当前位置: 仪器信息网 > 行业主题 > >

燃料浓度

仪器信息网燃料浓度专题为您整合燃料浓度相关的最新文章,在燃料浓度专题,您不仅可以免费浏览燃料浓度的资讯, 同时您还可以浏览燃料浓度的相关资料、解决方案,参与社区燃料浓度话题讨论。

燃料浓度相关的论坛

  • 测有机染料浓度

    [b]紫外光谱测有机染料浓度,特征吸收波长并不是最高峰,该选择哪个吸光度进行计算呢?[/b][table=100%][tr][td]不知是不是误差所致,在用紫外光谱测有机染料浓度的时候,特征吸收波长并不是最高峰。 例如文献中报道某物质A的特征吸收波长是400 nm,而紫外图像中却显示最高峰对应的波长为401 nm,那在计算该物质浓度时,是应该用400 nm处的吸光度进行计算,还是401 nm处的吸光度呢? 请求大神指教~[/td][/tr][/table]

  • 染料浓度的测定方法

    1 染料浓度的测定方法 目前,染料浓度的测定方法主要有分光光度法、液相色谱法和荧光分光光度法等 。液相色谱法在测定混合染料浓度时,需要对样品进行分离,测定耗时较长,主要用于离线分析 ;荧光分光光度法要求待测组分有一定的荧光量子产率,且溶剂等共存组分对染液的荧光峰位置及强度影响很大,一般只用于极低浓度的测定 ;而分光光度法则可以从染浴中连续或定时采样,通过分光光度计测定染浴吸光度的变化,可实现对染色过程的实时监测,具有灵敏度高、选择性较好、测定快速、仪器价格较低、使用面广等特点 。用于浓度分析的分光光度法主要有单波长、双波长、三波长、导数分光光度法等。2 分光光度法在线监测的方法 用分光光度计进行在线监测必须选用和配置合适的仪器装置。按分析原理和可选仪器来看,以下几种方法较可行,可以适应不同的需求。但经试验后发现这些装置也存在一些缺点,尚需进行改进。2.1 流动池分光光度法2.1.1 常规分光光度计 该方法非常简便,将普通分光光度计中的比色皿改为流动池比色皿(见图1),并配置辅助装置,使染液连续不断地进入比色皿,实现染液的实时检测。 染液从染浴通过毛细管导人冷却器降温后,进人分光光度计的流动池比色皿中。电脑通过分光光度计的数据接口,定时读取染液的吸光度数值,实现在线染料浓度分析。 此方法对单组分染料浓度在线测定有较好的效果【1】 ,在实验室中可以实现20 s单波长的分辨率,可满足大部分染色过程的在线监测。但是,该装置存在浓度测试范围窄、多波长监测速率慢等问题,一般只用于实验室,不适合大生产应用。2.1.2 流动注射分析仪 分光光度法的流动注射分析,其测试原理同上,只是在冷却器后采用一套自动定量加注/混合装置辅助分析溶液(见图3)。在染液测试中,该部分主要起稀释作用。 该方法的特点是染液可先经过定量稀释,再进入分光光度计测定吸光度,从而可以测试浓度较高的染液,如轧染的高浓度染液。但是,由于测试的染液经过稀释,不能再返回染浴中,因此会对浸染工艺的染料用量和浴比造成影响。另外,稀释混合

  • 染浴中染料液浓度的在线实时监测

    对染浴上染过程中染料浓度进行在线(实时)监测, 可以了解染料的配伍性、匀染剂的作用效果、pH 值和温度的影响以及皂洗效果等。对这些基础数据的积累和分析, 可使染色工艺从经验控制转向工艺参数精细化和数字化控制, 使染色实时可控和染色结果精准。近年来, 我国一些生产印染控制设备的企业, 如常州宏大科技集团等开发了印染生产中pH 值和织物含湿率等在线测试系统, 但染料浓度在线监测设备仍为空白。现有的在线自控染色设备主要针对轧染中轧液率的实时监测与控制, 还不能监测染液中染料浓度的变化, 这也是多年来纺织品精准染色难有突破的主要原因之一。只有掌握染料浓度在染色时的实时变化, 才能制定更合理的工作流程和配方。目前国际上染液浓度在线监测技术也处于起步阶段, 在生产中的应用基本空白, 还有很多技术问题需要解决, 这将是染整工程研究的一个重要方向。浸入式光纤光谱探测器近年来, 由于光纤技术和光电检测技术的发展, 出现了以光纤探头和CCD 阵列检测器结构的光纤光谱仪。这种新型的分光光度计将采样探头直接插入染浴中, 光从探头前侧的镜面反射到CCD 阵列检测器, 从而实时监测染浴中吸光度的变化情况, 这给在线监测技术的应用带来了强有力的手段。图4是光纤光谱仪检测装置示意。 http://www.gzbiaoqi.com/UploadFiles/5589201116403_1.gif光纤光谱仪能够实时测定染浴中染料浓度, 而且能够耐受高温高压染色条件和酸碱介质, 因而是在线监测技术的重要发展方向之一。

  • 【原创】一个5年半前提出的问题——染缸内染料浓度

    [quote]原文由 [B]supertz[/B] 发表:我是 布批印染厂的,染完一批布后,染缸内染料浓度肯定有所不同,因此我想请教,何种仪器能测定染料浓度, 及 方法简述 。。 谢谢[/quote]原帖: http://www.instrument.com.cn/bbs/shtml/20030818/12430/[size=4]这是5年半前的一个帖子,发帖的版友已经4年没来过了。他提出的问题“染完一批布后,染缸内染料浓度”测试,不论在当时或现在,检测手段很多,可以说是一个普通的问题。但是,由于染缸内染料浓度是快速变化的,如果要想一个有效的在线快速监测的方法,却也是一个棘手的难题。现在研究符合这种要求的方法是一种应用基础型研究工作,如果这个问题能解决,将对印染行业的染色过程检测和控制产生重要推动作用。希望各位网友提些思路和建设性的想法,也希望上述版友还能回来看到进展。[/size]

  • 不同浓度染料分子的拉曼峰强度一样,为什么

    [color=#444444]用激光共焦拉曼光谱测不同浓度的对巯基苯甲酸乙醇溶液,浓度为10nM 1nM 0.1nM 0.01nM 不仅能测出来特征峰 且不同浓度的对巯基苯甲酸 测出来的信号强度一样 这是为什么 [/color][color=#444444]而且我的金纳米星基底对染料分子没有任何增强作用[/color]

  • 生物质燃料参照哪个标准?

    《锅炉大气污染物排放标准》里面有规定,一般烧秸秆、锯末之类生物质的锅炉排放浓度都可以参照该标准执行,但是生物质成型材料的定义是:"利用新技术及专用设备将农作物秸杆、木屑、锯末、花生壳、玉米芯、稻草、稻壳、麦秸麦糠、树枝叶、干草等压缩碳化成型的现代化清洁燃料",它和直接燃烧的秸秆、锯末之类生物质应该是不一样的。而根据锅炉大气污染物排放标准》里面有规定,一般烧秸秆、锯末之类生物质的锅炉排放浓度和煤是一样的。而生物质成型材料应该比煤、重油、柴油之类的燃料应该更干净的,所以,不知道是否执行里面燃气的标准,另外高度也不知道是15米就可以了,还是和燃煤执行的高度一样?

  • 【资料】在线分析仪…电化学篇…燃料电池式分析仪(收集)

    虽然无人说好,我想我还是将我的培训资料发全了,我发的这些内容,基本上就是我的分析室人员培训基本理论,作为一个基本合格分析工,这些东西还是要掌握的。希望这些书上的东西,对我们这行的朋友有用!第三节:燃料电池式氧分析仪燃料电池是指原电池中的一种类型。原电池式氧分析仪中的电化学反应可以自发地进行,不需要外部供电,其综合反应是气样中的氧和阳极发生氧化反应,反应的结果生成阳极氧化物,这种反应类似于氧的燃料反应,所以这类原电池也称为“燃料电池”,以便与其他类型的原电池相区别,安装有这类原电池的分析仪,我们称之为燃料电池分析仪。由于阳极在反应中不断消耗,因而电池需要定期更换。燃料电池式氧分析仪,既可以测量微量氧,也可以测量常量氧。若需要测量常量氧,其测量测量精度和长期使用的稳定性肯定不如顺磁氧效果好,且电池的寿命因与氧浓度有关,所以测量常量氧,其寿命也较短。因此,它测量常量只适合一般要求不高的场合。而测量微量氧,则是这类仪器的优势所在,它测量微量氧的下限为PPM级,而顺磁氧为:0.1%(1000PPM)O2,精度高的顺磁氧也只能达到0.01%(100PPM)O2。过去为,燃料电池的电解质均采用电解液,近20年来,由于固体(糊状)电解质应用于燃料电池,为了便于区分,我们将者称之为液体燃料电池,后者称之为固体燃料电池。两者相比,固体燃料电池比液体燃料电池有一定的优越性,但固体能否取代液体,尚难预料!在液体燃料电池中,我们根据燃料电池的性质,又将液体燃料电池分为碱性燃料电池和酸性燃料电池。

  • 荧光染料选购原则

    1. 根据现有滤色块或激光器进行选择,或者根据新买的染料再重新配一个滤色块;2. 多色荧光成像时,要尽量避免染料之间的窜色,同时还要避开样品自发荧光的影响;3. 染料的物理化学性质,优先考虑稳定性和抗淬灭性强的染料,离子荧光染料尽量选择Km值大的染料,对细胞内的离子浓度缓冲作用小;4. 尽量选择负载后不会改变细胞的生理生化状态,或对细胞无毒副作用的染料;5. 根据自己的实验需求是染活细胞还是固定细胞,选择相对应的染料,有时还要考虑染料能否经受醛类物质的处理;6. 包装形式:很多染料厂商会提供粉末和溶液两种形式,尽量选择粉末形式的,粉末的稳定性和保质期一般要比溶液长很多,而且尽量选择多管分装的粉末。7. 厂商选择:如果经费充足的话就首选MP的吧,其次再考虑Sigma,Roche等其他公司,国产知道的有碧云天,凯基等等。

  • 燃料电池及在大连化物所的发展

    燃料电池及在大连化物所的发展

    燃料电池及在大连化物所的发展 衣宝廉 张华民 明平文 (中国科学院大连化学物理研究所 大连 116023) Fuel Cells and the Activities in Dalian Institute of Chemical Physics, CAS Baolian YI. Huamin ZHANG. Pingwen MING (Dalian Institute of Chemical Physics, CAS, Dalian 116023 P.R.China) Abstract The principles, types, and status of fuel cell are introduced in brief. Dalian Institue of Chemical Physics (DICP) began the fuel cell research for Alkaline Fuel Cell (AFC) from 1960s. In 9th 5-year Plan, DICP acted as a leadship member in National Key Project, "Fuel Cell Technology". A set of technology was taken out independently. Nowadays DICP focus on Proton Exchange Membrane Fuel Cell (PEMFC), Solid Oxide Fuel Cell (SOFC), Molten Carbonate Fuel Cell (MCFC) and Direct Methanol Fuel Cell (DMFC). Recently a new corp. named Dalian Sunrise Power Co., Ltd. was founded for the commercialization of fuel cells, especially for that of PEMFC. DICP is the main shareholder of Sunrise Power for its fuel cell technology.    一. 原理,分类与技术现状   1. 原理   燃料电池(FC)是一种等温进行、直接将储存在燃料和氧化剂中的化学能高效(50-70%),环境友好地转化为电能的发电装置[1]。它的发电原理与化学电源一样,电极提供电子转移的场所,阳极催化燃料如氢的氧化过程,阴极催化氧化剂如氧等的还原过程;导电离子在将阴阳极分开的电解质内迁移,电子通过外电路作功并构成电的回路。但是FC的工作方式又与常规的化学电源不同,而更类似于汽油、柴油发电机。它的燃料和氧化剂不是储存在电池内,而是储存在电池外的储罐中。当电池发电时,要连续不断的向电池内送入燃料和氧化剂,排出反应产物,同时也要排除一定的废热,以维持电池工作温度的恒定。FC本身只决定输出功率的大小其储存能量则由储存在储罐内的燃料与氧化剂的量决定。 图1为石棉膜型氢氧燃料电池单池(single cell)的结构和工作原理图。[img]http://ng1.17img.cn/bbsfiles/images/2006/01/200601010112_12590_1604910_3.jpg[/img]   氢气在阳极与碱中的OH 在电催化剂的作用下,发生氧化反应生成水和电子:   H2 + 2 OH H2O + 2e- 0= -0.828V 电子通过外电路到达阴极,在阴极电催化剂的作用下,参与氧的还原反应:   O2 + H2O +2e- 2OH 0= 0.401V 生成的OH 通过饱浸碱液的多孔石棉膜迁移到氢电极。   为保持电池连续工作,除需与电池消耗氢、氧气等速地供应氢、氧气外,还需连续、等速地从阳极(氢极)排出电池反应生成的水,以维持电解液碱浓度的恒定;排除电池反应的废热以维持电池工作温度的恒定。     图2为燃料电池单池伏安特性曲线。   图中η0称为开路极化,即当电池无电流输出时的电池电压与可逆电势的差值,其产生原因是氧的电化学还原交换电流密度太低,从而产生混合电位。   ηr为活化极化,它为电极上电化学反应的推动力,ηD为浓差极化,它为电极内传质过程的推动力。ηΩ为电池内阻引起的欧姆极化,它包括隔膜电阻、电极电阻与各种接触电阻,伏安曲线的直线部分的斜率由它决定,电池电流密度的工作区间就选在此段,通称这一段斜率为电池的动态内阻。

  • 致癌的纺织品染料:偶氮染料

    致癌的纺织品染料:偶氮染料  纺织服装在使用了含有禁用芳香胺的偶氮染料之后,在与人体的长期接触中可能被皮肤吸收,并在人体内扩散。这些染料在人体正常代谢所发生的生化反应条件下,可能发生还原反应,进而分解出致癌芳香胺。致癌芳香胺经过活化作用,改变人体的DNA的结构,最终引起人体病变和诱发癌症。  1994年7月,德国政府首次以立法的形式,禁止生产、使用和销售可还原出致癌芳香胺的偶氮染料以及使用这些染料的产品,随后,荷兰政府和奥地利政府也发布了相应的法令。我国于2003年发布了GB18401-2003《国家纺织产品基本安全技术规范》,正式将禁用偶氮染料列入其中。目前,禁用偶氮染料的监控已成为国际纺织品服装贸易中最重要的品质控制项目之一,也是生态纺织品最基本的质量指标之一。  偶氮染料的发展历史  早在l834年.Mitseherlich就用氢氧化钾与硝基苯在乙醇溶液中作用,制备了偶氮苯。但是偶氮染料的产生并使用还是在1858年之后,经过重氮化反应制备出了偶氮染料。  1863年,首例商品化偶氮染料Bismark Brown问世之后.偶氮染料开始了工业化生产。  1884年,刚果红的合成,可以说是偶氮染料发展史上的一个里程碑。第一,用刚果红作为染料,可以不用加入触媒,印染工艺被大大简化;第二,这类偶氮染料可以通过它的不同结构得到不同的颜色;第三,它的合成工艺更为简单,成本更加低廉,染色的性能也更为优越。  偶氮染料的致癌问题  20世纪30年代,日本人Yoshida发现溶剂黄可以引起老鼠的肝细胞癌变后.人们才意识到偶氮染料及其中间体在生产与使用过程中的危险性。实际上,1905年德国卫生部门已经从染料品红、金胺和萘胺中确认了一些芳香胺的致癌作用。随着染料化工的高速发展,这种情况进一步恶化。据不完全统计,到20世纪60年代,世界各国因从事染料化工工作而患上膀胱癌的病例超过了3000例。  自20世纪70年代开始.世界上主要的染料制造商自发地签订议,停止在市场上销售联苯胺及以联苯胺为母体的偶氮染料。德国政府在1958年成立了MAK(Maximum Arbeitplaz Konzentrations已知对人体健康构成威胁的化学物质在工作场所的最大允许浓度)委员会,从此开始每年发l份MAK表。根据对人体致癌性的不同,MAK表分为三个不同的级别:MAK(Ⅲ)Al:按经验,这类物质可引起人类恶性肿瘤。MAK(Ⅲ)A2:迄今为止,已得到这类物质引起癌症的确切证明,但这些证明是通过模拟人类工作场所条件,对动物实验得到的。MAK(Ⅲ)A3:被怀疑极具潜在致癌倾向的物质,并急需进行进一步调研;并且指出用这些致癌芳香胺合成的偶氮染料受到人体肠道细菌以及偶氮还原酶的作用而易于发生偶氮还原裂解,重新释放出致癌芳香胺,从而产生致癌作用。  目前市场上大部分(约占60%)的合成染料是以偶氮化学为基础的。所渭致癌性问题,是人们经过长期研究和临床试验证明某些偶氮染料中可还原出的芳香胺对人体或动物有潜在的致癌性。纺织品上的偶氮染料在与皮肤的长期接触中,在某些特殊的条件下,特别是在染色牢度不佳时,会从纺织上转移到人的皮肤上。经人体的正常代谢过程,在分泌物的生物催化作用下发生分解还原,并释放出某些有致癌性的芳香胺,这些芳香胺被人体皮肤吸收后,在体内通过代谢作用而使细胞的脱氧核糖核酸(DNA)发生变化,具有潜在的致癌致敏性。  偶氮染料的分类  偶氮染料是指分子结构中含有偶氮基(-N=“N-)的染料,是品种最多、应用最广的一类合成染料。根据含有偶氮基的数目不同可分为:(1)单偶氮染料,如酸性大红G;(2)双偶氮染料,如直接大红4B;(3)多偶氯染料,如直接黑BN。根据溶解度的不同可分为:(1)可溶性偶氮染料,指一般能溶解在水中的染料;(2)不溶性偶氮染料,包括冰染染料和其他不溶于水的偶氮染料。  偶氮染料用于各种纤维的染色和印花,并用于皮革、纸张、肥皂、蜡烛、木材、麦秆、羽毛等的染色以及油漆、油墨、塑料、橡胶、食品等的着色。

  • 使用微燃料电池的微量氧分析仪如何控制准确度--即如何校准?

    公司使用微燃料电池的微量氧分析仪来监控气体中氧浓度,要求氧浓度小于0.5ppm(使用量程1-10ppm);但我们每次校正最小使用气体只能保证是氧浓度8ppm/+-1ppm;我接手后发现这个问题准备着手解决,发现想找到合适的氧浓度0.5ppm气体不容易喔。各位大虾有什么好建议啊?http://simg.instrument.com.cn/bbs/images/default/em09511.gif

  • 关于2003/03/EC蓝染料指令的问题

    各位大侠好,最近遇到一个客户咨询2003/03/EC蓝染料指令中关于“新增的偶氮染料不得投放市场或作为浓度质量高于0.1%的物质或制剂成分用于纺织品和皮革制品”中偶氮染料检测的问题,请问平时我们不都是只检测偶氮染料可能分解的那24种芳香胺吗?这个偶氮染料该怎么检测呢?0.1%是怎么控制呢?

  • 火焰原子吸收法测定燃料油中金属钙铁镁含量

    1 前言   回炼用燃料油中含有大量的钙、铁、镁等金属元素,燃料油在使用过程中金属元素对设备有一定的腐蚀,并且易形成大量盐类物质沉积在设备上,影响设备的使用效率和使用寿命,严重时将导致事故的发生。燃料油的采购途径比较广,各个厂家提供的燃料油中的金属含量各不相同,为了严格控制进入回炼装置的燃料油中金属含量,保证设备的正常使用,杜绝事故的发生,关键得保证采购的燃料油质量符合生产要求。因此,在燃料油进厂时金属元素的分析成了必测项目。   目前,燃料油中金属元素含量分析一般采用灰化法进行样品预处理,然后用四硼酸二锂、氟化锂熔解残留物,再酸化定容,用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法或电感耦合等离子电感发射光谱测定。由于对进厂燃料油样品主要控制钙、铁和镁等常见金属元素,且这三类金属元素均易溶解于盐酸,因此样品预处理直接用盐酸溶解,省去添加助溶剂,使得样品预处理速度加快,并且样品溶解完全,对分析结果没有影响。如按传统的处理方法,方法复杂,分析时间长,无法满足日常生产分析要求。为了能够满足日常生产分析要求,且能够准确、快速的测定出燃料油中金属元素含量,燃料油样品灰化后直接用1:1的盐酸溶液溶解,定容进行分析。并对灰化温度和灰化时间进行了大量的实验,摸索出燃料油灰化的最佳分析条件,利用加标回收实验表明此方法准确可靠。   2 实验部分   2.1 仪器设备   PE-AA700[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪   数显电热板   数显恒温烘箱   马弗炉   100ml石英烧杯、石英表面皿   2000ml玻璃烧杯   100ml玻璃容量瓶   玻璃移液管   电子天平   2.2 仪器参数   2.3 试剂   钙单元素标准溶液:1000ug/ml   铁单元素标准溶液:1000ug/ml   镁单元素标准溶液:1000ug/ml   盐酸(GR):1+1   二级水   2.4 燃料油性质   2.5 样品预处理   2.5.1 将100ml石英烧杯和石英表面皿放于2000ml玻璃烧杯中,加入1000ml1+1盐酸溶液放置于电热板上加热至微沸约30分钟,除去附着在石英烧杯内壁的金属物质。待冷却后用二级水冲洗干净放入恒温干燥箱中(105℃),烘干备用。   2.5.2 不同厂家的燃料油水分含量不一致,对于水分大的燃料油样品首先进行脱水处理,否则在燃烧过程中由于水分沸点较燃料油低,受热最先逸出,导致油品溅出,使得测量结果不准确。   2.5.3 称量约20g处理好的燃料油样品于100ml石英烧杯中,准确称量至0.0001g。每个样品称量两个做平行样,同时做空白实验,空白实验除了不加燃料油,其他操作同燃料油样品实验完全相同。将定量无灰滤纸对折两次呈扇形,撕去尖端滤纸,把撕下的滤纸放于石英烧杯中,将滤纸打开至漏斗形状倒扣在石英烧杯中,把石英烧杯置于电热板上,待油完全浸透滤纸后将滤纸引燃,使样品进行燃烧,燃烧过程中无需加热,待样品燃烧至不能再继续被点燃时打开电热板至400℃对样品进行加热,直至石英烧杯不再冒烟,灰化完全为止。将灰化完全的石英烧杯,放入升到一定温度的马弗炉门口边缘,直至石英烧杯不冒黑烟时盖上石英表面皿缓慢推至马弗炉加热区进行加热。加热至灰化完全时将石英烧杯取出,冷却,沿壁加入1+1的盐酸15ml,盖上石英表面皿,放置于电热板上加热,使石英烧杯内残留的灰分完全溶解,待石英烧杯内的液体蒸发至2-3ml时停止加热,将石英烧杯取下,用二级水冲洗石英表面皿,洗液收集在石英烧杯内,用二级水冲洗石英烧杯内壁,转移至100ml容量瓶中,定容至刻线。摇匀,待分析。具体的加热温度和加热时间由2.6中的实验给出。   2.6 灰化温度和灰化时间的选择   根据燃料油的性质将灰化温度设定为500℃、550℃、600℃、700℃、800℃进行试验,由于温度的不同样品灰化至完全需要的时间不同,对此进行了一系列实验,根据实验数据得出灰化温度设定为500℃时,灰化时间过长,影响分析速度。灰化温度为600℃时,灰化时间为2h,对于上述性质的燃料油,在此条件下样品中的金属元素分析数据稳定,分析速度快,能够满足生产分析要求。灰化温度设定为700℃以上时灰化至完全的时间缩短至1.5h,可以达到灰化完全的要求,但是由于在高温状态下, 样品极易产生元素损失, 且会形成酸不溶性混合物, 产生滞留损失。因此,对于此类燃料油选择600℃加热可满足分析要求,且不造成待测金属元素含量损失。   确定了最佳灰化温度,对灰化时间进行实验验证。在600℃条件下,对同一个燃料油样品进行2h、8h和16h的加热实验,测定结果一致,从而证明了延长加热时间对分析结果没有影响,因此,只要保证燃料油样品灰化完全,分析时间越短分析效率越高。通过实验验证,对比表2中燃料油的性质,综合考虑设定燃料油样品灰化加热温度为600℃、灰化加热时间为2h,即可满足分析要求。   2.7 火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析步骤   2.7.1 样品准备   将2.5.3中预处理的燃料油样品定容至100ml,摇匀,待分析。   2.7.2 开机准备   打开PE-AA700火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url],点击图标进入工作站,进行联机,打开通风设备后打开空气、乙炔。   2.7.3 标准工作曲线的绘制   用1000ug/ml的钙、铁、镁标准溶液进行稀释,根据样品中待测金属元素含量配制成不同浓度的标准溶液,进行标准工作曲线的绘制。钙标准工作曲线浓度:1.0ug/ml、2.0ug/ml、3.0ug/ml、4.0ug/ml、5.0ug/ml,铁标准工作曲线浓度:1.0ug/ml、2.0ug/ml、3.0ug/ml、4.0ug/ml、5.0ug/ml,镁标准工作曲线浓度:0.1ug/ml、0.2ug/ml、0.3ug/ml、0.4ug/ml、0.5ug/ml。将配制好的标准工作溶液吸入火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]中进行标准工作曲线的绘制。曲线的线性相关系数达到0.999以上,否则因为标准工作曲线线性低,影响分析结果的准确性,在燃料油样品分析过程中如果样品中待测金属元素含量超出标准工作曲线范围,则应对2.5.3中预处理好的样品进行稀释后再测定。保证样品测定值在标准工作曲线的线性范围内。   2.7.4 样品测定   将2.5.3中预处理的样品摇匀用2.7.3绘制的标准工作曲线进行样品测定,测定数据如下表3:   2.8 加标回收实验   为了验证燃料油样品在600℃加热2h灰化的过程中没有样品损失、未引入待测金属元素,对燃料油样品进行了加入标准溶液的回收实验,将一定体积的1000ug/ml标准溶液用移液管加入样品中,用相同的分析条件进行燃烧灰化,并用火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]进行样品测试,其中镁含量的加标回收定容至1000ml,为了防止测定值超出标准工作曲线范围。测试结果如表4:   通过加标回收实验得出样品加标回收率均高达98%以上,有效验证了本实验方法的稳定性和准确性。由于实验中采用的是石英烧杯,石英表面皿,其性质稳定,实验过程中仪器本身不引入待测金属元素误差,样品损失量小。   3 结论   采用定温灰化法预处理样品,灰化温度为600℃、加热时间为2h,用火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]法测定燃料油中金属元素钙、铁、镁,通过加标回收实验证明方法稳定性好,准确度高,适合分析燃料油中金属元素,可以满足日常生产分析要求。   4 注意   4.1 样品量控制在约20g左右,因为样品量太少不具有代表性,引入样品不均匀性的误差,样品量太大引起灰化困难或时间太长,势必引入新的误差并且增加了工作量;   4.2 由于瓷坩埚在高温下长期加热易损耗且易带入分析误差,本实验使用石英烧杯和石英表面皿,避免了传统烧灰使用瓷坩埚带入的误差;   4.3 样品在马弗炉内灰化时在石英烧杯上盖上石英表面皿,以免马弗炉顶部和内壁的灰尘掉进石英烧杯内,影响分析结果的准确性;   4.4 预灰化的石英烧杯放入马弗炉的中心加热区,因为靠近门口的位置达不到预设加热温度,使得在2h内灰化不完全,影响实验完成;   4.5 样品在用高温马弗炉灰化以前, 必须先在电热板上低温炭化至无烟( 预灰化);   4.6 如果样品发生变化,比如样品为蒽油或者液化重油,则在分析温度不变的情况下必须延长加热时间,否则灰化不完全,无法进行样品溶解进而进行下一步分析。   5 结束语   在日常分析工作中面对的样品具有复杂多样性,分析要求特殊性。因此,分析方法的改进与开发显得尤为重要,我们要在工作中不停的去发现、去创造新的分析方法,以满足日常的分析工作要求。

  • 【第三届原创】微量氧燃料电池的内部结构

    【第三届原创】微量氧燃料电池的内部结构

    [color=crimson][font=宋体]本文为[/font][/color][color=crimson][font=Arial]chengjingbao [/font][/color][color=crimson][font=宋体]原创作品,本作者是该作品唯一合法使用者,该作品暂不对外授权转载。[/font][/color][color=crimson][font=Arial][/font][/color][color=crimson][font=宋体]其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现的,均属侵权违法行为。[/font][/color]特别关照,还能用的千万不要模仿拆卸,否则,后果自负!!![img]http://ng1.17img.cn/bbsfiles/images/2010/07/201007161059_230982_1605035_3.jpg[/img]前期我发过燃料电池的系列介绍。第一为基本理论介绍;第二为仪器检测器(的判断与更换;第三就是就做了这个检测器内部结构介绍;我想有此类表的的人,看过这三类,对其操作、维护都会有很大帮助的。系列1:基本原理[url]http://www.instrument.com.cn/bbs/shtml/20081117/1589450/[/url]系列2:判断与处理[url]http://bbs.instrument.com.cn/shtml/20090914/2109563/[/url]一点解释:我们常用的燃料电池有许多型号,我有幸拆过其中的六种;综观其结构,本质性的区别都不大,特别是碱性渗透膜技术的燃料电池,不管是单孔、双孔的,其布局都与基本理论上介绍的差不多,只是在隔膜层布局上有些区别。其次,就是图片上反映不出来的电解液浓度和等级及布液量;图解中的介绍只代表个人观点,而不代表厂家和权威,因个人知识水平有限,必定会有许多错误之处,敬请高手谅解并指正,不胜感谢!本图解中的燃料电池GPR-333系列,因一次工作之余,收拾工具时,偶有兴致,拆与分析同仁看看,以期对大家工作有所感性认识而作。图一电池为正反两面,此面为正,接触样品扩散;另一面为负,与电极相连。总之,原理部分请看系列1;拆换部件,请看系列2;有兴趣了解一点,就看看系列3;

  • 【转帖】化学固体燃料的制取和应用

    化学固体燃料的制取和应用1 前言  化学固体燃料可由乌洛托品(六亚甲基四胺)和硬脂酸或石蜡,也可由低沸点醇、羧酸脂、烷烃、芳香烃或它们的混合物与胶凝剂、火焰调节剂、膨松体等制成呈三维网状结构固体燃料,具有容易点燃、火焰大小均匀、热值高、火焰偏差小(火焰从初燃到燃完时大小均一)、携带方便,燃烧时无毒、无异味、无污染,安全又成本低,适用于宾馆、饭店、餐车、船只、旅游、医院、学校、军队、野外作业、地质勘探、野营、家庭生活取暖用火及煤炭和木材等引火燃料。2 制造方法  因原料及配比不同而有多品种:  a 把工业品(GB9015-88)乌洛托品粉碎、烘干、筛选,并把工业品硬脂酸或蜡切成薄片,称取乌洛托品98~99份,硬脂酸(或石蜡)1~2份,二种原料充分混合,于压片成型机中压制成每片10g,适作饮食燃料及手炉取暖燃料。所用石蜡因精制深度不同而有黄蜡及白蜡之分,又因蜡熔点不同而分48、50、52、54、56、58、60等型号,以选白蜡可燃时无烟为好,如携带及使用环境温度高,则用高标号58~60为好。  b 取乌洛托品89份,乙醇石蜡乳化液11份,充分混合、热熔、冷却成型即可。  c 蜂巢煤引火用化学固体燃料,火柴一点即着火:用工业品一级或二级品轻质MgO(视比容5~6ml/g)4份与工业酒精22份充分混合,然后与硬脂酸1份,木粉或煤粉73份混合,压制成型。取40目木粉6.3份、80目木炭分32份、石蜡58份、95%工业酒精4份,充分混合,压制成型。用具空隙大高度分散(视比容为5~25ml/g)的SiO2nH2O(又名白炭黑)或CaSO3与可燃性液体醇类(甲醇、乙醇、丙醇、异丙醇、乙二醇)、酮类、酯类或是它们的回收品混合而成。固体与液体配比为5~8∶1。取木粉12份与95%工业酒精8份充分混合,然后与石蜡12份、无烟煤60份(水份10%)混合均匀,压制成型。把乌洛托品4份、乙醇石蜡乳液7份、稿杆粉末(麦杆、棉杆、稻杆、高梁杆等都可)89份,充分混合并压制成型。  d 醋酸钙法:取95%工业酒精1kg及适量水于容器中,在热水浴中加热到45-50℃,逐步加入于0.1kg事先配制的饱和醋酸钙水溶液[(Ca(CH3COO)2]于水中溶解度40℃为24.9%,(Ca(CH3COO)2H2O于40℃水中溶解度为33.22%)]中,边搅拌边逐步加入,物料会迅速凝结成粒状固体,冷却后即可包装。该法制取的产品久置软化为糊状物,所以应在制成后短期内用完。  e 硝化纤维法:取硝化纤维4.3kg、醋酸乙酯4.3kg、丙酮13kg,置于热水浴中带回流冷却器的容器内,充分溶解均匀,然后在搅拌情况下,逐步加到温度在40℃的装有95%工业酒精78.4kg及适量水的另一容器中,迅速成胶后,冷却包装为成品。该燃料在燃烧时有小火炸裂状。  f 其他纤维素法:本法胶凝剂有羧甲基纤维素(CMC)、甲基纤维素(MC)、羟乙基纤维素(HEC)、羟丙基纤维素(HPMC)及聚酰氨纤维。取110g甲基纤维素和150g丙酮搅拌混合溶解,逐步加入到有95%工业酒精1kg和适量水的另一容器中(40~50℃),会立即成固体燃料。该法纤维素价格较贵,丙酮气味较大。  g 硬脂酸盐作胶凝剂法:常用的是硬脂酸的钾、钠、铝盐。用固碱28g、适量水、石蜡15g于70~75℃的热水浴容器中熔化反应,热回流情况下加入1kg95%工业酒精回流30min,冷却到60℃,于搅拌下加入火焰调节剂CuNO38g,搅拌10min,冷至50℃入模具,为半透明固体燃料。取火碱10~30g,水150g,溶解后,于另一容器内放硬脂酸40g,95%工业酒精800g,在水浴上加热,回流到60℃停止加热,将上述二容器内物料合并混合搅拌,45℃以上将物料倒入模具,冷却得半透明固体燃料。固体汽油的制造:把5%~10%的硬脂酸铝放入热水浴中加热的容器中,加热到60℃,倒入汽油,搅拌20min,冷却倒入模具,或以5%-10%硬脂酸的汽油放入热水浴中加热的容器内,加热到60℃,再加入为硬脂酸重量的1/3的50%浓度的液碱,搅拌30min,冷却入模,取出即为成品。用硬脂酸5份,浓度为30%的液碱水6份,异丙醇89份,或甲醇89份,或乙醇20份,甲醇20份,异丙醇30份,水19份,或丙酮20份,95%工业酒精50份,甲苯19份,或乙酸乙酯40份,95%工业酒精49份,或上述任何可燃物混合物或它们回收的下脚料在适当配比下都可成固体燃料。用硬脂酸与动物脂肪酸或氢化植物油与碱水同上述可燃物于适当配比及反应条件下都可成固体燃料。取甲醇12g,乙二醇3g,水5g混合,并用作胶凝剂的丙烯酸——乙烯醇共聚物0.05g,甲基纤维素0.05g,硅酸物0.3g,膨松体为聚乙烯发泡体5cm3,包装于聚乙烯薄膜封顶的聚乙烯与纸复合的薄膜杯内。用火柴于杯顶点着,即得均匀火焰。把甲醇40g,乙醇20g,水40g,异丁烯马来酸共聚物的交联产物为胶凝剂0.2g,硅酸物10g,膨松性纸浆30cm3,混合包装于填充无机质的聚乙烯筒杯子中,用聚乙烯膜封杯顶,可延长燃烧时间。把乙醇50g,玻璃棉(气孔率95~99%)为膨松体20g,封装于聚乙烯膜封杯口顶的聚乙烯镀铝质杯子中。3 结果及讨论  用低沸点可燃性单元醇、二元醇、烷烃、芳香烃、酯类、酮类、乌洛托品或它们的混合物与胶凝剂、膨松体,火焰调节剂等混合在一起,在一定条件下都可成化学固体燃料。火柴一点即着,可作取暖及引火燃料,携带方便,使用安全,成本又低,一般为2000~3000元/吨,而市场售价为4800-7000元/吨。如建年200吨产品的设备投资为2~5万元,净利40~50万元,经济效益可观。  上述各生产方法中,在特定条件下都有生产实用性。以醋酸钙法、玻璃棉法、白炭黑法、硅酸钙法成本较低 可燃物以汽油货源充足,价格又便宜,尤以直馏汽油中含不饱和烃及芳香烃少,烟少,如在火焰处加铁丝网,则可获得燃烧均匀而无烟,热值又高,用醇类与烷烃类混合制得的化学固体燃料,燃烧时既无烟,热值又理想。

  • 科学家研制光学燃料或可取代石油燃料

    看到一篇文章,说美国科学家研制出的光学燃料可以取代石油燃料,真假先不去理会,何为光学燃料呢?不会指的就是太阳能吧http://simg.instrument.com.cn/bbs/images/brow/emyc1010.gif

  • 〔转〕燃料电池的春天来了

    今年电池类的2个973都给了燃料电池,科技部的导向真是厉害。2012CB215400 碳基燃料固体氧化物燃料电池体系基础研究2012CB215500 基于贵金属替代的新型动力燃料电池关键技术和理论基础研究 版友有研究这方面的吗

  • 国产燃料油的种类

    [color=#2f2f2f]200号重油、250号重油、180号重油、7号燃料油、工业燃料油、催化油浆、蜡油浆、混合重油、沥青[/color][color=#2f2f2f][/color][color=#2f2f2f]进口燃料油种类 :[/color][color=#2f2f2f][/color][color=#2f2f2f]复炼乳化油、奥里乳化油、180号低硫燃料油、380号低硫燃料油、180号高硫燃料油M100 M300[/color][color=#2f2f2f][/color]

  • 燃料油基本知识

    (1)什么是燃料油?绝大部分石油产品均可用作燃料,但燃料油在不同的地区却有不同的解释。欧洲对燃料油的概念一般是指原油经蒸馏而留下的黑色粘稠残余物,或它与较轻组分的惨合物,主要用作蒸汽炉及各种加热炉的燃料或作为大型慢速柴油燃料及作为各种工业燃料。但在美国则指任何闪点不低于37.8°C的可燃烧的液态或可液化的石油产品,它既可以是残渣燃料油(Residual Fuel 011,亦称Heavy Fuel 011)也可是馏分燃料油(Healing 011)。馏分燃料油不仅可直接由蒸馏原油得到(即直馏馏分),也可由其它加工过程如裂化等再经蒸馏得到。燃料油的性质主要取决于原油本性以及加工方式,而决定燃料油品质的主要规格指标包括粘度(Viscosity),硫含量(Sulfur Content),倾点(Pour Point)等供发电厂等使用的燃料油还对钒(Vanadium)、钠(Sodium)含量作有规定.1、 燃料油的自然属性燃料油是成品油的一种,广泛用于电厂发电、船舶锅炉燃料、加热炉燃料、冶金炉和其它工业炉燃料。燃料油主要由石油的裂化残渣油和直馏残渣油制成的,其特点是粘度大,含非烃化合物、胶质、沥青质多。(1) 粘度粘度是燃料油最重要的性能指标,是划分燃料油等级的主要依据。它是对流动性阻抗能力的度量,它的大小表示燃料油的易流性、易泵送性和易雾化性能的好坏。对于高粘度的燃料油,一般需经预热,使粘度降至一定水平,然后进入燃烧器以使在喷嘴处易于喷散雾化。粘度的测定方法,表示方法很多。在英国常用雷氏粘度(Redwood Viscosity),美国惯用赛氏粘度(Saybolt Viscosity),欧洲大陆则往往使用恩氏粘度(Engler Viscosity),但各国正逐步更广泛地采用运动粘度(Kinemetic Viscosity),因其测定的准确度较上述诸法均高,且样品用量少,测定迅速。各种粘度间的换算通常可通过已预先制好的转换表查得近似值。目前国内较常用的是40°C运动粘度(馏分型燃料油)和100°C运动粘度(残渣型燃料油)。我国过去的燃料油行业标准用恩氏粘度(80°C、100°C)作为质量控制指标,用80°C运动粘度来划分牌号。油品运动粘度是油品的动力粘度和密度的比值。运动粘度的单位是Stokes,即斯托克斯,简称斯。当流体的动力粘度为1泊,密度为1g/cm3时的运动粘度为1斯托克斯。CST是Centistokes的缩写,意思是厘斯,即1斯托克斯的百分之一。(2) 含硫量燃料油中的硫含量过高会引起金属设备腐蚀的和环境污染。根据含硫量的高低,燃料油可以划分为高硫、中硫、低硫燃料油。在石油的组分中除碳、氢外,硫是第三个主要组分,虽然在含量上远低于前两者,但是其含量仍然是很重要的一个指标。按含硫量的多少,燃料油一般又有低硫(LSFO)与高硫(HSFO)之分,前者含硫在1%以下,后者通常高达3.5%甚至4.5%或以上。另外还有低蜡油(Low Sulfur Waxy Residual缩写LSWR),含蜡量高有高倾点(如40至50°C)。在上海期货交易所交易的是高硫燃料油(HSFO)。(3) 密度为油品的质量(Mass)与具体积的比值。常用单位——克/立方厘米、千克/立方米或公砘/立方米等。由于体积随温度的变化而变化,故密度不能脱离温度而独立存在。为便于比较,西方规定以15°C下之密度作为石油的标准密度。(4) 闪点是油品安全性的指标。油品在特定的标准条件下加热至某一温度,令由其表面逸出的蒸气刚够与周围的空气形成一可燃性混合物,当以一标准测试火源与该混合物接触时即会引致瞬时的闪火,此时油品的温度即定义为其闪点。其特点是火焰一闪即灭,达到闪点温度的油品尚未能提供足够的可燃蒸气以维持持续的燃烧,仅当其再行受热而达到另一更高的温度时,一旦与火源相遇方构成持续燃烧,此时的温度称燃点或着火点(Fire Point或Ignition Point)。虽然如此,但闪点已足以表征一油品着火燃烧的危险程度,习惯上也正是根据闪点对危险品进行分级。显然闪点愈低愈危险,愈高愈安全。(5) 水分水分的存在会影响燃料油的凝点,随着含水量的增加,燃料油的凝点逐渐上升。此外,水分还会影响燃料机械的燃烧性能,可能会造成炉膛熄火、停炉等事故。(6) 灰分灰分是燃烧后剩余不能燃烧的部分,特别是催化裂化循环油和油浆渗入燃料油后,硅铝催化剂粉末会使泵、阀磨损加速。另外,灰分还会覆盖在锅炉受热面上,使传热性变坏。(7) 机械杂质机械杂质会堵塞过滤网,造成抽油泵磨损和喷油嘴堵塞,影响正常燃烧。2、 燃料油的分类燃料油作为炼油工艺过程中的最后一种产品,产品质量控制有着较强的特殊性,最终燃料油产品形成受到原油品种、加工工艺、加工深度等许多因素的制约。根据不同的标准,燃料油可以进行以下分类:(1) 根据出厂时是否形成商品,燃料油可以分为商品燃料油和自用燃料油。商品燃料油指在出厂环节形成商品的燃料油;自用燃料油指用于炼厂生产的原料或燃料而未在出厂环节形成商品的燃料油。(2) 根据加工工艺流程,燃料油可以分为常压重油、减压重油、催化重油和混合重油。常压重油指炼厂催化、裂化装置分馏出的重油(俗称油浆);混合重油一般指减压重油和催化重油的混合。(3) 根据用途,燃料油分为船用内燃机燃料油和炉用燃料油两大类。前者是由直馏重油和一定比例的柴油混合而成,用于大型低速船用柴油机(转速小于150转/分)。后者又称为重油,主要是减压渣油、或裂化残油或二者的混合物,或调入适量裂化轻油制成的重质石油燃料油,供各种工业炉或锅炉作为燃料。船用内燃机燃料油是大型低速柴油机的燃料油,其主要使用性能是要求燃料能够喷油雾化良好,以便燃烧完全,降低耗油量,减少积炭和发动机的磨损,因而要求燃料油具有一定的黏度,以保证在预热温度下能达到高压油泵和喷油嘴所需要的黏度(约为21-27厘斯),通常使用较多的是38°C。雷氏1号黏度为1000和1500秒的两种。由于燃料油在使用时必须预热以降低黏度,为了确保使用安全预热温度必须比燃料油的闪点低约20°C,燃料油的闪点一般在70-150°C之间。重油主要作为各种锅炉和工业用炉的燃料油。各种工业炉燃料系统的工作过程大体相同,即抽油泵把重油从储油罐中抽出,经粗、细分离器除去机械杂质,再经预热器预热到70-120°C,预热后的重油黏度降低,再经过调节阀在8-20天大气压下,由喷油嘴喷入炉膛,雾状的重油与空气混合后燃烧,燃烧废气通过烟囱排入大气。

  • 【金秋计划】生物甲酯燃料

    [font='Times New Roman'][font=宋体] 生物甲酯燃料,其成分各种动植物油脂中常见脂肪酸的对应甲酯,由动植物油脂与醇解交反应制得的脂肪酸单烷烃基酯为原料,按特定工艺配方,混合调配多种烷烃产品的生物液体燃料。据生态环境部制定的《高污染燃料目录》,生物油脂不属于高污染燃料。以生物油脂为燃料的锅炉,应满足《锅炉大气污染物排放标准》[/font](GB13271-2014)[font=宋体]中关于燃油锅炉的排放限值要求。[/font][/font]

  • 木质纤维素为原料合成可再生航空燃料(JP-10燃料)

    近日,中国科学院大连化学物理研究所催化与新材料研究中心研究员李宁、中科院院士张涛团队,开发了两条通过木质纤维素平台化合物——糠醇制备可再生JP-10高密度燃料的新路线。相关工作发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。  以木质纤维素为原料合成可再生航空燃料是国际生物质催化炼制的研究热点。目前,国内外已有的木质纤维素航空煤油报道主要集中在合成普通航空煤油。JP-10燃料(挂式四氢双环戊二烯)是一种经典单组分高密度航空燃料。与普通航空煤油相比,JP-10燃料在密度、冰点、热安定性等方面都具有明显的性能优势,因而也被称为“超级燃料”。目前,JP-10燃料通常由来自化石资源的环戊二烯制备,价格较高,且由于原料资源有限,因而无法在民航中得以广泛应用。  糠醇是农林废弃物中半纤维素部分获得的一种重要的化学品,迄今已有几十年的工业化生产历史。该工作开发了两条以糠醇为原料合成JP-10燃料的新路线,可获得大约65%的收率(以碳计算)。经过初步的经济分析,该生物质路线可大大降低制备JP-10燃料的成本。  上述研究工作得到国家自然科学基金委、国家重大研发计划、中科院洁净能源创新研究院合作基金、中科院战略性先导科技专项和大连市杰出青年科技人才项目等资助。

  • 成品油之燃料油

    [color=#2f2f2f]1、燃料油(Fuel Oil)基本概念[/color][color=#2f2f2f]石油的炼制工艺大致分为常压分馏、减压分馏、催化、裂化,不管哪种工艺,石油中的轻质组分都最先分离出来,如首先分离的是石油气、其次是汽油、煤油和柴油,最后剩下的是重质组分,如燃料油、胶质、沥青质和其它,因此燃料油是炼油工艺过程中的最后一种产品,是成品油的一种,是石油加工过程中在汽、煤、柴油之后从原油中分离出来的较重的剩余产物。[/color][color=#2f2f2f][/color][color=#2f2f2f]2、燃料油的用途[/color][color=#2f2f2f][/color][color=#2f2f2f] 燃料油(Fuel Oil)是成品油的一种,是石油加工过程中产生的较重的剩余产物,广泛用于船舶锅炉燃料、加热炉燃料、冶金炉和其它工业炉燃料。燃料油主要由石油的裂化残渣油和直馏残渣油制成的,其特点是粘度大,含非烃化合物、胶质、沥青质多。[/color][color=#2f2f2f][/color]

  • 【讨论】分散液究竟能用吸光度测试浓度吗?

    从测试原理上理解,分散液(悬浮液)由于其颗粒的光散射作用,应该不能用吸光度测试其浓度。从有些版友的帖子里看到,粒度至少要小于100nm的分散液才能用吸光度测浓度。但曾看到国外有用吸光度测1微米粒径左右的分散液(一种分散染料);我同事也曾直接用水分散液测试,结果与使用有机溶剂将染料溶解后测试吻合得非常好。那么,究竟在什么条件下可以用吸光度测试分散液的浓度?

  • 航空燃料水分离指数测定仪

    由于喷气燃料特殊的应用场所和使用环境,国内外对于喷气燃料性能要求十分苛刻。3号喷气燃料国家标准(GB 6537 - 2006)以及ASTM D7566-2012A标准,从外观、颜色、组成、挥发性、密度、流动性、燃烧性、腐蚀性、安定性、洁净性、导电性、水分离指数和润滑性等方面对喷气燃料提出了近30项指标要求。喷气燃料是石油产品中控制指标最多、质量要求最严的产品之一。喷气燃料在生产、储运过程中混入的微量水分若不易分离,则在高空低温状态下,极易导致燃料结冰,堵塞油路,从而使飞机失去动力,造成空难。水分离指数是喷气燃料的质量指标之一,其表示水从燃料中分离的难易程度以及加入的表面活性物质对油水分离的影响程度。因此3号喷气燃料国家标准(GB 6537 - 2006)以及ASTM D7566-2012A标准,对喷气燃料的水分离指数作出了明确的指标要求。A、适用标准:GB/T 11129-1989,ASTM D3948-2011,SH/T 0616-1995B、仪器参数:样品温度18-29℃,测量范围:50-100,分辩率:1;C、仪器性能:数字显示测试结果重复性高便携式设计,设备齐全自动计时操作简单,低成本,速度快本人有ASTM D7566 2011-2012版的中文英文标准文件,但是不敢上传。新手,不明白。有懂的的请回复。

  • 【资料】酸性偶氮染料的好氧生物降解性能试验研究

    近年来,国内酸性染料的生产、出口逐年增加,已成为国际上最大的酸性染料出口国。酸性染料是水溶性染料,且又是典型的小批量、多品种的一类染料,生产废水量大,废水成分复杂,色度污染严重。研究这类污染物的生物降解性能,可为开发更有效的染料废水生物处理技术提供参考和实践指导。1 试验部分1.1 试验材料酸性偶氮染料的品种和产量均居酸性染料之首。本试验选用的14种染料全为偶氮型,其中单偶氮类、双偶氮类各6种。主要由安徽凤阳染料化工有限公司提供;三、四偶氮类各1种,由杭州恒升化工有限公司提供。1.2 降解原理微生物在好氧条件下分解有机物的反应:http://www.e-dyer.com/userfiles/image/aa5%2826%29.jpg除H20外,反应中的任何一种物质或微生物的变化,都可用来分析有机物的生物降解性能。1.3 试验方法和分析方法(1)好氧呼吸法。微生物在进行代谢过程时,通过呼吸作用,将复杂的有机物转化为CO2、H20和其他简单物质。呼吸消耗的氧气与被生物降解的有机物浓度成正比。用测定微生物呼吸的方法来测定有机物的生物降解就是基于这一原理。在污染物生物治理工程中,常用BOD5/CODcr。(2)测定基质去除的方法。采用半连续活性污泥法试验。测定各种染料在生物降解反应前后的浓度变化。分析方法采用分光光度法(WFJ7200型分光光度计,由尤尼柯(上海)仪器有限公司制造)。(3)分析微生物细胞增殖的方法。微生物在分解有机物的同时.还以有机物为营养和能源进行生物合成,所以。通过分析微生物细胞增殖的情况也能间接反映有机物的降解。本试验采用了细胞湿重和浊度法分别进行研究。测细胞湿重是取一定容积的培养物,经离心、弃上清液、称重。浊度法是取一定量的培养物,直接测定其浊度(用SZD一1 型散射光台式浊度仪测定,该仪器由上海市自来水公司制造)。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制