当前位置: 仪器信息网 > 行业主题 > >

热性能

仪器信息网热性能专题为您整合热性能相关的最新文章,在热性能专题,您不仅可以免费浏览热性能的资讯, 同时您还可以浏览热性能的相关资料、解决方案,参与社区热性能话题讨论。

热性能相关的资讯

  • 西南大学唐超课题组MME:硅烷偶联剂接枝hBN对绝缘纸纤维素的热性能和力学性能的提升
    摘要:西南大学工程技术学院唐超课题组通过使用不同硅烷偶联剂接枝纳米氮化硼掺杂绝缘纸纤维素,发现KH550接枝氮化硼能显著提升绝缘纸纤维素的散热性、热稳定性和材料的力学特性(热导率提升了114%,延展性和抗形变能力提升了50%以上),为提升变压器内部绝缘材料的使用寿命和抗热老化性能提供了理论指导。关键词:硅烷偶联剂,氮化硼,变压器绝缘纸纤维素,热力学性能图1 KH550接枝hBN原理图。图2 不同改性的纤维素模型,(a)纯纤维素,(b)hBN/纤维素,(c)KH550 hBN/纤维,(d)KH560-hBN/纤维素和(e)KH570-hBN/纤维素。电力设备运行寿命的提升,与其内部绝缘材料性能的提升有着重要关联。以变压器为例,利用新兴的纳米技术来修饰纤维素绝缘纸能较为高效、显著地提升材料的性能。然而,现有的纤维素绝缘纸的纳米改性研究,往往局限在纤维素力学性能的分析上,较少关注其热性能的改进。因此,利用一种新型的纳米颗粒对纯纤维素进行改性,以同时提高纤维素绝缘纸的力学性能和热性能成为大家关注的热点。针对这一问题,西南大学工程技术学院唐超教授课题组采用了分子模拟的方法,将三种不同硅烷偶联剂接枝到氮化硼表面,并与纤维素混合,得到了具有相对较高热稳定性和力学特性的改性绝缘纸纤维素(KH550 hBN/纤维),相关结果发表在Macromolecular Materials and Engineering上。氮化硼具有较高的固有导热性和良好的介电性能,是一种常用的导热填料。由于其结构与石墨烯相似,氮化硼也具有较高的机械强度和优良的润滑性,可以显著提高聚合物的热稳定性。然而,氮化硼在纤维素内部容易发生团聚,这使得它无法直接用于改善聚合物的性能。因此,本研究将硅烷偶联剂与氮化硼接枝,对传统绝缘纸纤维素进行改性。通过分析比较得出,硅烷偶联剂氮化硼对纤维素的改性使得纤维素链间的空隙得到填充,纤维素与硅烷偶联剂间形成了更多的氢键,连接更为紧密,从而在聚合物内部形成了导热网络,改性纤维素的导热性能显著提高,热稳定性显著增强。同时,硅烷偶联剂的增加使得纤维素材料的韧性、抗形变能力、延展性增加,便于其在高温高压条件下有更长的使用寿命。图3 (a)CED、(b)力学性能、(c)热导率图4 均方位移图5 玻璃转变温度论文信息:Enhancement on thermal and mechanical properties of insulating paper cellulose modified by silane coupling agent grafted hBNXiao Peng, Jinshan Qin, Dong huang, Zhenglin Zeng, Chao Tang*Macromolecular Materials and EngineeringDOI: 10.1002/mame.202200424
  • 导热性能提升150%的硅同位素纳米线
    有电的地方就会产生热量,而这正是缩小电子设备的一个主要障碍。一个改变游戏规则的发现,可以通过传导更多的热量来加速计算机处理器的发展进程。TEM图像显示涂有二氧化硅(SiO2)的 28Si 纳米线。来源:Matthew R. Jones 和 Muhua Sun/莱斯大学科学家们已经验证了一种硅同位素(28Si)纳米线新材料,其热导率比先进芯片技术中使用的传统硅材料高出150%。这种超薄硅纳米线器件可以使更小、更快的微电子技术成为可能,其热传导效率超过了现有技术。由有效散热的微芯片驱动的电子器件反过来会消耗更少的能源——这一改进可以减轻燃烧富含碳的化石燃料产生的能源消耗,这种能源消耗导致了全球变暖。“通过克服硅导热能力的天然局限性,我们的发现解决了微芯片工程中的一个障碍,”报道此新研究成果的科学家 Junqiao Wu 说(课题组主页,https://wu.mse.berkeley.edu)。Wu 是加州大学伯克利分校材料科学系的一名教师科学家和材料科学与工程教授。01热量在硅中缓缓流动我们使用的电子产品相对便宜,因为硅 - 计算机芯片的首选材料 - 既便宜又丰富。可是,尽管硅是电的良导体,当它被缩小到非常小的尺寸时,它就不是热的良导体——而当涉及到快速计算时,这对微小的微芯片来说却是一个巨大问题。艺术家对微芯片的渲染。来源:dmitriy-orlovskiy/Shutterstock每个微芯片中都有数百亿个硅晶体管,它们引导电子进出存储单元,将数据比特编码为1和0,即计算机的二进制语言。电流在这些辛勤工作的晶体管之间流动,而这些电流不可避免地会产生热量。热量会自然地从热的物体流向冷的物体。但是热流在硅中变得很棘手。在自然形式中,硅由三种不同的同位素组成 - 化学元素的形式,其原子核中含有相同数量的质子,但中子数量不同(因此质量不同)。大约 92% 的硅由同位素 28Si 组成,它有14个质子和14个中子;大约 5% 是 29Si,有14个质子和15个中子;只有 3% 是 30Si,相对重量级为14个质子和16个中子,合作者 Joel Ager 解释道,他拥有 Berkelry Lab(伯克利实验室)材料科学部门的高级科学家头衔,也是 UC Berkeley(加州大学伯克利分校)材料科学与工程的兼职教授。左起:Wu Junqiao 和 Joel Ager。来源:Thor Swift/伯克利实验室 Joel Ager 的照片由加州大学伯克利分校提供作为声子,携带热量的原子振动波,在蜿蜒穿过硅的晶体结构时,当它们撞击 29Si 或 30Si 时方向会发生改变,它们不同的原子质量“混淆”声子,减慢它们的速度。“声子最终看到了这个表象,并找到了通往冷端以冷却硅材料的方法,”但这种间接的路径允许废热积聚,这反过来又会减慢您的计算机速度,Ager 说。02迈向更快、更密集的微电子学的一大步几十年来,研究人员推测,由纯 28Si 制成的芯片将克服硅的导热极限,从而提高更小、更密集的微电子器件的处理速度。但是,将硅提纯成单一同位素需要付出高昂的代价和能量水平,很少有设施可以满足 - 更没有哪家工厂能专门制造市场上可用的同位素材料,Ager 说。幸运的是,2000年代初的一个国际项目使 Ager 和杰出的半导体材料专家 Eugene Haller 能够从前苏联时代的同位素制造厂采购四氟化硅气体 - 同位素纯化硅的原料。(Haller 于1984年创立了伯克利实验室的美国能源部资助的电子材料项目,并曾是伯克利实验室材料科学部门的高级科学家和加州大学伯克利分校材料科学和矿物工程教授。)这直接导致了一系列开创性的实验研究,包括 2006 年发表在《自然》杂志上的一项成果,其中 Ager 和 Haller 将 28Si 塑造成单晶,他们用它来证明量子存储器将信息存储为量子比特或量子位,单位存储的数据同时作为 1 和 0 的电子自旋。99.92% 28Si 晶体的光学图像,伯克利实验室科学家 Junqiao Wu 和他的团队使用这种材料制备纳米线。来源:Junqiao Wu/伯克利实验室随后,用 Ager 和 Haller 提纯的硅同位素材料制成的半导体薄膜和单晶显示出比天然硅高 10%的热导率——这是一个进步,但从计算机工业的角度来看,可能不足以证明花一千多倍的钱用同位素纯硅制造一台计算机是合理的,Ager 说。但 Ager 知道,硅同位素材料在量子计算之外具有的科学重要性。因此,他把剩下的东西存放在伯克利实验室一个安全的地方,以备其他科学家可能的不时之需,因为他推断,很少有人有资源制造甚至购买到同位素纯硅。03用 28Si 实现更酷的技术之路大约三年前,Wu 和他的研究生 Ci Penghong 试图找到提高硅芯片传热速率的新方法。制造更高效晶体管的其中一项策略,涉及使用一种称为环栅场效应晶体管(Gate-All-Around Field Effect Transistor,GAAFET)的技术。在这些器件中,硅纳米线堆叠以导电,并同时产生热量,Wu 解释到。“如果产生的热量不能迅速排出,该器件将停止工作,这就像在没有疏散地图的高楼中发出火灾警报一样,”他说。FinFET(鳍式场效应晶体管)和环栅场效应晶体管(GAAFET)结构示意图。来源:Applied Materials但硅纳米线的热传递甚至更糟,因为它们粗糙的表面 - 化学处理的疤痕 - 更容易分散或“混淆”声子,他解释说。由硅纳米线桥接的两个悬浮垫组成的微器件的光学图像。来源:Junqiao Wu/伯克利实验室“然后有一天我们想知道,如果我们用同位素纯 28Si 制造纳米线会发生什么?”Wu 说。硅同位素不是人们可以在公开市场上能够轻松购买到的东西,有消息称,Ager 仍然在伯克利实验室储存了一些少量的硅同位素晶体,且仍然足以分享。“希望有人对如何使用它有一个很好的想法,” Ager 说,“如 Junqiao 的新研究就是一个很好的例证。”04纳米测试后的惊人大揭秘“我们真的很幸运,Joel 碰巧已经准备好了同位素富集的硅材料,正好可用于这项研究,”Wu 说。利用 Ager 提供的硅同位素材料,Wu 研究团队测试了 1 mm 尺寸的 28Si 晶体与天然硅的导热性 - 他们的实验再次证实了 Ager 和他的合作者几年前的发现 - 块状 28Si 的导热性仅比天然硅好 10%。尽管块状晶体硅具有相对较高的热导率(室温下 κ∼144 W/mK),但当其尺寸减小到亚微米范围时,由于声子显著的边界散射,κ 会受到强烈抑制。60 K 条件下,115 nm 尺寸的硅纳米线,κ~16 W/mK, DOI: 10.1063/1.1616981;300 K 条件下,31-50 nm 尺寸的硅纳米线,κ~8 W/mK,DOI: 10.1103/PhysRevLett.101.105501。现在进行纳米级别测试。Ci 使用一种化学蚀刻技术制造了直径仅为 90 nm(十亿分之一米)的天然硅和 28Si 纳米线 - 大约比一根人类头发细1000倍。为了测量热导率,Ci 将单根纳米线悬浮于两个装有铂电极和温度计的微加热器垫之间,然后向电极施加电流以在一个垫上产生热量,然后通过纳米线流向另一个垫。“我们预计,使用同位素纯材料进行纳米线的热传导研究结果只会有 20% 的增量效益,” Wu 说。但 Ci 的测量结果让他们都感到惊讶。28Si 纳米线的热导率提高不是 10% 甚至 20%,而是比具有相同直径和表面粗糙度的天然硅纳米线好 150%。这大大的超出了他们的预期,Wu 说。纳米线粗糙的表面通常会减慢声子的速度,那这是怎么回事呢?莱斯大学(Rice University)的 Matthew R. Jones 和 Muhua Sun 捕获的材料高分辨率 TEM(透射电子显微镜)图像发现了第一条线索:28Si 纳米线表面上的玻璃状二氧化硅层(SiO2)。而纳米线导热性研究的知名专家 Zlatan Aksamija 领导的马萨诸塞大学阿默斯特分校(University of Massachusetts Amherst)研究团队计算模拟实验表明,同位素“缺陷”(29Si 和 30Si 的不存在)阻止了声子逃逸到表面,其中 SiO2 层会大大减慢声子的速度。这反过来又使声子沿着热流方向保持在轨道上 - 因此在 28Si 纳米线的“核心”内不那么“混淆”。(Aksamija 目前是犹他大学(theUniversity of Utah)材料科学与工程副教授。)“这真的出乎意料。发现了两个独立的声子阻断机制 - 表面和同位素,以前被认为彼此独立的 - 现在协同作用,这使我们在热传导研究中获得了非常令人惊讶的结果,却也非常令人满意,“Wu 说。“Junqiao 和团队发现了一种新的物理现象,”Ager 说,“对于好奇心驱动的科学研究来说,这是一个真正的胜利。这真的是太令人兴奋了。”研究小组接下来计划将他们的发现推进到下一个阶段:研究如何“控制,而不仅仅是测量这些材料的热传导性能”,Wu Junqiao 说。莱斯大学、马萨诸塞大学阿默斯特分校、深圳大学和清华大学的研究人员参与了研究工作。这项工作得到了美国能源部科学办公室的支持。原文信息Giant Isotope Effect of Thermal Conductivity in Silicon Nanowires,Penghong Ci, Muhua Sun, Meenakshi Upadhyaya, Houfu Song, Lei Jin, Bo Sun, Matthew R. Jones, Joel W. Ager, Zlatan Aksamija, and Junqiao Wu,Phys. Rev. Lett. 128, 085901 (2022)https://doi.org/10.1103/PhysRevLett.128.085901
  • 一文了解|五大材料热性能分析方法
    | 热分析简介热分析的本质是温度分析。热分析技术是在程序温度(指等速升温、等速降温、恒温或步级升温等)控制下测量物质的物理性质随温度变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化,即P = f(T)。按一定规律设计温度变化,即程序控制温度:T = (t),故其性质既是温度的函数也是时间的函数:P =f (T, t)。| 材料热分析意义在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用,对于材料的研究开发和生产中的质量控制都具有很重要的实际意义。| 常用热分析方法解读根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,常用的热分析方法包括热重分析法(TG)、差示扫描量热法(DSC)、静态热机械分析法(TMA)、动态热机械分析(DMTA)、动态介电分析(DETA)等,它们分别是测量物质重量、热量、尺寸、模量和柔量、介电常数等参数对温度的函数。(1)热重分析(TG)热重法(TG)是在程序温度控制下测量试样的质量随温度或时间变化的一种技术。应用范围:(1)主要研究材料在惰性气体中、空气中、氧气中的热稳定性、热分解作用和氧化降解等化学变化;(2)研究涉及质量变化的所有物理过程,如测定水分、挥发物和残渣、吸附、吸收和解吸、气化速度和气化热、升华速度和升华热、有填料的聚合物或共混物的组成等。原理详解:样品重量分数w对温度T或时间t作图得热重曲线(TG曲线):w = f (T or t),因多为线性升温,T与t只差一个常数。TG曲线对温度或时间的一阶导数dw/dT 或 dw/dt 称微分热重曲线(DTG曲线)。图2中,B点Ti处的累积重量变化达到热天平检测下限,称为反应起始温度;C点Tf处已检测不出重量的变化,称为反应终了温度;Ti或Tf亦可用外推法确定,分为G点H点;亦可取失重达到某一预定值(5%、10%等)时的温度作为Ti。Tp表示最大失重速率温度,对应DTG曲线的峰顶温度。峰的面积与试样的重量变化成正比。实战应用:热重法因其快速简便,已经成为研究聚合物热变化过程的重要手段。例如图3中聚四氟乙烯与缩醛共聚物的共混物的TG曲线可以被用来分析共混物的组分,从图1中可以发现:在N2中加热,300~350℃缩醛组分分解(约80%),聚四氟乙烯在550℃开始分解(约20%)。影响因素:(a)升温速度:升温速度越快,温度滞后越大,Ti及Tf越高,反应温度区间也越宽。建议高分子试样为10 K/min,无机、金属试样为10~20K/min;(b)样品的粒度和用量:样品的粒度不宜太大、装填的紧密程度适中为好。同批试验样品,每一样品的粒度和装填紧密程度要一致;(c)气氛:常见的气氛有空气、O2、N2、He、H2、CO2 、Cl2和水蒸气等。气氛不同反应机理的不同。气氛与样品发生反应,则TG曲线形状受到影响;(d)试样皿材质以及形状。(2) 静态热机械分析 (TMA)热机械分析,是指在程序温度下和非震动载荷作用下,测量物质的形变与温度时间等函数关系的一种技术,主要测量物质的膨胀系数和相转变温度等参数。应用范围:静态热机械分析仪主要用于对无机材料、金属材料、复合材料及高分子材料(塑料、橡胶等)的热膨胀系数;玻璃化转变温度;熔点;软化点;负荷热变形温度;蠕变等进行测试。实战应用:(a)纤维、薄膜的研究:可测定其伸长、收缩性能和模量及相应的温度,应力-应变分析、冷冻和加热情况下应力的分析;(b)复合材料的表征,除纤维用TMA研究外,复合材料的增强,树脂的玻璃化转变温度Tg、凝胶时间和流动性、热膨胀系数等性质,还有多层复合材料尺寸的稳定性、高温稳定性等都可以用TMA快速测定并研究;(c)涂料的研究:可了解涂料与基体是否匹配及匹配的温度范围等;(d)橡胶的研究:可了解橡胶在苛刻的使用环境中是否仍有弹性及尺寸是否稳定等。影响因素:(a)升温速率:升温速率过快样品温度分布不均匀(b)样品热历史(c)样品缺陷:气孔、填料分布不均、开裂等(d)探头施加的压力大小:一般推荐0.001~0.1N(e)样品发生化学变化(f)外界振动(g)校准:探头、温度、压力、炉子常数等校准(h)气氛(i)样品形状,上下表面是否平行应用(3) 差示扫描量热法(DSC)原理:差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。差示扫描量热法有补偿式和热流式两种。试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。图4中展示了典型的DSC曲线。应用范围:(1)材料的固化反应温度和热效应测定,如反应热,反应速率等;(2)物质的热力学和动力学参数的测定,如比热容,转变热等;(3)材料的结晶、熔融温度及其热效应测定;(4)样品的纯度等。影响因素:(a)升温速率,实际测试的结果表明,升温速率太高会引起试样内部温度分布不均匀,炉体和试样也会产生热不平衡状态,所以升温速率的影响很复杂。(b)气氛:不同气体热导性不同,会影响炉壁和试样之间的热阻,而影响出峰的温度和热焓值。(c)试样用量:不可过多,以免使其内部传热慢、温度梯度大而使峰形扩大和分辨率下降。(d)试样粒度:粉末粒度不同时,由于传热和扩散的影响,会出现试验结果的差别。(4) 动态热机械分析(DMA)动态热机械分析测量粘弹性材料的力学性能与时间、温度或频率的关系。样品受周期性(正弦)变化的机械应力的作用和控制,发生形变。应用范围:动态热机械分析仪主要用于对无机材料、金属材料、复合材料及高分子材料(塑料、橡胶等)的玻璃化转变温度、负荷热变形温度、蠕变、储能模量(刚性)、损耗模量(阻尼性能)、应力松弛等进行测试。DMA基本原理:DMA是通过分子运动的状态来表征材料的特性,分子运动和物理状态决定了动态模量(刚度)和阻尼(样品在振动中的损耗的能量),对样品施加一个可变振幅的正弦交变应力时,将产生一个预选振幅的正弦应变,对粘弹性样品的应变会相应滞后一定的相位角δ,如图5所示。DMA技术把材料粘弹性分为两个模量:一个储存模量E´,E´与试样在每周期中贮存的最大弹性成正比,反映材料粘弹性中的弹性成分,表征材料的刚度;而损耗模量E",E"与试样在每周期中以热的形式消耗的能量成正比,反映材料粘弹性中的粘性部分,表示材料的阻尼。材料的阻尼也成为内耗,用tanδ表示,材料在每周期中损耗的能量与最大弹性贮能之比,等于材料的损耗模量E"与贮能模量E´。DMA采用升温扫描,由辅助环境温度升温至熔融温度,tanδ展示出一系列的峰,每个峰都会对应一个特定的松弛过程。由DMA可测出相位角tanδ、损耗模量E"与贮能模量E´随温度、频率或时间变化的曲线,不仅给出宽广的温度、频率范围的力学性能,还可以检测材料的玻璃化转变、低温转变和次级松弛过程。例如损耗峰能够代表某种单元运动的转变,图6为聚苯乙烯tg随温度变化的曲线,从图中可以推断峰可能为苯基绕主链的运动;峰可能是存在头头结构所致;峰是苯环绕与主链连接键的运动。影响因素:升温速率、样品厚度、有无覆金属层,夹具类型等(5) 动态介电分析(DETA)动态介电分析是物质在一定频率的交变电场下并受一定受控温度程序加热时,测试物质的介电性能随温度变化的一种技术。介电分析原理:具有偶极子的电介质,在外电场的作用下,将会随外电场定向排列。偶极子的极化和温度有关并伴随着能量的消耗。一般以介电常数(ε)表示电介质在外电场下的极化程度,而介电损耗(D)则表示在外电场作用下,因极化发热引起的能量损失。偶极子在外电场作用下的定向排列也会随外电场的去除而恢复杂乱状态。偶极子由有规排列回复到无规排列所需的时间称“介电松弛时间T”,按德拜理论:(其中:η介质粘度,a分子半径,K玻尔兹曼常数,T温度K)。松弛时间和分子的大小、形状以及介质的粘度有关。而式中tgδ损耗角正切,ε0静电场下介电常数;ε∞光频率下的介电常数。由此见,ε、tgδ都是和松弛时间τ有关的物理量,因此也和分子的结构、大小、介质粘度有关,这就是利用介电性能研究物质分子结构的依据。由(a)(b)两式可以证明,当时,ε´有极大值,f0称“极化频率”。即当外电场频率为极化频率时,介电损耗极大。应用范围:这一技术已被广泛地应用于研究材料电介质的分子结构、聚合程度和聚合物机理等。从应用对象讲,有聚丙烯酸甲酯、聚氯乙烯、聚酰胺、聚酰亚胺、聚苯乙烯、酚醛、环氧、聚蜡等热塑性和热固性树脂。此外还有耐高温树脂中的聚苯枫、聚苯并咪唑,生物化合物中的蛋白质等。其具体应用也包括增强塑料、模压材料、涂料、粘合剂、橡胶甚至玻璃、陶瓷等金属氧化物。在实验室中,DETA可作为粘弹性研究的有力工具,如动态机械性能和热机械性能测试。在工业生产中,它可应用于树脂制造、质量控制、预固化和固化程度控制等。| 结语该文针对热分析技术的概念入手分析,从五个方面:热重分析法、差示扫描量热法、静态热机械法、动态热机械分析、动态介电分析,简要论述了材料测试中几种典型的热分析方法。热分析已有百年的发展历程,随着科学技术的发展,热分析技术展现出新的生机和活力,不断发展进步。
  • 直播预告!第四届材料表征与分析检测技术网络会议之热性能分会场
    仪器信息网讯 材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。仪器信息网将于2022年12月14-15日举办“第四届材料表征与分析检测技术网络会议(iCMC 2022)”,两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。会议报名链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/ 热性能主题专场会议日程:报告时间报告题目报告人专场四:热性能(12月15日下午)14:00--14:30高性能热电材料与近室温制冷器件中国科学院物理研究所研究员 赵怀周14:30--14:50锂离子电池热性能表征和失效分析沃特世科技-TA仪器部门TA仪器高级热分析应用专家 林超颖14:50--15:10高压重量法在储氢材料研究中的应用沃特世科技-TA仪器部门服务工程师 陈刚直播抽奖:Waters-TA定制三合一数据充电线10个15:10--15:40电子封装碳基热管理材料中国科学院宁波材料技术与工程研究所研究员 林正得15:40--16:10反钙钛矿化合物的反常热膨胀性质及其关联物性的研究北京航天航空大学教授 王聪16:10--16:50有机硅在热界面材料应用研究现状中国科学院深圳先进技术研究院研究员 曾小亮直播抽奖:《2021年度科学仪器行业发展报告》5本嘉宾介绍:中国科学院物理研究所研究员 赵怀周中科院物理所研究员,课题组长。长期从事热电材料、热电输运新机制、热电器件与应用系统研究。在新型高性能近室温热电材料、热电器件和热电应用系统研究方面积累了丰富的经验,取得重要创新成果,在基于镁基新材料的下一代热电制冷模块研究方面形成了国际特色。先后在Joule、Nat. Comm、Sci. Adv 、JACS、ACS Nano、Nano Energy、和Adv. Funct. Mater等著名刊物发表第一或者通讯论文70余篇,申请及授权国际国内专利10余项,文章引用次数2000余次。主持及参与国家自然科学联合重点及面上基金、国家重点研发计划等重要课题10余项。在国内外大型学术会议担任分会场主持人和特邀报告人二十余次,担任第12届中国热电材料大会会议主席。第三届中国发明协会发明创业成果奖二等奖(排序第一位)。【摘要】 报告聚焦热电材料和技术在全固态制冷方面的原理、优势和广泛应用,介绍了物理所热电研究团队近年来在热电新材料、新器件与新型应用系统方面的创新性工作。主要包括: (1)制备出全尺度可服役的基于Mg3(Sb,Bi)2新材料的热电制冷器件,基于新材料在性能投入比方面的显著优势,其有望颠覆一直以来行业上基于碲化铋的传统热电半导体制冷材料体系。(2)助力解决热电领域卡脖子材料与设备问题,在碲化铋缩颈热挤压制造相关设备和工艺方面获得进展,对实现我国热电制冷微器件的国产化有帮助作用。申请及授权发明专利和实用新型专利多项。该技术近期已在广西见炬科技有限公司、河北东方电子有限公司等热电企业获得推广。 (3) 提出地热-热电协同空调系统的思路并制造出原理样机。该系统可以替代现有商业空调的功能,同时具备分立式管理、无震动噪音和零碳排放的优势,有望实现规模应用。沃特世科技-TA仪器部门高级热分析应用专家 林超颖浙江大学高分子材料硕士,现任美国TA仪器高级热分析应用专家。长期从事各类材料的热分析、力学性能表征及失效分析等工作。【摘要】 锂离子电池在使用过程中,一旦正极材料、负极材料、电解液等的分解,或隔膜熔断、破裂导致正负极材料直接接触,或由于热管理设计缺陷导致锂离子电池出现安全性能的问题,会严重危害生命和财产安全。TA仪器从锂离子电池的热性能和力学性能出发,全方位剖析锂离子电池的安全性能。沃特世科技-TA仪器部门服务工程师 陈刚2000年毕业于华东理工大学,本科学历。从事德国Rubotherm磁悬浮天平系列设备的中国国内技术支持和售后服务近16年。曾多次前往德国原厂接受培训。熟悉国内磁悬浮天平用户及应用情况,对高压吸附领域有一定了解。曾工作于荷兰安米德公司,北京儒亚公司,于2017年加入美国TA公司,并工作至今。【摘要】 磁悬浮天平的发明是重量法应用领域里具有革命意义的里程碑。大大拓宽了重量法的应用范围,并附带了独特的性能优势。磁悬浮天平也为储氢材料研究带来了积极的帮助。中国科学院宁波材料技术与工程研究所研究员 林正得林正得,博士,研究员,博士生导师。入选2014年中国科学院"百人计划"、2013年浙江省"千人计划"等人才项目。2008年博士毕业于台湾清华大学材料科系。2012–2014年于美国麻省理工学院(MIT)电子学实验室和机械系担任博士后,2014年6月加入中国科学院宁波材料所。自加入材料所以来,已发表了ACS Nano、Advanced Science、Biosensors & Bioelectronics等SCI论文149篇,全部文章的引用数高于10,000次。现担任Biosensors & Bioelectronics期刊副主编。团队目前围绕着石墨烯应用开展研究课题,包含:导热应用、热界面材料、以及生医传感器件。【摘要】 近年来,基于氮化镓等第三代半导体的高频率、大功率芯片得到了国家和产业的重点关注与广泛应用;为了提升内核效能,新一代芯片架构正朝向微缩化和3D互联方向发展,致使芯片的功率密度大幅提高,发热量随之迅猛增加。芯片的“热失效”成为了制约5G、航空航天等精密装备内功率器件发展的主要瓶颈之一。要解决目前电子封装的散热难题,需要对既有热管理材料进行升级迭代,并有效连接与统合这些部件,形成从芯片至散热器的最优传热路径。本团队针对电子封装中“芯片–衬底–均热板–热沉”热输运串联系统的关键零部件进行了攻关开发,克服了复合材料中二维材料填料的“定制调控排列取向”与“强化异质传热界面”两个共性难题,研发出“超低热阻碳基热界面材料”、“轻质高导热碳/铝散热器”、“柔性绝缘氮化硼导热膜”等系列新型热管理材料,从而提出面向新一代芯片架构的综合解决方案,实现拥有自主知识产权的创新技术与产品。北京航天航空大学教授 王聪北京航空航天大学集成电路科学与工程学院教授,博士生导师。在Adv. Mater.,Phys. Rev. 系列, Chem. Mater. Appl. Phys. Lett.,等刊物上发表论文超过240篇, SCI收录200篇以上,SCI他引超过3500次,H=33,2020-2021两年连续被国际机构爱思唯尔(Elsevier)评为“中国被高引学者”;授权国家发明专利14项。2012年获得教育部自然科学二等奖。中国物理学会理事,中国晶体学会理事。长期从事固体反常热膨胀行为、自旋电子学反铁磁材料及器件、光学薄膜领域的研究工作。【摘要】 反钙钛矿化合物Mn3XN系列材料由于“晶格-自旋-电荷”的强关联性,发现诸多具有应用价值的物理特性,如零/负膨胀、压磁、磁热、近零电阻温度系数、反常霍尔效应等。在NMn6八面体中, Mn-Mn直接交换作用和Mn-X-Mn间接磁交换作用共存,形成复杂的磁结构, 且其磁结构对成分、温度、压力、磁场等的变化非常敏感,因此在多场耦合下产生丰富的物理特性。我们利用变温X射线衍射,中子衍射技术,结合热膨胀仪、差热分析(DSC)、磁、电测量等解析了这类化合物随温度、压力变化的晶体结构和磁结构,热膨胀系数及其关联的磁、电输运行为等。本报告将重点探讨Mn3XN(X: Ga, Ni, Ag, Zn)系列化合物在温度和压力场下的磁结构演变规律,以及由其诱导的物性变化,如负(零)热膨胀、反常电输运、压磁、压热效应等。中国科学院深圳先进技术研究院研究员 曾小亮中国科学院深圳先进技术研究院研究员,工学博士,中国科学院青促会会员、深圳市“孔雀计划”海外高层次人才(C类),入选2022年“全球前2%顶尖科学家榜单”,Google学术总引用次数7276,h指数47,荣获国际知名学术期刊Composites Part A,2020年“Top 5优秀审稿人”、国际学术期刊《Nanomaterials》(JCR 一区,影响因子:5.076)和《Frontiers in Materials》(JCR 二区,影响因子:3.515)的客座主编。以第一作者或通讯作者在Advanced Functional Materials, ACS Nano, Chemistry of Materials, Small等国际期刊上发表SCI论文50多篇,申请专利30多项,合著书籍《聚合物基导热复合材料》。2010年以来,主持或参与国家自然科学基金项目、科技部重点研发专项、科技部重大科技计划“02专项”,广东省创新科研团队项目等项目。【摘要】 在现代电子元器件中,有相当一部分功率转化为热的形式,耗散生热严重威胁电子设备的运行可靠性。更令人担忧的是,随着后摩尔时代的到来,电子元器件的封装技术由传统的二维封装向2.5维或更高级的三维封装方向发展。三维封装技术虽然提高了电子元器件运行速度、实现了电子设备的小型化和多功能化,但是也导致器件所产生的热量进一步的集中,采用常规的热传导技术已经无法实现热量有效传导。“热管理”的问题已经成为阻碍现代电子元器件发展的首要问题之一。有机硅是制备热界面材料最为常用的基础树脂,本报告将围绕如下三个方面阐述有机硅在热界面材料应用研究现状: 1. 芯片热量来源及趋势 2. 有机硅热界面材料研究现状 3. 热界面材料用有机硅未来发展趋势会议报名:https://www.instrument.com.cn/webinar/meetings/icmc2022/
  • 梅特勒-托利多:六大类半导体用户在使用的成分测试、热性能分析等解决方案
    p style=" text-align: justify text-indent: 2em " 10月15日-16日,中国科学院半导体研究所、仪器信息网联合主办首届“半导体材料与器件研究与应用”网络会议(i Conference on Research and Application of Semiconductor Materials and Devices, iCSMD 2020),22位业内知名的国内外专家学者聚焦半导体材料与器件的产业热点方向,进行为期两日的学术交流。 br/ /p p style=" text-align: justify text-indent: 2em " 梅特勒托利多是一家全球领先的精密仪器及衡器制造商,全球员工总计16,200名,营业额达30亿美元,市场组织遍布全球40多个国家。在中国,梅特勒托利多在上海、常州、成都都设立了制造基地及研发中心,并拥有了遍布全国的销售及服务网络。iCSMD 2020邀请了梅特勒-托利多的分析仪器产品专家李玉琪,分享梅特勒-托利多为六大类半导体用户提供的各种解决方案实例和应用。 /p p style=" text-align: center text-indent: 0em " script src=" https://p.bokecc.com/player?vid=CABA4836C7A6484F9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script /p p style=" text-align: justify text-indent: 2em " 据介绍,芯片制造过程中涉及到大量梅特勒-托利多的产品,其用户也可大致分为六类:一是晶圆代工厂,在材料入厂检和中间控制步骤中涉及到天平、滴定仪、KF水分仪、pH计等;二是硅片制造厂商需要使用天平、滴定仪等对研磨液和清洗液进行含量分析;三是电子特气类客户,利用天平和比较器对配器进行称量;四是湿电子化学品客户,通过天平、滴定仪、KF水分仪、密度计和pH计等对一些成分含量进行分析测试和密度测试等;五是光刻胶厂商,使用KF水分仪、热分析仪、DSC和TGA等测定水分和热稳定性等;六是封装材料厂商,需要天平、DSC和TGA等对点胶和材料热性能进行测试。 /p p style=" text-align: justify text-indent: 2em " 李玉琪表示,半导体行业客户在实际仪器应用中面临着精度要求高、在线分析、庞大的数据管理、对接公司系统、安全要求高等痛点。针对这些痛点,梅特勒托利多推出了电位滴定仪,可应于湿电子化学品的含量分析、刻蚀液的分析以及光刻胶中显影液成分和水分含量分析。 /p p style=" text-align: justify text-indent: 2em " 梅特勒-托利多的电位滴定仪具有OneClick一键滴定、LabX软件双通道操作模式、StatuslightTM状态指示灯和声音信号喇叭、Coverup自动揭盖装置、Smart sampleTM实现滴定样品高效安全的无线传输和Smart chemicalTM实现化学试剂对滴定仪对话等功能,成功解决了客户痛点。与此同时,在半导体行业应用中,梅特勒-托利多的电位滴定仪还拥有干扰因素少、智能型滴定过程、易于操作和可扩展性等优势。 /p p style=" text-align: justify text-indent: 2em " 报告最后,李玉琪还介绍了梅特勒-托利多工业称重方案和分析仪表在半导体行业的应用。 /p p br/ /p
  • 差示扫描量热仪:揭示材料热性质的秘密武器
    差示扫描量热仪(DSC)是现代材料科学中不可或缺的重要工具。它凭借其独特的测量原理和高精度的数据记录,为科研工作者揭示了材料的热性质秘密。上海和晟 HS-DSC-101 差示扫描量热仪DSC的工作原理基于热量差异测量。在实验中,样品与参比物同时受到相同速率的加热或冷却,由于它们的热性质不同,会产生热量差异。这些差异通过高精度的传感器实时监测,并转化为电信号进行记录,形成DSC曲线。通过分析这些曲线,科研工作者可以获取到关于材料的多种热性质信息,如熔化、结晶、相变等过程的温度和热量变化。DSC的应用范围广泛,涵盖了高分子材料、无机物、有机物、药物等多个领域。在材料研发过程中,DSC可以帮助科研工作者了解材料的热稳定性、纯度、结晶度等关键性质,为材料性能的优化提供重要依据。此外,DSC还可以用于化学反应的研究,测量反应热、反应速率等参数,为化学研究提供有力支持。然而,DSC的使用也需要一定的技术要求和注意事项。样品制备要求高,需要确保样品的均匀性和纯净度。同时,仪器的摆放位置、实验过程中的环境控制等也需要特别注意,以保证测量数据的准确性和可靠性。总之,差示扫描量热仪作为现代材料科学中的关键工具,为科研工作者揭示了材料的热性质秘密,为材料研发和化学研究提供了有力支持。
  • 差示扫描量热仪:探索物质热性质的得力助手
    差示扫描量热仪,简称DSC,是一种用于研究物质在加热或冷却过程中的热效应和物理性质变化的精密仪器。它广泛应用于材料科学、化学、生物科学等领域,为科研工作者提供了重要的研究手段。上海和晟 HS-DSC-101 差示扫描量热仪差示扫描量热仪通过测量样品与参比物之间的热流差异,揭示物质在温度变化过程中的热行为。这种仪器能够精确地测定物质的熔点、玻璃化转变温度、结晶度等关键参数,从而帮助研究者深入了解物质的性质。在材料科学领域,差示扫描量热仪发挥着举足轻重的作用。通过DSC分析,研究者可以评估材料的热稳定性,优化材料的合成工艺,以及开发新型功能材料。此外,DSC还可用于研究高分子材料的热降解行为,为材料的安全使用提供有力保障。在化学领域,差示扫描量热仪同样具有广泛的应用。它可以用于研究化学反应的热效应,揭示反应的动力学过程和机理。同时,DSC还可以用于筛选和优化化学反应条件,提高反应的效率和产物纯度。在生物科学领域,差示扫描量热仪同样发挥着重要作用。它可以用于研究生物大分子的热稳定性,为药物设计和生物工程提供重要依据。此外,DSC还可用于研究生物材料的热行为,为生物医学领域的发展提供有力支持。总之,差示扫描量热仪作为一种重要的热分析仪器,为科研工作者提供了深入了解物质热性质的有力工具。随着科学技术的不断发展,DSC将在更多领域发挥重要作用,推动人类社会的进步。
  • 特种工程塑料高温性能分析:超高温热变形维卡温度的测定(MAX.500℃)
    首先,让我们来了解一下什么是工程塑料?Whats”工程塑料,是指一类具有良好物理性质、机械性能、耐磨性、耐腐蚀性、绝缘性、耐热性、耐寒性、耐老化性等特点的高性能塑料材料。这些材料可以承受较高的温度和压力,具有较好的机械强度和耐用性,相对于传统的通用塑料具有更高的综合性能和更广泛的应用范围,相对于金属材料更轻、更薄、更能耐受高温,因此在工业和科技领域中被广泛应用并逐步成为发展趋势。例如常见的用于制造发动机内罩、轴承的聚醚酮(PEEK)、用于制造耐高温的薄膜、涂料,防火织物的聚酰亚胺(PI)、用于制造餐具、耐酸碱的管道阀门的聚苯硫醚(PPS)等。在工程和科研领域中,材料高温下性能的精确测定对材料研究和产品设计至关重要。如果工程塑料材料在实际使用中耐热性不好,就可能会出现以下问题:Question”1)部件变形或软化:在高温环境下,超级工程塑料可能会失去其结构稳定性,导致部件变形或软化,影响其性能和寿命。2)减弱耐久性:高温环境可能会导致超级工程塑料的分子结构发生变化,从而降低材料的耐久性和使用寿命。3)失去机械强度:高温环境可能会导致超级工程塑料的机械强度减弱,从而影响其承载能力和抗冲击性能。4)失效:如果超级工程塑料的耐热性能不好,那么在高温环境下,部件可能会失效,从而影响整个系统的性能和安全性。这些问题的出现会影响整个机械设备的性能和寿命。此外,还可能会对人员和环境造成安全隐患,例如部件失效引发事故、释放有害气体等。因而在使用工程塑料时,必须考虑其耐热性能,并根据实际使用情况选择适合的材料。表征高分子复合材料耐温性能的一个重要指标是热变形温度。但随着高性能聚酰亚胺塑料和各种纤维增强材料的研制和发展,由于其材料本身性能优越,通用仪器很难满足其测试要求。目前国内测定材料热变形的设备大多采用油介质加热,最高测定温度不超过300℃。同时由于加热时介质油的挥发和分解,产生大量的油烟,极易造成环境污染和人员中毒。通用热变形测试仪由金属材料加工制造,高温时,金属自身变形量增大,会对测试材料变形量产生影响,得到的材料热变形数据并不能反应材料的真实性能。而安田精机的高温热变形温度测定仪在测试材料的高温性能方面具有突出的优势。出色的高温稳定性和机械性能安田精机的高温热变形测试设备采用石英材质制作支架、测试台和压头等部位,该材质能够在高达500℃的极端温度下保持卓越的性能,设备最高测试温度可以达到500℃,同时可选择更换维卡测试头,支持维卡测试。【已知石英材质的热膨胀系数是5.6x10-7/℃,而SUS304不锈钢材质是17.3x10-6/℃,这意味着在同样高的温度下石英材质更不容易变形】精密的温度控制和实时监测加热方式放弃使用介质油加热,而选用更加环保安全、便捷经济的空气加热,为了保证温度分布均匀,各测试台的空气隔室是独立的,各自具备温控功能,能够均衡升温;防样条碳化功能为保护试样在高温下不发生碳化,测试过程中可以注入氮气保护,氮气可以将氧气排出,由于其自身具有惰性,可以降低塑料的氧化速度;安田精机的高温热变形温度测定仪可广泛应用于材料科学、汽车制造、航空航天和能源等领域。其卓越性能、高温范围、精密温度控制和广泛的应用领域为特种工程塑料高温性能分析提供了解决方案。感兴趣的朋友欢迎私信我们了解!更多精密物性设备,尽在仕家万联!
  • 美公司将利用石墨泡沫冷却提高LED性能
    发光二极管点亮光明前程 发光二极管的英文简称为LED,通常它由镓与砷、磷的化合物制成。在接通电源后,其中的电子与空穴复合时能辐射出可见光。人们发现,磷砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光。与小白炽灯泡和氖灯相比,发光二极管的特点包括工作电压很低 工作电流很小 抗冲击和抗震性能好,可靠性高,寿命长 通过调制电流强弱可以方便地调制发光的强弱。基于这些特点,发光二极管在许多光电控制设备中用作光源,在电子设备中用作信号显示器。   冷却可提高发光二极管性能   在大力提倡节约能源的今天,发光二极管作为照明灯越来越受到人们的青睐,其市场在不断扩大。据介绍,上海世博园区内使用了10.5亿颗发光二极管灯泡,世博场馆室内照明光源中约有80%采用发光二极管作为照明光源,相较于普通白炽灯省电达90%左右。专家表示,2010年中国发光二极管销售产值将突破1500亿元人民币,相当于2008年的两倍。   面对广阔的市场需求,人们在努力提高发光二极管照明灯的性能。研究发现,虽然发光二极管工作电压和电流很低,但是它仍然存在着发热问题。发光二极管的温度每降低10华氏度,其发光部件的寿命就能增加一倍,因此冷却对提高发光二极管照明灯的性能十分重要。   新石墨泡沫冷却材料闪亮登场   美国能源部橡树岭国家实验室(ORNL)材料科学和技术部研究人员詹姆斯克勒特发明了一项称为石墨发泡的技术。利用该技术,人们能够获得石墨泡沫(graphite foam)材料。用石墨泡沫帮助冷却发光二极管照明灯,可以更有效地控制其发热,从而延长其寿命并降低价格。此举有望扩大发光二极管照明灯的用户群。   克勒特说:“在(石墨发泡)技术降低发光二极管照明系统、稳定并延长其寿命的同时,该技术能够取代普通照明灯设备的更换和维护开支,每年为城市节约数百万美元。”他希望石墨发泡技术能够为顾客节约开支。   与传统的利用金属铜和金属铝等散热材料相比,新技术制成的石墨泡沫具有多种优点,比如,石墨泡沫导热性高、重量轻和加工容易。这些特点使得石墨泡沫材料拥有更好的设计适应性,成为更轻、更廉价和更高效的发光二极管照明灯冷却材料。   据悉,石墨泡沫具有的特殊石墨晶体结构是形成其良好导热性的关键。晶体结构的“骨架”中充满了气穴,与石墨相比,石墨泡沫的密度只有石墨的25%,因此其重量较轻。石墨泡沫特有的纽带网能够快速地将热源的热量散发掉,因而它是一种理想的冷却材料。   作为首推的节能照明用品,发光二极管照明灯因其耗能低、紧凑和平均寿命长的特点得到了越来越多的利用,其在街道照明和停车场照明等方面的应用需求也在不断提高。   LED北美公司专门为在城市、商业和工业领域的应用提供发光二极管照明灯产品。为不断提高发光二极管照明灯的性能,确保自己在与对手长期的竞争中处于有利地位,日前公司与橡树岭国家实验室签订了石墨发泡技术合作协议,获得了该技术的使用权。公司准备用该技术生产石墨泡沫,并用石墨泡沫以被动式冷却方式帮助发光二极管照明灯部件散热。   LED北美公司设立在橡树岭国家实验室名为“技术2020”的实验孵化基地内,公司和实验室建立起了良好的关系。公司创始人之一安德鲁威廉表示,与橡树岭国家实验室为邻,公司与实验室的研究人员可以更方便地密切合作,以完善石墨泡沫材料与发光二极管照明灯。
  • 如何进行锂电池性能的高低温检测
    如何进行锂电池性能的高低温检测?锂电池是一种新型的、性能优良的电池,目前已被广泛使用。但是,由于环境因素的影响,锂离子电池的性能存在较大的差异。因此,有必要开展锂离子电池在高、低温环境中的适应性研究。高低温适应性试验是测试锂电池在高低温环境下的适应能力的一种标准化实验方法。试验项目包括高温(55℃)、低温(-20℃)和温度循环三个部分。该实验涉及到的参数包括静置时间、充放电时间、充放电电流和电压等。1.在高温试验中,锂电池需要在55℃的环境下连续静置24小时,以测试其在高温环境下的耐热性能。在完成静置后,需要对锂电池进行一定的充电时间和放电时间,以测试锂电池在高温环境下的充放电性能。在充放电时需要注意电流和电压的控制,以免过度放电导致电池性能下降。2.在低温测试中,需要将锂电池放置于-20摄氏度以下24小时。如此一来,就可以对锂电池的耐寒性进行测试了。与此类似,在完全静止之后,还需对锂电池进行充放电,以检测其在低温环境中的充放电特性。在这一过程中,为了防止对锂离子电池的性能造成负面的影响,还必须对放电电流、电压进行严格的控制。3.以高、低温度实验为基础,进行了温度循环实验。为了检测锂离子电池在不同温度下的耐受能力,对其进行了高、低温热循环试验。在对电池进行试验时,为了确保试验结果的准确,必须对试验环境温度进行严格的控制。因此,对锂离子电池进行高、低温适应实验是对其进行综合评价的一种手段。通过本项目的研究,可以有效地评价锂离子电池在特殊环境中的适应性,为其开发与应用提供理论依据。随着科学技术的发展和产业化进程的加快,高、低温环境下锂离子电池的性能测试将会得到越来越多的应用。
  • 厚度33微米,科学家研发出高性能电磁屏蔽材料
    在日常生活和工作中,电子设备运行时会产生电磁辐射,可能会给人们的健康带来不良影响,各设备间的电磁干扰也会严重影响电子设备的性能及其正常运行。因此,发展新型电磁屏蔽材料,尤其是高性能电磁屏蔽材料是解决电磁污染的关键。  如今,各种电子设备越来越多地应用于人们的生活和工作中,但是电子设备在运行过程中会产生电磁辐射,可能会给人们的健康带来不良影响,各设备间的电磁干扰也会造成信号被拦截、数据丢失等,严重影响电子设备的性能及其正常运行。特别是随着物联网、自动驾驶、可穿戴设备的发展,电子设备越来越复杂、体积越来越小、精度要求越来越高,要保证这些高度集成、高功率的电子设备正常运行,电磁干扰屏蔽至关重要。  发展新型电磁屏蔽材料是解决电磁污染的关键,特别是超薄、轻质并具有优异力学强度和可靠性的高性能电磁屏蔽材料。日前,北京航空航天大学化学学院研究员衡利苹团队研发了一种具有超润滑界面的还原氧化石墨烯/液态金属(S-rGO/LM)异质层状纳米复合材料,可用于高性能稳定的电磁屏蔽。相关研究成果发表在国际学术期刊《美国化学学会纳米》上。  用石墨烯研发高性能柔性电磁屏蔽材料  电磁屏蔽材料是能够通过吸收、反射等方式来衰减电磁波能量传播,以有效抑制电磁干扰和污染的功能材料。  人们希望,电子设备在工作时,既不被外界电磁波干扰,又不辐射出电磁波干扰其他设备或危害人体健康,因此电子设备运行时,自身产生的电磁波需要被吸收,而外界入射的电磁波需要被反射或吸收。铜、铝等金属是常用的电磁屏蔽材料,但它们容易被腐蚀、密度大、重量重,并以反射电磁波为主,会造成二次电磁污染。特别是传统的金属材料不具备柔性,难以被应用在柔性电磁屏蔽领域。  镓基液态金属(LM)是目前柔性电子制造应用最广泛的材料,这主要归因于其具有低熔点、低黏度、高电导率和热导率等物理特性。衡利苹说,随着对具备室温流动性的镓金属、镓基合金液态金属材料研究的逐步深入,其在柔性电磁屏蔽材料领域已表现出相当大的潜力。  但是现有的镓基液态金属电磁屏蔽材料普遍需要与绝缘的聚合物基材共混,以得到具备一定机械强度、可实际应用的电磁屏蔽材料。而材料的导电性和导磁性越好,对电磁的屏蔽效能就越高,镓基液态金属电磁屏蔽材料与绝缘的聚合物基材共混,会损失镓基液态金属的导电性能,使电磁屏蔽性能无法达到最佳水平。使用一种本身也具备超高电导率的基材来构建液态金属柔性复合材料,成为提升液态金属柔性电磁屏蔽复合材料性能的关键。于是,石墨烯进入了衡利苹团队的视线。  石墨烯具有优异的光学、电学、力学特性,本身就可以保持很好的导电性。氧化石墨烯(GO)对镓基液态金属还起到了良好的桥接作用,因此,在S-rGO/LM材料内部,可形成连续完整的导电网络。材料厚度仅需33微米,就可屏蔽99%的入射电磁波,且对X波段的电磁屏蔽效率较高。  可作为抗结冰、除冰功能材料使用  聚二甲基硅氧烷(PDMS)具有耐热性、耐寒性、防水性、导热性以及良好的化学稳定性,电绝缘性和疏水性能好,可在-50℃—200℃下长期使用。目前,PDMS已广泛用于绝缘润滑、防震、防油尘和热载体等。  该团队先将S-rGO/LM材料在稀释后的PDMS溶液中浸涂,随后再对其旋转涂抹硅油,使其获得超润滑特性。衡利苹说,得益于材料本身的稳定性和超润滑界面的协同保护,S-rGO/LM材料在极限工作温度中,严重机械磨损后,依然能保持良好的电磁屏蔽能力。  除了具有出色的电磁屏蔽性能外,S-rGO/LM材料还具备优秀的热管理性能。实验显示,在1个太阳光照功率(100毫瓦/平方厘米)照射下,S-rGO/LM材料的表面温度在40秒内就可达到47.5℃。这表明,在低温地区,S-rGO/LM还可以作为具有抗结冰、除冰功能的材料来使用。
  • 宁波材料所在新型高性能液态邻苯二甲腈单体研究方面取得进展
    邻苯二甲腈树脂(又称为酞腈树脂)是一种集耐高温、阻燃、低烟、优异的力学性能于一身的先进耐高温树脂。该材料在极端环境领域具有非常好的应用潜力,但是苛刻的加工条件阻碍了它的大规模应用。于体系中刚性结构的存在,单体的熔点高(200℃),加工窗口窄,加工工艺繁琐,无法与成熟的树脂加工技术相结合。所以降低邻苯二甲腈单体熔点,对于扩大邻苯二甲腈树脂的应用具有很好的推动作用。   为解决以上问题,哈尔滨工业大学化工学院和中国科学院宁波材料技术与工程研究所先进能源材料工程实验室通过向邻苯二甲腈单体引入柔性链段,有效降低了邻苯二甲腈单体的熔点(如图1所示)。与刚性的苯环结构相比,单键的Si-O键和C-C键构象容易改变,并且Si-O-Si链段具有键长长、键角大的特点,使得链段的内旋转势垒小、柔顺性好。同时,高的结合能可以保证固化后的树脂具有良好的耐热性。   柔性链段的引入,将单体的熔点降低到室温以下(单体的玻璃化转变温度低至-35.6℃,图1a),得到室温下为液态的邻苯二甲腈单体,极大提高了邻苯二甲腈树脂的加工性能。这种液态的单体在室温下具有良好的流动性(30℃,粘度在~2Pas,图1b)和溶解性,可以溶于常见的有机溶剂,如乙酸乙酯、乙醇、丙酮等。这种液态的邻苯二甲腈单体还可以与其他高熔点的单体共混,用于提高粉末单体的加工性能。例如,将这种液态单体与粉末状的邻苯二甲腈单体(熔点~180℃)共混,得到室温下具有一定加工性的混合物(图2a)。固化后的邻苯二甲腈树脂,在氩气和空气中的初始分解温度(Td5%)分别为534.4℃和532.3℃(图2b)。这种共混的方式,可以在提高单体加工性的同时,保证树脂的耐热性。   这种低粘度、易加工的液态邻苯二甲腈单体可以用于复合材料RTM成型,芯片封装等领域。液态的单体能够将邻苯二甲腈单体与成熟的液态加工技术相结合,扩大邻苯二甲腈树脂的应用领域。   以上研究工作近期以“Novel Liquid Phthalonitrile Monomers Towards High Performance Resin”为题,发表在European Polymer Journal上(https://doi.org/10.1016/j.eurpolymj.2023.112027)该研究工作第一作者为哈工大博士生高慕尧,通讯作者为哈工大化工学院刘明教授和宁波材料所宋育杰副研究员。该工作得到了中央高校基本科研业务费(No. LH2021E055)资助。
  • 大连化物所开发出高性能光热转化石墨烯基复合相变材料
    近日,中国科学院大连化学物理研究所热化学研究组研究员史全团队通过合成策略开发出一种具有高光热转换效率的石墨烯基复合相变材料。该复合相变材料具有优异的相变性能和光热转换能力,为大规模制备石墨烯基光热转化复合相变材料提供了新思路。  石墨烯基复合相变材料能够解决相变材料相变过程中的泄漏问题,并具有优异的光吸收能力,在太阳能热转换和存储领域具有潜力。然而,目前石墨烯基复合相变材料的制备方法涉及多步过程,通常较为复杂、耗时耗能,阻碍了其进一步的应用。基于此,科研人员通过简单直接的一步法策略,将聚乙二醇相变材料原位填充到氧化石墨烯网络结构水凝胶中,构建出石墨烯基定型复合相变材料。该复合相变材料具有高的相变材料负载量(95wt%),经历1000个冷热循环后仍可保持稳定的相变焓值(162.8J/g),表现出优异的相变储热性能。此外,该材料还具有出色的光热转化能力,可快速将太阳能转化为热能储存于相变材料中,转化效率最高可达93.7%。  相关研究成果以One-step Synthesis of Graphene-based Composite Phase Change Materials with High Solar-thermal Conversion Efficiency为题,发表在《化学工程杂志》(Chemical Engineering Journal)上。研究工作得到中科院洁净能源创新研究院-榆林学院联合基金、大连化物所创新基金等的支持。  论文链接
  • 应用 | 医用口罩用新型石墨烯无纺布性能测试与评价
    研究背景自疫情爆发以来,个人防护进入常态化,消费者对口罩的要求从最开始的单一防护功能向舒适化、可复用、时尚化等多功能性转变。市场对多功能化医用口罩的迫切需求,不断推动着现代医用口罩非织造布在新材料、新技术方面的不断探索和改进。有研究表明,将传统非织造织物材料与石墨烯相结合,可开发高效、低阻的新型复合材料。同时,利用石墨烯独特的网状结构和极高的比表面积,吸附和过滤颗粒、细菌和病毒,能有效阻隔冠状病毒,大大地拓宽了石墨烯的应用领域。2020年12月25日,在深圳举行的第22届中国国际高新技术成果交易会上,一种新型石墨烯无纺布一经面世就获得优秀产品奖,引起了社会各界的广泛关注。这种新型石墨烯无纺布是将传统原料聚丙烯替换为石墨烯/聚丙烯复合母粒,采用纺粘无纺布制造工艺制备获得。本文通过对这种新型石墨烯无纺布微观组织形貌及热性能、表面亲疏水(油) 性、防水性能、透气性、压力差、 配戴时效性及是否有异味等进行测试和评价,分析研究这种新型石墨烯无纺布在医用口罩方面的应用前景,开发石墨烯在医疗器械领域的应用潜力,为口罩生产企业的产品升级、转型提供数据支撑。图1. 石墨烯无纺布和医用无纺布扫描电子显微镜照片实验方法与仪器本文采用KRÜ SS DSA25B接触角测量仪对石墨烯无纺布进行接触角测试。DSA25B接触角测试仪实验开始前,将石墨烯无纺布用蒸馏水超声清洗,并在50°C的鼓风干燥箱中烘干。实验时, 样品平铺在载玻片上,水滴(油滴)体积约为2μL。高速相机捕捉水滴(油滴)照片,采用座滴法测量接触角,即在液滴轮廓和表面投影(基线)之间的交叉点上(三相接触点)使用座滴图像量取接触角,每张照片测量10组数据,取平均值作为测试结果。结果与讨论图2. 石墨烯无纺布表面亲疏水(油)性测试结果(注:a.水(油)滴光学照片;a.水(油)接触角)在室温条件下,分别测试了石墨烯无纺布正反面水和油的静态接触角。图2a所示为测试过程中捕捉的水(油)滴光学照片,通过座滴图像法量取的接触角如图2b所示。可知,石墨烯无纺布正面水接触角为132.6°,反面水接触角为138.8°,正面油接触角为142.8°,反面油接触角为129.9°。这种新型石墨烯无纺布纤维表面张力低于水、油的表面张力,使得水滴以及油污无法在织物表面铺展,因此证明这种新型石墨烯无纺布具有拒水、拒油的特性。同时,防水性能评价测试结果显示试样表面没有润湿,存有少量水珠,依照GB/T 4745-2012《纺织品防水性能的检测和评价沾水法》评价标准,沾水等级达到4~5 级,该材料具有良好的抗沾水性能。总结可看出减少银浆层的空洞是提高芯片键合强度的一种有效方法。合适的粘合促进剂可以帮助增加银浆在基材表面的浸润并减少界面银浆层里的空洞。新型石墨烯无纺布在医用口罩的应用中体现出了组织结构稳定、拒水、拒油、抗沾水、低阻透气、口罩无异味的特性,符合当下人们对口罩的舒适性、防护性和可重复使用性的要求,有助于口罩生产企业对产品的升级、转型。随着石墨烯无纺布生产技术和表面改性技术不断完善成熟,新型石墨烯无纺布在医用口罩、医用缝合线、医用辅料等医疗器械的应用将得到进一步拓展,从而实现石墨烯在功能无纺布应用中的商业化与规模化,未来可能会有越来越多功能各异的石墨烯无纺布产品陆续出现在市场上。参考文献:[1]陈大雷,陈凡红,元瑛,梁峰,杨晓辉,贺军权.医用口罩用新型石墨烯无纺布性能测试与评价[J].中国医疗器械信息,2022,28(23):17-20+73.DOI:10.15971/j.cnki.cmdi.2022.23.038.
  • 兰州化物所高熵氧化物红外辐射性能研究获进展
    高温红外辐射涂层作为高效节能新材料,通过热辐射方式提高传热效率,在火力发电、钢铁、电力、石油化工、冶金和焦化行业颇具应用前景。近年来,高熵材料尤其是高熵氧化物具有可调控的主元组分和独特的晶体结构,使其在功能材料研究与应用领域备受关注。然而,鲜有关于高熵材料在高温红外辐射方面的研究报道。中国科学院兰州化学物理研究所清洁能源化学与材料实验室低碳能源材料组高祥虎研究员团队在新型高温红外辐射材料的设计与制备方面开展了系统研究。针对传统尖晶石氧化物在短波长红外区域发射率低、热稳定性不佳的问题,研究提出了利用高熵概念进行材料性能优化设计。科研人员通过简便、低成本的固相合成反应,制备出(CuMnFeCr)3O4尖晶石型高熵氧化物红外辐射材料,重点研究了高熵多主元设计对材料红外辐射性能和高温热稳定性的影响。结果表明,多主元设计可有效提高0.78-2.5μm和2.5-16μm波段的红外发射率,且高熵效应利于长效的化学热稳定性。近日,该团队通过理论与实验相结合的方式,进一步阐明了高熵氧化物的微观结构、元素组分、电子分布与红外辐射性能的构效关系,揭示了高熵工程对材料红外辐射性能提升的内在机制。结果表明,高熵策略产生的轨道杂化可有效增强电子跃迁几率,通过变价金属元素引入大量氧空位,从而减小材料的带隙(图1)。同时,晶格畸变效应降低了晶格振动的对称性。因此,(MnCrFeCoCu)3O4高熵尖晶石氧化物具有优异的近黑体辐射能力。经1300°C退火热处理100h后,材料仍保持单相尖晶石结构,红外辐射衰减率仅为2.1%(图2)。此外,研究人员利用冷喷涂技术将高熵氧化物红外辐射材料沉积在不锈钢基底。该红外辐射涂层具有高的辐射热效率和显著的热稳定性,在0.78-16μm波段红外发射率可达0.943。这种新型高熵红外辐射材料在高温工业热辐射领域颇具应用潜力。相关研究成果以High-Entropy Engineering for Broadband Infrared Radiation为题,发表在《先进功能材料》(Advanced Functional Materials)上。研究工作得到中国科学院战略性先导科技专项(A类)-煤炭清洁燃烧与低碳利用专项、中国科学院洁净能源创新研究院-榆林学院联合基金、兰州化物所“十四五”规划重大突破项目等的支持。图1. 高熵氧化物红外辐射材料宽波段高发射率机理研究图2. 高熵氧化物红外辐射材料宽波段发射率及高温热稳定性评估图3. 高熵氧化物红外辐射材料辐射传热性能验证
  • 岛津试验机助力聚丙烯(PP)挤塑板材力学性能测试
    PP塑料板材的新标准GB/T 39937-2021塑料制品 聚丙烯(PP)挤塑板材 要求和试验方法 于2021年3月发布,10月1日正式实施。 标准规定了不含填料和增强材料的聚丙烯均聚物(PP-H)和聚丙烯共聚物(PP-B和PP-R)的挤塑板材的性能要求和试验方法。标准适用于厚度为0.5 mm~40 mm 的PP板材,也适用于卷材形式的板材。 纯PP板:密度小,易焊接和加工,具有优越的耐化性,耐热性及耐冲击性、无毒、无味是符合环保要求之工程塑料之一。主要颜色有白色,微机色,其它颜色也可按客户要求定做。 应用范围:耐酸碱设备,环保设备,废水、废气排放设备用,洗涤塔,无尘室,半导体厂及其相关工业之设备,也是制造塑料水箱的首选材料,其中PP厚板材广泛用于冲压板,冲床垫板等。 塑料板材力学性能测试,岛津试验机系列产品助您大显身手:拉伸试验部分使用手动楔形夹具(该夹具有自锁紧功能)。弯曲试验部分选用塑料三点弯曲标准夹具(R5压头)。 拉伸试验中,使用50mm/min的速率,配合大变形引伸计。弯曲试验选择2mm/min的速率,使用横梁位移(或挠度计)测试其弯曲模量。 手动楔形夹具可以应对此类塑料板材试验。断点正常,防止打滑现象。三点弯曲试验可以使用岛津的塑料三点弯曲夹具进行测试;如需更精确测量样品弹性模量,建议使用挠度计测量样品弯曲变形。 岛津试验机助力聚合物新材料力学行性能测试!
  • 聚焦锂电安全与高性能:跨界专家共议检测技术与锂电产业
    p   strong  仪器信息网讯 /strong 2019年3月26日,由仪器信息网主办的“锂离子电池检测技术及应用”主题网络研讨会线上召开,会议邀请9位锂离子电池领域科研专家、第三方检测机构及相关科学仪器生产商技术代表,以在线报告交流形式,同台共议锂电产业高速发展与安全问题凸显新形势下的“检测技术与锂电产业链”协同发展。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/6992ed0d-f99d-4731-870f-979e273385a7.jpg" title=" 001.jpg" alt=" 001.jpg" style=" width: 600px height: 131px " width=" 600" vspace=" 0" height=" 131" border=" 0" / /p p   近来,锂离子电池在不断满足并加速普及数码产品、信息化电子产品的需求基础上,新能源汽车的快速发展,推动了动力电池的异军突起,我国已经成为全球最主要的锂离子电池生产国之一。在“新能源”、“战略新兴产业”标签背书之下,“高性能”与“安全”逐渐成为飞速发展锂电产业的两大关注焦点。两者相辅相成,其发展都离不开全方位检测技术在锂电研发、生产过程中的发挥的重要作用。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/a2e68838-ca68-4923-858a-b4dc647cbc83.jpg" title=" 000.jpg" alt=" 000.jpg" style=" width: 600px height: 286px " width=" 600" vspace=" 0" height=" 286" border=" 0" / /p p   会议中,锂电科研专家、检测机构及仪器商技术代表分别从锂电技术痛点及对检测技术的需求、锂电检测市场的发展之路、锂电检测新技术及难点等与在线网友一一分享探讨,共同为我国锂电产业链的良性发展建言献策。 a href=" https://www.instrument.com.cn/webinar/meetings/ldc/" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 【报告专家介绍及视频回放链接】 /span /a /p p   span style=" color: rgb(255, 0, 0) "   strong 锂电科研专家:高性能与安全相辅相成,检测技术保驾护航 /strong /span /p p   基础力学问题是制约锂电池发展和应用的瓶颈所在,但由于实验困难,对这些基础力学问题的研究还处于初级阶段。这些力学问题如锂电池在循环过程中电极材料反复嵌锂和脱锂会引起其体积反复膨胀和收缩,从而导致电极材料和固体电解质膜的疲劳断裂等。利用原位电镜技术,黄建宇研究组在锂电池纳米力学研究领域做出了一些原创性工作。在国际上率先制造出在高真空度电镜中工作的锂电池,发明了在原子尺度实时观察锂离子电池充放电过程的新技术,开创了原位纳米尺度电化学和纳米力学研究的新领域,为研究锂离子电池的关键性课题提供了有效的技术条件,发现了锂嵌入晶体硅的临界尺寸效应:当晶体硅的晶粒尺寸大于150nm时,锂嵌入晶体硅后会断裂并粉末化 但当硅晶粒尺寸小于150nm时,晶体硅颗粒就不会断裂或粉末化。这些研究结果为研发高能量密度、高功率密度、长寿命锂电池提供了坚实的科学基础。 /p p   褚卫国首先介绍锂离子电池发展趋势、典型锂离子电池正极纳米材料以及纳米技术提高锂离子电池电极材料性能的基本原理。通过几类锂电正极材料的研究实例说明各种表征方法在锂电正极材料研究中的作用,并构建结构-性能关系,为发展新型高性能锂电正极材料提供指导。最后对不同表征方法在锂电正极材料研究中的角色进行简单总结。最终结论包括,根据需要的信息选择适当的表征方法 多种表征方法联合 多角度选取表征方法,相互印证结果 表征技术在特定条件下与分析方法结合能够获取特定重要信息等。 /p p   span style=" color: rgb(255, 0, 0) "   strong 锂电检测机构:锂电产业高速迭代之下,检测机构为锂电产业链赋能 /strong /span /p p   苏州玛瑞柯测试科技有限公司定位于第三方锂电热特性和热安全测试分析并提供技术咨询服务。薛钢首先主要介绍锂离子电池的失效分类、锂离子电池失效原因、锂离子电池失效常见测试分析方法。常见失效测试分析方法包括成分、结构、形貌、价态、界面、电性能、热性能等。薛钢主要介绍了热性能分析中的加速量热仪(ARC)技术,即通过引入外部热源诱发锂电池的热失效,进而对造成电池失效的内部因素进行数据解析。该技术在锂电热失效中的应用主要包括材料热稳定性测试和电池热安全性测试。大量案例也表明,加速量热仪可以从材料层面和电池层面分别探索热失效的现象、特征和机理,进而对改进电池设计及性能提供量化数据支持。 /p p   近年来随着锂电池应用场景的日益多样化,锂电池安全问题也层出不穷。然而在锂电池安全事故发生后,国内目前却少有机构能对其进行深度的失效分析,找出其失效原因,并制定相应的预防性解决方案。锂电池的安全并非简单的电芯材料与结构问题,而是涉及到系统设计和使用环境的的综合性课题,并通常没有可以重复的操作流程,需要依据客户的案例情况定制分析方案。所以设计锂电安全性的失效分析对人才,设备以及团队的经验积累都提出了巨大的挑战。在此次报告中,周健结合系列实际技术案例,与大家探讨目前国内锂电池失效分析行业的机遇与挑战。具体案例包括CT无损分析观察电池内部结构变化、气质分析了解电池劣化机理、电池拆解确认电池失效模式、商用电池异常自放电根源研究等。 /p p   2018-2019年部分电动车起火事件,据不完全统计已经发生50余起!随着锂电市场的推动需求,安全检测已成为重中之重。韩广帅主要介绍了系列锂电失效整体解决方案,包括逆向分析流程、正向分析流程等。逆向分析流程包括外观/电位观察调整、气体抽取、电解液抽出、电池解体写真记录、非大气暴露分析等。正向分析则从正负极材料、隔膜、电解液角度,依次讲解了各自的综合检测方案。 /p p    span style=" color: rgb(255, 0, 0) " strong 仪器商:迎合需求,开发更多更广泛锂电解决方案 /strong /span /p p   王志芳主要介绍了雷尼绍inVia显微拉曼光谱系统在锂电研究领域的应用案例。正极材料方面的应用包括微结构变化、材料改性、识别正极材料及循环产物等。负极材料应用包括评价锂电可逆容量、探测低浓度粘合剂、负极组分及分布、石墨负极劣化评价、探测低浓度粘合剂等。最后,关于联用技术方面,Raman-AFM联用技术在锂离子嵌入过程、高空间分辨率(纳米量级)下的拉曼成像等。 /p p   郝正明主要介绍了岛津锂电检测的原位检测技术。XRD原位分析技术——产品系列包括中端XRD-6100与高端XRD-7000。在锂电领域的应用包括高低温附件用于样品原位的变温物相分析。电池附件用于锂电电极材料充放电过程中物相分析等。SPM原位分析技术——SPM-9700HT和环境控制舱,应用案例包括原位加热隔膜样品、电化学液体池模拟电池内部电解液环境等。XPS原位分析技术——Axis Supra,全固态锂电利用XPS技术进行相关原位分析研究等。 /p p   王元飞首先介绍了锂电检测现行的先关检测标准。接着针对这些检测项目,具体介绍了安捷伦原子光谱产品技术在锂电检测领域的系列检测方案案例,包括:痕量杂质分析-易电离元素干扰消除、电解液直接进样+光谱干扰消除、主量元素分析等。 /p p   陈京一主要介绍了马尔文帕纳科XRD技术在电池研究中的应用情况。在正极材料研究中的应用包括物相鉴定及阳离子混排、PIETVELD结构精修计算离子混排等。在负极材料研究中应用包括石墨化度、石墨电极片取向性等。并介绍了马尔文帕纳科对分布函数(PDF)对全散射的分析,为电池材料精细结构及机理研究提供全新实验室方案,使得在XRD知其然的基础上,PDF实现知其所以然。 /p p    span style=" color: rgb(112, 48, 160) " strong 查询更多海量锂电检测解决方案、锂电检测标准点击进入: /strong /span a href=" https://www.instrument.com.cn/application/SampleFilter-S25-T000-1-1-1.html" target=" _blank" style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong 行业应用栏目——电池专场 /strong strong /strong /span /a /p
  • ACQUITY UPLC I-Class系统:优化的系统扩散性和UPLC性能
    ACQUITY UPLC I-Class系统:优化的系统扩散性,优化的UPLC性能 目的 为证实ACQUITY UPLC® I-Class系统可使柱外谱带扩展达到最低,从而使进行高分离度及高通量UPLC® 分离时的分离效果更佳。以下将通过杂质分析以及弹道梯度说明这些改善的重要性。 背景 已证实在多种应用中,采用填装亚2-_m颗粒的色谱柱能够改善色谱分离的峰容量以及分离度,从而大幅度提高分离度以及通量。 然而,为使一项指定分离所可能达到的分离度达到最大,需要使系统扩散性达到最小。属于进样器后系统流路的任何液体管路或连接均可导致柱外谱带展宽。包括进样阀、溶剂预热装置、连接管路、配件、及光学流通池。许多供应商已尝试改善UHPLC系统的扩散性,但收效甚微。虽然 可减小扩散性,但仍无法达到最佳从而可获得窄孔UPLC色谱柱(内径2.1 mm)的全部优点。这些色谱柱要求较低的流速,这使得分析每份样品时的投资回报率更高,从而可在足够的分离度下进行高效分离. 解决方案 ACQUITY UPLC I-Class系统可减小柱外谱带分布。新设计的UV检测器流通池的光学路径与先前的ACQUITY UPLC的光学路径相同,可获得同样高的灵敏度;另外,已重新设计流体管路以及连接,以使谱带扩散进一步减小。必须使用溶剂预热器以使可导致柱上分散效应的温度梯度减至最低。因此,溶剂预热器的体积应足够小,以确保使样品簇(sample plug)以最小的扩散度到达色谱柱头部,而且即使在高温及高流速下也可提供极佳的溶剂加热性能。根据您实验室的需求,可在两种样品管理器(Sample Manager)中选择一种来构成ACQUITYUPLC I-Class系统。不管是使用固定定量环式(SM-FL)还是流通针式(SM-FTN)进样器,均已通过采用小体积的针头端口、连接管路、及内部阀门通道使由进样器所导致的扩散性减至最低。通常,固定环式进样器的设计可使柱外谱带扩展程度更小,这是由于其减小了注射器流动路径的体积。通过对每一组件进行优化,已使柱外谱带扩展较之任一其他市售LC系统显著降低。表1总结了在使用多种系统(包括UHPLC系统)后所获得的谱带扩展数值。 ACQUITY UPLC家族在保持超高效分离的整体性方面的性能优于所有其他系统,其中ACQUITY UPLC H-Class系统的谱带扩展减少至9 _L,而ACQUITY UPLC I-Class系统则减少至低至5.5 _L。 降低的系统扩散性可直接导致ACQUITY UPLCI-Class系统的分离度增加。分离可以达到弹道梯度,同时保持典型分析梯度中的分离度。图2说明对丁卡因进行杂质分析的结果。 采用ACQUITY UPLC I-Class系统及购自供应商B的UHPLC系统,在相同条件下进行分离,结果 ACQUITY UPLC I-Class的分离度显著更佳。供应商B的系统按其建议安装有光路长度为60 mm的流动池,结果发现其产生了明显的谱带扩展,以至于测不到肩峰。 小结 ACQUITY UPLC I-Class系统具有不可比拟的性能,可用于当今最具挑战性的分离任务。不管您的实验室需要增加分离时的分离度还是需要增加样品通量,它灵活的系统构造都可使得UPLC色谱柱上的柱外谱带扩展最低,从而获得最佳的分离性能。 联系人: 张林海 沃特世公司市场部 86(21) 61562642 lin_hai__zhang@waters.com 周瑞琳(Grace Chow) 泰信策略(PMC) 020-83569288 grace.chow@pmc.com.cn
  • 大连化物所采用一步法合成策略开发出高性能光热转化石墨烯基复合相变材料
    近日,大连化物所热化学研究组(DNL1903)史全研究员团队通过简单易行的合成策略,开发了一种具有高光热转换效率的石墨烯基复合相变材料。该复合相变材料具有优异的相变性能和光热转换能力,为大规模制备石墨烯基光热转化复合相变材料提供了新思路。  石墨烯基复合相变材料能够解决相变材料相变过程中的泄漏问题,并具有优异的光吸收能力,在太阳能热转换和存储领域具有潜力。然而,目前石墨烯基复合相变材料的制备方法涉及多步过程,通常比较复杂、耗时且耗能,阻碍了其进一步的实际应用。针对此问题,史全团队通过一种简单而直接的一步法策略,将聚乙二醇相变材料原位填充到氧化石墨烯网络结构水凝胶中,构建出石墨烯基定型复合相变材料。该复合相变材料具有高的相变材料负载量(95wt%),经历1000个冷热循环后仍可保持稳定的相变焓值(162.8J/g),表现出优异的相变储热性能。此外,该材料还展现出色的光热转化能力,可快速将太阳能转化为热能储存于相变材料中,转化效率最高可达93.7%。  相关研究以“One-step Synthesis of Graphene-based Composite Phase Change Materials with High Solar-thermal Conversion Efficiency”为题,发表在《化学工程杂志》(Chemical Engineering Journal)上。该工作的第一作者是大连化物所DNL1903硕士研究生李艳更。上述工作得到中科院洁净能源创新研究院-榆林学院联合基金、大连化物所创新基金等项目的支持。  文章链接:https://doi.org/10.1016/j.cej.2021.132439
  • 半导体封装材料的性能评估和热失效分析
    前言芯片封装的主要目的是为了保护芯片,使芯片免受苛刻环境和机械的影响,并让芯片电极和外界电路实现连通,如此才能实现其预先设计的功能。常用的一种封装技术是包封或密封,通常采用低温的聚合物来实现。例如,导电环氧银胶用于芯片和基板的粘接,环氧塑封料用于芯片的模塑封,以及底部填充胶用于倒装焊芯片与基板间的填充等。主要的封装材料、工艺方法及特性如图1所示。包封必须满足一定的机械、热以及化学特性要求,不然直接影响封装效果以及整个器件的可靠性。流动和粘附性是任何包封材料都必须优化实现的两个主要物理特性。在特定温度范围内的热膨胀系数(CTE)、超出可靠性测试范围(-65℃至150℃)的玻璃化转变温度(Tg)对封装的牢固性至关重要。对于包封,以下要求都是必须的:包封材料的CTE和焊料的CTE比较接近以确保两者之间的低应力;在可靠性测试中,玻璃转化温度(Tg)能保证尺寸的稳定性;在热循环中,弹性模量不会导致大的应力;断裂伸长率大于1%;封装材料必须有低的吸湿性。但是,这些特性在某种类型的环氧树脂里并不同时具备。因此,包封用的环氧树脂是多种环氧的混合物。表1列出了倒装焊底部填充胶的一些重要的特性。随着对半导体器件的性能要求越来越高,对封装材料的要求同步提高,尤其是在湿气的环境下,性能评估和热失效分析更是至关重要,而这些都可以通过热分析技术给予准确测量,并可进一步用于工艺的CAE模拟仿真,帮助准确评估封装质量的优劣与否。表1 倒装焊中底部填充胶的性能要求[1]图1. 主要封装材料、工艺方法及特性[2]热性能检测梅特勒托利多全套热分析技术为半导体封装材料的性能评估和热失效分析提供全面、创新的解决方案。差示扫描量热仪DSC可以精准评估封装材料的Tg、固化度、熔点和Cp,并且结合行业内具有优势的动力学模块(非模型动力学MFK)可以高精准评估环氧胶的固化反应速率,从而为Moldex 3D模拟环氧塑封料、底部填充胶的流动特性提供可靠的数据。如图2所示,在非模型动力学的应用下,环氧胶在180℃下所预测的固化速率与实际测试曲线所表现出的固化行为具有非常高的一致性。热重TGA或同步热分析仪TGA/DSC可以准确测量封装材料的热分解温度,如失重1%时的温度,以及应用热分解动力学可以评估焊料在一定温度下的焊接时间。热机械分析仪TMA可以精准测量封装材料的热膨胀、固化时的热收缩、以及CTE和Tg,动态机械分析仪DMA提供封装材料准确的弹性模量、剪切模量、泊松比、断裂伸长率等力学数据,进一步可为Moldex 3D模拟芯片封装材料的翘曲和收缩提供可靠数据来源。图2. DSC结合非模型动力学评估环氧胶的固化反应速率检测难点1、 凝胶时间凝胶时间是Moldex 3D模拟环氧塑封料、底部填充胶流动特性的非常重要的数据来源之一。目前,行业内有多种测试凝胶时间的方法和设备。比如利用拉丝原理的凝胶时间测试仪,另有国家标准GB 12007.7-89环氧树脂凝胶时间测定方法[3],即利用标准柱塞在环氧树脂固化体系中往复运动受阻达到一个值而指示凝胶时间。但是,其对柱塞的形状和浮力要求较高,测试样品量也很大,仅适用于在试验温度下凝胶时间不小于5 min的环氧树脂固化体系,并且不适用于低于室温的树脂、高粘度树脂和有填料的体系。由此可见,现有测试方法都存在测试误差、硬件缺陷和测试范围有限等问题。梅特勒托利多创新性TMA/SDTA2+的DLTMA(动态载荷TMA)模式结合独家的负力技术可以准确测定凝胶时间。在常规TMA测试中,探针上施加的是恒定力,而在DLTMA模式中,探针上施加的是周期性力。如图3右上角插图所示,探针上施加的力随时间的变化关系,力在0.05N与-0.05N之间周期性变化,这里尤为关键的一点是,测试凝胶时间必须要使用负力,即不仅需要探针往下压,还需要探针能够自动向上抬起。图3所示案例为测试导电环氧银胶的凝胶时间,样品置于40μl铝坩埚内并事先固定在TMA石英支架平台上,采用直径为1.1 mm的平探针在恒定160℃条件下施加正负力交替变换测试。在未发生凝胶固化之前,探针不会被样品粘住,负力技术可使探针自由下压和抬起,测试的位移曲线表现出较大的位移变化。当发生交联固化,所施加的负力不足以将探针从样品中抬起,位移振幅突然减小为0,曲线成为一条直线。通过分析位移突变过程中的外推起始点即可得到凝胶时间。此外,固化后的环氧银胶片,可通过常规的TMA测试获得Tg以及玻璃化转变前后的CTE,如图3下方曲线所示。图3. 上图:TMA/SDTA2+的DLTMA模式结合负力技术准确测定凝胶时间. 下图:固化导电环氧银胶片的CTE和Tg测试.2、 弯曲弹性模量在热循环过程中,弹性模量不会导致过大的应力。封装材料在不同温度下的弹性模量可通过DMA直接测得。日本工业标准JIS C6481 5.17.2里要求使用弯曲模式对厚度小于0.5mm、跨距小于4mm、宽度为10mm的封装基板进行弯曲弹性模量测试。从DMA测试技巧角度来讲,如此小尺寸的样品应首选拉伸模式测试。弯曲模式在DMA中一共有三种,即三点弯曲、单悬臂和双悬臂,从样品的刚度及夹具的刚度和尺寸考虑,三点弯曲和双悬臂并不适合此类样品的测试。因此,单悬臂成为唯一的可能性,但考虑到单悬臂夹具尺寸和跨距小于4mm的要求,市面上大部分DMA难以满足此类测试。梅特勒托利多创新性DMA1另标配了单悬臂扩展夹具,可方便夹持小尺寸样品并能实现最小跨距为1mm的测试。图4为对厚度为40μm的基板分别进行x轴和y轴方向上的单悬臂测试,在跨距3.5mm、20Hz的频率下以10K/min的升温速率从25℃加热至350℃。从tan delta的出峰情况可以判断基板的Tg在241℃左右,以及在室温下的弯曲弹性模量高达12-13GPa。图4. DMA1单悬臂扩展夹具测试封装基板的弯曲弹性模量.3、 湿气对封装材料的影响湿气腐蚀是IC封装失效的主要原因,其降低了器件的性能和可靠性。保存在干燥环境下的封装环氧胶,完全固化后在高温和高湿气环境下也会吸湿发生水解,降低封装体的机械性能,无法有效保护内部的芯片。此外,焊球和底部填充环氧胶之间的粘附强度在湿气环境中放置一段时间后也会遭受破坏。水汽的吸收导致环氧胶的膨胀,并引起湿应力,这是引线连接失效的主要因素。通过湿热试验可以对封装材料的抗湿热老化性能进行系统的评估,进而对其进行改善,提升整体性能。通常是采用湿热老化箱进行处理,然后实施各项性能的评估。因此,亟需提供一种能够提高封装材料湿热老化测试效率的方法。梅特勒托利多TMA/SDTA2+和湿度发生器的联用方案,以及DMA1和湿度发生器的联用方案可以实现双85(85℃、85%RH)和60℃、90%RH的技术参数,这也是行业内此类湿度联用很难达到的技术指标。因此,可以原位在线环测封装材料在湿热条件下的尺寸稳定性和力学性能。图5. TMA/SDTA2+-湿度联用方案测试高填充环氧的尺寸变化.图5显示了TMA-湿度联用方案在不同湿热程序下高填充环氧的尺寸变化。湿热程序分别为20℃、60%RH、约350min,23℃、50%RH、约350min,30℃、30%RH、约350min,40℃、20%RH、约350min,60℃、10%RH、约350min,80℃、5%RH、约350min。可以看出,在60%的高湿环境下高填充环氧在350min内膨胀约0.016%,后续再降低湿度并升高温度,样品主要在温度的作用下发生较大的热膨胀。图6为DMA-湿度联用方案在双85的条件下评估PCB的机械性能的稳定性,测试时间为7天。可以看出,PCB在高湿热的环境下弹性模量有近似6%的变化,这与PCB的树脂材料发生吸湿后膨胀并引起湿应力是密不可分的,并且存在导致器件失效的风险。图6. DMA1-湿度联用方案测试PCB的弹性模量.4、 化学品质量对于封装结果的影响封装过程中会使用到各类的湿电子化学品,尤其是晶圆级封装等先进封装的工艺流程,对于清洗液、蚀刻液等材料的质量管控可以类比晶圆制造过程中的要求,同时针对不同工艺段的化学品浓度等配比都有所不同,因此如何控制使用的电子化学品质量对于封装工艺的效能有着重要的意义。下表展示了部分涉及到的化学品浓度检测的滴定检测方案,常规的酸碱滴定、氧化还原滴定可以基本满足对于单一品类化学品浓度的检测需求。指标电极滴定剂样品量85%H3PO4酸碱玻璃电极1mol/L NaOH0.5~1g96%H2SO4酸碱玻璃电极1mol/L NaOH0.5~1g70%HNO3酸碱玻璃电极1mol/L NaOH0.5~1g36%HCl酸碱玻璃电极1mol/L NaOH0.5~1g49%HF特殊耐HF酸碱电极1mol/L NaOH0.3~0.4gDHF(100:1)特殊耐HF酸碱电极1mol/L NaOH20-30g29%氨水酸碱玻璃电极1mol/L NaOH0.9~1.2gECP(acidity)酸碱玻璃电极1mol/L NaOH≈8g29%NH4OH酸碱玻璃电极1mol/L HCl0.5~1gCTS-100清洗液酸碱玻璃电极1mol/L NaOH≈1g表1. 部分化学品检测方法列表另一方面,对于刻蚀液等品类,常常会用到混酸等多种物质混配而成的化学品,以起到综合的反应效果,如何对于此类复杂的体系浓度进行检测,成为实际生产过程中比较大的挑战。梅特勒托利多自动电位滴定仪,针对不同的混合液制订不同的检测方案,如铝刻蚀液的硝酸/磷酸/醋酸混合液,在乙醇和丙二醇混合溶剂的作用下,采用非水酸碱电极针对不同酸液pKa的不同进行检测,得到以下图谱,一次滴定即可测定三种组分的含量。图7. 一种铝刻蚀液滴定曲线结论梅特勒托利多一直致力于帮助用户提高研发效率和质量控制,我们为半导体封装整个产业链提供完整专业的产品、应用解决方案和可靠服务。梅特勒托利多在半导体封装行业积累了大量经验和数据,希望我们的解决方案给半导体封装材料性能评估的工作者带来帮助。参考文献[1] Rao R. Tummala. 微系统封装基础. 15. 密封与包封基础 page 544-545.[2] Rao R. Tummala. 微系统封装基础. 18. 封装材料与工艺基础 page 641.[3] GB12007.7-89:环氧树脂凝胶时间测定方法.(梅特勒-托利多 供稿)
  • 动力电池安全性能检测实验室场地建设规划条件
    p   近年来,随着新能源政策的利好和社会资本的涌入,新能源行业特别是动力电池制造企业如雨后春笋般不断生长。怎么建设和规划好一个全新的新能源锂电池检测实验室是许多新能源制造关联企业的痛点。新能源锂电池实验室不同于其他家用电器、灯具照明或汽车电子产品实验,由于锂电池在试验过程存在的不确定性和危险性,锂电池可能会产生有毒有害废气、冒烟、明火、甚至出现爆炸、溶液飞溅等情况,这些问题可能导致环境空气污染、设备损坏、实验人员受伤,甚至对人身财产造成巨大损失。因此,无论锂电池试验室规模大小,都有必要在新能源电池实验室的场地建设,设备购置,以及日常的运营成本给予充分的重视和了解。 /p p style=" text-align: center " img title=" 1.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b5a6c188-4150-44ec-aebe-786d32141b2b.jpg" / /p p strong span style=" color: rgb(31, 73, 125) "   span style=" color: rgb(84, 141, 212) "   span style=" color: rgb(0, 112, 192) " 一、(规划)锂电池实验室设计依据及设备部署: /span /span /span /strong /p p    strong 1、依据标准规范: /strong /p p   满足GB/T 32146.2-2015《检验检测实验室设计与建设技术要求 第2部分:电气实验室》标准规范要求设计。 /p p   实验室主要用于锂电池强制性安全检查试验,提供稳定可靠的环境条件。为了评估电池在存储、运输、误用和滥用等情况下,是否会引发过热、明火、爆炸、有害气体溢出、人员安全等情况,由此应运而生的电池安全检测标准有:国际标准(IEC 62660、IEC62133)、欧盟标准(EN62133、EN60086)、中国标准(GB31241-2014)、美国标准(SAE UL)、日本标准(JIS),针对新能源锂电池应用较为广泛的标准是UN 38.3、GB/T31467.3-2015、GB/T 31485-2015、SAND 2005-3123、UL1642、UL2054、UL2580、JIS C 8711、JIS C8714、JIS C 87115、ISO 16750、ISO 12405、SAE J2464。电池标准针对的检测项目,大体可分为电性能适应性、机械适应性和环境适应性测试三大类的检测。 /p p   1)电性能适应性:包括电池工况容量、各种倍率的充放电性能、过充性能、过放性能、短路性能、绝缘性能、自放电特性、电性能寿命等。其中过充、过放、短路的实验过程风险较大,可能会存在明火爆炸等剧烈现场。 /p p   2)机械适应性:加速度冲击、机械振动、模拟碰撞冲击、重物冲击、自由跌落、电池包翻转、洗涤试验、挤压和钢针穿刺等。其中钢针针刺和挤压的实验过程风险较大,可能会存在明火爆炸等剧烈现场。 /p p   3)环境适应性:热滥用(热冲击)、温湿度循环、高低温循环、冷热冲击、温度骤变、真空负压测试、盐雾试验、浸水试验、海水浸泡和明火焚烧等。其中明火焚烧实验过程风险较大,可能会存在爆炸的情况。 /p p    strong 2、(规划)锂电池实验室设备布局: /strong /p p   在实验室建设初期规划实验室,既可以降低实验操作风险,同时也能系统的形成检测能力,通常具有完整测试能力的电池检测实验室,可规划成如下功能分区: /p p   1)电性能检测区,此区域主要涉及的仪器是充放电机柜、内阻测试仪、绝缘强度测试仪、绝缘电阻测试仪、数据采集设备等,由于电池的实测容量与测试温度有关,因此应对此区域的温度、湿度进行控制。 /p p   2)机械性能测试区,此区域主要涉及的仪器包括充放电机柜、振动试验台、冲击碰撞试验台、翻转试验台、三综合实验台,由于设备质量重、体积大、噪音大,且部分检测设备需要下挖,因此此区域多放置在一楼,做好隔音和隔震措施。 /p p   3)环境测试区,此区域主要完成温度、湿度、老化、热分析等实验,涉及的仪器包括充放电机柜、高低温箱、负压箱、温湿度实验箱、热分析仪、数据采集设备等,此区域需要24h连续长时间工作,因此容易出现麻痹大意导致安全事故。 /p p   4)辅助功能区,可根据实际需要进行配置,包括样品室(放置测试前后的电池样品)、库房(放置闲置线缆、工具等)、办公室、会议室、休息区等。样品室存放电池样品,需要频繁检查电池状态。 /p p   5)电池安全测试区,此区域开展的测试均带有危险性,包括样品不成熟导致的风险以及测试本身的风险,包括的测试项目:跌落、针刺、挤压、燃烧、过充、过放、短路、浸水、海水浸泡、高温充放电等项目,涉及的设备包括充放电机柜、跌落试验台、针刺试验机、挤压试验机、燃烧试验机、短路试验机、浸泡设备、高温箱等。由于此区域着火爆炸概率较高,因此需要建设行之有效的尾气排放和处理措施,以避免对环境的影响。 /p p    strong 注意:GB/T 31467.3-2015(电动汽车用锂离子动力蓄电池包和系统 第3部分安全性要求与测试方法)以及GB/T 31485-2015(电动汽车用动力蓄电池安全要求及试验方法)标准部分试验项目适用。 /strong /p p    span style=" color: rgb(0, 112, 192) " strong 二、(规划)锂电池实验室测试程序: /strong /span /p p    strong 1. 电池材料检测 /strong /p p   电池材料的测试主要为材料的组成、结构、性能测试,所有测试过程都不涉及任何化学处理步骤,均属于仪器分析,测试的全过程不产生对环境有害的物质。最终产生的废弃样品及未测试的多余样品均交还送检单位。 /p p style=" text-align: center " img title=" 2.png" src=" http://img1.17img.cn/17img/images/201806/insimg/f6c52bd6-dbf2-4a1a-887f-274ec60e8e5f.jpg" / /p p   工艺流程简述:称取电池材料—电池材料制样—上机分析—结果输出。 /p p    strong 2、电池单体常规测试、电性能、安全性能和失效性能、可靠性检测 /strong /p p   电池单体常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池单体电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池单体安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池交由送检单位回收处理,对环境不产生影响。电池单体可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池单体失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池单体试样遴选—电池试样连接检测设备—设备自动检测—数据输出。 /p p style=" text-align: center " img title=" 3.png" src=" http://img1.17img.cn/17img/images/201806/insimg/cc2f2757-c359-499b-b8d0-caf36db2fe17.jpg" / /p p    strong 3. 电池模块常规测试、电性能、安全性能和失效性能、可靠性检测 /strong /p p   电池模块常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池模块电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池模块安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池模块交由送检单位回收处理,对环境不产生影响。电池模块可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试 、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池模块失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池模块试样遴选—电池模块试样连接检测设备—设备自动检测—数据输出。 /p p img title=" 4.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b7a7a4dd-b45a-46cf-bc6f-1964c0ab31ef.jpg" / /p p    strong 4. 电池系统常规性能、电性能、安全性能和失效性能检测、可靠性检测 /strong /p p   电池系统常规测试包括外观、极性、尺寸和质量,涉及到目检、电压表检测、量具和衡器检测手段,四种测试项目都不涉及任何化学处理步骤,均不产生任何环境有害物质。电池系统电性能测试包括放电容量、倍率、循环寿命,涉及到的设备有电池充放电性能测试仪和电池模块充放电性能测试仪,以上两种设备基于电化学原理进行检测,都不涉及任何化学处理步骤,测试过程中不产生任何环境有害物质。 /p p   电池系统安全性能测试包括过充、过放、短路、跌落、高低温、针刺、挤压多项,涉及到针刺机、挤压机、跌落台、高低温箱和过充过放专用设备,所有的测试项目都在专用测试设备内执行,同时操作人员按照国标要求配备有严格的防护措施,测试过程都不涉及任何化学处理步骤。测试结束后产生的失效电池系统交由送检单位回收处理,对环境不产生影响。电池系统可靠性测试主要包括循环寿命、不同倍率放电特性、不同温度放电特性、充电特性、自放电特性、不同温度自放电特性、存贮特性、过放电特性、不同温度内阻特性、高温测试、温度循环测试、跌落测试、振动测试、容量分布测试等,以上测试涉及到的设备主要为电性能测试仪和部分安全性测试设备,电化学性能测试设备基于电化学原理对电池进行电性能检测,测试过程都不涉及任何化学处理步骤, 不产生化学反应,不产生对环境有害的物质。 /p p   电池系统失效分析和电池模型分析在上述可靠性检测、安全性检测、常规检测及化学组成检测等基础上开展,检测过程都不涉及任何化学处理步骤,不产生化学反应。对环境不造成污染。 /p p   工艺流程简述:电池系统试样遴选—电池系统试样连接检测设备—设备自动检测—数据输出。 /p p style=" text-align: center " img title=" 5.png" src=" http://img1.17img.cn/17img/images/201806/insimg/b6ae167e-9e9b-439b-8098-99f7fc7e2f3f.jpg" / /p p    strong 5、(温馨提示) 由于新能源锂电池能量高度集中,且密集安装,因此即便是正常的试验测试(如各种充放电性能、高空模拟),也可能因误操作导致危险,下面列举新能源锂电池存在的潜在风险: /strong /p p   1)着火、燃烧、爆炸 /p p   磷酸铁锂电池在电解液中添加过充添加剂非水有机体系的电解液具有低燃点的易燃性质,它在温度升高的密闭电池体系内极易和充放电过程中非常活跃的电极材料发生一连串催化放热反应,从而引起热失控。同时电解液和电极材料之间的副反应伴有气体产生,当电池内压力达到设定的阀值,泄爆阀开启,并伴随气体泄放。如果电池内部集聚温度过高,与空气种的氧气的接触的情况下引起有机电解液的燃烧,最终导致电池的爆炸。 /p p   电池检测中的各种滥用实验的实质,是通过各种手段使电池发生外部短路或内部短路,引起正负材料和电解液的直接反应,电池温度急剧升高。电池的散热性和压力的释放能量决定了电池着火、燃烧或爆炸。对实验现场的着火、燃烧、爆炸的防护,重点是保证试验现场压力要有足够的释放空间,防止燃烧扩展和压力的突然释放,可采取加固防爆壳体、快速压力泄放、通过多传感器融合技术进行预警检测,以实现不爆炸货弱能量的反应。 /p p   2)有毒气体的排放 /p p   由于电解液含有有机溶剂,在安全检测过程中,电解液的高温气化导致有毒气体的排放,通常有毒气体是通过电池泄爆阀打开后溢出,其气味刺激。当被测样品是大功率的新能源电池时,有毒气体的含量较多,且成分更为复杂,其排放问题更要注意,UL 2580规定了有毒气体释放量的检测要求。有毒气体的排放的防护重点,是加装有害气体检测传感器监测有害气体含量,加装抽风装置或无害化处理装置将有毒气体抽离实验室,避免操作人员与有害气体的接触。 /p p   3)漏液的污染性 /p p   电池在检测过程中容易出现漏液,漏液会腐蚀设备和测试台的外表面。应加倍关注富液设计电池的这种危害。因此无论是在有意破坏的漏液,或是实验过程意外泄露,都应该关注人员防护、设备防护和测试环境防护。其防护重点是通过严格操作流程管理和规范,将漏液的腐蚀侵害降至最低。 /p p    span style=" color: rgb(0, 112, 192) " strong 三、(规划)锂电池实验室——通风系统特点: /strong /span /p p   1、因锂电池在做破坏性测试时可能会产生大量的烟雾或者燃烧废气,需要考虑到通风环保设施要求 系统所作用的通风设备较复杂,流量较大。通风设备在工作期间可根据实际须要控制使用数量,风机负载随通风设备增减而变化。 /p p   2、系统控制采用各实验室布点控制,即利用同系统的各通风设备的电动调风阀或在附近设置信号开关,利用电动调风阀或信号开关输送信号远距离控制风机启停。采用电动调风阀对通风设备进行流量调节。 /p p   3、采用在风机入口处加装消声器的方式对通风系统进行噪声处理,对于电机功率小于4KW,A式传动的风机采用橡胶减振,对于电机功率大于4KW,C式传动的风机采用阻尼弹簧减振器减振。 /p p   4、因应节能要求及实际需要,对全面排风系统P1及局部排风系统P3、P4、P5、P6系统功率≥4KW的通风系统采用变风量变频控制系统控制。节约电能同时也可大大延长风机使用寿命。 /p p   5、因应现代环保要求,根据废气类别对P4、P5、P6系统的排气采用酸雾净化塔、活性炭干附等进行环保治理。 /p p   6、实验室的通风换气次数取每小时10~20次。 /p p   7、支管内风速取6~12m/s,干管内风速取8~14 m/s。 /p p   8、通风设备设计风量:单台1800*800*2350mm排毒柜设计排风量:1400~2100CMH 单台1500*800*2350mm排毒柜设计排风量:1100~1700CMH 单台500*500mm原子吸收罩设计排风量:800~1300CMH 单台万向排烟罩设计排风量 180~300CMH。 /p p    strong span style=" color: rgb(0, 112, 192) " 四、(规划)锂电池实验室——内部装饰 /span /strong /p p    strong 1、天花 /strong /p p   (1)实验室、办公室天花采用轻钢龙骨吊600*600mm的铝合金扣板天花。 /p p   (2)结合通风和机电要求,实验室天花选用铝合金扣板天花可以大幅度降低通风和机电施工难度和强度,也利于日后的正常维护和检修。 /p p   (3)实验室天花采用铝合金扣板天花美观,大方,无污染,还可以搭配其他一体化装修完成整个装修工程。 /p p   (4)实验室天花采用铝合金扣板天花可以有效的防霉、防潮。 /p p   (5)洁净室采用彩钢板天花板。 /p p    strong 2、地面 /strong /p p   (1)实验室地面按照甲方要求保留原有抛光砖地面600*600mm。 /p p   (2)抛光砖技术成熟,整洁,美观,灰缝小,易于清洁。 /p p   (3)在装修过程中,抛光砖的铺设最适合于办公场所。 /p p   (4)抛光砖可承受多人办公场所的磨损,维护后不变色不需打蜡抛光等繁复操作。 /p p   (5)洗涤室利用原有地面,节约成本。 /p p   (6)优质防滑地砖可以有效杜绝液积留在地板上对实验室工作人员造成的不便。 /p p    strong 3、墙体 /strong /p p   (1)新砌墙身采用轻质砖砌180mm厚砖墙,双面批荡面贴500*500抛光砖。 /p p   (2)采用其他墙体全部贴500*500抛光砖 /p p   (3 走廊用12mm厚钢化玻璃做玻璃隔墙,踢脚线材质选用抛光砖。 /p p   (4)采用玻璃间隔的设计使得开放式实验成为一种可能。 /p p   (5)采用玻璃间隔的设计令人视野开阔,整体实验室洁净、明亮。 /p p    strong 4、门窗 /strong /p p   (1)实验室统一采用12mm厚钢化玻璃地弹簧门,增加实验室通透性。按照规划设计要求,分为900*2100mm、1200*2100mm、1500*2100 mm三种规格,根据具体情况,洁净室的门为800*2100 mm。 /p p   (2)实验室主通道入口用1500*2100mm钢化玻璃双开门,外加电脑磁卡感应门锁(配10张卡)。 /p p    span style=" color: rgb(0, 112, 192) " strong 四、(建议)锂电池实验室注意事项: /strong /span /p p   实验室设计之初就应该全面性的考虑到被测试锂电池出现爆炸、燃烧、漏液等问题。 /p p    strong 1.爆炸前预警: /strong 由于电池起火爆炸前会有很大的变化,可以传感器充分检测指标达到爆炸前预警的目的。这些变化包括——温度升高、电流突然增大、泄爆阀打开、有害气体溢出等,其中温度和电流是预警的重要指标,对相同规格的电池具有相似的指标,通过概率分布可形成较好的爆炸预测。 /p p    strong 2.爆炸过程控制: /strong 电池连锁爆炸是爆炸过程控制的重点,通过切断电流回路、降低爆炸现场温度、阻断燃烧路径、撤离着火源头等方式,其中以切断电流回路和干冰灭火方式最为有效。既能起到控制火情,同时也保留了测试样品。 /p p    strong 3.污染物可回收: /strong 污染物包括固态污染物和气体污染,通过电池回收罐收集固态污染物回收时,要避免二次危险。有害气体的回收成本非常高昂,可根据实际情况酌情处理。 /p p    strong 4.试验室防爆系统: /strong 房间内安装2个传感探头。测试单元放置在室外可随时的监测试验室内的气体是否超标。报警系统分2级控制当第1级报警时启动声音报警,此时不切断电路。当浓度继续升高时达到2级报警时报警器自动打开风阀启动抽排风系统并切断实验室电源。防爆室内部采用1.2mm厚的钢板焊接而成,墙体可采用铝塑板或其他材料支撑,整改防爆室具有耐火、防止爆炸物飞出等功能。防爆门采用往里面推开的开门方式,必须具有防止冲击波导致开门的问题,门上配置有防爆玻璃观察窗,并且窗上焊接有铁柱防止玻璃破裂。防爆室上空设置有铁制的通风管道,其作用有二 1、当有燃烧、烟雾时,开启风机抽风,2、主要用于泄放爆炸时的压力。因此通风管道需要做宽,建议尺寸不小于500mm× 600mm× 870000mm。 /p p    strong 5.每个防爆室配置有防爆灯,视频监控探头。 /strong 视频监控探头对准被测物位置。每个防爆室的底部设置有设备的连线门洞:100mm× 200mm 在高1000mm处也设置有直径500mm的连线门洞,门洞的里面一侧设置有钢铁挡板。防爆室作为样品储存室使用,并配置有小一匹分体式空调作为恒温,外墙配置有直径120mm的排气扇。里面配置有消防烟感探头。 /p p    strong 6.充放电区: /strong 设置有试验台,台面分有仪器操作位置和样品区,样品区四周及底面采用1.2mm不锈钢板焊接 前面设置有开门 上方开孔,用于泄放用。也可以在上方加装排气管道。样品区的侧面开有直径50mm的孔用于连接线。样品区可放置定做的防爆箱。 /p p    strong 7.消防要求: /strong 在人员操作区和样品区设置有消防烟感探头。 /p p    strong 8.视频监控要求: /strong 共用七个视频监控探头,五个用于防爆室,两个用于冲放电区,在防爆室外配置有视频监控显示器,可在测试过程中查看到里面情况,并具有连接内网功能,可便于在办公室查看具体情况。空调恒温功能:在人员操作区采用原来配置有的5匹空调,另外在A防爆室加装小一匹空调用于储存室。 /p p    strong 9.实验室噪音: /strong 实验室噪声源主要为测试设备、风机等设备运行时产生的噪声,其噪声值约为 50~75dB(A)之间。 /p p    strong 10.电气控制柜及电气连线,有永久性的标志,并与图纸相符,同时符合国家有关的标准。 /strong 设备供电采用三相五线制供电。可靠地保护人身安全。测试系统应增加电源切换开关,能够给各台位提供不同频率的电源(同时包括每台的一路市电供电。试验室有高温保护装置,具有过流、漏电保护、有保险丝。 /p p    strong span style=" color: rgb(0, 112, 192) " 五、(规划)锂电池实验室水电要求: /span /strong /p p   1.配备电源:3Φ5W 380V,50/60Hz 总功率约130KVA /p p   2.独立地线:接地电阻≤4Ω /p p   3.给水:配管连接直径Φ20 水压≥0.15MPa,水质洁净无杂质 /p p   4.排水:配管连接直径Φ100。 /p p    span style=" color: rgb(0, 112, 192) " strong 六、(设计)锂电池实验室测量系统精度: /strong /span /p p   1.所以控制值的准确度应在以下范围内 /p p   2.电压:± 1.0% /p p   3.电流:± 1.0% /p p   4.温度: ± 2℃ /p p   5.时间:± 1.0% /p p   6.尺寸:± 1.0% /p p   7.容量:± 1.0%。 /p p    strong span style=" color: rgb(0, 112, 192) " 七、锂电池防爆实验室典型设计应用: /span /strong /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " img title=" 6.png" src=" http://img1.17img.cn/17img/images/201806/insimg/99c27761-dfaf-494b-a3db-5c2355573e90.jpg" / /span /strong /p p style=" text-align: center " (锂电池实验室效果图) /p p style=" text-align: center " img title=" 7.png" src=" http://img1.17img.cn/17img/images/201806/insimg/cab6d5f4-6ae1-4329-ab4d-24dfb53560e9.jpg" / /p p style=" text-align: center " (测试系统综合交钥匙工程) /p p style=" text-align: center " img title=" 8.png" src=" http://img1.17img.cn/17img/images/201806/insimg/839110f4-dffb-4911-a168-6afd61901ad6.jpg" / /p p style=" text-align: center " (电池整体实验室正面) /p p style=" text-align: center " img title=" 9.png" src=" http://img1.17img.cn/17img/images/201806/insimg/d9e4888e-a8a8-465a-9cfc-f8526ff437aa.jpg" / /p p style=" text-align: center " (电池整体实验室背面) /p p    strong 作者:东莞市高升电子精密科技有限公司(DELTA德尔塔仪器) /strong /p
  • 院士领衔,2019全国高性能电池新技术与新材料应用发展交流会召开
    p    strong 仪器信息网讯 /strong 2019年3月21日,“2019全国高性能电池新技术与新材料应用发展暨电池行业智能制造技术交流会”在南京召开。 /p p style=" text-align: center " img title=" IMG_1734.jpg" alt=" IMG_1734.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/10a7f3da-9da2-4eba-9f62-6bb731f2d9aa.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 大会现场 /span /p p   会议由中国电池工业协会主办,中国科学院物理研究所协办,旨在贯彻落实《“十三五”国家战略性新兴产业发展规划》,满足新能源汽车等产业发展的需求,充分交流我国电池行业高性能电池研究领域新技术、新产品、新材料成果。杨裕生院士、吴锋院士领衔,及200余名相关生产企业、新能源汽车及其他电池应用企业、科研部门、大专院校专家代表出席本次会议。仪器信息网作为合作媒体全程报道。 /p p style=" text-align: center " img title=" IMG_1694.jpg" alt=" IMG_1694.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/358b9501-b623-4bf3-af30-424479f18722.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 中国电池工业协会专职副理事长王敬忠主持大会开幕 /span /p p style=" text-align: center " img title=" IMG_1730.jpg" alt=" IMG_1730.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/6efadeca-746c-405a-8dd6-5e646aeca62e.jpg" / span style=" color: rgb(0, 176, 240) " /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 中国电池工业协会理事长赵金生大会致词 /span /p p   在大会致词中,赵金生首先向与会人员表示热烈欢迎。十二五以来,我国电池工业整体保持了较快增长,产品结构进一步优化,技术创新步伐加快,锂离子电池在不断满足并加速普及数码产品、信息化电子产品的需求基础上,新能源汽车的快速发展,推动了动力电池的异军突起,我国已经成为全球最主要的锂离子电池生产国之一。接着表示,据对规模以上企业统计, 2018年,我国电池行业的主营业务达到6416.63亿元,比上年同比增长15.5亿元。我国新能源汽车产销量分别达到约127万辆和126万辆,同比分别增长59%和61%。此背景下便形成本次会议的主题:“在巩固现有新能源动力电池健康发展基础上,要瞄准世界高科技前沿,加速探索适宜我国国情市场预期的新型动力电池研发和制造”。最后,赵金生宣布大会开幕。 /p p style=" text-align: center " img title=" IMG_1753_副本.jpg" alt=" IMG_1753_副本.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/ff26e6ba-a8c1-43cf-af60-c055fe8ee012.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 全国电池行业增选技术专家证书颁发仪式合影 /span /p p style=" text-align: center "    i (部分增选专家还在赶往现场路上。增选专家名单:宋金保、温兆银、袁中直、周浩慎、杨续来、郑伟伟、刘建国、丁晓阳、陈人杰) /i /p p style=" text-align: center " img title=" IMG_1765.jpg" alt=" IMG_1765.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/59fba53b-fac2-4320-ad67-52451c8b969a.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告专家:杨裕生院士,解放军防化研究院研究员 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告题目:电池和材料的“高性能”——从理念到实践 /span /p p   杨裕生院士在报告中从五方面展开“高性能”电池的理念到实践。在定义方面,“电动汽车电池的高性能”主要是安全性高 寿命长、价格低 所需资源不受制于人 比能量、比功率满足所装汽车的要求。要避免将高比能连通过作为衡量电池性能的首要指标。安全性的重要性方面,安全第一是不同电动汽车的共同要求。不要片面追求高比能电池方面,举例中,三元电池相关的Tesla三元电池已经失火烧车十余辆。并从技术、发展路线、补贴政策、思想方法等角度分析了电动汽车频发燃烧的根本原因。磷酸铁锂电池方面,表示要振兴我国磷酸铁锂电池产业,并要发展以硬炭为负极的电容型磷酸铁锂电池。在结束语中,杨裕生院士指出我国电动汽车的合理发展路线,即以节能-减排为宗旨,不直接或间接消耗石化燃料,不增排二氧化碳,从太阳能、光伏等途径进行增程式电动车。最后指出难寄希望的两种“高性能”汽车动力电池:“全固态”锂离子电池和“后锂离子电池”的锂硫电池。 /p p style=" text-align: center " img title=" IMG_1847_副本.jpg" alt=" IMG_1847_副本.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/4982adfd-e444-4597-98b4-1a479afdcb9c.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告专家:温兆银,中国科学院上海硅酸盐所主任研究员 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:固体电解质二次电池进展 /span /p p   温兆银在报告中主要介绍了固体电解质二次电池的发展现状及最新进展。指出高性能固体电解质可以有效地解决二次电池的安全隐患问题,并可显著提高电池的比能量,完全抑制锂硫电池的穿梭问题,为实现锂电池的长续航、长寿命奠定基础。多种金属锂/固体电解质的界面技术有效地解决了金属锂的枝晶生长和在陶瓷电解质中的扩展。高质量的固体电解质是固态锂硫电池发展的保障,高阻抗界面是高性能固态锂硫电池的主要障碍。纳硫电池、纳镍电池是两种典型的固体电解质电池,国外已经实现规模化应用,我国正在快速发展中。 /p p style=" text-align: center " img title=" IMG_1880.jpg" alt=" IMG_1880.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/e90be398-c11b-454f-b1a0-4068997a8528.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告专家:黄学杰,中国电池工业协会副理事长、中科院物理研究所研究员 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:高容量合金负极材料的研究 /span /p p   锂离子电池应用空间不断拓展,高性能电池的发展依赖于正极/负极/隔膜/电解质等关键材料技术的进步。黄学杰首先分别介绍了锂离子电池典型负极材料的产品类别、比容量、发展方向,及优缺点。接着结合电镜、电化学等表征手段介绍了系列对锂电负极材料的研究,指出负极材料由硅炭负极向合金负极的演变。最后介绍了即将建设的中科院北京清洁能源材料测试诊断与研发平台将建设国内最大和世界先进水平的先进化学储能、物理储能、太阳能电池综合测试分析、LED综合测试分析及清洁能源用同步辐射光源线站等研究平台。其中的互联互通惰性气氛电池材料与器件综合分析测试平台主要功能包括电池材料综合物理、化学、电化学分析 国内外电池材料与器件对比分析 电池产品失效分析等。 /p p style=" text-align: center " img title=" IMG_1976.jpg" alt=" IMG_1976.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/82ff045c-8b88-48a9-8dc6-2e2734a4d3a0.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告专家:杨续来,合肥国轩电池股份有限公司研究院副院长 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:动力电池市场化选择中的若干技术问题 /span /p p   近来,新能源汽车市场管理进一步规范化,杨继来首先介绍了市场化过程中三个重要因素,即高安全(系统安全是底线)、低成本(成本是市场因素)、长寿命(技术组合的实力体现)。接着结合多种检测手段,讲解分析了厚电极与电池寿命即安全的关系、电极材料的物理包覆向电化学包覆的转变、锂枝晶生长抑制及电池一致性检测的方法。 /p p style=" text-align: center " img title=" IMG_2004.jpg" alt=" IMG_2004.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/9d326f36-a8a3-4704-833d-1f9905b65717.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告专家:王力臻,郑州轻工业大学教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:锂离子电池硅碳复合负极材料研究 /span /p p   王力臻首先介绍了硅、石墨作为负极材料分别存在的体积膨胀率大、比容量低等问题,针对这些问题,提出纳米化、薄膜化、复合化等解决方案。接着介绍了其团队制备的两种硅碳复合石墨混合负极,通过电镜、电化学、XRD、拉曼等表征手段的验证,表明其制备的炭包硅法可以有效缓解硅膨胀带来的问题,硅碳与石墨之间具有协同效应,提高了混合负极材料脱锂容量,但首次或前几次充放电循环的库伦效率仍较低。 /p p style=" text-align: center " img title=" IMG_2044.jpg" alt=" IMG_2044.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/33883819-c9f2-4eb0-a5b5-0e94de2968a0.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告专家:周豪慎,南京大学教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:开发下一代二次电池——锂空,锂硫和钠离子电池 /span /p p   实现二次电池更高能量密度的目标激励人们寻求新的储能体系。拥有超高理论能量密度,且材料成本低廉、环境友好的锂空气电池、锂硫电池、钠离子电池的出现,为实现这一目标打开了一扇新的大门,但同时这些新型的储能体系仍面临许多亟待解决的挑战。周豪慎在报告中首先介绍了MOF基隔膜抑制枝晶生长的机理,接着重点介绍与讨论了锂空、锂硫、钠离子电池的发展趋势和进展,及其机理研究和产业化问题。 /p p style=" text-align: center " img title=" IMG_2055.jpg" alt=" IMG_2055.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/06d5ddb6-19b1-4d04-96c0-f2a6de548ff2.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告专家:袁中直,亿纬锂能股份有限公司副总裁、首席技术官 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:锂原电池的技术现状与未来 /span /p p   2017年锂一次电池前十大出口企业中,亿纬锂能以4179.2万美元高居榜首。相比二次电池,一次电池具有高比能、长寿命(储存寿命)、宽温度范围等特点。袁中直手心爱你介绍了液态阴极锂电池与固态阴极锂电池的主要应用领域、当下国内外研究进展以及接下来技术发展趋势。接着介绍了锂原电池电压滞后的一系列解决方案,最后在讲到锂离子电池对原电池市场的冲击时,主要介绍了一种新型1.5V的USB可充锂离子电池的多项优越性。 /p p style=" text-align: center " img title=" IMG_2099.jpg" alt=" IMG_2099.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/bed71f14-3595-4436-946d-08c74273e21f.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告专家:俞会根,北京卫蓝新能源科技有限公司总经理 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:固态电池最新技术进展 /span /p p   俞会根首先从分类、原理角度介绍了固态锂电池相对液态锂电池高能量密度、更安全、低成本、长寿命等优势。并进一步从电池结构、能量密度、比功率、正负极材料、技术路线等方面介绍了两者的区别。表示,固态锂电池尚存在电解质层与电极层界面电阻较大、循环过程中电解质相与电极内颗粒接触变差、安全性与热失控行为机理不明等需要进一步解决的问题,但所有问题有可能在3年内找到解决方案,5年内实现小试,8年内实现大规模应用。接着主要介绍了固态锂电池在各领域及各国家的应用及标准化建设情况。最后介绍了全球固态锂电研发团队及企业的布局分布,并讲解了卫蓝新能源在此方面的多项背景技术、核心制造技术及技术发展路线,预计2021年后实现规模化电动汽车市场应用。 /p p style=" text-align: center " img title=" IMG_2138.jpg" alt=" IMG_2138.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/157f2d48-dca2-487e-86d0-c48ad09a8565.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告专家:解明,柔电(武汉)科技有限公司CEO /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:精准纳膜包覆/掺杂技术(PNCD)在高比能量锂电池中的应用 /span /p p   解明主要介绍了未来高比能量锂电池发展趋势及PNCD技术在电池正负极中的应用,具体包括高镍811& amp NCA、高电压单晶532& amp 622、高电压钴酸锂、负极石墨、全固态电池界面调控等。 /p p style=" text-align: center " img title=" IMG_2145.jpg" alt=" IMG_2145.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/1ce2b27e-bc27-4a6f-b8b6-507295d5ac1b.jpg" / /p p style=" text-align: center "   span style=" color: rgb(0, 176, 240) "  报告专家:郑伟伟,欣旺达汽车动力电池有限公司总工程师 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:新形势下新能源乘用车对动力电池技术与测试的需求 /span /p p   2018年我国新能源乘用车销售100.8万量,同比增长88.5%。郑伟伟认为新形势下市场形式面临的主要变化表现为:补贴退坡、特斯拉进入(国产中高档新能源和燃油车都面临严峻考验)、充电普及、隐患难处。关于电池系统的技术需求,私人家用与运营出租车需求差异大。关于电池系统的测试需求,主要介绍了“三宗四横”评价体系,三纵指电芯、模组、BMS,四横指仿真虚拟验证、集成验证、系统验证、整车标定验证四大类试验类型。接着介绍了每种试验类型的验证项目、标准及具体要求。 /p p style=" text-align: center " img title=" IMG_2256.jpg" alt=" IMG_2256.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/7b33b910-b074-4a86-9f8a-68351d2fa313.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告专家:邵丹,广州能源研究院 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:动力电池关键材料检测技术 /span /p p   中国拥有最大的电动汽车保有量,锂电池产业也随之迎来高速发展机遇。追求高能量同时,也带来一系列安全隐患。全方位的测试评价动力电池及其关键材料的性能,开发安全可靠的动力电池,在新能源汽车的研发、生产过程中尤为重要。邵丹首先分别介绍了我国现行部分电池关键材料检测标准,包括正极材料31项、负极材料3项、电解液12项、隔膜7项、其他电池材料7项。接着介绍了动力电池关键材料的双向检测技术。即“自上而下实施检测”实现关键材料性能评价、整体解决方案,及“之下而上实施检测”实现精准定位储能产品材料问题。“自上而下”中材料理化性能检测主要包括基础性能(元素含量、微观形貌、晶型结构、粒度分布、比表面、孔径分布、硬度测试等)、电性能(充放电比容量、库伦效率、循环寿命等)、安全性能(阻燃特性、氧化还原特性、穿刺、拉伸、热性能等) 其他还包括材料匹配性能测试、极片理化性能检测、电池性能检测。提及部分检测技术包括原位XRD技术、电镜、核磁共振、试验机、热分析、粒度仪、比表面分析等。最后介绍了国家化学储能材料及产品质量监督检验中心(广东)整体概况。 /p p    strong 接下来,还进行了十余位邀请专家报告,鉴于篇幅有限,余下嘉宾报告请点击链接: span id=" _baidu_bookmark_start_26" style=" line-height: 0px display: none " ? /span /strong a style=" color: rgb(0, 176, 240) text-decoration: underline " href=" https://www.instrument.com.cn/news/20190324/482257.shtml" target=" _blank" span style=" color: rgb(0, 176, 240) " strong span id=" _baidu_bookmark_start_54" style=" line-height: 0px display: none " ? /span span id=" _baidu_bookmark_start_40" style=" line-height: 0px display: none " ? /span 【专家报告续】 /strong strong /strong strong /strong /span /a span style=" color: rgb(0, 176, 240) text-decoration: underline " 。 /span /p p style=" text-align: center " img title=" 展商.jpg" alt=" 展商.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/4a1a019f-a52d-45b6-bd4a-b738e2e47f23.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 部分展商 /span /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/ldc/" target=" _blank" img title=" 620172.jpg" alt=" 620172.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/1eb7fb3e-0ab4-404f-84f8-9f2b72c57745.jpg" / /a /p p style=" text-align: center " strong span style=" color: rgb(0, 176, 240) " 3月26日“锂离子电池检测技术与应用”网络在线研讨会,邀您在线参会 a style=" color: rgb(255, 0, 0) text-decoration: underline " href=" https://www.instrument.com.cn/webinar/meetings/ldc/" target=" _blank" span style=" color: rgb(255, 0, 0) " 【免费线上参会报名链接】 /span /a /span /strong /p p & nbsp /p
  • 【品质见证,智慧之选】南京大学选购了南京大展仪器的差示扫描量热仪
    随着新能源产业的快速发展,很多高校和科研机构对于能源技术、资源利用及环境保护等领域的研究在不断的深入,从人员的投入再到科研设备方面,都在不断的加大力度,为了能够提升在能源与资源领域的整体研究能力和实验水平。这次南京大学苏州校区采购了南京大展仪器的DZ-DSC300C差示扫描量热仪,此次采购标志着南京大学在新能源材料研究与开发方面迈出了重要一步。    DZ-DSC300C差示扫描量热仪作为南京大展仪器推出一款高灵敏度的检测仪器,它采用了半导体制冷技术,能够实现-40到600℃宽泛的温度区间测试,并且降温快,配套的分析软件,可实现多段温度设置,满足不同材料的测试温度需求;不仅如此,这款DZ-DSC300C差示扫描量热仪采用全新金属炉体结构,能够准确捕捉微小的热量变化,确保测试结果的高精度和高重复性,并且出色的保温性能,减少外部环境对实验的干扰,保证了实验数据的稳定性和可靠性。    差示扫描量热仪在能源领域的应用,体系在哪些方面?  1、电池材料的热性能研究。DSC可用于测量电池材料的热效应和热稳定性,包括电池电解质、隔膜以及正负极材料等。这些数据对于优化电池设计、提高电池的安全性和循环寿命有着密切的关系。  2、能源材料的热分析。对于新型能源储存材料,如超级电容器电极材料、锂硫电池材料等,DSC可用于研究其热性能,评估其在充放电过程中的热稳定性和安全性。  3、燃料电池方面研究。在燃料电池领域,DSC可用于研究燃料电池膜的热性能,包括其热稳定性、相变行为等。这对于优化燃料电池的设计、提高其能量转换效率和使用寿命方面有着重要的作用。    差示扫描量热仪不仅应用在高校和科研院所,很多从事能源领域的企业,也都采购差示扫描量热仪。通过DSC测试,研究人员可以深入了解电池材料的热性能特点,优化电池的设计和制造过程,提高产品的性能和安全性。随着新能源产业的持续发展,DSC在能源领域的应用前景将更加广阔。    &zwnj
  • 晶圆为什么需要减薄?
    晶圆减薄是半导体制造过程中一个关键的步骤,旨在改善热性能、适应封装需求、增加机械柔韧性、提高器件性能和良率等方面的性能。每一步骤都需要精密的控制和测试,以确保减薄后的晶圆能够满足后续工艺和最终产品的需求。以下是晶圆减薄的主要目的及其详细解释:提高散热性能晶圆减薄能够显著改善芯片的散热性能。较薄的晶圆可以更快地将热量传导出去,从而避免芯片过热,提高设备的可靠性和性能。通过减少热阻,热量可以更迅速地从芯片核心传递到散热器或外部环境。工艺步骤如下:1. 热管理设计:减薄后的晶圆需要重新设计热管理系统。这包括选择合适的热界面材料(TIM),以优化热传导效率。TIM材料的选择应基于其导热系数、厚度和应用环境,以确保最大限度地降低热阻。2. 散热片优化:对于需要散热片的应用,应设计并优化散热片的结构和材料。散热片的形状、翅片间距和表面处理都会影响散热性能。优化这些参数可以提高散热效率,确保芯片在高性能工作时保持低温。3. 热模拟与仿真:使用热模拟软件进行仿真,预测减薄晶圆在实际工作环境中的热性能。这可以帮助工程师在设计阶段发现潜在的散热问题,并进行调整。4. 封装测试:在封装过程中,对减薄后的晶圆进行一系列热性能测试,如热阻测试和热循环测试。确保封装后的芯片能够在各种工作条件下有效散热,并具备长期可靠性。5. 实际应用验证:将减薄后的晶圆封装成样品,进行实际应用测试,包括长时间高负荷运行和极端温度条件下的测试,验证其热管理设计的有效性。适应封装需求现代半导体器件越来越追求轻薄短小的封装形式。较薄的晶圆可以使得封装更紧凑,从而满足移动设备、可穿戴设备等对小尺寸和轻重量的要求。这对于多层封装(如3D封装)尤为重要。减薄后的晶圆不仅能节省空间,还能增强器件的集成度和性能。工艺步骤如下:1. 选择封装工艺:根据应用需求选择适当的封装工艺,如倒装芯片(flip-chip)封装或晶圆级封装(WLP)。这些工艺可以提供良好的电气连接和机械强度,同时使封装更加紧凑。2. 机械强度增强:在减薄晶圆后,可能需要增加机械强度。例如,在晶圆背面涂覆一层保护膜或增强材料,以提高其抗弯曲和抗冲击能力,确保在后续封装过程中不易破裂。3. 电气连接优化:确保减薄后的晶圆在封装过程中能够实现可靠的电气连接。倒装芯片封装中,需要在晶圆上增加凸点(bump),以实现电气连接。对于WLP,需要确保焊点的均匀性和可靠性。4. 应力测试:封装完成后,需要进行一系列的应力测试,包括热循环测试、机械冲击测试和振动测试。通过这些测试,验证封装的可靠性和机械强度,确保其能够在各种工作条件下稳定运行。5. 热管理设计:封装过程中还需要考虑热管理设计,确保在减薄晶圆的同时,不影响其散热性能。可以通过优化封装材料和结构设计,确保封装后的芯片能够有效散热。6. 封装可靠性验证:最后,需要进行长时间的可靠性验证测试,包括高温高湿测试、长期运行测试等,确保减薄后的晶圆在封装后能够长期稳定运行,并具备优良的可靠性。增加机械柔韧性减薄后的晶圆更加柔韧,可以适应一些特定的应用需求,如可穿戴设备或柔性电子产品。柔性电子学要求材料能够承受弯曲和变形而不损坏。较薄的晶圆可以使得器件更轻便、适应多种形态的应用场景,从而拓宽其在新兴领域的应用范围。工艺步骤如下:1. 机械强度测试:在晶圆减薄后,首先需要进行一系列机械强度测试,如弯曲测试和拉伸测试。这些测试可以帮助确定减薄后的晶圆在不同弯曲角度和拉伸条件下的性能,确保其在实际使用中不会断裂或失效。2. 冲击测试:除了弯曲测试,还需要进行冲击测试,评估薄晶圆在受到瞬间冲击力时的韧性和强度。这可以模拟设备在实际使用中可能遇到的跌落或碰撞情况。3. 疲劳测试:进行反复弯曲和拉伸的疲劳测试,以评估薄晶圆在长期使用中的耐久性。确保其在长期反复应力作用下仍能保持完整和功能。4. 环境适应性测试:研究薄晶圆在不同温湿度条件下的性能表现。进行高低温循环测试、湿度测试等,确保薄晶圆在各种环境条件下都能稳定运行。5. 表面处理:在晶圆减薄后,可以进行适当的表面处理,如涂覆保护层,以增加其耐用性和抗划伤性能。这对于增强薄晶圆在实际应用中的机械强度和可靠性非常重要。6. 实际应用测试:将减薄后的晶圆应用到具体的柔性电子产品或可穿戴设备中,进行实际使用测试。评估其在实际操作中的表现,包括耐用性、可靠性和用户体验。提高器件性能减薄晶圆后,可以减少寄生效应,尤其是在高频应用中。较薄的晶圆能够减少晶圆上的寄生电容和电感,从而提高器件的电气性能。这对于射频(RF)和高速数字电路尤为关键。在这些应用中,寄生效应会导致信号衰减和失真,而减薄晶圆可以有效减轻这些问题,提高信号的完整性和传输速度。工艺步骤如下:1. 电气性能测试: - S参数测试:进行S参数(散射参数)测试,评估减薄晶圆在不同频率下的电气性能。S参数测试可以提供有关信号反射、传输和匹配特性的详细信息,有助于优化高频电路设计。 - 高频响应测试:进行高频响应测试,评估晶圆在高频应用中的性能表现。这包括测量频率响应曲线、信号延迟和失真等关键指标,确保其在高频工作时性能优良。2. 寄生效应分析: - 寄生电容和电感测试:通过测量寄生电容和电感,量化减薄晶圆对这些寄生效应的影响。较薄的晶圆应表现出显著降低的寄生电容和电感,从而提高电气性能。 - 电气建模:基于测试结果,建立减薄晶圆的电气模型,用于仿真和优化电路设计,确保在设计阶段就能充分考虑减薄带来的性能提升。3. 稳定性验证: - 热循环测试:进行热循环测试,评估减薄晶圆在不同温度条件下的电气性能稳定性。确保其在高温、低温和温度变化条件下都能保持良好的性能。 - 长期运行测试:进行长期运行测试,评估减薄晶圆在长时间工作下的性能稳定性和可靠性。包括高频连续运行测试、功耗测试等,确保其在实际应用中长期稳定运行。4. 实际工作环境测试: - 环境适应性测试:模拟实际工作环境进行测试,评估减薄晶圆在不同工作环境中的表现,如湿度、振动和电磁干扰等。确保其在各种苛刻环境下依然保持优良的电气性能。 - 综合性能测试:将减薄后的晶圆集成到实际电路和系统中,进行综合性能测试,验证其在实际应用中的整体表现。包括系统级测试和应用场景测试,确保其在实际工作中具备预期的性能提升。提高良率减薄工艺可以去除晶圆表面的部分缺陷,如划痕和微裂纹,提高最终的芯片良率。通过减薄可以去除一些制造过程中引入的表面应力和缺陷,从而减少失效率。这一过程能够提高晶圆的整体质量,减少在后续制造和封装过程中出现的问题,最终提升成品率。工艺步骤如下:1. 精密磨削: - 初步磨削:使用高精度磨削设备进行初步磨削,去除晶圆表面的粗糙层和大部分缺陷。这一步需要控制磨削速度和压力,以避免引入新的应力和缺陷。 - 精细磨削:进行更精细的磨削处理,进一步平整晶圆表面,去除微小划痕和裂纹,确保表面光滑平整,为后续的抛光工艺做好准备。2. 化学机械抛光(CMP): - CMP工艺:使用化学机械抛光(CMP)技术,对晶圆表面进行精细抛光。CMP工艺结合了化学腐蚀和机械抛光的优点,可以高效去除表面缺陷,同时保证晶圆表面平整度。 - 抛光液选择:选择适当的抛光液和磨料,确保在去除缺陷的同时,不会引入新的表面缺陷。抛光液的化学成分和磨料的颗粒大小需要根据晶圆材料和目标表面质量进行优化。3. 表面检查: - 光学检查:使用高精度光学检查设备,对减薄后的晶圆表面进行全面检查。检测表面是否存在残留缺陷,如划痕、裂纹或颗粒等,确保表面质量符合标准。 - 缺陷分析:对发现的缺陷进行详细分析,确定其性质和可能的形成原因。分析结果可以用于优化磨削和抛光工艺,进一步提高晶圆质量。4. 应力测试: - 表面应力测试:进行表面应力测试,评估减薄过程中是否引入了新的应力。使用拉曼光谱、X射线衍射等技术,检测晶圆表面的应力分布和应力大小,确保晶圆在减薄后保持应力平衡。 - 机械强度测试:进行机械强度测试,如弯曲测试和拉伸测试,确保减薄后的晶圆具备足够的机械强度,不易在后续工艺中破裂或损坏。5. 质量标准验证: - 合格率统计:统计减薄后晶圆的合格率,分析工艺对良率的提升效果。合格率的提高直接反映了减薄工艺的优化程度和效果。 - 工艺优化:根据检查和测试结果,持续优化磨削和抛光工艺,调整参数和设备设置,确保每一批次的晶圆都能达到预期的质量标准。
  • 研究|具有各向异性和高垂直热导率的高效热界面材料
    01背景介绍随着集成电路和电子器件技术的快速发展,高功率密度电子设备的有效散热已成为确保其可靠性和使用寿命的主要因素之一。热界面材料通常被用来填补散热器和发热元件之间的间隙,以消除由非流动空气产生的高界面热阻。聚合物基材料因其轻质、电绝缘和高机械强度而被广泛用作导热材料。遗憾的是,由于分子构型无序,其固有热导率不能满足应用需求。一种可行的策略是将高导热填料与柔性和绝缘聚合物相结合,从而制备综合性能优良的复合材料。研究人员已经创造性地将各向异性的导热填料有序排列以获得具有优良各向异性导热性的TIM。由于导热路径最短,各向异性填料在基体厚度方向上的有效垂直排列以构建连续的传热路径,并进一步提高垂直透面导热系数,引起了研究人员的高度重视。人们已提出了电场或磁场、流动剪切力、定向冻结法和化学气相沉积等几种有效的策略来构建垂直取向结构以提高TIM的透面导热性。然而,垂直结构排列的二维填料并没有显示出明显的各向异性热导率增强。一维材料在其一个自由度的定向方向上可以达到最大的性能。近年来,碳纤维、碳纳米管、石墨烯等碳材料因其高导热性和优异的力学性能被广泛应用于TIMs的导热填料,其中一维中间相沥青基碳纤维的各向异性导热系数较高,轴向导热系数和径向导热系数分别约600 W/m K和小于10 W/m K,一维材料可以在特定方向上发挥最大的性能。02成果掠影四川大学陈枫教授团队采用中间相沥青基碳纤维,通过熔融挤压法制备了高取向度的短碳纤维(CF)/烯烃嵌段共聚物(OBC)复合材料,可提供高导热性、适度的电绝缘和良好的柔韧性。由于CF/OBC复合材料中CF的高取向度(f0.9,f是CF/OBC复合材料中CF的取向度),在 30 vol%的CF负载下表现出 15.06 W/m K的贯通面热导率,同时实现了良好的电绝缘(~10-9 S/m)和低压缩强度(2.62 MPa)。TIM测量的结果表明,垂直排列的CF/OBC显示出高效的散热能力,相比于随机结构温差可达 35.2°C,可用于冷却高功率LED器件。研究成果以“An efficient thermal interface material with anisotropy orientation and high through-plane thermal conductivity”为题发表于《Composites Science and Technology》期刊。03图文导读(a)具有垂直排列结构的CF/OBC复合材料的制备流程图;(b)CF的SEM图;(c)CF的拉曼光谱图;(d)挤出的长丝;(e)垂直排列的CF/OBC复合材料。(a)丝状物的横截面和(b)垂直排列的CF/OBC复合材料的SEM图;(c)垂直排列和(d)平行排列的2D-WAXS图案,CF含量分别是1,5,10,15,20,30 vol%时,平行排列样品的2D-WAXS图,虚线标记了CF的(002)平面的环;(e)相应的方位角整合的强度曲线。(f)不同CF含量样品中(002)平面的取向度;(g)纯OBC、CF和10 vol% CF/OBC的一维XRD图;(h)从表面和横截面的X射线方向的说明;(i)表面和(j)横断面的三维XRD图。CF/OBC复合材料的导热性能。(a)垂直、平行和随机样品的热导率;(b)随机、平行和垂直排列时30 vol% CF/OBC的比较;(c)各向异性随着CF含量的增加而增加;(d)反复加热和冷却循环后30 vol% 垂直的CF/OBC的典型热导率值;(e)各向异性热导率 30 vol% CF/OBC在不同温度下的各向异性热导率;(f)CF/OBC的电绝缘性能;100℃的条件下(g)示意图、(h)红外图和(i)样品顶部的温度。CF/OBC的机械性能。(a)打结的长丝;(b)弯曲和(c)扭曲的柔韧性;(d)平行排列和(e)垂直排列的CF/OBC块体的抗压应力-应变曲线;(f)比较平行结构和垂直结构之间的抗压强度随CF含量增加的变化。30 vol%的CF/OBC切片用于界面热管理。用于LED芯片散热测试系统的红外图像(a)加热和(b)冷却;(c)原理图和(d)中心区域的平均温度与运行时间的关系。
  • 伊萌公司购买我司差示扫描量热仪,提升检测技术服务
    伊萌检测技术服务有限公司(以下简称伊萌检测)成立于2015年,位于河北省省会石家庄市建华南大街18号。是集检验检测、咨询鉴定、质量控制、配方研发、技术改进等为一体的“一站式”服务机构。伊萌检测技术服务有限公司在2019年通过农业农村部GLP实验室的认证(农药产品化学包括质量分析实验、理化性质试验和常温储存稳定性试验)。目前正在进行农药残留试验、农药田间药效试验资格认定申请的准备工作,2020年上半年将取得该两项实验的GLP试验资格。伊萌检测技术服务有限公司伊萌检测技术服务有限公司选购我司HS-DSC-101差示扫描量热仪,标志着该公司对材料检测技术的重视和提升。差示扫描量热仪作为一种重要的材料检测设备,能够准确地检测材料的热性能,对于产品质量控制和科学研究都具有重要意义。HS-DSC-101差示扫描量热仪的基本原理是通过对材料在升温或降温过程中的热量变化进行测量,从而获取材料的热焓、玻璃化转变温度等热性能参数。该仪器具有高精度、高分辨率、测量范围广等优点,能够适应多种材料的检测需求。伊萌检测技术服务有限公司选购HS-DSC-101差示扫描量热仪的原因主要有以下几点。首先,该公司致力于为客户提供高品质的产品检测服务,准确可靠的检测设备是保证服务质量的关键。其次,HS-DSC-101具有较高的测量精度和分辨率,能够满足该公司对于材料热性能检测的精细化要求。此外,该仪器的测量范围广泛,可以适用于多种不同类型材料的检测。上海和晟 HS-DSC-101 差示扫描量热仪HS-DSC-101差示扫描量热仪在伊萌检测技术服务有限公司的应用场景非常广泛。首先,在产品研发阶段,该仪器可以帮助该公司对材料的热性能进行准确评估,为产品优化设计提供依据。其次,在生产过程中,通过使用HS-DSC-101进行在线检测,能够实时监控产品质量,确保生产过程的稳定性和产品的一致性。此外,该仪器还可以应用于材料科学研究、高校教学等领域。总之,伊萌检测技术服务有限公司选购我司HS-DSC-101差示扫描量热仪,不仅提升了该公司整体检测水平,还为其在材料检测领域的研究和应用提供了强有力的支持。未来,随着科学技术的不断发展和材料性能的不断提升,我们相信HS-DSC-101差示扫描量热仪将在更多领域发挥其独特优势,推动材料检测技术的进步和发展。
  • 透过温度看本质-红外热成像技术在高校及科研领域的应用
    热性能及温度分析是科研人员进行科学研究的重要手段,研究对象的温度趋势可以帮助科研工作者进行包括电子电气元件、材料、机械、动植物培育等多学科目标的缺陷探寻及优化设计。对于科研人员来说,高质量、高精度的温度检测仪器是确保研究项目成功的关键因素。 福禄克一直致力于研发更优质,更强大的红外热像仪器,为科研人员提供非接触式、长时间、智能化的温度监测解决方案。本次线上技术研讨会将由福禄克测试仪器有限公司-工业综合测试部应用经理沈建祥带来红外热像在各学科方面的经典应用案例,为科研人员更好地完成课题提供有力帮助。 本次技术交流会主要内容分享: ▶电子电气学科:电子电气元器件/部件的发热和散热性能测试▶材料学科:材料设计缺陷检测(空鼓、脱胶、密度不均)及实验室环境下的工艺流程缺陷检测▶机械学科:机械部件运行中的发热检测(如机床刀具切削工艺优化设计等)▶生化学科:生物医药实验中的温度监测和对比(植物培育、基因改造、动物习性研究等)(点击图片报名)会议日程报告主题报告嘉宾电子电气前沿科研中的红外热成像技术应用沈建祥福禄克测试仪器有限公司材料热性能研究及缺陷温度监测的实例应用介绍透过温度看本质–红外热像技术在各学科的应用案例分享欢迎大家积极点击报名:https://www.instrument.com.cn/webinar/meetings/fluke230818/#meetInfo
  • 场发射扫描电镜SEM5000在锂电隔膜检测中的应用
    锂离子电池”锂离子电池是一种二次电池,主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,锂离子穿过隔膜在两个电极之间往返嵌入和脱嵌,锂离子能量的存储和释放通过电极材料的氧化还原反应实现。锂离子电池主要由正极材料、隔膜、负极材料、电解液和其他材料组成。其中,隔膜在锂离子电池中起到阻止正负极直接接触的作用,并允许电解液中的锂离子自由通过,提供锂离子传输的微孔通道。锂离子电池隔膜的孔径尺寸、多孔程度、分布均一性、厚度直接影响电解液的扩散速率和安全性,对电池的性能有很大影响。如果隔膜的孔径太小,锂离子的透过性受限,影响电池中锂离子的传输性能,使得电池内阻增大;如果孔径太大,锂枝晶的生长可能会刺穿隔膜,造成短路或爆炸等事故[1]。场发射扫描电镜在锂电隔膜检测中的应用”使用扫描电镜可以观察隔膜的孔径尺寸和分布均匀性,还可以对多层和有涂覆隔膜的截面进行观察,测量隔膜厚度。传统的商业化隔膜材料多为聚烯烃材料所制备的微孔膜,包括聚乙烯(PE)、聚丙烯(PP)单层膜及PP/PE/PP三层复合膜。聚烯烃类的高分子材料绝缘不导电,并且对电子束非常敏感,高压下观察会导致荷电效应,高分子隔膜的精细结构也会被电子束损伤。国仪量子自主研发的SEM5000型场发射扫描电镜,具备低压高分辨的能力,可以在低压下直接观察隔膜表面的精细结构,并且不会对隔膜产生损伤。隔膜的制备工艺主要分为干法和湿法两类[2]。干法即熔融拉伸法,包括单向拉伸工艺和双向拉伸工艺,工艺过程简单,制造成本低,是锂离子电池隔膜生产的常用方法。干法制备的隔膜具有扁长状微孔(图1),但制备的隔膜较厚,且微孔均匀性差、孔径和孔隙率较难控制,组装后的电池能量密度低,主要应用于中低端锂离子电池。场发射扫描电镜在锂电隔膜检测中的应用”图1 干法拉伸隔膜/0.5KV/Inlens湿法即热致相分离法,将聚合物与高沸点溶剂等混合熔融,经过降温相分离、拉伸、萃取干燥、热处理定型等工艺制得微孔膜。与干法工艺相比较,湿法工艺稳定可控,制得的隔膜厚度薄、力学强度高、孔径分布均匀且相互贯穿(图2)。使用湿法工艺制得的隔膜虽然成本高于干法工艺,但组装后的电池能量密度高、充放电性能好,多应用于中高端的锂离子电池。结合国仪量子自主研发的孔径分析系统,可以对隔膜的孔径、孔隙率等特征进行快速自动化的分析(图3)。图2 湿法拉伸隔膜/1KV/Inlens图3 隔膜孔径分析/1KV/Inlens虽然聚烯烃类的隔膜广泛应用于锂离子电池中,但受材料本身力学性能、耐热性及表面惰性的限制,单纯的聚烯烃隔膜无法满足锂离子电池高安全性和高性能的要求。为此,需要对聚烯烃隔膜进行表面改性,以提高其力学性能、耐热性及与电解质的亲和力。其中,目前最常使用的方法就是对隔膜进行表面物理涂覆[3]。无机陶瓷材料(图4)具有耐热性好、化学稳定性高的特点,并且表面的极性官能团有利于改善聚烯烃隔膜对电解液的浸润性,故其常作为涂覆颗粒以增强隔膜的耐热性和电化学性能。图5为经无机陶瓷颗粒涂覆后隔膜的陶瓷面的表面形貌。图4 氧化铝陶瓷粉末/5KV/BSED图5 陶瓷涂覆隔膜/1KV/Inlens
  • 润滑油检测中,都有哪些项目?
    润滑油检测中的项目包括,粘度,粘度指数,闪点,酸值,水分,机械杂质,铜片腐蚀,氧化性,热性,灰分,倾点等。  (1)粘度:反映油品的内摩擦力,是表示油品油性和流动性的一项指标。在未加任何功能添加剂的前提下,粘度越大,油膜强度越高,流动性越差。  (2)粘度指数:粘度指数表示油品粘度随温度变化的程度。粘度指数越高,表示油品粘度受温度的影响越小,其粘温性能越好,反之越差。  (3)闪点:在规定的条件下,加热润滑油,当油温达到某温度时,润滑油的蒸汽和周围的空气的混合气,已经于火焰接触,即发生闪火现象,这个低的闪火温度叫润滑油的闪点。在粘度相同的情况下,闪点越高越好 ,一般认为,闪点比使用温度高20~30℃,即可安全使用。  (4)酸值:测定润滑油中有机酸总含量的质量指标,中和1克润滑油中酸所需用的氢氧化钾的的毫克数。  (5)水分:是指润滑油中含水量的百分数,通常是重量百分数。润滑油中水分的存在,会破坏润滑油形成的油膜,使润滑效果变差,加速有机酸对金属的腐蚀作用,锈蚀设备,使油品容易产生沉渣。  (6)机械杂质:是指存在于润滑油中不溶于汽油、乙醇和苯等溶剂的沉淀物或胶状悬浮物。这些杂质大部分是砂石和铁屑之类,以及由添加剂带来的一些难溶于溶剂的有机金属盐。通常,润滑油基础油的机械杂质都控制在0.005%以下(机杂在0.005%以下被认为是无)。  (7)腐蚀:将规定的金属片,浸入试油中,在一定温度下经过一定时间后,观察金属的颜色变化,以评定润滑油对金属的腐蚀性是否合格。  (8)氧化性:说明润滑油的抗老化性能,测定油品氧化性的方法很多,基本上都是一定量的油品在有空气(或氧气)及金属催化剂的存在下,在一定温度下氧化一定时间,然后测定油品的酸值、粘度变化及沉淀物的生成情况。一切润滑油都依其化学组成和所处外界条件的不同,而具有不同的自动氧化倾向。随使用过程而发生氧化作用,因而逐渐生成一些醛、酮、酸类和胶质、沥青质等物质,氧化性则是上述不利于油品使用的物质生成的性能。  (9)热性:表示油品的耐高温能力,也就是润滑油对热分解的抵抗能力,即热分解温度。油品的热性主要取决于基础油的组成,很多分解温度较低的添加剂往往对油品性有不利影响;抗氧剂也不能明显地改善油品的热性。  (10)灰分:润滑油在规定条件下,完全燃烧,剩下的残余。  (11)倾点:润滑油是指油品在规定的试验条件下,被冷却的式样能够流动的低温度 。较凝点高几度。
  • “聚”先锋 | 用热分析和流变学优化3D打印
    3D打印也称为增材制造,许多行业都将其视为一种多功能制造技术。3D打印可以实现快速成型和按需打印服务,以避免批量运行带来的潜在浪费。3D打印拥有创造复杂形状的独特能力,被广泛应用于制造业。3D打印目前已扩展到一系列材料,包括生物相容性聚合物和各类金属,甚至被用于医疗保健等领域,用于定制打印医疗设备。许多标准制造方法无法在结构中产生空腔和底切,这就需要通过其他方法来优化3D打印材料。。01 通过热分析优化3D打印材料为了优化3D打印材料,制造商需要仔细考虑最终材料的机械和热性能。虽然3D打印部件往往很轻,而且聚合物部件的正确组合可以拥有与金属相似的抗拉强度,但克服增材制造部件较低的机械和热性能是最大的挑战之一。1.1 3D打印产品性能的工艺优化了解挤压过程如何影响打印材料的最终性能是一个非常热门的研究领域。其中汽车应用对材料的拉伸和热性能要求最高。幸好,目前有许多含有碳纤维、玻璃纤维和凯夫拉纤维的热塑性聚合物基质可用于3D打印部件,并能够在汽车应用中充分实现高性能。在3D打印过程中,要打印的基材被熔化,然后分层沉积以创建最终对象。在此过程中有多个参数可以优化,例如聚合物床层和喷嘴温度以及层间固化时间。3D打印有多种方法,包括选择性激光烧结、生物打印和熔融沉积建模。熔融沉积建模是最常用的方法。玻璃化转变温度是选择正确温度挤压非晶态聚合物的必要信息。对于半结晶聚合物,其熔化温度是应重点关注的数值。结晶度强烈影响聚合物的机械性能。许多聚合物用紫外线固化,紫外线在聚合物材料中产生自由基,作为最终聚合物生产中交联过程的引发剂。交联程度越高,材料的硬度和强度就越高。通过改变样品暴露在紫外线下的时间长度可以影响交联的材料强度。温度和固化时间都会影响聚合物在材料中的分子结构及其性能。因此,为了优化这些参数并探索其对最终材料的影响,材料设计师使用对聚合物性能细节敏感的测试技术。1.2 3D打印材料的热分析用于研究挤压过程对最终材料性能影响的主要热分析工具包括热重分析(TGA)、差示扫描量热分析(DSC)、热机械分析(TMA)和动态机械分析(DMA)。每种技术都提供一些互补信息,可以将这些信息结合起来,以便人们对打印材料的性能有更深的了解。热重分析(TGA)测量材料重量随温度或时间变化的幅度和变化率。TGA对于了解表征挤压的影响非常重要,因为许多材料在加热时会发生氧化或分解,从而导致重量变化。热重分析是确定样品在挤压过程中是否发生降解的最佳方法之一。差示扫描量热分析(DSC)可用于测量材料放热和吸热转变与温度的函数关系。挤压过程的常见关注点包括玻璃态转化温度、熔化温度和材料的比热容。差示扫描量热分析和热重分析是用于了解挤压影响的强大而互补的技术组合。这些技术可用于分析聚合物在挤出温度下的热性能。测量热膨胀系数(CTE)和玻璃化转变温度的热机械分析(TMA)是另一种配套工艺。由于玻璃化转变温度取决于材料的热历史,热机械分析可以用于检查挤压过程不会给成品带来任何不必要的力学行为。此外,增强材料在CTE中可能显示出各向异性,这取决于相对于纤维方向的测量方向。动态热机械分析(DMA)也被广泛用于材料工程,用于分析聚合物复合材料,因为其可以揭示材料在动态负载条件下的行为信息。 DMA对于表征3D打印成品部件特别重要,反映了不同的配方和加工方法如何影响最终使用性能。02 利用流变改进3D打印技术聚合物产品无处不在,从包装薄膜、酸奶杯到复杂的汽车零件均使用聚合物产品。尽管应用广泛,但塑料产品通常均通过相同的简单步骤进行制造:1. 制造的起始步骤是应用聚合物基材料(通常为颗粒或粉末形式)2. 加热材料以形成自由流动的熔体3. 通过吹膜、注塑成型、挤出或增材制造(3D打印)等工艺实现熔化材料的成型4. 冷却并凝固产品最终产品的特性和物理形态在很大程度上取决于其加工过程。制造商需要深入了解其材料和应用,以使最终产品的质量达到预期。在加工过程中了解材料是可能的,但这会导致更大的材料损失和更高的生产成本。但如果在加工前就以实验室规模进行材料表征则可有效解决这一顾虑。然后,制造商可根据材料的测量特性设计加工条件。3D打印和其他增材制造工艺可通过流变分析进行优化。流变学也适用于许多其他制造工艺2.1 质量控制挑战在3D打印过程中,聚合物被熔化到熔融状态并通过3D打印机的管线和喷嘴挤出。因此,聚合物必须能够自由流动,并且需要具有尽可能低的黏度。同时,聚合物必须在挤出后立即保持其形状,并且在冷却过程中不能出现变形。将回收材料用于打印产品对聚合物制造商提出了另一个挑战。废旧塑料通常含有残留添加剂、颜色和填料,它们会影响熔体的质量、可加工性及其在制造过程中的行为。因此,再生塑料的加工及其终产品可能难以预测。因此,需要对生物塑料进行详细的分析。2.2 预先质量控制尽管存在这些潜在的干扰和不确定性,制造商仍然可以执行强有力的预先品控和质量保证。其中的关键是分析性思考的两个角度:1. 产品中使用的所有材料成分的相互作用2. 必要的工艺参数,包括温度、压力和流量2.3 轻松表征材料使用相应的功能强大的高精度流变仪可确定流变特性,这是材料表征的重要组成部分。Waters的应用专家表示:“特别是在应用聚合物熔体等液态物质的情况下,如果没有足够的仪器,了解和预测流变特性可能会非常耗时。” 样品行为通常会根据作用于样品上的力的大小而发生变化,这意味着“样品的流动和变形行为只能通过实验模糊地预测,或通过流变进行更为精确的测量。”制造商和研究人员都利用流变来研究材料的变形和流动。流变可提供有关液体和固体材料的关键、精确的见解,为成功的3D打印提供信息。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制