当前位置: 仪器信息网 > 行业主题 > >

全氟烷基酸

仪器信息网全氟烷基酸专题为您整合全氟烷基酸相关的最新文章,在全氟烷基酸专题,您不仅可以免费浏览全氟烷基酸的资讯, 同时您还可以浏览全氟烷基酸的相关资料、解决方案,参与社区全氟烷基酸话题讨论。

全氟烷基酸相关的论坛

  • 【分享】食品接触材料中全氟烷基磺酸类化合物的HPLC-MS/MS 测定

    不知有没有用,请参考。研究食品接触材料中全氟烷基磺酸类化合物的检测方法和该类化合物的残留水平。样品采用甲醇超声提取,液相色谱- 质谱联用测定,以C18 为分离柱,甲醇-5mmol/L 乙酸铵溶液为梯度洗脱淋洗液,同位素内标法定量,内标物为13C 标记的PFOS。该方法的检出限为0.5μg/kg,线性范围为0.5~10μg/kg,方法的平均回收率为91.1%~112.8%。结果证明,该方法准确、快速,可成功应用于16 种食品接触材料实样的检测。

  • 全氟辛酸的测定

    全氟辛酸的含量如何测定?全氟辛酸中有还原性物质吗,若有如何测定?全氟辛酸放置时间久了,颜色会变深吗?

  • 【求助】(已应助)求助《酯交换法合成甲基丙烯酸高碳烷基酯》等文献

    1.名称:酯交换法合成甲基丙烯酸高碳烷基酯作 者: 刘福胜 李月刚 穆铁铮 丁文光作者单位: 齐鲁石油化工公司研究院,山东,淄博,255400刊 名: 石油化工 年,卷(期): 2000 29(9) 2.名称:酯交换法合成聚乙二醇单甲基丙烯酸酯 [期刊论文] - 中南民族大学学报(自然科学版) 2007(03)作者:廖国胜.张爱清.雷发泉 3 作者:赵丽燕 论文名称:多元醇双甲基丙烯酸酯的合成及性能研究 [学位论文]硕士 20064,作者:杨斌.赵彩霞.邱宇星.孙东成名称: (甲基)丙烯酸高级醇酯的合成及其应用期刊论文: - 广州化学 2005(04)

  • 脂肪酸烷基酯

    有做过脂肪酸烷基酯的大神吗,想知道这是一种塑化剂吗,本底有值,而且很大?

  • 【原创大赛】浅谈时间对烷基化油中废酸浓度影响-宁波分析测试团队

    [align=center]浅谈时间对烷基化油中废酸浓度影响[/align] 刘朋[b] ([/b]宁波海越新材料有限公司, 浙江 宁波 318003)[b]摘要[/b]:介绍了烷基化油生产过程中硫酸浓度测定方法,摸索了静置时间对分析结果的影响,找出了最佳静置时间,对准确分析废酸浓度有一定指导意义。[b]关键词:[/b]废酸浓度 静置时间[b]前言[/b]宁波海越是首家采用美国鲁姆斯公司CDAlky硫酸催化烷基化技术的全球规模最大、设备、技术最先进的在线装置,生产规模60万吨/年。由于异辛烷不含烯烃和芳烃、不含氧,几乎不含硫,饱和蒸汽压低,RON和MON值高,且差距小,以适当比例添加到汽油中可降低汽油中烯烃和芳烃含量,燃烧后机动车尾气排放的PM2.5大幅下降,它的主要用途是作为高品质汽油添加剂,以提高汽油品质,减少机动车尾气排放。本装置用到硫酸作为催化剂,硫酸浓度的高低,对烷基化油质量和收率有直接影响。硫酸的催化作用最佳,最有利于烷基化主反应的进行,烷基化油的质量和收率都较高 低浓度酸将促进副反应,增加酸耗而且降低烷基化油辛烷值。因为较低的酸浓度会使硫酸的催化作用变差,使部分烯烃和硫酸作用生成硫酸酯。硫酸酯溶于硫酸中,又降低了硫酸浓度,导致了硫酸耗急剧增加,并且降低了烷基化油产率 另一方面,较低的硫酸浓度,使烯烃聚合的副反应加剧,增加了产品中的重质组分,降低了烷基化油辛烷值。酸浓度的分析对装置有指导性意义,因此准确迅速分析废酸就十分必要。[b]一、静置时间对分析结果影响的重要性[/b]由于含烃酸中混有C4-C9有机物,分析酸含量时直接会影响到分析的含量,由于硫酸和烃类溶解度很小,放置后会分层,所以分析硫酸含量一般取下层硫酸分析。本实验主要验证静止时间和分析结果之间关系。[b]二、静置时间对分析结果影响的摸索过程[/b]本化验室分析含烃酸采用传统酸碱滴定方式分析。取新鲜含烃酸A和B分时间段0min、15min、30min、 45min、60min 观察时间对废酸浓度的影响,从而选取合适时间分析。所用仪器及药品:梅特勒-托利多 ME204分析天平 普兰德50ml数字滴定仪 NAOH 0.4905mol/L 酚酞试剂1% 锥形瓶250ml 量筒50ml 去离子水 一次性吸管分析步骤:用量筒量取去离子水50ml于锥形瓶中,吸取废酸称取含烃酸0.4-0.6g精确到0.0001g,加1-2滴酚酞滴定记录消耗体积 计算公式 :C=V(NAOH)*C(NAOH)*4.904/m(酸)分析结果: [table][tr][td][img=,119,70]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img] 样品[/td][td=1,3] [align=center]A[/align] [/td][td=1,3] [align=center]B[/align] [/td][/tr][tr][td] [/td][/tr][tr][td]时间 浓度%[/td][/tr][tr][td] [align=center][img=,197,47]https://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img]0min[/align] [/td][td] [align=center]90.64[/align] [/td][td] [align=center]89.18[/align] [/td][/tr][tr][td] [align=center]15min[/align] [/td][td] [align=center]90.80[/align] [/td][td] [align=center]89.65[/align] [/td][/tr][tr][td] [align=center]30min[/align] [/td][td] [align=center]90.98[/align] [/td][td] [align=center]89.74[/align] [/td][/tr][tr][td] [align=center]45min[/align] [/td][td] [align=center]90.97[/align] [/td][td] [align=center]89.74[/align] [/td][/tr][tr][td] [align=center]60min[/align] [/td][td] [align=center]90.95[/align] [/td][td] [align=center]89.76[/align] [/td][/tr][/table]由实验可得知:刚取来含烃硫酸分析结果不具有代表性,分析结果偏低,随着静止时间变长含烃硫酸浓度有所上升,在静止30min以后结果比较稳定。即分析含烃硫酸最佳分析时间为静止30min以后分析。为了样品及时准确,建议分析含烃废酸在30-50min分析既兼顾数据的准确和时间的快速。[b] 三、结果与讨论[/b]含烃废酸在30-50min分析既兼顾数据的准确和时间的快速,分析结果稳定、准确可靠。

  • 全氟辛酸(PFOA)色谱图有问题,求助各位大神

    全氟辛酸(PFOA)色谱图有问题,求助各位大神

    最近用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]法做全氟辛酸的检测,在测标线时,发现随着浓度越高,峰面积不变,甚至变低,特来请教大家。标准溶液是用甲醇稀释的,浓度为0.01ppb,0.1ppb,1ppb,10ppb。有人测过全氟辛酸吗,可以帮我指出我的问题吗?谢谢大家了,十万火急。[img=,269,181]https://ng1.17img.cn/bbsfiles/images/2019/05/201905100914169734_142_3906267_3.png!w690x466.jpg[/img][img=,269,256]https://ng1.17img.cn/bbsfiles/images/2019/05/201905100914302811_2637_3906267_3.png!w653x622.jpg[/img][img=,269,343]https://ng1.17img.cn/bbsfiles/images/2019/05/201905100914392359_1275_3906267_3.png!w595x760.jpg[/img]

  • 高效液相色谱质谱法测定涂料中的全氟辛酸和全氟辛基磺酸化合物的含量

    高效液相色谱质谱法测定涂料中的全氟辛酸和全氟辛基磺酸化合物的含量

    [align=center]高效液相色谱质谱法测定涂料中的全氟辛酸和[color=#333333]全氟辛基磺酸化合物的含量[/color][/align]1.摘要: PFOA全氟辛酸(Perfluorooctanoic Acid 缩写为PFOA),国内最常见的含氟聚合物是应用之一是聚四氟乙烯涂层,亦称作“不粘炊具”。为提供光滑非粘的特性,不粘涂层已广泛地应用于以健康的目的不含脂肪和低脂肪的煎炒烹调中。此不粘涂层是有机树脂通过在水中或者有机溶剂中均匀分布形成厚度不超过60 μm 的表面层。此涂层同样被应用于金属基材,如铝、铝化钢和镀锌钢,用作仓库、发电站、纪念碑建筑和其他商业建筑的外部表面。当PFOA 分解后会在环境或人体中释放出来。[color=#333333]2003 年起,美国环境保护局(USEPA)定期更新和提供科学知识引导人们更好地理解PFOA。USEPA 提出PFOA 及其主盐的暴露会导致人体健康的发展和其他方面产生不利影响。PFOA 会残留于人体短至四年长达半生的时间。因此根据“美国有毒物质控制法(US TSCA)”, 此类成分被禁止并将其列入化学品目录清单中。事实上,毒性水平是每天每千克人体重量不能超过3 毫克。[/color][color=#333333]PFOS是全氟辛基磺酸化合物( Perfluorooctane Sulfonate)的英文缩写,即C8F17SO2Y,Y=OH、金属盐、卤化物、氨基化合物和包括聚合物在内的其他衍生物;PFOA是全氟辛酸类化合物( Perfluorooctanoic Acid) 的英文缩写,即C7F15COOH 及其衍生物。欧盟关于PFOS的禁令对我国纺织、服装、皮革等传统优势产业造成较大的影响。而随后的PFOA及直链全氟辛基(C8)衍生物的禁令,会给我国氟化工及含氟材料加工、纺织、皮革、油墨、消防、以及汽车、半导体等产业等带来巨大影响。PFOA 和PFOS具有于其他持久性污染物不同的特性。首先是它们的Kow不能被测定,其次它们是富集在血液里,另外它们不是芳香族的化合物,没有苯环。这类物质有极性的官能团,可以较好的溶于水。但同时它们还具有一个长长的全氟烷基的碳链,碳链上的氢原子都被氟原子所取代。由于氟原子的吸电子作用,其碳链的氟原子对(水)环境是呈负电(partial charge)。所以在水中PFOA和PFOS的呈现的是一个大负电的结构,这不仅来源于其极性官能团水中的离解,还来自于其(partial)负电的全氟烷基碳链。[color=#333333]PFOS是目前已知最难降解的有机污染物之一,具有很高的生物蓄积性和多种毒性,不仅会造成人体呼吸系统问题,还可能导致新生婴儿死亡,其导致的全球性污染正日渐受到人们关注。2002年12月,经合组织(OECD)召开的第34次化学品委员会联合会议上将PFOS定义为持久存在于环境、具有生物储蓄性并对人类有害的物质。基于PFOA和PFOS对环境和人类的有害性,有必要对产品中的PFOA和PFOS进行定量分析,已确定是否含有或者残留量是否满足限值要求。本文通过用水超声提取,离心分离,经固相萃取柱纯化,洗脱液定容后用液相色谱-质谱分析仪,外标法测定涂料样品中的PFOA和PFOS的含量。[/color][/color]关键词:全氟辛酸,[color=#333333]全氟辛基磺酸化合物,高效液相色谱-串联质谱[/color]2.实验部分:2.1 试剂 、设备及耗材超纯水、乙酸铵(分析纯)、色谱纯乙腈、固相萃取柱、离心机、超声波、液相色谱-质谱仪(岛津[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]8040)[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907020940116449_8470_1657564_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907020940131412_3907_1657564_3.jpg!w690x920.jpg[/img][img=,690,920]https://ng1.17img.cn/bbsfiles/images/2019/07/201907020940136072_8926_1657564_3.jpg!w690x920.jpg[/img]2.2. 测试过程称取1g涂料试样,加100mL水超声提取20分钟,离心后取1m L上清液到HLB固相萃取柱净化,最后用乙腈定容到10mL,[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]分析。2.3 仪器条件按照标准上的参考仪器条件,结合实验室实际情况,确定仪器条件如下:[img=,542,388]https://ng1.17img.cn/bbsfiles/images/2019/07/201907011732360949_5078_1657564_3.png!w542x388.jpg[/img] [table][tr][td]色谱柱[/td][td]C18柱,100mm×2mm×2.2μm[/td][/tr][tr][td]进样量[/td][td]1μL[/td][/tr][tr][td]流速[/td][td]0.2mL/min[/td][/tr][tr][td]流动相[/td][td]A:0.01mol/L乙酸铵溶液B:乙腈A:B=45:55[/td][/tr][tr][td]柱温箱[/td][td]30°C[/td][/tr][tr][td]采集时间[/td][td]5min[/td][/tr][tr][td]监测方式[/td][td]MRM[/td][/tr][tr][td]离子化方式[/td][td]负离子扫描[/td][/tr][tr][td]监测离子及条件[/td][td] [table=510][tr][td] [align=center]前体离子[/align] [align=center]M/Z[/align] [/td][td] [align=center]产物离子M/Z[/align] [/td][td] [align=center]驻留时间ms[/align] [/td][td] [align=center]Q1 Pre[/align] [align=center]偏差(V)[/align] [/td][td] [align=center]CE[/align] [align=center](V)[/align] [/td][td] [align=center]Q3Pre[/align] [align=center]偏差(V)[/align] [/td][/tr][tr][td=1,3] [align=center]PFOA[/align] [/td][td] [align=center]413.00[/align] [/td][td] [align=center]369.00[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]10[/align] [/td][td] [align=center]25[/align] [/td][/tr][tr][td] [align=center]413.00[/align] [/td][td] [align=center]168.95[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]17[/align] [/td][td] [align=center]30[/align] [/td][/tr][tr][td] [align=center]413.00[/align] [/td][td] [align=center]219.00[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]15[/align] [/td][td] [align=center]22[/align] [/td][/tr][tr][td=1,3] [align=center]PFOS[/align] [/td][td] [align=center]499.00[/align] [/td][td] [align=center]80.05[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]30[/align] [/td][/tr][tr][td] [align=center]499.00[/align] [/td][td] [align=center]99.05[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]42[/align] [/td][td] [align=center]18[/align] [/td][/tr][tr][td] [align=center]499.00[/align] [/td][td] [align=center]230.00[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]13[/align] [/td][td] [align=center]39[/align] [/td][td] [align=center]22[/align] [/td][/tr][/table] [/td][/tr][/table]此仪器条件下,标准溶液(10μg/L)总离子流色谱图如下:由图上可知,此仪器条件下各组分分离良好,基线稳定,适合分析。2.4 线性范围按标准要求,使用购买的PFOA和PFOS标准物质配制成100mg/l混合储备液,再通过逐级稀释用乙腈配制成2,5,10, 20, 50及100μg/l的标准曲线工作溶液,在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]上进行分析,得到数据如下: [table=576][tr][td] [align=center] [/align] [/td][td=6,1] [align=center]各浓度峰面积[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=right] 浓度μg/L[/align] 目标物[/td][td] [align=center]2[/align] [/td][td] [align=center]5[/align] [/td][td] [align=center]10[/align] [/td][td] [align=center]20[/align] [/td][td] [align=center]50[/align] [/td][td] [align=center]100[/align] [/td][td] [align=center]相关系数(R)[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]33570[/align] [/td][td] [align=center]85660[/align] [/td][td] [align=center]155159[/align] [/td][td] [align=center]288979[/align] [/td][td] [align=center]611110[/align] [/td][td]1161960[/td][td] [align=center]0.9991 [/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]3991[/align] [/td][td] [align=center]9726[/align] [/td][td] [align=center]20884[/align] [/td][td] [align=center]38606[/align] [/td][td] [align=center]88718[/align] [/td][td] [align=center]172447[/align] [/td][td] [align=center]0.9997 [/align] [/td][/tr][/table]从上表可以看出,曲线线性良好,相关系数R>0.995,满足标准要求。2.5 精密度取10μg/L的混合标准溶液,在[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]上进行7次测试,计算精密度。 [table=576][tr][td] [align=right]浓度mg/L[/align] 目标物[/td][td] [align=center]1[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]5[/align] [/td][td] [align=center]6[/align] [/td][td] [align=center]7[/align] [/td][td] [align=center]RSD[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]11.20 [/align] [/td][td] [align=center]11.47 [/align] [/td][td] [align=center]10.59 [/align] [/td][td] [align=center]10.68 [/align] [/td][td] [align=center]11.47 [/align] [/td][td] [align=center]11.24 [/align] [/td][td] [align=center]11.04 [/align] [/td][td] [align=center]3.2%[/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]10.54 [/align] [/td][td] [align=center]10.85 [/align] [/td][td] [align=center]10.30 [/align] [/td][td] [align=center]10.85 [/align] [/td][td] [align=center]10.81 [/align] [/td][td] [align=center]11.41 [/align] [/td][td] [align=center]11.03 [/align] [/td][td] [align=center]3.2%[/align] [/td][/tr][/table]7次测试相对标准偏差RSD均小于5%,精密度良好。2.6 样品加标回收率选取涂料“环氧底漆”样品,添加0.5mL的10mg/L的PFOA/PFOS混合标准溶液,样品中理论加标浓度为5μg/L,按样品测试过程进行操作,重复7次,考察样品加标回收率。 [table=621][tr][td]油漆加标[/td][td=8,1] [align=center]测得浓度μg/L[/align] [/td][/tr][tr][td] [/td][td] [align=center]样品[/align] [/td][td] [align=center]加标-1[/align] [/td][td] [align=center]加标-2[/align] [/td][td] [align=center]加标-3[/align] [/td][td] [align=center]加标-4[/align] [/td][td] [align=center]加标-5[/align] [/td][td] [align=center]加标-6[/align] [/td][td] [align=center]加标-7[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]ND[/align] [/td][td] [align=center]4.34 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.42 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.29 [/align] [/td][td] [align=center]4.35 [/align] [/td][td] [align=center]4.66 [/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]ND[/align] [/td][td] [align=center]4.57 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.70 [/align] [/td][td] [align=center]4.62 [/align] [/td][td] [align=center]4.47 [/align] [/td][td] [align=center]4.26 [/align] [/td][td] [align=center]4.47 [/align] [/td][/tr][/table] [table=555][tr][td]油漆加标[/td][td=7,1] [align=center]加标回收率[/align] [/td][/tr][tr][td] [/td][td] [align=center]加标-1[/align] [/td][td] [align=center]加标-2[/align] [/td][td] [align=center]加标-3[/align] [/td][td] [align=center]加标-4[/align] [/td][td] [align=center]加标-5[/align] [/td][td] [align=center]加标-6[/align] [/td][td] [align=center]加标-7[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]86.8%[/align] [/td][td] [align=center]87.4%[/align] [/td][td] [align=center]88.4%[/align] [/td][td] [align=center]87.4%[/align] [/td][td] [align=center]85.8%[/align] [/td][td] [align=center]87.0%[/align] [/td][td] [align=center]93.2%[/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]91.4%[/align] [/td][td] [align=center]87.4%[/align] [/td][td] [align=center]94.0%[/align] [/td][td] [align=center]92.4%[/align] [/td][td] [align=center]89.4%[/align] [/td][td] [align=center]85.2%[/align] [/td][td] [align=center]89.4%[/align] [/td][/tr][/table]进行7次测试,回收率都在85%~94%之间,满足测试要求。2.7 方法检出限(MDL)和定量检出限(LOQ)选取环氧底漆样品添加0.5mL的10mg/L的PFOA/PFOS混合标准溶液,样品中理论加标浓度为5μg/L,按样品测试过程进行操作,重复7次,通过标准偏差来计算检出限。 [table=658][tr][td] [align=center] [/align] [/td][td] [align=center]1[/align] [/td][td] [align=center]2[/align] [/td][td] [align=center]3[/align] [/td][td] [align=center]4[/align] [/td][td] [align=center]5[/align] [/td][td] [align=center]6[/align] [/td][td] [align=center]7[/align] [/td][td] [align=center]SD[/align] [/td][td] [align=center]MDL (μg/L)[/align] [/td][td] [align=center]LOQ (μg/L)[/align] [/td][td] [align=center]LOQ (mg/kg)[/align] [/td][/tr][tr][td]PFOA[/td][td] [align=center]4.34 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.42 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.29 [/align] [/td][td] [align=center]4.35 [/align] [/td][td] [align=center]4.66 [/align] [/td][td] [align=center]0.12 [/align] [/td][td] [align=center]0.36 [/align] [/td][td] [align=center]1.21 [/align] [/td][td] [align=center]1.2 [/align] [/td][/tr][tr][td]PFOS[/td][td] [align=center]4.57 [/align] [/td][td] [align=center]4.37 [/align] [/td][td] [align=center]4.70 [/align] [/td][td] [align=center]4.62 [/align] [/td][td] [align=center]4.47 [/align] [/td][td] [align=center]4.26 [/align] [/td][td] [align=center]4.47 [/align] [/td][td] [align=center]0.15 [/align] [/td][td] [align=center]0.45 [/align] [/td][td] [align=center]1.50 [/align] [/td][td] [align=center]1.5 [/align] [/td][/tr][/table]以7次加标测试值相对偏差的3倍作为方法检出限,10倍作为定量检出限,按称样量1g,最终定容体积100mL,再净化稀释10倍,计算得到的定量检出限为1.2和1.5mg/kg,能达到检测方法0.0002%的检出下限的要求。实际测试中可将报告检出限统一定为2mg/kg。2.8 结论通过试验验证,方法线性相关系数好,达0.999以上、精密度高<3.5%、回收率在85%~94%,检出限低达2mg/kg,结果均满足测试要求,方法简单实用,实验室可以据此开展涂料中PFOA和PFOS含量的测定工作。3.参考文献:【1】 GB/T28606-2012 涂料中全氟辛酸及其盐的测定高效液相色谱-串联质谱法【2】 GB/T24169-2009 氟化工产品和消费品中全氟辛烷磺酰基化合物(PFOS)的测定高效液相色谱-串联质谱法【3】 GB/T27417-2017 合格评定化学分析方法确认和验证指南【4】 CNAS-CL01-A002:2018检测和校准实验室能力认可准则在化学检测领域的应用说明

  • 液相色谱被全氟丙酸污染如何净化

    最近我的液质联用系统使用了全氟丙酸做缓冲溶液,因此对质谱负模式产生比较大的影响,请问有谁知道用什么方法可以很好的去除污染(除了硝酸钝化)

  • 全氟辛酸(PFOA)色谱图有问题,求助各位大神

    全氟辛酸(PFOA)色谱图有问题,求助各位大神

    我刚接触这方面知识,我想利用液相色谱串联质谱仪测试PFOA的浓度,在制定标线时,发现浓度越高,峰面积不变,甚至变低,这是什么原因呢?有人测过全氟辛酸吗?或者大神指出我的问题。我的标样是用甲醇稀释至0.01ppb,0.1ppb,1ppb,10ppb[img=,265,178]https://ng1.17img.cn/bbsfiles/images/2019/05/201905092157479702_2966_3906267_3.png!w690x466.jpg[/img]设置参数[img=,265,252]https://ng1.17img.cn/bbsfiles/images/2019/05/201905092158218310_805_3906267_3.png!w653x622.jpg[/img][img=,265,338]https://ng1.17img.cn/bbsfiles/images/2019/05/201905092200121140_2910_3906267_3.png!w595x760.jpg[/img]

  • 【分享】OECD公布全氟化物调查报告

    OECD环境董事局近日公布2009年全氟辛烷磺酸(PFOS)、全氟烷基磺酸盐(PFAS)、全氟辛酸(PFOA)和全氟羧酸(PFCA)及其相关物质和混合物的生产、使用和释放调查,文件名为PFCs: Outcome of the 2009 Survey。 OECD环境董事局向27家涉及此类物质的全球著名企业制造商发放了问卷调查,共搜集73种全氟化物的数据,但仅有9家企业回复了问卷调查。 调查报告量化了PFOS、PFAS、PFOA和PFCA这四类物质的生产情况和主要用途:PFCA相关化学品约有23种;PFOA化学品达12种;PFAS有3种;PFOS 4种。所有含全氟化物的产品最常见用途是生产拒水拒油产品。 OECD表示本次调查得到了许多非OCED会员的大力协助,这将作为未来经合组织科研调查的一个重要起点。本次调查的成就在于获得了全氟化学品生产和释放的宝贵数据。• OECD调查报告

  • 【原创大赛】烷基汞仪器分析新方法

    【原创大赛】烷基汞仪器分析新方法

    [align=center][font=黑体][size=18pt]烷基汞仪器分析新方法[/size][/font][/align][font=楷体_GB2312][size=12pt] ([/size][/font][font=楷体_GB2312][size=12pt]老兵)[/size][/font][b][font=黑体]摘[/font] [font=黑体]要[/font] [/b][font=楷体_GB2312]本文介绍了环境样品中水体、土壤和沉积物的甲基汞常用检测方法,讨论了各检测方法的优势和缺欠,并展望了甲基汞检测方法未来的发展和应用前景。目的是建立方便、快捷、灵敏度高的方法,应用于日常检测中烷基汞(甲基汞、乙基汞)的测定,提升国内在检测烷基汞(甲基汞、乙基汞)方面的技术水平。以满足有效检出烷基汞(甲基汞、乙基汞)的环境管理要求和显著提高工作效力。[/font][b][font=黑体]关键词:烷基汞[/font] [font=黑体]测试[/font] [font=黑体]方法[/font][font=黑体][size=14pt]1 [/size][/font][font=黑体][size=14pt]烷基汞及其来源[/size][/font][/b][font=宋体][size=12pt] 烷基汞(甲基汞、乙基汞)是一类剧毒并且有强致癌作用的有机金属化合物,其毒性远大于无机汞的毒性。烷基汞中甲基汞毒性最强,环境中任何形式的汞(金属汞、无机二价汞和烷基汞等)均可在一定条件下转化为有剧烈毒性的甲基汞,称为汞的甲基化。甲基汞又分为一甲基汞(氯化甲基汞、碘化甲基汞等)和二甲基汞。汞的甲基化反应主要发生在水体中,并在食物链中富集,浓度逐渐增大。水中胶体颗粒、悬浮物、泥土颗粒、浮游生物等能吸附汞,而后通过重力作用沉降进入底泥,底泥中的汞在微生物的作用下可转变为一甲基汞或二甲基汞。甲基汞[/size][/font][font=宋体][size=12pt](MeHg)[/size][/font][font=宋体][size=12pt]能溶于水,又可从底泥返回水中,[/size][/font][font=宋体][size=12pt]作为高脂溶性的甲基汞,极易被生物体吸收和利用,且在生物体内分解缓慢(半衰期约为70d),易发生生物富集,如鱼类对甲基汞的富集系数可达鱼类可高达1×10[sup]5[/sup]~1×10[sup]7[/sup]。通过食物链的传递放大作用,甲基汞严重威胁人类的健康与安全。其中最为典型的例子就是日本熊本县水俣湾地区的居民因长期食用受甲基汞污染的鱼贝类而引起的慢性甲基汞中毒,即水俣病。这次世界历史上首例重大重金属污染事件,引起了全球研究者对汞污染问题的广泛关注。[/size][/font][b][font=黑体][size=14pt]2 [/size][/font][font=黑体][size=14pt]传统的烷基汞测试方法[/size][/font][/b][font=宋体][size=12pt] 随着汞污染问题研究的不断深入,烷基汞检测方法的研究也不断发展起来。国内对烷基汞检测方法的研究起步较晚,早期常用的分析方法是以巯基棉富集一[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法为代表的方法,并于1993年和1997先后颁布了水质和环境中烷基汞测定的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法,2009年中国环境监测总站又在下发的《集中式生活饮用水地表水源地特定项目分析方法》中增加了水质甲基汞测定的高效液相色谱-原子荧光法。由于环境中的甲基汞是通过汞的甲基化过程产生的,这一过程主要发生在沉积物及水体中,产生的一甲基汞极易溶于水体,只有少量的二甲基汞散逸到大气中,之后立刻被光解为甲烷、乙烷和汞,因此现有的检测手段,通常难以检测出大气中的甲基汞。[/size][/font][font=黑体][size=12pt]2.1[/size][/font][font=黑体][size=12pt][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法[/size][/font][font=宋体][size=12pt] 水中烷基汞的前处理方法有两种,一种是采用巯基纱布和巯基棉二次富集的前处理方法。图1为便携式(第一次富集用)的巯基纱布旋转富集装置,图2为巯基棉管(第二次富集用)吸附装置。水样先经巯基纱布富集后,用2mol/L的盐酸溶液洗脱后再用巯基棉进行二次吸附。而沉积物和污泥样品则须先用盐酸-硫酸铜溶液浸提,浸提液再按水样的巯基纱布和巯基棉二次富集方法进行前处理。将二次吸附后的巯基棉置于微型萃取管用苯萃取后,用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url](ECD检测器)测定苯相。[/size][/font][font=宋体][size=12pt][img=,630,339]http://ng1.17img.cn/bbsfiles/images/2014/07/201407160009_506821_1634717_3.jpg[/img][/size][/font][font=宋体][size=12pt][font=宋体] 第二种方法是采用巯基棉管的一次富集法。该巯基棉管为内径5~8  mm,长100  mm,一端拉细的玻璃管中填充0.1~0.2  g巯基棉纤维,使用前用20  mL无汞蒸馏水润湿膨胀,然后接在分液漏斗的放液管上使用。取1L水样置于2L分液漏斗中,加入硫酸铜溶液、盐酸溶液或氢氧化钠溶液,调pH为3-4,接琉基棉管,让水样流速保持在20~25m l./min,待吸附完毕,加人NaCl- HCl解析液,将琉基棉上吸附的烷基汞解析到离心管用甲苯(苯)萃取,取有机相进行色[/font][/size][/font][font=宋体][size=12pt]谱测定。[/size][/font][font=宋体][size=12pt]其标准色谱图如下:[/size][/font][font=宋体][size=12pt][img=,606,319]http://ng1.17img.cn/bbsfiles/images/2014/07/201407160008_506820_1634717_3.jpg[/img][/size][/font][font=宋体][size=12pt] 甲基汞定性分析的出峰顺序是:1.甲基汞;2.乙基汞。各组分与标准谱图相对照以保留时间定性。定量分析则通过色谱峰高或峰面积,在标准曲线上来查出各组分的浓度。水和沉积物的可检出浓度分别为0.01ng/L和0.02μg/kg。若样品中含硫有机物(硫醇、硫醚、噻酚等)均可被富集萃取,在分析过程中积存色谱柱内,使色谱柱分离效率下降,干扰甲基汞的测定。因此采用往色谱柱内注入二氯化汞苯饱和溶液,可以除去这些干扰,恢复色谱柱分析效率。[/size][/font][font=黑体][size=12pt]2.2 [/size][/font][font=黑体][size=12pt]高效液相色谱-原子荧光法[/size][/font][font=宋体][size=12pt] 方法取1L水样于分液漏斗中,加10g左右氯化钠,用40ml二氯甲烷分两次萃取,每次10 min。萃取液收集至50ml比色管中,加3ml反萃取溶液(1%半胱氨酸+0.8%乙酸铵溶液)进行萃取,振荡5min,吸取水层溶液进样。采用二氯甲烷萃取,半胱氨酸-乙酸铵溶液反萃取后,用高效液相色谱-原子荧光串连检测水质中烷基汞,色谱柱用 Venusil MP-18,150mm×4.6mm,5 m或与之等效的色谱柱,流动相为5%乙腈+0.462%乙酸铵+0.12%半胱氨酸。方法检出限随仪器灵敏度及样品基质不同而各异。甲基汞和乙基汞的检出限分别为0.3ng/L和0.6ng/L。 按相同的分析条件,进行纯水空白、校准曲线和实际样品的同步测定。甲基汞和乙基汞的标准色谱图,如图4所示。[/size][/font][font=宋体][size=12pt][img=,613,304]http://ng1.17img.cn/bbsfiles/images/2014/07/201407160012_506823_1634717_3.jpg[/img][/size][/font][font=宋体][size=12pt] 载流中用到的盐酸一般都含有无机汞,当无机汞含量高时,峰形拖尾会影响到甲基汞的色谱峰,一次须采用优级纯或纯度较高的盐酸来消除干扰。[/size][/font][font=黑体][size=12pt]2.3[/size][/font][font=黑体][size=12pt]存在问题[/size][/font][font=宋体][size=12pt] (1)在《地表水环境质量标准》(GB3838-2002)规定饮用水源地水中甲基汞不得超过1×10[sup]-6[/sup]mg/L,该标准规定的方法检出限不得大于1×10[sup]-8[/sup]mg/L。而GB3838-2002引用的[/size][/font][i][font=宋体][size=12pt]GB/T17132-1997[/size][/font][/i][font=宋体][size=12pt]环境烷基汞的测定[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法规定[/size][/font][font=宋体][size=12pt]的方法检出限刚好为1×10[sup]-8[/sup]mg/L,方法检出限基本满足,而沉积物的检出限则为2×10[sup]-8[/sup]mg/L。如果采用[/size][/font][font=宋体][size=12pt]高效液相色谱-原子荧光法,其[/size][/font][font=宋体][size=12pt]甲基汞的方法检出限则高达[/size][/font][font=宋体][size=12pt]3[/size][/font][font=宋体][size=12pt]×10[sup]-7[/sup]mg/L,显然已不能满足检出限应低于国家地表水Ⅰ类标准限值1/4的要求。[/size][/font][font=宋体][size=12pt]在《城镇污水处理厂污染物排放标准》(GB18918-2002)和《危险废物鉴别标准 浸出毒性鉴别》(GB 5085.3-2007)中规定烷基汞均不得检出,而标准引用的[/size][/font][i][font=宋体][size=12pt]GB/T[/size][/font][/i][font=宋体][size=12pt] [i]14204-93[/i][/size][/font][font=宋体][size=12pt]水质烷基汞的测定[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法[/size][/font][font=宋体][size=12pt]检出限同为1×10[sup]-8[/sup]mg/L。[/size][/font][font=宋体][size=12pt] (2)测试中样品处理是烷基汞析中最重要的步骤,分离技术的灵敏度尚不能满足微量有机汞的形态分析需求。由于全为手工分析,并采用自制巯基棉、吸附和萃取装置,人工操作的强度大和有机溶剂的暴露操作而不环保,因此方法的操作繁琐及回收率不稳定,有的实际样品甲基汞回收率低达67.5%。而采用高效液相色谱-原子荧光法虽较[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法减轻了分析操作强度,但又带来检出限不满足的风险。[/size][/font][font=宋体][size=12pt] (3)对分析测定的影响因素较多,在检出与未检出之间受到试剂空白的影响较大。比如采用市售的盐酸等化学试剂的质量很不稳定,按GB/T14204-93规定需要的QC样品不易获得;易受玻璃仪器(分液漏斗、试管)、管路、仪器材质[font=宋体]的影响和存在记忆效应等。[/font][/size][/font]

  • 【原创大赛】固相萃取-气相色谱-质谱联用法检测植物油中2-十二烷基环丁酮和2-十四烷基环丁酮

    【原创大赛】固相萃取-气相色谱-质谱联用法检测植物油中2-十二烷基环丁酮和2-十四烷基环丁酮

    摘 要:建立固相萃取-气相色谱- 质谱联用(solid phase extraction with gas chromatography-mass spectrometry,SPE-GC-MS)法测定植物油中2-十二烷基环丁酮和2-十四烷基环丁酮。对影响分析物萃取效率的诸因素如洗脱溶剂等进行详细考察和优化。最佳萃取条件为0.5 g样品与5 mL乙腈混匀,经ProElut Silica (500 mg/3mL)固相萃取柱净化后,以GC-MS 进行测定,该方法对2-十二烷基环丁酮和2-十四烷基环丁酮的检出限为10μg/kg,线性范围为0.01~0.5μg/mL,线性相关系数分别为0.99938和0.99977,相对标准偏差(relative standard deviation,RSD)(n=3)小于6%。该方法成功应用于植物油中2-十二烷基环丁酮和2-十四烷基环丁酮的分析,加标回收的回收率为78%~91%。关键词:固相萃取;气相色谱-质谱;2-十二烷基环丁酮;2-十四烷基环丁酮;植物油 食品辐照作为对物质或食品进行加工处理的新型保藏技术,在国际上已逐渐被认可,但是在商业化应用、国际贸易以及辐照食品的市场监管方面,迫切需要有辐照食品鉴定检测方法。 经辐照后,在含脂食品中会产生特异性辐解产物2-烷基环丁酮(2-Alkylcyclobutanones ,2-ACBs),它是含脂辐照食品的特异性辐解产物,在未辐照的含脂食品中,至今还从未检测到此类化合物。在1990年, 2-ACBs 类化合物可作为检测含脂辐照食品的标志性化合物, 首次被报道,随后依据该结论制定了欧盟标准EN1785和GB\T 21926-2008 。2-ACBs由食品中的游离脂肪酸或甘油三酸酯的羰基氧失去一个电子,再经由重排过程生成,其过程如图1所示。http://ng1.17img.cn/bbsfiles/images/2015/07/201507091523_554630_2452211_3.png图1 经辐照后游离的脂肪酸转化为2-ACBs的示意图 在大多数食品中,棕榈酸、硬脂酸、油酸、亚油酸是主要的脂肪酸,而棕榈酸和硬脂酸是其中含量最高的饱和脂肪酸,其辐解物2-十二烷基环丁酮(2-dodecylcyclobutanone,2-DCB)和2-十四烷基环丁酮(2-tetradecylcyclobutanone,2-TCB)相对于其它2-ACBs较为稳定,因此一般作为检测含脂辐照食品的主要标志性化合物。目前对含脂辐照食品大多采用佛罗里硅土柱进行净化,但是该法的应用范围有限。本实验拟通过优化固相萃取(solidphase extraction,SPE)条件,采用气相色谱-质谱联用(gas chromatography-massspectrometry,GC-MS)技术测定植物油中2-十二烷基环丁酮和2-十四烷基环丁酮,为进一步缩短2-ACBs 萃取和分离时间、减少溶剂使用量、提高检测灵敏度以及扩大方法应用范围提供基础数据和理论依据。1 材料与方法1.1 材料、试剂与仪器GCMS-QP2010 气相色谱-质谱联用仪 日本岛津公司;DM-5MS 毛细管柱(30 m×0.25 mm,0.25 μm)迪马公司;XH-C 涡旋混合器 江苏金坛市盛威实验仪器;80-1 高速离心机 河南省予华仪器;OSB-2100 旋转蒸发仪 上海爱朗仪器有限公司;12孔固相萃取装置 迪马公司; ProElut Silica(500 mg/3mL)固相萃取柱 迪马公司。HSC-12B 氮吹仪天津市威仪科技发展有限公司;丙酮、二氯甲烷、乙酸乙酯乙腈、甲基叔丁基醚、正己烷(均为色谱纯)迪马公司。实验所用的植物油均购自当地市场。1.2 方法1.2.1 标准贮备液的制备称取一定量标准品,溶于正己烷溶剂中,配制成浓度为0.5 mg/mL的标准贮备液。再配制成质量浓度系列为0.01μg/mL、0.02μg/mL、0.05μg/mL、0.1μg/mL、0.2μg/mL、0.5μg/mL的标准工作溶液,备用。1.2.2 仪器分析条件气相色谱条件:色谱柱为DM-5MS (30.0m×250μm,0.25μm);载气He(99.995%);恒流,柱流速1.0mL/min;不分流,进样量1μL,进样口温度为260℃;起始温度80℃(保持1min),以15℃/min的速度升至150℃,再以8℃/min升温至200℃,再以20℃/min升温至260℃(保持5min)。质谱条件:EI源,离子源200℃,溶剂延迟为3min,选择离子监测模式(SIM),选择监测离子(m/z):69、84、98、112、125。1.2.3 样品的提取称取0.5 g样品于10 mL带塞试管中,加入5 mL乙腈,涡旋混合2 min,超声提取2 min,4000 rpm下离心2min,取上清液;下层油脂再用5 mL乙腈重复上述步骤,合并两次上清液。将得到的上清液在50℃下,氮吹近干,再慢慢挥干,再向氮吹瓶中加入2.5 mL正己烷复溶,待净化。1.2.4 样品的净化依次用5 mL甲基叔丁基醚,5mL正己烷缓慢通过ProElut Silica固相萃取柱,以达到润湿小柱,活化填料,除去干扰杂质的目的;再将1.2.3节方法制得的待净化液转移到ProElut Silica固相萃取柱中,流出液弃去;然后用5 mL正己烷淋洗,弃去流出液;再用10 mL甲基叔丁基醚:正己烷(1:99V:V)洗脱,用旋转蒸发瓶接收,直至洗脱液完全自然滴出。在50 ℃下,将收集到的洗脱液氮吹浓缩,然后用正己烷定容至1 mL后供GC-MS分析。2 结果与分析在固相萃取操作中,影响分析物峰面积的主要固相萃取因素有洗脱剂、洗脱体积、洗脱速率和上样速率。为了获得最佳分析结果,需要对其进行优化。2.1固相萃取条件的确定2.1.1 提取溶剂的选择2-十二烷基环丁酮(2-DCB)和2-十四烷基环丁酮(2-TCB)与脂肪酸的结构及其类似,故能溶于极性和中等极性的试剂中。分别用丙酮、二氯甲烷、甲基叔丁基醚、乙酸乙酯作为2-DCB 和2-TCB的提取溶剂。实验结果表明乙腈提取效果较好,再加以涡旋振荡后结合超声提高回收率。2.1.2 固相萃取柱的选择对于油脂类样品,采用固相萃取柱进行样品净化是必不可少的步骤。结合相应参考文献,本实验采用了硅胶、PSA、Florisil、Alumina等填料的固相萃取柱,结果表明对于植物油,硅胶柱相对于其他填料的固相萃取柱来说,2-DCB 和2-TCB回收率较高,添加回收率达到了80%-120%,满足分析检测的要求,且达到很好的净化效果。如图2所示http://ng1.17img.cn/bbsfiles/images/2015/07/201507091524_554631_2452211_3.pngA:标准品;B:空白样品;C:添加标品的样品图2 植物油空白样品及其添加样品的总离子流图2.1.3 淋洗曲线的建立固相萃取技术最重要的目的在于通过固相萃取柱将目标化合物与主要干扰物分开,从而实现净化的目的。在此过程中应非常注意选择合适的洗脱溶剂。样品处理过程是先用正己烷将其中的中性化合物除去,参照Horvarovich 等报道,用硅胶柱分离样品中的2-DCB和2-TCB,选用弱极性的甲基叔丁基醚(methyl-t-butyl ether,TBME)/正己烷(V/V)混合溶剂将稍强极性的2-DCB 和2-TCB洗脱下来。由于样品基质与文献不一样,淋洗液与洗脱液的选择也会不一样。因次需要考察正己烷以及其与甲基叔丁基醚不同比列的混合液作为洗脱液时2-DCB和2-TCB的回收率。选用5根ProElut Silica固相萃取柱,取0%、0.5%、1%、2%、5%不同浓度的甲基叔丁基醚:正己烷(V/

  • 全氟羧酸衍生化

    我看的文献方法衍生全氟羧酸,用三乙基硅烷醇的方法,用的仪器是岛津的单杆EI 源,但是衍生以后全扫模式下,所有的全氟羧酸出的峰都一样。通过SIM模式下才能找到目标峰,并且PFDA/PFNA/PFDOA的峰都非常小。我用的是1ug/ml得标液衍生的,全氟辛酸的峰大概只有1000,其他的峰高就只有100不到。有没有大神做过类似的方面,求帮助。还有一个问题,如果做全氟羧酸的目标物,用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]做的话,文献中有用NCI源和EI源的,具体的那个方法更好一点呢。跪谢!

  • 求组烷基汞的检测

    最近在按GBT 14204-1993 做水质烷基汞的检测,标线一直做不出来,找不到目标峰。用的标液是甲苯中烷基汞,我网上查到说这个标液必须用氯化烷基汞,用不是氯化的是不是做不出来?有没有做出来的大大,求指教。我用的rtx-5的柱子,进样220,柱温140,检测器300.还有我想问一个问题,我们检测水样中的烷基汞,这个烷基汞是已经是氯化烷基汞了,我们把它用巯基棉管富集然后解析出来;还是水样中的烷基汞是没有氯化的,我们先把他富集了,然后氯化成氯化烷基汞?谢谢

  • 【我们不一YOUNG】含氟富氮多孔有机聚合物的合成及其对水中全氟辛酸的去除

    [align=center][size=18px]含氟富氮多孔有机聚合物的合成及其对水中全氟辛酸的去除[/size][/align][size=18px][font=&]摘要[/font][font=&]全氟辛酸(PFOA)在自然环境中难以降解,会通过富集渗透污染水体和土壤,从而对自然环境和人体健康造成影响。开发成本低、效率高、环保的吸附剂实现环境水体中PFOA的高效吸附去除是解决PFOA污染的有效途径之一。[/font][font=&]本研究采用无溶剂一锅法设计、制备了一种含氟富氮多孔有机聚合物(POP-3F),通过引入氟原子增加了材料的疏水性,增加了主客体分子间的疏水作用、氟-氟相互作用,提升了材料对PFOA的吸附效果。使用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、X-射线衍射仪(XRD)、固体核磁(ssNMR)、X射线光电子能谱仪(XPS)、热分析系统(TGA)等对POP-3F进行了表征。[/font][font=&]结合[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS),研究了POP-3F在不同pH、盐浓度和腐植酸条件下对PFOA的吸附性能。在pH值为2时,POP-3F对PFOA的去除率最高达到98.6%,可用于去除酸性工业废水中的PFOA。[/font][font=&]并且POP-3F对于PFOA的去除率几乎不受NaCl和腐植酸浓度的影响,在加入NaCl后,POP-3F表面会形成双电层,可以削弱POP-3F与PFOA之间的静电相互作用,去除率仅下降了1%。腐植酸与PFOA存在竞争吸附,在高浓度腐植酸条件下,POP-3F对PFOA的去除率仅下降了0.73%。在最佳pH条件下考察了吸附等温线和吸附动力学,通过数学模型拟合了实验结果,探究了吸附机理。[/font][font=&]结果显示,POP-3F的理论容量为191 mg/g,高于活性炭和其他多数吸附剂,表现出较高的吸附容量。此外,POP-3F对PFOA的吸附去除几乎不受基质种类的影响,在模拟自然水中吸附效果略有降低(仅降低0.1%),经过5次吸附-解吸循环后,对PFOA的去除率仅微幅下降(降低0.67%),表明其具有循环使用和可再生性,在实际PFOA污染废水处理中具有广阔的应用前景。[/font][font=&]1、材料制备[/font][font=&]将1,4-双(2,4-二氨基-1,3,5-三嗪)-苯(BDTB,1185.2 mg, 4 mmol)、对三氟甲基苯甲醛(3F-TMA,1393 mg, 8 mmol)和二甲基亚砜(DMSO,60 mL)置于100 mL双颈圆底烧瓶中混匀。[/font][font=&]在氮气气氛下180 ℃加热反应24 h,将产物用10 mL DMSO和甲醇在10000 r/min条件下各离心洗涤3次,用甲醇索氏提取24 h后在120 ℃下真空干燥,得到的POP-3F为凝胶状固体,研磨后为白色粉末,收率为40.22%。POP-3F的合成路线见下图。[/font][font=&] POP-3F的合成示意图[/font][font=&]2、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS方法[/font][font=&]Atlantis T3色谱柱(100 mm×2.1 mm, 3 μm,美国Waters公司) 流动相5 mmol/L乙酸铵(A)和甲醇(B) 柱温40 ℃ 流速0.2 mL/min,进样量2 μL。[/font][font=&]梯度洗脱程序:[/font][font=&]0~14 min, 80%A~10%A 14~16 min, 10%A 16~16.01 min, 10%A~80%A 16.01~20 min, 80%A。[/font][font=&]电喷雾电离(ESI),负离子模式 多反应监测模式(MRM) 离子源温度:500 ℃ 离子源电压:-4500 V 气帘气压力:2.41×105 Pa 雾化气压力:2.76×105 Pa 辅助器压力:2.76×105 Pa。其他质谱参数见原文表1。[/font][font=&]3、PFOA标准曲线绘制[/font][font=&]PFOA的定量采用外标法,首先用去离子水配制质量浓度为100 mg/L的PFOA储备液,再用去离子水稀释为100、50、10、5、1、0.1 μg/L的标准工作液。用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析上述标准工作液,以PFOA的质量浓度为横坐标(x, mg/L),峰面积为纵坐标(y),绘制标准曲线。[/font][font=&]在最优条件下,PFOA在0.1~100 μg/L范围内线性关系良好,回归方程为y=2.04×106x-1.13×106,相关系数(r2)为0.999。方法的检出限(LOD, S/N=3)为0.004 μg/L,定量限(LOQ, S/N=10)为0.013 μg/L。[/font][font=&]4、吸附实验[/font][font=&]取50 mL 1 mg/L的PFOA溶液,将溶液pH调节至2,再加入10 mg POP-3F,超声1 min使POP-3F固体分散开。然后在25 ℃下以200 r/min恒温振荡吸附24 h,吸附后经过滤将POP-3F与上清液分开,得到的上清液经聚醚砜针式过滤器(0.22 μm×13 mm)过滤后进行[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析。吸附实验所需器具均由聚丙烯(PP)材质制成,整个过程避免接触聚四氟乙烯和玻璃材质的物品。[/font][font=&]5、脱附实验[/font][font=&]根据参考文献,选择甲醇为洗脱剂进行脱附实验,稀释储备液配制质量浓度为1 mg/L的PFOA溶液(pH=2),再加入10 mg的POP-3F超声1 min。在25 ℃下以200 r/min恒温振荡6 h后通过0.2 μm的针式过滤器(聚醚砜膜)过滤,将所得固体分散在50 mL甲醇中,超声30 min,过滤后在24 h内进行[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析。[/font][font=&]6、材料的吸附性能[/font][font=&]吸附动力学[/font][font=&]采用上述方法进行吸附实验,在振荡间隔时间为5、10、20、30、60、120、240、360、720、1440 min时分别用注射器取300 μL的溶液,用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS测定。t时间下的吸附量(qt, mg/g)和去除率(R)的计算公式如下:[/font][font=&]式中:[/font][font=&]C0和Ct分别表示吸附前和t时间时溶液中PFOA的质量浓度(mg/L) V表示溶液的总体积(L) m表示吸附剂的质量(g)。[/font][font=&]吸附等温线[/font][font=&]取50 mL一定浓度(1、3、5、7、9、12、15、20 mg/L)的PFOA溶液,采用上述方法进行吸附实验,并根据下式计算平衡吸附量qe(mg/g)。[/font][font=&]式中:[/font][font=&]Ce表示吸附平衡时溶液中PFOA的含量(mg/L)。[/font][font=&]结论[/font][font=&]本文通过无溶剂一锅法成功合成了一种含氟富氮多孔有机聚合物POP-3F,在POP-3F中引入三氟甲基可有效提高材料与PFOA之间的静电相互作用和氟-氟相互作用,进而提高POP-3F对PFOA的吸附亲和力。利用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS进行吸附实验,发现在酸、盐和腐植酸存在的情况下,POP-3F对PFOA仍有很好的去除效果,且具有良好的可循环使用性能。本文提出的POP-3F材料合成过程简单,具有作为经济、环保、高效的PFOA吸附剂的潜力。[/font][font=&]1.郑州大学化学学院, 河南 郑州 450001[/font][font=&]2.郑州大学风味科学研究中心, 中原食品实验室, 河南 郑州 450001[/font][font=&]文章信息[/font][font=&]色谱, 2024, 42(6): 572-580[/font][font=&]DOI: 10.3724/SP.J.1123.2024.04006[/font][/size]

  • 在流动相中如何使用十二烷基硫酸钠,PH调到多少合适

    配制流动相时,要求加入(0.025mol/l十二烷基硫酸钠加0.02mol/l的冰醋酸)并调PH至3.5,该如何理解(0.025mol/l十二烷基硫酸钠加0.02mol/l的冰醋酸)的配制,本身这两个溶液配制后的PH值已经达到3.4往上,再用1mol/l氢氧化钠调PH的目的是什么!

  • 离子色谱检全氟丁基硫酸钾

    请教如何用离子色谱法检测全氟丁基磺酸钾的含量啊。色谱条件:阴离子?流动相?检测器?该物质为纯品,白色细末状

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制