心磷脂(CL)是含有3-4个脂肪酰基侧链的独特磷脂。在真核生物中,它主要分布在线粒体内膜,占线粒体内膜磷脂总量的10-25%。心磷脂独特的锥状结构能稳定线粒体膜结构,参与维持线粒体正常的嵴形态。大量文献报道心磷脂参与细胞色素c、电子呼吸链蛋白的正常功能。异常的心磷脂含量、结构和心磷脂氧化会促使细胞凋亡并触发免疫炎症反应。在非靶向脂质组学研究中,发现并快速注释心磷脂及其氧化产物有助于探索心磷脂代谢在疾病发生发展过程中的生物学效应。然而,由于心磷脂及其氧化物的结构多样性及低丰度特征,给其分析鉴定带来极大的挑战。为了解决这一问题,团队在色谱和质谱条件优化的基础上,基于计算机模拟方法建立了心磷脂及其氧化产物的质谱谱库。谱库中涵盖了31578个单溶血心磷脂、52160个心磷脂以及42180个氧化型心磷脂的质谱谱图(谱图数据基于Q-Exactive-MS/MS质谱方法裂解模拟)。该模拟谱库具有较好的兼容性,且谱库中的模拟谱图与真实检测样本的谱图匹配度好,匹配度得分值高,并成功地运用于线粒体非靶向心磷脂表征以及人工氧化心磷脂的研究中。(点击查看大图)该研究列出了样品与模拟谱库的匹配结果,并附上了谱图相似性评分(所有模拟谱库的二级碎片和丰度均来源于标准品模拟)。在优化的色谱条件下,模拟谱库涵盖了三个常规前体离子[M-2H]2-、[M-H]-和[M+NH4]+的二级谱图,扩充了质谱谱库中心磷脂特异性谱图的数量。三种前体离子的模拟谱库谱图相似性评分较高,均表现出较好的匹配度,体现了该方法的优势。(点击查看大图)运用此方法,该研究对心、肝、脾、肺、肾、大脑、小脑、回肠、结肠、十二指肠以及Hep2、A549两种细胞系中的心磷脂进行了定性定量分析。为了评估匹配结果、验证该数据库的可靠性,对不同谱图相似性得分段的谱图数进行统计,结果显示谱图得分值均较高。在10种动物组织线粒体和细胞系样品中,一共鉴定出392种心磷脂。通过新建的计算机模拟心磷脂谱库,能够很好的区分样本中单溶血心磷脂和心磷脂,实现对复杂生物样本中心磷脂的准确测量。(点击查看大图)该研究还建立了心磷脂氧化产物的模拟谱库,并成功对小鼠心脏和肝脏线粒体中的氧化型心磷脂进行了归属。比较了两种人工氧化方式氧化产物的偏好,发现Fenton反应易于生成+O或者+2O的氧化产物,而过氧化叔丁醇的氧化反应倾向于产生+3O或者+4O的氧化产物。通过对氧化碎片个数的统计,发现占比最多的氧化碎片是C18-OH和C18-OOH,提示含有十八个碳的脂肪酰基更易被氧化。有趣的是,在过氧化叔丁醇的反应中,肝脏线粒体中的心磷脂似乎表现出更高的氧化产率,虽然没有进一步的验证,但是推测这种氧化效率的差异可能源于肝脏和心脏不同的代谢能力。团队介绍单进军,博士,教授南京中医药大学中医儿科学研究所副所长,江苏省儿童呼吸疾病(中医药)重点实验室副主任,南京中医药大学——UC Davis医学代谢组学联合实验室中方负责人。江苏省“333高层次人才培养工程”中青年学术技术带头人,江苏省“六大人才高峰”高层次人才选拔培养对象,NIH West Coast Metabolomics Center访问学者。研究方向:代谢组学与中医药;复杂疾病代谢调控机理及中药防治作用。先后主持国家自然科学基金、江苏省自然科学基金、江苏省“333”工程科研项目和江苏省高校自然科学研究重大项目等课题;以第yi或(共同)通讯作者在Gut Microbes,Pharmacol Res,Anal Chim Acta,Phytomedicine和药学学报等国内外期刊发表学术论文60余篇;获国家发明专利3项;获教育部科学技术进步二等奖、世界中联中医药国际贡献奖-科技进步二等奖和江苏中医药科学技术奖一、二等奖。现为世界中联儿童医药健康产品产业分会常务理事兼副秘书长、世界中联儿科专业委员会常务理事、中华中医药学会中药实验药理分会青年委员, 中国中医药信息研究会儿科分会理事、中国研究型医院学会儿科学专业委员会青年委员,《世界科学技术-中医药现代化》杂志中青年编委。谢彤,博士,副教授研究方向:运用代谢组学/脂质组学技术研究(1)呼吸疾病发病机制及中药干预作用;(2)中药复杂组分的体内外物质基础研究;(3)药物安全性。如需合作转载本文,请文末留言。
  • 相聚池州,中国分析测试协会标记免疫分析专业委员会2021年学术峰会隆重召开
    仪器信息网讯 4月16日,中国分析测试协会标记免疫分析专业委员会2021年学术峰会在安徽池州隆重召开。学术峰会旨在促进标记免疫领域人才成长和科技成果转化,从而推动我国标记免疫分析产业快速健康发展。峰会首日,来自上海透景、深圳爱康、苏州翊曼、深圳普门、中元汇吉5家国内IVD企业发布了最新产品技术。第二天,峰会围绕检验医学基础研究转化、分析性能评估、免疫性疾病、流式细胞分析、慢病诊断新技术、肿瘤、感染、生殖检测等主题奉献了诸多精彩的大会主旨报告,吸引了全国近四百位来自医院、体外诊断企业专家、学者参会。中国分析测试协会标记免疫分析专业委员会2021年学术峰会现场会议伊始首先进行了中国分析测试协会标记免疫分析专业委员会第一次换届大会,由中国计量科学研究院化学计量与分析科学研究所所长李红梅和军事医学科学院生物工程研究所研究员叶棋浓担当主持。中国计量科学研究院化学计量与分析科学研究所所长李红梅和军事医学科学院生物工程研究所叶棋浓主持池州市人民医院党委委员工会主席王细宏、中国分析测试协会常务副秘书长张渝英先后致贺词,预祝大会圆满成功。池州市人民医院党委委员工会主席 王细宏中国分析测试协会常务副秘书长 张渝英中国分析测试协会组织部主任尹碧桃宣读换届文件,宣读换届、选举事项,现场进行差额选举,从候选人中选举产生主任委员1人、秘书长1人、副主任委员14人。中国分析测试协会组织部主任 尹碧桃投票结果公布,解放军总医院研究员颜光涛连任第二届中国分析测试协会标记免疫分析专业委员会主任委员,北京地坛医院检验科主任王雅杰当选专委会秘书长,北京天坛医院实验诊断中心主任张国军等14位代表当选专委会副主任委员。第二届选举换届委员合影中国分析测试协会标记免疫分析专业委员会主任委员颜光涛致辞随后,大会进入主旨报告环节,8位报告嘉宾分别作精彩大会主旨报告。中国医学科学院肿瘤医院检验科主任崔巍重点介绍了多组学整合分析方法。多组学研究技术在早期恶性肿瘤的发现中起到重要作用,为基于液体活检技术恶性肿瘤的筛查和监测提供了更多的检测靶标。报告从基因组学、转录组学, 蛋白质组学和代谢组学切入,多组学整合分析方法的应用研究推动肿瘤检测技术从单参数模型向多参数系统模型的转变,并有望发现有价值的新的肿瘤生物标志物。中国医学科学院肿瘤医院检验科主任 崔巍报告题目:《基于多组学的液体活检技术用于肿瘤检测的应用前景》张国军主任在《浅谈医学检验学科发展的抓放管服?》的报告中分享了大医改背景下如何搭建学科发展平台。以天坛医院举例,分别从抓、放、管、服四大要素分享学科发展方法。实现学科管理之放,给年轻人更多发挥的空间。实现学科管理之管,管安全、管文化、管教育、管落实。实现学科管理之服,做到搭平台、创机会的服务,以集体利益为先的服从,让人发自内心的信服。北京天坛医院实验诊断中心主任 张国军报告题目:《浅谈医学检验学科发展的抓放管服?》在来势汹汹的新冠肺炎疫情中, 临床检测者作为疫情防控的“吹哨人”,在疫情防控中发挥重要作用。北京地坛医院检验科主任王雅杰在《新冠疫情对临床检验能力建设的导引作用探讨》的报告中重点以新冠肺炎为例,探讨新发突发传染病临床实验室检测需求,并讨论了新冠疫情对于检验医学发展的导引作用。北京地坛医院检验科主任 王雅杰报告题目:《新冠疫情对临床检验能力建设的导引作用探讨》肝素结合蛋白(HBP)作为一种急性时相蛋白,是评估脓毒症患者疾病严重程度的有效生物标志物,在脓毒性休克患者的早期诊断和疗效监测中更为重要。北京同仁医院检验科副主任刘向祎讲述了HBP在细菌感染标志物及感染严重程度的评估、脓毒症及器官功能障碍相关(预测、诊断、预后评估)、指导药物治疗中的临床应用。北京同仁医院检验科副主任 刘向祎报告题目: 《新的感染指标—肝素结合蛋白的临床应用》分子分类是未来肿瘤治疗的发展方向,上海市口腔医学研究生所长陈万涛从精准医疗背景下分子分类研究意义、头颈鳞癌分子分类现状、口腔鳞癌分子分类研究现状、组织样本和生物信息库等方面讲述了腔癌分子分类技术的研究进展,并对分类技术的未来进行了展望。上海市口腔医学研究生所长 陈万涛报告题目:《腔癌分子分类技术研究进展和展望》在临床检验中,阿尔兹海默症(AD)早期诊断相关标志物的研究非常有意义。北京医院主任技师赵昕在分享中探讨了AD患者血清中脂蛋白相关磷脂酶 A2(LpPLA2)、高敏 C-反应蛋白(hs-CRP)、补体成分 C1q(C1q)和血清同型半胱氨酸(HCY)的表达水平,为 AD 患者的实验室检测指标提供依据。北京医院主任技师 赵昕报告题目: 《阿尔茨海默病患者血清脂蛋白相关磷脂酶 A2、高敏 C-反应蛋白、补体成分 C1q 和血清同型半胱氨酸表达水平的 对照研究》人类生存史就是与微生物斗争的历史,近年来,多种新发传染病的流行,特别是新冠流行,让大家更加关注人类感染病原体后的差异表现,这种差异的产生与个体的免疫基础息息相关已经成为共识,如何评价免疫力成了个体防疫的重要基础。解放军总医院第三医学中心检验科主任杨晓莉一直致力于推广淋巴细胞技术在临床的应用,经过十余年的临床推广,率先在器官移植患者术后管理中进行了实线应用,科学指导了患者在免疫抑制药物管理。她在报告中分享了淋巴细胞技术经验,并号召同仁共同推广淋巴细胞亚群绝对计数在临床中的应用。解放军总医院第三医学中心检验科主任 杨晓莉报告题目:《淋巴细胞亚群绝对计数的临床应用》在监测人体健康方面,微芯片和纳米材料检测拥有高通量、低消耗、便携化等好处。蒋兴宇教授课题组唐立雪博士针对这一方面进行讲解,把液态金属和用弹性高分子的微芯片整合成柔性电子电路后,这些柔性电子电路可以在人体表面以及脏器表面贴附并发挥长期检测的的作用。例如,使用液态金属 - 弹性高分子微流控可以制备全柔性血氧传感器、全柔性的汗液检测装置以及薄到和纹身一样的检测器件。还可以用这些新材料制备具有长期检测血液中的生理与生化指标的电子血管。南方科技大学生物医学工程系 唐立雪博士报告题目:《人体内外表面的原位检测》中国分析测试协会标记免疫分析专业委员会2021年学术峰会全体委员合影留念本次学术峰会精彩继续,敬请关注仪器信息网后续报道。
  • 解读《关于β-1,3/α-1,3-葡聚糖等6种“三新食品”的公告》
    一、新食品原料(一)β-1,3/α-1,3-葡聚糖β-1,3/α-1,3-葡聚糖是以蔗糖为主要原料,经普沙根瘤菌(Rhizobium pusense)发酵、醇沉、过滤、分离、干燥、粉碎等工艺制成。β-1,3/α-1,3-葡聚糖是由7个β-1,3-D-葡萄糖和2个α-1,3-葡萄糖相互连接而成的9个D-葡萄糖为重复单元构成的直链多糖。本产品中β-1,3/α-1,3-葡聚糖含量为≥90 g/100g。由酵母、燕麦、大麦等来源的β-葡聚糖目前作为食品原料或食品添加剂已在美国、澳大利亚、日本等多个国家被批准使用。我国于2006年批准以β-1,3-葡聚糖为主要成分的可得然胶作为食品添加剂,2010年和2014年分别批准酵母β-葡聚糖和燕麦β-葡聚糖为新食品原料。β-1,3/α-1,3-葡聚糖的推荐食用量为≤3克/天。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,审评机构依照法定程序,组织专家对β-1,3/α-1,3-葡聚糖的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于β-1,3/α-1,3-葡聚糖在婴幼儿、孕妇及哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。(二)二氢槲皮素二氢槲皮素(Dihydroquercetin)是多种植物中存在的一种二氢黄酮醇类化合物。本产品是以人工种植的长白落叶松的根部为原料,经去皮、撕裂处理,进行提取、浓缩、醇沉、上清液浓缩、萃取、再浓缩、结晶、离心分离、冷冻真空干燥、粉碎过筛等工艺制成。欧盟已批准落叶松来源的二氢槲皮素为新食品原料,俄罗斯已批准二氢槲皮素作为食品原料和食品添加剂使用。本产品推荐食用量为≤100毫克/天(即含量为90%的二氢槲皮素推荐食用量为100毫克/天,超过该含量的按照实际含量折算)。使用范围和最大使用量:饮料(20mg/L),发酵乳和风味发酵乳(20mg/kg),可可制品、巧克力和巧克力制品(70mg/kg)。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对二氢槲皮素的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。二氢槲皮素在婴幼儿、儿童(14岁及以下)、孕妇、哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。(三)鼠李糖乳杆菌MP108鼠李糖乳杆菌MP108(Lactobacillus rhamnosus MP108)从健康幼儿肠道分离得到,菌粉性状为白色至微棕色粉末。含有该菌株的产品已在澳大利亚生产并上市,可用于婴幼儿食品。国内外开展的多项婴幼儿临床研究证明,该菌株具有较好的食用安全性。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对鼠李糖乳杆菌MP108的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该菌株原料的食品安全指标应符合我国相关标准。(四)拟微球藻(Nannochloropsis gaditana)拟微球藻(Nannochloropsis gaditana)属于单胞藻科拟微球藻属,藻体微小,通常为绿色或黄绿色。含有该藻的食品在美国、智利、加拿大等国家有销售。该藻含有蛋白质、二十碳五烯酸(EPA)等营养成分,其推荐食用量为≤2克/天(以干品计)。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对拟微球藻(Nannochloropsis gaditana)的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于拟微球藻(Nannochloropsis gaditana)在婴幼儿、孕妇及哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照我国现行食品安全国家标准中食用藻类的规定执行。二、食品添加剂新品种(一)蛋白酶1.背景资料。枯草芽孢杆菌(Bacillus subtilis)来源的蛋白酶申请作为食品工业用酶制剂新品种。法国食品安全局、美国食品药品管理局、丹麦兽医和食品管理局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,水解蛋白。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB1886.174)。(二)磷酸肌醇磷脂酶C1.背景资料。荧光假单胞菌(Pseudomonas fluorescens)来源的磷酸肌醇磷脂酶C申请作为食品工业用酶制剂新品种。美国食品药品管理局和巴西国家卫生监督局允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,用于食用植物油脂的脱胶。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB1886.174)。
  • 检验标准化与量值溯源促进精准医学诊断的实现——访中国人民解放军总医院生化科主任颜光涛
    p    span style=" font-family: 楷体,楷体_GB2312, SimKai " 近年来,随着人们对医疗服务的需求不断提升,“精准诊断”成为临床医生和科学家特别关注的议题。一方面,国家对“精准医疗”十分重视,所谓 “精准医疗”,即精准诊断和精准治疗,可以说精准诊断是实现精准医疗的前提 另一方面,我国体外诊断(in vitro diagnostic products,IVD)市场发展迅速,IVD行业逐渐得到资本市场的重视,IVD技术的进步势必会推进精准诊断时代的早日到来。在这样的大背景下,临床诊断领域受到了前所未有的重视。 /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   近日,仪器信息网就精准诊断、国内IVD行业发展、检验医学标准化等热点话题采访了中国分析测试协会标记免疫分析专业委员会主任/中国人民解放军总医院生化科主任颜光涛研究员,旨在帮助广大临床工作者深入了解我国临床诊断技术发展和应用情况。 /span /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/b326d877-d0fd-4598-9c95-58e19bfa878c.jpg" / /p p style=" text-align: center " strong 中国分析测试协会标记免疫分析专业委员会主任/解放军总医院生化科主任 颜光涛 /strong /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 精准诊断指导个体化治疗,获得最佳治疗效果和减少副作用 /strong /span /p p   “精准医疗”是一个建立在了解个体基因、环境以及生活方式的基础上的新兴疾病治疗和预防方法。颜光涛解释到,“精准医疗的重点在精准,就比如打靶子,精准医疗的目标就是靠近疾病的靶心,提高准确率,降低副反应。对肿瘤患者来说,比经受多重化疗‘瞎子摸象’般地诊疗方式更能燃起对生命的信心,通过精准诊断获得个体化治疗方案,能使患者少受抗癌之苦,甚至能为患者赢得更多生存时间和治愈机会。” /p p   通过精准诊断,可提升早期肿瘤患者疾病确诊率,获得对病变性质的精准判断,明确良恶性 对于中晚期癌症患者而言,对突变基因进行检测,可以确定治疗靶点。医生通过检测结果,为患者量身设计个体化治疗方案,使患者获得最大的治疗效果和最小的副作用,同时,也能节约医疗资源。 /p p   对遗传性疾病的早期诊断和干预,是精准诊断的另一个重要作用。颜光涛讲到,“疾病的预防其实比疾病的治疗更能造福人类,精准诊断技术的长足进步将使某些遗传相关性疾病得到很好的预防。比如:耳聋父母的基因检测能很大程度上降低耳聋患儿的出生率,BRCA1/2基因的检测能评估乳腺癌患者的直系女性亲属的乳腺癌发病可能性等等。” /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 全球范围内IVD领域是继临床治疗设备和药物之后技术进步最集中区域 /strong /span /p p   随着全球经济的发展、人们保健意识的提高以及全球多数国家医疗保障政策的完善,全球IVD行业持续发展。2016 年,全球IVD行业市场规模约为617亿美元,预测未来几年内全球IVD行业将以约5%的年均复合增长率增长,并在2020 年达到747亿美元。颜光涛指出,“我国体外诊断行业处于行业生命周期中的成长阶段,人口老龄化、城镇化、人们健康意识的增强、政策的支持以及诊断技术的进步等因素都推动着行业的快速发展。” /p p   海外欧美等发达经济体国家的体外诊断行业经过多年的发展,在技术、产品覆盖人群、人均消费水平等方面都大幅领先于我国。因而,通过对以欧美为主导的全球体外诊断行业的发展现状进行分析,无疑对理解我国体外诊断行业的未来发展趋势具有重要的参考意义。颜光涛介绍,“由于国外医疗制度较为完善,分级诊疗做得好,使得国外医疗检测机构分布范围广、区域覆盖面大,对先进的诊断产品和技术需求大,因此国外IVD产业发展包括市场、产品、技术都相对成熟。而目前我们国内问诊人群相对比较集中,人们还是倾向于去大医院看病。” /p p   据了解,在我国国产IVD产品的市场份额仅占10%-15%,近90%的市场份额为罗氏、雅培等国外几家跨国公司所占有。对于这一现状,颜光涛给出了自己的看法,“我国IVD产业起步晚,市场分散,IVD企业少说上千家,整体技术水平和国外还有明显差距。而对医院和医生来说,身上所肩负的责任使得医生必须对产品质量,包括产品的稳定性、连续性和售后服务都有严格要求。在这种情况下,国产IVD企业目前这种处境也具有一定合理性。”但他相信,“随着一批国内领先的体外诊断企业在化学发光免疫诊断领域的不断创新和突破,在医改的大环境及政策推动下,国产化学发光产品将率先在城市三甲医院层面实现对进口产品的替代。” /p p   作为一个多学科交叉、知识密集型的产业,技术进步始终是国内外IVD行业发展的重要驱动力。颜光涛讲到,“全球范围内IVD是在临床设备和治疗药物之后非常大的技术进步集中区域。”同时,我国IVD 行业细分领域众多,竞争激烈,参照海外经验,预计未来国内IVD行业市场集中度将大幅提升,积极实施外延并购的IVD细分龙头将由此受益。 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 化学发光免疫分析成为临床免疫理想的检测技术 /span /strong /p p   目前临床开展的免疫检测技术有免疫荧光技术、放射免疫检测、免疫比浊技术、酶联免疫吸附试验(ELISA)、免疫金胶体技术、化学发光免疫分析技术、均相免疫分析技术。另处还有临床PCR分子诊断、液态活检技术等也有广泛的临床应用。颜主任对这些主流技术逐一作了讲解。 /p p   免疫荧光技术是利用荧光素标记的抗体(或抗原)检测组织、细胞或血清中的相应抗原(或抗体)的方法。由于荧光抗体具有安全、灵敏的特点,因此已广泛应用在免疫荧光检测和流式细胞计数领域。荧光检测技术的发展,使得免疫荧光技术在传染病诊断上有广泛的用途,如在细菌、病毒、螺旋体感染的疾病,检查IgM抗体,作为近期接触抗原的标志。利用单克隆荧光直接标记抗体鉴定淋巴细胞的亚类。通过流式细胞仪,针对细胞表面不同抗原,可以同时使用多种不同的荧光抗体,对同一细胞进行多标记染色。 /p p   放射免疫检测技术是灵敏度较高的检测技术,利用放射性同素标记抗原(或抗体),与相应抗体(或抗原)结合后,通过测定抗原抗体结合物的放射性检测结果,具有pg 级的灵敏度,且利用反复曝光的方法可对痕量物质进行定量检测。但放射性同位素对人体的损伤也限制了该方法的使用。 /p p   酶联免疫检测是目前应用最广泛的免疫检测方法。该方法是将二抗标记上酶,抗原抗体反应的特异性与酶催化底物的作用结合起来,根据酶作用底物后的显色颜色变化来判断试验结果,其敏感度可达ng 水平。常见用于标记的酶有辣根过氧化物酶(HRP)、碱性磷酸酶(AP)等。由于酶联免疫法无需特殊的仪器,检测简单,因此被广泛应用于疾病检测。常用的方法有间接法、夹心法以及BAS-ELISA。 /p p   胶体金技术经过30 多年的发展到现在已日趋成熟,该方法是将二抗标记上胶体金颗粒,利用抗原抗体间的特异性反应,最终将胶体金标记的二抗吸附于渗滤膜上,此方法简单,快速,广泛应用于临床筛查。 /p p   化学发光免疫分析是将具有高灵敏度的化学发光测定技术与高特异性的免疫反应相结合,用于各种抗原、半抗原、抗体、激素、酶、脂肪酸、维生素和药物等的检测分析技术,是继放免分析、酶免分析、荧光免疫分析和时间分辨荧光免疫分析之后发展起来的一项最新免疫测定技术。化学放光免疫分析仪继承了放射免疫的所有优点,同时克服了放射免疫和酶联免疫各自的缺点,是临床免疫检测目前较理想的方法。它在很大程度上巳取代放射免疫和酶联免疫成为临床免疫检测常规技术。 /p p   标本中的抗原与试剂抗体反应后,形成结合的抗原抗体复合物和剩余的游离抗体 测定两者之一即可计算出标本中抗原的含量。在一般情况下需将结合的(B)和游离的(F)分离后再进行测定,此为异相。在特殊情况下,B和F具有不同的特性,不必分离即可进行测定,此为均相。均相酶免疫测定包括酶扩大免疫测定技术和克隆酶供体免疫测定两种。 /p p   应用分子生物学方法检测患者体内遗传物质的结构或表达水平的变化而做出诊断的技术,称为分子诊断。分子诊断的材料包括DNA、RNA和蛋白质。分子诊断是当代医学发展的重要前沿领域之一,其核心技术是基因诊断,常规技术包括: (1)聚合酶链式反应(PCR) (2)DNA测序(DNA sequencing) (3)荧光原位杂交技术(FISH) (4)DNA印迹技术( DNA blotting ) (5)单核苷酸多态性(SNP) (6)连接酶链反应(LCR) (7)基因芯片技术(gene chip)。其中,PCR产品占据目前分子诊断的主要市场,基因芯片是分子诊断市场发展的主要趋势。PCR产品灵敏度高、特异性强、诊断窗口期短,可进行定性、定量检测,可广泛用于肝炎、性病、肺感染性疾病、优生优育、遗传病基因、肿瘤等,填补了早期免疫检测窗口期的检测空白,为早期诊断、早期治疗、安全用血提供了有效的帮助。基因芯片是分子生物学、微电子、计算机等多学科结合的结晶,综合了多种现代高精尖技术,被专家誉为诊断行业的终极产品。但其成本高、开发难度大,目前产品种类很少,只用于科研和药物筛选等用途。 /p p   随着对肿瘤研究的深入,科学家发现在癌症的诊断和治疗过程中组织活检技术有一定的局限性。主要表现为:肿瘤具有异质性,对于癌细胞已经发生转移的患者而言,仅仅取某个部位的肿瘤组织,并不能反映患者的整体情况,但对所有的肿瘤组织都取样检测又不切实际 某些患者自身的情况决定了他不适合做组织活检 受到手术的扰动之后,有些肿瘤有加速转移的风险 组织活检的滞后性对患者的治疗也是不利的。因此对于癌症的诊断和检测技术有更高的要求。 /p p   液体活检技术的出现,解决了上述的问题,也提前了癌症的诊断时间。这也是液体活检技术被《麻省理工大学科技评论》评选为“2015年十大突破技术”的原因。作为体外诊断的一个分支,液体活检就是通过血液或者尿液等对癌症等疾病做出诊断。其优势在于能通过非侵入性取样降低活检的危害,而且有效延长患者生存期,性价比高。目前液体活检的主要检测物包括检测血液中游离的循环肿瘤细胞(CTCs),循环肿瘤DNA(ctDNA)碎片,循环RNA(Circulating RNA)和外泌体(携带有细胞来源相关的多种蛋白质,脂类,DNA,RNA等)。其中,ctDNA,RNA和外泌体是肿瘤细胞自身分泌或死亡时释放的物质。 /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/8209c6c5-9c59-4818-9f46-f645eef7dae4.jpg" / /p p style=" text-align: center " strong 中国人民解放军总医院生化科——亚太地区最大的临床自动化生化免疫检测实验室 /strong /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 标准化与量值溯源是当今检验医学发展的重要议题 /span /strong /p p   标记免疫分析是当前生物检测中最为活跃、覆盖面最广、应用最为广泛的技术领域。是生命科学、基础与临床医学、农业与环境、食品与药物、进出口检疫检定、法医与刑侦等领域的关键性技术支撑平台。 /p p   标准化与量值溯源是当今检验医学发展的重要议题,涉及IVD行业的各相关领域,包含复杂的技术与管理问题。颜光涛作为中国分析测试协会标记免疫分析专业委员会主任委员,一直致力于推动检验医学标准化与量值溯源工作,他表示,“标准化涉及多个层面,例如设备仪器标准化、工作流程标准化、产品规格标准化、项目操作标准化、人员培训标准化等等。标准化是一个非常系统化的工程,要求政府、企业和用户共同推进,这也是个缓慢的过程,但是局面相当紧迫。中国分析测试协会标记免疫分析专业委员会为更好的推动我国检验医学标准化与量值溯源工作,充分发挥本协会专家资源的优势,通过建立基于我国医学参考实验室网络平台的标准化工作专家协作组(以单一项目为单位)和医学参考实验室协同研究组的协同研究方式,探索解决目前我国免疫类项目测量标准化的问题。首先以实现测量标准化为目的之uE3项目的协同研究为例,也希望各领域专家通力合作、相互沟通、相互理解、相互促进,在专委会这个公平、自由、开放的跨界交流平台上碰出火花,引领我国IVD行业大踏步迈向国际。” /p p   对于相关工作进展,颜光涛进一步做介绍,“参考体系建设是一项浩大的工程,国际的经验是做好一个项目的标准化大约需数年时间。在杨振华教授的带领下我国参考体系建设已取得阶段性研究成果,主要表现在生化酶学、小分子代谢物项目的参考体系已经建立并在这些项目检验结果标准化方面发挥重要作用。免疫项目多、作用明确,标准化问题突出,临床需求明确。蛋白类物质很重要,但标准化难度相当大。特别高兴杨主任提出以uE3项目为切入点,大家用心做一定可以实现标准化,临床作用也特别大。陈文祥主任充分肯定了标免专委会把标准化工作作为协会的核心工作之一进行重点支持的大局意识。通过‘建立多种有效的合作方式,对共同性质问题进行专题讨论’的协同研究机制,相信能与当前国家对精准医疗的大力推进相互促进。提高我国精准诊断的水平。” /p p   对于接下来的工作重心,颜光涛说,“下一步参考实验室的重点要从生化转向免疫项目,要总结参考实验室建设的经验,从uE3项目开始系统研究免疫项目标准化的路径。希望通过多个医学参考实验室 ‘协同研究’的方式研制我国的参考方法,通过医学参考实验室网络平台为参考物质赋值的方式,把我国的标准物质送进JCTLM列表。” /p p style=" text-align: right " 采访编辑:李博 /p p style=" text-indent: 2em " strong 颜光涛简历 /strong /p p   颜光涛,男,1960年9月生,四川宜宾人。1983年毕业于华西医科大学医学系本科,在空军医专微生物免疫教研室任助教,1989年获军医进修学院硕士学位,1992-1994年曾赴挪威特图姆瑟大学作访问学者。从1993年任解放军第304医院创伤研究室副研究员,已从事生化教学及科研工作20年,研究方向为标记免疫分析技术、创伤后多器官衰竭的发病机理及神经系统损伤保护。曾任解放军总医院基础医学研究所副所长、生化研究室主任,军医进修学院生化教研室主任。现任生化科主任,研究员、临床检验教研室主任,博士研究生导师。已发表SCI收录论著28篇,总影响因子81.7,单篇论文最高影响因子6.398,Medline收录论文27篇,在国内统计源及核心期刊发表论文210余篇。现任中国分析测试协会标记免疫分析专业委员会主任委员。获军队科技进步二等奖3项第一作者。1996年获解放军总医院首届杰出青年基金奖,获首届军医进修学院“优秀学员奖学金”,解放军总医院“爱岗敬业优秀青年十佳标兵”并荣立三等功1次,总后勤部“科技新星”,2002年获国务院政府特殊津贴,2008年总医院首届研究型人材,首届解放军总医院十佳教师。 /p p   研究方向: /p p   (1)标记免疫分析技术的建立和应用 /p p   已从事标记免疫分析技术的研发工作近20年,采用重组、多肽合成等方法制备Leptin、Orexin-A、Ghrelin抗原,免疫获取单克隆和多克隆抗体,在国内首先建立了高灵敏的Leptin、Orexin-A、Ghrelin等蛋白和多肽的分析方法,并在国内率先建立了人的系列炎症细胞因子(如TNF-α、IL-1β、IL-2、IL-4、IL-6、IL-8和IL-10)的放射免疫、酶联免疫分析技术。并且在科研及临床研究中广泛应用。 /p p   (2) 脏器损伤及炎症反应的信号转导机制 /p p   在脏器损伤及炎症反应的信号转到机制的研究方面,在全军处于领先地位。以第一完成人先后获得1997年、2003年及2010年军队科技进步二等奖。分别是1)“磷脂酶A2激活和脏器功能损伤的机理研究”,证书号:97-2-149-1 2)“磷脂酶A2和炎性细胞因子在全身性炎症反应中的作用机理研究”,证书号:2003-2-72-1 3)“瘦素对创伤感染后多脏器功能的保护及机制研究”,证书号:2010-2-43-1。 /p p   (3) 神经系统疾病(脑缺血再灌注及神经退行性疾病)的保护及信号机制 /p p   在神经系统疾病的保护及信号机制的研究方面,正在全力研究当中,已在国际刊物上发表SCI文章4篇,最高单篇影响因子5.398,主要涉及leptin对脑缺血再灌注损伤的保护,leptin与阿尔茨海默病、帕金森症及癫痫等神经退行性疾病的关系等方面,后续研究正在进行中。 /p
  • 获证上市|指真生物流式荧光发光免疫分析仪可实现多种分泌性蛋白多联检
    日程&报名:https://www.instrument.com.cn/webinar/meetings/icfcm2023/指真生物经过多年流式细胞仪研发生产积累,以及自主研发、自主生产的多重磁性荧光编码微球技术积累,突破掌握了全自动流式荧光发光免疫分析技术,并设计开发了领先的重磅新品:HighFlux系列全自动流式荧光发光免疫分析仪。此系列仪器近期在北京市药品监督管理局获批上市。该技术平台融合流式检测技术、激光分析技术、荧光编码微球技术、生物标记技术及数字信号转换技术为一体,在同一反应体系中可对多种指标进行快速、定量检测,从而实现多种分泌性蛋白多联检,满足临床诊断或基础科学研究需求。HighFlux系列全自动流式荧光发光免疫分析仪技术原理基于指真生物自主研发的荧光编码微球系统,通过微球内部两种不同浓度荧光染料的排列组合,形成数十种不同荧光编码微球。将不同种类单克隆抗体偶联至荧光编码微球表面,形成“抗体-荧光编码微球”复合物,再利用“夹心法”或“竞争法”检测样本中对应待测物的浓度,实现多联检。解决的问题与痛点在医院检验科,目前最常用免疫检验技术---化学发光法,但化学发光法也有技术瓶颈---单指标检测。在二甲以上医院,它的检测效率往往无法满足高速增长的临床检测量,让院方非常头疼。要想解决这个矛盾,常规方法一是增加检测仪器,但这对医院场地和科室成本提出了较高的要求;二是增加单机检测效率,如使用联检技术等。指真生物HighFlux系列产品同时解决了这两个问题:1、解决单指标检测,HighFlux实现多联检、高通量HighFlux产品最大检测通量为120样本/h,每管内可实现多指标联检。举例来说,12因子检测可以实现1440测试/h,单位时间大幅度提高了检测通量。2、HighFlux体积小巧,节省实验室空间,提高空间利用率HighFlux产品为桌面机,产品尺寸:70cm(W)×90cm(D)×65cm(H)。1台化学发光仪器空间可以摆放3台HighFlux仪器,极大节省实验室空间。配套检测菜单细胞因子系列产品包含临床上常用的细胞因子检测试剂,主要有IL-1β/IL-2/IL-4/IL-5/IL-6/IL-8/IL-10/IL-12p/IL-17/TNFα等。主要临床应用:辅助疾病诊断、感染早期诊断;评估感染严重程度、细胞因子风暴监测;免疫状态评估、用药检测及预后等。肿瘤标志物覆盖常见的肿瘤标志物检测试剂,包括肺癌测定试剂盒、神经元特异性烯醇化酶(NSE)、癌胚抗原(CEA)、角蛋白19片段(CYFRA21-1)、鳞状细胞癌抗原(SCCA)、胃泌素释放肽前体(ProGRP)。感染评价指标涵盖临床常用的四种感染评价指标,实现一机检测感染。主要检测试剂有SAA/CRP联检试剂(1:200)、C-反应蛋白(CRP)(1:200)、PCT/IL-6联检试剂、降钙素原(PCT)、白介素6(IL-6)。性激素检测八种性激素检测试剂,主要有促卵泡生成素(FSH)、促黄体生成素(LH)、抗缪勒管激素(AMH)、泌乳素(PRL)、β-人绒毛膜促性腺激素(β-HCG)、睾酮(T)、孕酮(P)、雌二醇(E2)。持续开发中......
  • 内分泌疾病干预新策略:用“光”调控甲状旁腺激素分泌,改善骨丢失
    研究团队创新性地将光遗传技术运用于甲状旁腺激素的分泌调控,并自主研发了钙响应自动光调控系统,能够实现对甲状旁腺激素分泌的精准节律性调节,进而干预继发性甲状旁腺功能亢进症引发的骨丢失症状。  甲状旁腺是人体的分泌腺之一,其主要功能为分泌甲状旁腺激素(PTH),调节机体内钙、磷的代谢。而甲状旁腺功能亢进症(以下简称甲旁亢)是甲状旁腺激素分泌异常引起的一类内分泌疾病,在临床上主要表现为高钙血症、情绪异常、骨质流失等症状。手术切除、药物治疗等传统的治疗手段效果有限,甚至存在术后瘤变等风险。  近日,中国科学院深圳先进技术研究院脑认知与脑疾病研究所、深港脑科学创新研究院杨帆团队的最新研究成果发表于《自然通讯》杂志。研究团队历时5年,创新性地将光遗传技术运用于甲状旁腺激素的分泌调控,并自主研发了钙响应自动光调控系统,能够实现对甲状旁腺激素分泌的精准节律性调节,进而干预继发性甲旁亢引发的骨丢失症状。  该研究拓展了光遗传技术在骨与内分泌研究领域的应用,并为推进光遗传技术的临床转化提供了科学依据。深圳先进院杨帆研究员、深圳市人民医院肾内科张欣洲主任为论文的共同通讯作者;深圳先进院副研究员刘运辉、博士后张路与深圳市人民医院胡楠博士为共同第一作者。  甲旁亢患者体内的血钙“监测器”失灵  甲状旁腺激素的分泌有着节律性的生理规律,当人体血钙浓度降低时,甲状旁腺激素分泌会升高,分别作用于骨、肾脏以及小肠等器官促进钙的释放与吸收,从而上调人体血钙的浓度;而当血钙浓度升高时,甲状旁腺激素的分泌则会降低,从而促使血钙回落至正常水平。在这个生理过程中,甲状旁腺细胞上的钙敏感受体起着“监测器”的作用,它能够感受血钙浓度,并实现对甲状旁腺激素的分泌调控。  然而,在继发性甲旁亢患者体内,这个“监测器”却无法发挥作用,使得甲状旁腺激素分泌异常,导致机体出现钙磷代谢紊乱和骨丢失等症状。“此前尚无实现甲旁腺激素精准节律性调节的理想方法。”杨帆表示。  “在临床治疗中,目前针对甲旁亢的治疗手段主要包括甲状旁腺手术切除,或对患者施以药物治疗。以手术切除为例,增生的甲状旁腺被切除后,尽管能减少甲状旁腺激素的分泌,但不能精准节律性地调控甲状旁腺激素分泌,患者的高钙血症和骨丢失症状也不能完全得到缓解。”张欣洲表示。  用光遗传技术实现甲状旁腺激素节律性调节  一直以来,杨帆团队致力于神经调控骨代谢的研究,此次研究团队与深圳市人民医院合作,在继发性甲旁亢患者来源的样本中发现,利用光遗传学手段能够精准地调控甲状旁腺激素的分泌。  “光遗传手段是一种光控技术,当我们通过病毒载体将光敏感蛋白‘运送’进甲状旁腺主细胞后,以光刺激的方式能够激活细胞内的分子通路,有效抑制甲状旁腺激素的合成与分泌,实现对甲状旁腺激素的精准调控。”刘运辉表示。  为研究光调控甲状旁腺激素分泌的生理意义,研究人员分别建立了低钙高磷饮食诱导的继发性甲旁亢大鼠模型和人源甲状旁腺组织移植的裸鼠模型。实验结果表明,光敏感蛋白可以在动物的甲状旁腺上进行表达,通过光调控可以有效抑制甲旁亢动物模型的甲状旁腺素分泌。研究人员进一步开发了钙响应自动光调控系统,该系统能够帮助甲状旁腺细胞自动响应细胞外的血钙浓度变化,进而实现对甲状旁腺素的生理性调控。  “更为重要的是,我们通过节律性地抑制甲状旁腺激素分泌,有效调节了骨重塑进程,促进骨的生成并抑制骨吸收;研究发现,利用光调控甲状旁腺组织后,小鼠松质骨的成骨细胞数量增加,破骨细胞数量下降。”杨帆说,利用光遗传技术实现甲状旁腺激素节律性调控,能够有效干预骨代谢,改善甲旁亢动物模型的骨丢失,为临床干预甲状旁腺激素分泌异常增高导致的骨丢失提供新思路、新方法。  一直以来,光遗传手段常被用于研究和解析大脑神经环路,拓展光遗传手段的临床应用是业内关注的重要方向。此次研究团队创新性地将光遗传技术用于研究调控甲状旁腺激素分泌,不仅在临床上拓展了光遗传技术的应用领域,更为研究临床疾病的治疗手段提供了新思路。  杨帆表示,研究团队将进一步与医院紧密合作,推动光遗传技术调控甲状旁腺激素的临床转化,为甲旁亢等相关疾病的治疗提供更切实的帮助。
  • 卫生部公布26种食品添加剂新品种
    卫生部6日公布了新批准的26种食品添加剂新品种,包括食品添加剂1种、营养强化剂2种、食品用酶制剂7种和食品用香料16种。   其中,食品添加剂为决明胶,营养强化剂为L-硒-甲基硒代半胱氨酸、低聚果糖,食品用酶制剂为磷脂酶C、谷氨酰胺酶、天门冬酰胺酶等7种,食品用香料为香厚壳桂皮油、葡萄籽提取物、甲酸松油酯等16种。   卫生部表示,本次公布食品添加剂新品种是按《食品安全法》规定的要求审查通过,在技术上确有必要和对健康无害,并公开征求了社会各界的意见,这些食品添加剂新品种可以用于食品生产经营活动。   卫生部将按照《食品安全法》的规定,完善食品添加剂新品种审批制度和食品添加剂标准 组织对全国打击违法添加非食用物质和滥用食品添加剂的专项整治行动中,行业协会梳理出的200多种传统工艺一直沿用但未经批准的添加物质进行审查,及时向社会公告审查结果 会同有关部门继续开展打击违法添加非食用物质和滥用食品添加剂整顿工作。
  • 白细胞介素- 1受体分泌及调节介绍
    白细胞介素- 1(interlenkin 1,1L-1)的间接作用,可使内毒素引起机体发热。本篇文章介绍IL-1的受体分泌及调节介绍。IL-1的受体有两种:IL-1RⅠ和IL-1R Ⅱ。三种IL-1都能与受体结合,IL-1Ra与受体结合后不引发信号转导效应,但可抑制IL-1α和IL-1β同受体结合。上述两种受体常常表达在同一细胞中,但不同的细胞仅优势表达某一种受体。IL-1RⅠ是相对分子质量为80000的糖蛋白,人的基因位于2号染色体长臂上。主要表达在内皮细胞、平滑肌细胞、T细胞,肝细胞、成纤维细胞、角质细胞和表皮树突状细胞等。IL-1RⅠ高度糖基化,阻止糖基化会降低其生物学活性。IL-1R Ⅰ的胞质内肽链较长,并参与信号转导,与Toll受体的胞质区显著同源,故称为Toll/白细胞介素同源区域(Toll /in-terleukin-1 homologous region,TIR),缺乏酪氨酸激酶的活性。人IL-1R Ⅰ mRNA约5kb,编码569个氨基酸残基,细胞外320个氨基酸残基构成3个免疫球蛋白样功能域,跨膜区有19个氨基酸残基,其余230个氨基酸残基在胞质内。IL-1受体辅助蛋白(interleukin-1 receptor accessory protein,IL-1RAcP)其胞外和胞质结构域与IL-1RⅠ具有同源性,IL-1与IL-1RⅠ结合亲和力较低,可使构象发生改变,并被IL-1RAcP识别,参与受体复合物的形成,能够增强其亲和力,使之发挥生物学效应。IL-1RⅡ主要表达在B细胞、单核细胞和中性粒细胞中。IL-1R Ⅱ的 mRNA约1803bp,编码386个氨基酸残基,是相对分子质量为68000的糖蛋白。该蛋白质含有5个糖基化位点,经过N-糖苷酶处理使糖链分解后,相对分子质量为55000。IL-1RⅡ细胞外的332个氨基酸残基构成3个免疫球蛋白样功能域,其胞内只有很短的29个氨基酸残基,没有信号转导功能。用抗IL-1RⅡ抗体不能阻止IL-1的信号转导,用抗IL-1RⅡ抗体能够有效地阻止IL-1的信号转导。IL-1RⅡ是一个诱骗分子,可为IL-1的自身负反馈。将IL-1RⅡ的细胞外部分与IL-1RⅠ的胞质内部分嵌合构建的嵌合受体能够与IL-1结合并能转导信、号效应。可溶性IL-1受体:健康人和某些病理组织液中可检查到IL-1R Ⅰ和 IL-1RⅡ的胞外结构部分为可溶的IL-1受体,但其具体的生物学作用不是很清楚。IL-1的信号转导途径用图9-1表示。
  • 新品上线!华芯中科发布植物根系分泌物提取系统RootEX110
    华芯中科发布了新一代 植物根系分泌物提取系统RootEX110利用往返式伸缩真空泵或蠕动泵抽取真空的原理,利用自动化技术进行负压的控制、时间的控制、容积的控制来实现精准的、全自动的提取土壤、根系分泌物的溶液。仪器创新点1、利用抽取蠕动泵抽取真空的原理,利用自动化技术进行负压的控制、时间的控制、容积的控制来实现土壤、根系分泌物的溶液提取;2、系统通道数量:1、2、4、8路可选;3、系统任务集存储容量:每个通道可独立保存100条任务,100条液位计到位事件;产品特点抽取方式:常压、真空负压两种抽取模式;(可选通过程序控制需要的压力和流速)系统通道数量:20通道(可选配通道数),每路通道独立工作。每路主通道均配置独立的真空泵或蠕动泵、供电系统、控制单元、数字液位计、土壤温湿盐传感器、移动锂电池、液晶显示屏;真空泵或蠕动泵可选:真空泵:采用往返式伸缩泵,拉伸及压缩力量250N,动力压强0.5MPa(5个标准大气压),工作容积30mL,前后端内置限位保护开关。蠕动泵:采用10滚轮和一体式上压结构设计,使得流体传输脉动更小,精度更高,通道间一致性更好;负压真空率:≤0.5ATM,极限≤0.25ATM;抽取速率: 每秒1mL、2mL、3mL、4mL、5mL 5个挡位可程序设定。可通过程序自动设定采集时间、周期、采集流速、收集量、间隔时间和循环次数,流速定义设定(0.1-5ml\S);精密数字液位计:采用浸入式32级数字液位计,每级间隔5mm,每到一个液位系统自动记录到达的日期时间及液位,可回放观看;土壤温湿盐传感器:长度8m;实际介电常数:精度: ± 0.5% or ± 0.2;测量范围:1~80;分辨率:0.001;土壤含水量:精度:典型±0.01,最大±≤0.03;测量范围:0%~100%(饱和);分辨率:0.001;土壤电导率:精度:± 2.0% or 0.02 S/m;测量范围:0~1.5 S/m;分辨率:0.001;土壤温度:精度:± 0.2°C;测量范围: -40~80℃;分辨率:0.1℃;仪器运行方式及系统运行方式:可以手动控制开始抽取,也可通过软件设定任务集到系统后脱机自动运行。可以设定抽取时间开始的日期时间(精确到月天小时分)和工作长度时长(精确到分钟)或者蓄液池抽满为止。可调整分泌物收集量,一键收集分泌物溶液。可控制分泌物试管收集装置温度;系统任务集存储容量:数据存储容量≥4000条;每个主通道还可独立保存100条任务,100条液位计到位事件;控制系统:液晶显示屏,控制软件中英文界面,控制软件可同步系统时间、设定任务集、查看任务执行情况、查看液位和温度的时间曲线,任务集可以导入和导出,数据曲线可以保存为CSV和Excel格式。实时采集保存土壤温湿盐情况,同时带有营养液不足补充提示; 华芯中科(北京)科技有限公司是一家专业从事科研仪器及软件研发、生产、销售及服务的企业。始终坚持高起点、严要求、高质量,吸收引进国内外先进科学技术,不断自主研制开发生产出优质、高效、实用的科研产品。目前本公司生产产品主要包括植物形态研究、植物根系研究、植物叶片研究等科研仪器。如您对植物根系系统有更多想了解,可通过仪器信息网和我们取得联系!400-860-5168转4949
  • 实时单细胞多模态分析仪加入PerkinElmer生命科学产品序列
    今年1月1日起,江苏瑞明生物科技有限公司的实时单细胞多模态分析仪正式加入PerkinElmer生命科学产品序列!实时单细胞多模态分析仪功能概述单细胞研究对于理解细胞的组成、生理行为与功能的多样性具有重要意义,基因组、转录组、蛋白组、代谢组学等分析技术为单细胞研究提供了有力工具。实时单细胞多模态分析仪可以实时、连续、定量检测单个活细胞的小分子含量及酶活性。核心特点主要性能实时单细胞多指标检测:实时检测单个活细胞内小分子含量(如葡萄糖、乳酸、ATP、胆固醇、Ca2+、K+等)及酶活性 (葡萄糖苷酶、鞘磷脂酶、乳酸脱氢酶等),可匹配160余种商品化试剂盒;实时亚细胞原位检测:在亚细胞水平(胞质、胞核、胞膜)实时连续、原位检测;超微量提取、注射:单细胞水平提取细胞器(如溶酶体、线粒体)、胞质进行质谱或其它平台的联用分析;单细胞注射药物、代谢剂等,并进行药效评估;活体水平检测:活体水平实时检测生化指标(用药前后、中医药针灸刺激前后)的变化。技术原理电信号检测通过电探头对细胞释放的电活性物质进行检测,如过氧化氢、一氧化氮、多巴胺、超氧阴离子等物质。通过试剂盒的量化级联反应产生的过氧化氢等电活性物质,实现单细胞小分子含量或酶活性的检测。荧光信号检测光探头传输激发光激发预染色细胞,通过光学检测系统收集细胞发射的荧光信号,荧光信号强弱反映细胞预染色指标的含量,可实现细胞整体或亚细胞激发检测。通过单细胞超微量提取注射,向单个活细胞注射荧光检测试剂盒,光探头传输激发光激发细胞的生化反应产物而产生荧光,荧光信号强弱反映细胞内相应的小分子含量或酶活。经典应用肿瘤细胞代谢
  • Science | 林志伟教授等利用DNA首次实现碳纳米管可控有序修饰
    可控有序修饰的单壁碳纳米管。研究团队 供图记者日前从华南理工大学获悉,该校前沿软物质学院林志伟教授与美国国家标准与技术研究院(NIST)研究员Ming Zheng,利用DNA首次实现了单壁碳纳米管(SWCNTs)的可控有序修饰。相关研究发表于Science。审稿人对相关研究成果给予了高度评价,认为该工作完成了过去很多研究者尝试但收效甚微的宏大目标,是该领域的重大进展。据介绍,该论文发表后引起了较大反响,国内外多家媒体对该工作进行了亮点报道。Science刊载了一篇Perspective对该工作进行评述:“本论文所设计的材料,为实现室温超导材料迈出了重要一步,是里程碑式的发现。”该研究工作通过简单的DNA序列设计和精密的结构表征,为SWCNTs可控化学修饰开辟了一个全新的思路。华南理工大学为该论文合作单位,林志伟为第一作者兼通讯作者,博士生李依浓为论文的分子模拟和彩图设计做出了重要贡献;Ming Zheng 为共同通讯作者,NIST为主要通讯单位。SWCNTs是由单层碳原子组成的一维管状纳米材料,具有优异的光学、电学、力学、热学等方面性能,被广泛应用于包括电子器件、光学仪器、疾病检测等诸多领域。SWCNTs的化学修饰可以改变其晶格结构,进而改变电学和光学性能,对发展新型材料如有机超导材料、量子材料意义重大,是国际前沿的研究方向。但由于SWCNTs中所有碳原子的化学环境相同,SWCNTs的可控化学修饰是该领域长期存在的一项重大挑战。林志伟表示,“精确可控的修饰方法,使得科学家有望像服装设计师一样,按自己的想法 ‘可定制化’地设计SWCNTs化学结构,以实现特殊的性能,例如超导性能和量子性能等,进而实现在航空航天、量子计算机、量子通信、新一代生物医疗等领域的前沿应用。”具体来说,作者将含有鸟嘌呤碱基(Guanine,G)的DNA序列,缠绕至多种单手性SWCNTs的表面,通过调控SWCNTs种类、DNA序列和构象,实现预先定制反应位点。在525 nm光照下激发玫瑰红(Rose Bengal)产生单线态氧,进而引发G与SWCNTs发生反应。之后利用吸收光谱、光致发光光谱(PL)、拉曼光谱对产物结构进行表征。SWCNTs与DNA的反应示意图和光谱表征。研究团队 供图为了深入研究反应机理以及反应后SWCNTs晶格中反应位点的空间分布,研究人员设计了一系列有相同G含量,但G相对位置不同的DNA(2G-n),出乎意料地发现C3GC7GC3(2G-7)和(8,3)SWCNTs的反应产物,在拉曼、荧光光谱中与SWCNTs晶格缺陷相关的峰强出现了极小值,表明在SWCNTs中形成了有序排列的晶格缺陷,即有序排列的反应位点。利用冷冻电镜(Cryo-EM)对C3GC7GC3-(8,3)的结构进行表征和重构,证实了有序的DNA螺旋结构。通过计算机模拟所构筑的理论模型与冷冻电镜的重构模型相互验证,清楚地揭示了反应机理,并进一步证明了晶格缺陷(G反应位点)在SWCNTs表面等间距的有序排列。基于精确可控的SWCNTs修饰方法,有望实现按可定制化的方式,重塑SWCNTs原有的晶格结构和光电性能,为发展有机超导材料、拓扑材料等变革性材料提供重要的理论和实验依据。美国《Science Daily》对该研究成果进行了专题报道,文中指出:“科学家利用DNA克服了之前几乎无法逾越的障碍,设计出有望给电子产品带来革命性影响的材料。”相关论文信息: https://www.science.org/doi/10.1126/science.abo4628 【近期会议推荐】仪器信息网将于2022年8月30-31日举办第五届纳米材料表征与检测技术网络会议,开设“能源与环境纳米材料”、“生物医用纳米材料”“纳米材料表征技术与设备研发(上)”、“纳米材料表征技术与设备研发(下)”4个专场,邀请20余位国内知名科研院所、高等院校、仪器企业的专家学者做精彩报告,内容涉及冷冻电镜、透射电镜、扫描电镜、扫描隧道能谱、X射线光电子能谱仪、纳米粒度及Zeta电位仪、超分辨荧光成像、表面等离子体耦合发射、荧光单分子单粒子光谱磁纳米粒子成像、拉曼光谱、X射线三维成像等多种表征与分析技术。报名听会1、扫描下方二维码进入会议官网,点击“立即报名”:2、复制下方链接在浏览器中打开,进入会议官网后点击“立即报名”https://www.instrument.com.cn/webinar/meetings/nano2022/
  • 细胞分泌物的实时纳米等离子体成像 ——新的纳米等离子体成像系统允许对单细胞分泌物进行时空监测
    • Inara Aguiar来自生物纳米光子系统实验室(BIOS)、EPFL和日内瓦大学的研究人员开发了一种光学成像方法,可以在空间和时间上提供细胞分泌物的四维视图。通过将单个细胞放入纳米结构镀金芯片的微孔中,并在芯片表面诱导一种称为等离子体共振的现象,他们可以在分泌物产生时绘制分泌物的图谱。这项研究发表在《自然生物医学工程》(Nature Biomedical Engineering )杂志上,详细介绍了细胞的功能和交流方式,有助于药物开发和基础研究。芯片上的单个单元。(图片来源:BIOS EPFL)细胞分泌物(即蛋白质、抗体和神经递质)在免疫反应、代谢和细胞之间的交流中起着至关重要的作用。了解细胞分泌物的过程对开发疾病治疗至关重要;然而,现有的方法只能量化分泌物,而不能提供其产生机制的任何细节。BIOS负责人Hatice Altug表示:“我们工作的一个关键方面是,它使我们能够以高通量的方式单独筛选细胞。对许多细胞平均反应的集体测量并不能反映它们的异质性……在生物学中,从免疫反应到癌症细胞,一切都是异质性的。这就是为什么癌症如此难以治疗。”筛选细胞分泌物该方法包括一个1cm2的纳米等离子体芯片,由数百万个小孔和数百个用于单个细胞的腔室组成;该芯片由覆盖有薄聚合物网的纳米结构金基底组成。用细胞培养基填充腔室以在测量过程中保持细胞存活。Saeid Ansaryan说:“我们仪器的美妙之处在于,分布在整个表面的纳米孔将每个点都转化为传感元件。这使我们能够观察释放蛋白质的空间模式,而不考虑细胞的位置。”使用这种新方法,可以评估两个重要的细胞过程,细胞分裂和死亡。此外,还对分泌精细抗体的人类供体B细胞进行了研究。研究小组可以看到两种形式的细胞死亡过程中的细胞分泌,细胞凋亡和坏死。在后者中,内容以不对称的方式释放,产生了图像指纹——这是科学家首次能够在单细胞水平上捕捉到细胞特征。由于测量是在营养丰富的细胞培养基中进行的,因此与其他成像技术一样,它不需要有毒的荧光标记,并且所研究的细胞可以很容易地回收。根据作者的说法,“该系统的多功能性和性能及其与粘附细胞和非粘附细胞的兼容性表明,它可以为全面了解单细胞分泌行为铺平道路,应用范围从基础研究到药物发现和个性化细胞治疗。”原始出版物:Ansaryan, S., Liu, YC., Li, X., et al.: High-throughput spatiotemporal monitoring of single-cell secretions via plasmonic microwell arrays. Nat. Biomed. Eng. (2023) DOI: 10.1038/s41551-023-01017-1作者简介Inara AguiarInara是一位拥有无机化学博士学位的科学编辑和作家。在获得计算化学博士后后,她开始在化学、工程、生物工程和生物化学领域担任科学编辑。她一直在几家科学出版商担任技术作家/编辑,最近加入威利分析科学公司,担任自由职业内容创作者。本文来源:Real-time nanoplasmonic imaging of cell secretions——New nanoplasmonic imaging system allows spatiotemporal monitoring of single-cell secretions。Microscopy Light Microscopy ,13 April 2023供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • Cell Research:李雪明团队用冷冻电镜技术论文报道VI型分泌系统膜结构
    p   2019年1月15日,清华大学生命科学学院李雪明研究组在《细胞研究》(Cell Research)杂志在线发表题为《VI型分泌系统膜上核心复合物结构》“Architecture of type VI secretion system membrane core complex”的研究论文。该论文报道了细菌VI型分泌系统膜上核心复合物的近原子分辨率的结构,揭示了其组装新形式。 /p p   革兰氏阴性菌通过一系列不同类型的分泌系统向胞外或者其他细胞分泌各种底物,包括离子,小分子(如抗生素),大分子物质(如毒性蛋白,DNA)等,这些分泌出的底物大多都与人类健康息息相关。其中的VI型分泌系统(T6SS)分泌的毒性蛋白不仅仅可以作用于宿主细胞,使还可以作用于环境中的其他细菌,从而使细菌在细菌-宿主,细菌-细菌等接触依赖型竞争中获得优势。VI型分泌系统由多于13个亚基组成的类似注射器的纳米机器。其中TssJ, TssL, TssM三个蛋白组成跨细菌内外膜约1.7MDa的复合物,主要起通道作用, 帮助底物从细菌胞质分泌到细胞外或宿主细胞中。VI型分泌系统膜上核心复合物的结构至今未获得,精细的组装方式仍不清楚。 /p p   李雪明课题组通过冷冻电镜单颗粒重构的方法解析了大肠杆菌来源的膜上核心复合物TssJLM 4.0 埃分辨率的分子结构。通过冷冻电镜结构纠正了前人对TssJ和TssM 2:2组装比例的错误理解, 该高分辨率的结构揭示TssJ和TssM采用新颖的3:2组装比例。这种3:2的组装形式明显区别于其他分泌系统1:1的组装形式。该研究还发现TssM采用C5对称性,内层和外层各五个。通过结构比对,发现内层和外层TssM结构有明显构象变化,该构象变化很可能对通道的打开至关重要。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/59bab17e-736a-43a7-a4f5-ef0aa9954d91.jpg" title=" 0.jpg.png" alt=" 0.jpg.png" / /p p    /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " VI型分泌系统膜上核心复合物的结构 /span /p p   清华大学生命学院李雪明研究员为本工作的通讯作者。清华大学PTN项目五年级博士生尹孟和生命学院五年级直博生严照峰为本文共同第一作者。该工作的冷冻电镜数据采集在国家蛋白质科学设施(北京)的清华大学冷冻电镜平台完成,数据处理在国家蛋白质科学设施(北京)清华大学高性能计算平台完成。该工作获得了生命科学联合中心、北京市结构生物学高精尖创新中心、国家自然科学基金委面上项目和科技部重点研发计划的经费支持。 /p p style=" line-height: 16px "    strong 论文附件 /strong : img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size: 12px color: rgb(0, 176, 240) text-decoration: underline " href=" https://img1.17img.cn/17img/files/201901/attachment/bdfec034-a40c-4f85-959e-225c5a892721.pdf" title=" Architecture of type VI secretion system membrane core complex.pdf" span style=" color: rgb(0, 176, 240) " Architecture of type VI secretion system membrane core complex.pdf /span /a /p p    strong 原链接 /strong :https://www.nature.com/articles/s41422-018-0130-7 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/00915e16-3cad-4891-8368-d0b4a8c765cc.jpg" title=" 00.jpg.png" alt=" 00.jpg.png" / /p p br/ /p
  • 食品安全标准与监测评估司关于假肠膜明串珠菌等28种“三新食品”的公告
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对假肠膜明串珠菌申请新食品原料、聚天冬氨酸钾等16种物质申请食品添加剂新品种、环己胺封端的1,1'-亚甲基二(4-异氰酸基环己烷)均聚物等11种物质申请食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。附件: 假肠膜明串珠菌等28种“三新食品”的公告文本.pdf国家卫生健康委2023年2月7日附件 1新食品原料假肠膜明串珠菌 假肠膜明串珠菌中文名称假肠膜明串珠菌拉丁名称Leuconostoc pseudomesenteroides其他需要说 明的情况1. 批准列入《可用于食品的菌种名单》,使用 范围包括发酵乳、风味发酵乳、干酪、发酵 型含乳饮料和乳酸菌饮料 ( 非固体饮料),不包括婴幼儿食品。2. 食品安全指标须符合以下规定:铅(Pb,干基计),mg/kg ≤1总砷(As,干基计),mg/kg ≤1.5沙门氏菌,/25 g ( mL)0金黄色葡萄球菌,/25 g ( mL)0单核细胞增生李斯特氏菌,/25 g ( mL)0附件 2 聚天冬氨酸钾等 16 种食品添加剂新品种一、食品添加剂新品种序号名称功能食品分类号食品名称最大使用量 (g/L )备注1聚天冬氨酸钾PotassiumPolyaspartate稳定剂和凝固剂15.03.01葡萄酒0.3—二、食品工业用酶制剂新品种序号酶来源供体1氨基肽酶Aminopeptidase米曲霉 Aspergillus oryzae米曲霉 Aspergillus oryzae2蛋白酶 Protease李氏木霉 Trichoderma reesei樟绒枝霉 Malbranchea sulfurea3磷脂酶 A2Phospholipase A2李氏木霉 Trichoderma reesei烟曲霉Aspergillusfumigatus4麦芽糖淀粉酶 Maltogenic amylase酿酒酵母Saccharomycescerevisiae嗜热脂解地芽孢杆菌Geobacillusstearothermophilus5木聚糖酶 Xylanase地衣芽孢杆菌Bacillus licheniformis地衣芽孢杆菌 Bacillus licheniformis6乳糖酶 (β-半乳糖苷 酶 ) Lactase(beta-galactosidase )Papiliotrematerrestris—7羧肽酶Carboxypeptidase米曲霉 Aspergillus oryzae米曲霉 Aspergillus oryzae8脱氨酶 Deaminase米曲霉 Aspergillus oryzae—三、食品用香料新品种序 号名称功能食品分类号食品名称最大使用量备 注12- 己基吡啶 2-Hexylpyridine食品用香料—配制成食品用香精应用于各类食品中( GB 2760-2014 表 B. 1食品类别除外)按生产需要适量使用—
  • 闪谱发布ReadMax 1500 光吸收全波长酶标仪新品
    ReadMax 1500 光吸收全波长酶标仪上海闪谱生物科技有限公司成立于原中国科学院上海生物工程中心,与复旦大学、上海交通大学等高校有着良好的合作关系,致力于为临床医学、生命科学和药物研发提供高精度、高通量、高性能的专业酶标仪,是国内光栅型酶标仪生产商,拥有该领域的核心技术。ReadMax光吸收型全波长酶标仪可以广泛应用于有机化学、临床诊断、药物筛选、生物化学、分子生物学、免疫生物学、细胞生物学、环境分析、食品安全检测、材料科学等多个领域。完全可以取代进口产品,是高性能酶标仪的国产领导品牌,是科研单位与生化制药厂的明智选择。ReadMax 1500 主要特点:1、适用于大多数生命科学研究工作,尤其是DNA/RNA分析;2、适用于蛋白质定量分析,支持紫外吸收、Bradford、Lowry等方法;3、适用于终点法ELISA/EIA分析;4、适用于MTT(IC50/LD50)分析;5、适用于细胞活性和细胞毒性测试;6、适用于微生物鉴定,细菌浓度分析;7、适用于蛋白酶与激酶、磷脂酶等酶类活性测试;8、适用于内毒素LAL分析;9、能够检测任何标准96孔或紫外透射96孔微孔板;10、内置光栅单色器,波长范围为190 ~ 1000 nm;11、波长精度可达 ± 1 nm,波长重复性可达0.2 nm;12、具有单波长、双波长检测功能;13、具有单孔动力学分析模式,动力学法ELISA/酶学分析;14、具有光谱扫描模式,可得出紫外-可见光谱;15、使用闪烁氙灯光源,寿命长、发光稳定;16、可使用专用光吸收检测板可为设备进行校正认证;17、使用USB数据接口,可以直接导出数据至U盘;18、使用7寸触屏控制,不需要额外的电脑;19、全中文界面,适合国内操作人员使用与教学;20、性能不低于进口同类产品,具有极高的性价比;ReadMax 1500 主要指标:1、检测波长范围:190 nm ~ 1000 nm(1 nm步进);2、波长准确度:± 1.0 nm;3、波长重复性:9、OD重复性:SD < 0.001 OD 或CV < 0.5 % @ 450 nm;10、读取速度:96孔板 20s11、微孔板类型: 96孔板。ReadMax 1500主要组成:1、主机(包括光源、检测器、触控屏);仪器附件(选配)1、MF-10型孵育振荡仪;2、ND-10型微量检测板;ReadMax 1500光吸收全波长酶标仪工作站软件界面: 由于技术不断进步,本公司保留设计更改之权利,更改恕不通知敬请谅解。创新点:使用7寸触屏控制,不需要额外的电脑,具有单波长、双波长检测功能 ReadMax 1500 光吸收全波长酶标仪
  • 闪谱发布ReadMax 1000 光吸收酶标仪新品
    ReadMax 1000 光吸收酶标仪上海闪谱生物科技有限公司成立于原中国科学院上海生物工程中心,与复旦大学、上海交通大学等高校有着良好的合作关系,致力于为临床医学、生命科学和药物研发提供高精度、高通量、高性能的专业酶标仪,在国内处于领先地位,拥有该领域的核心技术。ReadMax光吸收酶标仪可以广泛应用于有机化学、临床诊断、药物筛选、生物化学、分子生物学、免疫生物学、细胞生物学、环境分析、食品安全检测、材料科学等多个领域。完全可以取代进口产品,是高性能酶标仪的国产领导品牌,是科研单位与生化制药厂的明智选择。ReadMax 1000 主要特点:1、适用于蛋白质定量分析,支持Bradford、Lowry等方法;2、适用于终点法ELISA/EIA分析;3、适用于MTT(IC50/LD50)分析;4、适用于细胞活性和细胞毒性测试;5、适用于蛋白酶与激酶、磷脂酶等酶类活性测试;6、适用于内毒素LAL分析;7、能够检测任何标准96孔微孔板;8、内置滤光片架,标准配置405 nm,450 nm,492 nm和620 nm四个滤光片,最多可安装7个滤光片;9、具有单波长、双波长检测功能;10、采用8个测量通道和1个参比通道;11、具有单孔动力学分析模式,动力学法ELISA/酶学分析;12、使用LED光源,寿命长、发光稳定;13、可使用专用光吸收检测板可为设备进行校正认证;14、使用USB数据接口,可以直接导出数据至U盘;15、使用7寸触屏控制,不需要额外的电脑;16、全中文界面,适合国内操作人员使用与教学;17、性能不低于进口同类产品,具有极高的性价比;ReadMax 1000 主要指标:1、检测波长范围:400 nm ~ 680 nm(1 nm步进);2、带宽:9 nm;3、测定范围:0 ~ 4.000 OD;4、OD线性范围:1.0% (0 - 2.0 OD),1.5% (2.0 - 3.0 OD) @ 450 nm;5、OD准确度:0.5% + 0.010 OD (0 - 2.0 OD),1.0%+0.010 OD (2.0 - 3.0 OD) @ 450 nm ;6、OD重复性:SD < 0.001 OD 或CV < 0.5 % @ 450 nm;7、读取速度:96孔板 15 s8、微孔板类型: 96孔板。ReadMax 1000主要组成:1、主机(包括光源、检测器、触控屏);仪器附件(选配)1、MF-10型孵育振荡仪;ReadMax 1000光吸收全波长酶标仪工作站软件界面:由于技术不断进步,本公司保留设计更改之权利,更改恕不通知敬请谅解。创新点:内置滤光片架,标准配置405 nm,450 nm,492 nm和620 nm四个滤光片,最多可安装7个滤光片,性能不低于进口同类产品,具有极高的性价比 ReadMax 1000 光吸收酶标仪
  • 擒魔序曲——脂质组学研究中的样品处理
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash &mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 第十一讲:傅若农:扭转乾坤&mdash &mdash 神奇的反应顶空气相色谱分析 前言   脂质是一类自然界存在的疏水或两性、难溶于水而易溶于非极性溶剂的有机物小分子,存在于大多数生物体系中。脂质是细胞膜的骨架物质和第二能量来源,还参与细胞的许多重要功能,人类许多重大疾病都与脂质代谢紊乱有关,如糖尿病、肥胖病、癌症、阿兹海默症、以及一些传染病等,   作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。   2005年国际上把组织、细胞中的脂质分子分为8大类(J Lipid Res 2009,50(Supp) 9-14),有明确结构的脂质化合物已经有38000个(BMC Bioinformatics 2014, 15(Suppl 7):S9),这8类脂质分子见表1。 表 1 8大类脂质分子 类别 缩写 数据库中的结构数量 脂肪酰类(Fatty acyls) FA 2678 甘油脂类(glycerolipids ) GL3009 甘油磷酸脂类(glycerophospholipids) GP 1970 鞘脂类(sphingolipids ) SP 620 固醇脂类(sterol lipids ) ST 1744 异戊烯醇脂类(prenol lipids () PR 610 糖脂类(saccharolipids ) SL 11 多聚乙烯类(polyketides ) PK 132   在过去,由于技术限制人们难以分析数量巨大的脂质分析,因为多种脂质代谢产物的物理性质需要大批纯化系统、分离的复杂技术操作。2003年韩贤林等继基因组学、蛋白质组学等之后提出脂质组学(lipidomics)(Han X et a1.J Lipid Res,2003,44:1071),脂质组学的发展推动了新分析平台的研发,特别是在质谱法领域,该方法已使这些操作合理化,并且已允许更多的脂质分子得到非常详细的分析。   脂质存在于细胞、细胞器和细胞外的体液如血浆、胆汁、乳、肠液、尿液中。若要研究某一特定部位的脂质,首先要将这部分组织或细胞分离出来。由于脂质不溶于水,通常采用有机溶剂进行萃取。传统的萃取剂是氯仿、甲醇和水的混合液。所需的样品在这种混合液中提取所有脂质,向提取液中加入过量的水使之分成2个相,上面是甲醇和水,下面是氯仿。脂质就留在氯仿相,蒸发浓缩后,使之干燥就得到所需的脂质。这种脂质提取方法,能够提出组织样品中的总脂。这种方法降低了脂质的损失率,操作简便,而且提取效果较好。对于只检测总脂中的部分脂质,固相萃取(SPE)是一种较好的方法,利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。固相萃取技术设备要求低,操作简单,能快速分离组分复杂及含量低的样品。当然由于化学分析样品前处理技术的发展,有许多其他可用的样品前处理方法。   总体上对脂质组学的研究Chin Chye Teo等归纳为如下的工作流程,第一步就是对样品的处理。 1、脂质组学研究的工作流程  根据Chin Chye Teo的综述报告(Chin Chye Teo et al,TrAC,2015,65:1-18),脂质组学研究的工作流程如下表1. 表1 脂质组学研究的工作流程 从患者得到脂质组学研究的样品 液体 固体 体液,泪水,血清,血浆,尿液 (低温保存样品) 细胞,组织,器官 对上述样品进行萃取方法 对极性化合物,单独的有机化合物进行: 液-液萃取,固相萃取 对能源性物质进行:加压液相萃取,微波辅助萃取,超声辅助萃取 萃取得到的脂质化合物 使用色谱方法分离:气相色谱,液相色谱,电泳 不使用色谱方法分离:直接进样,成像 上述分离或未分离样品进行质谱分析 质谱分析的接口 质量分析器 电子轰击电离(EI),电喷雾电离(ESI),化学电离(CI),大气压(APCI)化学与电离,基质辅助激光解析电离(MALDI) 四级杆飞行时间质谱(qTOF),三重四级杆质谱( qqq),轨道阱质谱(Orbitrap) 质谱原始数据语预处理 (利用商品或自制软件) 分类和脂质鉴定(使用各种资源如LIPID maps,Lipid Bank,Lipid Blast) 判定在疾病中的机制/在疾病演化中的作用 为进一步诊断找出生物标记物(预防),提供药物治疗的指导 2、脂质组学的样品制备   本文只讲脂质组学的样品制备,Chin Chye Teo等总结了近年在脂质组学研究中使用的样品处理方法,见表2. 表2 脂质组学研究中的样品处理方法比较(Chin Chye Teo et al,TrAC,2015,65:1-18) 萃取方法 临床样品类型 (生物液体或固体) 优点 缺点 原文文献编号 单一有机溶剂萃取(SOSE) 血清(生物液体) 皮肤(固体) 容易完成萃取时间短 成本低 低温适于热敏感化合物 无需外部能量 使用有毒有机溶剂 分析时难以摆脱使用有机溶剂 1.2 3 液-液萃取(LLE) 眼泪(生物液体) 血清(生物液体) 血浆(生物液体) 尿液(生物液体) 滑液(生物液体) 动脉粥样硬化血小板(生物液体) 皮肤(固体) 组织(固体) 易于建立的方法 容易完成 设备便宜 萃取时间短 使用廉价溶剂(如甲醇,水) 低温适于热敏感化合物 无需外部能量 萃取时间短 使用大量有毒有机溶剂 常使用超过一种类型的溶剂 需要排除溶剂以免影响分析 2 4,9-13 5,14-22 8,23 7 24 25-27 28,29 固相萃取(SPE) 血清(生物液体) 血清(生物液体) 血浆(生物液体) 眼(固体) 皮肤(固体) 容易完成 清除干扰基体 EPE的选择 低温适于热敏感化合物 萃取时间短 SPE萃取小柱比较贵 需要洗掉有机溶剂以免影响分析 使用有毒有机溶剂 分析时难以摆脱使用有机溶剂 1,12 2 30 26 3,27 固相微萃取(SPME) 肺(固体) 头发(固体) 容易完成 可与GC和GC xGC 联用 对挥发性化合物可以进行顶空气相色谱 有毒溶剂消耗量少 低温适于热敏感化合物 无需外部能量 萃取时间短 萃取头比较贵 需要洗掉有机溶剂以免影响分析 分析时难以摆脱使用有机溶剂 31 32 超临界流体萃取(SFE) 血浆(生物液体) 容易完成 萃取时间短 对非极性化合物萃取效率高 CO2可循环使用 温度压力可控 可加改性剂提高萃取液极性和效率 要精心操作 设备昂贵 33 微波辅助萃取(MAE) 血浆(生物液体) 皮肤(固体) 容易完成 萃取时间短 萃取效率高 萃取溶剂消耗量少 温度压力可控 需要冷却防止溶剂逃逸 购买设备费用高 34 35 超声辅助萃取(UAE) 血(生物液体) 容易完成 萃取时间短 萃取溶剂消耗量少 温度压力可控 听力会受损 要使用有毒有机溶剂 会吸入有害溶剂 需要外部能源 购买设备费用高 提高温度会使化合物降解 36,37 3、脂质组学的溶剂萃取   液-液萃取是脂质组学研究中使用最为普遍的方法,这一方法是使用两种互不混溶的有机溶剂&mdash &mdash 使用最多的是氯仿、甲醇和水&mdash &mdash 为了对关键脂质类得到最大的萃取效率,从磷脂类和糖脂类到脂肪酸,三酰基甘油类(TAGs)、二酰基甘油类(DAGs)。最初使用的是Folch 脂质萃取法(氯仿/甲醇/水为 8:4:3 v/v/v),之后有Bligh 和 Dyer脂质萃取法(氯仿/甲醇/水为 1:2:0.8 v/v/v)。   (1)Folch 脂质萃取法(Folch et al., J Biol Chem 1957, 226: 497)   把样品组织用2:1氯仿/甲醇均一化,最后的溶剂体积是组织的20倍(20mL 溶剂里有1g样品),分散均匀后于室温下把混合物在轨道振荡器上震动15-20min。均匀混合物经漏斗中折叠滤纸过滤,或进行离心处理,回收液相。   液相溶剂用0.2体积的水(20 mL液相使用4 mL水),最好使用0.9%的NaCl溶液洗涤,涡旋几秒后在低速离心机(2000 rpm)上离心混合物,用虹吸方法弃去上层液相,用以分析神经节糖苷或小分子有机极性化合物,如需要(需移去标记分子),用1:1甲醇/水洗涤交界处的有机相两次,无需混合全部制备物。   经离心分离后虹吸掉上面的液相,下面含有脂质的氯仿在旋转蒸发器中真空蒸发,或用氮气吹拂到2-3 mL体积。   (2)Bligh 和 Dyer脂质萃取法(Can J Biochem Physiol 37:911-917)   a. 每1 mL 样品加入3.75mL 1:2(v/v) CHCl3:CH3OH 很好涡旋,如果要进行GC 分析,溶剂中要含有内标(如0.5&mu g谷甾醇)   b. 然后加入1.5mL CHCl3很好涡旋   c. 最后加入1.25mL蒸馏水很好涡旋   d. 在1000rpm离心机中室温下离心5min,得到一个两相分离(上层为水相,下层为有机相)的液体   e. 回收有机相:用一个巴斯德吸管(Pastuer pipette)通过上层水相,轻微施加正压避免上层水相浸入吸管,吸管口到达离心管底部,吸取下层有机相溶液的90%到吸管中。 下表列出不同样品容积需要加入的试剂量   如果你要得到干净的底部的有机相溶液,就要用上层&ldquo 真正&rdquo 的上层液相洗涤有机相溶液,方法如下:   a 制备&ldquo 真正&rdquo 的上层液相:取一个大的玻璃管,或者几个常规玻璃管,以水代替样品胺上述方法进行萃取操作,把几个管子中的上层水相合并在一起备用。   b 把上述第5步得到的底层溶液倒入一个玻璃管中,然后加入适量(样品+蒸馏水的体积)&ldquo 真正&rdquo 的上层液相。比如你是1 mL样品就加入2.25mL&ldquo 真正&rdquo 的上层液相。   c 好好地涡旋,离心,收集下层相。   Cui等的改进Bligh 和 Dyer脂质萃取法(Cui L,e al, PLoS Negl Trop Dis,2013,7:e2373):   900µ L氯仿-甲醇(1:2)加入到100 µ L样品中,进行涡旋,在4° C下保温,然后加入300µ L氯仿和300µ L双重蒸馏水,以9000 rpm离心2 min,脂质物在离心管底部的有机相中,然后加入500 µ L氯仿在4° C下进行涡旋20 min。从有机相中回收脂质物并与前次得到的脂质物合并,脂质萃取物经真空干燥后于&minus 80° C下存放备用。   多少年来人们使用类似于上述方法进行脂质的萃取,例如:李国琛等在脂质组学研究中也采用Bligh 和 Oyer法萃取磷脂,并作适当改进.他们的方法是:   称取100 mg鱼肉样品,加入400 p,L甲醇/氯仿(体积比2:1),涡旋混匀后,于一30℃放置过夜.取出后于4℃以10000 转速离心5 min.将上清液转出,在残渣中加入200 mL甲醇/氯仿(体积比2:1)再次提取,将2次所得上清液合并.在上清液中先后加入100 mL氯仿及100mL水,离心后,将磷脂所在的氯仿相与水相分离.采用真空离心蒸发浓缩器干燥氯仿相(温度不超过45℃,下同),将干燥后的样品于一30℃保存备用.(高等学校化学学报,2010,31(2):269-273)   人们为了提高某些脂质种类的萃取效率,改变氯仿/甲醇/水的比例,并加入一些其他添加剂,如乙酸、盐酸等,探索改进萃取各类脂质化合物的得率,如酸性磷脂和脂肪酸。(Jensen S K, Lipid Technol,2008, 20: 280&ndash 281)。 HCl-Bligh萃取法步骤:   为了更好地萃取生物样品中的脂肪酸,使用加盐酸的HCl-Bligh萃取法:取0.6 g均匀好的样品装入10-ml 带盖的培养试管中,加如1 ml 3M HCl,在80℃水浴上加热1 h,之后加入1.50 ml甲醇和1.00 ml氯仿,以及17:0脂肪酸内标,把混合物摇震1 min,然后加入ELGA-纯水系统制备的纯水1.00 ml 和2.00 ml氯仿,把试管振荡1 min,然后在3000 rpm离心机上进行离心处理5 min。把1 ml氯仿相进行甲基化,用氮气把氯仿蒸发掉,加入0.8 ml NaOH/甲醇溶液,把试管充满氮气,密封在100 ℃下烘箱中15 min,冷却后加入1 ml BF3溶液,密封在100 ℃下烘箱中45 min。在冷却后加入2 ml辛烷和4 ml饱和NaCl溶液,把混合物进行涡旋,在3000 rpm离心机上进行离心处理10 min。用1&mu L 样品进行气相色谱分析。   根据Jensen的研究,认为此方法可以对脂肪酸的萃取率提高15%,对多不饱和脂肪酸的萃取率可提高30-50%。   由于氯仿的毒性大人们就用二氯甲烷来代替氯仿(J Agr Food Chem,2008,56:4297-4303),之后就有许多研究者效仿用以萃取临床样品,包括生物液体,如血清/血浆,尿液和固体样品,如皮肤和动脉粥样硬化血小板(表中文献4,5,8,9,10,14-17,23-25,28).   近几年也用甲基特丁基醚(MTBM )做萃取溶剂代替氯仿(Matyash et al. J Lipid Res. 2008,49 (5) :1137&ndash 1146.)。Matyash 认为MTBM进行萃取快速而且可以得到干净的脂质,可以适合于自动进行鸟枪法得到脂质轮廓。因为MTBM的密度低,水相和有机相分开时,有机相在上层,这样简化了手机有机相的手续,减少了吸取的损失,不可萃取的基质小球处于离心管的底部,易于去除。严格的测试证明MTBM进行萃取对绝大多数脂质种类和&ldquo 黄金标准&rdquo Folch 或 Bligh and Dyer萃取方法类似或更好。2013年中科院大连化学物理研究所许国旺和德国图宾根大学医学院的R Lehmannb使用MTBM进行萃取开创了一个从一小片肝脏或肌肉组织同时进行道谢组学和脂质组学的研究(J Chromatog A, 2013, 1298:9&ndash 16)   人们的思路总是由简单到复杂,又由复杂回归到简单,所以脂质组学中的萃取方法,近来也有多种溶剂向单一溶剂发展, Stü biger G (表中文献1)就使用 Zhao Z等提出的单一溶剂萃取(SOSE)磷脂类脂质(J Lipid Res 2010 51:652)方法如下:   把500 mL甲醇加入到20 mL人血浆中,其中已经含有0.01% BHT(2,6-二叔丁基对甲酚)和0.5 mmol EDTA (用作抗氧化剂)和3mmol Pefablock(4-(2 aminoethyl) benzenesulfonylfluoride hydrochloride)用作磷脂酶的抑制剂,加入内标物,把样品激烈震荡1min,在冰浴中放置30 min,进行脂质的萃取,之后在10,000 rpm离心机上,离心5 min(4℃),最后把离心管上面的液体小心滴转移到2 mL玻璃样品瓶中,在零下70℃保存备用。 4、固相萃取(SPE)   SPE 是十分成熟的样品预处理技术,使用装有固定相的小柱子和各种流动相选择性地保留与固定相有特定作用力的特殊种类分子。SPE的典型应用是和 SOSE 和 LLE相结合,作为一种附加的净化步骤或从生物液体或固体住址样品中富集某种特定种类的目标脂质(表中文献1,3,12,26,27),市场有各种各样的萃取小柱供选择。供脂质萃取的SPE小柱有正相硅胶柱和反相柱(C8 和 C18),以及离子交换柱(氨丙基柱),硅胶柱和氨丙基柱多用于分离中性和极性脂质,利用改变洗脱溶剂以达到分离的目的。而C8 和 C18柱用于从水基样品中分离卵磷脂(PC)、脑苷脂、神经节糖苷和脂肪酸。   针对不同的脂质使用不同的SPE,如 Stü biger(表2文献1)在进行导致动脉粥样硬化的磷脂的研究中,使用C18 净化柱从血浆脂质萃取和富集体液氧化磷脂(OxPLs),其步骤如下:   把脂质萃取液倒入微量制备高效固相萃取柱(mHP-SPE)C18 spin-columns (PepClean, Pierce)中,小柱事先用500mL MeOH:0.2%甲酸(70:30 重量比)洗涤,然后用700 mL MeOH:0.2%甲酸(82:18 重量比)洗脱一次,再用800 mL MeOH:0.2%甲酸(92:2 重量比)洗脱一次,最后小柱用500 mL 2-丙醇再生,以便从小柱中彻底清除脂质(即中性脂质),净化后的纯度用薄层色谱检查,得到的氧化脂质用LC-ESI-MS/MS进行分析。   而Ruben t&rsquo Kindt进行皮肤神经酰胺的脂质组学研究中,则使用氨丙基硅胶小柱对脂质萃取液进行净化(表2文献3),方法如下:   使用氨丙基硅胶小柱(100 mg, 3.0 mL)先用2 mL己烷洗涤,把已经干燥的脂质溶于300 &mu L 11:1 的己烷:异丙醇(v/v)中,用2 mL己烷/甲醇/氯仿(80/10/10 (v/v))洗脱神经酰胺,用氮气吹扫干燥,溶于300 &mu L异丙醇/氯仿(50/50)(v/v)中,进行HPLC/MS分析。 5、固相微萃取(SPME)   Pawliszyn 研究组在1991年发明了SPME,1993年出现了SPME的商品化产品,使之成为广泛使用的样品前处理技术。这一方法是集萃取、浓缩、解吸、进样于一体,它以固相萃取(SPE)为基础,保留了SPE的全部优点,排除了需要柱填充物和使用有机溶剂进行解吸的缺点。SPME是以涂渍在石英玻璃纤维上的固定相(高分子涂层或吸着剂)作为吸收(吸附)介质,对目标分析物进行萃取和浓缩,并在气相色谱进样口中直接热解吸(或用HPLC流动相冲洗到液相色谱柱中,甚至可以直接进行质谱分析),这一技术适合于挥发性和半挥发性有机物的样品处理和分析。SPME有8大优点:1 操作简单,2 功能多样,3 设备低廉,4 萃取快捷,5 无需溶剂,6 可在线、活体取样,7 可自动化, 8 可在分析系统直接脱附。SPME可以对环境中的污染物进行检测,如:农药残留、酚类、多氯联苯、多环芳烃、脂肪酸、胺类、醛类、苯系物、非离子表面活性剂以及有机金属化合物、无机金属离子等,也可以用有类似特点的领域,如食品、医药、临床、后用不同的的溶液洗脱柱子,将各种待测物洗脱下来。其依据是采用脂溶性材料(C18)破坏细胞膜并将组织分散,C18充当分散剂。在硅胶固相萃取材料表面键合有机相,与传统方法使用砂子做吸附剂类似,在样品与固体材料搅拌的过程中,利用剪切力作用将组织分散。键合的有机相就像溶剂或洗涤剂一样,将样品组分溶解和分散在支持物表面。这大大增加了萃取样品的表面积,样品按各自极性分布在有机相中,如非极性组分分散在非极性有机相中,极性小分子与硅胶上的硅烷醇结合,大的弱极性分子则分散在多相物质表面。(乌日娜等,食品科学,2006,26(6):266-268)。香港城市大学的Qing Shen等利用二氧化钛纳米颗粒作萃取剂,以基质固相分散萃取方法进行橄榄果的脂质组学研究,研究证明这一方法可以把磷脂从非磷脂中完全选择性地分离出来。(Food Research Int,2013, 54:2054&ndash 2061)。 表2中的文献 1 Stubiger G, et al, Atherosclerosis, 2012,224:177&ndash 186. 2 Zhao Z, et al, J Lipid Res, 2010, 51:652&ndash 659 3 t&rsquo Kindt R, et al, Anal Chem, 2012,84:403&ndash 411 4 Cui L, et al, PLoS Negl Trop Dis,2013,7:e2373 5 Sandra K,et al, J Chromatogr A,2010,1217:4087&ndash 4099. 6 Lam S M, et al, J Lipid Res, 2014,55: 289&ndash 298 7 Giera M, et al, Biochim Biophys Acta, 2012, 1821:415&ndash 424 8 Min H K, Anal Bioanal Chem, 2011, 399:823&ndash 830. 9 Heilbronn L K, et al, Obesity,2013, 21:E649&ndash E659 10 Hilvo M, et al, Int J Cancer 134 (2014) 1725&ndash 1733 11 Montoliu I, et al, Aging (Albany NY),2014,6:9&ndash 25 12 Chen Y , et al, Clin. Chim. Acta, 2013,428: 20&ndash 25. 13 Zivkovic A M, et al, Metabolomics,2009,5:507&ndash 516 14 Chen F,et al, Biomarkers, 2011, 16:321&ndash 333 15 M. Ollero, et al, J. Lipid Res, 2011, 52:1011&ndash 1022 16ras Hematol Hemoter,2010,32:439&ndash 443. 35 Gonzalez-Illan F,et al,J Anal Toxicol,2011,35:232&ndash 237. 36 Pizarro C, et al, Anal Chem,2013,8:12085&ndash 12092. 37 Pang L Q, et al, J Chromatogr B,2008,869: 118&ndash 125
  • 机械力调控B淋巴细胞免疫活化研究获新进展
    p   2017年7月31日,清华大学生命学院刘万里研究组在《eLife》期刊在线发表了名为《蛋白激酶Cβ(PKCβ)和黏着斑激酶协同调控B淋巴细胞的免疫活化对呈递抗原的基质硬度的敏感性》(Substrate stiffness governs the initiation of B cell activation by the concerted signaling of PKCβ and focal adhesion kinase)的研究论文,报道了机械力感知能力调控B淋巴细胞免疫活化的精细分子机制。清华大学生命学院巴基斯坦籍博士生萨明娜(Samina Shaheen),北京大学、清华大学和北京生命科学研究所联合培养博士研究生项目博士生万政鹏和生命科学学院本科生李宗昱是本文的共同第一作者,刘万里研究员为本文的通讯作者。 br/ /p p   本研究需要大力整合分子免疫学、细胞生物学、生物化学、新型材料科学、高精度活细胞成像和生物物理学等不同学科的交叉优势,涉及基因修饰小鼠脾脏B细胞和自身免疫疾病病人外周血B细胞等实验材料的广泛使用,在研究过程中得到了国内外同行的大力支持。 /p p   B淋巴细胞作为抗体免疫应答过程中的重要参与者,维系着人类的健康,B淋巴细胞的免疫活化进程在其质膜表面的B细胞受体(BCR)识别外来病原体抗原后启动。该课题组之前的工作揭示B淋巴细胞具有灵敏的机械力感知功能,利用B细胞受体(BCR)来精确地识别抗原的理化性状。该论文结合不同刚性抗原呈递基质系统和基于全内反射、共聚焦荧光显微镜的高速高分辨率成像系统,对机械力感知调控B淋巴细胞免疫活化的分子机制进行系统而全面的研究。该论文发现B淋巴细胞感受机械力调控其活化依赖于B细胞受体(BCR)下游信号分子。由佛波酯(PMA)诱导的蛋白激酶Cβ(PKCβ)激活可以绕过B细胞通常需要的酪氨酸激酶(Btk)和磷脂酶Cγ2(PLCγ2)信号分子来区分底物刚度。然而,这一过程依赖于由蛋白激酶Cβ(PKCβ)介导的黏着斑激酶(FAK)激活,进而表现出黏着斑激酶(FAK)介导的B细胞扩散和粘附反应的增强。黏着斑激酶(FAK)失活或缺陷将导致B细胞丧失鉴别基底刚性的能力,而粘附分子可以大大增强B细胞的这种能力。最后,该研究利用类风湿性关节炎患者的样品进行研究,发现与健康人相比,类风湿性关节炎患者的B细胞对基底刚度表现出不同的活化反应。这些发现更系统的提供了B细胞如何通过蛋白激酶Cβ(PKCβ)介导黏着斑激酶(FAK)激活的方式区分底物刚度并作出不同活化反应的分子解释。这些研究成果为B淋巴细胞的免疫识别、免疫活化和免疫调节研究提供了新的研究思路,帮助人们进一步理解自身免疫疾病,从而对探索相关疾病的致病机理、以及药物疫苗研发等重要工作提供新的理论依据。 /p p   刘万里研究员课题组一直致力于使用新型的高速高分辨率的活细胞单分子荧光成像技术结合传统的分子免疫学、生物化学和生物物理学研究手段,对B淋巴细胞的免疫活化及相关疾病的分子机制进行研究。继2013年在《免疫学杂志》(Journal of Immunology),2015年在《欧洲免疫学杂志》(European Journal of Immunology)和《eLife》上发表B淋巴细胞的免疫活化受到机械力调控的相关论文后,这一新成果是他对该领域的又一贡献。该研究由国家自然科学基金委、科技部和青年千人计划提供经费支持。萨明娜(Samina Shaheen)受到中国政府奖学金项目的支持。(来源:清华大学生命科学学院) /p p   论文链接: a href=" https://elifesciences.org/articles/23060" _src=" https://elifesciences.org/articles/23060" https://elifesciences.org/articles/23060 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/noimg/e71fa001-dac6-4706-bca7-5f946b9f1f18.jpg" title=" 1.jpg" / /p p   蛋白激酶Cβ(PKCβ)和黏着斑激酶(FAK)协同调控B淋巴细胞的免疫活化对呈递抗原基质硬度的敏感性 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制