当前位置: 仪器信息网 > 行业主题 > >

燃料充量运动

仪器信息网燃料充量运动专题为您整合燃料充量运动相关的最新文章,在燃料充量运动专题,您不仅可以免费浏览燃料充量运动的资讯, 同时您还可以浏览燃料充量运动的相关资料、解决方案,参与社区燃料充量运动话题讨论。

燃料充量运动相关的资讯

  • 美国博纯燃料电池专利加湿器备战2011世界大学生运动会
    在2010年上海世博会和广州亚运会上,博纯燃料电池加湿器以稳定的专业表现通过了复杂天气及满负荷运载等多重考验。并因拥有比传统焓轮和喷水加湿系统更加高效、抗震,以及免维护等一系列优点赢得了用户的一致好评。今年8月即将在深圳举行的第26届世界大学生运动会上,60辆氢燃料电池场地车,2辆燃料电池大客车将加入新能源汽车示范运行行列。届时博纯将继续为这些燃料电池车提供性能卓越的专利加湿器,为世界大学生运动会的顺利进行提供可靠的保障服务。 燃料电池场地车应用 博纯FC™ 系列燃料电池加湿器 目前,博纯加湿器已是燃料电池产业界公认地最好的加湿设备。在世界各地,博纯燃料电池加湿器已被广泛用于固定式燃料电池系统、叉车、燃料电池汽车等应用中。需了解更多信息,请访问美国博纯官方网站:www.permapure.com.cn 或联系我们fxia@permapure.com。
  • 美国博纯燃料电池专利加湿器备战2011世界大学生运动会
    在2010年上海世博会和广州亚运会上,博纯燃料电池加湿器以稳定的专业表现通过了复杂天气及满负荷运载等多重考验。并因拥有比传统焓轮和喷水加湿系统更加高效、抗震,以及免维护等一系列优点赢得了用户的一致好评。今年8月即将在深圳举行的第26届世界大学生运动会上,60辆氢燃料电池场地车,2辆燃料电池大客车将加入新能源汽车示范运行行列。届时博纯将继续为这些燃料电池车提供性能卓越的专利加湿器,为世界大学生运动会的顺利进行提供可靠的保障服务。 燃料电池场地车应用 博纯fc?系列燃料电池加湿器 目前,博纯加湿器已是燃料电池产业界公认地优质的加湿设备。在世界各地,博纯燃料电池加湿器已被广泛用于固定式燃料电池系统、叉车、燃料电池汽车等应用中。需了解更多信息,请访问美国博纯官方网站:www.permapure.com.cn。
  • DMAA运动补充剂被英国归类为未经许可药物
    英国药品和保健品管理局(Medicines and Healthcare products Regulatory Agency,MHRA)在对1,3-二甲基丙烯酰胺(1,3-dimethylamylamine ,DMAA)进行评估后,含有运动补充剂DMAA的产品将从英国市场上被移除。MHRA裁定,DMAA属于未经许可药物,将受到药物控制。   此前,英国食品标准局(FSA)已提醒消费者不要购买含有DMAA的产品。   DMAA作为训练前的运动补充剂在英国销售,并被称为脂肪燃烧食物补充剂。   据悉,DMAA是一种兴奋剂,但是其人类摄取的安全水平尚未建立。含有DMAA的产品目前在欧盟和世界其他国家已被撤回。DMAA会导致一系列健康问题,包括高血压、恶心、脑出血、中风甚至死亡。
  • “地沟油”华丽转身 成航空燃料“新宠”
    中国“地沟油”能否成为全球化生物燃油产业链上重要的一环将成为业界和公众关注的下一个焦点。   新闻回放   荷兰航空公司洲际航线首次使用“地沟油”燃料   6月19日,荷兰皇家航空公司首度启用一架以生物燃料为动力的波音777-200型客机执飞洲际航线,目的地是巴西里约热内卢。据新华社报道,该公司使用的生物燃料,正是以餐厨废油即俗称的“地沟油”为原料提炼、加工而来。   荷航曾经于去年9月开始利用以生物燃料为动力的客机执飞阿姆斯特丹至巴黎的短途航线,这些生物燃料和此次执飞洲际航线的客机的燃料一样,都是以餐厨废油为原料提炼、加工而来的。   核心关注   “地沟油”成为航空燃料“新宠”   据搭乘该航班的荷兰基础设施与环境国务秘书约普阿斯玛透露,从2013年起荷兰政府官员的公务出行将尽可能多地搭乘生物燃料航班,同时“也包括政府自己的飞机”。据了解,此前一天,加拿大航空公司在一架空客A319客机上也采用50%以“地沟油”为原料提炼的生物燃油进行了首次从加拿大多伦多到墨西哥的长途洲际商业飞行。   据悉,此次两家公司的生物燃料均采用生物燃料和标准航空煤油以各自50%的方式来实现可持续飞行。其中生物燃料是由用过的烹饪油,二手食用油,即餐厅、小吃店和其他食品加工业在生产过程中产生的大量废弃油脂。   “我们认为,为了减少飞机航行中的二氧化碳排放,实现绿色航行,使用生物燃料是有效的方法。”荷航部门总经理卡米尔厄尔林斯向媒体介绍说,“我们知道使用餐厨废油并非万全之策,所以我们还将持续关注其他生物燃料。我们确信未来市场上将会有更多的生物燃料可供选择,燃料价格也就会下降,为我们大规模使用生物燃料提供可能。”   根据欧盟相关要求,荷兰航空运输业应在2050年将二氧化碳排放量减少一半,而荷兰皇家航空公司则为自己定下了至2020年将单位里程二氧化碳排放量减少20%的目标。   中国或成为“地沟油”原料主产地   业内人士指出,随着“地沟油”变身生物燃料技术标准日臻完善和成熟,“地沟油”若想在航空业大面积使用并实现市场化,原料的供应将成为关键。中国被认为是有丰富“地沟油”原料的产地。   研究人员表示,从现有技术看,生物柴油是地沟油的很好归宿。变身后,除了可用作能源产品,如车用柴油、锅炉燃油等,还可用作高档的化工原料,如增塑剂、环氧甲酯生产原料等。那么,1吨地沟油能转化为多少生物柴油呢?根据湖南省林科院的研究显示,理论上转化1吨原料可以获得将近1吨的生物柴油产品。   2011年,负责为荷航提供生物燃油的SkyNRG公司曾专门通过代理公司到青岛一家以“地沟油”为原料生产生物柴油的民营企业考察,中国“地沟油”能否成为全球化生物燃油产业链上重要的一环将成为业界和公众关注的下一个焦点。   专家解读   “地沟油”安全性不亚于普通航空燃料   对于使用“地沟油”提炼的生物柴油,中国民航学院教授李晓津认为这种燃油在安全性上不逊于普通的航空燃料,而且还将成为民航业的发展趋势。   据专家介绍,从现在来看,使用地沟油这种生物燃油,从安全上来说是没问题的,可以保障航空飞行的正常运行,但是在这个过程中必须做许多实验工作,特别是考虑一些特殊的情况,比如天气、气温、气压,特殊情况下生物燃油能不能燃烧还得做很多实验,但是从长远来看,使用生物燃油确实可以更好的保证我们民航业的发展。   成本达普通燃料3倍但环保效益更高   目前从实际应用来看,荷兰皇家航空公司采取了50%“地沟油”燃料,50%化石燃料进行混合。而且地沟油燃料采购并不便宜,这种新型燃油的价格是普通飞机燃油的3倍之多。   价格高,为什么还要用?其实,荷兰人考虑更多的是一笔环保账。根据欧盟要求,航空公司必须减少一定比例的二氧化碳排放,而“地沟油”燃料恰恰能实现这样的要求。中国民航学院李晓津教授解释说,飞机在飞行的时候要大量消耗航空煤油,而使用生物燃油对环境保护的作用要强于航空煤油。   有资料显示,在0号柴油中,若以10%的比例添加生物柴油,在汽车行驶同样里程之后,所排放出的污染气体比不添加生物柴油时减少50%左右。此外,燃用生物柴油的车辆尾气中有毒有机物和二氧化碳、二氧化硫的排放量仅为石油柴油的十分之一,颗粒物只有石油柴油的五分之一,且生物柴油没有铅及有毒物质的排放。   我国发展生物航煤还有几道门槛   加拿大航空和荷兰航空两家的生物燃料采用的原料都是烹饪油“地沟油”。对此,不少国内的业内人士憧憬,这或为中国的“地沟油”问题提供解决渠道。然而一位长期研究生物航煤的专家表示:“我国的地沟油根本就没有回收渠道,更何况,油料本身都没有经过分类,沉淀物过多,利用成本太高,燃料来源与经济性问题依然是生物航煤大规模发展的门槛。”   新闻延伸   云南出台全国唯一“地沟油”管理指导意见   今年“五一”前夕,云南省《做好地沟油制生物柴油工作的指导意见》(以下简称《指导意见》)出台,成为全国目前唯一一个关于地沟油管理方面的指导意见。《指导意见》要求按照“区域示范、特许经营、限定行业、鼓励应用、分步推进”的指导方针,有序推进地沟油制取生物柴油的推广使用,有效解决地沟油出路问题。   4月底出台的《指导意见》共有十一条,内容涵盖了地沟油、生物柴油的监管及政策措施。其中明确规定,“地沟油只能作为生产生物柴油的原料,统一交售给生物柴油生产企业用于制取生物柴油。地沟油禁止用于生产食用油、饲料油,禁止跨省运输和流通,以彻底切断地沟油回流餐桌饮食品市场的通道。”并提出,“到2015年,争取全省地沟油制生物柴油产量、应用量达到5—10万吨,初步实现地沟油制生物柴油规模化、产业化。”
  • 得利特发布得利特A1011全自动运动粘度测定仪石油新品
    A1011全自动运动粘度测定仪适用标准:GB/T265,可测量透明或不透明液体,包括原油、轻重质燃料油、润滑油、添加剂、废油的运动粘度。也适用于测量含蜡量高样品,或含有在室温下不溶化成分样品的运动粘度。恒温、粘度测试、清洗、烘干等全自动机型,不需人员随机操作,操作员在放样后,可以离开现场,仪器可以自动完成全部任务。 产品特点 1. 计算机控制并储存数据。2. 粘度指数和赛波特通用粘度自动计算,具计算机自我故障诊断程序。 3. 为世界上绝大多数的油品分析实验室所大量采用。 4. 降低质量成本,真正提高测试效率,彻底解放工作人员。 技术参数 运动粘度测量范围0.5-5000cSt(mm2/s)不同的粘度范围只需更换不同的粘度计 更换粘度计:弹片卡簧式安装,操作灵活快捷(熟练时30秒---60秒即可完成) 恒温浴温度范围:室温~100℃(全范围任意可调) 样品数量:同时可进行2个样品测试 显示:7寸彩色液晶触摸屏 粘度计(标配):0.6mm,0.8mm,1.0mm,1.2mm,1.5mm,2.0mm,2.5mm各一支 创新点:自动运动粘度测定仪适用标准:GB/T265,可测量透明或不透明液体的同样精度,包括原油、轻重质燃料油、润滑油、添加剂、废油的运动粘度。 得利特A1011全自动运动粘度测定仪石油
  • 得利特调试出高精度运动粘度测定仪
    人类的开展是在不断的认知社会、改造社会中得到实现的。在这个过程中,科学仪器也是人类不行缺少的重要工具,尤其是现代高、精、尖的科学仪器和设备,使得人类得到的信息更多、更快、更深入、更精确,同时也正是这些科学仪器,在支撑着各个领域的科学家们不断纵深探究。 而在科学技术一日千里的当下,科学仪器的开展不仅仅是仪器行业自身的表现,更直接表现了一个国家在科技上的实力和水平。同时,科学仪器的开展还会推动与之相关范畴的开展,例如医疗设备的革新可能会推动医疗工作的进一步开展,勘探设备的改良也会带动资源动力发现、发掘… … 总而言之,科学仪器对国家立异开展、科技进步有着重要的含义。我公司为客户顺利调试出高精度运动粘度测定仪:A1011自动运动粘度测定仪适用标准:GB/T265,可测量透明或不透明液体的同样精度,包括原油、轻重质燃料油、润滑油、添加剂、废油的运动粘度。也适用于测量含蜡量高样品,或含有在室温下不溶化成分样品的运动粘度。恒温、粘度测试、清洗、烘干等全自动机型,不需人员随机操作,操作员在放样后,可以离开现场,仪器可以自动完成全部任务。仪器特点:1.恒温、吸样、记时、计算、打印、清洗、烘干等过程全部自动完成。2.采用高速CPU与高精度AD,具有高可靠性和控温精度,并可同时存储256组实验数据。3.采用**5.0英寸480 × 272像素点真彩LCD显示屏;全中文操作界面,显示直观。4.采用**PT100传感器,温度测量快速准确。可同时对两种式样进行异步测定。技术参数:运动粘度测量范围:0.5-5000cSt(mm2/s)不同的粘度范围只需更换不同的粘度计控温范围:室温~120℃ 控温精度:±0.01℃分 辨 率:0.01℃ 实 验 孔:2孔显示方式:液晶显示时钟显示:年、月、日、时、分(掉电工作) 功率消耗:1500W 工作电源:AC220V±10%,50Hz环境温度:5~40℃ 相对湿度:≤85%外形尺寸:370mm×300mm×650mm 重 量:约28.4kg
  • 石河子大学王振华课题组《Water》:基于水-沙运动特性的分流对冲式滴灌灌水器抗堵性能优化
    滴灌灌水器位于滴灌系统的最末级,其内部流道的尺寸通常介于0.5~1.2 mm之间,能够将管道中的有压水转变为点滴状水流实现节水灌溉。滴灌灌水器的水力性能决定了灌溉均匀性和灌溉质量。已有研究结果表明,改变灌水器内部流道结构可以显著提升灌水器的水力性能。然而,为了解决灌溉水资源短缺的问题,许多地区使用高含沙量的水源作为灌溉水源,滴灌灌水器堵塞的问题也随之而来。因此在提升滴灌灌水器水力性能的同时,还需对灌水器流道开展结构优化以提升滴灌灌水器的抗堵塞性能,进而提升滴灌系统的使用寿命。近期,石河子大学王振华教授团队提出了一种分流对冲式滴灌灌水器和基于水-沙运动特性的灌水器抗堵优化方案。该团队利用新型一体化打印技术(nanoArch S140,摩方精密)实现了滴灌灌水器流道试件的高精度3D打印,并开展了物理试验和数值模拟研究。该研究提出的灌水器抗堵优化方案在维持灌水器水力性能的前提下,能够使灌水器的抗堵塞性能提升60%。相关成果以“Anti-Clogging Performance Optimization for Shunt-Hedging Drip Irrigation Emitters Based on Water-Sand Motion Characteristics”为题发表在《Water》期刊上。图1. (a)分流对冲式流道结构参数及打印试件。(b)灌水器性能试验平台。(c)灌水器流量试验值和模拟值的误差曲线。分流对冲式流道的结构参数及打印试件如图1(a)所示,流道由8个“回”字形流道单元组成,每个流道单元宽2.6 mm,深0.8 mm。通过电子显微镜对试件进行测量,其打印精度达0.01 mm,满足试验要求。将灌水器试件置于图1(b)所示的试验平台上测定其流量,如图1(c)所示,对不同压力下的流量实测值进行拟合得到灌水器的流态指数为0.479,水力性能优良,流量实测值与流量模拟值的误差在1.29~3.21%之间,证明了本文数值模拟方法、结果及精度的准确性。图2. (a)分流对冲式流道内部流场分布。(b)不同粒径沙粒在流道中的运移轨迹及速度变化。(c)3g/L 的浑水浓度下流道堵塞实物图。图2(a)为通过数值模拟得到流道中深截面处的速度和压力分布云图。模拟结果表明,每个流道单元内的速度分布一致,定义导流件背部为漩涡区I,分流件背部为漩涡区Ⅱ,其余区域为主流区Ⅲ,其中水流对冲区为区域Ⅲ*。主流区Ⅲ的水流流速介于1.21~4.53 m/s之间,漩涡区I和Ⅱ中的水流流速介于0.11~1.21 m/s之间。0.05、0.10和0.15 mm沙粒的运动轨迹及速度如图2(b)所示,沙粒在漩涡区I和Ⅱ中的运移速度在0.06~1.10 m/s之间,沙粒容易发生沉积,相较而言,由直角边壁包围形成的漩涡区I不仅促使沙粒稳定沉积,还使沙粒在大漩涡的作用下互相粘结形成团聚体,造成灌水器堵塞的风险较高。这与浑水试验的结果一致,如图2(c)所示,沙粒在漩涡区Ⅰ中持续堆积,导致流道堵塞。图3. (a)不同粒径沙粒在流道中的跟随性变化。(b)沙粒-流道边壁-漩涡相互作用关系示意图。图4. (a)结构优化示意图。(b)优化后流道的速度分布及沙粒运动轨迹。(c)优化前(SHDIE1)、后(SHDIE2)分流对冲式灌水器的水力特性曲线。(d)优化前(SHDIE1)、后(SHDIE2)分流对冲式灌水器短周期抗堵塞试验结果。(e)3g/L 的浑水浓度下优化后流道堵塞实物图。进一步分析沙粒-流道边壁-漩涡区Ⅰ的相互作用关系,如图3(a)所示,沙粒与流道边壁的敏感区域发生碰撞会导致其运动方向突变并进入漩涡区Ⅰ沉积,这是造成流道堵塞的重要原因。通过统计沙粒与边壁的碰撞位置,确定出A、B、C三个壁面容易导致沙粒进入漩涡区沉积的敏感区域范围,分别为0≤LA≤0.58,0≤LB≤0.64和0≤LC≤0.90 mm。图3(b)显示了不同粒径沙粒沿流道运动时对水流的跟随性变化。沙粒粒径越大,速度幅值比η和速度相位差β的数值越小,跟随性也就越差,这表明粒径越大的沙粒与流道边壁的敏感区域碰撞后越容易进入漩涡区沉积。针对敏感区域范围开展结构优化,使沙粒顺畅通过所有流道单元以提升流道的抗堵塞性能。如图4(a)所示,采用直线几何的方法对阻挡沙粒运动的A面的敏感区域0≤LA≤0.58 mm进行切除,对B、C面敏感区域0≤LB≤0.64 mm和0≤LC≤0.90 mm构成的直角三角形空间所覆盖的低速漩涡区进行填充,得到优化后的分流对冲式流道。对优化后的分流对冲式流道及其灌水器再次开展数值模拟和清水、浑水物理试验,结果分别如图4(b)、(c)、(d)和(e)所示,优化后流道的主流区面积占比提升21%,沙粒的运动轨迹变得光滑有规律。清水试验下优化后流道的水力性能为0.486,仅下降1.46%;浑水试验下优化后流道在第24次灌水后发生堵塞,抗堵塞性能大幅提升60%。基于沙粒运动特性明确流道边壁敏感区域,进而开展的结构优化方案具备可行性。
  • 【新品上线】得利特新推出自动折管式重油运动粘度测定仪
    新品推荐——自动折管式重油运动粘度测定仪01产品介绍产品名称:自动折管式重油运动粘度测定仪型号:A1014适应标准:SH/T0956 ASTMD7279 D445自动折管式重油运动粘度测定仪采用NB∕SH∕T0956测量透明和不透明液体(如基础油、调合润滑油、柴油、生物柴油、生物柴油调合燃料和在用润滑油)运动黏度,适用于石油产品生产企业及检测部门等。 02仪器特点1采用单片机控制,彩色触摸屏显示,稳定可靠;2测量速度快,最快30s出结果,普遍为3~5分钟出结果;3良好的人机界面,方便操作;4自动化程度高。测量、清洗、干燥、结果计算全部自动完成;5清洗干净快速,清洗成本低。一个清洗流程耗费清洗液一般不超过10毫升;6软硬件双重超温保护,超温报警, 防干烧保护功能;7测试样品量少,小于1ml;8检测结果与GB/T265、GB/T11137标准方法高度一致;9检测过程完全满足国家标准规定, 数据可靠;10可计算粘度指数;11三色彩灯提示工作状态;12具有多点温度校正功能;03技术参数&bull 粘度测量范围:0.5~3000(根据粘度范围选定折管)&bull 控温范围:20~100℃,(20℃需外接冷源)&bull 温控精度:±0.02℃&bull 工作单元:2单元&bull 计时精度:±0.01S 测试精度:≤0.68%&bull 加热方式:螺旋形电加热器&bull 显示:彩色触摸屏&bull 控制方式:自动测量、清洗、烘干&bull 数据储存:1000组测试结果&bull 工作电源:AC220V±10%,50Hz&bull 整机功率:1500w&bull 仪器尺寸:160*400*350 重量:15KG
  • 【技术知识】油品检测之运动粘度的重要性
    01粘度概述运动粘度是润滑油及其他石油产品检测较为基本也是较为重要的指标之一,可以反应润滑油在特定温度下的粘稠度。单位是cSt,mm2/s。通俗理解粘度越大说明油品越粘稠。02运动粘度的重要性实际油品使用过程中,不是油品的运动粘度越大就表示油品质量越好,而是根据使用设备或车辆的需求的相匹配的运动粘度。油品运动粘度的大小会影响设备或车辆的正常使用。通过运动粘度来判断是否更换润滑油1液压油运动粘度变化率超过±10%就要换油;2工业齿轮油运动粘度变化率超过±15%需要换油;3汽油机油运动粘度100℃变化率SE,SF超过±25%就要换油,其他型号超过±20%就要换油;4柴油机油运动粘度100℃变化率CD,SF/CD超过±25%就要换油,CF-4和CH-4超过±20%就要换油;运动粘度对柴油的影响影响供油量 如柴油粘度过小,在供油系统中运行时,因内漏失量较多,使有效供油量减少 反之,粘度过大,则会使有效供油量超过标准,虽然提高了功率,但会造成燃烧不完全,排气冒黑烟及造成油耗上升。影响雾化质量 粘度过小的柴油,油束易扩散,细微度好,但其透穿距小,燃烧时,离喷油器较远的一部分空气便不能与柴袖有效混合,从而使得空气利用系数降低 粘度大的柴油/隋况正好相反。所以要求柴油粘度应适宜,以利于形成均匀的可燃混合气。影响供油系精密偶件的润滑柱塞偶件、针阀与针阀体等精密配合的运动偶件,主要靠柴油润滑,柴油粘度若过小,则会使上述偶件相对运动阻力增大,磨损加剧。油品指标监测不但是生产企业把关油品质量的重要手段,也是使用者维护保养设备的方法之一。那么检测方法和测定仪器在实际生产使用过程中就显得尤为重要,根据不同的油品制定相应的检测指标并选择合适的检测仪器是每个实验人员的重要工作。粘度计的选定一般来说,使用粘度管应使流过的时间大于200s,但是从节约时间的角度出发,流动时间太长没有意义,浪费时间而已,流动时间太长还有可能造成结果偏差,因温度恒定会波动。在测定过程中至少记录三次流动时间,因为为了保证结果的准确性,在计算粘度时需要使用三次流动时间的平均值。为保证所测的流动时间满足计算条件,一般实际测定时要至少记录四次时间。相关仪器A1010运动粘度测定仪适用于测定液体石油产品的运动粘度。运动粘度表示液体在重力作用下流动时内摩擦力的量度,其值为相同温度下的动力粘度与其密度之比。是对油品等级及质量鉴别的重要理化性能指标之一。在实际应用中,选择合适粘度的润滑油品,可以保证机械设备正常、可靠地工作。适应标准:GB/T265应用领域1、电力、石油、化工、环保及科研部门2、需测定石油产品运动特性的油品。A1011自动运动粘度测定仪可测量透明或半透明液体的同样精度,包括原油、轻重质燃料油、润滑油、添加剂、废油的运动粘度。是具有恒温、粘度测试、清洗、烘干等功能的全自动机型,不需人员随机操作,操作员在放样后,可以离开现场,仪器可以自动完成全部任务。执行标准适应标准:GB/T265、ASTM D445应用领域:1、电力、石油、化工、环保及科研部门。2、需测定石油产品运动特性的油品。A1012 低温运动粘度测定仪适用于测定液体石油产品的运动粘度。广泛适用于铁路、石油、化工、科研、计量等部门。执行标准:适应标准:GB/T 265 石油产品运动粘度测定法A1015高温运动粘度测定仪仪器特点:1、仪器由电脑控温、搅拌器、加热器、恒温浴等部分组成。 恒温浴为加厚玻璃圆缸、浴内温度分布均匀,控温效果优良,仪器最高可控温至120℃,控温精度±0.01℃。2、仪器采用高精度控温表,控温准确,操作简单方便,执行元件采用先进的SSR配件,其特点无动作噪声,无火花,耐振动,使用寿命长。3、加热器及导流筒等浴内部件采用不锈钢制作,耐腐耐用。4、环型日光灯照明,透视度好,观察更清晰。A1019全自动粘度测定仪采用模块化设计,自动完成恒温、液位检测、计时、计算、清洗、烘干、打印等测试工作,系统采用耐腐蚀材料,可用于强酸及聚合物粘度、粘数、相对粘度、比浓粘度、粘均分子量等的检测。广泛用于聚乳酸脂(PLA)、聚酯(PET)、聚氯乙烯(PVC)、聚碳酸酯(PC)、锦纶(尼龙PA)、聚丙烯酰胺(PAM)等聚合材料领域以及中国药典规定的医药领域。适用标准:GB/T3401用毛细管黏度计测定聚氯乙烯树脂稀溶液的黏度GB/T 1632.1塑料 使用毛细管黏度计测定聚合物稀溶液黏度 第1部分GB/T 12006.1塑料 聚酰胺 第1部分:黏数测定GB 12005.1聚丙烯酰胺特性粘数测定方法HG/T 2234聚碳酸脂稀溶液粘数的测定方法HG/T 2364聚对苯二甲酸烷撑二酯稀溶液 粘数的测定HG/T 2626浇铸型甲基丙烯酸甲酯聚合物和共聚物稀溶液粘数测定HG/T 2627甲基丙烯酸甲酯聚合物 稀溶液粘数和特性粘数测定HG/T 2758乙酸纤维素稀溶液粘数和粘度比的测定HG/T 3604聚甲醛树脂稀溶液粘数和特性粘数测定HG/T 3605聚氯醚树脂稀溶液粘数和特性粘数测定GB/T 38138纤维级聚己内酰胺(PA6)切片试验方法GB/T 14190纤维级聚酯(PET)切片试验方法GB/T 17931瓶用聚对苯二甲酸乙二酯(PET)树脂_ GB/T 17932膜级聚酯切片(PET) ASTM D2857 高分子聚合物的稀释溶液的粘度ASTM D4603 聚对苯二甲酸乙二酯特性粘度ASTM D789 聚酰胺(PA)溶液粘度ASTM D4020 超高分子量聚乙烯模制和挤压材料ISO 1628.3/4/5/6塑料.用毛细管粘度计测定稀释溶液中聚合物的粘度.聚乙烯和聚丙烯
  • 三德科技为国家电投内蒙古公司第四届职工技术运动会提供赛事服务
    5月25日至26日,由通辽市总工会、内蒙古公司工会主办,扎哈淖尔煤业公司、培训中心和蒙东协合新能源公司承办的国家电投集团内蒙古能源有限公司(以下简称“内蒙古公司”)第四届职工技术运动会暨燃料采制化、风电运检技术竞赛,在扎哈淖尔煤业公司举行。作为燃料采制化竞赛唯一指定服务商,三德科技提供了全套赛用设备(量热仪、定硫仪、马弗炉、采/制样设备)及技术支持,所有设备均零故障服务赛事。 燃料采制化竞赛分理论考试和实际操作两大部分,其中实际操作主要为发热量、全硫和挥发分测定、采/制样操作五个项目。比赛过程中,三德科技提供的赛用设备运行稳定,为大赛的顺利进行提供了有力保障,得到了参赛选手、主办方领导及专家的一致好评。 图为参赛选手使用SDC量热仪进行发热量测定 图为参赛选手使用SDS定硫仪进行全硫测定 图为参赛选手使用SDMF300马弗炉进行挥发分测定 图为采样竞赛现场 图为参赛选手操作三德科技制样设备 据悉,来自国电投集团14家单位、24个代表队、71名选手参赛,最终共评选出燃料采制样、化验、采制化技术状元3名、技术能手9名、优胜团体5个;风电运检技术状元1名、技术能手9名、优胜团体5个;通辽发电总厂刘宪民、扎哈淖尔煤业公司张晶、南露天煤矿畅俊虎、蒙东协合新能源公司马云龙荣获通辽市五一劳动奖章荣誉称号。
  • LUMEX红外用于测定生物燃料FAME脂肪酸甲酯含量-阿曼燃料实验室
    2018年2月 - 塞拉莱,阿曼苏丹。 阿曼事世界上最大的燃料储存地之一,燃料储存过程需要密切进行监控。 Mina 集团的阿曼国石油实验室选购并使用LUMEX公司IR红外分析柴油中脂肪酸甲酯(FAME)含量监控,根据欧盟标准EN 14078:2014液体石油产品中的中间馏分油的脂肪酸甲酯( FAME)的含量的测定使用傅里叶红外光谱仪InfraLUM FT-08进行测定,可靠的产品质量和用户友好的操作方式受了客户的好评。生物柴油的主要成分是脂肪酸甲酯(FAME),是一种无毒、能生物降解、基本无硫和芳烃的优质清洁柴油,作为绿色环保的替代燃料,在欧洲和美国得到大力推广,是近年来世界能源领域的一个发展热电。欧盟各国对生物柴油的应用结果表明,生物柴油起动 性能与石油柴油无区别,可直接以100%浓度用于柴油发动机。柴油或加热燃料中的FAME含量测定有效鉴别燃料,可用于监控FAME对发动机或加油系统的影响。 LUMEX生物柴油解决方案提供可靠的FAME含量监控,可从0.05%(V / V)的最低浓度水平进行有效监控。仪器内置简单便捷的定量分析模块,集成到软件SpectraLUM中,可以即时以百分比的形式获得FAME测定结果,而无需额外的操作。Mina 石油公司实验室每月测定多次FAME含量以便进行工艺或过程控制,使用InfraLUM FT-08可以在几分钟内获得结果,极大提高了检测速率,降低了成本。 Lumex分析仪器还根据其他标准为柴油燃料的红外测试提供解决方案,例如ASTM D7371。针对石油天然气及燃料提供成套解决的方案,包括炼油、储存、运输等过程监控环节。 LUMEX公司自1991年成立以来一直致力于新产品和先进的技术方法的开发,现已拥有100多种分析方法,为全球用户提供相应行业解决方案,现产品和方法用户遍布全球80多个国家。 (来源:LUMEX公司)
  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al,J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 工商部门通报两款服装含致癌染料 已被责令退市
    北京市工商局昨天在官方网站通报了65批次不合格服装产品,消费者熟悉的真维斯、七匹狼、艾格周末等多个知名品牌服装均“榜上有名”,“满福鑫”和“创今威”两款服装查出了可致癌的芳香胺染料,目前这些服装均已被责令退市。   真维斯一款短裤易掉色   检测发现,北京世纪宝鑫铼服装有限公司生产的“满福鑫”休闲女式风衣、河北腾威服装有限公司生产的“创今威”休闲裤,都含有可分解芳香胺染料。据介绍,按照国家标准,可分解芳香胺染料在纺织品中是被禁止使用的物质,使用后在与人体的长期接触中,有致癌的风险。   “Etam WEEKEND”(艾格周末)一款裤子、“圣玛田”一种黑色休闲裤、“悠娴”运动中裤、“蜿蜒儿WANTINGER”女式上衣等存在pH值不合格的问题。而服装上的pH值过高或过低,会对皮肤产生刺激。此外,“真维斯”一款男士短裤、“普顿”男士休闲裤,色牢度不合格易掉色,“七匹狼”一款女式POLO领短T恤衫、“稻草人”一款T恤衫被发现成分不合格。   凭购物小票可退货   针对此次的检测结果,记者昨天分别致电真维斯、艾格周末等客服,工作人员称对北京的检测情况尚不清楚。而被查出致癌染料的北京世纪宝鑫铼服装有限公司地址在大兴,电话始终无人接听。   市工商局表示,北京已对这些不合格服装进行了下架退市,买到不合格产品的消费者可凭购物小票向销售商要求退货,具体批次可登录市工商局网站查询。
  • 科技部:继续加强氢能与燃料电池技术攻关
    p style=" text-indent: 2em " 针对这份《关于加快推动燃料电池商用车发展的建议》,答复文件明确,科技部将结合国家中长期科技发展规划研究和“十四五”国家重点研发计划重点专项凝练等工作,继续加强氢能与燃料电池技术攻关,加快关键核心技术取得实质性突破,提升燃料电池技术成熟度,为燃料电池商用车技术进步和产业发展提供强有力技术支撑。 /p p style=" text-indent: 2em " 不仅如此,目前,财政部正联合科技部等部门,通过“以奖代补”方式,重点在积极性高、经济条件和政策基础好、具备氢能和燃料电池汽车产业基础、有市场需求的地区进行燃料电池汽车示范推广。 /p p style=" text-indent: 2em " 值得关注的是,科技部高度重视燃料电池汽车技术研发。“十五”期间,科技部启动实施电动汽车重大科技专项,确立“三纵三横”(三纵:纯电动汽车、混合动力汽车、燃料电池汽车,三横:电池、电机、电控)研发布局,燃料电池汽车技术作为“三纵”之一得到重点研发部署,并在“十一五”到“十三五”期间持续进行科技攻关。 /p p style=" text-indent: 2em " “十三五”期间,科技部牵头组织实施国家重点研发计划“新能源汽车”和“可再生能源与氢能技术”两个重点专项,氢能和燃料电池技术持续得到重点部署。具体来说,“新能源汽车”重点专项在车用燃料电池技术方面启动项目13项,重点在燃料电池乘用车及商用车应用领域,对面向产业化的和未来前瞻性的关键核心技术进行了针对性研发部署,其中,重大共性关键技术项目主要由整车企业牵头,将极大带动燃料电池系统技术和产业快速发展。“可再生能源与氢能技术”重点专项已启动项目17项,重点在高效电解水制氢、先进制氢技术,高压储运氢、固态储运氢、加氢站及安全评价技术,燃料电池发电、长寿命电堆及关键组件、分布式热电联供系统技术,膜电极、空压机、循环泵、氢气纯化、催化剂技术加强研发部署。 /p p style=" text-indent: 2em " 答复文件指出,经过四个五年国家科技计划的组织实施,我国燃料电池从电堆、系统到关键部件技术研发均取得一系列关键突破,形成了涵盖制氢、储氢、氢安全及燃料电池及整车应用等技术的产学研用研发体系,培育了一批从事燃料电池及关键零部件研发生产的企业,以分布式能源领域、移动通信基站以及城市客运、物流等商用车型为先导开展了规模化示范运行,并以资本为纽带,带动广东、江苏、湖北等多地初步形成了产业集群,开展一定规模的示范应用。 /p p style=" text-indent: 2em " 在加强技术研发的同时,科技部积极推动燃料电池汽车示范运行考核工作。2008年北京奥运会投入燃料电池轿车作为马拉松先导车和燃料电池客车作为运动员收容车开始,燃料电池汽车示范运行拉开序幕。到2020年,在北京、上海、郑州、佛山、盐城等地开展累计百辆级的燃料电池客车、轿车、物流车商业化示范运行工作。  /p p br/ /p
  • 德国ETAS氢燃料电池控制器HIL测试方案
    德国ETAS氢燃料电池HIL方案- FCU HIL测试方案(面向2020年最新版)ETAS GmbH 成立于 1994 年,是罗伯特博世联合企业的一部分,是车用电子控制系统以 及相关嵌入式控制系统软件开发工具和测试设备的领先供应商。ETAS 致力于为车用嵌 入式系统的整个生命周期提供支持性的创新产品。ETAS 可向全球的汽车 OEM 以及电控 单元的一级供应商提供产品与服务。本公司在全球拥有约 700 名员工,年营业额达到约 1.4 亿欧元。以下是有关本公司的概要介绍。ETAS 全球化网络是在全球范围内构建起的一个由办事机构和研发中心组成的网络,通 过该网络进行产品的开发、配置并提供技术支持。本公司相信,对于建立长期、成功 的客户关系来说,在地理位置上与客户接近将具有至关重要的意义。ETAS 集团总部位 于德国斯图加特,在美国、日本、韩国、中国、印度、法国、英国、意大利、巴西及 俄罗斯联邦均设有地区分公司或办事机构。每一处办事机构都提供客户账户管理、客 户技术支持、区域内项目管理以及工程技术服务资源等。与纯电动汽车相比,氢燃料电池汽车具有加注时间短,续航里程长等优势,是未来汽车工业可持续化发展的重要方向。目前,氢燃料电池汽车产业正在兴起。氢能是一种清洁能源,氢燃料电池只会产生水和热,并不会产生二氧化碳,对环境无任何污染。 燃料电池电动汽车技术是目前世界环保汽车技术的热点,我国应更加积极开展燃料电池电动汽车技术研究,较快缩小与西方汽车工业发达国家的汽车环保技术的差距,从能源和环保角度来讲,进行燃料电池电動汽车技术开发对能源多样化,发展燃料电池汽车,将促进一系列技术和产业的发展,形成国民经济发展的新增长点。 燃料电池是一种很有前途的清洁能源,在未来很可能代替传统能源成为主要能源。所以,很多国家和跨国集团都极其重视燃料电池技术的开发和研究。美国将燃料电池技术列为国家安全技术 欧盟在2008年制定了2020年氢能与燃料电池发展计划,投资近10亿欧元用于燃料电池与氢能研究、技术开发及验证等方面 加拿大计划将燃料电池发展成国家的之助产业 日本认为燃料电池技术是21世纪能源环境领域的核心 《时代》周刊将燃料电池电动汽车列为21世纪10大高技术之首 我国中长期科学和技术发展规划纲要明确提出,大力发展氢燃料的制取、存储及专用燃料电池技术的开发与研究,提高产业化技术。 近20年来,我国科技人员经过不懈努力,尽管燃料电池及材料的开发和应用得到了极大的进展,但由于研究投入和产业化资金数量很少,燃料技术的总体水平与发达国家相比还有较大差距,燃料电池技术的阻力主要在于基础设施匮乏,技术人才不足,成本高、耐久性差,研究力量分散,产业化体系尚未形成,尤其是缺少企业的参与,很难将研究成果进行示范应用。所以,我国应寻找最佳切入点,根据当前和中长期经济和社会发展需要,集中研究力量,大力推动燃料电池发电技术的发展,加大研发和产业化投入,为我过的国家能源安全和国民经济可持续发展服务。用于HiL测试的燃料电池系统模拟模型 燃料电池系统的典型架构-使用ETAS的LABCAR-MODEL-FC模型进行模拟的依据LABCAR-MODEL-FC(用于HiL测试的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FC模型能记录完整的燃料电池系统,包括堆栈、外围设备和柔性ECU。其包含一个可以对水流、温度影响和反应动力学详细模拟的一维PEM-FC堆栈。柔性ECU也能保证在工作站进行直接的闭环试运转。 LABCAR-MODEL-FC模型能确保用户逼真地模拟出燃料电池系统,从而对HiL系统中的ECU进行测试。其模块化的模型架构可以让特定的客户对氢气、氧气和冷却系统进行模拟。 模型扩展装置LABCAR-MODEL-FCCAL模型(用于基于HiL校准的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FCCAL模型(燃料电池校准)是一种二维的PEM-FC堆栈模型,用于详细地模拟电、水、和压力分布。鉴于此模型具有模块化的设计特点,并且还配有参数化的工具,因此其可以跟现有的LABCAR-MODEL-FC模型进行无缝整合。 两种变体均可整合到LABCAR-MODEL-VVTB模型整车模拟中(虚拟车辆测试台的模拟模型,用来进行HiL测试)。 LABCAR-MODEL-FC在汽车应用中,通常优先使用PEM-FC燃料电池,因为其具备启动快、能量密度高和动力学稳定的优良特点。为了给客户在此大有前途的创新领域提供支持,ETAS提供了燃料电池系统的LABCAR-MODEL-FC模拟模型,用来进行HiL测试。测试用于燃料电池系统的ECU LABCAR-MODEL组合包括集成电路发动机、用于汽车推进的锂离子电池、电动机、燃料电池、车辆动力学、车辆、驾驶员和环境的仿真模型。在汽车应用中,通常优先使用PEM-FC燃料电池,因为其具备启动快、能量密度高和动力学稳定的优良特点。为了给客户在此大有前途的创新领域提供支持,ETAS提供了燃料电池系统的LABCAR-MODEL-FC模拟模型,用来进行HiL测试。 ETAS的LABCAR-MODEL-FC模拟燃料系统性能。模拟整个系统-从PEM-FC(高分子电解膜燃料电池)堆栈到反应物和冷却剂的供应-以确保对燃料电池系统ECU的可靠性测试和校准。LABCAR-MODEL-FC可以模拟堆栈、氢气供应、氧气供应和冷却剂供应的详细过程。此技术基于对物理过程的精确模拟,而这些模拟都是基于对电解反应的复杂计算以及基于对堆栈和外围设备之间相互作用的复杂计算得出。鉴于现代燃料电池堆栈的复杂性,要对堆栈进行一维(1D)空间分布模拟。为了满足当前和未来的要求,可以实现对二维(2D)堆栈模拟进行特殊扩展,其燃料电池系统的模拟模型可用于完成基于HiL的校准(LABCAR-MODEL-FCCAL)。基于PC的模拟目标LABCAR-RTPC能为实时模拟提供所需的电源。 LABCAR-MODEL-FC模拟模型可以让用户在硬件在环测试台上对燃料电池的ECU进行早期的测试和优化。 将高成本的测试和安全相关的应用转移到硬件在环测试台上,从而在开发过程中让顾客直接受益。应用实例包括模拟PEM-FC燃料电池堆栈的冷启动调节或模拟氢气供应的临界处理。 ETAS模拟模型的优势ETAS燃料电池模型包括用于模拟堆栈和外围设备的Simulink® 元件库和各种电解槽模型。模型的实时性有利于测试燃料电池ECU时与ETASHiL系统的整合,还可以同时进行安全相关的故障模拟和ECU软件的初始预标定。由于这些模型考虑到了所有相关的物理现象,可以用来测试所有项目,包括基础软件、高级控制、操作和诊断性功能。ETAS的模拟模型组合提供HiL模拟,包括独家提供的硬件 、软件和模拟模型。 应用用户可针对具体的汽车要求,进行大量的典型性闭环ECU测试: l 测试用于氢气供应的典型ECU功能:l 惰性气体测定、清洗方法、气体引射器控制l 测试用于氧气供应的典型ECU功能:l 空气压缩机控制、水再循环l 测试用于冷却系统的典型ECU功能:l 冷却方法、泵控制、散热器激活l 测试用于诊断和管理的典型ECU功能:l 渗漏检测、冷启动、压力协调、紧急关闭l 针对优化运行的设计和校准:l 水管理、电厂辅助设备 优势LABCAR-MODEL-FC有助于对所有项目进行测试,包括基础软件精密控制、运行、和燃料电池ECU的诊断功能。LABCAR-MODEL-FCCAL扩展模型提供了2D堆栈模型,可以实时精准地模拟出电池电压、电解膜状态或水再循环过程,从而满足当前和未来的要求。该模型可以同LABCAR-MODEL-VVTB进行整合(用于HiL测试的虚拟车辆测试台模拟模型)ETAS独家提供硬件、软件和模型,以及客制化技术服务和专家咨询。 用于HiL测试的燃料电池系统模拟模型(LABCAR-MODEL-FC)包括对PEM-FC堆栈的一维模拟,以及对反应物和冷却剂供应系统进行详细和模块化记录。还能提供操作燃料电池ECU所需的所有相应接口。 用于基于HiL校准的燃料电池系统模拟模型(LABCAR-MODEL-FCCAL)为LABCAR-MODEL-FC模型增加了2D空间分辨堆栈模拟,并且能详细洞察电池性能。除了有助于对ECU在闭环控制回路中运行时的基础校准外,其还能让用户对最佳堆栈运行的功能进行测试,以及在早期开发阶段将电池降解降至最低。 因LABCAR-MODEL-FC和LABCAR-MODEL-FCCAL基于PC的模拟目标LABCAR-RTPC以及开放性,可对其进行定制并满足不同的要求。Simulink® 的开放性安装启用特点让开发者可以选择对ETAS或其它供应商提供的元件模型进行整合。 除了模拟模型外,ETAS还对所有开发需求提供技术支持服务和咨询。用于HiL测试的燃料电池系统模拟模型 燃料电池系统的典型架构-使用ETAS的LABCAR-MODEL-FC模型进行模拟的依据LABCAR-MODEL-FC(用于HiL测试的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FC模型能记录完整的燃料电池系统,包括堆栈、外围设备和柔性ECU。其包含一个可以对水流、温度影响和反应动力学详细模拟的一维PEM-FC堆栈。柔性ECU也能保证在工作站进行直接的闭环试运转。 LABCAR-MODEL-FC模型能确保用户逼真地模拟出燃料电池系统,从而对HiL系统中的ECU进行测试。其模块化的模型架构可以让特定的客户对氢气、氧气和冷却系统进行模拟。 模型扩展装置LABCAR-MODEL-FCCAL模型(用于基于HiL校准的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FCCAL模型(燃料电池校准)是一种二维的PEM-FC堆栈模型,用于详细地模拟电、水、和压力分布。鉴于此模型具有模块化的设计特点,并且还配有参数化的工具,因此其可以跟现有的LABCAR-MODEL-FC模型进行无缝整合。 两种变体均可整合到LABCAR-MODEL-VVTB模型整车模拟中(虚拟车辆测试台的模拟模型,用来进行HiL测试)。 实时模型运行平台仿真硬件 ES5300 RTPCETAS LABCAR 使用运行实时操作系统 Linux 的标准 PC 进行仿真模型运算。其灵活的结 构可适应 PC 市场的最新发展趋势,用户可将仿真 PC 更换为市场上出现的具有更高性 能的 PC。因此,LABCAR 使用户能在尽可能宽广的测试范围和深度内进行精确仿真, 从而确保了在专用硬件和软件方面投入的高效性。 标准 IPC 进行模型仿真工作 从上图可以看到,采用了四核 CPU 的实时工控机,在 ETAS 软件环境的管理下,可以实 现分核下载,即将不同模型下载到不同的核内并行运行,确保了在复杂任务管理模式 下系统的实时性。标准 PC 还可提供 PCI 和 PCI-Express 总线接口,将需要辅助板卡(例 如使用 CAN 总线进行 ECU 通讯的板卡)集成到整个系统中。 传感器信号仿真传感器信号仿真主要通过 ETAS 自有的 I/O 板卡实现。本方案中普通的信号级传感器信 号采用 ES5350 模拟信号输入输出板卡、ES5321 PWM 及数字信号输出板卡及工程部件 实现;FUEL CELL 相关的温度信号(电阻信号)采用 ES5385.1 模拟 发动机特有信号的模 拟和采集采用 ES5340.2-ICE 板卡实现。ES5300 实时仿真计算机及 ES5350、ES5340、ES5321 和 ES5385.1 电流传感器仿真本方案中推荐采用配置中 30 路 ES5350DAC 输出模拟信号,通过 DB6200 转换为 4- 20mA 电流信号的方式模拟电流传感器。执行器信号采集同上,采用安装在 ES5300 实时仿真机上的 ES5350 模拟输入板卡和 ES5321 PWM 板卡 检测控制器的执行器控制信号。对于特殊的负载,采用真实器件负载箱实现,如高压 接触器和充电电子锁等。 电流采集模块采用 CSM_5PA 板卡来实现。该电流测 模块用于测 动态负载电流。 静态电流测通道数 10最大容许电压 30 V电流测 范围 5,20,30,50 A (手动设置/) 精度 +/- 1% (主要标称电流 IPN )温度测 量 在 PCB 上测 ,进行温度补偿采样频率 高达 1kHz,通过 USB 更新故障注入功能FUEL CELL 信号级 I/O 电气故障注入,采用 ES5398 和 ES4440 故障注入设备实现。故障模拟模块 ES5398用于实时环境下 ECU 自动测试的故障模拟。它可与硬件在环测试系统结合使用。 ES5398.1 采用 PCI/Express 接口安装于 ES5300 系统中。ES5398.1 模块每块板卡提供 40个故障注入通道。 实验环境 EE 提供了测试执行的用户界面。它提供了实验和图形用户界面,集成的 参数和数据管理,代码下载,实验执行,实时信号产生和测量数据记录方法,以及信 号管理。实验环境是整个测试项目中手动测试的环境,所有的测试都在这里进行。有 LABCAR IP 生成的实时代码需要在这里下载到 RTPC 里面并且开始模拟。通过 Experi- ment Explorer 窗口中进行参数集群和文件管理也是 LABCAR 软件的特色。EE 软件用户界面和虚拟仪表EE 里面还有不同的图像组件,包括常用的各种虚拟仪表,可以用来做成不同的用 户界面。EE 里面可以观察和修改标定量,控制模型的运行,选择不同的运行模式,实 时记录运行数据,以及接入编写的信号发生器信号。同时用户可以方便地通过拖拽来 加入或编辑这些组件。 实验环境中 EE 的组件操作 故障仿真软件LABCAR-PINCONTROL V2.0 为故障仿真箱 ESES5398 的配套软件,具有方便用户使用的 接口,可实现 ES5398 的手动操作,是 ES5398 的重要组成部分,操作界面友好,其操 作界面请参见下图。软件可实现的功能如下:• 创建并管理故障模式,产生 ECU 信号的一系列故障。如氧传感器故障• 简化故障仿真信号的选取• 设置故障产生的时间• 通过点击鼠标来触发故障• 设置多台 ES5398 同时使用• 提供自动化测试的 API 接口等。• 通过 Excel 表格进行故障配置和定义 LABCAR_PINCONTROL 的配置界面 模型方案 燃料电池堆动力学模型ETAS LABCAR-MODEL-FCCAL 是一个 1-D+1-D 的燃料电池堆站模型,该模型包含 1-D 的 燃料电池单体膜模型和 1-D 的双电极及气体通道仿真模型。1-D 的燃料电池单体膜模型 能够对燃料电池膜的内阻,电极之间氧和氢反映生成水的情况进行仿真;1-D 的双电极 及气体通道仿真模型能够仿真双电极间气体在通道内非线性分布的特性,包括温度, 电流,沿电芯堆叠方向的气体压力变化,以及对冰点温度影响等。ETAS LABCAR-MODEL-FCCAL 模型可以考虑为将燃料电池堆沿着气路方向分为多个小模 块,如下图所示。Z 坐标所示方向为气体流动方向,X/Y 坐标表示垂直于膜和气流方向。每一个小模块代表所有燃料电池功能层,包括两个电极板,气路通道,气体扩散层 以及膜。燃料电池模型的采用上述基本架构,在子系统中包括有完整功能层,每个小模块均可对外提供数据接口,同时也能适用于用户的模型扩展要求。 坐标系描述通过燃料电池系统模型 LABCAR-MODEL-FCCAL 的无时间限制的、节点版操作许可证, 客户被授权在主机上执行 LABCAR-MODEL-FCCAL 的代码生成。LABCAR-MODEL-FCCAL 是通过 MATLAB/Simulink 执行的,用户可以打开并修改模型。 这些元件以 S-Functions 的形式提供,如:已编译的动态链接库,不包含源代码。 LABCAR-MODEL-FCCAL 作为 LABCAR 产品家族的一部分, 能够天然支持 LABCAR 网络 HIL 系统仿真应用。也就是说,只要 LABCAR-MODEL-VVTB 和其他 LABCAR 模型可以在 网络中的 RTPCs 上运行,那么它也支持 LABCAR VARIANT MAN-AGEMENT (LVM) 。 功能LABCAR-MODEL-FCCAL 是一个先进燃料电池堆栈模型。该模型包含了一个一维膜模型,能够仿真薄膜电阻、含水量以及电极之间产生的水交换等特性。 除此之外,它使用了空间分布的 双极板与气体通道双 1-D 维度模型,考虑上述两个维 度上的电堆温度、电流和压力变化的非线性特性。此外还特别考虑了汽车会遇到在冰 点温度下工作的情况。LABCAR-MODEL-FCCAL 仿真模型包含:• 单电池模型,并考虑到电流、温度、反应物化学计量数以及膜湿度对电池电压损耗的 影响计算。• 基于一维膜模型的含水量和水交换量的详细计算。• 一维多组分气体通道模型允许为每个电极指定单独的气体成分。• 不同的流场设计仿真。支持内部电池加湿的顺/逆流量设置。• 基于膜温度模型、电池含水量的非线性动态特性和受温度影响的流体性质的实际冷启 动行为。• 考虑气体通道内液态水的积聚和运动的两相水模型。• 具有两种膜类型的默认堆栈参数设置。 传输范围绑定到单一 MAC 地址的节点版许可文件 燃料电池系统动力学模型 LABCAR-MODEL-FC 模型具备完整的燃料电池系统模型结构,该堆站模型的主要目的是 详细计算气路通道的压力分布,电池膜上的水生成量和电堆中水的相变情况。模型根据功能层特性被划分为冷却回路,燃料电池正负极回路模型等。 模型架构描述通过燃料电池系统模型 LABCAR-MODEL-FC 的无时间限制的、节点版操作许可证,客户 被授权在主机上执行 LABCAR-MODEL-FC 的代码生成。LABCAR-MODEL-FC 是通过 MATLAB/Simulink 执行的,用户可以打开并修改模型。这些元件以 S-Functions 的形式提供,如:已编译的动态链接库,不包含源代码。LABCAR-MODEL-FC 可以被集成到虚拟汽车测试平台 LABCAR-MODEL-VVTB 中,以仿真 一辆燃料电池整车。LABCAR-MODEL-FC 作为 LABCAR 产品家族的一部分, 能够天然支持 LABCAR 网络 HIL 系 统仿真应用。也就是说,只要 LABCAR-MODEL-VVTB 和其他 LABCAR 模型可以在网络中 的 RTPCs 上运行,那么它也支持 LABCAR VARIANT MAN-AGEMENT (LVM) 。功能LABCAR-MODEL-FC 仿真模型是一个用于燃料电池控制单元(FCCU)闭环控制测试应用 的燃料电池系统模型,它被用于在汽车环境中对 FCCU 进行测试和验证。 它包含的子系统分别代表一个 1-D PEM 的燃料电池堆、供氢回路、供氧回路和冷却回 路。LABCAR-MODEL-FC 所提供的系统架构根据它的组成回路划分。下图是模型组件的 概述。氧供应系统 氧供应系统包含以下组成部分:• 压缩机• 中冷器• 增湿器• 旁路• 节流通风孔• 排气和进气歧管 氧供应系统 氢供应系统 氢供应系统包含以下组成部分:• 带截止阀的氢罐• 减压器• 氢气喷嘴及中阀• 液态水分离器• 氢循环泵• 排气/排空阀• 排气和进气歧管 冷却回路系统 冷却回路包含以下组成部分:• 电磁阀• 加热器• 散热器• 冷却泵• 排气和进气歧管 冷却液供应系统 绑定到单一 MAC 地址的节点版许可文件 软件兼容性LABCAR-MODEL-FC 支持以下软件版本:• LABCAR-OPERATOR5.4.7,MATLAB/Simulink 2014b 64Bit 如果需要更多信息,请查看 LABCAR-MODEL-FC 的版本注释中的软件兼容性表。 请注意• 安装媒介不包含该许可证,它作为一个单独的项目提供。• 强烈建议用户每年单独采购软件升级维护服务。• 该许可证只允许代码生成。若需要实时运行模型,需要一个实时运行许可证。该许可 证需要单独采购。• 该许可证只允许本机使用,禁止远程访问。• 若要将模型加载到一个 LABCAR-OPERATOR 项目中,需要 MATLAB 和 Simulink 代码。 两者必须单独购买。附加项目• 一年的软件服务协议 (LCM_FC_SRV-ME52) 。• 一个运行时间许可证 (LCM_FC_RT_LIC-MP) 。• 安装媒介 (LCM_FC_PROD) 。• 用于实时仿真的先进二维堆栈模型 (LCM_FCCAL_LIC-MP) 。 ECU 线束设计和制作 在 HIL 系统中需要针对要连接的 ECU 准备连接线束,将 ECU 连接到 LABCAR 的连接器 BOB 面板。线束的设计和制作都是较为复杂的工作,至少为首次使用 ETAS LABCAR 系&nb软件开发的每个步骤 (直到售后诊断), 他们分布到不同的应用领域,
  • 德国ETAS燃料电池FCU-HIL测试系统2020
    德国ETAS: FCU-HIL (LABCAR)系统优势LABCAR-MODEL-FC有助于对所有项目进行测试,包括基础软件精密控制、运行、和燃料电池ECU的诊断功能。LABCAR-MODEL-FCCAL扩展模型提供了2D堆栈模型,可以实时精准地模拟出电池电压、电解膜状态或水再循环过程,从而满足当前和未来的要求。该模型可以同LABCAR-MODEL-VVTB进行整合(用于HiL测试的虚拟车辆测试台模拟模型)ETAS独家提供硬件、软件和模型,以及客制化技术服务和专家咨询。 用于HiL测试的燃料电池系统模拟模型(LABCAR-MODEL-FC)包括对PEM-FC堆栈的一维模拟,以及对反应物和冷却剂供应系统进行详细和模块化记录。还能提供操作燃料电池ECU所需的所有相应接口。 用于基于HiL校准的燃料电池系统模拟模型(LABCAR-MODEL-FCCAL)为LABCAR-MODEL-FC模型增加了2D空间分辨堆栈模拟,并且能详细洞察电池性能。除了有助于对ECU在闭环控制回路中运行时的基础校准外,其还能让用户对最佳堆栈运行的功能进行测试,以及在早期开发阶段将电池降解降至最低。 因LABCAR-MODEL-FC和LABCAR-MODEL-FCCAL基于PC的模拟目标LABCAR-RTPC以及开放性,可对其进行定制并满足不同的要求。Simulink® 的开放性安装启用特点让开发者可以选择对ETAS或其它供应商提供的元件模型进行整合。 除了模拟模型外,ETAS还对所有开发需求提供技术支持服务和咨询。用于HiL测试的燃料电池系统模拟模型 燃料电池系统的典型架构-使用ETAS的LABCAR-MODEL-FC模型进行模拟的依据LABCAR-MODEL-FC(用于HiL测试的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FC模型能记录完整的燃料电池系统,包括堆栈、外围设备和柔性ECU。其包含一个可以对水流、温度影响和反应动力学详细模拟的一维PEM-FC堆栈。柔性ECU也能保证在工作站进行直接的闭环试运转。 LABCAR-MODEL-FC模型能确保用户逼真地模拟出燃料电池系统,从而对HiL系统中的ECU进行测试。其模块化的模型架构可以让特定的客户对氢气、氧气和冷却系统进行模拟。 ETAS GmbH 成立于 1994 年,是罗伯特博世联合企业的一部分,是车用电子控制系统以 及相关嵌入式控制系统软件开发工具和测试设备的领先供应商。ETAS 致力于为车用嵌 入式系统的整个生命周期提供支持性的创新产品。ETAS 可向全球的汽车 OEM 以及电控 单元的一级供应商提供产品与服务。本公司在全球拥有约 700 名员工,年营业额达到约 1.4 亿欧元。以下是有关本公司的概要介绍。ETAS 全球化网络是在全球范围内构建起的一个由办事机构和研发中心组成的网络,通 过该网络进行产品的开发、配置并提供技术支持。本公司相信,对于建立长期、成功 的客户关系来说,在地理位置上与客户接近将具有至关重要的意义。ETAS 集团总部位 于德国斯图加特,在美国、日本、韩国、中国、印度、法国、英国、意大利、巴西及 俄罗斯联邦均设有地区分公司或办事机构。每一处办事机构都提供客户账户管理、客 户技术支持、区域内项目管理以及工程技术服务资源等。ETAS的LABCAR-MODEL-FC模拟燃料系统性能。模拟整个系统-从PEM-FC(高分子电解膜燃料电池)堆栈到反应物和冷却剂的供应-以确保对燃料电池系统ECU的可靠性测试和校准。LABCAR-MODEL-FC可以模拟堆栈、氢气供应、氧气供应和冷却剂供应的详细过程。此技术基于对物理过程的精确模拟,而这些模拟都是基于对电解反应的复杂计算以及基于对堆栈和外围设备之间相互作用的复杂计算得出。鉴于现代燃料电池堆栈的复杂性,要对堆栈进行一维(1D)空间分布模拟。为了满足当前和未来的要求,可以实现对二维(2D)堆栈模拟进行特殊扩展,其燃料电池系统的模拟模型可用于完成基于HiL的校准(LABCAR-MODEL-FCCAL)。基于PC的模拟目标LABCAR-RTPC能为实时模拟提供所需的电源。 LABCAR-MODEL-FC模拟模型可以让用户在硬件在环测试台上对燃料电池的ECU进行早期的测试和优化。与纯电动汽车相比,氢燃料电池汽车具有加注时间短,续航里程长等优势,是未来汽车工业可持续化发展的重要方向。目前,氢燃料电池汽车产业正在兴起。氢能是一种清洁能源,氢燃料电池只会产生水和热,并不会产生二氧化碳,对环境无任何污染。 燃料电池电动汽车技术是目前世界环保汽车技术的热点,我国应更加积极开展燃料电池电动汽车技术研究,较快缩小与西方汽车工业发达国家的汽车环保技术的差距,从能源和环保角度来讲,进行燃料电池电動汽车技术开发对能源多样化,发展燃料电池汽车,将促进一系列技术和产业的发展,形成国民经济发展的新增长点。 燃料电池是一种很有前途的清洁能源,在未来很可能代替传统能源成为主要能源。所以,很多国家和跨国集团都极其重视燃料电池技术的开发和研究。美国将燃料电池技术列为国家安全技术 欧盟在2008年制定了2020年氢能与燃料电池发展计划,投资近10亿欧元用于燃料电池与氢能研究、技术开发及验证等方面 加拿大计划将燃料电池发展成国家的之助产业 日本认为燃料电池技术是21世纪能源环境领域的核心 《时代》周刊将燃料电池电动汽车列为21世纪10大高技术之首 我国中长期科学和技术发展规划纲要明确提出,大力发展氢燃料的制取、存储及专用燃料电池技术的开发与研究,提高产业化技术。 近20年来,我国科技人员经过不懈努力,尽管燃料电池及材料的开发和应用得到了极大的进展,但由于研究投入和产业化资金数量很少,燃料技术的总体水平与发达国家相比还有较大差距,燃料电池技术的阻力主要在于基础设施匮乏,技术人才不足,成本高、耐久性差,研究力量分散,产业化体系尚未形成,尤其是缺少企业的参与,很难将研究成果进行示范应用。所以,我国应寻找最佳切入点,根据当前和中长期经济和社会发展需要,集中研究力量,大力推动燃料电池发电技术的发展,加大研发和产业化投入,为我过的国家能源安全和国民经济可持续发展服务。用于HiL测试的燃料电池系统模拟模型 燃料电池系统的典型架构-使用ETAS的LABCAR-MODEL-FC模型进行模拟的依据LABCAR-MODEL-FC(用于HiL测试的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FC模型能记录完整的燃料电池系统,包括堆栈、外围设备和柔性ECU。其包含一个可以对水流、温度影响和反应动力学详细模拟的一维PEM-FC堆栈。柔性ECU也能保证在工作站进行直接的闭环试运转。 LABCAR-MODEL-FC模型能确保用户逼真地模拟出燃料电池系统,从而对HiL系统中的ECU进行测试。其模块化的模型架构可以让特定的客户对氢气、氧气和冷却系统进行模拟。 模型扩展装置LABCAR-MODEL-FCCAL模型(用于基于HiL校准的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FCCAL模型(燃料电池校准)是一种二维的PEM-FC堆栈模型,用于详细地模拟电、水、和压力分布。鉴于此模型具有模块化的设计特点,并且还配有参数化的工具,因此其可以跟现有的LABCAR-MODEL-FC模型进行无缝整合。 两种变体均可整合到LABCAR-MODEL-VVTB模型整车模拟中(虚拟车辆测试台的模拟模型,用来进行HiL测试)。 LABCAR-MODEL-FC在汽车应用中,通常优先使用PEM-FC燃料电池,因为其具备启动快、能量密度高和动力学稳定的优良特点。为了给客户在此大有前途的创新领域提供支持,ETAS提供了燃料电池系统的LABCAR-MODEL-FC模拟模型,用来进行HiL测试。测试用于燃料电池系统的ECU LABCAR-MODEL组合包括集成电路发动机、用于汽车推进的锂离子电池、电动机、燃料电池、车辆动力学、车辆、驾驶员和环境的仿真模型。在汽车应用中,通常优先使用PEM-FC燃料电池,因为其具备启动快、能量密度高和动力学稳定的优良特点。为了给客户在此大有前途的创新领域提供支持,ETAS提供了燃料电池系统的LABCAR-MODEL-FC模拟模型,用来进行HiL测试。 将高成本的测试和安全相关的应用转移到硬件在环测试台上,从而在开发过程中让顾客直接受益。应用实例包括模拟PEM-FC燃料电池堆栈的冷启动调节或模拟氢气供应的临界处理。 ETAS模拟模型的优势ETAS燃料电池模型包括用于模拟堆栈和外围设备的Simulink® 元件库和各种电解槽模型。模型的实时性有利于测试燃料电池ECU时与ETASHiL系统的整合,还可以同时进行安全相关的故障模拟和ECU软件的初始预标定。由于这些模型考虑到了所有相关的物理现象,可以用来测试所有项目,包括基础软件、高级控制、操作和诊断性功能。ETAS的模拟模型组合提供HiL模拟,包括独家提供的硬件 、软件和模拟模型。 应用用户可针对具体的汽车要求,进行大量的典型性闭环ECU测试: l 测试用于氢气供应的典型ECU功能:l 惰性气体测定、清洗方法、气体引射器控制l 测试用于氧气供应的典型ECU功能:l 空气压缩机控制、水再循环l 测试用于冷却系统的典型ECU功能:l 冷却方法、泵控制、散热器激活l 测试用于诊断和管理的典型ECU功能:l 渗漏检测、冷启动、压力协调、紧急关闭l 针对优化运行的设计和校准:l 水管理、电厂辅助设备 模型扩展装置LABCAR-MODEL-FCCAL模型(用于基于HiL校准的燃料电池系统模拟模型)ETAS的LABCAR-MODEL-FCCAL模型(燃料电池校准)是一种二维的PEM-FC堆栈模型,用于详细地模拟电、水、和压力分布。鉴于此模型具有模块化的设计特点,并且还配有参数化的工具,因此其可以跟现有的LABCAR-MODEL-FC模型进行无缝整合。 两种变体均可整合到LABCAR-MODEL-VVTB模型整车模拟中(虚拟车辆测试台的模拟模型,用来进行HiL测试)。 实时模型运行平台仿真硬件 ES5300 RTPCETAS LABCAR 使用运行实时操作系统 Linux 的标准 PC 进行仿真模型运算。其灵活的结 构可适应 PC 市场的最新发展趋势,用户可将仿真 PC 更换为市场上出现的具有更高性 能的 PC。因此,LABCAR 使用户能在尽可能宽广的测试范围和深度内进行精确仿真, 从而确保了在专用硬件和软件方面投入的高效性。 标准 IPC 进行模型仿真工作 从上图可以看到,采用了四核 CPU 的实时工控机,在 ETAS 软件环境的管理下,可以实 现分核下载,即将不同模型下载到不同的核内并行运行,确保了在复杂任务管理模式 下系统的实时性。标准 PC 还可提供 PCI 和 PCI-Express 总线接口,将需要辅助板卡(例 如使用 CAN 总线进行 ECU 通讯的板卡)集成到整个系统中。 传感器信号仿真传感器信号仿真主要通过 ETAS 自有的 I/O 板卡实现。本方案中普通的信号级传感器信 号采用 ES5350 模拟信号输入输出板卡、ES5321 PWM 及数字信号输出板卡及工程部件 实现;FUEL CELL 相关的温度信号(电阻信号)采用 ES5385.1 模拟 发动机特有信号的模 拟和采集采用 ES5340.2-ICE 板卡实现。ES5300 实时仿真计算机及 ES5350、ES5340、ES5321 和 ES5385.1 电流传感器仿真本方案中推荐采用配置中 30 路 ES5350DAC 输出模拟信号,通过 DB6200 转换为 4- 20mA 电流信号的方式模拟电流传感器。执行器信号采集同上,采用安装在 ES5300 实时仿真机上的 ES5350 模拟输入板卡和 ES5321 PWM 板卡 检测控制器的执行器控制信号。对于特殊的负载,采用真实器件负载箱实现,如高压 接触器和充电电子锁等。 电流采集模块采用 CSM_5PA 板卡来实现。该电流测 模块用于测 动态负载电流。 静态电流测通道数 10最大容许电压 30 V电流测 范围 5,20,30,50 A (手动设置/) 精度 +/- 1% (主要标称电流 IPN )温度测 量 在 PCB 上测 ,进行温度补偿采样频率 高达 1kHz,通过 USB 更新故障注入功能FUEL CELL 信号级 I/O 电气故障注入,采用 ES5398 和 ES4440 故障注入设备实现。故障模拟模块 ES5398用于实时环境下 ECU 自动测试的故障模拟。它可与硬件在环测试系统结合使用。 ES5398.1 采用 PCI/Express 接口安装于 ES5300 系统中。ES5398.1 模块每块板卡提供 40个故障注入通道。 实验环境 EE 提供了测试执行的用户界面。它提供了实验和图形用户界面,集成的 参数和数据管理,代码下载,实验执行,实时信号产生和测量数据记录方法,以及信 号管理。实验环境是整个测试项目中手动测试的环境,所有的测试都在这里进行。有 LABCAR IP 生成的实时代码需要在这里下载到 RTPC 里面并且开始模拟。通过 Experi- ment Explorer 窗口中进行参数集群和文件管理也是 LABCAR 软件的特色。 EE 软件用户界面和虚拟仪表EE 里面还有不同的图像组件,包括常用的各种虚拟仪表,可以用来做成不同的用 户界面。EE 里面可以观察和修改标定量,控制模型的运行,选择不同的运行模式,实 时记录运行数据,以及接入编写的信号发生器信号。同时用户可以方便地通过拖拽来 加入或编辑这些组件。 实验环境中 EE 的组件操作 故障仿真软件LABCAR-PINCONTROL V2.0 为故障仿真箱 ESES5398 的配套软件,具有方便用户使用的 接口,可实现 ES5398 的手动操作,是 ES5398 的重要组成部分,操作界面友好,其操 作界面请参见下图。软件可实现的功能如下:• 创建并管理故障模式,产生 ECU 信号的一系列故障。如氧传感器故障• 简化故障仿真信号的选取• 设置故障产生的时间• 通过点击鼠标来触发故障• 设置多台 ES5398 同时使用• 提供自动化测试的 API 接口等。• 通过 Excel 表格进行故障配置和定义 LABCAR_PINCONTROL 的配置界面 模型方案 燃料电池堆动力学模型ETAS LABCAR-MODEL-FCCAL 是一个 1-D+1-D 的燃料电池堆站模型,该模型包含 1-D 的 燃料电池单体膜模型和 1-D 的双电极及气体通道仿真模型。1-D 的燃料电池单体膜模型 能够对燃料电池膜的内阻,电极之间氧和氢反映生成水的情况进行仿真;1-D 的双电极 及气体通道仿真模型能够仿真双电极间气体在通道内非线性分布的特性,包括温度, 电流,沿电芯堆叠方向的气体压力变化,以及对冰点温度影响等。ETAS LABCAR-MODEL-FCCAL 模型可以考虑为将燃料电池堆沿着气路方向分为多个小模 块,如下图所示。Z 坐标所示方向为气体流动方向,X/Y 坐标表示垂直于膜和气流方向。每一个小模块代表所有燃料电池功能层,包括两个电极板,气路通道,气体扩散层 以及膜。燃料电池模型的采用上述基本架构,在子系统中包括有完整功能层,每个小模块均可对外提供数据接口,同时也能适用于用户的模型扩展要求。 坐标系描述通过燃料电池系统模型 LABCAR-MODEL-FCCAL 的无时间限制的、节点版操作许可证, 客户被授权在主机上执行 LABCAR-MODEL-FCCAL 的代码生成。LABCAR-MODEL-FCCAL 是通过 MATLAB/Simulink 执行的,用户可以打开并修改模型。 这些元件以 S-Functions 的形式提供,如:已编译的动态链接库,不包含源代码。 LABCAR-MODEL-FCCAL 作为 LABCAR 产品家族的一部分, 能够天然支持 LABCAR 网络 HIL 系统仿真应用。也就是说,只要 LABCAR-MODEL-VVTB 和其他 LABCAR 模型可以在 网络中的 RTPCs 上运行,那么它也支持 LABCAR VARIANT MAN-AGEMENT (LVM) 。 功能LABCAR-MODEL-FCCAL 是一个先进燃料电池堆栈模型。该模型包含了一个一维膜模型,能够仿真薄膜电阻、含水量以及电极之间产生的水交换等特性。 除此之外,它使用了空间分布的 双极板与气体通道双 1-D 维度模型,考虑上述两个维 度上的电堆温度、电流和压力变化的非线性特性。此外还特别考虑了汽车会遇到在冰 点温度下工作的情况。LABCAR-MODEL-FCCAL 仿真模型包含:• 单电池模型,并考虑到电流、温度、反应物化学计量数以及膜湿度对电池电压损耗的 影响计算。• 基于一维膜模型的含水量和水交换量的详细计算。• 一维多组分气体通道模型允许为每个电极指定单独的气体成分。• 不同的流场设计仿真。支持内部电池加湿的顺/逆流量设置。• 基于膜温度模型、电池含水量的非线性动态特性和受温度影响的流体性质的实际冷启 动行为。• 考虑气体通道内液态水的积聚和运动的两相水模型。• 具有两种膜类型的默认堆栈参数设置。 传输范围绑定到单一 MAC 地址的节点版许可文件 燃料电池系统动力学模型 LABCAR-MODEL-FC 模型具备完整的燃料电池系统模型结构,该堆站模型的主要目的是 详细计算气路通道的压力分布,电池膜上的水生成量和电堆中水的相变情况。模型根据功能层特性被划分为冷却回路,燃料电池正负极回路模型等。 模型架构描述通过燃料电池系统模型 LABCAR-MODEL-FC 的无时间限制的、节点版操作许可证,客户 被授权在主机上执行 LABCAR-MODEL-FC 的代码生成。LABCAR-MODEL-FC 是通过 MATLAB/Simulink 执行的,用户可以打开并修改模型。这些元件以 S-Functions 的形式提供,如:已编译的动态链接库,不包含源代码。LABCAR-MODEL-FC 可以被集成到虚拟汽车测试平台 LABCAR-MODEL-VVTB 中,以仿真 一辆燃料电池整车。LABCAR-MODEL-FC 作为 LABCAR 产品家族的一部分, 能够天然支持 LABCAR 网络 HIL 系 统仿真应用。也就是说,只要 LABCAR-MODEL-VVTB 和其他 LABCAR 模型可以在网络中 的 RTPCs 上运行,那么它也支持 LABCAR VARIANT MAN-AGEMENT (LVM) 。功能LABCAR-MODEL-FC 仿真模型是一个用于燃料电池控制单元(FCCU)闭环控制测试应用 的燃料电池系统模型,它被用于在汽车环境中对 FCCU 进行测试和验证。 它包含的子系统分别代表一个 1-D PEM 的燃料电池堆、供氢回路、供氧回路和冷却回 路。LABCAR-MODEL-FC 所提供的系统架构根据它的组成回路划分。下图是模型组件的 概述。氧供应系统 氧供应系统包含以下组成部分:• 压缩机• 中冷器• 增湿器• 旁路• 节流通风孔• 排气和进气歧管 氧供应系统 氢供应系统 氢供应系统包含以下组成部分:• 带截止阀的氢罐• 减压器• 氢气喷嘴及中阀• 液态水分离器• 氢循环泵• 排气/排空阀• 排气和进气歧管 冷却回路系统 冷却回路包含以下组成部分:• 电磁阀• 加热器• 散热器• 冷却泵• 排气和进气歧管 冷却液供应系统 绑定到单一 MAC 地址的节点版许可文件 软件兼容性LABCAR-MODEL-FC 支持以下软件版本:• LABCAR-OPERATOR5.4.7,MATLAB/Simulink 2014b 64Bit 如果需要更多信息,请查看 LABCAR-MODEL-FC 的版本注释中的软件兼容性表。 请注意• 安装媒介不包含该许可证,它作为一个单独的项目提供。• 强烈建议用户每年单独采购软件升级维护服务。• 该许可证只允许代码生成。若需要实时运行模型,需要一个实时运行许可证。该许可 证需要单独采购。• 该许可证只允许本机使用,禁止远程访问。• 若要将模型加载到一个 LABCAR-OPERATOR 项目中,需要 MATLAB 和 Simulink 代码。 两者必须单独购买。附加项目• 一年的软件服务协议 (LCM_FC_SRV-ME52) 。• 一个运行时间许可证 (LCM_FC_RT_LIC-MP) 。• 安装媒介 (LCM_FC_PROD) 。• 用于实时仿真的先进二维堆栈模型 (LCM_FCCAL_LIC-MP) 。 ECU 线束设计和制作 在 HIL 系统中需要针对要连接的 ECU 准备连接线束,将 ECU 连接到 LABCAR 的连接器 BOB 面板。线束的设计和制作都是较为复杂的工作,至少为首次使用 ETAS LABCAR 系 统的客户,我们提供工程服务以保证系统调试可以正确进行。 线束的设计需要考虑各个信号类型与 LABCAR 的匹配,要根据信号的功率大小选择合适 的线径,不同信号的抗干扰等等因素也要被考虑在内。在线束设计完成后还需要进行 复查以
  • 赛默飞亮相ISPO SHANGHAI第一届亚洲运动用品与时尚展
    2015年7月3日,中国上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)以“随心畅饮,尽享安心”为参展主题,于7月2日惊艳亮相“ISPO SHANGHAI亚洲运动用品与时尚展”,并在展会上全面展示旗下拥有优异耐用、安全、环保和便捷等特性的乐基因(Nalgene)水杯。赛默飞展位号:N3.419。乐基因水杯完美融合了赛默飞领先科技和绿色理念,在材质、性能、设计、外观等方面精益求精,能够全面满足户外和运动爱好者、城市精英人群以及青少年儿童的不同饮水需求。赛默飞展台以基础白色为主色调,画面简单大气,配上动感的视频,整个区域透出时尚高端的科学气质。水杯展示部分一举突破以往展柜形式,以儿童、 运动和生活三种情景,实景实物呈现了乐基因水杯在各种环境下的出色表现,让消费者更加直观的感受产品的魅力。作为亚太地区领先的运动用品商贸和展示平台,ISPO首次来到上海,其将全方位覆盖极限运动、户外运动、运动时尚等品类。在2015年初举办的ISPO 北京展览会上,赛默飞正式向中国市场推出乐基因水杯。此后,针对不同消费人群以及季节性使用习惯,赛默飞在水杯的设计和颜色上做了很大调整,通过新一批色彩艳丽,搭配新颖的乐基因水杯的推出,让更多消费者的生活因乐基因的陪伴而更加明媚艳丽,热情四射。“作为一家专注于科学仪器的企业,我们非常珍惜和重视此次能够直接面对中国消费者的机会。这款水杯虽然看似构造简单,但却是赛默飞根据实验室用品的高标准打造而成。它可以成为生活中的补水好帮手,从户外探险到运动健身,从日常办公到生活居家,几乎无处不在。”赛默飞中国实验室产品和服务副总裁谭斯其表示,“乐基因水杯在美国已经获得了消费者认可。随着水杯在中国的发布和推广,赛默飞将全力配合一系列线上线下活动,致力让更多本地消费者体验‘随心畅饮,尽享安心’的饮水方式;同时,我们也极力倡导大家多饮水,补充能量,从容应对每一天的挑战!”在美国,赛默飞积极参与了健康组织PHA (Partnership for a Healthier America) 组织的 “Drink up” 公益活动,获得各界人士的大力支持和参与。PHA荣誉主席,美国第一夫人米歇尔﹒奥巴马手持乐基因水杯在白宫举行活动图片来源:公益组织“携手让美国更健康 (Partnership for a Healthier America)”乐基因为什么与众不同乐基因水杯坚固耐用,相较于一般水杯,它瓶壁更厚,更不容易损坏。在安全性方面,乐基因水杯瓶口和瓶盖内部采用连续和带直肩的半锯齿状螺纹设计,能够在表面实现更大接触面积, 并在不发生内部螺纹剥离的情况下产生更大的扣紧力。水杯的瓶盖与瓶身契合完美。密封环直接注入杯盖当中,无需使用单独衬垫,避免出现磨损、皱折、脱落或者发生渗漏。在环保性方面,乐基因水杯采用100%原生树脂生产。这种材质获得FDA(美国食品与药品管理局)认可且不含BPA(双酚A)。除FDA批准的颜料之外,水杯不添加任何其他物质。所有出厂产品都严格按照FDA食品与饮料接触方面相关规定进行检测。水杯瓶底弧形内角易于清洁。塑注的塑料树脂编码,可用于水杯的最后回收。-----------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 新品发布——联合嘉利MINI EKV210II运动粘度测定仪
    联合嘉利新品发布 MINI EKV210II运动粘度测定仪本次新品创新点 一、仪器具有高低温报警,超过控温标准要求,会自动报警并禁止测试防止误操作。在超过安全温度有自动切断加热功能。二、 仪器采用计算机加ARM单片机的硬件系统,利用单片机实现恒温控制和粘度的测试,实时性高,使测试结果更精准,采用计算机作为总的人机交互界面,使仪器更可靠,不仅运行速度快,而且数据存储量大。三、运动粘度测量范围宽,每个粘度计均采用三个检测泡设计,具有100倍的粘度测量范围,仪器包括2支粘度计,每支粘度计在出厂前都利用美国凯能运动粘度标准油进行标定,仪器系统软件本身也有标定功能,用户也可以利用标准油进行标定,使检测范围更宽。 一、技术参数:执行标准:GB /T265、ISO3104、ASTM D445 适用范围:透明及不透明液体石油产品的运动粘度 试样数:2X12个试样 工作电压:AC 220V,50HZ 整机功率:1500W 检测方式:光电管检测,时间检测精度0.01秒 或热敏电阻检测,时间检测精度0.01秒(可适合150℃)测度范围:0.3~10000mm2/s 冷却方式:以无水乙醇为冷媒介质 测温元件:PT100 工作温度:20℃~100℃(可扩展为150℃) 存储温度:-20℃~50℃ 重量:20kg 外形尺寸:500 ×360 ×800二、仪器功能:MINI EKV210II全自动运动粘度测定仪设计、制造、检验遵守GB/T265,ISO3104,ASTM D445等标准。适用于测量透明及不透明液体(包括原油轻重质燃料油润滑油添加剂等)的运动粘度。仪器不需人员随机操作,操作人员在放好油样后,设置油样编号和位置,启动测试,即可全自动完成自动进样、测试。操作界面简便,系统具有自检自诊,故障预报等优点。1、恒温浴缸能够保持恒温不变, 温度范围为20-100℃;温度稳定性±0.01℃;分辨率 0.01℃。采用10#甲基硅油为浴液介质,可以保持较长时间的使用,不用更换。2、仪器由测试主机、电脑部分组成;仪器主要部件均采用进口材料,关键部件均采用进口器件,使仪器更稳定可靠。3、仪器采用计算机Windows7操作系统,全中文操作界面(可换成英文或俄文界面),方便用户操作,提供多种通讯接口(RS-232、USB和RJ-45等),可连接LIMS系统,可连接局域网浏览Internet。4、 MINIEKV210II清洗过程将粘度管和试样杯全部清洗干净并吹干,完全不需要人工清洗或吹干。三、仪器主要特点1.单恒温浴,双粘度计设计,恒温范围:20℃~150℃,全范围内可调,毛细管常数有六位小数,如下图 2. 动粘度测量范围宽,每个粘度计均采用三个检测泡设计,具有100倍的粘度测量范围 3. 每支粘度计在出厂前都利用美国凯能运动粘度标准油进行标定,且有计量证书,系统具有自动标定功能。 4. 检测适用范围宽,一闪性可以循环检测24个样 5.每个托盘有预热功能,最高可以预热到70℃,全自动:自动寻样-自动抽样-自动恒温浸渍-自动粘度测试-自动清洗-自动吹干 如您对于 运动粘度仪 有更多想了解的仪器使用维护等内容,可通过仪器信息网 400-860-5168转3044 和我们取得联系
  • 新型天然气燃料电池问世 取暖供能两不误
    新型燃料电池或可取代传统供电,工作产生的高温也能够为家庭所用。   无论你生活在地球上的哪个地方,你的家里或许都需要电和天然气供应。每一种的费用都取决于你每年的用量和价钱波动。但是如果有一个小盒子能够以固定的价格取代它们,为你提供家庭所需的能量会怎样呢?这就是费劳恩霍夫研究所设计的一种以天然气为基础的新燃料电池试图达到的目标。   这种固体燃料电池是由许多组合电池组成的,每一块电池都只有一张CD大小。当你打开它的时候,它能达到高达850摄氏度的高温,并且能有效的使用天然气来产生电能。它产生的电能足以为一个四口之家提供日常所需。   即使是这种燃料电池的温度如此之高,安装在家中墙壁上也是非常安全的。事实上,150个专门设计的取暖原型设备已经在欧洲开始使用。这种燃料电池的价格尚未进行讨论,但是它将依靠高效和廉价进行市场推广。   它的工作高温使它的设计极其简化,因此它的产能非常廉价。由于在设计中并未使用贵重材料,因此成本将进一步降低。它的静音效果使它能够安装在屋内的任何位置,而且能够连接到现有的天然气管道,它能够将天然气转变成富含氢的气体为燃料电池所用。   虽然这种燃料电池依靠天然气供应,但是它将取代你的电力供应商。因此这就会缩减你的家庭开支,而且天然气费用也变得更容易规划。而且不要忘记它所产生的高温能够成为家庭取暖和烧水的良好工具,而且是免费的副产品。
  • 盛泰仪器全自动运动粘度计助力新奥石墨烯技术研发团队打造高端节能复合材料
    盛泰仪器全自动运动粘度计助力新奥石墨烯技术研发团队打造高端节能复合材料 新奥石墨烯技术有限公司(以下简称“公司”)是新奥集团旗下的直属公司,总部位于河北廊坊。公司在廊坊和鄂尔多斯建有石墨烯、碳纳米管、复合材料的研发及生产基地,获批河北省碳纳米材料技术创新中心,并设立了江苏新奥碳纳米材料应用技术研究院。 公司以市场为导向,打造了一支具有强大技术开发和产业化能力的核心科研团队。 新奥石墨烯技术研发团队经过市场调研和国外品牌全方位对比 对盛泰仪器ST204系列全自动运动粘度计的质量、性能、稳定性非常满意。2021年07月18日,盛泰仪器技术工程师前往新奥石墨烯进行安装调试 工程师凭借丰富的经验,对全自动运动粘度计的结构、原理以及操作方法、维护保养、仪器运行过程中的注意事项进行了多方面详细培训,并分享了设备在行业应用中的经典案例。现场实验人员也依次使用ST204系列运动粘度计进行了实验操作和数据分析,对仪器的质量、性能、稳定性、应用、软件操作和数据分析都非常满意。ST204系列全自动运动粘度仪自动模式具有自动恒温,自动抽提,自动计时,自动计算,自动打印,自动清洗,自动烘干等一系列全自动功能,使用时只需一次注样点击启动即可完成试验。ST204系列全自动运动粘度计可在许多不同行业中多种应用包含:药品:混悬剂,药膏,明胶和糖浆建筑行业材料:水泥,密封剂,涂料和砂浆。石油和天然气工业材料:燃料油,钻井液,沥青等造纸涂料,油漆,油墨,陶瓷,洗涤剂,粘合剂和树脂的化学药品等洗发水,睫毛膏,指甲油,凝胶,乳液,洗发水,面霜等化妆品和个人护理产品含有海藻,淀粉,饮料,果酱,乳制品和巧克力食物等 十多年来,盛泰仪器始终秉承以“顾客至上”为宗旨,以“价格合理、诚实守信”为经营方针。坚持技术创新,拥有丰富的仪器知识的技术团队和经验丰富、细心周到的售后服务团队。
  • 赫施曼助力胶鞋 、运动鞋N-甲基吡咯烷酮含量的测定
    胶鞋和运动鞋是我们日常生活中常见的鞋子类型,在生产过程中需要考虑到其材料成分及安全性。N-甲基吡咯烷酮是一种化学物质,对人体有一定的危害,因此需要进行检测和限制其含量。根据GB/T 38349-2019,测定胶鞋和运动鞋中N-甲基吡咯烷酮的方法是高效液相色谱法。实验涉及标准溶液的配置:N-甲基吡略烷酮标准储备溶液,20mg/L:用Miragen电动移液器移取0.5mL浓度为1000mg/L的N-甲基吡咯烷酮标准溶液至25mL容量瓶中,用甲醇(色谱纯)定容至刻度,得到20mg/L的标准储备溶液。N-甲基吡咯烷酮标准工作溶液:采用10mL规格的Miragen电动移液器,单吸多排模式设置5个体积分别为0.25、0.5、1.0、2.5和5mL,然后按分液键,将5个体积的N-甲基毗咯烷酮标准储备溶液(20mg/L)分别加入到10mL容量瓶中,然后用甲醇(色谱纯)定容至刻度,得到浓度分别为0.5、1、2、5和10mg/L标准工作溶液,与20mg/L的N-甲基吡咯烷酮标准储备液组成六个不同浓度的标准工作溶液。 实验室移取小体积(几微升到10毫升)的液体,一般采用移液器。Miragen电动移液器,数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。Miragen电动移液器可给电机多段信号,从而达到吸液和排液分多次且各体积独立可调。比如上面的标准溶液的移取,就可设置单吸多排,单次吸取9.25mL,分5次排液(0.25、0.5、1.0、2.5和5mL),程序可存储和调用,非常便捷。
  • 赛默飞电镜Apreo2在质子交换膜燃料电池中的应用
    燃料电池作为一种利用氢气或醇类的发电设备,通过电化学反应将氢气或醇类的化学能直接转化为电能,不受卡诺循环(Carnot cycle)的限制,具有高效和清洁的特点,在新能源领域受到广泛的关注,并在航空航天、运载交通和便携移动设备中具有良好的应用前景。 燃料电池按照电解质和工作温度的不同,可以分为:质子交换膜燃料电池(Proton exchange membrane fuel cells,PEMFC)、固体氧化物燃料电池(Solid oxide fuel cell,SOFC)、熔融碳酸盐燃料电池(Molten carbonate fuel cell,MCFC)、磷酸盐燃料电池(Phosphoric fuel cell,PAFC)和碱性燃料电池(Alkaline fuel cell,AFC)等。其中,PEMFC被看作是新能源车辆领域中具有发展前景的动力源。图1 燃料电池的分类及技术状态 PEMFC的发展可以追溯到20世纪60年代,美国国家航空航天局(NASA)委托美国通用电器公司(GE)研制载人航天器的电池系统。但受当时技术的限制,PEMFC采用的聚苯乙烯磺酸膜在服役时易于降解,导致电池寿命很短。GE随后将电池的电解质膜更换为杜邦公司(Du Pont)的全氟磺酸膜(Nafion)部分解决了上述问题,但是阿波罗(Appollo)登月飞船却搭载了另一类燃料电池——AFC。受此挫折之后,PEMFC技术的研发一直处于停滞状态。 直到 1983年,加拿大巴拉德动力公司(Ballard Power System)在加拿大国防部资助下重启 PEMFC的研发。随着材料科学和催化技术的发展,PEMFC技术取得了重大突破。铂/碳催化剂取代纯铂黑,并且实现了电极的立体化,即阴极、阳极和膜三合一组成膜电极组件(Membrane electrode assembly,MEA),降低了电极电阻,增加了铂的利用率。20世纪90年代以后,电化学催化还原法和溅射法等薄膜电极的制备技术进一步发展,使膜电极铂载量大幅降低。性能的提升和成本的下降也促使 PEMFC逐渐从军用转为民用图2 燃料电池汽车历史 质子交换膜燃料电池(PEMFC)由阳极、质子交换膜、阴极组成,利用水电解的逆反应,连续地将氢气和氧气通过化学反应直接转化为电力,并且可以通过多个串联来满足电压需求。 PEMFC发电的基本原理:氢气进入燃料电池的阳极流道,氢分子在阳极催化剂的作用下达到 60℃左右后开始被离解成为氢质子和电子,氢质子穿过燃料电池的质子交换膜向阴极方向运动,因电子无法穿过质子交换膜,所以通过另一种电导体流向阴极;在燃料电池的阴极流道中通入氧气(空气),氧气在阴极催化剂作用下离解成氧原子,与通过外部电导体流向阴极的电子和穿过质子交换膜的氢质子结合生成纯净水,完成电化学反应。图3 质子交换膜燃料电池(PEMFC)工作原理 膜电极(Membrane Electrode Assembly, MEA)是燃料电池发电的关键核心部件。膜电极由质子交换膜(PEM)、膜两侧的催化层(CL)和气体扩散层(GDL)组成,燃料电池的电化学反应发生在膜电极中。质子交换膜的功能是传递质子,同时隔离燃料与氧化剂。目前常见的膜材料是全氟磺酸质子交换膜,代表厂家Gore公司的Gore Select增强型质子交换膜、杜邦公司的Nafion系列。 催化剂主要控制电极上氢和氧的反应过程,是影响电池活化极化的主要因素。目前氢燃料电池的催化剂主要为三个大类:铂(Pt)催化剂、低铂催化剂和非铂催化剂。Pt作为催化剂可以吸附氢气分子促成离解,是目前需要商用的;但Pt稀缺性强,我国储量也不丰富,减少铂基催化剂用量是降低燃料电池系统商用成本的重要途径。 气体扩散层的主要作用是支撑催化层,传递反应气体与产物,并传导电流。基材通常为多孔导电的材质,如炭纸、炭布,且用PTFE等进行憎水处理构成气体通道。目前市场上商业化的气体扩散层基材供应商主要包括日本Toray、德国SGL与Freudenberg、加拿大Ballard等。 三位一体检测系统是 Apreo 2 扫描电镜独特的镜筒内检测系统。它由三个探测器组成:两个极靴内探测器(T1、T2)和一个 镜筒内探测器(T3)。这一独特的系统可提供燃料电池膜电极MEA成分、形貌和表面特征等不同层次的详细信息。 图4 赛默飞电镜及三位一体检测系统示意图图5 膜电极MEA示意图对其对应的显微结构 MEA的结构设计和制备工艺技术是燃料电池研究的关键技术,它决定了燃料电池的工作性能。 另外,质子交换膜PEM是燃料电池的核心部件。它的性能高度依赖于燃料电池电堆的堆叠和系统设计,尤其是PEM所经受的工作条件。这项看似微小的技术却是关键所在。燃料电池在实际应用环境中的耐久性是另一个关键性能因素。根据美国能源部的规定,在实际环境中行驶的条件下,燃料电池使用寿命应达到约5,000小时。为了达到这些目标,PEM设计必须考虑两种类型的耐久性,机械耐久性和化学耐久性。 机械耐久性:工作过程中的相对湿度循环会导致PEM的机械性能衰减。相对湿度的升高和降低会引起PEM膨胀和收缩,从而导致MEA中出现裂纹和孔洞。久而久之,这会造成气体渗透增加以及效率损失,并导致燃料电池电堆发生灾难性故障。通常,未经增强的PEM会通过增加厚度来提升耐久性,导致电导率降低,因此功率密度也更低。业内已广泛认可,化学稳定性优异的ePTFE增强型质子交换膜(全氟磺酸树脂/聚四氟乙烯/全氟磺酸树脂,三明治结构)可显著减少这种面内膨胀,提高RH循环耐久性,并延长电池电堆的使用寿命。图6 膜电极的横截面显微结构图,ePTFE增强型质子交换膜(全氟磺酸树脂/聚四氟乙烯/全氟磺酸树脂) 化学耐久性: 燃料电池需要在恶劣的化学环境中工作。燃料电池工作过程中产生的有害自由基会与离子聚合物 (全氟磺酸树脂是一种离子聚合物)发生反应,造成离子聚合物性能下降,这种性能衰减会造成燃料电池性能的持续下降,增加气体渗透,并导致PEM和燃料电池失效。PEM的化学耐久性不仅受PEM的自身属性影响,还受PEM的工作环境影响。减少PEM厚度有助于改善高温下的性能。因此,对不同结构层厚度的准确测量,就非常重要。 催化层中的催化组分为催化剂,目前Pt/C载体型催化剂是PEMFC常用的催化剂,由纳米级的Pt颗粒(3-5nm)和支撑这些Pt 颗粒的大比表面积活性炭(20-30nm)构成。质子交换膜燃料电池商业化进程中的主要阻碍之一是价格高昂的贵金属催化剂,从而大量的研究工作集中于开发新型催化剂以降低铂载量和增强催化剂的耐久性。催化剂的合成方法决定催化剂的结构、表面形貌和粒径分布等,这也将直接影响催化剂的性能。图7 膜电极组催化层的纳米pt催化剂,3-5nm:(左图)T1探测器检测,(右图)T3探测器检测图8 膜电极组催化层的纳米pt催化剂,3-5nm:VeriosTLD 探测器检测 50万倍和150万倍(底片显示) PEMFC的催化层是由各种不同尺度的颗粒和孔组成的,其内部的物理化学过程十分复杂,包括电化学反应、电子的迁移、氢气和氧气的扩散、质子的迁移和扩散,还有水的迁移、扩散、渗透、蒸发和液化,这一切的实现都离不开催化层的微孔结构。 催化层是由黏结剂( 如Nafion 或PTFE) 黏结起来的 Pt /C 颗粒的团聚体组成的,各颗粒之间有许多的微孔。Watanabe 等将催化层内的孔分为两大类: 一类是颗粒团聚体内部各颗粒之间较小的空隙,被称为主孔(孔径小于100nm的孔属于主孔) 另一类则是各颗粒团聚体之间的空隙,被称为次孔(大于100nm 的孔属于次孔)1。催化层内的电催化反应主要发生在主孔内,而作为黏结剂的PTFE更容易进入次孔,次孔是气体和水传输的主要通道。 备注1:Shin 等实验发现,催化层中只有孔径在70nm 以下的孔才不会被聚合物阻塞住,表明其主、次孔的分界为 70nm;Uchida 等认为主、次孔孔径分界为 40nm,由于全氟磺酸树脂和PTFE-C只会存在于次孔中。 催化层的结构,主要指的就是其微孔结构,由于主孔和次孔的不同作用,不同的微孔总容量和主、次孔容量比将导致迥异的电池性能。根据主、次孔理论,主孔较多时,可增加活化反应位,有利于减少催化层内的活化损失 次孔较多时,有利于质量传输,可减少质量传输损失。因此,维持足够数量的孔隙率和较好的主、次孔比例成为了研究催化层结构优化所要关注的重点。赛默飞电镜的孔径分布软件可满足此需求。图9 催化层结构孔隙率检测 目前,大多数 MEA 的催化层都是由一定比例的电催化剂( 如 Pt /C) 和 Nafion 组成。在常用 MEA中Nafion 在催化层中的作用有以下 3点: ( 1) 将电化学反应活性区扩大延伸至催化层内部,并有效传导质子 ( 2)黏结作用,保持催化层的机械稳定性 ( 3) Nafion上的亲水基团有保湿作用,防止膜脱水。 尽管在催化层中加入一定量的 Nafion 能有效提高催化剂的利用率,但是催化层中 Nafion含量若过多,不仅会大量覆盖 Pt /C 颗粒,阻碍电子传导,还可能阻塞催化层内部的微型孔,导致内部水和反应气体的传输通道受阻,这样会大大减弱电池的性能,尤其是在高电流密度时的性能。因此关于催化层中 Nafion 与催化剂的比例问题,以及如何识别三相1,一直受到研究者们的广泛关注。 备注1:在PEMFC中,位于三相区(3-phase region)的Pt颗粒会参与反应,通常三相区表示载体C、催化剂Pt、离聚物(Ionomer,如全氟磺酸)图10 催化层离聚物与三相反应区。 Apreo 2可以快速识别离聚物/C、Pt/C及三相区 PEMFC的普及和商业化目前还受电池性能和价格的影响,MEA催化层结构的不断改善也是PEMFC 实现商业化的有效途径之一。参考资料1.Warshay M, Prokopius PR. The fuel cell in space: yesterday, today and tomorrow [J]. Journal of Power Sources, 1990, 29: 193-200.2.Steele BCH, Heinzel A. Materials for fuel-cell technologies [J]. Nature, 2001, 414(6861):3.Sharaf OZ, Orhan MF. An overview of fuel cell technology: fundamentals and applications [J]. Renewable and Sustainable Energy Reviews, 2014, 32: 810-853.4.苏凯华. 新型质子交换膜燃料电池催化层结构及其性能研究 [D]. 上海: 上海交通大学, 2015.5. 王诚, 王树博, 张剑波, 等. 车用质子交换膜燃料电池材料部件 [J]. 化学进展, 20156. 汪嘉澍, 潘国顺, 郭丹. 质子交换膜燃料电池膜电极组催化层结构 [J]. 化学进展, 2012, 24(10): 1906-19137. Kim K H, Lee K Y, Kim H J, et al. The effects of Nafion® ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method[J]. International Journal of Hydrogen Energy, 2010, 35(5): 2119-2126.8. Uchida M, Aoyama Y, Eda N, et al. Investigation of themicrostructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE‐loaded carbon on the catalyst layer of polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 1995, 142(12): 4143.9. Curtin D E, Lousenberg R D, Henry T J, et al. Advanced materials for improved PEMFC performance and life[J]. Journal of power Sources, 2004, 131(1-2): 41-48.10. Sharma S, Pollet B G. Support materials for PEMFC and DMFC electrocatalysts—A review[J]. Journal of Power Sources, 2012, 208: 96-119.11. Proton exchange membrane fuel cells: materials properties and performance[M]. CRC press, 2009.
  • 北京博赛德科技有限公司汽车用燃料氢气痕量杂质分析解决方案上市了!
    北京博赛德依据《质子交换膜燃料电池汽车用燃料氢气》(GB/T37244-2018)的要求及氢气中杂质实际分析中的难点和常见问题,推出了《汽车用燃料氢气痕量杂质分析解决方案》,该解决方案主要内容包括:BCT9700D动态稀释仪、BCT9900H氢能源杂质分析仪及后续分离检测系统。方案可实现单针进样分析汽车用燃料氢气中的硫化物、甲醛、甲酸等各目标组分检出限均低于其标准限值1个数量级以上。检出限低、性能稳定、准确度高精密度均小于10%,准确度均在90%-110%之间,优秀的检出限、精密度、准确度水平可以准确反映氢气中杂质的含量,有利于评估杂质对燃料电池的影响。BCT9900H氢能源电池杂质预浓缩仪北京博赛德基于近二十年VOCs检测分析经验,和中国石化石油化工科学研究院强强合作,共同开发了BCT9900H氢能源电池杂质分析仪。整套系统结合了EPATO15和HJ759标准方法对浓缩系统硬件及质控要求,同时针对氢气中杂质组分的特点和氢燃料电池行业的特有要求,在常规预浓缩仪的基础上进行了硬件升级改造,让捕集系统更加适合杂质的痕量分析,并结合开发优化后的专用氢杂质分析方法,可实现12种杂质组分的样品检测分析。产品特点专用捕集阱专用的捕集阱设计,克服了填料阱易残留、解析速度慢、载气流速大(需要分流进样)、被测物质易分解(如甲酸)等问题体积计量准确通过EVC电子体积控制,进样精度≤1ml,且可实现不同基质的样品体积测量,如氢气基质等,体积计量准确,精密度高系统无吸附样品流路全部经过惰性化处理,并经过严格的惰性测试,可避免吸附目标物质,保证高回收率避免交叉污染数控阀设计可实现将阀芯旋转到任意位置,能完全隔离捕集阱和样品,更好的避免了交叉污染适用性强测试浓度范围可达0.01ppb-ppm级别,适用于氢气成品中痕量杂质分析、氢气半成品中杂质分析应用范围:分析汽车用燃料氢气中的硫化物、甲醛、甲酸等组分检出限低:检出限低于国家标准中最大允许浓度限值的1个数量级以上BCT9700D动态稀释仪BCT9700D动态稀释仪基于理想气体状态方程的原理,采用限流器结合电子压力控制器(EPC)的方式,对气体流量进行控制和调节,实现对样品/标气的稀释。BCT9700D动态稀释仪BCT9700D可实现标气/样品稀释后直接进样分析,为气体质量检测、现场样品检测、仪器标定与质控等工作的准确性提供保障。产品特点采用动态稀释的原理,稀释后的样品/标气可直接进行分析,无需存储容器,降低目标组分的反应机会;采用限流器结合EPC进行流量控制,不使用质量流量计,避免交叉污染,稀释精度高,结果更准确;稀释倍数范围大,单次最大稀释倍数可达2000倍,可显著增加被测样品的浓度范围;整个稀释系统无需庞大的混合腔体,且气体经过的所有管线均经过惰性涂覆,避免目标组分在稀释过程中产生吸附和交叉污染;仪器内置加热单元和温度控制器,系统温度稳定,仪器稳定性更高。应用案例更多详情,欢迎来电垂询!
  • 【创新方案】氢燃料电池用氢中痕量硫化物杂质分析
    加拿大ASD公司推出的痕量硫化物应用方案得到了强烈的市场反响。近期,我们升级了痕量硫化物专用气相色谱分析系统KA8000plus-S,该系统重点用于超痕量水平检测氢燃料电池用氢中的所有硫基化合物,具有无需预浓缩,直接探峰1~5ppb,检测限小于0.5ppb(以重复性计),高稳定性、高灵敏度等优势,为痕量硫化物分析带来全新的解决方案。硫化物专用气相色谱KA8000plus-S该系统采用100%ASD自主技术及相关设备,其中增强型等离子体放电检测器Epd,可用于所有检测,包括已知难以分析的硫化合物和甲醛。与传统的SCD和FPD/PFPD相比,Epd技术是固态的,仅需要惰性的载气即可运行。对于包括H2S在内的硫成分,它也不需要预浓缩,直接测量样品浓度1~5ppb, 检测限案例:西南化工研究院实验室KA8000plus-S系统---氢燃料电池用氢质量分析方案特点 直接探峰1~5ppb,检测限 无需样品预浓缩 操作仪器不需要燃料气,只需氦气即可 高稳定性、高灵敏度方案基本配置◆ KA8000plus-S硫化物专用气相色谱仪 包括:SePdd 增强型等离子体放电检测器 PLSV 惰性6通阀+2ml惰性定量环◆ ASDPure载气体纯化器(出口杂质方案应用详情请联系:fzhu@asdevices.cn
  • 美国Gamry电化学亮相中国国际氢能与燃料电池技术应用展览
    2017年8月28日-30日,由中国机械工业联合会、全国氢能标准化技术委员会、全国燃料电池与液流电池标准化技术委员会共同主办的“2017年中国国际氢能与燃料电池技术应用展览暨产业发展大会”,在北京国家会议中心隆重召开。 本次展会吸引了来自全球十几个国家共六十多家参展商,涵盖了制氢、储运氢相关基础设施企业、燃料电池系统及关键部件、材料、测试装置等领域,是氢能与燃料电池全行业的第一次集中展示。 美国Gamry电化学是世界电化学工作站的领先制造者,有着30年历史。从单通道到多通道电化学工作站,在全球都已得到广泛应用。从线路板的设计,元器件的选择,信号的处理,甚至到智能导线,Gamry一致都追求电化学仪器的最佳性能。 本次展览会上,Gamry展出了Reference3000、Interface5000等一系列电化学工作站。 Reference3000电化学工作站:Gamry Reference 3000 电化学工作站结合Booster电流放大器,将仪器最大电流扩展至30A,结合多台Booster,还可以扩展至60、90、120或180A。该系统擅长快速大电流脉冲,以及超低阻抗的准确测量。用户可以方便地进行电池动态应力测试、放电过程中的交流阻抗测试等实验,广泛应用于各种电池、燃料电池、超级电容器、电池组等领域的测试和研究。交流阻抗谱应用于越来越多的电化学研究领域,该仪器具有优越超前的准确性、精度及速度,极低的噪声和干扰,可准确测量1μ?以下的超低阻抗样品。 Interface5000电化学工作站:l 专为电池研究打造l 高达5A的大电流设计l 超低阻抗测量,低至微欧l 同步跟踪阴阳极电压及阻抗 Interface 5000系列电化学工作站具有测试电流大,抗噪声性能好等特点,最大电流达到5A,适合功率略大的能量转换体系测试使用。
  • 新《运动饮料》国家标准从今日起正式实施
    经过多年发展,中国饮料业已经成为一个成熟的行业,碳酸类、果蔬汁类、瓶装水类、牛奶/酸奶类、即饮茶类、特殊用途饮料(功能饮料)六种类型的饮料构成饮料市场的基本格局。   运动饮料新国标今起实施 助推功能饮料发展   20世纪90年代以来,中国饮料业的发展更是历经了三个阶段:第一阶段始于90年代初期,以冰茶为代表产品 第二阶段为90年代末期,以能量饮料、运动饮料为代表产品 第三阶段是进入21世纪以后,功能性饮料成为人们追求的时尚。   运动饮料市场前景广阔 但鱼龙混杂,亟待新标准规范   能量的补充在体育运动中是必不可少的,特别是水的补充。所以这是一个很大的市场。目前虽然我国体育人口和发达国家相比还有很大的差距,但是我国的人口多,而且随着健康意识和人民消费水平的提高。我国运动人口绝对数料和相对数量都在不断的增长,运动饮料的市场前景自然还非常可观。   目前,运动饮料的主要市场是在北美和亚太地区。在美国,运动饮料占整个软饮料48%的市场份额 在中国,运动饮料占功能饮料市场份额的一半。2005年运动饮料中国市场的销售额居亚太领先地位。   近年来,中国饮料企业的实力在不断加强,居民消费能力也在不断提高,尤其是乡镇居民的消费能力的提升,会对饮料行业的增长有很大的推进作用。随着人们健康意识的提高,功能饮料需要赋予更多健康功能的概念进去。同时,国内功能保健饮料市场空间非常大,但现有的产品还不是很多,且价格普遍较高,存在市场进入的机会。因此,运动饮料仍然是功能饮料的主要产品,中国市场上运动饮料发展也会很快,运动饮料的发展更是空间巨大。   虽然中国的运动饮料市场容量很大,发展前景可观,但由于运动饮料是近两三年火起来的饮料品种,老的标准对于更多新型运动饮料产品的出现没有充分预见,门槛偏低,很多条款已经不能适应实际情况。   运动饮料新国标12月1日起正式实施   为此,《运动饮料》新修订的国家标准从今日起正式实施,新标准修订了运动饮料的定义,删除钙、镁指标规定等。   新国标中,运动饮料定义为“营养素及其含量能适应运动或体力活动人群的生理特点,能为机体补充水分、电解质和能量,可被迅速吸收的饮料”,定义首次强调运动饮料被机体迅速吸收的特点。   同时,新国标还取消了产品分类、对净含量的要求和“国际奥委会禁用物质”的附录。运动饮料是功能饮料的一种,功能饮料是指通过调整饮料中天然营养素的成分和含量比例,以适应某些特殊人群营养需要的饮品,主要包括运动饮料、营养素饮料和其他特殊用途饮料三类。近年来,我国功能饮料市场潜力巨大,但是由于缺乏行业标准,功能饮料的发展还面临困难。   运动饮料新国标将助推功能饮料发展   目前,功能饮料市场格局比较纷乱,而食品安全也得不到保障,但是市场上也涌现出“脉动”、“激活”、“佳得乐”、“维体”等这样的品牌。随着《运动饮料国家标准》的实施,有利于提高功能饮料的整体市场潜力,也有助于提高企业实力。   中投顾问食品行业首席研究员陈晨认为,新的《运动饮料国家标准》的实施将在一定程度上加快行业发展的步伐,同时也将加快行业整合的速度,在一定程度上有利于行业健康、有序的发展。同时,新国家标准的实施将为运动型饮料今后的发展提供政策上的便利。   总之,消费上认识的不足、运动饮料定义模糊、市场的无序混乱,使前几年该饮料市场发展很不均衡,很多商家都不愿过多进入这块市场。新修订运动饮料国家标准将有效解决这些不利的因素,这将极大的鼓舞了饮料企业大力进军这块市场的决心。
  • 科学家首次拍摄到电子运动系列照片
    运用目前最先进的激光技术,人类终于首次拍摄到了电子运动的照片。   一个欧洲研究小组首次成功使用阿秒激光脉冲观测分子里的电子运动。相关研究发表在6月10日出版的《自然》杂志上。   为理解化学反应,科学家必须知道分子中电子的行为。但由于电子运动速度太快,一直以来,观测电子始终遭遇技术瓶颈。现在,一个由多国成员组成的欧洲研究小组在阿秒激光脉冲的帮助下攻克了这一难题。   20世纪80年代以来,科学家借助飞秒激光的帮助研究分子和原子(1飞秒=10-15秒) 然而,飞秒激光可以追踪到原子和分子的运动,却跟不上电子的运动。而1阿秒是10-18秒,在1阿秒内光只走不到百万分之一毫米,也只有阿秒级激光才能“赶上”分子内的电子。为产生这样短的激光脉冲,物理学家付出了巨大的努力,直到2001年,研究人员才首次成功研发出脉冲长度为250阿秒的激光脉冲。现在,科学家终于成功用阿秒激光拍摄出了分子内“电子运动”的系列照片。   物理学家们最先研究的是氢分子,这是两个质子和两个电子构成的最简单的分子结构。研究人员先用一个阿秒激光脉冲照射氢分子,使一个电子从分子中删除,分子被电离 然后再用红外激光束将其剪为两部分,这样就可以观察到两个部分的电荷分配情况。因为缺少一个电子,剪切后一部分呈中性,另一部分带正电,剩余的电子也就包含在了中性部分里,这就给研究人员有针对性地观测电子运动提供了可能。参与研究的马克斯-玻恩非线性光学和光谱短脉冲研究所(MBI)主任马克弗拉肯教授说:“我们的实验首次证明,通过阿秒激光我们的确有了能够观察分子中电子运动的能力。”   尽管欧洲团队的阿秒激光实验给科学家们带来了惊喜,但为了能更好地阐明他们的测量,马德里大学的一个理论研究小组又加入了该项目。他们花了150万小时的电脑计算时间,带来了全新的发现。这些计算结果表明,该问题的复杂性远远大于以前的设想。研究人员表示:“我们还远没有解决问题,正如原先我们认为的,我们只打开一扇门,整个项目实际上会更加重要和有趣。”(李山)
  • 坛墨质检第二届员工趣味运动会完美举办
    五月的北京,春的味道还未消散,初夏却迎面扑来,树上的叶子如同用绿色渲染那般,郁郁葱葱,把北京装扮得青枝绿叶。 “超越对手,超越自我”,在这个初夏,北京坛墨质检公司迎来了第二届趣味运动会,本届趣味运动会的欢乐声激情的飞扬在北京坛墨质检公司的每个角落,每一名员工都洋溢着豪情欢笑和无尽的骄傲,他们要在运动会充分展现自我,发挥出自己的优势。 在美丽老板的带领下,增进了各部门之间的交流,提供了一个增进员工间友谊和磨练员工意志的桥梁。 北京坛墨质检科技有限公司 董事长 方燕飞坛墨质检全体员工合影本届趣味运动会全员踊跃参与,分为4个参赛团队。北京坛墨质检公司在运动会中设置了10类比赛项目,分别有:心心相印、横行天下、背人接力运水、纸衣往返接力、拔河比赛、向后立定跳远、集体跳长绳、自行车慢骑、踢毽子、男子职业篮球比赛。心心相印 横行天下 10人一组,充分考验团队协作能力,最终由综合办夺得第一名。 背人接力运水 在比赛的过程中增强了部门的凝聚力,员工们凭借自己的实力和团队协作的精神,赛出了风格赛出了水平,最终由实验室部门获取了冠军。 纸衣往返接力 拔河比赛 在拔河比赛的过程中,看到了员工们充分发挥出自己的真实水平,同时也体验到了运动的快乐,仿佛找回了自己童贞时缺失的乐趣。最终销售部成为了最后的赢家。 向后立定跳远 每一位员工在比赛中激发了自己运动的潜能,以致达到自己的最佳成绩。可以看到员工们细心的为运动员测量成绩,充分培养了员工的规则意识。 集体跳长绳 一个充分验证员工们团结合作的项目,在过程中,运动员全力以赴。 自行车慢骑 展现员工们平衡力的一面。通过部门之间的比赛较量,实验室部成为了胜利者。 踢毽子 在漂亮的裁判员引导下,结束了踢毽子的比赛,看到拿到奖品的销售部是多么的喜悦。 男子职业篮球比赛 多么精彩的大灌篮,由于比赛非常激烈,过程中一位运动员腿部抽筋,大家一拥而上,帮助运动员缓解伤势,即使中途受伤,也无法阻挡夺冠的坚定意愿。最终,实验室获得最终成功的喜悦。 本届趣味运动接近了尾声,一些小朋友前来助威,天真无邪的笑容,如同看到了坛墨质检朝气蓬勃的未来。 趣味运动会多了一份趣味,多了一份童真,让员工们体验了运动的快乐、竞争的乐趣、参与的欣慰,培养了规则意识及协作精神,激发了运动潜能,不仅是对员工心里素质、身体素质和体育运动水平的检阅,也是对组织纪律性和精神风貌的检阅。
  • 北分瑞利成功召开2013年职工运动会
    2013年北分瑞利职工运动会经过3个月的精心筹备,于5月26日上午在海淀区台头中心小学如期开幕了。北控集团工会副主席、京仪集团党委副书记、工会主席张华,京仪集团党委工作部副部长高巍,京仪集团工会干事田义刚出席了运动会开幕式。   本次职工运动会径赛设100米、400米、800米、1500米、4x100接力共5个项目,田赛设跳远、铅球2个项目,以上各项目均分青年组和中年组两个年龄段。运动会共有参赛运动员280名、裁判员30名。   台头中心小学体育场彩旗飘飘,主席台上&ldquo 我运动 我健康 我快乐&rdquo 的运动会主题醒目耀眼,主席台两侧的横幅上&ldquo 比出风采 超越自我 快乐健身 精彩人生&rdquo 以及&ldquo 赛场竞技共提高 强身健体促发展&rdquo 的口号为运动会的召开烘托出很好的气氛。原本预报有中雨的天气也很给力,运动会当天一直是阴天,比赛过程中没有下一丝雨。阴凉的天气让运动员幸免了夏日毒辣阳光的暴晒。所有一切是那么的顺利,为运动会主办者为之松了一口气。   比赛严格比照正规运动会的程序进行。首先是在运动员进行曲的伴奏下,各运动队整齐有序地入场,经受主席台的检阅。紧接着,在庄严隆重的升国旗仪式后,总经理李源致开幕词,运动员代表和裁判员代表分别宣誓,体现了赛事的严谨。之后,北分瑞利党委书记、工会主席漆玮宣布运动会开幕。   90名运动员为大家进行了精彩的踢毽表演,上下翻飞的彩色羽毽,煞是好看。踢毽表演后,各项比赛的进程相继展开。在一片加油呐喊声中,青年女子100米的冠军首先产生了。北麦公司的年轻女孩郑美佳成了本次运动会第一个冠军荣获者。中年组女子100米的比赛中,色谱事业部部长刘华不减当年的威风,年近50岁的她一马当先,取得了第一名的好成绩。随后的400米、800米,1500米比赛,各队队员你追我赶,竞争的激烈程度让观众都十分兴奋。每每产生一个冠军,都会响起阵阵的掌声和欢呼声。   铅球和跳远的比赛场地边,围观的职工很多,他们以十分惊奇的目光见证了:来自销售部的李学军以10.83米的好成绩在青年男子铅球项目中一举夺魁 北麦公司的小伙子李楠取得了青年男子跳远的冠军。让赛场沸腾起来的是各组四乘一接力,所有非参赛队员和工作人员的目光全被吸引过来了,跑道两边的观众加油声此起彼伏,热闹非凡。管理部室中年女子组和北麦公司中年男子组分别荣获女子组和男子组四乘一百米接力冠军。至此,各比赛项目全都胜利完成。   在闭幕式上,张华主席做了重要讲话,他说,北分瑞利职工运动会取得了圆满成功,大家赛出了团结、赛出了干劲、赛出了氛围、赛出了精彩。这是企业各位领导充分重视企业文化重视员工健康的结果,也是各基层单位鼎力支持,各运动员、教练员辛勤努力的结果。各运动队身着五颜六色的运动服,精神抖擞。通过运动,健康人生、运动人生的理念得到了充分的展现。希望取得优秀成绩的运动员,进一步加强锻炼,为参加北控集团秋季运动会做好准备,为京仪集团去争取荣誉而努力。
  • 运动发酵单胞菌运动亚种的特点与优势及培养方法!
    运动发酵单胞菌运动亚种的特点与优势及培养方法! 运动发酵单胞菌运动亚种是Zymomonas属的微生物,原产地为美国。G-,细胞具有圆端的短杆状,丛生鞭毛运动,单个或成对排列。主要用途为研究,具体用途为用于细菌发酵酒精的研究。 一、菌种简介平台编号:Bio-66722提供形式:冻干物拉丁属名:Zymomonas Mobilis Subsp. Mobilis中文名称:运动发酵单胞菌运动亚种属名:Zymomonas种名加词:mobilis subsp. mobilis其它中心编号:ATCC 31821来源历史:←北京工商大学化工学院(31821)收藏时间:2008.10.31原始编号:WAY资源归类编码:15131139101模式菌株:非模式菌株主要用途:研究具体用途:用于细菌发酵酒精的研究特征特性:G-,细胞具有圆端的短杆状,丛生鞭毛运动,单个或成对排列。利用葡萄糖、蔗糖或果糖产乙醇和CO2,利用山梨醇,不发酵麦芽糖、阿拉伯糖、鼠李糖、木糖。不还原硝酸盐,不液化明胶,接触酶阳性。 生物危害程度:四类致病对象:无培养基:葡萄糖 100.0g,酵母膏 5.0g,(NH4)2SO4 1.0g,KH2PO4 1.0g,MgSO4?7H2O 0.5g,琼脂 20.0g,蒸馏水 1.0L, pH7.0。培养温度:30℃资源保藏类型:培养物保存方法:真空冷冻干燥法实物状态:有实物共享方式:公益性共享;资源纯交易性共享;合作研究共享;资源交换性共享用途:研究;用于细菌发酵酒精的研究注意事项:仅用于科学研究或者工业应用等非医疗目的不可用于人类或动物的临床诊断或治疗,非药用,非食用(产品信息以出库为准) 二、产品特点1、菌种功能明确、品种稳定、应用 2、产品仅限用于科研本品芽孢含量高,稳定性好、耐高温和挤压 3、繁殖能力快、定植能力强、易存活、耐受低pH值环境 4、复活迅速,可在短期内成为优势种群 5、本品安全高效、无抗药性、不污染环境 6、对多数抗生素不敏感,可与低浓度抗革兰氏阴性菌抗生素同时使用。 三、产品优势1、产品质量稳定,是为科研和提供微生物菌种资源共享服务的专业平台。2、国内首创封闭管包装,冻干后的菌株使用时添加配套的复苏培养基后迅速而完全溶解。针对不同的菌株提供八种不同的培养方法,保证菌种的复苏质量。3、严格的质检程序,确保产品质量的稳定性。4、该类产品广泛使用到食品、药品、化妆品、水产品、化工等行业,疾控中心、质检局、出入境、药检局等等,得到广泛好评。 四、菌种的培养1、菌种是指食用菌菌丝体及其生长基质组成的繁殖材料。菌种分为母种(一级种)、原种(二级种)和栽培种(三级种)三级。工业发酵的有用菌种,其筛选步骤包括菌种分离、初筛和复筛。2、挑选具有某种能力的有用菌种,也称种子制备,是指菌种在一定条件下,经过扩大培养成为具有一定数量和质量的纯 菌种的制备过程。以作接入发酵罐中进一步扩大菌体量及合成产物之用。3、种子制备包括孢子制备和菌丝体制备菌种制备。4、保存在沙土管或冷冻管中的菌种,用无菌手续挑取少许,接入琼脂斜面培养基上,在25℃(或较高温度)下培养5~7天(或较长时间。所得孢子还需进一步用较大表面积的固体培养基以获得更多孢子(对于霉菌类孢子制备,多数采用大米、小米之类的天然培养基)。5、将培养成熟的斜面孢子制成悬浮液,接种到扁瓶固体培养基上,于25~28℃培养14天。将成熟的扁瓶孢子于真空中抽干,使水分降至10%以下,并放入 4℃冰箱中备用。一次制得的孢子瓶可在 上延续使用半年左右。6、如果有些菌种不产孢子,如赤霉素产生菌或产孢子不多的,则可采用摇瓶液体培养制得菌丝体,作种子罐的种子。种子罐的目的是使接入有限的孢子或菌丝体迅速发芽、生长、繁殖成大量菌体。其中的培养基组分应是易于被菌体利用的碳源(如葡萄糖)和氮源(如玉米浆),及无机盐(如磷酸盐)等。作为发酵罐的种子应生命力旺盛、染色深、菌丝粗壮,无杂菌及异常菌体。接种量一般在10%~20%。 五、保藏方法1、传代培养保藏法又有斜面培养、穿刺培养、疱肉培养基培养等(后者作保藏厌氧细菌用),培养后于4-6℃冰箱内保存。2、液体石蜡覆盖保藏法是传代培养的变相方法,能够适当延长保藏时间,它是在斜面培养物和穿刺培养物上面覆盖灭菌的液体石蜡,一方面可防止因培养基水分蒸发而引起菌种死亡,另一方面可阻止氧气进入,以减弱代谢作用。3、载体保藏法是将微生物吸附在适当的载体,如土壤、沙子、硅胶、滤纸上,而后进行干燥的保藏法,例如沙土保藏法和滤纸保藏法应用相当广泛。4、寄主保藏法用于目前尚不能在人工培养基上生长的微生物,如病毒、立克次氏体、螺旋体等,它们必须在生活的动物、昆虫、鸡胚内感染并传代,此法相当于一般微生物的传代培养保藏法。病毒等微生物亦可用其他方法如液氮保藏法与冷冻干燥保藏法进行保藏。5、冷冻保藏法可分低温冰箱(-20-30℃,-50-80℃)、干冰酒精快速冻结(约-70℃)和液氮(-196℃)等保藏法。6、冷冻干燥保藏法先使微生物在极低温度(-70℃左右)下快速冷冻,然后在减压下利用升华现象除去水分(真空干燥)。有些方法如滤纸保藏法、液氮保藏法和冷冻干燥保藏法等均需使用保护剂来制备细胞悬液,以防止因冷冻或水分不断升华对细胞的损害。保护性溶质可通过氢和离子键对水和细胞所产生的亲和力来稳定细胞成分的构型。保护剂有牛乳、血清、糖类、甘油、二甲亚砜等。 欢迎访问微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制