当前位置: 仪器信息网 > 行业主题 > >

热分析表征

仪器信息网热分析表征专题为您整合热分析表征相关的最新文章,在热分析表征专题,您不仅可以免费浏览热分析表征的资讯, 同时您还可以浏览热分析表征的相关资料、解决方案,参与社区热分析表征话题讨论。

热分析表征相关的仪器

  • 仪器简介:PerkinElmer® 全新推出的同步热分析产品系列可在单台紧凑型设备中实现重量信号和热流信号的同步监测,赋予您双倍的热分析能力,满足您不同的需求。PerkinElmer 的同步热分析仪 (STA) 产品系列可实时监测样本重量以及热流信号随温度或者时间变化曲线。凭借独创的传感器技术和紧凑型炉体设计,我们的 STA 仪器可以胜任从常规品质检测到科学研究等各个领域。因此,无论您从事的是无机物材料表征、聚合物结构剖析、亦或是油品品质检测工作,STA 8000 系列产品将差热分析技术(DTA 或 DSC)与久经验证的热重分析 (TGA) 技术完美融合,您都可以获得可靠的测试结果和明确的数据阐释。技术参数:精确控温量热能力:STA 系列同步热分析仪具有宽广的工作温度区间,最低工作温度达 15º C,从而能够捕获完整的水分或溶剂挥发过程.卓越的热分析性能,高效的检测通量:本着高效的原则,STA 系列同步热分析仪均采用了垂直式炉体和天平设计方案,易于装卸样品。另外,该款仪器还集成了气体质量流量控制器,操作者可在软件中方便的进行气体流速的控制以及气体种类的切换,量热灵活性:STA 系列同步热分析仪外观小巧、结构紧凑,能够同时进行 TGA 和 DTA/DSC 测量,可为众多应用领域提供高质量的热分析数据。仪器配有质量流量控制器,可以根据您的分析需求保持稳定且精确的气体流速;如果您需要进行气体切换,Pyris 软件可以方便的将切换步骤编入温控程序中,全自动的进行气体切换操作。主要特点:强大的拓展能力联用分析技术往往可以有效简化数据分析的难度,而 PerkinElmer 提供多种不同的分析技术(红外、气质联用等等),均可以与 STA 8000 搭建联机工作站。此外,您也可以选择定制接口将其它制造商的实验室设备连接到您的 PerkinElmer STA 上。众多选择无论您从事何种行业,PerkinElmer 都能为您定制全套解决方案。高度集成STA 8000 仪器可选配自动进样器,满足您连续测试的要求,您可以在 Pyris 软件中独立的为自动进样器进行编程(Player List)。软件可以自动监测轻质炉体内的温度,并在 STA 6000/8000 准备就绪之后自动载入下一个样品进行测试。
    留言咨询
  • 显微热台广泛用于图象表征各种热转变过程,能够直接观察晶体或液晶样品在加热或冷却过程中的晶态变化以及结晶过程中形状、结构、颜色以及大小和数量的变化。FP82显微热台测量放置于玻璃片中的试样,通过显微镜系统观察并摄录试样的变化过程。FP84显微DSC热台测量放置于石英玻璃或蓝宝石坩埚中的试样,在通过显微镜观察并摄录试样变化过程的图像的同时,测量热流变化,图像信息与DSC曲线互为补充,可更全面准确地解析样品在升降温过程中的转变。技术参数:FP82HT:温度范围:-60~375℃重复性:0.2℃可视范围 &Phi 2.5mm主要特点:成像技术 - 可以直观研究多晶态转变封闭的炉体设计 - 保证精确的温度控制高灵敏度 - 光学灵敏度不受加热或冷却速率的影响手持式交互控制 - 使用者可以控制温度程序同步显微成像与DSC测量 -提供了样品完整的热分析信息产品型号: FP84HT:温度范围:-60~375℃重复性:0.2℃可视范围 &Phi 2mmDSC传感器:Au-Ni,5对热电偶量热灵敏度:13mV/mW应用领域:晶体、多晶体、液晶、半结晶聚合物等。主要型号: FP90/FP82+显微镜、FP90/FP84+显微镜查看更多信息咨询电话:
    留言咨询
  • 材料表征 400-801-8117
    产品包括实验室加工设备药物制剂工艺设备旋转流变仪粘度计更多信息:请访问赛默飞世尔科技材料表征的展台,展位号:SH100279。或使用简易域名登陆:http://mctc.instrument.com.cn。
    留言咨询
  • 日立分析仪器正式将“New STA系列” TG-DSC热分析仪引入中国内地市场。本系列具备令人惊叹的基线稳定性[1]和高灵敏度测量能力,包括STA200、STA200RV和STA300三款,分别为普通型号、适用于试样实时观察的型号,以及高温型号。热分析仪是指在程序控温等条件下,测量物质物理性质与温度或时间关系的仪器。根据测量方法的不同,热分析仪有测量重量变化的“热重法(TG)”、测量温度变化的“差热分析(DTA)”,以及测量热量的“差示扫描量热法(DSC)”等诸多种类,被广泛应用于塑料、复合材料、医药品等有机材料,陶瓷、合金等无机材料行业,适合从研究开发到质量管理、故障分析等多种的场景。近年来,随着材料和素材的高功能化、复合化,热分析仪的热性能的要求也多样化了。在高性能的电子产品的故障分析中,为了进行极微量的试验和成分的测量,需要支持高灵敏度的测量的高基线稳定性。另外,汽车、食品相关领域等利用的复合材料是由不同的材料组合而成,因此除了单次测得多个数据的能力,复合型分析的需求也日益增长。一、 高水准TG基线稳定性日立New STA系列继续采用高灵敏度 “数字水平差动型天平”[2],这一结构在日立原有的热分析仪中就有不俗表现。New STA系列更是新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10μg以下。二、 划时代的TG-DSC同时测量装置日立原有的热分析仪以热重法-差热分析(TG-DTA)方式进行同时测量,但由于DSC比DTA更能够精确地定量试样的热量变化,现在业界对热重法-差示扫描量热法(TG-DSC)同时测量的需求不断上升,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。三、 多项改进带来新的可能New STA系列对选配件试样观察系统(Real View )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升;还标配Mass Flow Controller[3],气氛控制和其操作性能也登上了一个新台阶。[1] 基线稳定性:热重法(TG)测定时,抑制因温度变化导致的天平结构热膨胀所引起的重量变动,或对该过程进行测量。[2] 数字水平差动型天平:一侧为天平的倾斜测量部件,另一侧采用配置了试样和标准试样的天平结构,将试样和标准试样各自的重量进行数字化处理,以提升性能的热重法(TG)测量。[3] Mass Flow Controller:加热炉内对气流进行程序控制的产品。
    留言咨询
  • 日立分析仪器正式将“New STA系列” TG-DSC热分析仪引入中国内地市场。本系列具备令人惊叹的基线稳定性[1]和高灵敏度测量能力,包括STA200、STA200RV和STA300三款,分别为普通型号、适用于试样实时观察的型号,以及高温型号。热分析仪是指在程序控温等条件下,测量物质物理性质与温度或时间关系的仪器。根据测量方法的不同,热分析仪有测量重量变化的“热重法(TG)”、测量温度变化的“差热分析(DTA)”,以及测量热量的“差示扫描量热法(DSC)”等诸多种类,被广泛应用于塑料、复合材料、医药品等有机材料,陶瓷、合金等无机材料行业,适合从研究开发到质量管理、故障分析等多种的场景。近年来,随着材料和素材的高功能化、复合化,热分析仪的热性能的要求也多样化了。在高性能的电子产品的故障分析中,为了进行极微量的试验和成分的测量,需要支持高灵敏度的测量的高基线稳定性。另外,汽车、食品相关领域等利用的复合材料是由不同的材料组合而成,因此除了单次测得多个数据的能力,复合型分析的需求也日益增长。一、 高水准TG基线稳定性日立New STA系列继续采用高灵敏度 “数字水平差动型天平”[2],这一结构在日立原有的热分析仪中就有不俗表现。New STA系列更是新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10μg以下。二、 划时代的TG-DSC同时测量装置日立原有的热分析仪以热重法-差热分析(TG-DTA)方式进行同时测量,但由于DSC比DTA更能够精确地定量试样的热量变化,现在业界对热重法-差示扫描量热法(TG-DSC)同时测量的需求不断上升,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。三、 多项改进带来新的可能New STA系列对选配件试样观察系统(Real View )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升;还标配Mass Flow Controller[3],气氛控制和其操作性能也登上了一个新台阶。[1] 基线稳定性:热重法(TG)测定时,抑制因温度变化导致的天平结构热膨胀所引起的重量变动,或对该过程进行测量。[2] 数字水平差动型天平:一侧为天平的倾斜测量部件,另一侧采用配置了试样和标准试样的天平结构,将试样和标准试样各自的重量进行数字化处理,以提升性能的热重法(TG)测量。[3] Mass Flow Controller:加热炉内对气流进行程序控制的产品。
    留言咨询
  • 日立分析仪器正式将“New STA系列” TG-DSC热分析仪引入中国内地市场。本系列具备令人惊叹的基线稳定性[1]和高灵敏度测量能力,包括STA200、STA200RV和STA300三款,分别为普通型号、适用于试样实时观察的型号,以及高温型号。热分析仪是指在程序控温等条件下,测量物质物理性质与温度或时间关系的仪器。根据测量方法的不同,热分析仪有测量重量变化的“热重法(TG)”、测量温度变化的“差热分析(DTA)”,以及测量热量的“差示扫描量热法(DSC)”等诸多种类,被广泛应用于塑料、复合材料、医药品等有机材料,陶瓷、合金等无机材料行业,适合从研究开发到质量管理、故障分析等多种的场景。近年来,随着材料和素材的高功能化、复合化,热分析仪的热性能的要求也多样化了。在高性能的电子产品的故障分析中,为了进行极微量的试验和成分的测量,需要支持高灵敏度的测量的高基线稳定性。另外,汽车、食品相关领域等利用的复合材料是由不同的材料组合而成,因此除了单次测得多个数据的能力,复合型分析的需求也日益增长。一、 高水准TG基线稳定性日立New STA系列继续采用高灵敏度 “数字水平差动型天平”[2],这一结构在日立原有的热分析仪中就有不俗表现。New STA系列更是新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10μg以下。二、 划时代的TG-DSC同时测量装置日立原有的热分析仪以热重法-差热分析(TG-DTA)方式进行同时测量,但由于DSC比DTA更能够精确地定量试样的热量变化,现在业界对热重法-差示扫描量热法(TG-DSC)同时测量的需求不断上升,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。三、 多项改进带来新的可能New STA系列对选配件试样观察系统(Real View )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升;还标配Mass Flow Controller[3],气氛控制和其操作性能也登上了一个新台阶。[1] 基线稳定性:热重法(TG)测定时,抑制因温度变化导致的天平结构热膨胀所引起的重量变动,或对该过程进行测量。[2] 数字水平差动型天平:一侧为天平的倾斜测量部件,另一侧采用配置了试样和标准试样的天平结构,将试样和标准试样各自的重量进行数字化处理,以提升性能的热重法(TG)测量。[3] Mass Flow Controller:加热炉内对气流进行程序控制的产品。
    留言咨询
  • CFC 多功能聚烯烃分析表征仪产品介绍 多功能聚烯烃综合表征分析仪CFC是应用升温淋洗分级技术(TREF)和凝胶渗透色谱技术(GPC)的一台全自动联用分析仪,可同时实现对分子量及其分布(MWD)和化学组分及其分布(CCD)的表征。CFC可在较短时间内完成复杂的共聚单体的化学组分和分子量及其分布表征(过去通常需要耗费几天时间)以及复杂聚烯烃共混产品的详细分析。 一、CFC功能: 1、可得到温度、分子量和化学组分分布数据的三维谱图,像超级显微镜一样把样品的微观结构进行全面剖析;即可以看到每个温度下各个化学组分的分子量及其分布和千碳甲基数,也可以详细了解每个分子量组分的化学组分构成。2、配置42位自动进样器,可一次性运行42个样品;3、选配组分检测器可直接获得CH3/1000C信息;4、选配低温附件,对于低结晶度的样品,可控温低至-20oC;5、具备远程控制、诊断功能; 二、CFC特点 1、台式、全自动分析; 2、分析过程无需人工接触溶剂,符合HSE要求,溶剂消耗少; 3、仪器软件设计非常友好,方便操作; 4、仪器易于使用、维护;5、选配氮气附件,可以降低氧化降解;6、样品采用温和振荡模式,可降低样品剪切降解; 三、应用实例 对于既有聚丙烯,又有聚乙烯还有乙丙共聚物,附带掺杂各种小分子聚合物以及石蜡等这类复杂样品的表征,如果采用传统分析方法,根本无法了解此聚合物的情况,更不用说知道其详细组成情况了。但采用多功能聚烯烃表征分析仪CFC,不但能够了解其组成情况,还能够详细地知道每个组分的分子量及支链分布情况,就像用一个超级显微镜一样看得清清楚楚。图1是某个牌号树脂的CFC分析结果3D图,我们可以根据温度、分子量及支化度信息等判断其具体组成,同时也能看到每个温度下的化学组成结构和同一分子量下的化学组成结构。 图1 某牌号树脂CFC分析结果
    留言咨询
  • 3Ω导热分析仪 400-860-5168转5963
    3Ω导热分析仪基于3ω谐波探测原理,可对微纳米尺度块体、粉体、液体、纳米流体、薄膜和纤维等多类型的材料进行热物性表征,可以实现对于固体材料的无损检测,同时也实现了对于多孔材料的热物性表征。TOCS是一款小巧、闪速检测的分析仪,可在极短时间内得到多种材料的热传导率、热扩散率和吸热系数等多个热物性参数,热传导率测量结果的准确度可控制在1%内。 技术参数:温度范围:RT-250°C(可提供更宽范围)升温速率:0-50K/min (可提供更宽范围)热导率准确度:±1%热扩散系数准确度:±5%…欢迎联系我司,索要样本。
    留言咨询
  • 水泥水化程度表征-低场核磁共振分析仪  低场核磁共振技术对于水泥浆体内部不同自由程度的水分有着较高的敏感性。低场核磁共振技术以水为“探针”,可分析水分在浆体内部的弛豫信息,表征水泥浆体水化进程中微观结构,这使得利用低场核磁共振技术研究水泥水化程度成为可能。  PQ001核磁共振成像分析仪是纽迈推出的多功能核磁分析仪,可实现水泥材料的水化程度表征,还可搭配自主研发的多种硬件模块(如低温、高温模块),可实现变温条件下的模拟研究。   基本参数  磁场强度:0.5±0.03T  样品范围:Ø 25mm*H25mm;   性能特点  快速:快速、高通量、可重复性好  无损:样品无需前处理,可重复监测  低成本:仪器无需额外维护,无需化学试剂  简单:操作简单,适合非技术人员水泥浆体在不同养护制度下的横向弛豫时间分布
    留言咨询
  • Nanotest 3Ω导热分析仪 400-860-5168转5962
    3Ω导热分析仪基于3ω谐波探测原理,可对微纳米尺度块体、粉体、液体、纳米流体、薄膜和纤维等多类型的材料进行热物性表征,可以实现对于固体材料的无损检测,同时也实现了对于多孔材料的热物性表征。TOCS是一款小巧、闪速检测的分析仪,可在极短时间内得到多种材料的热传导率、热扩散率和吸热系数等多个热物性参数,热传导率测量结果的准确度可控制在1%内。技术参数:温度范围:RT-250°C(可提供更宽范围)升温速率:0-50K/min (可提供更宽范围)热导率准确度:±1% 热扩散系数准确度:±5%…欢迎联系我司,索要样本。
    留言咨询
  • 用途:同步热分析仪系统将DSC和TGA结合,可以在完全相同的测试条件下,研究样品的热量变化和质量变化。由于配备多种不同温度范围的加热炉,耐驰同步热分析仪的应用领域涵盖绝大多数材料,包括塑料、橡胶、合成树脂、纤维、涂料、油脂、陶瓷、玻璃、水泥、耐火材料、金属及合金、燃料、炸药、医药、食品等。性能:-覆盖-150至2000°C的宽广的温度范围; -可以快速而深入地对材料的热稳定性,分解行为,组分分析,相转变,熔融过程等进行表征; -易于使用的顶部装样式系统,称重系统解析度极高(25ng解析度,称重范围5g),拥有最高的长时间稳定性; -可自由更换的DSC传感器,拥有最高的灵敏度与最佳的重复性,用于反应/转变温度与热焓,以及比热的测量; -大量可选的增强配件,适应客户广泛而多样化的需求; -可同时配备多种不同温度范围与性能指标的炉体,可由用户自行切换; -可插拔的样品支架(TG,TG-DSC,TG-DTA等); -最多可同时装载20个样品的自动进样器(ASC); -自动抽真空与充填装置(Autovac); -提供大量的附件可供选择,如样品坩埚即有各种材质和形状尺寸可选; -STA独特的温度调制DSC(TM-DSC); -提供附加接口与MS、FTIR进行连接,可以进行甚至更复杂的分析。*价格范围仅供参考,实际价格与配置等若干因素有关。如有需要,请向当地销售咨询。我们讲竭尽全力为您制定完善的解决方案。
    留言咨询
  • 塞塔拉姆 氢气热分析实验平台 THEMYS H2塞塔拉姆 氢气热分析实验平台 THEMYS H2用于测量氢气环境下的安全温度、质量变化、热量与热流、逸出气体。THEMYS H2致力于氢气环境下的材料表征研究,适用于TMA、TGA或STA测量。它内置多种安全系统,最主要的如配置氢气与氧气探头以避免这些气体在仪器内发生意外混合。THEMYS H2适用于氢气条件下的任何材料表征,从储氢材料表征到氧化物还原,也能模拟粉剂处理的条件,如金属粉末注射成型。为什么我们与众不同?超高温能力单炉体最高可达1750℃内置多重安全系统保证用户和仪器的安全操作高精度,高灵活性悬挂对称式上天平,专为TGA设计超高温DTA技术最高1750℃外部联用能力与质谱仪联用,最高至1000℃塞塔拉姆 氢气热分析实验平台 THEMYS H2参数:基本参数DTA DSC TGATMA温度范围(℃)室温 ~ 1750室温 ~ 1600/1000室温 ~ 1750室温 ~ 1750程控温度扫描速率 (℃/min)0.01 ~ 100坩埚容积或最大样品尺寸30 ~ 300 μl80 ~ 100 μl55 ~ 2 500 μl 或高度: 20 直径: 14 mm,不含坩埚高度: 20 mm直径 : 10 mm气路3路载气(包括1路氢气),可选其中1路进气+ 1路辅助气, 2 MFC,安全系统包括氢气和氧气浓度传感器真空二级真空( 5*10-2 mbar), 耐氢真空泵MEASUREMENTSDTA DSC TGATMA量程~~±20 mg± 200 mg±2mm最大样品量(g)35~~ 分辨率0.4μW1μW0.002 μg0.02μg0.2 nm量热精度(%)1.4% b,c0.9% b±0.06%d±0.08 10-6/℃e温度精度 (%)0.35℃b,c0.7℃b~~a. μV =微伏,以mW为单位的值取决于所用传感器的类型 b.基于金属标准样品熔融 c.需标定 d.基于标准样品分解 e.基于蓝宝石标准样品的热膨胀测量.塞塔拉姆 氢气热分析实验平台 THEMYS H2仪器出口分别放置一个氢气浓度传感器和一个氧气浓度传感器,用来检测这些气体在废气中的存在。一个独立的控制单元: 如果氢气被传感器检测到,炉体和天平将被禁止打开 如果传感器检测到氧气,将禁止氢气进入炉内 通过可视警报提醒用户 设有停止氢气供气的紧急按钮 塞塔拉姆 氢气热分析实验平台 THEMYS H2附加安全功能 在真空或温度高于70℃的情况下,炉体不能被打开 如果满功率超过一分钟或控制热电偶出现故障,则停止加热
    留言咨询
  • 碳纳米管和石墨烯性能表征系统随着纳米技术的不断发展,碳纳米管和石墨烯的性能越来越受到科研人员的关注。然而,对于碳纳米管和石墨烯性能表征一直是困扰碳纳米管和石墨烯技术研究和应用的主要障碍。目前,碳纳米管和石墨烯测量方法是光谱测量技术。相对其他测量方法,该技术主要有以下的优点: 1、较高灵敏度,即使碳纳米管和石墨烯的含量很低也能测量。2、较高测量精度,对碳纳米管的(n,m)分辨率很高3、对待测样品要求低,可直接分析含较多杂质的样品。4、测量设备相对简单,准备待测样品非常容易。 5、数据处理简单,测量结果无需考虑背景减除。对于碳纳米管和石墨烯的表征,虽然光谱测量技术有很大的优点,但是测量过程还是有些问题,如获取数据速度太慢,测量灵敏度不是很高,手工处理数据非常繁琐且容易出错等等。著名的碳纳米管专家美国莱斯大学的R. Bruce Weisman和Sergei M. Bachilo教授针对这些问题开发了碳纳米管专用的测量系统NS3,使得NS3系统成为碳纳米管和石墨烯专用测量系统,可对碳纳米管和石墨烯进行吸收、荧光和拉曼光谱测量。Nano Spectralyzer (NS3)系统NS3上的测量结果:碳纳米管的近红外发射光谱 应用领域:1. 测量碳纳米管(n,m)分布2. 监测碳纳米管和石墨烯品质的稳定性3. 测量化学反应和物理作用的动态过程主要特点:1. 高度集成化,体积小巧2. 操作简单,使用方便3. 仅需要很少的样品4. 高测量灵敏度和测量速度5. 简单的操作界面,全自动测量和数据分析6. 同时测量样品近红外波长的吸收和发射光谱7. 采用电制冷材料冷却近红外光谱探头,无需使用液氮主要技术指标:荧光光谱测量:可见区发射谱探测范围: 400-900nm近红外发射谱探测范围: 900-1600nm可选近红外发射谱探测范围: -2000nm吸收谱测量:紫外吸收谱探测范围: 210-450nm可见吸收谱探测范围: 400-900nm红外吸收谱探测范围: 900-1600nm可选红外发射谱探测范围: -2000nm 拉曼光谱测量:拉曼光谱探测范围: 150-3000cm-1激发光源波长: 532和/或671nm
    留言咨询
  • STA 449 F3 Jupiter 是耐驰公司全新推出的一台同步 TG-DSC 热分析仪。作为高性价比的 NETZSCH F3 系列产品的新成员之一, 具有坚固、灵活、易于操作等特点,非常适合同时测试热效应(转变温度、热焓)与质量的变化。通过选择合适的炉体,安装高性能传感器、配以最恰当的附件,采取顶部装样的同步热分析仪几乎可以满足所有的应用。它综合了高性能的热流型 DSC 与高灵敏度级天平,可以提供无与伦比的称重与测量范围。STA 449 F3 Jupiter 包含了高性能的TG与DSC测试系统。其天平系统具有漂移小、范围广等特点。该系统可配备不同量程的天平,并可在全量程范围内实现高灵敏度。这归功于世界领先的电子天平技术。作为耐驰盛名卓著的 STA 449 C 的换代产品,STA 449 F3 Jupiter 充分继承了 STA 449 C 的“博大胸怀”,根据不同的炉体,该系统的温度范围可达 -150°C … 2400°C。通过真空系统和流量控制系统,用户可以进行任意气氛控制下的测试。双炉体提升装置和自动进样器(ASC)对于高性能的热分析仪器是非常有利的,可以大大改善样品的处理量,从而提高测试的效率。在宽广温度范围内,各种 TG-DSC 传感器可以提供真正的 DSC 测试。TG、TG-DTA 传感器则可满足特殊要求下的测试。坚固耐用的硬件、界面友好的软件、灵活多样的设计配以丰富的选项使得 STA 449 F3 成为您实验室中质量控制和材料研究的理想工具。STA 449 F3 Jupiter 可以与 QMS 或者 FTIR 联用,亦可同时与二者联用。即使配以自动进样器,所有测试也可同步进行。STA 449 F3 Jupiter - 技术参数• 温度范围:-150 ... 2400°C• 升降温速率:0.001 ... 50 K/min(取决于炉体配置;高速升温炉最大线性升温速率 1000 K/min)• 最大称重量:35000 mg• 称重解析度:0.1 μg(全量程范围内)• DSC 解析度: 1μW(取决于配备的传感器)• 气氛:惰性,氧化,还原,静态,动态• 标配用于 2 路吹扫气和 1 路保护气的电磁阀。• 3 路气体的质量流量计,用于气流量的数字化精确控制(选件)• 真空密闭结构,真空度 10-4 mbar• 对于单 TG 支架可配备 c-DTA(计算型 DTA)功能,用于温度校正及额外的DTA信息获取。• TG-DSC 与 TG-DTA 样品支架,用于真正的同步测量。• 自动进样器(ASC),最多可同时装载 20 个样品(选件)• 通过可加热的适配器与 FTIR,MS 以及 GC-MS 联用(选件)• 独特的 Pulse-TA 扩展功能(选件)• 独特的 OTS 吸氧附件(选件)STA 449 F3 Jupiter - 软件功能STA 449 F3 Jupiter 的测量与分析软件是基于 MicroSoft Windows 系统的 Proteus 软件包,它包含了所有必要的测量功能和数据分析功能。这一软件包具有极其友善的用户界面,包括易于理解的菜单操作和自动操作流程,并且适用于各种复杂的分析。Proteus 软件既可安装在仪器的控制电脑上联机工作,也可安装在其他电脑上脱机使用。DSC/DTA 部分分析功能:• 峰的标注:可确定起始点,峰值,拐点和终止点温度,可进行自动峰搜索。• 峰面积/热焓计算:可选多种不同类型基线,可进行部分面积分析。可选择以哪一温度下的当前质量作为热焓计算的基准。• 峰的综合分析:在一次标注中可同时得到温度、面积、峰高与峰宽等各种信息。• 全面的玻璃化转变分析。• 自动基线扣除。• 结晶度计算。• 氧化诱导期(O.I.T.)分析。• 比热分析(选件)。• BeFlat 功能:用于 DSC 基线的优化(选件)。• Tau-R 模式: 将仪器的时间常数与热阻纳入计算, 以获取更尖锐的 DSC 峰形(DSC 传感器选配功能)• DSC 峰形修正功能:对吸/放热峰的峰形进行修正,将体系的热阻与时间常数因素纳入计算(选件)。TG 部分分析功能:• 失重台阶手动或自动标注,单位 % 或 mg。• 质量-时间/温度标注。• 残余质量标注。• 可标注失重台阶的外推起始点与终止点。• 可对热重曲线作一阶微分(DTG)与二阶微分,并可进行峰值温度标注。• 自动的基线与浮力效应修正。• c-DTA(计算型 DTA):可标注热效应特征温度和峰面积(选件)STA 449 F3 Jupiter - 应用实例陶瓷原材料的表征对陶瓷原材料的 STA 测试显示了三个失重台阶。在约 250°C 以下,为吸附水的挥发。在 250°C 至 450°C 之间,观察到了有机组分的烧失,释放了 156 J/g 的能量。高岭土的脱水发生在 450°C 以上,吸热热焓为 262 J/g。质谱曲线上的 18 与 44 质量数对应于 H2O 与 CO2 的逸出。1006°C 的 DSC 放热峰(热焓 -56 J/g)是由于固相转变所致。建筑材料:玻璃棉玻璃棉常用作房屋与加热管道的隔热材料。STA 测试在约 600°C 以下显示了三个失重台阶,这些是由于吸附水的挥发与有机粘合剂的烧失所致。其中有机粘合剂的烧失对应于该温度范围内的强烈的 DSC 放热峰。玻璃化转变在 DSC 曲线上表现为 728°C 附近的台阶,比热增加 0.41J/(g*K)。950°C 的 DSC 放热峰对应于结晶效应,热焓 -287 J/g;1050°C 至 1250°C 之间的吸热效应对应于熔融,总热焓 549 J/g。700°C 以上的微量的质量变化最可能是由于杂质的氧化与挥发所致。油毡的烧失油毡作为一种建筑材料发明于1863年,常用于楼面覆盖,具有坚固、绝缘等特点。通过STA在空气气氛下的测试,可揭示油毡的自然组成。150°C之前是水分的挥发,随后的 200°C 至500°C 之间多步的失重主要是亚麻子油、天然树脂、软木屑、木屑和黄麻衬底等的烧失,伴随着较大的放热效应,在该氧化过程中释放的热量达 14.5KJ/g。在 600°C… 750°C 之间,主要是填充物 CaCO3 的热分解。炸药的鉴别烈性炸药黑索金(也称RDX,T4等)在150°C 就开始升华,从热重曲线即可看出。在DSC曲线上,起始点为206°C的吸热峰,主要是样品的熔融,其热焓值为123J/g。在200°C… 250°C之间,有剧烈的放热现象,并释放出1.38KJ/g的热量。该实验的样品量为2.32mg,升温速率为5K/min,气氛为合成空气。γ-TiAl 的相转变难熔合金 γ-TiAl 可通过高温和低密度耐腐蚀测试进行鉴别。一般用于航空航天领域的涡轮充电器、燃气涡轮和发动机。图中 DSC 曲线显示,在外推起始点温度 1195°C 时有一吸热效应(峰值温度为1323°C),主要是 α2 →α 相转变过程。在 1476°C(峰值温度)时,α 相向 β相转变。DSC曲线上 1528°C 时的吸热峰主要是样品的熔融过程(起始点温度:1490°C,液相线温度大约 1560°C)。在整个测试过程中,样品质量无明显变化。碳纤增强复合材料的分析碳纤维增强高聚物(CFRP)是常用的复合材料。主要由聚合物和嵌入的碳纤维组成,具有质量轻、硬度大、稳定性强等特点,适合汽车、航空航天领域的应用。STA 的测试结果显示,在 329°C 有一吸热峰,其热焓值为 25J/g,主要是聚合物的熔融过程。在大约 480°C… 620°C之间主要是聚合物的分解。在 650°C,将气氛由 N2 切换成 O2,碳纤维组分发生放热分解(失重:24.7%)。实验结束时的残余质量 0.0% 表明样品中无其他无机填充物或者玻璃纤维。STA 449 F3 Jupiter - 相关附件STA 449 F3 提供多种不同材质的坩埚,如氧化铝,白金,铝,石墨,石英等。对于每种坩埚均提供多种不同的尺寸规格。独特的水蒸汽炉选件,配备一系列用于蒸汽发生,气体混合与流量控制的附属配件,构成了在设定的绝对湿度下、最高至 1250°C 温度范围内研究样品内部的质量与能量变化的完美工具。新推出的高速炉体是对现有的 STA 与高温 DSC 产品的一种很好的功能扩展。这种炉体不需要配在专门的仪器上,可以与其他炉体一起安装在现有 STA449Fx / DSC404Fx 的双提升装置上。如果不安装双炉体,那么也可为高速炉配备一个自动进样器(ASC)。这一模块化设计的灵活性,特别是高速炉可以与 ASC 相结合,节省了大量的时间,大大缩短了测样周期。对于在高温下易于氧化的样品,可以配备 OTS™ (Oxygen Trap System)附件,吸附吹扫气氛中的杂质氧,有效降低样品氧化的可能性。自动进样系统(ASC)可用于批量常规测试。仪器可以不分昼夜的工作,不仅充分利用仪器而且节省大量时间。(例如在周末无人状态下进行校正测试)。其进样转盘最多可一次放置 20 个样品与参比坩埚,并且按照自定义的次序进行工作。测试气氛与冷却装置控制都是自动的。可对每一个样品进行单独的测试条件编程和宏计算。易于理解的操作界面可以引导使用者完成一系列的测试程序编辑,同时实验过程中还可对正在运行的程序进行改动,可以在已经编好的程序中插入新的测试程序。
    留言咨询
  • ICCS 催化剂原位表征系统综合催化剂表征Micromeritics 催化剂原位表征系统(ICCS)给研究者提供一个先进的工具来研究在精确控制有代表性的工艺条件下反应结果与关键参数(如活性位点数量)的关系。ICCS 是一套独立的配件,可附加在微型反应器这类动态实验室设备上。为其增加两类动态化学吸附分析功能: 程序升温分析(TPx)和脉冲化学吸附。反应前可在新鲜催化剂上进行化学吸附分析。反应后,无需从反应管中取出样品即可对催化剂再次进行化学吸附分析。通过这种对同一个样品原位的分析,消除空气中气体及水分等对样品的污染,可详细对比使用前和使用后的催化剂活性位点的变化,可轻松获得程序升温分析和脉冲化学吸附数据,确保数据的完整性。 ICCS 包括:高精度、高灵敏度的热导检测仪(TCD)监测流经反应管气体浓度的变化内置 Peltier 冷阱控温准确可在 -20°C 至 65°C 内工作以去除可冷凝的液体(例如,在还原氧化物过程中产生的水)两个用于精确控制气体的质量流量控制器(通过反应器系统进行压力控制)交互式报告和控制系统,具有功能丰富且直观的图形用户界面,轻松进行实验设计和结果分析支持:在具有代表性的工艺条件下对样品进行安全、高效和全面的表征,最高压力可达 20 bar表征功能包括脉冲化学吸附、程序升温还原(TPR)、脱附(TPD)和氧化(TPO)以及物理吸附(可选)在反应前后以及再生后对同一催化剂样品进行多次表征,以研究反应、失活和再生机制
    留言咨询
  • 显微热台广泛用于图象表征各种热转变过程,能够直接观察晶体或液晶样品在加热或冷却过程中的晶态变化以及结晶过程中形状、结构、颜色以及大小和数量的变化。FP82显微热台测量放置于玻璃片中的试样,通过显微镜系统观察并摄录试样的变化过程。FP84显微DSC热台测量放置于石英玻璃或蓝宝石坩埚中的试样,在通过显微镜观察并摄录试样变化过程的图像的同时,测量热流变化,图像信息与DSC曲线互为补充,可更全面准确地解析样品在升降温过程中的转变。技术参数:FP82HT:温度范围:-60~375℃重复性:0.2℃可视范围 &Phi 2.5mm主要特点:成像技术 - 可以直观研究多晶态转变封闭的炉体设计 - 保证精确的温度控制高灵敏度 - 光学灵敏度不受加热或冷却速率的影响手持式交互控制 - 使用者可以控制温度程序同步显微成像与DSC测量 -提供了样品完整的热分析信息产品型号: FP84HT:温度范围:-60~375℃重复性:0.2℃可视范围 &Phi 2mmDSC传感器:Au-Ni,5对热电偶量热灵敏度:13mV/mW应用领域:晶体、多晶体、液晶、半结晶聚合物等。主要型号: FP90/FP82+显微镜、FP90/FP84+显微镜查看更多信息咨询电话:
    留言咨询
  • STA 449 F1 Jupiter 是耐驰公司全新推出的世界上最先进的同步 TG-DSC 分析仪器,拥有无限的配置灵活性与无与伦比的优异性能。• 覆盖 -150 至 2000°C 的宽广的温度范围。• 可以快速而深入地对材料的热稳定性,分解行为,组分分析,相转变,熔融过程等进行表征。• 易于使用的顶部装样式系统,称重系统解析度极高(25ng 解析度,称重范围 5g),拥有最高的长时间稳定性。• 可自由更换的 DSC 传感器,拥有最高的灵敏度与最佳的重复性,用于反应/转变温度与热焓,以及比热的测量。• 大量可选的增强配件,适应客户广泛而多样化的需求。• 可同时配备多种不同温度范围与性能指标的炉体,可由用户自行切换。(对于双炉体结构,可以选择安装旋转式双提升设备)• 可插拔的样品支架(TG,TG-DSC,TG-DTA 等)• 最多可同时装载 20 个样品的自动进样器(ASC)• 自动抽真空与充填装置(Autovac)• 提供大量的附件可供选择,如样品坩埚即有各种材质和形状尺寸可选。• STA 独特的温度调制 DSC(TM-DSC)• 提供附加接口与 MS、FTIR 进行连接,可以进行甚至更复杂的分析。耐驰 STA 449 F1 Jupiter 可同时测试热效应(转变温度、热焓)与质量的变化,具有优异的稳定性、分辨率和准确度。通过选择合适的炉体,安装高性能传感器、配以最恰当的附件,采取顶部装样的同步热分析仪几乎可以满足所有的应用。它综合了高性能的热流型 DSC 与世界上最先进的纳克级天平,既保证了 DSC 测试的高灵敏度、高分辨率,又保证了 TG 测试的高分辨率、低噪音和漂移稳定性。STA 449 F1 Jupiter 综合了世界上最先进的 TG 系统和 DSC 系统,其高温 DSC 可以测试超高温度范围内的样品比热。整个系统温度范围为 -150°C… 2000°C(取决于具体的炉体与传感器配置)。双炉体提升装置和自动进样器(ASC)大大改善了样品的处理量,ASC 则可在晚上或者周末自动进行测试。各种DSC传感器提供了宽广温度范围内(-150°C… 1750°C)真正的 DSC 测试,可准确测量微小相变和比热值。真空密闭的设计和高分辨率、金属封装的质量流量控制器使得整个系统成为研究和工业领域内 TG 和 DSC 测试的理想工具。这一配备齐全的热分析系统可以轻松地对微量的具有活性的新型药物、半导体波形转换器上的微量杂质、电子元件、医学移植以及无机混合物组分上的偏差等等进行分析。使用我们的 STA 449 F1 Jupiter,您会有非同凡响的感受。对于逸出气分析,STA 可以与 QMS 或者 FTIR 联用,亦可同时与二者联用。即使配以自动进样器,所有测试也可同步进行。STA 449 F1 Jupiter - 技术参数• 温度范围:-150 ... 2000°C• 升降温速率:0.001 ... 50 K/min(取决于炉体配置;高速升温炉最大线性升温速率 1000 K/min)• 称重范围:5000 mg• TG 解析度:0.025 μg• DSC 解析度: 1 μW(取决于配备的传感器)• 气氛:惰性,氧化,还原,静态,动态,真空• 集成的质量流量计,带 2 路吹扫气与 1 路保护气• 高真空结构设计,真空度可达 10-4 mbar(10-2 pa)• 对于单 TG 支架可配备 c-DTA(计算型 DTA)功能,用于温度校正及额外的 DTA 信息获取。• TG-DSC 与 TG-DTA 样品支架,用于真正的同步测量。• 自动进样器(ASC),最多可同时装载 20 个样品(选件)• 通过可加热的适配器与 FTIR,MS 以及 GC-MS 联用(选件)• 独特的 Pulse-TA 扩展功能(选件) STA 449 F1 Jupiter - 软件功能STA 449 F1 Jupiter 的分析操作软件是基于 MS Windows XP 与 Vista 系统的 Proteus 软件包,它包含了所有必要的测量功能和数据分析功能。这一软件包具有极其友善的用户界面,包括易于理解的菜单操作和自动操作流程,并且适用于各种复杂的分析。Proteus 软件既可安装在仪器的控制电脑上联机工作,也可安装在其他电脑上脱机使用。 DSC/DTA 部分分析功能:• 峰的标注:可确定起始点,峰值,拐点和终止点温度,可进行自动峰搜索。• 峰面积/热焓计算:可选多种不同类型基线,可进行部分面积分析。可选择以哪一温度下的当前质量作为热焓计算的基准。• 峰的综合分析:在一次标注中可同时得到温度、面积、峰高与峰宽等各种信息。• 全面的玻璃化转变分析。• 自动基线扣除。• 结晶度计算。• 氧化诱导期(O.I.T.)分析。• 比热分析(选件)。• BeFlat 功能:用于 DSC 基线的优化(选件)。• DSC 峰形修正功能:对吸/放热峰的峰形进行修正,将体系的热阻与时间常数因素纳入计算(选件)。• TM-DSC(选件)。 TG 部分分析功能:• 失重台阶手动或自动标注,单位 % 或 mg。• 质量-时间/温度标注。• 残余质量标注。• 可标注失重台阶的外推起始点与终止点。• 可对热重曲线作一阶微分(DTG)与二阶微分,并可进行峰值温度标注。• 自动的基线与浮力效应修正。• c-DTA(计算型 DTA):可标注热效应特征温度和峰面积(选件) STA 449 F1 Jupiter - 应用实例Al2O3 中的水分挥发 - 优异的稳定性将氧化铝粉末加热至400°C(初始质量为120.0mg),有16.50mg的失重,主要是水分的挥发,对应于DSC曲线上的吸热峰。在50小时的恒温过程中,质量变化只有11微克,表现出天平系统优异的稳定性。氧化锰的还原氧化锰(MnO2)在化学领域常作为氧化剂使用,在电池行业则常作为电池的阴极材料。在如下的STA测量图谱中,在约 600°C 与 950°C存在两个失重台阶,是由于MnO2还原为 Mn2O3,最后变成 Mn3O4。相应的失重量 9.20% 与3.07% 与理论值吻合得非常好,反映了称重系统的高精度。在 DSC 曲线上则对应两个吸热峰,热焓分别为 432 J/g、180J/g。1200°C 的 DSC 吸热峰是一可逆的结构转变,没有对应的失重过程,在冷却过程(点划线)中相应的逆转变对应于 1148°C 的放热峰。碱式硫酸铁的分解碱式硫酸铁(Fe(OH)SO4)是合成氧化铁的基本原料,可用来作为颜料或者磁性存储介质。通常所说的铁磁流体包含超顺磁性的铁氧纳米粒子,可以作为核磁共振成像的造影剂。温度低于600°C时,根据STA-MS联用测试结果,有两步失水过程,对应于质谱曲线上质量数为18的峰。在600°C… 800°C之间,有SO2和O2生成,对应于质量数64和32的峰。最终产物是Fe2O3(赤铁矿)。建筑材料:石膏与石英砂混合物的相转变石膏与石英砂经常被用于石膏与灰泥之中。本例中样品中的石膏二水合物 CaSO4*2H2O 组分在200°C之前经过两步的脱水过程,经半水合物 CaSO4*1/2H2O,最终转变成为无水石膏 CaSO4,总的吸热热焓为 122 J/g。定量分析显示样品包含 23.4% 的石膏二水合物。无水石膏在约 300°C 至 450°C 之间释放出 18.3 J/g 的热量,形成 β-CaSO4。起始温度 573°C 的吸热效应则是由于石英(晶态 SiO2)在结构上的 α→β 相转变所致。合金的相图Pt0.89Au0.1OIr0.01是一种齿科合金,通常用于镶嵌物、牙冠和搭桥。齿科合金必须具有坚固、易成形、抗腐蚀和生物相容性。测试结果显示,在升温过程中,DSC曲线(实线)上在外推起始点温度1659°C时有吸热现象,主要是熔融过程,其热焓值为88J/g。在降温过程中,DSC曲线(虚线)在起始点温度1685°C时有一放热峰(峰值温度1684°C),主要是合金的结晶过程,其热焓值为 -87J/g。在最高温度时有0.05%的失重,主要是由于挥发的开始。塑料塑料瓶、纺织纤维和薄膜(例如包装食品)是高聚物PET(聚对苯二甲酸乙二酯)最常见的应用。STA 测试结果显示,在 N2气氛下,DSC曲线在100°C之前有一台阶,主要是玻璃化转变,同时有0.35J/(g*K)的比热增大。在81°C时的吸热峰主要是松弛现象。在131°C时的放热峰主要是冷结晶过程。255°C时的吸热峰是熔融过程。在360°C之后,样品开始发生分解,伴随有79.5%的失重。STA 449 F1 Jupiter - 相关附件宽广的坩埚选择:NETZSCH 提供铝、银、金、铜、铂、氧化铝、氧化锆、石墨、不锈钢等各种坩埚,可以满足几乎所有的材料测试和应用。独特的水蒸汽炉选件,配备一系列用于蒸汽发生,气体混合与流量控制的附属配件,构成了在设定的绝对湿度下、最高至 1250°C 温度范围内研究样品内部的质量与能量变化的完美工具。如果需要在特殊气氛下测试,STA 449 F1 Jupiter 可以提供防腐蚀型的特殊配置。这一配置可以在腐蚀性气氛或还原性气氛下进行测试,气体流量控制系统放置在独立的盒子中,样品支架也是特殊配置的,热电偶处于保护状态。对于那些非常特殊的样品或是有放射性的材料,STA 449 F1 Jupiter 可以安装在手套箱或是热室中,电子元件远离测量单元,所有的数据线和配套设备都可以连接在一个引线上。新推出的高速炉体是对现有的 STA 与高温 DSC 产品的一种很好的功能扩展。这种炉体不需要配在专门的仪器上,可以与其他炉体一起安装在现有 STA449Fx / DSC404Fx 的双提升装置上。如果不安装双炉体,那么也可为高速炉配备一个自动进样器(ASC)。这一模块化设计的灵活性,特别是高速炉可以与 ASC 相结合,节省了大量的时间,大大缩短了测样周期。对于在高温下易于氧化的样品,可以配备 OTS™ (Oxygen Trap System)附件,吸附吹扫气氛中的杂质氧,有效降低样品氧化的可能性。自动进样系统(ASC)可用于批量常规测试。仪器可以不分昼夜的工作,不仅充分利用仪器而且节省大量时间。(例如在周末无人状态下进行校正测试)。其进样转盘最多可一次放置 20 个样品与参比坩埚,并且按照自定义的次序进行工作。测试气氛与冷却装置控制都是自动的。可对每一个样品进行单独的测试条件编程和宏计算。易于理解的操作界面可以引导使用者完成一系列的测试程序编辑,同时实验过程中还可对正在运行的程序进行改动,可以在已经编好的程序中插入新的测试程序。
    留言咨询
  • 材料表征 400-801-8117
    产品包括实验室加工设备药物制剂工艺设备旋转流变仪粘度计更多信息:请访问赛默飞世尔科技材料表征的展台,展位号:SH100279。或使用简易域名登陆:http://mctc.instrument.com.cn。
    留言咨询
  • 中图仪器VT6000材料性能表征共聚焦测量显微镜基于光学共轭共焦原理,以转盘共聚焦光学系统为基础,结合精密纵向扫描,以在样品表面进行快速点扫描并逐层获取不同高度处清晰焦点并重建出3D真彩图像,一般用于略粗糙度的工件表面的微观形貌检测,可分析粗糙度、凹坑瑕疵、沟槽等参数。产品功能1)3D测量功能:设备具备表征微观3D形貌的轮廓尺寸及粗糙度测量功能;2)影像测量功能:设备具备二维平面轮廓尺寸的影像测量功能,可进行长度、角度、半径等尺寸测量;3)自动拼接功能:设备具备自动拼接功能,能够实现大区域的拼接缝合测量;4)数据处理功能:设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;5)分析工具功能:设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;6)批量分析功能:设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;7)便捷操作功能:设备配备操纵杆,支持操纵杆进行所有位置轴的操作及速度调节、光源亮度调节、急停等;8)光源安全功能:光源设置无人值守下的自动熄灯功能,当检测到鼠标轨迹长时间未变动后会自主降低熄灭光源,防止光源高亮过热损坏,并有效延长光源使用寿命;9)镜头安全功能:设备配备压力传感器,并在镜头处进行了弹簧结构设计,确保当镜头碰撞后弹性回缩,进入急停状态,大幅减小碰撞冲击力,有效保护镜头和扫描轴,消除人为操作的安全风险。自设计之初,VT6000材料性能表征共聚焦测量显微镜便定下了“简单好用"四字方针的目标。1)结构简单:仪器整体由一台轻量化的设备主机和电脑构成,控制单元集成在设备主机之内,亦可采用笔记本电脑驱动,实现了“拎着走"的便携式设计;2)真彩图像:配备了真彩相机并提供还原的3D真彩图像,对细节的展现纤毫毕现;3)操作便捷:采用全电动化设计,并可无缝衔接位移轴与扫描轴的切换,图像视窗和分析视窗同界面的设计风格,实现了所见即所得的快速检测效果;4)采用自研的电动鼻轮塔台,并对软件防撞设置与硬件传感器防撞设置功能进行了优化,确保共聚焦显微镜在使用高倍物镜仅不到1mm的工作距离时也能应对。VT6000材料性能表征共聚焦测量显微镜可广泛应用于半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、科研院所等领域中。可测各类包括从光滑到粗糙、低反射率到高反射率的物体表面,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等。不同应用场景下的3D形貌主要应用于半导体、光学膜材、显示行业、超精密加工等诸多领域中的微观形貌和轮廓尺寸检测中,其次是对表面粗糙度、面积、体积等参数的检测中。3D形貌图片:影像测量功能界面部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量宽度测量XY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。
    留言咨询
  • 1、仪器简介差示扫描量热法(DSC)这项技术一直被广泛应用。差示扫描量热仪既是一种例行的质量测试工具,也是一个研究工具。测量的是与材料内部热转变相关的温度、热流的关系。我公司的仪器为热流型差示扫描量热仪,具有重复性好、准确度高的特点,特别适合用于比热的精确测量。该设备易于校准,使用难度低,快速可靠,应用范围非常广,特别是在材料的研发、性能检测与质量控制上。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。我公司有多种类型差示扫描量热仪,客户根据实验参数以及实验需求选择不同的型号。差示扫描量热仪应用范围有: 高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度等。不同型号的仪器,测试不同的指标。2、产品特点:2.1全新的炉体结构,更好的解析度和分辨率以及更好的基线稳定性仪器主控芯片;2.2仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便;2.3采用 Cortex-M3 内核 ARM 控制器,运算处理速度更快,温度控制更加精准;2.4采用 USB 双向通讯,操作更便捷,采用 7 寸 24bit 色全彩 LCD 触摸屏,界面更友好;2.5采用专业合金传感器,更抗腐蚀,抗氧化;2.6支持中/英文切换。 2.7原始数据保存,分析,分析之后数据保存。 2.8超高灵敏度,源自于更平的基线和更好的信噪比. 2.9支持温度校准,调入基线,多点校准. 2.10试验进行中,可查看实时数据。 2.11支持时间/温度,(热流率 dH/dt)/温度切换。 2.12智能软件可自动记录 DSC 曲线进行数据处理、打印实验报表. 2.13数据支持导出 txt,excel,bmp 图片格式 2.14支持曲线分析,平滑,放大,缩放功能。 2.15支持多曲线打开,便于实验的重复性比较。3、仪器参数:3.1 全新的炉体结构,更好的解析度和分辨率以及基线稳定性;3.2 仪器下位机数据实时传输,界面友好,操作简便。DSCDSC-214DSC-204DSC-404DSC-214HDSC-404HDSC量程0~±600mW温度范围RT~600℃-40℃~-600℃-150℃~-600℃RT~600℃(带降温扫描)-150℃~600℃(带降温扫描)升温速率0.1~100℃/min温度精确度±0.01℃温度准确度0.001℃温度波动±0.01℃温度重复性±0.1℃DSC精确度0.001mWDSC解析度0.001mW工作电源AC220V/50Hz或定制控温方式升温、恒温、降温(全程序自动控制)程序控制可实现六段升温恒温控制,特殊参数可定制曲线扫描升温扫描、降温扫描、曲线扫描气氛控制两路自动切换(仪器自动切换)气体流量0-300mL/min(可定制其它量程)气体压力≤0.55MPa显示方式24bit色7寸LCD触摸屏显示数据接口标准USB接口参数标准配有标准物质(锡),用户可自行矫正温度和热焓仪器热电偶三组热电偶,一组测试样品温度,一组测试内部环境温度,一组炉体过热自检传感器软 件带有温度多点校正功能设备尺寸500*500*300(mm)(长宽高)备注所有技术指标可根据用户需求调整作为现代仪器分析方法的一个重要分支,热分析方法在许多领域中获得了越来越广泛的应用。在经历了一百多年的发展之后,热分析方法已经逐渐发展成为与色谱法、光谱法、质谱法、波谱法等仪器分析方法并驾齐驱的一类重要的分析手段。热分析方法除了可以用来广泛地研究物质的各种转变(如玻璃化转变、固相转变等)和反应(如氧化、分解、还原、交联、成环等反应)之外,还可以被用来确定物质的成分、判断物质的种类、测量热物性参数(如热膨胀系数、比热容、热扩散系数)等。迄今为止,热分析方法已在矿物、金属、石油、食品、医药、化工等与材料相关的领域中获得了广泛的应用。热分析是研究物质的物理过程与化学反应的一种重要的实验技术。这种技术是建立在物质的平衡状态热力学和非平衡状态热力学以及不可逆过程热力学和动力学的理论基础之上的,该方法主要通过精确测定物质的宏观性质如质量、热量、体积等随温度的连续变化关系来研究物质所发生的物理变化和化学变化过程。根据所测量性质的不同,各种热分析技术之间也存在着不同程度的差异,通常根据其测量的性质来对每一种热分析技术进行分类。我国于2008年5月发布并于2008年11月开始实施的国家标准《热分析术语》(GB/T6425—2008)对热分析技术的定义为:“在程序控制温度和一定气氛下,测量物质的某种物理性质与温度或时间关系的一类技术。”由该定义可见,由于所测量的物理性质(如质量、热效应、体积等)多种多样,因此衍生出了不同的热分析技术。根据所测定的物理性质不同, 国际热分析与量热协会(International Confederation for Thermal Analysis and Calorimetry,ICTAC)将现有的热分析技术划分为9类17种,如表1.1所示。表1.1 热分析技术分类物理性质分析技术名称简称物理性质分析技术名称简称质量热重法TGA尺寸热膨胀法DIL等压质量变化测定力学特性热机械分析TMA逸出气体检测EGD动态热机械分析DMA逸出气体分析EGA声学特性热发声法放射热分析热声学法热微粒分析光学特性热光学法温度加热曲线测定电学特性热电学法差热分析DTA磁学特性热磁学法焓差示扫描量热法DSC本章仅对热分析技术的定义和分类进行简要介绍,详细内容见第2章。1.2 热分析技术的特点如前所述,热分析技术主要被用来研究在一定气氛和程序控温作用下,物质的物理性质与温度或时间的变化关系。与其他分析方法相比,热分析技术具有如下特点。1.2.1 热分析技术的优势概括来说,热分析技术的优势主要表现在以下10个方面。1.2.1.1对样品的要求不高,实验时样品用量较少对于大多数固态和液态的物质而言,根据实验需要不做或稍做处理即可进行热分析实验。另外,与其他常规分析方法相比,热分析实验需要的样品量一般较少。随着仪器技术的发展,热分析实验所需要的样品量越来越少。例如,与早期仪器相比, 当前的热重仪可以用来检测质量低至0.1 mg 的样品随温度变化而发生的质量变化, 而几十纳克的样品也可以用来进行量热实验。微量量热实验所需样品的量更少, 如通过微量差示扫描量热实验可用来测定质量体积浓度为1×10-5gML-1的溶液中的相转变行为。与传统分析方法相比, 使用热分析技术分析较少的样品能更真实地反映某些材料的热学特性。例如, 在加热过程中较大试样量存在试样内部与表面之间的温度差。当试样发生分解时,分解产物尤其是气体产物存在一个从内层向外层的扩散过程,在热分析技术中使用较少的试样量则可以更加方便地避免这种影响。图1.1为不同样品质量的低密度线性聚乙烯(LLDPE)的DSC实验曲2°。图1.1表明,在相同的加热速率下,样品的质量对LLDPE熔融峰的形状和位置均产生了不同程度的影响,这种差异是由于样品内部的温度梯度引起的。需要特别指出的是,有时为了与样品的真实加热处理工艺相近,分析时会有意地加入更多的样品量,这样可以更加真实地反映试样在真实环境中的热行为。使用热机械分析仪研究材料在不同温度下的机械性质时,通常需要使用具有规则形状的样品。例如,在ASTM E831-14标准中要求进行静态热机械分析实验时试样的长度应为2~10mm,且平行截面的端部的尺寸误差应在±25μm之内,横向尺寸不得超过10mm,这种尺寸要求仍远低于其他材料试验机对样品的要求。1.2.1.2 灵敏度高作为分析仪器的一个重要分支, 热分析技术具有灵敏度高的特点。一般来说, 灵敏度与仪器待测量的测量范围呈负和关的关系。灵敏度越高, 其量程越窄, 反之亦然。在进行实验时, 应根据研究目的选择具有合适的灵敏度的仪器。例如, 对于热重仪而言, 其灵敏度最高可达0.1μg,但天平的最大称质量一般不超过1g。虽然微量差示扫描量热仪的量热精度最高可达0.02μW, 但共温度范围一般不超过150℃。一些灵敏度高的等温量热仪的温度稳定性最高可达±10-4℃。用于静态热机械分析仪和动态热机械分析仪的力学测量精度最高可达0.001N,而位移的测量精度则可达0.1μm。对于常规热分析仪而言, 其主要采用热电偶测量温度,测温精度一般为±0.1℃。1.2.1.3 可以连续记录所测量的物理量在所选择的实验条件下随温度或时间变化的曲线与通过其他的光学、电学等分析方法测量材料的热性质不同, 通过热分析技术可得到试样的物理性质(如质量、热流、尺寸等)随温度(或时间)的连续变化曲线。由实验得到的曲线可以更加真实地反映材料的物理性质随温度(或时间)的连续变化情况,而通过传统的采用不同温度下等温测量的间歇式实验方法则容易遗漏材料的性质在温度变化过程中的一些重要信息。图1.2为硬脂醇与棕榈酸混合物的DSC加热和冷却曲线。图中硬脂醇的加热曲线仅显示一个吸热峰,起始温度为58.1℃,对应于其从单斜有序的γ相到α旋转相的固-固转变与熔融转变的重叠过程。然而, 硬脂醇的冷却曲线却显示了两个放热峰。第一个放热过程的起始温度为57.8℃,该过程对应于从熔融态到α旋转相的转变过程。该过程的过冷度可以忽略不计,而从γ相到α相的固-固转变则显示出5℃的过冷度。这充分表明通过DSC曲线可以实时记录下物质在温度发生变化时所经历的结构转变过程。1.2.1.4通过温度调制技术可以测量同时发生的两个转变20世纪90年代初,英国学者 M. Reading 最先提出温度调制技术。该技术最早应用于差示扫描量热仪,即温度调制差示扫描量热法(Temperature-Modulated Differential Scanning Calorimetry,TMDSC)。使用该技术可以对两个同时发生的转变进行测量。现在这种技术也可应用于热重分析法和静态热机械分析法中。这两种方法中的温度调制技术与TMDSC有很大的差别,将在本书的相关章节中进行详细的阐述。1.2.1.5 测量温度范围宽当前可以用热分析技术测量最低为8K的极低温下热性质(如比热、热流、热扩散系数、热膨胀系数等)的变化。在高温测量方面,通过一些特殊用途的热分析仪可以测量高达2800℃ 的温度变化。也就是说, 热分析技术可以用来测量-265~2800 ℃范围内的热性质的变化。显然,仅通过一台热分析仪器很难测量如此宽广的温度范围内的性质变化, 研究人员通常通过缩小仪器的工作温度范围来提高仪器的测量精度。例如,高灵敏度的微量差示扫描量热仪的温度测量范围一般为-10~130℃。此外,用来研究高温下材料热分解的热重-差热分析仪或热重-差示扫描量热仪的量热精度也远低于单一功能的差示扫描量热仪。1.2.1.6 温度控制方式灵活多样热分析技术可以在程序控制温度和一定气氛下测量材料的物理性质随温度或时间的变化。在实验过程中,如果试样发生了至少一个从特定的温度(甚至环境温度)到其他指定温度的变化,则在指定温度下进行的等温实验属于热分析的范畴。如果实验仅在室温环境下进行,则该类实验不属于热分析。温度变化(temperature altcration)意味着可以实现预先设定的温度(程序温度)或样品控制温度的任何温度随时间的变化关系。其中,样品控制的温度变化是指利用来自样品的性质变化的反馈信息来控制样品所承受的温度的一种技术。其中,程序控制温度的变化方式主要分为以下几种:①线性升/降温,如图1.3(a)和图1.3(b)所示;②线性升/降温至某一温度后等温,如图1.3(c)和图 1.3(d)所示 ③在某一温度下进行等温实验,如图1.3(e)所示;④步阶升/降温,如图1.3(f)和图1.3(g)所示;⑤)循环升/降温,如图1.3(h)所示;⑥以上几种方式的组合,如图1.3(i)所示。需要说明的是, 以上这些温度变化过程可以通过仪器的控制软件实时记录下来, 这是热分析技术有别于其他分析方法的主要优势之一。1.2.1.7 可以在较短的时间内测量材料的物理性质随时间或温度的变化对于热分析技术而言, 完成一次实验所需时间的长短取决于具体的温度控制程序。日前商品化的热分析仪器的最快升温和降温速率各有不同。例如, 热重仪可以实现的瞬时最快升温速率可以达到2000℃min-1, 最快线性加热速率为 500℃min-1。梅特勒-托利多公司的闪速差示扫描量热仪(Flash DSC)的最快升温速率可以达到 24000000℃min-1,与此相对应,对于一台比较稳定的热分析仪器而言,可以很容易实现低于1℃min-1的温度变化速率。实验时采用的温度变化程序取决于具体的实验需要。对于较慢的温度变化速率而言,其耗时很长。除非特殊的实验需要,在热分析技术的实际应用中很少采用低至2℃min-1的温度变化速率。微量量热法属于例外的情形。对于微量量热法而言, 由于实验时所用的试样(大多为溶液)量较大,因此所采用的加热/降温速率大多十分缓慢。常用的加热/降温速率一般为0.1~1℃min-1,有时还会采用更低的加热/降温速率,如每小时几摄氏度的温度变化速率。1.2.1.8 可以灵活地选择和改变实验气氛对于大多数物质而言,与试样接触的气氛十分重要,使用热分析技术可以比较方便地研究试样在不同的实验气氛下的物理性质随温度或时间的变化信息。气氛一般可以分为静态气氛和动态气氛两种。静态气氛主要指三种类型:①常压气氛,即实验时不通入其他的气体; 高压或低压气氛,即在试样周围充填静态的气氛气体;③真空气氛。动态气氛主要可以分为:①氧化性气氛,如氧气;②还原性气氛,如H2、CH4、CO、C2H4、C2H2等;③惰性气氛,如N2、Ar、He、CO2等;④腐蚀性气氛,如SO2、SO3、NH3、NO2、N2O、HCI、Cl2、Br2等;⑤其他反应性气氛,即在实验时根据需要通入可能与试样或产物发生化学反应的气体。需要说明的是,对于有些过程而言,在③中所列的惰性气氛是相对的,例如,对于大多数物质而言,CO2是惰性气体;而对于一些氧化物如CaO等而言,在一定温度下会与CO2发生反应生成CaCO3。再如,N2在高温下会与一些金属发生反应而形成氮化物。因此,在实际实验中选择实验气氛时,气氛的反应活性应引起足够的重视。实验时,应根据实际需要来灵活选择实验气氛。在现代化的大多数商品化的仪器中,可以通过仪器的控制软件十分灵活地在设定的温度或时间下切换气氛种类及流量。例如,对于一个试样的热分析实验而言,可以在一台配置了质量流量计的仪器上通过其控制软件来方便地实现以下的实验条件:(1)在N2气氛流速为50mLmin-1下,以10℃min-1的加热速率由室温升温至600℃;(2)在等温 30 min 后氮气流速由50mL min-1增加至 100mLmin-1,继续等温30 min (3)以5℃min-1的加热速率升温至800℃,等温30min;(4)实验气氛由N2切换为 70%N2+30%O2(流速为50mLmin-1), 继续等温60min (5)实验气氛再切换至N2,流速为100mLmin-1,等温30min;(6)以10℃min-1的加热速率升温至1000℃.等温30min。1.2.1.9 可以相对方便地得到转变或分解的动力学参数在热分析技术中,通过改变加热/降温速率(一般为3~5个速率)测量材料的物理性质随温度或时间的变化,根据相应的动力学模型可以得到相应的动力学参数(如指前因子A、活化能E。、反应级数或机理函数)。对于等温实验而言,一般通过测量材料在不同温度下(一般为3~5个等温温度)的实验曲线来得到动力学参数。在本书的相关章节中将详细阐述相关的动力学分析方法。1.2.1.10 方便与其他实验方法联用在现代分析方法中,仅通过一种方法得到的信息是有限的,并且实验操作也十分繁琐和耗时,样品的消耗量也较大。另外, 在对由多种方法进行独立实验所得到的结果进行对比时也很难得到相对一致的结论。例如,对试样在高温时分解得到的气体产物进行实时分析时,如果把高温的分解产物富集后再用光谱、色谱或质谱的方法对其进行分析, 由于温度的急剧变化会引起部分产物发生冷凝或进一步的反应, 在此基础上得到的分析结果往往不能反映气体产物的真实信息。如果采用热分析技术与光谱、色谱或质谱等技术进行联用的方法, 则可以实时地对分解产物的浓度和种类变化进行在线分析。图1.4 为由 TG/MS方法得到的CaC2O4H2O在氩气氛下的热分解行为的实验曲线。由该图可见,在110~150℃范围内,在热重曲线上出现了一个约5%的失重过程,图中的MS曲线显示第一阶段中的质量损失是由于H2O(m/z(荷质比)=18)引起的。在第二阶段中主要检测到了一氧化碳(m/z=28)和较少量的二氧化碳(m/z=44),而在第三阶段中则主要检测到了二氧化碳和少量的一氧化碳。当在氧气中(图1.5)而不是在氩气中加热CaC2O4H2O时,在分解的第二步所对应的过程结束时的质量下降非常明显。这可以归因于CO部分氧化成了二氧化碳,当这一步反应开始时通常会加快第二步的反应速率,由此就会导致在氩气中二氧化碳的量也比一氧化碳的量高。 表1.2中列出了目前可以实现的热分析联用方法,在本书第10章中将阐述这些方法的工作原理及应用领域。表1.2 常用的热分析联用方法联用方式联用方法简称备注同时联用技术热重-差热分析TG-DTATG-DTA和TG-DSC又称同步热分析法,简称STA热重-差示扫描量热法TG-DSC差热分析-热机械分析法DTA-TMA热重-差热分析-热机械分析法TG-DTA-TMA差热分析-X射线衍射联用法DTA-XRD差热分析-热膨胀联用法DTA-DIL显微差示扫描量热法OM-DSC差示扫描量热仪和光学显微镜联用仪,用于物质的结构形态研究光照差示扫描量热法Photo-DSC也称光量热计差示扫描量热-红外光谱联用法DSC-IR差示扫描量热-拉曼光谱联用法DSC-Raman动态热机械-介电分析联用法DMA-DEA由动态热机械分析仪和介电分析仪两个主要部分组成,并由相应的配件和软件连接动态热机械-流变联用法DMA-Rheo串接联用法热重/质谱联用法TG/MS同步热分析/质谱联用法STA/MS热重-红外光谱联用法TG/IR同步热分析/红外光谱联用法STA/IR热重/红外光谱/质谱联用发TG/IR/MS同步热分析/红外光谱/质谱联用法STA/IR/MS间接联用法热重/气相色谱联用法TG/GC同步热分析/气相色谱联用法STA/GC热重/气相色谱/质谱联用法TG/GC/MS同步热分析/气相色谱/质谱联用法STA/GC/MS复合联用法热重/(红外光谱-质谱联用法)TG/(IR-MS)同步热分析/(红外光谱-质谱联用法)STA/(IR-MS)热重/[红外光谱-(气相色谱/质谱联用法)]TG/[IR-(GC/MS)]同步热分析/[红外光谱-(气相色谱/质谱联用法)]STA/[IR-(GC/MS)]注:①间歇联用法可以看做串接联用法中的一种,由于其分析对象为某一温度或时间下的气体产物,且其分析时间较长,故单独将其列为一种联用方法②由于同步热分析目前以一种独立的仪器形式存在,STA与质谱和红外光谱的联用形式通堂归于串接式联用法。1.2.2 热分析方法的局限性以上列举了热分析技术相对其他分析方法的优势,然而热分析技术作为一种唯象的宏观性质测量技术,其本身还存在着一定的局限性。在应用该类方法时,使用者必须清醒地认识到这些局限性,以免在方法选用和数据分析时误入歧途。一般来说,热分析方法主要存在着以下局限性。1.2.2.1 方法缺乏特异性由热分析技术得到的实验曲线一般不具有特异性。例如,在使用差热分析法分析试样的热分解过程时,若一个试样在分解过程中同时伴随着吸热和放热两个相反的热过程,则在最终得到的DTA曲线上有时会只呈现出一个吸热或放热过程,曲线的形状取决于这两个吸热和放热过程的热量的大小。如果吸热过程的热量大于放热过程的热量,则DTA曲线最终会表现为吸热峰,反之放热峰。如果这两个相反的过程不同步,但温度相近,得到的DTA曲线会发生变形,呈现不对称的“肩峰”现象。一般通过改变实验条件或与其他方法联用来克服热分析技术的这一局限性。1.2.2.2 影响因素众多如前所述,在测量材料的物理性质时,在实验中可以改变温度和气氛等实验条件。然而,在实际的实验中,温度的变化方式(加热速率和加热方式)和实验气氛(包括气体种类和流速)等均会对试样在不同温度或时间时的性质变化产生不同程度的影响。此外,试样的状态(如尺寸、形状、规整度等)和用量也对实验曲线有不同程度的影响。值得注意的是,除了以上几种因素之外,在实验时采用的仪器结构类型、热分析技术种类(如热重法、差热分析、热机械分析等)以及不同的操作人员等因素均会给实验结果带来不同程度的影响。客观地说,热分析技术的这些影响因素给数据分析和具体应用带来了不少麻烦。但是任何事物都具有两面性,热分析技术的这些影响因素恰恰反映了其自身的灵活性和多样性,实验时可以通过改变实验条件来分析这些因素对实验结果的影响程度, 从而可以深入探讨试样在不同条件下物理性质的变化, 使研究者对试样在不同温度或时间下的性质变化规律有更深入的理解,获得试样在不同的温度下与性质相关的更多信息。例如,很多非等温热分析动力学方法主要通过获取三条以上不同的加热/降温曲线,并由此得到转变或分解过程的动力学信息。1.2.2.3曲线解析复杂如上所述,热分析实验受到实验条件(主要包括温度程序、实验气氛、制样等)、仪器结构等的影响,由此得到的曲线之间的差异也很大。在实验结束后对曲线进行解析时,应充分考虑以上影响因素,对于所得到的曲线进行合理的解析。在本书的相关章节中,将结合实例对曲线的解析方法进行阐述。1.3 热分析仪器的组成当前的商品化热分析仪主要由仪器主机(主要包括程序温度控制系统、炉体、支持器组件、气氛控制系统、物理量测定系统)、辅助设备(主要包括自动进样器、湿度发生器、压力控制装置、光照、冷却装置、压片密封装置等)、仪器控制、数据采集及处理组成。热分析仪的结构框图如图1.6所示。在本书第5章中将详细介绍热分析仪器的每一组成部分及其功能。1.4 热分析技术的应用领域热分析技术自问世至今已有一百多年的历史,在过去的一百多年中,经过几代人的努力,目前热分析仪器已经日趋成熟,其在各个领域的应用也逐渐日益扩大并向更深层次发展。现在热分析技术从最初应用于黏土、矿物以及金属合金领域至今已经扩展到几乎所有与材料相关的领域。在所有学科门类中,热分析技术在历史学(主要为科技考古领域)、理学、工学、农学、医学等学科中有广泛的应用。在一级学科中,热分析技术已经在考古学、物理学、化学、地理学、地质学、生物学、力学、材料科学工程、冶金工程、动力工程及工程热物理、建筑学、化学工程与技术、石油与天然气工程、纺织科学与工程、环境科学与工程、生物医学工程、食品科学与工程、生物工程、安全科学与工程、公安技术、作物学、畜牧学、水产、草学、林学、药学、中药学、军事装备学等学科中得到了不同程度的应用,当前热分析技术应用较多的是物理学、化学、生物学、地质学、环境科学与工程、化学工程学等学科中与材料相关的石油、冶金、矿物、土壤、纤维、塑料、橡胶、食品、生物化学、物理化学等领域。1.5 热分析技术的发展前景展望未来热分析仪器的发展将主要在以下几个方面有所突破。1.5.1提高仪器的准确度灵敏度以及稳定性提高仪器的灵敏度和稳定性是热分析仪器研发人员多年来一直努力的目标, 随着电子技术和自动化技术的发展,这些性能指标还有进一步提升的空问。1.5.2 扩展仪器功能对于任何一种商品化的分析仪器而言,在实际的应用过程中应结合实际的需求来对仪器的功能进行拓展。对于绝大多数热分析仪器而言,主要从以下几个方面来拓展其功能:(1)在不影响灵敏度的前提下拓宽温度范围;(2)可实现超快的加热/降温速率、温度调制、热惯性小的快速等温实验:(3)配置自动进样装置来提高仪器的利用率;(4)开发适用于仪器的光照装置、温度控制装置、高压实验装置、真空实验装置、电磁场装置等特殊用途的实验附件。1.5.3加强并推广与其他分析方法的联用目前,热分析仪已经实现了与红外光谱、质谱、气相色谱、气相色谱/质谱联用仪、拉曼光谱、显微镜、X射线衍射仪等技术的联用。由于联用时连接部件的不完善以及成本和应用领域等多方面的限制,联用技术自20世纪五六十年代出现以来,直到近二十年才开始快速发展。由于这类方法的功能较常规仪器强大,因此其有着十分远大的发展前景。1.5.4 拓展软件功能随着计算机的硬件和软件的飞速发展,实验数据的记录和分析显得越来越方便。随着热分析技术在不同领域的应用不断深入,人们对热分析的数据处埋的要求尤其是动力学方法对软件的要求越来越高。日前虽然存在一些商品化的动力学分析软件,但由于动力学方法本身的复杂性和快速发展,一款成型的商品软件很难满足大多数的要求,这就要求商品化的动力学软件具有较为强大的功能并且可以及时地反映出动力学的最新发展情况。1.5.5 开发可以满足特殊领域需求的新型热分析仪为了满足一些特殊的测试需求,近年来不断出现新型的热分析仪,如Mettler Toledo 公司推出的一种可以实现每分钟几百万摄氏度加热速率的闪速差示扫描量热仪。这些仪器有的已经实现商品化, 有的仅限于实验室使用, 使用这些新型仪器完成的科研论文在一些学术期刊中经常可以见到。1.5.6 在不影响仪器性能的前提下减小仪器的体积、节约成本、提升产品的竞争力美国 TA 仪器公司于2010年推出了Discovery系列热分析仪器,仪器的电路部分适用于热重分析仪、热重-差热分析仪、差示扫描量热仪、静态热机械分析仪和动态力学热分析仪,可以实现几台仪器共用一种控制单元,这样对于需要购买多台仪器的用户降低了成本,提升了仪器的竞争力。TA公司的这种方法代表了今后分析仪器的一种发展趋势。随着科学研究的进一步发展,热分析技术有望在一些较新的领域中发挥其独特的作用。我们有充分的理由相信,在全球热分析工作者的共同努力下,热分析技术将继续保持现有的高速发展势头,其在各领域中将得到更加广泛和深入的应用。
    留言咨询
  • STA449A同步热分析仪STA综合热分析仪同步热分析仪STA综合热分析仪同步热分析法(TG、DSC)是在升温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。同步热分析仪STA综合热分析仪广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控STA449A测量与研究材料的如下特性:结构优势1. 炉体加热采用贵金属合金丝双排绕制,减少干扰,耐高温,抗氧化2. 托盘传感器,具有测试范围宽,耐高温,抗氧化,耐腐蚀等优点。3. 称重系统采用的是进口称重系统,稳定性高,重复性好。4. 采用上开盖式结构,操作方便。上移炉体放样品操作很难,易造成样品杆损坏。5. 称重系统密封恒温,减少温差对称重系统的影响。6. 炉体采用双层保温,热损耗小7. 仪器加热采用PID控制,精度高,脉冲小。8. 软件与仪器之间采用USB双向通讯,完全实现远程操作,可以通过电脑软件进行仪器的参数设置以及仪器的运行停止9. 程序多段设置,多段升温、恒温软件进行仪器的参数设置以及仪器的运行停止。10. 7寸全彩24bit触摸屏,更好的人机界面。TG的校准均在触摸屏上可以实现技术参数:1) 温度范围: 室温~1200℃ 2) 温度分辨率: 0.01℃3) 温度波动: ±0.1℃4) 升温速率: 0.1~100℃/min5) 温控方式:PID算法控制, 升温、恒温、降温6) 恒温时间: 0~300min 任意设定7) 天平测量范围: 0.01mg~3g ,可以拓展至30g8) 程序控制,实现多段升温控制9) DSC量程: 0~±600mW10) DSC解析度: 0.001mW11) 称重系统精度:0.01mg12) 恒温时间: 0~300min 任意设定13) 显示方式: 24bit色,7寸 LCD触摸屏显示14) 气氛装置:内置气体流量计,包含两路气体切换和流量大小控制气氛:惰性、氧化性、还原性,静态、动态15) 软件: 智能软件可自动记录TG曲线进行数据处理、打印实验报表16) 曲线扫描: 升温扫描、降温扫描17) 电源: 电源与称重系统有隔离屏蔽罩,避免交流电干扰,AC220V 50Hz18) 操作软件:可切换满足差示,差热,热重,同步热的应用切换测试19) 通讯接口:USB 通讯测试图谱:
    留言咨询
  • 综合同步热分析仪STA-449B高温热分析仪1、概述热失重法(TGA)是在程序控制温度下测量物质质量与温度关系的一种技术,物质受热时,发生物理变化和化学变化,质量也随之改变。测试过程伴有热效应产生,即:放热和吸热现象,这种现象反映了物质热焓发生的变化(DSC)。DSC是测定在同一受热条件下,试样与参比物之间温差对温度或时间的函数关系。STA同步热分析仪,是综合研究上述变化之间的函数关系的仪器。关于DSC:将试样和参比物分别放入坩埚,置于炉中按预定程序加热,改变试样和参比物的温度。若参比物和试样的热容相同,试样又无热效应时,则二者的温差近乎为“零”,此时得到一条平滑的曲线。随着温度的增加,试样产生了热效应,而参比物未产生热效应,二者之间就产生了温差,在DSC曲线中表现为峰,温差越大,峰也越大,温差变化次数越多,峰的数目也越多。峰顶向上的峰称为放热峰,峰顶向下的峰称为吸热峰。下图为典型的DSC曲线,图中表现出四种类型的转变:Ⅰ为二级转变,是水平基线的改变Ⅱ为吸热峰,是由试样的熔融或熔化转变引起的Ⅲ为吸热峰,是由试样的分解或裂解反应引起的Ⅳ为放热峰,这是试样结晶相变的结果 关于TGA:可以根据需要进行TGA测试,下图体现了:试样的热重、时间、温度之间的关系GA/DSC下图体现了:试样的热重(TGA)、热焓变化(DSC)、时间、温度之间的关系2、仪器技术指标型号STA-449ASTA-449B显示方式24bit 色, 7 寸 LCD 触摸屏显示TG 量程1mg ~ 3g ,可扩展至 30gTG 精度0.01mg温度范围室温~1250℃室温~1550℃温度分辨率0.01℃温度波动±0.1 ℃温度精度± 1 ℃温度重复性±0.1 ℃升温速率0.1 ~ 100℃/min控温方式升温, 恒温, 降温 (全自动程序控制)程序控制可实现四段升温控制, 特殊参数可定制曲线扫描升温扫描气氛控制气体两路自动切换 (仪器自动切换)气体流量0-200mL/min气体压力≤0.5MPa恒温时间0 ~ 300min 可任意设定数据接口标准 USB 接口工作电源AC220V/50Hz3、仪器工作环境电源 AC220V±10V ≤10A环境温度 20~28℃安放仪器的工作台桌面平整。周边无大型机械,或其它震动源。本仪器高度精密,整个实验过程(约一个小时)实验室的温度波动应小于2摄氏度。可在实验前3小时,关闭实验室门窗,控制实验室温度。仪器应在实验前半小时打开电源。仪器应远离加热器,远离空调机出风口。4、综合同步热分析仪STA-449B高温热分析仪器安装根据装箱清单检查仪器部件是否齐全仪器平放在工作台上,联接电源线、信号线安放仪器的工作台桌面平整5、实验原理试样与参比物放入坩埚后,按设定的速率升温,如果参比物和试样热容大致相同,就能得到理想的扫描量热分析图。图中T是由插在参比物的热电偶所反映的温度曲线。AH线反应试样与参比物间的温差曲线。如试样无热效应发生,那试样与参比物间△T=0,在曲线上AB、DE、GH是平滑的基线。当有热效应发生而使试样的温度低于参比物,则出现如BCD顶峰向下的吸热峰。反之,则出现顶峰向上的EFG放热峰。图中峰的数目多少、位置、峰面积、方向、高度、宽度、对称性反映了试样在所测温度范围内所发生的物理变化和化学变化的次数、发生转变的温度范围、热效应大小和正负。峰的高度、宽度、对称性除与测试条件有关外还与样品变化过程中的动学因素有关,所测得的结果比理想曲线复杂得多。6、仪器界面6.1“初始状态”键,用来查看环境温度、样品温度等信息。6.2“参数设置”键,用来设置实验参数,一般在软件上设置。6.3“设备信息”键,显示设备信息。6.4“开始运行”键,在电脑软件上操作开始后,显示当前数据信息。7、综合同步热分析仪STA-449B高温热分析仪实验操作步骤1.连接好电源线,USB线和需要的气体后开机显示如图:开机预热30分钟,稳定后,如TG质量显示不是0,可以按TG清零。如图2.30分钟之后,打开软件,选择【文件】,点击【新建】,或者任务栏的【新建】快捷键,填写【样品名称】,【空坩埚质量】,选择【坩埚类型】、【气氛】。实验样品名称不要重复,防止覆盖掉上一次的实验数据。如下图:将2个空坩埚分别放在样品托盘上 待质量稳定后,把界面显示的质量填入到软件上“坩埚质量”,点击【连接仪器】;如上图4.取出托盘右边的坩埚,放入样品后再放在托盘上;5.盖上炉体盖,先盖内部陶瓷盖,再盖上金属盖;6.点击【继续】进入------“参数设置”,可分段设置温度;如下图注意:为了保护仪器使用寿命,不建议长期设置1000℃高温。所需参数设置完成,点击上图的【设置】键,同时TG质量稳定后点击软件上【运行】键,如下图:8.到达设置温度,仪器自动停止,出现下图,绿色为TG质量线,蓝色为DSC曲线。横坐标为温度、左侧纵坐标为质量坐标、右侧纵坐标为DSC坐标(坐标大小在设置里选择可调坐标轴选择合适的区间)实验结束,保存数据,通过软件进行实验数据分析计算。9.点击图谱,是图谱颜色有墨绿色变为浅绿色,即选定图谱,点击任务栏中【分析】—【质量变化】—拖动左右两根黑线选择温度范围,得出失重比,再点击图谱,使其变成墨绿色,如下图10.调节左右两根黑线,选择温度范围,确定范围后选择应用,出现下图所示 失重质量百分比得出。点击【应用】、【确定】,分析结束。11.点击【文件】-【保存为状态T】,保存分析数据。如下图:STA也可以分析DSC曲线,分析如下:点击选中要分析的曲线,使其变成浅绿色进行分析,点击分析,选择峰综合分析,如下图:此时会出现两条分析线,拖至左侧分析线在变化前端,右侧分析线在变化后端,选取好后,点击应用,确定,点击该曲线,使其变成蓝色,分析完毕。曲线如下图:可以点击打印预览,如下图:8、参比物选择、样品制备8.1.1、环氧类高分子材料:参比物------用空的陶瓷坩埚。样品-----已固化的、高熔点的环氧树脂类样品(这类产品一般用于电子器件、变压器灌封)可以将样品制成4mm见方的立方体,称重后将样品放入样品坩埚,再将坩埚放置在样品专用的托盘上。建议将待测样品磨成粉状,(但勿锤击敲打,以免改变样品特性)将样品放入坩埚,并压实。(这点很重要,关系实验成否)。8.1.2、环氧类、聚酯类粉末、片状材料可以将样品放入坩埚,压实。称重后将样品坩埚放置在样品专用的托盘上。8.2.1、只测试样品的DSC曲线:如无特别要求可以采用敞口坩埚,如需带盖坩埚,请联系我司人员另行商议。8.2.2、只测试样品的TG曲线:如无特别要求可以采用陶瓷坩埚,因不测试样品的DSC特性所以可以不需要参比物,直接将样品坩埚放在托盘中部。8.2.3、测试样品的DSC特性和TG特性:参比物-----空陶瓷坩埚或空铝坩埚(与样品坩埚材质相同)。样 品-----采用铝坩埚或陶瓷坩埚,将样品放入坩埚内,称重后将坩埚放置在样品专用的托盘上。重要提示:实验温度超出600℃时不能使用铝坩埚,铝坩埚熔化会损坏仪器部件。9、注意事项:1.不得使用硬物清洁样品支架及实验池,以免对仪器造成永久性损害。.2.使用橡皮球吹去实验池内的灰尘。禁止用嘴吹,防止产生人身伤害。3.样品支架污染严重时,可以将:截止温度设为600℃、 升温速率设为20℃/min、 恒温时间设为 30min ,仪器里面不放任何坩埚,烧高温的目的使污染物挥发。 接着按【运行】键,开始运行。4.仪器长期搁置不用或做低温试验期间,基线出现不平整、毛刺等现象,是因水分侵入实验池。可以将:截止温度设为400℃、升温速率设为20℃/min、恒温时间设为0min 按【运行】键,运行完毕基线恢复正常。10、综合同步热分析仪STA-449B高温热分析仪装箱清单主机1台U盘1个数据线2根电源线1根铝坩埚200只陶瓷坩埚200只陶瓷盖2个金属盖1个生胶带1卷纯锡粒1袋10A保险丝5只样品勺/样品压杆/镊子各1个吸耳球1个气管2根配重块1个传感器1个说明书1份保修单1份合格证1份备注:如需要其它配件另行商议(客户自配氧气、氮气、计算机(USB插头))
    留言咨询
  • 高温高压综合热分析 400-860-5168转3481
    高温高压综合热分析系统 Themys1、市场上唯一可在空气和氧气的条件下测试的加压热分析(TG-DSC)2、 上天平(光电)经典结构,真正可以在压力下工作;更适合做水蒸气3、 完善的制造厂家售后服务。 热分析是材料领域重要的分析方法,法国setaram 公司推出的Themys TGA全自动高压热分析系统, 利用世界著名top loading光电天平技术,可以自动测量材料的重量变化、压力和温度,及在不同操作条件下的其他吸附、脱附的等温、等压曲线,评估过程的动力学参数。适用于各种复杂的分析环境,在煤炭、化工、材料、石化、石油、地质、生物工程材料、制药、复合材料等领域有着广泛的应用。 1、最高温度:1200℃ 、2、承受压力范围:≧100 bar3、程序升降温速率:0~100 ℃/min4、温度精度:±0.1℃ 5、最大试样载重量:100 g 6、TG分辨率:≦0.1 μg 7、气氛:能在惰性、氧化、还原、水蒸气和腐蚀性气氛下可靠工作 8、可以联用红外、质谱等分析技术特点: 标准版无外置系统,高集成度all in one设计,完全桌上型系统,简洁,紧凑,高效。 易于操作,炉体入口紧固、天平盖紧固、天平锁定等日常实验操作均无需工具,仅需双手即可完成。 TG使用吊杆,而不是挂丝,更加易于操作,同时避免高压下对流干扰大,对挂丝影响也大。 控压由ER5000控制的背压系统精确控压,两种配置:一种是只控制压力,另一种可以进行高压下流量控制及气体混合。 高性能表现:基线噪音极小,远超竞争对手,高压TG由扣空白的方式完成,无需计算气体密度;混气方式为同样压力不同流速,MFC控制;具备TG-DSC/DTA同步功能;通用联用借口,可连接高压MS,湿度发生仪等。 完整的安全保护系统: 主机中有独立固件,即使和电脑失去通讯们,不会发生失控 高压管路均使用气动阀; 超压卸荷阀等压力异常保护装置:P Pmax(152bar)时,压力设定值Cf=Cs=140 Bar,排放阀自动打开,入口阀门自动关闭关闭,炉体关闭; 炉体中压力高于常压,且真空阀门打开时,自动关闭真空阀门,保护真空泵; 样品室及发热体腔体压差过大时:两个腔体的连通阀打开,关闭相应进气阀; 炉体加热自动切断压力设定值均为1 Bar,保护炉管不被压坏; 温度及压力过高时均不能打开炉体。
    留言咨询
  • 差热分析仪 400-803-6009
    1、仪器简介差热分析这项技术一直被广泛应用。既是一种例行的质量测试工具,也是一个研究工具。测量的是与材料内部热转变相关的温度、热流之间的关系。我公司的差热分析仪,具有重复性好、准确度高的特点,特别适合用于比热的精确测量。该设备易于校准,使用熔点低,快速可靠,应用范围非常广,特别是在材料的研发、性能检测与质量控制上。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差热分析仪的研究领域,根据实验参数以及实验需求来选择不同的型号。差热分析仪应用范围有: 高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度,管材的抗氧化性能等。将试样放入坩埚中,参比物为空的坩埚,同事置于加热炉中进行程序控制加热来改变试样和参比物的温度。开始参比物和试样之间的热容相同,试样又无热效应时,则二者的温差近乎为“零”,此时得到一条相对平滑的曲线。随着温度的升高,试样发生了热效应,而参比物未产生热效应,二者之间就产生了温差,在DSC曲线中表现为峰,温差越大,峰也越大,温差变化次数越多,峰的数目也越多。峰顶向上的称为放热峰,峰顶向下称为吸热峰。下图为典型的差热曲线,图中表现出四种类型的转变: Ⅰ为二级转变,是水平基线的改变 Ⅱ为吸热峰,是由试样的熔融或熔化转变引起的 Ⅲ为吸热峰,是由试样的分解或裂解反应引起的 Ⅳ为放热峰,这是试样结晶相变的结果 2、仪器原理物质在物理和化学变化过程中往往会伴随着热效应,放热和吸热现象反映了物质热焓的变化。差热分析仪就是测定在同一受热条件下,测量试样与参比物之间温差对温度或时间的函数关系。差热分析仪,是在程序控制温度的情况下,测量被测样品与参比物的功率差与温度关系的一种技术。纵坐标是试样与参比物的热流差,单位为mw。横坐标是时间(t)或者温度(T)。试样与参比物放入加热炉后,按设定的速率进行升温,如果参比物和试样热容大致相同,就能得到理想的扫描量热分析图。 图中T是由连接在参比物上的热电偶所反映的温度曲线。AH线反应试样与参比物间的温差曲线。如果试样无热效应发生,那么试样与参比物间△T=0,则出现如曲线上AB、DE、GH那样相对平滑的基线。当有热效应发生而使试样的温度低于参比物,则出现如BCD顶峰向下的吸热峰。反之,则出现顶峰向上的EFG放热峰。图中峰的数目多少、位置、峰面积、方向、高度、宽度、对称性反映了试样在所测温度范围内所发生的物理变化和化学变化的次数、发生转变的温度范围、热效应的大小和正负。峰的高度、宽度、对称性除与测试条件有关外还与样品变化过程中的动学因素有关,所测得的结果比理想曲线复杂得多。3、仪器特点1.全新的炉体结构,更好的解析度和分辨率以及基线稳定性;2.仪器下位机数据实时传输,界面友好,操作简便;3,仪器主要技术参数;项目/型号DSC-2DSC-3DTA量程0~±2000μV温度范围室温~1150℃室温~1450℃升温速率0.1~100℃/min温度分辨率0.01℃温度波动±0.01℃温度重复性±0.1℃精确度0.01μV灵敏度0.01μV控温方式升温、恒温(程序自动控制)曲线扫描升温扫描,恒温扫描气氛控制2路气体自动切换显示方式24bit色7寸LCD触摸屏显示数据接口标准USB接口仪器标准配标准物质(锡),可自行矫准温度和热焓备注所有技术指标可根据用户需求调整4、仪器界面4.1仪器界面4.1.1 “初始状态”键,用来查看实时温度、DSC和气氛等信息。4.1.2 “参数设置”键,用来设置实验参数,一般在软件上设置。4.1.3 “设备信息”键,显示设备信息。管理员通道内部人员校准温度使用。4.1.4 “开始运行”键,在电脑软件上操作开始后,显示当前数据信息。5、软件操作5.1 打开软件,点击“文件”菜单栏下的【新建】,或者【新建】快捷键如下图: 5.2 点击“新建”之后,会调转到新的窗口,在新建窗口内,输入【样品名称】,【样品质量】,【操作员】,【实验参数】,【气氛】等信息,测试类型根据客户需求选择【OIT】或【非OIT】,点击【连接仪器】,会听到一声蜂鸣声。注意两次实验,样品名称不可以一样,否则会覆盖上次数据,导致上次数据的丢失。如下图:实验参数设置如下:“熔点、相变温度实验的参数设置”(根据样品预估参数设置,测试类型选择非OIT。)如下图:5.3 软件设置全部完成之后,点击【连接仪器】,点击软件左上角 “”开始键(如下图),设备会按设置的程序升温,同时软件实时记录数据。到达设置温度,仪器自动停止,出现如下图图谱(该图谱为熔点、相变温度图谱)5.4 首先先保存图谱,防止丢失,也可使用快捷键,选择【保存为样品】。然后再进行分析。如下图:5.4.1熔点,热焓,相变温度分析流程:点击图谱使其变成绿色,即选定图谱,点击任务栏中【分析】—【峰综合分析】—出现左右两根黑线,拖动左侧分析线在变化前端,右侧分析线在变化后端,选取好后,点击【应用】,【确定】,再点击该曲线,使其变成蓝色,分析完毕。分析好的图谱如下图:5.4.2 初熔点,终熔点分析:点击图谱使其变成绿色,即选定图谱,点击任务栏中【分析】—【初熔点】或【终熔点】—出现左右两根黑线,拖动左侧分析线在变化前端,右侧分析线在变化后端,选取好后,点击【应用】,【确定】,再点击该曲线,使其变成蓝色,分析完毕。分析好的图谱如下图:5.5 所有分析后的图谱,点击【文件】-【保存为状态T】,保存分析数据。如下图:5.6 所有图谱可以出报告,点击【打印预览】,如下图:6.标定物的选择和温度校正6.1 标定物的选择不定期的进行温度校正,以保证测试准确度。根据样品的实际测试温度,选择标定物。标定物选择的原则:标定物的外推温度与样品待测项目的温度要比较接近,以保证测试的准确性。下表为常用标定物的熔点及理论热焓数值。标准物质理论熔点℃理论熔融热焓J/g铟In156.628.6锡Xi231.960.5锌Zn419.5107.56.2 温度校准操作步骤:设备信息—管理员通道—456进入—输入理论和测量值—保存—关机重启(测量值为标定物熔点测试所得的起始点温度)7. 仪器应用7.1熔点(热焓)测量熔点是物质从晶相到液相的转变温度,是热分析最常测定的物性数据之一。其测定的精确度与热力学平衡温度的误差可达±1℃左右。目前采用ICTA推荐的方法,测出某一固体物质的熔融吸热蜂。如下图,图中B点对应的B′是起始温度Ti,G点对应的温度是外推起始温度Teo,即峰的前沿最大斜率处的切线与前基线延长线的交点,C点对应的温度是蜂顶温度Tm,D点对应的D′是终止温度了Tf。热焓是表示物质系统能量的一个状态函数,其数值上等于系统的内能U加上压强P和体积V的乘积,即H=U+PV。在一定条件下可以从体系和环境间热量的传递来衡量体系的内能与焓的变化值。在没有其它功的条件下,体系在等容过程中所吸收的热量全部用以增加内能,体系在等压过程中所吸收的热量,全部用于使焓增加,由于一般的化学反应大都是在等压下进行的,所以焓更有实用价值。DSC曲线中我们可以通过计算峰面积得到试样的熔融热焓,即图中的BCD。7.2仪器系数的测定由于仪器系数可能会根据环境的变化而变化,温度、湿度等等对它都会产生或大或小的影响。为确保实验结果的准确性,应时常测仪器的系数。通常选用锡、锌、铟等来校准仪器,测量仪器系数。仪器系数是在校准好温度的前提下测试标定物的热焓,然后根据标定物的理论热焓和仪器系数的计算公式来计算仪器系数。在【数据分析】栏,选择【仪器系数】出现下图对话框,将理论熔融热焓和实测熔融热焓分别填入对应栏中,点击计算按钮即可得到仪器系数。仪器系数在计算结晶度时同样用到,不是连续做实验则需将仪器系数记录下来,以备以后使用。以纯锡样品实验为例,输入锡的理论热焓值为60.5J/g,实测热焓为36.3326J/g,系统计算出的仪器系数K为60.5/36.3326该仪器系数软件界面上自动生成。通常仪器系数的测定可以在仪器校正后测得。在仪器校正时,称量标准物质的质量,填写在实时数据栏中质量栏内,若校正所测得的相变温度接近试样的实际温度,即可在记录此次的热焓值,计算仪器系数,作为该仪器的系数。设置如下图:8、仪器使用注意事项1. 为保证仪器正常使用,样品在测试温度范围内不能发生热分解,与金属铝不起反应,无腐蚀。被测量的试样若在升温过程中能产生大量气体,或能引起爆炸的都不能使用该仪器。因此,测试前应对样品的性质有大概了解。2. 检查仪器所有连接是否正确,所用气体是否充足,工具是否齐全。3. 试验中,若选择铝坩埚为样品皿,试验的最高温度不可超过550℃。4. 实验室室温控制在20℃-30℃,温度较为恒定的情况下实验结果精确度和重复性较高。室温较高的情况下需开空调以保证环境温度在短期内相对恒温。每次实验完,降温到40度以下,才可以第二次5. 坩埚底要平,无锯齿形或弯曲,否则传热不良。6. 制备样品时,不要把样品洒在坩埚边缘,以免污染传感器,破坏仪器。坩埚的底部及所有外表面上均不能沾附样品及杂质,避免影响实验结果。7. 试样用量要适宜,不宜过多,也不宜过少。固体样品一般为10mg左右。液体样品不超过坩埚容量的三分之一。如样品用量另有要求,根据要求确定用量。8. 对于无机试样可以事先进行研磨、过筛;对于高分子试样应尽量做到均匀;纤维可以做成1~2mm的同样长度;粉状试样应压实。9. 坩埚放在支持器中固定位置上,试样用量少时要均匀平铺在坩埚底部,不要堆在一侧;若试样是颗粒,需要放在坩埚中央位置。10. 升温速率一般情况下选择10℃/min。过大会使曲线产生漂移,降低分辨力;过小测定时间长。11. 不得使用硬物清洁样品托及实验区,以免对仪器造成不可逆损害。12. 如果实验区有灰尘或其他粉末状杂物应使用洗耳球吹干净,慎用嘴吹而迷眼。13. 采集数据的过程中应避免仪器周围有明显的震动,严禁打开上盖,轻微的碰及仪器前部就会在曲线上产生明显的峰谷。14. 不要在采集数据的过程中调节净化气体的流量,因为气体流量的轻微改变会对DSC曲线产生影响。15. 实验结束后,千万小心炉盖,等温度降到100℃以下,用镊子轻拿轻放,避免被烫或者炉盖损坏。16. 电源:AC220V,50HZ,功耗≤2000W。17. 断开数据线,关闭仪器之前先关闭软件。以防止联机、通讯失误。解决办法:1.如果遇到联机成功,无数据返回,则需要重启计算机。 2.如果遇到联机失败,则需要在设备管理器中将带感叹号的USB设备卸载,重新加载即可,无需重启计算机。9、装箱清单主机1台U盘1只数据线2根电源线1根铝坩埚200只陶瓷坩埚100只金属盖1个陶瓷盖2个生胶带1卷纯锡粒1袋10A保险丝5只样品勺/样品压杆/镊子各1个吸耳球1个气管2根说明书1份保修单1份合格证1份备注:如需要其它配件另行商议(客户自配氧气、氮气、计算机(USB插头))
    留言咨询
  • 在材料生产检测领域中,纳米材料表征共聚焦显微镜用于对各种精密器件及材料表面进行微纳米级测量。它基于光学共轭共焦原理,结合精密纵向扫描,以在样品表面进行快速点扫描并逐层获取不同高度处清晰焦点并重建出3D真彩图像。产品功能(1)设备具备表征微观形貌的轮廓尺寸及粗糙度测量功能;(2)设备具备自动拼接功能,能够快速实现大区域的拼接缝合测量;(3)设备具备一体化操作的测量与分析软件,预先设置好配置参数再进行测量,软件自动统计测量数据并提供数据报表导出功能,即可快速实现批量测量功能;(4)设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;(5)设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;(6)设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;VT6000纳米材料表征共聚焦显微镜在陶瓷、金属、半导体、芯片等材料科学及生产检测领域中具有广泛的应用。应用领域 对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。应用范例:性能特色1、高精度、高重复性1)以转盘共聚焦光学系统为基础,结合高稳定性结构设计和3D重建算法,共同组成测量系统,保证仪器的高测量精度;2)隔震设计能够消减底面振动噪声,仪器在嘈杂的环境中稳定可靠,具有良好的测量重复性。2、一体化操作的测量分析软件1)测量与分析同界面操作,无须切换,测量数据自动统计,实现了快速批量测量的功能;2)可视化窗口,便于用户实时观察扫描过程;3)结合自定义分析模板的自动化测量功能,可自动完成多区域的测量与分析过程;4)几何分析、粗糙度分析、结构分析、频率分析、功能分析五大功能模块齐全;5)一键分析、多文件分析,自由组合分析项保存为分析模板,批量样品一键分析,并提供数据分析与统计图表功能; 6)可测依据ISO/ASME/EUR/GBT等标准的多达300余种2D、3D参数。3、精密操纵手柄集成X、Y、Z三个方向位移调整功能的操纵手柄,可快速完成载物台平移、Z向聚焦等测量前工作。4、双重防撞保护措施除软件ZSTOP设置Z向位移下限位进行防撞保护外,另在Z轴上设计有机械电子传感器,当镜头触碰到样品表面时,仪器自动进入紧急停止状态,保护仪器,降低人为操作风险。VT6000纳米材料表征共聚焦显微镜显微成像主要采用3D捕获的成像技术,使其具有较高的三维图像分辨率。横向分辨率更高,所展示的图像形态细节更清晰更微细,能够提供色彩斑斓的真彩图像便于观察。应用场景1、镭射槽测量晶圆上激光镭射槽的深度:半导体后道制造中,在将晶圆分割成一片片的小芯片前,需要对晶圆进行横纵方向的切割,为确保减少切割引发的崩边损失,会先采用激光切割机在晶圆表面烧蚀出U型或W型的引导槽,在工艺上需要对引导槽的槽型深宽尺寸进行检测。2、光伏在太阳能电池制作工程中,栅线的高宽比决定了电池板的遮光损耗及导电能力,直接影响着太阳能电池的性能。VT6000可以对栅线进行快速检测。此外,太阳能电池制作过程中,制绒作为关键核心工艺,金字塔结构的质量影像减反射焰光效果,是光电转换效率的重要决定因素。共聚焦显微镜具有纳米级别的纵向分辨能力,能够对电池板绒面这种表面反射率低且形貌复杂的样品进行三维形貌重建。3、其他部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量宽度测量XY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。
    留言咨询
  • 中图仪器VT6000材料表征3d共聚焦形貌显微镜基于光学共轭共焦原理,结合精密纵向扫描,通过系统软件对器件表面3D图像进行数据处理与分析,可以获取反映器件表面质量的2D、3D参数,从而实现器件表面形貌3D测量。VT6000材料表征3d共聚焦形貌显微镜在半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、科研院所等领域中,可测各类包括从光滑到粗糙、低反射率到高反射率的物体表面,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等。产品功能(1)设备具备表征微观形貌的轮廓尺寸及粗糙度测量功能;(2)设备具备自动拼接功能,能够快速实现大区域的拼接缝合测量;(3)设备具备一体化操作的测量与分析软件,预先设置好配置参数再进行测量,软件自动统计测量数据并提供数据报表导出功能,即可快速实现批量测量功能;(4)设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;(5)设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能; (6)设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;功能特点1、测量模式多样单区域、多区域、拼接、自动测量等多种测量模式可选择,适应多种现场应用环境;2、双重防撞保护功能Z轴上装有防撞机械电子传感器、软件ZSTOP防撞保护功能,双重保护;3、分析功能丰富3D:表面粗糙度、平整度、孔洞体积、几何曲面、纹理方向、PSD等分析;2D:剖面粗糙度、几何轮廓测量、频率、孔洞体积、Abbott参数等分析。应用领域VT6000材料表征3d共聚焦形貌显微镜对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。 应用范例:应用场景1、镭射槽测量晶圆上激光镭射槽的深度:半导体后道制造中,在将晶圆分割成一片片的小芯片前,需要对晶圆进行横纵方向的切割,为确保减少切割引发的崩边损失,会先采用激光切割机在晶圆表面烧蚀出U型或W型的引导槽,在工艺上需要对引导槽的槽型深宽尺寸进行检测。2、光伏在太阳能电池制作工程中,栅线的高宽比决定了电池板的遮光损耗及导电能力,直接影响着太阳能电池的性能。VT6000可以对栅线进行快速检测。此外,太阳能电池制作过程中,制绒作为关键核心工艺,金字塔结构的质量影像减反射焰光效果,是光电转换效率的重要决定因素。共聚焦显微镜具有纳米级别的纵向分辨能力,能够对电池板绒面这种表面反射率低且形貌复杂的样品进行三维形貌重建。3、其他VT6000共聚焦显微镜能够清晰地展示微小物体的图像形态细节,显示出精细的细节图像。它具有直观测量的特点,能够有效提高工作效率,更加快捷准确地完成日常任务。借助共聚焦显微镜,能有效提高工作效率,实现更准确的操作。部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量宽度测量XY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。
    留言咨询
  • 优势特点1)样品处理开始后样品池中真空度可达到10-3 Pa;2)样品测量过程中各样品可同时或分别进行预处理、吸附、脱附探针分子;3)测量所需探针分子为酸性或碱性分子,高硼硅玻璃材质避免了各类气体的相互污染;4)真空处理系统由机械泵与玻璃四级扩散泵串联组成,可满足样品测试所需的高真空度的要求,具有抽速快、体积小、噪音低、操作简单、使用方便等特点;5)低真空部分主要是抽除系统中的高浓度气体或吸附的残余气体;6)各部分节门选用高硼硅玻璃节门,满足系统高真空的要求,透明性操作,便于调试;7)真空测量仪使用数显高精密真空计;8)本系统所配透过式石英红外吸收池,可对样品进行陪烧、流动氧化还原、抽空脱气、吸附反应等处理过程,可随时移入或移出到红外光谱仪的光路中进行实验,对样品的加热温度可达450度;9)波纹管更换方便。10)高真空系统和原位红外吸收池可按客户要求进行更改和定制。产品应用1 吸附态研究和催化剂红外光谱表征红外光谱已经广泛应用于催化剂表面性质的研究,其中有效和广泛应用的是研究吸附在催化剂表面的所谓“探针分子”的红外光谱,如:NO、CO、CO2、NH3、C3H5N等,红外光谱表征可以提供催化剂表面尤其是原位反应条件下催化剂表面存在的“活性中心”和表面吸附物种的信息,因此对于揭示催化反应机理十分重要。1.1 CO吸附态研究CO具有很高的红外消光系数,其未充满的空轨道很容易同过渡金属相互作用,同时许多重要的催化反应如羰基合成、水煤气合成、费托合成等均与CO密切相关,因此,研究CO在过渡金属表面的吸附态是一项十分广泛的研究课题。1.2催化剂表面组成测定合金催化剂表面组成与体相组成的差异会导致催化剂的性能显著不同,因此,测定催化剂的表面组成对理解反应的活性位相当重要。利用两种气体混合物在双组份过渡金属催化剂表面上的竞争吸附,并通过红外光谱测定其强度,可以方便地测定双金属负载催化剂的表面组成。典型的例子是CO和NO在Pt-Ru双金属催化剂上共吸附的红外光谱。1.3几何效应和电子效应研究在高分散金属催化剂中引入第二金属组元,由于金属间的几何效应和电子效应可显著改变催化剂的吸附性能从而改变催化活性。如在Pd-Ag/SiO2催化剂体系中,Ag对Pd起稀释作用,当Ag含量增加,成双存在的Pd浓度减少,因而桥式CO减少,线式CO增加,说明几何效应改变了CO在Pd-Ag/SiO2体系中的吸附性能,同时,随Ag含量的增加,CO吸附谱带红移加大,说明Pd-Ag之间存在电子效应。1.4吸附分子相互作用研究CO吸附在过渡金属表面时存在d-π反馈,nco同d-π反馈程度有有关,而d-π反馈程度与金属本身的d轨道情况有关,因此,通过CO吸附态的红外吸收光谱的化学位移,可以考察其它分子与CO共同吸附时导致的分子与金属组元之间的电子转移过程。如:当能够给出电子的Lewis碱与CO共吸附在Pt上时,根据d-π反馈原理,吸附在Pt上的CO伸缩振动向低波数位移,而当能够接受电子的受体与CO共吸附在Pt上时,根据d-π反馈原理,吸附在Pt上的CO伸缩振动向高波数位移。2 氧化物、分子筛催化剂的红外光谱表征2.1 固体表面酸性测定固体表面酸性位一般可看作是氧化物催化剂表面的活性位。在众多催化反应如催化裂化、异构化、聚合等反应中烃类分子与表面酸性位相互作用形成正碳离子,该正碳离子是反应的中间物种。正碳离子理论可以成功解释烃类在酸性表面上的反应,也对酸性位的存在提供了有力证明。为了表征固体酸催化剂的性质,需要测定表面酸性位的类型(Lewis酸,Bronsted酸)、强度和酸量。测定表面酸性的方法很多,如碱滴定法、碱性气体吸附法、热差法等,但这些方法都不能区分L酸和B酸部位。红外光谱法则广泛用来研究固体催化剂表面酸性,它可以有效区分L酸和B酸,在该方法中,常用碱性吸附质如氨、吡啶、三甲基胺、正丁胺等来表征酸性位,其中应用比较广泛的是吡啶和氨。2.2 氧化物表面羟基的研究氧化物尤其是大比表面的氧化物的表面结构羟基同许多催化反应如脱水反应、甲酸分解反应等有关,而表面结构羟基的性质又同表面酸性有密切的关系,多年来,人们对氧化物表面羟基进行了大量的研究,其中大部分研究着眼于氧化物表面羟基的结构、性质以及同酸性中心的关系,进而同催化剂的反应性能相关联。研究催化剂表面结构羟基的方法很多,但卓有成效的是红外光谱法。2.3 氧化物表面氧物种研究甲烷是烃类分子中结构简单、对称、化学惰性的分子,从基础研究角度认识以甲烷为代表的低碳烃类活化机理具有极大的学术意义。但是,甲烷分子很难吸附在催化剂表面上,因此很难直接观察到它在氧化物表面的活化过程。而氧化物表面(尤其碱性氧化物表面)的氧物种研究由于表面存在一层稳定的碳酸盐使得对其研究十分困难。鉴于上述原因,氧化物表面氧物种的研究一直没有取得重大进展。近年来采用了“化学捕集”技术、同位素交换技术和低温原位红外光谱方法相结合应用于上述研究取得了一些关于表面氧物种和甲烷活化的重要信息。3 原位红外光谱应用于反应机理研究长期以来人们研究了各种分子在催化剂表面的吸附态并获得了许多重要的信息,但是这些信息都是在反应没有发生时测得的。而反应条件下的吸附物种的类型、结构、性能与吸附条件下的吸附物种的类型、结构、性能有很大差别,因此,仅利用吸附条件下分别测得的吸附物种信息无法准确阐明反应机理,为此,进行反应条件下吸附物种的研究十分必要。而在反应条件下催化剂表面吸附的物种并未都参与反应,因此如何在多种吸附物种中识别出参与反应的“中间物种”是非常重要的课题。原位红外光谱可以测量催化剂在反应状态下吸附物种的动态行为,因此可以获得催化剂表面物种的动态信息,并可据此推断反应机理。详细介绍原位红外光谱表征高真空系统是用于测定催化剂表面组成、吸附、酸性、物种、表面羟基及反应机理的专用设备,包括高真空系统和原位红外吸收池两部分,可以配合Bruker布鲁克等主要红外光谱仪进行氨、吡啶、一氧化碳、一氧化氮、甲醇、乙醇等化合物的化学吸附测定及反应机理研究。催化剂表征对于了解催化剂结构和组成在预处理、诱导期和反应条件下以及再生过程中所发生的变化是至关重要的。催化反应机理的知识、特别是结构、动态学和沿催化反应途径中生成的反应中间物的能量学可为开发新催化剂和改良现有催化剂提供更深刻的认识。原位谱学观察又是阐明反应机理、分子与催化剂相互作用的动态学和中间物结构的有效技术。这些研究还可以提供有关催化剂和底物相互作用及有关活化势垒的热力学方面信息。反应机理和动力学的研究,特别是对催化反应中间物的原位观察,对发展催化科学是非常必要的。因为这样的研究结果提供了催化作用的全面知识,并有助于阐明催化剂结构和功能的关系。高真空系统由玻璃四级扩散泵、真空泵、精密真空表、电离规、集气瓶、球形安瓶、制备瓶、可伐、真空活塞等组成。该系统的高真空是通过一台优质低噪声的机械泵和一台玻璃四级扩散泵组成的机组而获得。原位红外吸收池由石英制成,分样品台和真空密封窗口两部分。样品台带有加热组件、热电偶、冷却系统和气体引入系统;真空密封窗口由冷却系统和CaF2窗片组成。该吸收池采用透射模式进行红外光谱表征,可对样品进行焙烧、流动氧化还原、抽空脱气、吸附反应等处理过程,可随时移入或移出到红外光谱仪的光路中,也可利用配备的延长管路进行原位表征实验。样品的加热采用程序升温方法控制温度,温度可达450℃。标准配置的吸收池窗口材料为CaF2,工作区间为4000—1000cm-1,也可按用户需要配置其他窗口材料。表1 红外窗口材料的性质材料使用范围cm-1反射损失*(1000cm-1)溶解度 g/100ml@20oC相对价格物理性质NaCl5000至6257.5%401.0溶于水,硬但易抛光和切割,潮解慢KBr5000至4008.5%701.2溶于水,较软但易抛光和切割,潮解慢,价格高,范围宽CsI5000至18011.5%807.8溶于水,软且易划伤,不能切割,潮解慢CaF25000至10005.5%难溶3.5难溶于水,耐酸碱,不潮解,忌用于铵盐溶液BaF25000至7507.5%不溶6.2类似于CaF2,对热和机械振动敏感SrF25000至8506%不溶5.1类似于CaF2,对热和机械振动敏感AgCl5000至45019.5%不溶6.6不溶于水但溶于酸和NH4Cl溶液,可延展,长期暴露于紫外光变暗,腐蚀金属及合金AgBr5000至28025%难溶难溶于水,软且易划伤,冷变形长期暴露于紫外光变暗KRS-55000至25028%0.19.1微溶水,溶于碱但不溶于酸, 软且易划伤,冷变形,剧毒Infrasil(SiO2)5000至2850NA不溶不溶于水,溶于HF溶液,微溶于碱难切割Poly-ethylene625至10NA不溶1.6不溶于水,耐溶剂,软易溶胀,难清洗,可压片*两个面上的反射损失, NA 不透明. 玻璃高真空系统部分组成及说明请参阅图1所示,本玻璃高真空实验测试系统,主要应用红外光谱催化剂原位表征、催化剂表面吸附物种和催化剂表征方面(探针分子的红外光谱)以及反应动态学方面的研究。该系统包括由机械真空泵A,真空波纹管B,可伐KF接头C,缓冲球D,组成一级真空泵,用于抽取低真空段,该部分真空可以抽取到1.0Pa;玻璃扩散泵E,用于提升真空度,提升真空度到10-2-10-3Pa,此为二级真空泵,液氮冷阱F,用于冷却系统中杂质气体,也有利于帮助提高真空度;真空规管G和精密真空表J,分别用于测量系统的高真空度及低真空度;玻璃球瓶H、I为储气瓶,用于储存备用纯化好的气体;玻璃管P为高真空部,为工作玻璃管,为该系统的核心部分;玻璃管Q为低真空部,用于连接测试样品池M,进气接口L,为工作管P服务,并实现高低真空的转换;玻璃制备瓶K,用于气体的纯化与制备;制备安瓶N,用于液体的纯化与制备;该系统全部采用玻璃真空阀门,更好的保证了气密性,02,03为三通玻璃真空阀门(详图2),01、04、05、06、07、08、09、10、11为二通玻璃真空阀门(详图3)。本实用新型中所采用的管路均为玻璃管路,所采用的阀门均为玻璃高真空阀门,真空阀门可以保证系统使用过程中不会产生漏气或缓慢渗漏的情形。图1-C中不锈钢管与玻璃管路采用可伐(Kovar)连接。
    留言咨询
  • 同步热分析将热重分析TG与差热分析DTA或差示扫描量热DSC结合为一体,在同一次测量中利用同一样品可同步得到TG与DTA或DSC的信息。DSC:熔融、结晶、相变、反应温度与反应热、燃烧热、比热… TG:热稳定性、分解、氧化还原、吸附解吸、游离水与结晶水含量、成份比例计算等JH-STA应该领域仪器参数仪器配置JH-STA150技术参数内容数量(台)温度范围室温~1150℃ 主机一台温度分辨率0.1℃光盘一张温度波动±0.1℃电源线一根升温速率1~80℃/min数据线两根温控方式升温、恒温、降温样品坩埚一百只冷却时间:15min (1000℃… 100℃)10A保险丝五只天平测量范围1mg~2g ,可扩展至30g说明书一份解析度1μg保修单一份恒温时间0~300min 任意设定合格证一份显示方式24bit色,7寸 LCD触摸屏显示气氛惰性、氧化性、还原性、静态、动态气氛装置内置气体流量计,包含两路气体切换和流量大小控制软件智能软件可自动记录TG曲线进行数据处理、打印实验报表数据接口标准USB接口电源AC220V 50Hz部分高校合作客户河北工业大学燕山大学西华大学华南理工大学河海大学南京师范大学东南大学南京航空航天大学南京师范大学云南师范大学中国电子科技大学等河北工业大学 云南师范大学物电学院 南京师范大学塑胶企业部分合作客户 福建恒杰管业有限公司亚通塑胶(重庆)有限公司山东曲阜东宏实业有限公司顺明管道(南京)有限公司山西新超管业有限公司 山东华忠(青岛)环境科技有限公司山东龙口南山集团 吉林松江塑料管道有限公司宁波安信德亿管业成都云龙电缆材料有限公司湖北拓普聚合体科技有限公司 泉州兴源塑料有限公司 山东巨兴塑业有限公司江苏华新泛亚有限公司
    留言咨询
  • Setline STA/STA+同步热分析仪(室温至1100 °C) 仪器简介法国凯璞科技集团总部位于法国里昂,有近60年热分析仪器的研发和生产历史,其产品在高温、超高温热分析领域和量热领域拥有众多应用。Setline STA/STA+系列同步热分析产品是其旗下的首台合资产品。2018年在中国区进行全球首发,该系列产品包括差示扫描量热仪(DSC)和同步热分析仪(STA)两种系列的四款产品。全新Setline平台倾注了中、法、瑞研发团队共同心血,采用欧洲研发、全球采购,本土生产的全球化协作方式,可为用户带来前所未有的卓越产品,灵活定制的服务与全方位的售前售后服务体验。Setline STA无论从生产工艺,原材料把控,软件匹配,及仪器性能指标完全等同于原厂水平,在成本大大降低的条件下,真正实现了从工艺水平,技术手段和性能表现上完全消除中国制造和欧美产品的代差。Setline系列作为新一代通用型DSC/STA,开创了高端热分析仪国产化新纪元!Setline系列产品主要聚焦高校、科研院所、企业技术研发、质检中心等细分市场,为国内科研及生产注入新的活力。产品优势:法国塞塔拉姆热分析仪器在中国投资建厂,为国内第yi家热分析仪器合资品牌,全新Setline平台倾注了中、法、瑞研发团队共同心血,新一代同步热分析仪(STA)开创了精密热分析仪国产化新纪元!Setline系列产品聚焦高校、科研院所、企业研发/质检中心等细分市场核心部件全部法国进口(加热体、传感器、热电偶、电路板、软件),国内组装调试合资产品亮点:性价比高——进口品质,国产价格;选择灵活——可测试、可租赁、可购买;服务快捷——售后及时,配件充足!Setline 系列热分析仪器由中、法、瑞三国运营团队研发生产 国际品牌,欧盟品质--法国塞塔拉姆品牌,深耕专业领域60年 合资生产,售后及时--价格优势,24小时响应 皮实耐用,维护简便--正常寿命10年以上,传感器、天平模块、炉体均可独立更换 应用广泛,适合国标--适用于塑料橡胶等高分子行业 软件友好,功能全面--相变温度、熔融温度、质量变换、失重百分比、热重微shang 使用方便l Setline STA/STA +操作简便,可用于各个教育及QC等应用领域;l 他采用合理的设计,坚固耐用,可获得稳定的信号,进行精确可靠的测量。l DSC传感器技术确保了及佳的数据品质、保证了实验数据的重复性和可靠性。l Setline设计紧凑,功能强大,节省空间;l 专注于核心需求的配件确保可快速掌握和易用性;l Setline(STA+)配置自动进样器,可处理多个实验。 维护简单l Setline专为保证连续使用条件下的耐用性而打造;l 通过简化维护过程以及可根据需要单独更换部分零部件,大大降低使用成本;l Setline的技术和应用支持可提供快速、专业的帮助。l 瑞士Calisto 2.0 专业热分析软件确保仪器的操作直观且便捷。 功能强大Calisto可处理来自任何仪器或品牌的任何的热分析数据,适用于所有Setaram仪器,并由两个独立部分组成:l CALISTO数据采集软件致力于Setline STA/STA+的控制和数据采集l CALISTO数据处理软件用于Setline STA/STA+的数据处理 ■技术特点TG/DSC/DTA 同步传感器Setline STA/STA +的TG/DSC/DTA同步传感器采用热流型平板式设计,确保在全温区范围(室温~1100℃)内均能保持超高灵敏度。 高精度光电天平全部采用法国SETARAM引以为傲的高精度光电天平技术,传承其强大的技术基因,天平分辨率可达0.02ug,能提供极高的灵敏度和可靠性。 灵活可变坩埚与法国总部同步,SETARAM中国可根据不同应用需求提供多种类样品坩埚(铝、三氧化二铝、铂金、镀金、不锈钢高压等材质)。瑞士Calisto 2.0 专业热分析软件配合Calisto软件,Setline STA和STA +不仅操作简单,而且功能强大。Calisto可处理来自任何仪器或品牌的任何的热分析数据,适用于所有Setaram仪器,并由两个独立部分组成:l CALISTO数据采集软件致力于Setline STA/STA+的控制和数据采集,包括直观的实验程序设置,可以保存并重新应用于其它样品测试。l CALISTO数据处理软件用于Setline STA/STA+的数据处理,包括: ---- 强大的热效应处理功能(单个和多个质量变化,剩余质量,DTG,扣除空白,DSC积分等) -- 具有用户权限管理选项的数据完整性功能,数据修改可追溯及可安全访问等; -- 根据需求,使用用户记录的宏自动处理数据; -- 可呈现影响zui大的数据; -- 直接导出为图形或电子表格格式。 技术参数 SETLINE STASETLINE STA+系统结构■ 顶部装样,垂直式天平系统,无辐射屏设计优化; ■ 优化气流状况,污染小,易于操作; ■ 炉体采用水冷炉衬方式,可提供精确控温模式;■ 可在多种动、静态气氛下进行测量; ■ 可配置多种不同温度范围、不同特性的可自由更换的传感器; ■ 可配置多种不同类型的坩埚,适应不同的样品特性。温度范围(℃)室温~1100程序升温速率(℃/min)0.01~50控温模式程控升温/降温/恒温/阶梯升温炉体冷却方式水冷炉衬无尘循环冷却气体切换全自动软件编程切换热重量程(mg)±200mg/±1000mg热重分辨率(ug)0.02ug/0.2ugDSC分辨率(uW)1uWDSC热焓测量精度±1%自动进样器 -49 个 (样品或参比)仪器尺寸 (高-宽-深)(mm)/(in)600 (闭合) 或800 (升起) - 400 - 500 / 23.6 (闭合) 或 31.5 (升起) - 15.7 - 19.7600 (闭合) 或 800 (升起) - 500 - 650 / 23.6 (闭合) 或 31.5 (升起) - 19.7 - 25.6电源230V - 50/60Hz 应用领域Setline STA和STA+的简单性和强大功能使其成为热分析的shou选仪器, Setline STA 和 STA + 主要用于测量:l 大多数材料的热稳定性,热老化,分解- 聚合物,弹性体,药物,生物材料,有机物如煤、油、润滑剂等l 热效应研究:- 热解,燃烧- 脱附- 脱水、脱羟基l 组分分析:- 灰分、碳、填料、添加剂含量- 水分、溶剂含量 应用案例橡胶样品的组分分析分析不同质量的橡胶样品的组分。在惰性气体流(氮气)下将样品分两步加热至700℃,冷却至400℃并重新加热至900℃,并将气氛切换为空气。TG曲线的两个质量损失对应于增塑剂和弹性体(i)和炭黑(ii)的分解。实验结束后的剩余质量对应于橡胶(iii)的灰分含量。根据测试结果,(i)在57.7和67.7%之间变化,(ii)在4.5和5.8%之间变化,以及(iii)在19.9和29.6%之间变化。由于预先录制的宏,可以自动处理12个质量损失。药物的游离水含量测定使用质量变化信号测定三个不同批次药物的游离水含量。吸热热流信号可以确定自由水释放的温度范围。由于预先录制的宏,可以自动处理质量损失和吸热峰。草酸钙一水合物(CaC2O4,H2O)样品测量通过质量损失(TG)和热流(DSC)测量草酸钙一水合物(CaC2O4,H2O)样品。从低温度升至高温度:脱水、形成碳酸钙和形成氧化钙。这个简单的案例突出了热重分析在定量测量方面的应用。这也展示了STA方法在辨别材料的热分解过程以及检测吸热或放热效应的用途。 分析合成橡胶的组分分析合成橡胶的组分。在惰性气氛(N2)下将样品分两步加热至600℃后冷却至400℃,且将气氛切换为空气,保温一段时间后样品加热至800°C。TG曲线有三个质量损失对应于增塑剂的分解:油和蜡含量(3.6%),弹性体含量(57.9%)和炭黑含量(38.7%)。实验结束时的剩余质量对应于橡胶的灰分含量,但在本案例中不显示(0.5%)。技术服务保修服务:保修与回访仪器制造商对所售产品从安装验收之日起整机保修一年。质保期内,仪器制造商委派技术工程师负责为买方的设备提供免费维护、保养和免费更换非人为损坏的或有缺陷的零部件,并定期对买方进行回访,设备质保期后仪器制造商对设备提供终身优惠的技术支持。技术工程师每年至少回访买方1次(期限不少于10年,形式可采取现场或电话等),了解仪器使用情况并进行指导。技术支持:服务支持与咨询定期提供仪器技术通讯,每一年举办技术讲座及用户技术交流活动;在国内设立应用实验室,并协助用户解决测试技术方面的问题,根据用户需要提供有针对性的信息。仪器制造商配置专职维修工程师。当设备发生故障或不能正常运转时,制造商提供24小时电话咨询服务。安装、调试保证:收到用户安装仪器通知后,二周之内派遣工程师前往用户现场免费安装调试仪器。培训:派遣工程师负责用户现场的技术培训,培训2人及以上直至能完全独立操作,内容包括基本操作、仪器的基本维护及仪器的简单故障维修等。经过系统培训后,实验操作人员能够完成独立操作运行仪器。培训内容SetlineSTA中国境内安装与培训,约1个工作日。STA整机及零部件开箱清点、安装及标准样品测试与数据分析;STA原理讲解,维护培训,仪器应用,实验技巧及注意事项。国内部分用户:中国石油大学北京交通大学山东科技大学青岛科技大学安全工程学院河北科技大学山东胜邦塑料有限公司河北工业大学河北兰升生物制药科技有限公司厦门华侨大学安徽铸脊新材料科技有限公司华南师范大学东北大学鞍山科技大学民康百草制药有限公司枣庄学院滨州学院临沂大学辽宁科技大学解放军物资装备部玲珑轮胎清华大学土木工程系中国科技大学济南大学北京科技大学大连科天新材料有限公司中国中医药大学浙江恒亿达复合材料有限公司中国航天标准化研究所中科院大连化物所江苏先诺新材料科技有限公司中海油油田服务有限公司中国石油天然气股份有限公司石油化工研究院…登录官网了解更多塞塔拉姆产品和咨询信息
    留言咨询
  • AMI-300 系列全自动程序升温化学吸附仪AMI-300化学吸附分析仪是新一代全自动程序升温化学吸附仪,可执行动态程序升温催化剂表征实验(TPR,TPO,TPD,脉冲化学吸附等);测定金属分散度、相对活性、吸附强度,测试时间仅为传统容积法的1/3。根据您的需要,可使用标配TCD检测器进行气体分析,或者与质谱仪或其他检测器 ( FID, FTIR, GC 等) 。产品特点:多路进气 可选配四个高精度质量流量控制器(MFC), 扩展至12个进气口。温度范围 实验温度可至1200℃,全范围升温速率均可达1-50℃/min,可选低温组件温度可低至-130℃峰扩散小 1/16英寸316不锈钢管线,保证较小的死体积,有利千提高信号 响应速率, 减少峰的扩散。内置饱和蒸汽发生器 用于产生带有饱和液体蒸汽的气体,饱和蒸蒸汽发生器的温度可控。样品装卸方便 灵活可移动的贝壳式加热炉多种规格的样品管,适用于不同样品尺寸、剂量满足用户的测试需求分析时间短 自动控制的空气冷却组件使得降温更迅速,有效缩短实验时间多路控温 可自由切换加热炉或样品床层的温度来控制仪器测试时的升温速率,并实时记录加热炉和样品床层的温度用于数据分析安全系数高 提供多方位温度检测,超温保护系统,TCD流量监控防干烧系统,前置应急开关等选项都提供更优的安全选择。 测量精确 配置4灯丝高精度热导池检测器(TCD ) , 以及不同量程的定量环(Loop)。定量可选择自动或者手动脉,以最大限度的满足灵敏性和兼容性灵活的用户操作界面 基于Windows操作系统软件,程序设置实验过程,控制仪器功能和数据处理。操作自有、全自动测试 全自动运行实验,电脑自 动采集和储存数据。高级用户模式下仪器设置窗口完全开放,实现用户高度自由化操作。可连接质谱(MS)或气体检测器 支持外接多种检测器,提供串联&并联连接方式,可将质谱(MS)数据采集嵌入AMI软件中,实现同一文件导出TCD&MS数据无蒸汽凝结和吸附滞留 仪器内所有管线和阀均可控温,以防止蒸汽的凝结和吸附滞留现象无需另购气体混合器 内置气体混合器,可提供忍任意、均一混合气体。该气体混合器也适用于全自动多点BET比表面积分析化学通用性和高灵敏性 可根据不同实验需求选择合适的密封材料和TCD灯丝性能参数:型号AMI-300典型样品0.1-1.0克温度范围室温°C——1200°C低温选件-130°C——1200°C升温速率1°C/min——50°C/min标准操作压力(TPX units)大气压 可选压力范围(高压)30bar/100bar气体输入口(低压)4路载气,4路处理气,2路混气气体流速5——50cm3/min(标准模式)样品管类型(低压)石英U型管,泡形管,直壁管样品管类型(高压)316不锈钢反应管TCD检测器两种材料可选(钨;金/钨)管路材质316不锈钢,1/6英寸密封圈可选Viton,Buna-N,Kalrez等尺寸宽56cm 高60cm 深61cm重量55Kg电源220—240V,50/60Hz典型应用:研究催化剂的表面活性位及数量、强度 、活性 、稳定性 、选择性和失活对于工业反应过程非常重要。在催化、化学品和石化行业、比如精细化学品、燃料、肥料、尾气排放控制器、电池、燃料电池和储能材料的研制过程中,表面活性 对材料起着至关重要的作用。多相催化剂也广泛应用于催化裂解和重整反应,加氢反应(加氢脱硫,加氢脱氮,加氢脱氧,加氢脱金属),选择性氧化和还原反应,汽车尾气污染治理、烃的异构化、费托工艺、水煤气变换以及其他许多重要的工业反应。
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制