当前位置: 仪器信息网 > 行业主题 > >

热合强度

仪器信息网热合强度专题为您整合热合强度相关的最新文章,在热合强度专题,您不仅可以免费浏览热合强度的资讯, 同时您还可以浏览热合强度的相关资料、解决方案,参与社区热合强度话题讨论。

热合强度相关的论坛

  • 【原创】水热合成釜

    【原创】水热合成釜

    钢衬聚四氟乙烯高压密封消解罐(高压罐、反应釜、压力溶弹、消化罐、水热合成釜)可应用于食品、地质、冶金、环保、商检、化工、核工等系统的实验室,用于[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]和原子荧光等化学分析方法的样品前处理,水热合成、晶体生长或萃取等方面,烘箱中200℃以内使用。[img]http://ng1.17img.cn/bbsfiles/images/2007/03/200703301540_47105_1645750_3.jpg[/img]欢迎联系我们13913900946025-83224668江苏省滨海县正红塑料厂

  • 【原创】我们站里想买韩国森通SE250型封管热合机,有知道的给点建议啊?

    答:韩国森通的东西还真的不错,我们站里买了好几台,05年买的,现在仍然很好用,我觉得还可以吧,在此说几点自己的想法:一、生产商韩国森通公司是国际知名品牌,代理商达科为公司在血站领域有较强的信誉,所有这些造就了SE250热合机有良好的品质和完善的技术服务体系,大品牌,让人放心。二、市场占有量大,达科为公司自从推广热合机SE250以来就受到了血站朋友们的强烈欢迎,广州,北京,上海各大血液中心的使用就是有力的见证,目前在北京、上海、广州等大型血液中心的森通热合机超过100台,三、热合机质量稳定,上档次,性价比高。我们热合机的外观采用不锈钢特质面板,内电路板全部采用进口元器件,性能稳定,故障率低。另外自己也可以去联谊血站考察考察,毕竟要亲眼看是真啊。

  • 【求助】afm的加热和制冷装置

    我用的是veeco multimode的仪器,在网站上看到MULTIMODE可采用加热和制冷装置后在零下35º C到250 º C范围内对样品进行温度控制。请问大家谁有用这样的温度控制装置,是自己搭建的还是有配套的设备呢?

  • 牛奶,到底怎样加热和保存比较好呢?

    最近,给孩子订了牛奶,每天一斤,计划是晚上让孩子喝半斤牛奶,早上让孩子喝半斤牛奶。第一天下班回家时,我将牛奶提回家,就倒出来一半给孩子煮开了,然后灭火,说实话,不好热奶,稍不小心牛奶就从奶锅里面溢出来了。完了凉凉让孩子喝了。 剩下的半斤牛奶第二天早上当我打开时,一股熏鼻子味道了,牛奶坏了,如何是好?各位版友,给点意见,我到底如何加热和保存牛奶呢?

  • 净强度大于原始强度

    我们的分析结果里面好多是净强度比原始强度大,但有一条分析曲线做出来的结果却是净强度全都等于原始强度,这是为什么?求各位大侠指教!

  • 强度

    ICP720检测元素,标液的强度和整体强度变低,降低了以前的一半,是什么原因导致的

  • 抗拉强度/拉伸强度/屈服强度/弯曲强度/弹性模量/抗拉强度计算公式

    抗拉强度(tensile strength)抗拉强度计算公式抗拉强度( бb )指材料在拉断前承受最大应力值。抗拉强度(tensile strength)拉力机,拉力试验机,万能材料试验机测试定义:试样拉断前承受的最大标称拉应力。抗拉强度是金属由均匀塑性变形向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为:σ=Fb/So式中:Fb--试样拉断时所承受的最大力,N(牛顿); So--试样原始横截面积,mm2。抗拉强度( Rm)指材料在拉断前承受最大应力值。当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。单位:N/mm2(单位面积承受的公斤力)抗拉强度=Eh,其中E为杨氏模量,h为材料厚度目前国内测量抗拉强度比较普遍的方法是采用上海发瑞仪器的拉力机,万能材料试验机等来进行材料抗拉/压强度的测定! 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。单位:kn/mm2(单位面积承受的公斤力)抗拉强度:extensional rigidity.抗拉强度=Eh,其中E为杨氏模量,h为材料厚度目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定!拉伸强度(1) 在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa表示。有些错误的称之为抗张强度、抗拉强度等。(2) 用仪器测试样拉伸强度时,可以一并获得拉伸断裂应力、拉伸屈服应力、断裂伸长率等数据。(3) 拉伸强度的计算:σt = p /( b×d)式中,σt为拉伸强度(MPa);p为最大负荷(N);b为试样宽度(mm);d为试样厚度(mm)。注意:计算时采用的面积是断裂处试样的原始截面积,而不是断裂后端口截面积。弯曲强度:材料在弯曲负荷作用下破裂或达到规定挠度时能承受的最大应力,用公斤/厘米2表示杆件在受弯时其断面的上部是受压区,而下面是受拉区.以矩形匀质断面为例,受压、受拉区的最外沿的强度就叫做弯曲强度。它与弯矩成正比与断面模数成反比。目前国内测量弯曲强度比较普遍的方法是采用上海发瑞仪器的拉力机,万能材料试验机等来进行材料弯曲强度的测定!可由下公式表示:σ=KM/W 其中K为安全系数,M为弯矩,W就是断面模数,不同的断面就有不同的断面模数可在材料力学手册中查到。一般材料的抗弯强度,采用三点抗弯。R=(3F*L)/(2b*h*h)F—破坏载荷L—跨距b—宽度h—厚度屈服强度拉力机,拉力试验机,万能材料试验机材料拉伸的应力-应变曲线yield strength是材料屈服的临界应力值。(1)对于屈服现象明显的材料,屈服强度就是在屈服点在应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。通常用作固体材料力学机械性能的评价指标,是材料的实际使用极限。因为材料屈服后产生颈缩,应变增大,使材料失去了原有功能。当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(σs或σ0.2)。有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。首先解释一下材料受力变形。材料的变形分为弹性变形(外力撤销可以恢复原来形状)和塑性变形(外力撤销不能恢复原来形状,形状发生变化)目前国内测量屈服强度比较普遍的方法是采用上海发瑞仪器的拉力机,拉力试验机,万能材料试验机等来进行材料屈服强度的测定!屈服强度的计算公式:σ=F/S,其中σ为屈服强度,单位为“帕”,对塑性材料来讲F为材料屈服时所受的最小的力,单位为“牛”,对脆性材料来讲F为材料发生塑性变形量为原长的0.2%时所受的力,单位还是:“牛”,S为受力材料的横截面积,单位为“平方米”。拼音:tanxingmoliang英文名称:Elastic Modulus,又称 Young 's Modulus(杨氏模量)定义:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。单位:达因每平方厘米。意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。说明:又称杨氏模量。弹性材料的一种最重要、最具特征的力学性质。是物体弹性t变形难易程度的表征。用E表示。定义为理想材料有小形变时应力与相应的应变之比。E以单位面积上承受的力表示,单位为牛/米^2。模量的性质依赖于形变的性质。剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。模量的倒数称为柔量,用J表示。拉伸试验中得到的屈服极限бb和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变形的能力,为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A0为零件的横截面积。由上式可见,要想提高零件的刚度E A0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。在弹性范围内大多数材料服从胡克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。弹性模量 在比例极限内,材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比,用牛/米^2表示 。弹性模量:材料的抗弹性变形的一个量,材料刚度的一个指标。它只与材料的化学成分有关,与其组织变化无关,与热处理状态无关。各种钢的弹性模量差别很小,金属合金化对其弹性模量影响也很小。弹性模量计算公式E=(ΔF/S0)/(Δ1/Le1),简化就是E=(ΔF*Le1)/(S0*Δ1)其中,ΔF——应力(一般是0.5MPa到1/3轴向极限力的差值)Le1——测量标距(一般15cm)S0——混凝土试块承压面积(注意15*15cm和10*10cm是不一样的)Δ1——应变(一般是0.5MPa到1/3轴向极限力之间的变形)

  • 拉力试验机中屈服强度和抗拉强度的区别

    [url=http://www.dongguanruili.com/product/5.html][color=#333333]拉力试验机[/color][/url]可以进行拉伸、压缩、撕裂、扭曲等试验,来检验试验物品或材料的耐拉压扭曲性能。拉力试验机通过不同的夹具可以进行不同的拉力、压力试验,在拉力试验中,一般以检测物品或材料的抗拉强度为主,在压力试验中,则是以检测物品或材料的屈服强度为主。[align=center][img=拉力试验机,500,310]http://www.dongguanruili.com/d/file/ab6bbf32c5223221ebea271d4049e165.jpg[/img][/align]  1、抗拉强度  当拉力试验机进行拉力试验时,要检测试验物品的抗拉强度。所谓的抗拉强度是指试验材料在受拉过程中出现颈缩现象,直至断裂破坏,试验物品在被拉断撕裂前的最大应力就称为抗拉强度。例如钢材经常会检测其抗拉强度,当钢材弯曲至极限程度以后,其内部的晶粒重新排列,其形变抵抗能力又重新提高,直到达到应力的最大值。  2、屈服强度  屈服强度时拉力试验机进行压力测试的时候来评估某物品的抗压强度的指标,测试试验物品的屈服强度时,会出现最大、最小应力点,这个称谓上屈服点和下屈服点。下屈服点出现时就是试验物品最最大化压缩了,这个屈服点的数值稳定,就称为材料的抗压指标,也就是屈服强度。

  • 力学性能检测方法验证及质量控制如何进行

    CNAS现场审核中提出,对于力学性能检测的质量控制不能使用F检验的方法,因为力学性能测试为破坏性试验,样品不能实现完全的重现性,所以不能使用改统计方法,请问大家有其他方法吗?具体试验是:剥离强度测定、摩擦系数测定、热合强度测定

  • 电场强度和磁场强度

    各位大神们 我想请教下对于测量电场强度和磁场强度以及辐射量的实验室是用哪个评定标准啊

  • 【求购】航空航天用超高强度钢的现状与发展

    摘要 文中主要介绍了典型Ni-Co-Mo-Ti系和Ni-Mo-Ti无Co马氏体时效钢及Ni-Co-Mo-Cr系二次硬化钢等航空航天钢化学成分、力学性能,介绍了超高强度钢最新研究动态。关键词 马氏体时效钢,二次硬化钢,T250,F206,23CoNi合金超高强度钢是在室温条件下抗拉强度大于1400MPa〈1〉〈2〉 〈3〉,具有良好的塑韧性、优异的疲劳性能、断裂韧性和抗应力腐蚀性能。 超高强度钢分为低温回火马氏体组织或下贝氏体组织强化的低合金超高强度钢;高温回火析出合金碳化物、二次硬化组织的超高强度钢和从低碳马氏体基体析出金属间化合物进行强化的马氏体时效钢〈1〉〈3〉〈4〉及正在探索和研究的复合强化型(沉淀强化、二次硬化和时效强化复合强化)的超高强度钢。五十年代末期我国开始研究超高强度钢〈5〉〈6〉,经过几十年的努力,已形成以40Cr2Si2Ni2MoVA为代表的低合金超高强度钢;1700—2500MPa的Ni-Co-Mo-Ti系列马氏体时效钢和Ni-Mo-Ti系列无Co马氏体时效钢〈7〉 〈8〉;1700—2000MPa、K1C100—210MPa 的C-Ni-Co-Cr-Mo系列二次硬化型超高强度钢〈9〉〈10〉和正在研究的二次硬化型超高强度不锈钢(σb≥1900MPa、K1C≥100MPa )、复合强化型超高强度钢(σb≥2200MPa,K1C≥90MPa )。超高强度钢已在航空航天及军工尖端领域得到广泛应用。 1 超高强度钢的研发基础 超高强度钢发展至今,合金化研究已达到很高水平,挖掘现有钢种的潜力,充分发挥合金元素的作用,减少有害元素的含量,提高断裂韧性,已成为冶金科技工作者追求的目标。 近十年来围绕现有钢种挖潜,在超纯、超细化、高均质、低偏析进行技术创新,突破四大关键技术:1、超纯铁工业化大生产冶金技术:采用电炉+炉外精炼试制出18%Ni马氏体时效钢用超纯铁C≤0.01%、Mn、Si≤0.05%、S≤0.0015%、P≤0.005%;二次硬化钢用超纯铁Si、Mn≤0.03%、S≤0.001%、P≤0.003%、Al、Ti≤0.005%。2、VIM+VAR低偏析、高均质化的熔炼技术改变了传统的冶炼工艺方法,获得了成分均匀、组织细密的钢锭。熔炼技术创新,使马氏体时效钢的强度、塑韧性得到改善,F206二次硬化钢断裂韧性提高了30MPa 。3、钢锭均质化技术、大锻比锻造技术。4、超细化控制锻造技术和热处理控制技术。这是超高强度钢研发和产品工业化的基础。先后研制出TM210、T250、C300、C350马氏体时效钢、F206、23NiCo合金二次硬化钢。2低合金超高强度钢低合金超高强度钢广泛用于飞机起落架、轴、梁,目前我国已形成Cr-Ni-Mo-(V) 、Cr-Mn-Si-(Ni)、Cr-Mn-Si-Ni-Mo-(V)、Cr-Ni-W-(Mo)-V系列。航空用超高强度钢主要钢种有:30CrMnSiNi2A、40SiMnCrMoVA、35Cr2Ni4MoA(E)、40Si2CrNi2MoVA(300M)、40CrNi2MoA。VIM+VAR生产的30CrMnSiNi2A经热处理后可获得σb1680-1750MPa、δ10-14%、ψ40-53%、Ak60-90J、K1c100-130MPa ,是目前飞机起落架、轴、梁的主力钢种。40Si2MnCrNi2MoVA钢的力学性能可达到σb1870-2080MPa、σ0.21570-1800MPa、 δ10-13%、ψ32-40%、Ak40-70J、K1c70-85MPa ,该钢优异的性能已广泛用于新型战机起落架。35Cr2Ni4MoA钢是一种新型超高强度钢,该钢经淬火加高温回火处理,可获得高强度或超高强度并具有高的塑、韧性,该钢淬透性很高,适用于大截面、承受疲劳载荷的关键部件,如轴、接头、螺栓、起落架等。 3 超低碳马氏体时效钢18%Ni马氏体时效钢具有很高的屈服强度,屈强比≥95%,承载能力强;焊接不需预热和焊后处理,膨胀系数低,热处理变形小,无冷加工硬化现象,没有脱碳问题,热处理工艺简单,在相同的强度级别K1c比低合金钢要高。我国马氏体时效钢已用于核工业、火箭发动机壳体、高质量模具、弹簧、齿轮、轴类等高精度受力零部件。我国六十年代始研制马氏体时效钢,到目前为止已形成1700-2500MPa不同级别十余个钢种,实现了工业化生产,尤其九五年以来研制了C300、C350和T250、T300无Co马氏体时效钢,C+Si+Mn+S+P+O+N比九O年前生产的马氏体时效钢降低50PPm以上,C350、CM-1、TM210钢强度提高了50MPa,ψ提高了2-5%,Ak提高了4-6J。马氏体时效钢化学成分与力学性能见表1、表2:化学成分 (%) 表1元素钢种代号CMnSiSPO ppmN ppmNiCoMoTiT250150.0050.020.030.00100.00619.453.071.50F141420.0050.010.010.00100.00517.807.625.000.42TM210570.0040.0040.040.00130.00258618.0010.24.480.89C300580.0060.020.020.0010.00518.209.105.090.70C350590.0040.030.050.0010.00681018.1712.65.01.3力学性能 表2性能钢种代号σ0.2 MPaσb MPaδ %Ψ %Ak(J)HRCK1cMPa T2501517801820186019101415525351529585F141421810185018801930131251535052TM210571940199020402090101151583142527075C3005819402100202022401113292440536971C35059238024608.55525594318Ni马氏体时效钢以Co、Mo、Ti为强化元素,固溶状态是高密度位错马氏体基体,时效过程析出Ni3(TiMo)强化相,析出相与基体保持共格、半共格关系,实现强韧化。 钴固溶于基体,起固溶强化作用,降低钼在马氏体基体内的固溶度,促进Fe2Mo、Ni3Mo弥散强化相析出。无钴马氏体时效钢没有钴钼的交互作用,钼强化相降低,强化效果减弱。钛是马氏体时效钢中最佳的强化元素,时效析出Ni3Ti.无钴马氏体时效钢增加钛含量,弥补强度降低。94年研制了T250无钴马氏体时效钢,生产统计结果表明T250与C250钢相比,Ni含量提高了1%,Mo降低2%,Ti提高了1%。强度、韧性基本相当,σs、δ略有降低,K1C达90MPa 。T250马氏体时效钢已在航天得到普遍认可,是制造火箭发动机壳体的最理想的材料。 4 二次硬化钢 七十年代C.D.Little等人在HY180的基础上开发了AF1410钢,其设计思想是增加C、Co含量,增加钢的强度和二次硬化效果,时效后钢的强度可达1620MPa,K1c≥150MPa 。九二年由Carpenter公司在AF1410的基础上通过调整强化元素的含量,提高强韧化效果,研制出Aermet100钢,σb≥1930MPa, K1c≥110MPa ,其良好的强韧性、抗应力腐蚀性能取代了300M钢在载舰机起落架得到应用。为追求更高的焊接性能和高强度、更高韧性与抗应力腐蚀性能,八五期间由钢院牵头组织攻关研制了16Co14Ni10Cr2Mo(F206)钢,并成功用于某飞机平尾轴。F206钢是在固溶处理获得高密度位错马氏体基体中析出弥散的M2C强化相,引起钢二次硬化,达到强韧性最佳配合的新型高强钢〈11〉〈12〉〈13〉〈14〉,采用VIM+VAR熔炼工艺,纯洁度要求:Si、Mn0.1%、S≤0.005%、P≤0.005%、Al、Ti≤0.015%、N≤15ppm、O≤20ppm。锻造Ф140棒材,要求晶粒度≥8级,非金属夹杂物1级视场数不能超过8个,力学性能σb≥1620MPa、σ0.2≥1480MPa、δ≥12%、ψ≥60%、K1c≥143 MPa 。采用全新双真空冶炼工艺,生产出高纯度Ф406钢锭,化学成分〈14〉

  • 拉力试验机中抗拉强度和屈服强度的区别

    拉力试验机广泛应用于各类五金、金属、橡塑胶、鞋类、皮革、服装、纺织、绝缘体、电线、电缆、端子等各类材料,测试其拉伸,撕裂,剥离,抗压,弯曲等材料研发,检验测试,功能其全,用途广泛。但是大家经常会把拉力试验机的抗拉强度和屈服强度的意思弄混淆。下面我们介绍下拉力试验机中抗拉强度和屈服强度的区别: 1、抗拉强度 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 2、屈服强度 当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度。

  • ICP-MS空白强度高于标曲强度

    赛默飞的iCAP RQ 做HJ700标准铝、硼、锂、钛等几个元素的空白强度都比配的标曲(0.1,0.5,1,5,10,50,100)前几个点的强度要高,标曲不成线性,是硝酸纯度问题吗BLK进的是2%硝酸

  • 谱线净强度

    请问一下:谱线的净强度是什么意思?为什么每次测试的净强度都不一样呢?但差别也不是很大

  • 【转帖】不锈钢的力学性能——抗拉强度、屈服强度

    不锈钢的强度由各种因素来确定,但最重要的和最基本的因素是其中添加的不同化学元素,主要是金属元素。不同类型的不锈钢由于其化学成分的差异,就有不同的强度特性。(1)马氏体型不锈钢 马氏体型不锈钢与普通合金钢一样具有通过淬火实现硬化的特性,因此可通过选择牌号及热处理条件来得到较大范围的不同的力学性能。马氏体型不锈钢从大的方面来区分,属于铁—铬—碳系不锈钢.进而可分为马氏体铬系不锈钢和马氏体铬镍系不锈钢。在马氏体铬系不锈钢中添加铬、碳和钼等元素时强度的变化趋势和在马氏体铬镍系不锈钢中添加镍的强度特性如下所述。马氏体铬系不锈钢在淬火—回火条件下,增加铬的含量可使铁素体含量增加,因而会降低硬度和抗拉强度。低碳马氏体铬不锈钢在退火条件下,当铬含量增加时硬度有所提高,而延伸率略有下降。在铬含量一定的条件下,碳含量的增加使钢在淬火后的硬度也随之增加,而塑性降低。添加钼的主要目的是提高钢的强度、硬度及二次硬化效果。在进行低温淬火后,钼的添加效果十分明显。含量通常少于1%。在马氏体铬镍系不锈钢中,含一定量的镍可降低钢中的δ铁素体含量,使钢得到最大硬度值。马氏体型不锈钢的化学成分特征是,在0.1%----1.0%C,12%---27%Cr的不同成分组合基础上添加钼、钨、钒和铌等元素。由于组织结构为体心立方结构,因而在高温下强度急剧下降。而在600℃以下,高温强度在各类不锈钢中最高,蠕变强度也最高。

  • 光谱仪强度

    ARL 光谱仪哪些元素测的是相对强度,哪些是绝对强度?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制