当前位置: 仪器信息网 > 行业主题 > >

去除杂质

仪器信息网去除杂质专题为您整合去除杂质相关的最新文章,在去除杂质专题,您不仅可以免费浏览去除杂质的资讯, 同时您还可以浏览去除杂质的相关资料、解决方案,参与社区去除杂质话题讨论。

去除杂质相关的资讯

  • Pall免费讲座:膜层析技术——快速去除杂质的灵活解决方案
    Pall免费在线讲座   上游工艺技术的持续改善已经使蛋白表达水平越来越高,从而使下游产量超过1g/L,甚至达到10g/L。这些前提将直接影响到下游工艺,直至遇到技术瓶颈。然而,目前的趋势,比如使用更高载量、选择性更广的层析填料,以及更多使用一次性技术如膜层析等,将会突破这些瓶颈,使制药行业的快速发展获得强大动力。   如何有效去除杂质是制药工艺中一个很大的挑战,这也是膜层析技术应用最受欢迎和流行的应用点。膜层析的操作非常简便,其高速以及高效的特性有效降低了工艺时间和成本,提高总产量。本次网络讲座将会阐述膜层析的基本原理,并举例客户应用,说明如何将该技术整合到工艺中,以节约时间和成本。   参会者将有机会学习:   如何使用Mustang® 膜层析产品有效去除杂质,提高工艺经济性?   如何将膜层析产品纳入到一次性系统的设计中?   如何使用膜层析技术解决当前以及未来的工艺挑战?   谁应该参加?   ● 致力于高效、高质药物研发和生产的行业领导者   ●下游工艺研发专家、工程师和组长   ●早期制药工艺开发相关的科学家   ● 产品工程师   ● 验证专员   ● 层析专员   ● 生产人员   ● 关注 cGMP 临床试验产品的质量经理   ● 工程咨询   讲座专家:   Russell M. H. Jones   Mustang膜层析全球产品经理   Pall Life Sciences   John M. Jenco, Ph.D   高级首席科学家   技术服务部   Pall Life Sciences   Dr Iann Rancé   工艺开发总监   Cytheris公司下游工艺及分析部门   讲座信息   讲座时间:2012年2月16日, 23:00pm(北京时间)   注册网址:https://event.webcasts.com/starthere.jsp?ei=1003510&sti=S   (本次讲座全部免费,但是请务必提前登陆注册,收到确认邮件后即可顺利参会。)   颇尔公司及Mustang层析技术简介   作为全球过滤、分离、纯化技术的领导者,颇尔公司(Pall Corporation)提供经济、高效、创新的层析纯化平台,帮助制药用户满足日益严格的应用需求,实现高产量目标。Pall层析产品提供极佳的独特选择性,完美解决当下的工艺挑战,具从实验室到生产规模的真实放大性,独特的平台可提高工艺经济性,应用于制药工艺下游多个步骤。产品系列包括:层析填料,PRC预装柱,LRC层析空柱,Mustang离子交换膜产品,Resolute层析柱,PKP层析系统,PK层析系统等。   Mustang离子交换层析产品为生物工艺提供了灵活的解决方案,包含一次性和重复使用两大类产品,均可放大。高流速,高通量,操作简便,紧凑设计等特性显著降低缓冲液的消耗,提高整体工艺的经济性。   Mustang膜层析技术是目前高效去除杂质、捕获大目标分子(质粒DNA,病毒载体等)的首选技术。
  • 药品研发注册杂质研究与控制专题研讨会会议通知
    关于举办“药品研发注册杂质研究与控制专题研讨会”的通知   各有关单位:   随着《国家药品安全规划(2011—2015年)》的出台,对全面提高药品安全保障能力,降低药品安全风险提出了更高的要求 而在药品安全研究中,杂质问题一直是国内注册和国际注册的难点和重点,控制药物中杂质已成为控制药品质量的关键因素之一,也是困扰着广大药物分析工作者的难题之一。由于药物杂质的来源广泛,已知的杂质可以通过现有的分析手段进行定性定量,未知的杂质则成为分析的难题,为了让广大药物分析工作者能实现有效地药品杂质控制,更深刻的理解安全性对于药品的关键影响,经研究,全国医药技术市场协会定于2013年3月15日-17日在北京市举办“药品研发注册杂质研究与控制专题研讨会”。请各有关单位积极选派人员参加。现将有关事项通知如下:   一、会议时间地点:   时间:2013年3月15日-17日(15日全天报到)   地点: 北京市 (地点确定直接通知报名者)   二、会议主要内容   详见课程安排(附件一)   三、参会对象   制药企业和新药研究机构的研发人员,各级药品检验所(院)和口岸药品检验所人员,药品生产企业研发技术与质量管理负责人,新药研发CRO实验室人员及高管。各药品分析仪器设备研发生产、代理商 各高等院校、科研院所、医疗机构等相关专业人员。   四、会议说明   1、理论讲解,实例分析,模拟审计,互动答疑.   2、主讲嘉宾均为药典委委员和行业内资深专家、欢迎来电咨询   3、本次会议将征集与会议主题和研讨内容有关的论文。来稿应具有科学性、实用性,且论点鲜明、数据可靠、文字精练通顺。截稿日期:2013年3月9日。   五、会议费用   会务费:1980元/人。会务费包括:培训、研讨、证书、资料及论文集。食宿统一安排,费用自理。   六、联系方式   电 话:13121666780   传 真:010-52226401   联 系 人:陈海涛   邮 箱:yyxhpx2012@126.com   会议质量监督电话:010-51606480 张 岚   附件一 日 程 安 排 表 3月16日 (星期六) 09:00-12:00 14:00-17:00 药品杂质分析指导原则   1、创新药物杂质研究的思路、仿制药物杂质研究的思路、原料药物杂质研究的思路   2、仿制药与原研有关物质的对比研究   3、.新药注册申请资料的质量要求、药物杂质研究案例分析(对注册批件中生产工艺内容要求的思考)   4、针对质量标准中已规定的已知杂质和未知杂质的研究思路   5、药物研发中杂质分离、分析、控制策略与去除策略   6、有关物质研究中的液相使用技巧与注意事项   7、起始原料质量对终产品的重要影响:杂质超标等问题   8、原料药杂质控制的相关法规:Q3A, Q3B, Q3C   9、原料药申报中采用HPLC方法测定有关物质存在的问题   10、原料药与成品药中的残留溶剂   11、主药与辅料相容性研究时出现的杂质问题   12、案例分析   主讲人:谢沐风 资深专家、上海市食品药品检验所及国家药典委中检所相关专家等。 3月17日 (星期日) 09:00-12:00 14:00-17:00 FDA对药物杂质的控制要求   1、原料药与成品药中的有机杂质   2、有机杂质来源和控制   3、有机杂质控制限度的论证   4、案例分析:有机杂质控制限度的设置和论证   5、原料药与成品药中的残留溶剂   6、残留溶剂的指导原则和控制限额的建立   7、案例分析:如何建立残留溶剂的控制限额   8、具有基因毒性杂质的控制   9、多晶型药物质量控制、异构体杂质控制等。   主讲人:沈新华博士 上海安必生技术有限公司研发副总裁,首席科学家,主要负责药物分析研发。曾在国外工作20 多年,具有药物研发、药物合成、药物分析的丰富实践经验及其深厚的理论知识,以及国际仿制药公司工作的经验。曾在TEVA 药业(全球著名的跨国仿制药集团)加拿大分公司任高级研发科学家,以及在加拿大最大的制药公司Apotex 任研发部门经理,负责和参与了数十种非专利药ANDA 的分析研发、药物申报和质量监控等工作。曾获中国药科大学有机合成硕士学位和瑞典皇家理工大学 化学博士学位 兼任北京大学药物信息与工程研究中心授课教师。 备注 每天除专家报告外,还安排了约1小时的代表发言和提问时间。   附件二: 药品研发注册杂质研究与控制专题研讨会回执表   (此表复制有效) 单位名称 联系人 地 址 邮 编 姓 名 性别 职务 电 话 传真/E-mail 手 机住宿是否需要单间:是○ 否○ 是否参加企业推广: 是○ 否○ 是否参加会议发言:是○ 否○ 是否提交论文: 想学习的内容: 论文题目: 联系人: 陈海涛 电话/传真:010-52226401 邮箱:yyxhpx2012@126.com
  • 梅赛德斯-奔驰联合研究:减少锂电生产过程中杂质颗粒的 4 种方法
    Nature Energy|梅赛德斯-奔驰联合研究成果:减少锂电池生产过程中杂质颗粒的 4 种方法目前,尽管在实验室研究的锂离子电池材料的研发已经取得巨大进展,但是从实验室几克材料的合成,到千克、以及吨级大规模生产,还存在许多质量控制的盲点。本文作者重点关注下一代锂离子和锂金属电池,分别从电池的原材料、正负极加工工艺、超轻量集流体、以及电池生产过程中的清洁度把控(锂电池清洁度分析)等方面出发,给出了锂电池大规模量产的机遇和挑战。这一研究成果《锂电池从实验室研究到大规模量产》,由太平洋西北国家实验室、华盛顿大学、宾夕法尼亚州立大学和梅赛德斯 - 奔驰北美研发公司以及赛默飞世尔科技共同完成,并发表在国际顶级期刊《nature energy》上。原文链接:https://doi.org/10.1038/s41560-023-01221-y文章解读文中在“对锂电池原材料和生产过程的表征”部分指出,为了实现可控且高品质的电池材料生产,先进的表征手段在这个过程中非常关键。品质把控包括原材料、电极形貌和成分、以及表面处理等众多步骤。在品质把控的过程中,来料中有 2 类金属杂质对于电池性能危害最为严重。一种是非磁性颗粒,比如铜 (Cu)、锌 (Zn) 类。另一种是磁性颗粒,比如铁 (Fe)、铬 (Cr)、镍 (Ni) 以及合金颗粒。目前电池制造商们主要采用以下 4 种策略来减少生产过程中的杂质颗粒。对原料进行严格的品质把控 策略一 这一过程可以借助电感耦合等离子体发射光谱仪、光学显微镜和扫描电镜(ParticleX Battery 锂电清洁度检测系统),来识别原材料的杂质颗粒并分析其成分,这些方法对于磁性颗粒和非磁性颗粒都具有适用性。使用 ParticleX Battery 锂电清洁度检测系统,识别到的磁性和非磁性异物颗粒某些生产环节加入除磁步骤策略二生产工艺中(如搅拌池),添加除磁工艺,以去除磁性颗粒物。监测生产车间的环境清洁度 策略三 生产车间中任何金属零件的磨损,都有可能产生异物颗粒,都会影响生产环境的清洁度。这一过程可以使用光学显微镜和扫描电镜(PaticleX Battery 锂电清洁度检测系统)来追溯污染来源。生产设备的金属表面涂覆防护涂层 策略四 比如在金属储罐表面涂覆聚四氟乙烯涂层,以减少浆料中混入金属碎片的风险。/ ParticleX Battery 全自动锂电清洁度检测系统 /文中使用扫描电镜进行的清洁度检测,正是使用飞纳电镜的 ParticleX Battery 锂电清洁度系统完成的。锂电池中金属异物可能导致严重的安全事故,对金属异物的管控也已经成为行业共识。飞纳电镜 ParticleX Battery 全自动锂电清洁度分析系统,从异物颗粒的图像出发,结合颗粒的能谱(成分)信息,可以自动识别、分析和统计铜(Cu)、锌(Zn)、铁(Fe)等金属异物,进而帮助准确分析异物来源,改善生产条件,减少安全事故的发生。- 自动杂质颗粒识别- 自动高清图像采集- 自动能谱成分分析- 自动杂质颗粒分类
  • 戴安公司提供检测肝素钠中杂质的方法
    去年发生的美国百特公司使用美国SPL公司在中国控股的常州SPL公司提供的 &ldquo 肝素钠&rdquo 原料生产的&ldquo 肝素钠注射液&rdquo 在美国集中出现不良反应,美国食品药物管理局(FDA)随后公布检验结果,在药物原料中验出&ldquo 多硫酸软骨素&rdquo 的成分。 硫酸软骨素是一种从动物关节、软骨等组织中提取出来的生物衍生产品,可作为食品添加剂。在问题&ldquo 肝素钠&rdquo 里检测出来的是发生过化学变化的类似肝素钠分子的多硫酸软骨素,故美国对肝素钠原料中杂质的含量给予限定,并将新的检测方法纳入美国药典,对中国肝素钠出口厂进行限制。中国国家食品药品监管局针对此事件于去年4月要求国内肝素钠药品生产企业必须在现行的肝素钠药品质量检测标准的基础上,增加多硫酸软骨素检测项目,以确保产品质量安全。 目前美国药典中针对肝素钠杂质的检测方法有两种:液相法和离子色谱法。两种方法均涉及到了戴安公司的技术。 液相色谱或离子色谱法:该方法使用常规液相色谱仪或离子色谱仪,戴安的IonPac AS11离子色谱柱,紫外检测器。该方法能够直接分离样品中的硫酸皮肤素、多硫酸软骨素以及肝素钠,主要用于检测肝素钠中的多硫酸软骨素。 离子色谱法:该方法使用带有脉冲安培检测器的离子色谱仪。将肝素钠样品水解,肝素钠中有机杂质会水解为半乳糖胺,用戴安公司的氨基酸捕获柱、保护柱、CarboPac PA20分析柱进行分析,通过脉冲安培检测,得到半乳糖胺的含量,水解样品溶液中的半乳糖胺在总氨基己糖中的含量不得超过1%。主要用于检测肝素钠中的有机杂质。 戴安中国有限公司应用中心现可提供以上分析方法,如大家对上述分析方法感兴趣,请与戴安公司应用中心联系:010-62849182 戴安中国市场部 2009年4月10号
  • 岛津二维液相色谱新应用|流动相含离子对试剂的化药杂质质谱鉴定方法
    离子对试剂:极性药物分析绕不开的话题 液相色谱是药物杂质含量测定和有关物质分离分析最常用的技术手段。对一个陌生的化合物,ODS反相色谱柱通常方法开发条件会选择酸性pH流动相。然而,总有些化合物,它们或含氨基、或含羧基、磺酸基团、磷酸基团,极性较强在反相色谱柱上没有保留。打开2020版《中国药典》第二部,不难发现这些品种,名称中常含有“马拉酸”、“盐酸”、“碱”、“酸”等关键词。对于这类强极性化合物的分析,药典给出的答案是:流动相中添加离子对试剂。例如丁溴东莨菪碱、贝敏伪麻的有关物质流动相条件中含有十二烷基硫酸钠;马来酸曲美布汀的流动相含有戊烷磺酸钠;盐酸头孢吡肟的流动相含有辛烷磺酸钠;叶酸、头孢美唑和对氨基水杨酸钠的流动相含有四丁基氢氧化铵。离子对试剂的添加,增强了极性化合物的保留,改善了药物与杂质的分离,是极性药物分析的杀手锏。 离子对试剂:“质谱不能承受之重” 辛烷磺酸钠和四丁基硫酸氢铵等常用离子对试剂,属于不挥发盐类,质谱响应强且信号经久不衰,持续抑制目标化合物的电离。一旦误操作进入质谱端,需要清洗整个离子通路才能恢复质谱的正常状态。常规二维液相在线除盐系统仅能去除无机盐,无法去除离子对试剂。这是因为无机盐(如磷酸盐)在二维反相色谱柱上无保留,在死时间将其切至废液从而实现在线除盐。然而离子对试剂具有较强的疏水性,在常规ODS色谱柱上强烈吸附显著拖尾,因此不能被常规二维液相系统去除。 上图是辛烷磺酸钠在ESI离子源上的响应。可生成簇离子,质谱响应强且持久,对ESI正负模式均可产生抑制。 上图是四丁基硫酸氢铵在ESI离子源正模式的响应,质谱响应强且持久。四丁基硫酸氢铵与固定相强烈作用,色谱上呈现显著拖尾。 ReDual:一款可以同时分离无机、有机、阴、阳离子的“神柱” ReDual系列色谱柱,是岛津公司最新推出的离子交换反相混合键合相色谱柱,共分为三款: ReDual™ SCX-C18 强阳离子交换+反相ReDual™ CX-C18 弱阳离子交换+反相ReDual™ AX-C18 强阴离子交换+反相 下图是采用ReDual AX-C18 (4.6 mm I. D. × 150 mm L., 5 µm,货号426-45415)分析磷酸二氢钠、四丁基硫酸氢铵和卡络磺钠混合样品的色谱图。该款色谱柱表面键合叔胺基团,在pH 2-7范围内色谱柱表面带阳离子。除疏水作用外,其对阴离子具有离子交换作用,对阳离子具有离子排斥作用。为分离极性类似的阳离子和阴离子型化合物提供了条件。下图中四丁基氨根离子峰型对称,不拖尾无残留,可以通过阀切换导入废液实现在线去除。 ReDual AX-C18色谱柱NQAD检测器同时分离无机有机阴阳离子(1:Na+ 2:四丁基氨根离子;3:H2PO3- 4:卡络磺酸根离子) 应用案例:卡络磺钠参比制剂中杂质结构鉴定 本应用采用常规中心切割二维液相系统,无需改造仪器;馏分转移过程配有紫外检测器监控,不存在检测盲区;离子对试剂的去除未使用强酸或强碱性试剂;方法耐用性好。一维使用C18反相色谱柱,流动相添加磷酸二氢钠(含四丁基硫酸氢铵,pH 3.0);二维使用ReDual AX-C18色谱柱,在线去除四丁基硫酸氢铵和磷酸二氢钠,实现目标化合物的质谱鉴定。 卡络磺钠杂质2的质谱鉴定结果 总结岛津中国创新中心搭载的特色中心切割二维色谱杂质鉴定系统,二维使用岛津公司最新推出的ReDual™ AX-C18强阴离子交换反相混合键合相色谱柱,成功实现一维流动相中离子对试剂和无机盐的在线去除,并对卡络磺钠参比制剂中未知杂质进行了质谱鉴定。
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP对元素杂质的限量要求及USP对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。
  • 机械杂质测定仪|石油产品机械杂质测定的作用及意义
    得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器。公司推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等。垂询电话:010-80764046,807640561、什么叫做试油的机械杂质?答:试油中的机械杂质是指存在于油品中所有不溶于溶剂(汽油,苯)的沉淀状或悬浮状物质。这些杂质多由砂子,粘土、铁屑粒子等组成。现行方法测出的杂质也包括了一些不溶于溶剂的有机成份,如碳青质和碳化物等。2、油品中机械杂质对机组运行以下危害:(1)可引起调速系统卡涩和机组的转动部分磨损等潜在故障。(2)引起绝缘油的绝缘强度、介质损耗因数及体积电阻率等电气性 能下降。(3)影响汽轮机油的乳化性能和分离空气的性能。(4)堵塞滤油器和滤网,影响油箱油位的显示,磨损油泵齿轮。(5)影响变压器散热,引起局部过热故障。相关仪器ENDENDA1280机械杂质测定仪符合GB/T511标准,适用于测定石油产品中的各类轻、重质油、润滑油及添加剂的机械杂质的含量。可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点1.数码显示,智能温控表控温2.外观美观,测试方便,性能稳定可靠3.实现按标准要求的升温速率4.仪器主要由玻璃器皿、恒温水浴、真空 泵、电子控温箱组成技术参数• 工作电源: AC 220V±10%,50Hz• 水浴加热功率: 1000W• 水浴控温范围: 室温~90℃内可调• 水浴温度显示: LED数字显示• 水浴控温精度: ±1℃• 漏斗控温范围: 室温∼90℃内可调• 漏斗控温显示: LED数字显示• 漏斗控温精度: ±2℃• 环境温度: 5℃∼45℃• 相对湿度: ≤85%• 整机功耗: ≤1200W• 外形尺寸: 400*380*600• 重 量: 7.5KG
  • 国之重器 | 稀土——iCAP TQ ICPMS分析高纯稀土中痕量稀土杂质
    "工业的维生su"稀土元素被誉为"工业的维生su",具有丰富的磁、光、电等特性,在现代高新技术产业和功能材料中起到了至关重要的作用。这些材料主要包括稀土永磁材料、稀土催化材料、发光材料、贮氢材料、磁制冷材料、光导纤维、磁光存储材料、巨磁阻材料、稀土激光材料、超导材料、介电材料等,在航空、航天、信息、电子、能源、交通、医疗卫生等领域得到了广泛的应用。高纯稀土通常是指纯度高于99.99%的稀土金属或其氧化物。高纯稀土材料中存在的其它稀土杂质元素常会对最终产品的功能产生影响,随着提炼技术的不断改进,使得稀土氧化物纯度可达到6N(行业上通指稀土杂质元素含量),从而对于痕量稀土杂质测定方法提出了更高的要求。针对高纯稀土中的杂质检测会有下面难点。主基体的浓度太高,会干扰杂质元素的检测对于高纯稀土中的杂质检测,往往样品是5N(99.999%)及以上级别含量非常低,需要仪器有足够高的灵敏度案例分析测定6N级高纯稀土氧化钆(Gd2O3 )中的14种稀土杂质目前氧化钆中稀土杂质检测方法主要依据国标GB/T18115.7中的电感耦合等离子体发射光谱法( ICP-OES) 和质谱法( ICP-MS)。在ICP-OES分析中,由于Gd的谱线十分密集,对其他稀土杂质元素的谱线干扰非常严重,测定范围在0.001%-0.05%之间,难以满足更高纯度要求。单杆ICP-MS 质谱法具有更低的检出限,但Gd具有7个天然丰度同位素,当采用SQ-ICP-MS方法进行氧化钆中其它稀土杂质元素分析时,Yb和Lu将受到严重的[ 152 154 155 156 157 158 160 Gd16 17 18 O]+和[ 152 154 155 156 157 158 160 Gd 16 17 18 OH]+类多原子类干扰,在现有的GB/T18115.7标准方法中,针对氧化钆中镱和镥的测定制定了采用C272柱分离钆基体后再进行ICP-MS法测定方案,各杂质元素的最di定量下限可达0.0001%,能够实现近5N级钆纯度的测定。但这种分离技术非常费时,步骤繁琐,对方法测定结果的影响因素多。"赛默飞三重四极杆ICPMS"赛默飞三重四极杆ICPMS不经任何基体分离手段,能轻松解决高纯稀土元素中杂质元素检测的干扰问题,为高纯稀土质量提供有力质量控制手段。(点击查看大图)实验测定结果(点击查看大图)iCAP TQ 三重四极杆ICPMS-高纯稀土元素检测利器超qiang抗干扰能力利用 Q1的iMS智能化质量筛选功能可有效地将高纯稀土基体离子进行剔除,然后通过Q2碰撞反应池中加入特定的反应气体,如氧气或者氨气,将待测稀土杂质离子或者基体氧化物离子的质量数进行迁移,解决了质量数重叠干扰。简单操作赛默飞Qtegra™ 智能科学数据处理软件(ISDS™ )通过自带的Reaction Finder 软件工具,能够自动为分析任务确定最you测量模式,帮助用户方便地建立方法,节省了日常方法建立所消耗的时间。为全国稀土行业的客户提供解决方案赛默飞采用iCAP TQ ICPMS/MS三重四极杆质谱仪无需采用繁杂的分离稀土基体技术,就能轻松去除基体元素形成的干扰,从而准确测定稀土杂质元素的含量,为全国稀土行业的客户提供解决方案以满足行业发展的迫切需求。如需合作转载本文,请文末留言。
  • 浅谈药物质量标准中杂质的确定、限度制定、杂质测定
    一、对于杂质检查,需要有针对性的确定各原料药或辅料中需要测定的杂质,药品标准中的杂质检查项目,应包括以下几点:药物在研究中和稳定性考察中产生的;药物在生产中产生和降解的杂质。综上,药物在整个周期的杂质检查,应研究起始物料、生产工艺、药品稳定性这三个环节把控杂质检出,从而制定严格的内控质量标准,确保药品安全性。尤其是降解杂质和毒性杂质,通常为必检项目,除降解产物和毒性杂质外,在原料药中已控制的杂质,在制剂中一般不再控制。对于对映体药品,与之相关的异构体应作为杂质来检查。对于消旋体药品,质量标准中,除订入异构体标准外,还需定入旋光度。二、讲述杂质限度相关问题首先明确杂质限度中涉及到的以下术语:报告限度:超出此限度的杂质均应在检测报告中报告,并应报告具体的检测数据; 鉴定限度:超出此限度的杂质均应进行定性分析,确定其化学结构; 质控限度:质量标准中一般允许的杂质限度,如制定的限度高于此限度,则应有充分的依据; TDI:药品杂质的每日总摄入量。注:上表摘自2020版中国药典四部9102药品杂质分析指导原则创新药杂质制定:根据已进行的临床安全性数据获得。仿制药杂质制定:根据已有的标准,制定适应自研产品的杂质内控质量标准。研究杂质过程中,必要研究杂质的LOQ,LOQ浓度不得大于该杂质的报告限浓度(容易忽略项)。对于药品中的杂质检查,有薄层色谱法、高效液相色谱、气相色谱法,最常用的就是高效液相色谱方法和薄层色谱法,现介绍如下:对于采用高效液相色谱法测定杂质检出量,有以下几种办法:外标法(也称杂质对照品法)加校正因子的主成分自身对照法不加校正因子的主成分自身对照法面积归一化法下面一一讲述这几个方法,请耐心看完,表格形式汇总,易查看三、对于采用薄层色谱法测定杂质检出量,有以下几种办法:杂质对照品法;供试品溶液自身稀释对照法;杂质对照品法与供试品溶液自身稀释对照法;对照物法。下面一一讲述这几个方法,请耐心看完,表格形式汇总,易查看!
  • 又出遗传毒性杂质?莫慌,岛津叠氮杂质分析方案来帮忙
    导读2021年欧洲药品质量管理局(EDQM)发布:四氮唑环的沙坦活性物质中存在致突变性叠氮杂质的风险,并根据ICH M7的要求对数据进行审核,确保叠氮杂质的水平低于毒理学关注阈值(TTC)。其后某国际医药公司因叠氮杂质而被召回多批厄贝沙坦药物。沙坦中叠氮类杂质,是继亚硝胺类杂质后又一类需重点关注的基因毒性杂质。 叠氮杂质的由来叠氮化合物是医药行业中常见的化工原料,通常作为起始物料、反应试剂或中间体存在于药物合成过程中,在厄贝沙坦的合成中,通常需要使用三丁基叠氮化锡或叠氮化钠以形成药物结构中的四唑环,如厄贝沙坦原料药中的4’-(叠氮甲基)[1,1-联苯]-2-氰基(AZBC)、5-[4’-(叠氮甲基)[1,1-联苯]-2-基]-2H-四氮唑(MB-X),见下图。 分析方案l 两种叠氮化合物分析采用岛津超高速LC-MS/MS技术,可分别建立快速、稳定、高灵敏度的叠氮化合物AZBC、MB-X的分析方法。 超高效液相色谱-质谱联用仪 AZBC和MB-X的线性范围分别为0.25ng/mL-25 ng/mL和1 ng/mL-75 ng/mL,且线性回归系数R20.999,各标准点校准误差均在±5%以内。 空白厄贝沙坦样品分别加入低、中、高三种不同浓度的标准溶液,AZBC的回收率在95.97%~100.55%之间,MB-X的回收率在103.53%~111.82%之间。 AZBC和MB-X加标回收率 l 岛津遗传毒性杂质解决方案近年来,随着药物杂质分析研究的不断深入,新遗传毒性杂质不断发现,已上市药品中因痕量遗传毒性杂质残留而发生大范围的召回事故,如N-亚硝胺类、磺酸酯类等基因毒性杂质给制药企业带来巨大经济损失。岛津紧跟法规动态,在相关遗传毒性杂质分析检测方面积累了丰富的经验,目前已发布多份关于遗传毒性杂质的解决方案,具体内容可关注“岛津应用云”—方案下载—应用文集,敬请下载。 结语在化学药物研发和生产过程中,杂质分析一直是重要而关键的检测领域,岛津一直积极响应和应对行业最新动态,积极参与新化合物、新药物杂质、新法规指南等分析方法的开发和研究,及时为客户提供完整、准确的应对解决方案,助力客户掌握行业最新的检测技术。 撰稿人:孟海涛 本文内容非商业广告,仅供专业人士参考。
  • 安捷伦多产品荣获《分析科学家》杂志创新奖
    p style=" text-align: center " strong 《分析科学家》杂志创新奖授予 Ultivo 三重四极杆液质联用系统以及 1260 Infinity II Prime 液相色谱仪和 Captiva 增强型脂质去除产品 /strong /p p   2018 年 1 月 23 日,北京——安捷伦科技公司(纽约证交所:A)今日宣布《分析科学家》杂志已将我们的产品列入年度最具创新性产品名单。 /p p   该杂志关注分析化学领域的技术发展,已将 Agilent Ultivo 三重四极杆液质联用系统以及 Agilent 1260 Infinity II Prime 液相色谱仪和 Agilent Captiva 增强型脂质去除技术列入其创新性产品名单的前 15 名。 /p p   《分析科学家》创新奖重点关注革命性技术带来的创新成果。获奖者由专家小组选出,小组成员包括杂志编辑顾问委员会的成员和编辑人员。 /p p   《分析科学家》杂志编辑 Charlotte Barker 说道:“今年是颁发该奖项的第五年,创新奖将一如既往地展出对分析科学产生重大影响的仪器和技术。今年参赛的产品数量创下了历史记录,最终的 15 项获奖产品展示了该领域的各种分析技术。” /p p   安捷伦副总裁兼质谱事业部总经理 Monty Benefiel 说道:“我们致力于通过对各种用途的前沿产品进行创新,从而助力实验室科学家取得更大的成功。我们的产品能够获得外界(如《分析科学家》杂志)的认可,我们对此感到非常荣幸。” /p p   关于 Agilent Ultivo 三重四极杆液质联用系统和 Agilent 1260 Infinity II Prime 液相色谱仪: /p p   Ultivo 代表了新一代的 LC/TQ 仪器。它具有与大型 LC/TQ 系统相当甚至更出色的性能,以及体积小巧、易于使用和节约成本的优势。实验室能够获益于其节省空间和可叠放的设计,从而使实验室台面空间发挥出最佳作用,此外,该系统还具有早期维护反馈功能,增强的可维护性、直观的操作设计以及在复杂基质中稳定/可靠的性能。1260 Infinity II Prime 液相色谱仪使这一系统更加完整,能够为所有实验室提供单位仪器台面空间内最高的样品容量。 /p p   关于 Agilent Captiva 增强型脂质去除技术: /p p   Captiva EMR–Lipid 通过式 SPE 产品能够简化工作流程,减少样品前处理步骤。处理后的样品更纯净(去除超过 99% 的磷脂),方法灵敏度和分析物回收率都能够得到改善,从而使数据分析速度更快,数据重现性和可信度更高。能够避免在系统中引入基质污染,缩短意外停机时间。 /p p   《分析科学家》杂志涵盖了分析化学领域的各方面内容:从科学技术的最新进展到实验室的第一手资料。 /p p    strong 关于安捷伦科技公司 /strong /p p   安捷伦科技公司(纽约证交所: A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50 多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在 2017 财年,安捷伦的营收为 44.7 亿美元,全球员工数为 13500 人。 /p
  • 机械杂质的含量检测日益重要---得利特推出机械杂质测定仪
    分析仪器产品应用领域广泛,包括电力、冶金、石化、环保等多个行业,其景气程度与宏观经济运行情况相关,受到技术进步、需求升级、政策刺激等多重因素影响,总体波动幅度较小。行业整体的周期性不明显。 分析仪器市场与工业企业固定资产投资相关,不同应用领域有所差别,个别细分市场具有一定的周期性。然而,从整体来看,近年来我国工业固定资产投资持续增加,工业自动化程度不断提高,企业装备持续更新改造升级,分析仪器市场近年来持续增长,无明显周期性特征。A1280机械杂质测定仪符合GB/T511标准,适用于测定石油产品中的各类轻、重质油、润滑油及添加剂的机械杂质的含量。可广泛应用于电力、石油、化工、商检及科研等部门。仪器特点1.数码显示,智能温控表控温2.外观美观,测试方便,性能稳定可靠3.实现按标准要求的升温速率4.仪器主要由玻璃器皿、恒温水浴、真空 泵、电子控温箱组成技术参数工作电源: AC 220V±10%,50Hz水浴加热功率: 1000W水浴控温范围: 室温~90℃内可调水浴温度显示: LED数字显示水浴控温精度: ±1℃漏斗控温范围: 室温~90℃内可调漏斗控温显示: LED数字显示漏斗控温精度: ±2℃环境温度: ≤35℃相对湿度: ≤85%整机功耗: 不大于1200W
  • 惠氏营养品在南京铭奥购买德国盖博的牛奶杂质度测定仪/杂质度检测仪/杂质度分析仪SEDILAB-E
    惠氏营养品在南京铭奥购买了德国盖博的牛奶杂质度测定仪/杂质度检测仪/杂质度分析仪SEDILAB-E。 技术参数 全自动杂质度测定仪 → 用于乳品,牛奶杂质度的测试→ 检测速度:800样品/小时→ 每一滤膜可测500ml牛奶溶液→ 杂质度板直径:32mm
  • 检测药物杂质,保障药品安全——“化学药物杂质研究及检测技术”网络会议,7月27日开播!
    众所周知,青霉素类注射剂使用前需要进行皮试。由于批次不同,使用前需要严格进行确认时候过敏。否则会导致严重的超敏反应,重则危及生命。资料表明,青霉素过敏中有90%都是由于其中的杂质过敏。由于药物化学和提纯工艺的发展完善,制剂的质量也在不断提高,因此过敏反应发生的概率降低。那么危及生命安全的杂质究竟是何物呢?在药品中都有哪些类型的“杂质”呢?药物杂质的分类和相关政策 药物杂质是指无治疗作用或影响药物的稳定性以及疗效的物质。由于杂质检测和含量控制对药品质量控制以及安全用药密切相关,国家药品监督管理局(NMPA)对药物临床前研究中的杂质分析越来越重视。因此,在已经实施的2020年版《中国药典》中对于药品安全性的监管更加严格。尤其是在化学药品杂质检测方面,相对2015版有较大程度的增修。在二部化学药部分,直接指出需要加强杂质检测的力度:“进一步完善杂质和有关物质的分析方法,推广先进检测技术的应用,强化对有毒有害杂质的控制;加强对药品安全性相关控制项目和限度标准的研究制定”。四部通则中新增《遗传毒性杂质控制指导原则审核稿》,对药物遗传毒性杂质的危害评估、分类、定性和限值制定进行了指导。我国早在2017年6月14日正式加入ICH (人用药品注册技术要求国际协调会),成为全球第8个监管机构成员,此次,化学药部分对元素杂质的控制要求引入了ICH(Q3D)部分,与ICH的规定几乎一致。可见,2020 年版《中国药典》编制大纲要求化学药基本达到国际标准。因此,从“杂质限量”这个维度来看,药物的规格只有两种,即“合格”与“不合格”。药物的杂质有哪些类型呢?应用什么样的分析方法可以进行检测呢?化学药物杂质的分类与检测方法化药中的杂质可分为有机杂质、无机杂质、残留溶剂。对于新药及其制剂来说分为:有活性组分的降解产物、活性组分与赋形剂和(或)内包装/密封系统的反应产物、遗传毒性杂质以及药包材杂质。关于杂质的分析方法,对于有机杂质的分析(起始物、副产物、中间体、降解产物等),使用色谱法分析居多;对于无机杂质(重金属,无机盐等),通常采用ICP/AA/ICPMS等仪器分析;对于残留溶剂杂质,则以GC分析为主。贯穿于药品研发的整个过程的理念就是保证安全。选择合适的分析方法,准确地测定杂质的含量,综合毒理及临床研究的结果可以更好地研究药物杂质。基于此,7月27日,仪器信息网(instrument.com.cn)与天津市分析测试协会共同举办“化学药物杂质研究及检测技术”网络主题研讨会,以期为广大生命科学、制药工作者们提供交流平台,促进相关技术的发展。本次会议特邀报告嘉宾:天津医科大学刘照胜教授、天津大学药学院陈磊副教授、天津市药品检验研究院抗生素室杨倩药师以及河北省药品医疗器械检验研究院化学药品室副主任徐艳梅工程师。同时邀请到来自赛默飞世尔科技的刘钊工程师、岛津企业管理(中国)有限公司的孟海涛工程师以及沃特世科技的陆金金工程师为我们解读药典相关的政策变化和最新的仪器应用案例。(会议详情请您报名或点击阅读原文获取)【报名二维码】小惊喜:成功报名会议+转发会议页面至朋友圈或专业群+截图后—可加专业交流群、会议预告、资料获取、会议回看… … 关注微服务,参会不迷路微信搜索“仪器信息网微服务”,获取百场会议信息,做仪器行业学习的领航者。
  • 半导体杂质检测难?半导体专用ICP-MS来帮你!
    对Fab工厂而言,控制晶圆、电子化学品、电子特气和靶材等原材料中的无机元素杂质含量至关重要,即便是超痕量的杂质都有可能造成器件缺陷。然而半导体杂质含量通常在ppt级,ICP-MS分析时用到的氩气及样品基体都很容易产生多原子离子干扰,标准模式、碰撞模式下很难在高本底干扰的情况下分析痕量的目标元素。珀金埃尔默NexION系列半导体专用ICP-MS,凭借其独特的以动态反应池技术为基础的UCT(通用池)技术,既能实现标准模式、碰撞模式,也可以通过反应模式消除干扰,从根本上成功解决了多原子干扰的技术难题。晶圆中的金属杂质分析(UCT-ICP-MS)晶圆等半导体材料中的主要成分是硅。高硅基体的样品在传统的冷等离子体条件下分析,其中的耐高温元素硅极易形成氧化物。这些氧化物沉积在锥口表面后,会造成明显的信号漂移。NexION系列半导体专用ICP-MS在高硅基体的样品分析中采用强劲的高温等离子体,大大降低了信号漂移。通过通入纯氨气作为反应气,在DRC 模式下,有效消除了40Ar+ 对40Ca+、40Ar19F+ 对59Co+、40Ar16O+ 对56Fe+ 等的干扰。通过调节动态带通调谐参数消除不希望生成的反应副产物,克服了过去冷等离子体的局限,有效去除多原子离子的干扰。在实际检测中实现了10 ng/L 等级的精确定量,同时表现出良好的长期稳定性。基质耐受性:Si 基质浓度为100ppm 到5000ppm 样品100ppt 加标回收稳定性:连续进样分析多元素加标浓度为100ppt 的硅样品溶液(硅浓度为2000ppm)《NexION 300S ICP-MS 测定硅晶片中的杂质》NexION ICP-MS 测定半导体级盐酸中的金属杂质在半导体设备的生产过程中,许多流程中都要用到各种酸类试剂。其中最重要的是盐酸(HCl),其主要用途是与过氧化氢和水配制成混合物用来清洁硅晶片的表面。由于半导体设备尺寸不断缩小,其生产中使用的试剂纯度变得越来越重要。ICP-MS具备精确测定纳克/升(ng/L,ppt)甚至更低浓度元素含量的能力,是最适合测量痕量及超痕量金属的技术。然而,常规的测定条件下,氩、氧、氢离子会与酸基体相结合,对待测元素产生多原子离子干扰。如,对V+(51) 进行检测时去除 ClO+ 的干扰。虽然在常规条件下氨气与ClO+ 的反应很迅速,但如果需要使反应完全、干扰被去除干净,则需要在通用池内使用纯氨气。NexION系列半导体专用ICP-MS的通用池为四级杆,具备精准可控的质量筛选功能,可以调节RPq 参数以控制化学反应,防止形成新的干扰,有效应对使用高活性反应气体的应用。20% HCl 中各元素的检出限、背景等效浓度、10 ng/L 的加标回收率20% HCl 中典型元素ppt 水平标准曲线20% HCl 中加标50 ng/L 待测元素,连续分析10 小时的稳定性《利用NexION 2000 ICP-MS 对半导体级盐酸中的杂质分析》电子特气直接进样分析技术(GDI-ICP-MS)半导体所使用的特殊气体分析传统方法有两种:一种是使用酸溶液或纯水对气体进行鼓泡法吸收,然后导入ICP-MS进行分析;另一种是使用滤膜对气体中颗粒物进行收集,然后对滤膜消解后上机。然而无论是鼓泡法吸收还是滤膜过滤收集、消解,都存在样品制备过程容易被污染、鼓泡时间难以确定、不同元素在酸中溶解度不一样等各种问题,分析结果的可靠性和重现性都难以保证。GDI-ICP-MS系统可以将气体直接导入到等离子中进行激发,避免了额外的前处理步骤,具有方便、高效、不容易受污染等特点,从根本上解决传统方法的一系列问题。GDI-ICPMS气体直接进样技术GDI-ICPMS 直接定量分析气体中金属杂质GDI-ICP-MS法绘制的校准曲线(标准气体产生方式:在氩气中雾化标准溶液,这些标气对所有待测元素的线性都在0.9999以上)《使用气体扩散和置换反应直接分析气体中金属杂质》半导体有机试剂中纳米颗粒的分析(Single particle-ICP-MS)单颗粒ICP-MS(SP-ICP-MS)技术已成为纳米颗粒分析的一种常规手段,采用不同的进样系统,能在100~1000 颗粒数每毫升的极低浓度下对纳米颗粒进行检测、计数和表征。除了颗粒信息,单颗粒ICP-MS 还可以在未经前级分离的情况下检测溶解态元素浓度,可检测到ppb级含量的纳米颗粒,实现TEM、DLS等纳米粒径表征技术无法完成的痕量检测。用ICP-MS分析铁离子(56Fe+)时会受到氩气产生的40Ar16O+的严重干扰。利用纯氨气作反应气的动态反应池技术是消除40Ar16O+对铁离子最高丰度同位素56Fe+干扰最有效的途径,而只有对56Fe+的分析才能获得含铁纳米颗粒分析最低的检出限。90% 环己烷/10% 丙二醇甲醚混合液测定图谱,有含铁纳米颗粒检出TMAH 中含铁纳米颗粒结果图谱:(a)粒径分布;(b)单个含铁纳米颗粒实时信号TMAH 中含铁纳米颗粒粒径和浓度由Fe(OH)2 到总铁的质量换算《利用单颗粒ICP-MS在反应模式下测定半导体有机溶剂中的含铁纳米颗粒 》SP-ICP-MS技术测定化学-机械整平(CMP)中使用的元素氧化物纳米颗粒悬浮物的特性氧化铝和氧化铈纳米颗粒常用于纳米电子学和半导体制造行业中化学-机械 (CMP)半导体表面的平整。CMP悬浮物纳米粒子的尺寸分布特征以及大颗粒的辨别,是光刻过程质量控制的重要方面,会影响到硅晶片的质量。既可以测量可溶分析物浓度、又能测定单个纳米粒子的单颗粒模式ICP-MS(SP-ICP-MS)是分析金属纳米粒子的最有前途的技术。SP-ICP-MS技术具有高灵敏度、易操作、分析速度快的特点,纳米粒子引入等离子体中被完全电离,随后离子被质谱仪检测,信号强度与颗粒尺寸有关。因此SP-ICP-MS可为用户提供颗粒浓度(颗/mL),尺寸大小和尺寸分布。为确保一次只检测一个单颗粒,必须稀释样品以实现分辨的目的。这就要求质谱仪必须能够有很快的测量速度,以确保能够检测到在50nm纳米颗粒的瞬时信号(该信号变化的平均时间为300~500μs)。珀金埃尔默NexION系列半导体专用ICP-MS单颗粒操作模式能够采集连续数据,无需设置定位时间,每秒钟获取高达100 000个数据点。结合纳米颗粒分析软件模块,可以实现单颗粒纳米颗粒的准确分析。采集数据比瞬时信号更快的纳米信号积分图悬浮物1~4归一化颗粒尺寸分布频次图《使用单颗粒电感耦合等离子体质谱法(SP-ICP-MS)分析CeO2 化学机械抛光化浆料》On-line ICP-OES 在线监控磷酸中的硅含量在最新的立式3D NAND 闪存的生产工艺中,需要使用磷酸进行湿法刻蚀。在生产过程中,必须监控这种特殊的、高选择性氮化的磷酸中硅的含量,以控制工艺质量。当磷酸中硅含量发生改变时,必须排空并更换磷酸。在线ICP-OES技术响应迅速,可实现7天*24小时不间断检测,是最适合磷酸中硅含量监控的方法。而Avio500 紧凑的体积非常适合空间有限的Fab 厂;垂直炬管配合独特的切割尾焰技术,不需要任何维护也能获得最佳的数据稳定性。在线监控系统可实现:自动配制校准曲线7天*24小时全自动运行质控功能(超出线性范围则重新校准)可同时监控5个模块(多达20个采样点)允许ICP-OES在线或离线分析间切换点击链接获取文中提到的解决方案和更多半导体相关资料:http://e86.me/4qfk7N关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 岛津推出二维液质杂质鉴定系统
    制药企业QA/QC 部门的液相检测方法中会经常使用非挥发性缓冲盐流动相(如磷酸盐缓冲溶液),但当进行液质联用分析时,流动相必须转换为适合于ESI(APCI)的挥发性流动相。而改变流动相很多时候会使得杂质峰的保留时间发生变化,甚至湮没在主峰中,因此,需要耗时耗力摸索新的分析方法。 为解决上述问题,近日,岛津公司在中国市场推出了岛津独有的LCMS-IT-TOF 的新应用系统&mdash &mdash 二维液质杂质鉴定系统。通过使用岛津二维液质杂质鉴定系统,无需改变原先的流动相分离条件,就可以将目标杂质从一维色谱中收集下来,在二维色谱中直接使用挥发性流动相进行MS 分析。如果同时配备IT-TOF,则可以通过多级高分辨质谱进行精确定性分析。 2D LC/MS 杂质鉴定系统流路图 二维液质杂质鉴定系统是基于Prominence 设计、用于LCMS-IT-TOF 前端的应用系统,配置包括LCMS-IT-TOF,Prominence 系列液相单元以及 &ldquo 二维液质杂质鉴定系统启动包&rdquo 。启动包中包括二维液相色谱质谱联用的控制软件及整套连接管路。 本系统特长 1)无需改变分析方法 无需改变原有分析方法,系统就可以通过一维色谱分离,将目标杂质组分导入样品环;然后,二维色谱分离目标杂质,并通过提供准确和多级(n³ 2)的质谱数据来达到鉴别杂质的目的。 2) 二维方式实现全自动切换 当液相色谱分析使用非挥发性盐流动相(如磷酸盐缓冲液),转换为液质联用分析时,需将流动相转换为挥发性流动相(不使用缓冲盐或使用挥发性缓冲盐)以适应大气压离子源。而本系统允许在一维分析中使用非挥发性盐流动相,在二维液质分析中使用挥发性流动相,自动实现流动相的在线改变。 3)可通过专用软件轻松使用该系统 二维色谱分析通常需要复杂的指令程序来控制切换阀以收集目标杂质。在此系统中,通过简单的输入杂质保留时间,即可以自动创建时间程序来实现阀的切换等动作。当杂质的保留时间未知或者因为分析条件变化而改变时,也可手动控制阀来实现切换。 有关详情,敬请咨询岛津公司 · 北京分公司 (010) 8525-2310/2312 · 浦西分公司 (021) 2201-3888 · 广州分公司 (020) 8710-8661 · 四川分公司 (028) 8619-8421 · 沈阳分公司(024) 2341-4778 · 西安分公司(029) 8838-6350 · 乌鲁木齐分公司(0991) 230-6271 · 昆明分公司(0871) 315-2986 · 南京分公司(025) 8689-0258 · 重庆分公司(023) 6380-6068 · 深圳分公司(0755) 8287-7677 · 武汉分公司(027) 8555-7910 · 河南分公司(0371) 8663-2981 岛津用户服务热线电话:800-8100439 400-6500439 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 检测石油产品机械杂质的意义是什么
    检测石油产品中的机械杂质具有重要的意义,主要体现在以下几个方面:产品质量和安全性:机械杂质(如金属颗粒、砂粒等)如果存在于石油产品中,可能会对设备和引擎造成严重损害。特别是对于精细加工和高精度设备,即使微小的机械杂质也可能导致设备故障或性能下降。因此,检测机械杂质能够确保产品质量,减少因杂质造成的设备损坏和维修成本。生产过程控制:检测石油产品中的机械杂质可以帮助生产厂家和加工企业控制生产过程的质量。通过监测杂质的存在和数量,可以调整生产流程和设备,以确保产品符合标准和客户要求。环境保护:机械杂质可能不仅对设备造成损害,还可能在使用过程中进入环境,对生态系统造成污染。特别是在石油开采和加工过程中,如果未能有效控制机械杂质,可能会对土壤和水体造成负面影响。因此,通过检测和控制机械杂质,有助于减少对环境的不利影响。合规性和法规要求:许多国家和地区都有关于石油产品质量和安全的法规和标准。检测机械杂质是符合这些法规和标准的重要一环。通过合规的检测和控制,企业可以确保其产品在市场上的合法性和可信度,避免法律问题和罚款。品牌信誉:良好的产品质量控制不仅可以提高产品的市场竞争力,还能增强品牌的信誉度。消费者对于品牌产品的信任往往建立在其质量和安全性上,而检测和控制机械杂质是保证这些要素的重要手段之一。综上所述,检测石油产品中的机械杂质不仅是为了确保产品质量和设备安全,还涉及到环境保护、法规合规和品牌信誉等多方面的重要意义。有效的杂质控制和管理对于石油行业的可持续发展和市场竞争具有至关重要的影响。
  • 赛默飞发布药物杂质鉴定新流程
    2015年8月18日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布基于Thermo ScientificTM Q ExactiveTM Focus串联四极杆高分辨质谱仪(产品详情:www.thermoscientific.cn/product/q-exactive-focus-hybrid-quadrupole-orbitrap-mass-spectrometer.html)和新一代的智能小分子化合物鉴定软件Thermo ScientificTM Compound DiscovererTM的药物杂质鉴定的新流程,实现了对泮托拉唑杂质谱的分析。无论是优质数据的有效获取,还是获取后对已知和未知杂质的分析鉴定,该工作流程都可以完美实现。药物杂质是药物活性成分(原料药)或药物制剂中不希望存在的化学成分,会对用药的安全性和有效性带来隐患,因此杂质的检测是保证药物质量至关重要的部分,FDA、EMEA、PMDA、CFDA等各国药品监管部门均制定了相应的指导原则对其进行严格管控。赛默飞独有的四极杆静电场轨道阱高分辨液质联用技术,凭其高灵敏度、高专属性和高准确性的分析能力,可对样品中药物杂质进行全面的信息采集。结合小分子化合物鉴定软件Compound Discoverer以高度灵活的自定义方式制定分析工作流程,对数据中的目标和非目标杂质进行提取、比对及鉴定,工作流程如下:通过软件对样品数据的分析和提取,在Compound Discoverer中可以直观、便捷的查看和筛选预期和未知的杂质分析结果,从结果界面中可获得不同条件下样品杂质的变化情况,获得所有杂质保留时间、一级质谱、同位素和二级质谱等丰富信息。在获得母药和杂质的一级和二级质谱信息后,软件将调用碎裂数据库(Fragmentation Library)快速的对泮托拉唑的碎片结构进行归属,该数据库几乎涵盖了所有已发表的文献,保证了碎片解析的准确性。在此研究结果之上,通过软件对杂质与母药二级质谱信息之间的比对,进一步对杂质变化位点进行推测。在本例中,共鉴定到泮托拉唑杂质15个,其中可能的降解杂质9个,可能的工艺杂质6个,为药物杂质的质量控制、安全性评估提供了富有价值的信息。相关资料下载地址:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LSMS/documents/analysis%20drug%20impurity%20in%20pantoprazole.pdf -------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 新规发布,疫苗杂质分析有难题?
    图片来源:药监局官网2023年10月12日,国家药监局、国家卫生健康委发布实施《中华人民共和国药典》(2020年版)第一增补本的公告。《公告》指出,《中华人民共和国药典》(2020年版)第一增补本,自2024年3月12日起施行。其中,在三部新增通则和指导原则中发布了“9403 人用疫苗杂质控制技术指导原则”,“人用疫苗杂质控制技术指导原则”公示稿曾于2021年9月在药典委官网发布。该指导原则是对人用疫苗产品杂质控制的基本考虑,旨在指导疫苗生产和研发过程中对杂质成分的分析、评估并制定相应的控制策略,以尽可能减少或消除杂质对疫苗安全性和有效性的影响,保证疫苗产品质量。该指导原则应基于具体疫苗品种的特点及相关知识参考使用。指导原则主要分为三部分内容,分别为:1)疫苗杂质来源。阐述了工艺相关杂质和产品相关杂质两大疫苗杂质来源,并提到要重点关注宿主细胞蛋白和核酸、所用生物/化学材料的残留物以及包材相容性研究。2)疫苗杂质控制的原则及策略。疫苗杂质控制应基于“质量源于设计”的原则,对疫苗中杂质进行风险评估、全过程控制和全生命周期管理,并列举了不同类型疫苗杂质的控制要点(如下图所示)。同时在文中提到有机溶剂的使用应符合“残留溶剂测定法”(通则0861)以及参照“分析方法验证指导原则”(指导原则9101)对检测方法进行验证,并重点关注方法的专属性和灵敏度。3)变更事项对疫苗杂质控制的影响。应定期评估上市疫苗的生产工艺性能和杂质控制策略的有效性,持续优化产品杂质控制策略,如发生变更应参照相关要求开展变更前后的可比性研究等。指导原则9403 全文可概括如下方表格所示:疫苗接种每年可拯救数百万人的生命,其通过与身体的天然防御系统协同作用来建立保护网,从而降低感染疾病的风险。据统计迄今拥有的疫苗可以预防20多种危及生命的疾病,帮助所有年龄段的人活得更长、更健康。目前,疫苗接种每年可防止350万至500万人死于白喉、破伤风、百日咳、流感和麻疹等疾病。疫苗接种是初级卫生保健的一个关键组成部分,也是一项无可争议的人权。它也是钱能买到的最好的健康投资之一。疫苗对预防和控制传染病暴发至关重要,疫苗支撑着全球卫生安全,并将成为抗击抗微生物药物耐药性斗争的重要工具。(摘自WHO官网)然而直到今天,全球疫苗安全事件仍层出不穷。不规范的管理、不合法的添加、不合规的质量控制都是疫苗安全事件频发的原因,进而导致疫苗这一本用于预防/治疗疾病的工具却成为了加速疾病和死亡的利器。在疫苗的质量控制中,杂质的分析和控制至关重要,疫苗中杂质种类繁杂,来源多样,同时在指导原则9403中强调了要重点关注分析方法的专属性和灵敏度,这使得杂质分析难度进一步提升。岛津于2017年起先后与权威机构和知名疫苗企业开展合作,有着非常丰富的经验和专业的团队,在本篇中小编将和您分享岛津的疫苗杂质分析方案,助力广大用户应对新规发布及实施。01液相色谱法检测疫苗中四种常见防腐剂残留● 分析条件分析仪器:岛津超高效液相色谱仪LC-40色谱柱:Shimadzu Shim-pack GIST 100 mm x 2.1 mm I.D., 2.0 μm P/N: 227-3001-04 岛津(上海)实验器材有限公司流动相:A-水,B-乙腈流速:0.4 mL/min柱温:40 ℃进样体积:5 μL洗脱方式:梯度洗脱,B相初始浓度为10%。时间程序见表1。表1:梯度洗脱时间程序● 专属性及加标回收实验图1:对照品(0.5 ppm)和空白溶剂270 nm和220 nm色谱图表2:样品加标回收率(n=3)注:N.D.表示未检出结果显示,方法专属性良好,符合9403要求,且加标回收率在96.8~101.30%之间,RSD在0.05~0.28%之间,方法可靠,可为疫苗中防腐剂残留分析提供参考。02 LCMSMS检测疫苗中卡那霉素残留生物制品中卡那霉素的检测常用免疫法,但前处理复杂、灵敏度和专一性受限;LCMSMS方法前处理简单、专一性强、灵敏度高、分析速度快,因此本应用采用LCMSMS方法检测卡那霉素。● 分析条件分析仪器:岛津超高效液相色谱仪LC-40与三重四极杆质谱仪LCMS-8045联用系统色谱柱:Shimadzu Shim-pack GIST Amide 150 mm x 2.1 mm I.D., 3.0 μm P/N: 227-30818-06 岛津(上海)实验器材有限公司流动相:A-250 mM甲酸铵+0.1% 甲酸水溶液,B-乙腈流速:0.8 mL/min柱温:50 ℃进样体积:10 μL洗脱方式:梯度洗脱,B相初始浓度为75%。时间程序见表3。表3:梯度洗脱时间程序● 专属性及加标回收实验图2:对照品(0.5 ppm)和空白溶剂270 nm和220 nm色谱图表4:样品加标回收率(n=3)注:N.D.表示未检出结果显示,方法专属性良好,符合9403要求,且加标回收率在90.10~101.50%之间,RSD在0.65~2.38%之间,方法可靠,可为疫苗中抗生素残留分析提供参考。岛津始终关注大家的用药安全,并积极应对法规要求和变化,更多第一增补本增修订应用方案将持续推出,敬请期待!本文内容非商业广告,仅供专业人士参考。
  • 国内药物研发与质控对杂质研究用力过猛
    p   国内近些年之所以专注于杂质研究(尤其是有机杂质)、并逐渐呈现“面面俱到、尽善尽美”之态势,盖因大部分研发者认为杂质与药物不良反应息息相关,并习惯性地认为“杂质越小/越少、临床不良反应发生几率就会越小/越少”,进而在进行杂质研发与控制时陷入“精益求精、追求完美”的学术思维窠臼。殊不知,药物不良反应与杂质的关联性并非想象得那样密切,甚至是基本无关。 br/ /p p   在ICH组织于2002年9月12日颁布的《疗效--M4E(R1)人用药品注册的通用技术文档:模块2的临床回顾和临床概述与模块5:临床研究报告》中有如下阐述:“对看起来与药物有关的较常见的不良反应(例如,显示出剂量-效应和/或药物和安慰剂组发生率明显差异的事件),应对下列相关因素给予更多关注。这些因素包括:剂量 单位剂量 给药方案 疗程 总剂量 人口统计学特征 联合用药 其他基础特征 效能特性 药物浓度。”可见,药物不良反应主要与主成分的不合理使用和患者个人体质差异相关,而与杂质无关。 /p p   下面笔者解读不同给药方式下杂质与药物不良反应间的关系: /p p   1口服给药 /p p   此种给药方式使得药物在进入人体血液循环系统过程中具备了最为坚固的消化道屏障,因此这是一种最安全的给药方式,适量的杂质几乎不会带来安全性问题,临床不良反应多为药物自身引起。因为“是药三分毒”,当用法用量不当、超出安全用药浓度上限时,将对人体带来伤害、产生不良反应(如治疗窗狭窄药物就常发生此情形)。这些不良反应均是主成分所为,而非杂质所为。 /p p   而目前我国此类药物的主要问题是:部分仿制药质量与原研药存在较大差距,此差距是对于各种患者体内生物利用度的差距,绝非杂质差距 而生物利用度又与体外溶出行为密切相关。国家食品药品监管总局自2008年起开展“国家药品评价性抽验”工作至今,已发现国内已上市的部分口服固体制剂体外多条溶出曲线与原研制剂具有显著性差异,这也为临床差距提供了强有力的佐证。 /p p   至于少量杂质会阻碍药物靶点/结合点、影响药物有效性的观点,笔者认为这是没有任何根据的臆断。 /p p   2静脉滴注给药 /p p   很多同仁认为,静脉滴注给药方式已无生物利用度问题,此时不良反应与杂质密切相关,故应着重关注。其实这种认知是偏颇的。 /p p   静脉滴注给药方式使得药物进入人体封闭血液循环系统过程中,外来物质一股脑儿地侵入,此时人体必然产生应激反应,其中呈现出的不良反应强弱和患者的身体机能与主成分自身毒性/用法用量息息相关,与杂质基本无关。因此,此种给药方式带来的不良反应是必然存在的。虽然这些不良反应为“小概率事件”,但由于其发生率依然远高于肌肉注射和口服给药方式,所以世界卫生组织早在多年前就已制订“能吃药不打针(系指肌肉注射,此时存在肌肉组织屏障)、能打针不输液”的用药准绳。 /p p   然而过去的十多年间,我国临床用药由于某些主观因素,导致大量无序地使用静脉滴注给药方式,且还往往使用至最高剂量与频次,这就使得临床不良反应发生率无限增高,最终使得“小概率事件”在某种程度上变成了“大概率事件”。 /p p   但令人遗憾的是,在探求注射剂不良反应根源时,很多专家将其归咎于杂质,并逐渐形成一种思潮,于是自2008年起拉开了对杂质研究的大幕:科研立项、投入巨资,并购买大量高精尖设备,甚至很多科研工作者已趋于吹毛求疵之状态。 /p p   此外,2002~2006年间,很多五类“改装”仿制药堂而皇之上市 同时,我国药物上市后的再评价也很不到位,使得因药物自身毒性、只能采取口服给药方式的药物,在我国却长期采用注射给药方式,结果导致不良反应发生率较高。 /p p   3其他给药方式 /p p   对于如软膏剂、滴眼剂等外用剂型,杂质对于临床而言无足轻重,更是无需投入过多精力去研究。 /p p br/ /p
  • 赋能创“芯” | 电子气体中离子态杂质检测的先进技术探讨
    电子气体电子气体广泛应用于半导体制造的诸多环节,包括清洗、离子注入、刻蚀、气相沉积、掺杂等工艺,因此被称为芯片制造的血液。集成电路产业的快速发展,为电子气体国产化发展带来了机遇,同时国产化也面临着分离纯化、分析检测等多方面的挑战。赛默飞凭借其离子色谱的技术优势,与电子气体各细分领域客户通力合作,开发了多种电子气体中无机阴离子和铵根杂质检测的全面解决方案。电子气体国产化所面临的挑战 电子气体是晶圆制造的第二大耗材,在集成电路生产环节,使用的电子气体有近百种这些高纯气体从生产到分离纯化,以及运输供应阶段都存在较高的技术壁垒,特别是在气体纯化方面,涉及的高性能催化材料、过滤吸附等设备都需要大量研发投入。电子气体用途多、用量大,电子气体中的杂质含量直接影响最终芯片的良率和可靠性,赛默飞离子色谱系统可为电子气体中超痕量阴离子和铵根的测定提供同时测定方案,整个系统“只加水”不需要引入任何外接试剂,完全避免引入人工操作带来的污染和试剂中杂质的干扰,获得极低的系统背景和噪音;且对于复杂的气体吸收样品,赛默飞提供了中和、排斥、在线固相萃取、浓缩等多种谱睿技术,帮助客户实现复杂样品的在线基质消除,具有灵敏、抗干扰、稳定、高效、便捷的特点。离子色谱检测高纯气体吸收液样品流程示意图(点击查看大图) 电子级二氧化碳中痕量阴离子和铵根的检测方案 半导体工业中,高纯电子级二氧化碳主要用于清洗技术和沉浸式光刻技术,二氧化碳的超临界特性在加工过程中对芯片的损坏降至最低,有着广泛的前景。国际半导体设备与材料组织(SEMI )在2018年C55-1104中,对二氧化碳产品的纯度要求要达到 99.999% 以上,发展至今,相关企业对二氧化碳产品的纯度要求已达到 9N级,对阴离子杂质和铵根的限度要求达到 ppb ~ppt级。在样品测定时,电子级二氧化碳通过流量泵通入超纯水中,调节吸收时间和吸收体积,测定最终吸收液中的阴离子和铵根含量。常见的吸收方法有离线吸收、半自动吸收和全自动在线吸收。阴离子分离谱图(点击查看大图)铵根分离谱图(点击查看大图)各种离子的定量限(点击查看大图)滑动查看更多赛默飞 ICS-6000 通过大体积上样和谱睿技术去除二氧化碳基质,并对样品进行浓缩,再进入离子色谱进行分析检测。在所示色谱条件下各种离子的定量限可达到0.2ppb,该方法加标测试满足要求,准确度较高,连续运行结果稳定,可用于电子级 CO2 吸收液中杂质铵根离子和阴离子的分析。该方案同样适用于非反应型惰性气体,也可以应用于高纯气体净化材料和设备的性能考察。 三氟化氮中可水解氟化物的检测方案 高纯三氟化氮(NF3)具有非常优异的蚀刻速率和选择性,在被蚀刻物表面不留任何残留物,同时是非常良好的清洗剂,主要用于等离子体刻蚀和化学气相沉积(CVD)的清洗。随着集成电路制程技术节点的不断减小,高纯三氟化氮的需求快速增长,气体中杂质的检测也备受关注。SEMI组织在2018年C3.39-1011中,对三氟化氮的纯度要求要达到 99.98% 以上,对氟离子的限量要求为小于0.1ppm,用的是氟离子选择性电极测定方法。该方法操作繁琐,影响因素多,且重复性不佳。在GB/T21287-2021电子特气三氟化氮中 气体纯度要求达到5N级,氟离子的限量要求为0.5ppm,已采用离子色谱法测定氟离子的含量,分析效率大大提高。 // 在电子工业迅猛发展的推动下,国内三氟化氮的生产制造水平已与国外发达国家水平相当,目前相关企业对氟离子的限量要求达到ppb级。赛默飞Aquion RFIC离子色谱系统,通过大体积进样和特有的色谱分离技术,可避免基质影响满足三氟化氮中痕量氟离子限量检测要求,该方法分析时间短,无需手配淋洗液和再生液,操作便捷,系统稳定可靠。Aquion RFIC 三氟化氮吸收样品谱图(点击查看大图)在GB/T21287电子特气 三氟化氮中采用了多瓶串联的吸收方式,这种方法也是经典的吸收装置,第一瓶作为吸收瓶,判断吸收是否充分,第二瓶可作为吸收瓶,同时也作为空白瓶提供背景值。通过这种方式既可以判断吸收效率,调节气体流速,还可以提供时时背景,获得更准确的测定结果。三氟化氮吸收装置图(点击查看大图)电子气体的吸收率是值得关注的问题,特别是反应型气体如SiF4 、BF3等,除吸收率外,还要关注反应产物对检测结果的影响。赛默飞期待与更多客户通力合作,探讨更多电子气体的吸收与基质消除技术,共同开发更多电子气体中痕量杂质的检测方法。 赛默飞半导体材料全面解决方案 除了电子气体的分析方案外,赛默飞开发了针对半导体材料包括硅片、光刻胶及辅材、湿电子化学品、靶材的全面解决方案,包括独家的Orbitrap技术对于未知物解析、不同批次样品的差异分析,以及高纯金属、靶材直接进样分析的GDMS技术等,尽在《赛默飞半导体材料检测应用文集》,长按识别下方二维码即可下载或点击阅读原文进入半导体解决方案专题页面获取更多解决方案!
  • 【知识分享】有关物质超标了,是不是杂质峰被误判了?
    结论分析工作者在药物的有关物质高效液相色谱法的方法开发和检查,应对检验过程中出现的杂质峰予以重视,以免出现误判。结果易被误认为是有关物质的峰包括溶剂峰、有机酸盐峰、无机酸盐峰和辅料峰,本次将举例说明并对这些峰的形成原因进行简单分析。根据药品注册的国际技术要求中杂质的含义,杂质分为有机杂质、无机杂质和残留溶剂。有关物质是杂质的一种,主要是指有机杂质,它可能是原料药合成过程中带入的原料药前体、中间体、试剂、分解物、副产物、聚合体、异构体以及不同晶型、旋光异构的物质,也可能是制剂过程或是在贮藏、运输、使用过程中产生的降解物。有关物质的检查方法很多,主要有薄层色谱法、高效液相色谱法(HPLC法)、气相色谱法和紫外分光光度法等。其中,HPLC法由于分离效果好、专属性强、灵敏度高,在有关物质检查中最为常用。在采用HPLC法对药物进行有关物质分析时,一般要求考察最大杂质峰面积或各杂质峰面积的和,将其与对照溶液的主峰面积(主成分自身对照品法)或总峰面积(面积归一化法)比较,规定应不超过某一特定的数值。但在实际检验过程中,排除配样引进或者是柱子没冲干净这些因素外,色谱图上仍然会出现保留时间较弱的峰,易被误认为是杂质峰,从而造成结果的误判。笔者结合日常检验工作和相关文献,选取了几个具有代表性的品种,将这些易被误认为是杂质峰的峰归纳为溶剂峰、有机酸盐峰、无机酸盐峰和辅料峰,并对这些峰的形成原因进行分析,以期对药物的有关物质HPLC方法的研究和常规检查提供参考。1. 溶剂峰在HPLC法中,由于溶解对照品或供试品的溶剂和流动相在某一波长的吸光值不一样,因此产生了吸光值的变化,表现为出现溶剂峰。溶剂峰可能是正常形状的峰,也可能是倒峰,还有可能是一组奇形怪状的峰。减小该类溶剂峰最有效的方法是使用流动相作为溶剂溶解样品,这样既可以避免样品溶剂和流动相之间任何强度或黏度的不匹配,也可以减少样品分析时基线的漂移。此外,值得注意的是,在进行有关物质分析时,要等基线平稳后,再进空白溶剂。一般进样2次,计算供试品溶液的杂质峰时,溶剂峰位置的峰是不参与计算的。2. 有机酸盐峰《中华人民共和国药典》(以下简称《中国药典》)2020年版(二部)采用HPLC法对苯磺酸氨氯地平的有关物质Ⅱ进行控制。以甲醇-乙腈-0.7%三乙胺溶液(取三乙胺7.0 mL,加水至1000 mL,用磷酸调节pH值至3.0±0.1)(35:15:50)为流动相,色谱柱为十八烷基硅烷键合硅胶柱,检测波长为237nm。标准规定:氨氯地平杂质I峰的峰面积乘以2与其他各杂质峰面积的和应不得大于对照溶液主峰面积的(0.3%)。实际检测时,氨氯地平的出峰时间为17.5min,但是在溶剂峰出峰的位置有响应较高的峰(保留时间3.0min),色谱图见下图。若将该峰判定为杂质峰,则会出现有关物质超标的情况。将苯磺酸配制成一定浓度进样后最终确定该峰为苯磺酸的峰。也有研究采用液相色谱-四级杆飞行时间质谱联用对苯磺酸的出峰予以确证。苯磺酸为一元有机酸,其pKa为0.7,在通常的流动相pH范围内,苯磺酸氨氯地平主要解离为氨氯地平阳离子(被质子化)和苯磺酸阴离子(C6H5SO3-),因此,苯磺酸氨氯地平会出现两个峰,一个是苯磺酸(保留时间较短),一个是氨氯地平。同时,研究表明,采用反相HPLC法同时测定复方感冒药中的多种成分时,对马来酸氯苯那敏色谱峰的识别易出现判断错误,将马来酸的峰误认为是马来酸氯苯那敏。马来酸为二元有机酸,其pKa分别为2.00和6.26,在通常的流动相pH范围内,马来酸氯苯那敏主要解离为氯苯那敏阳离子(被质子化)和马来酸阴离子(HOOCCH=CHCOO-),因此,马来酸氯苯那敏也会出现两个峰。在色谱系统开发过程中,一般会调节流动相pH,与目标化合物pKa相差2个单位以上,使药物全部解离或结合,这样才能准确定量。对于带有机酸根的化合物的液相检测,比如马来酸氯苯那敏、富马酸喹硫平、苯磺酸氨氯地平,在选择的流动相pH条件下,若目标化合物以离子型存在,则马来酸、苯磺酸和富马酸等有机酸也会以盐的形式存在,这些有机酸因含有共轭结构均有紫外吸收,从而在液相条件下也会出现一个色谱峰。因此,做此类物质的有关物质和含量测定时就应注意,不应将有机酸的峰误认为是杂质峰,或者是将有机酸的峰误认为是目标化合物的峰,造成结果的误判。3.无机酸盐峰《中国药品标准》采用HPLC法检测盐酸左氧氟沙星氯化钠注射液的有关物质。以硫酸铜D-苯丙氨酸溶液(取D-苯丙氨酸1.32g与硫酸铜1g,加水1000mL溶解后,用氢氧化钠试液调节pH值至3.5)-甲醇(82:18)为流动相,检测波长为293nm。标准规定,供试品溶液色谱图中如有杂质峰,各杂质峰面积的和不得大于对照溶液主峰面积。实际分析时,在3.3min出现一个很大的峰,色谱图见下图 。经过分析,认为与盐酸稀释后进样的峰位相同,因而在计算有关物质时不应将该峰误认为是杂质峰。笔者在参与针对新版药典用的氢溴酸右美沙芬化学对照品的标化工作中,参照《中国药典》 中氢溴酸右美沙芬胶囊含量测定的方法,对氢溴酸右美沙芬进行有关物质检查,流动相为乙腈-磷酸盐缓冲液(取磷酸和三乙胺各5mL,加水至1000mL)(28:72),检测波长220nm,实际检测时发现在2.5min出了一个很大的色谱峰。为了验证该峰,用溴水稀释后直接进样分析,结果在同样位置出峰。见下图。因此,在结果判定时,应注意不要误将该峰归纳入杂质峰。类似于含有有机酸的药物,含有无机酸的药物在通常的流动相pH条件下也均会发生解离,以盐形式存在的化合物进入液相系统后会以游离碱的形式存在,盐酸和氢溴酸是强酸,也在流动相里解离形成氯离子和溴离子。在对不同水中氯离子含量的比对分析中,用1cm的石英比色皿,取一定浓度的氯化钠标准溶液作为待测液,采用紫外-可见分光光度计,扫描范围280~350nm,确定了氯离子在波长为308.7nm左右处有最大吸收。研究也验证了溴离子在200~220nm波长范围内有较强的紫外吸收。分析原因,可能是氯离子和溴离子有8电子的稳定结构而导致紫外吸收,具体原因还有待进一步分析。
  • PerkinElmer推出元素杂质检测解决方案应对美国药典232/233杂质元素检测要求
    美国药典(U.S.Pharmacopeia,简称USP) 是一家制定法定公共医药保健产品标准的权威机构,主要药品质量标准和检定方法作出的技术规定。美国食品药品监督管理局(Food and Drug Administration,简称FDA)的职责是对药品进行管理和监督,在管理和监督过程中就会引用USP相关标准。很多没有法定药典的国家通常都采用美国药典作为本国的药品法定标准,因此国内相关药厂向美国以及这些国家出口的药品或原材料或辅料时就必须符合美国药典的要求。药物杂质按其性质可以分为有机杂质、无机杂质、残留溶剂三大类,其中对于无机杂质主要涉及杂质元素的检测,美国药典2008年9月份提出对杂质元素的检测进行修改,正式实施的日期是2015年12月1号。美国药典USP232明确要求测定各元素杂质含量,并规定了15 种金属元素杂质(Cd、Pb、As、Hg、Ir、Os、Pd、Pt、Rh、Ru、Cr、Mo、Ni、V和Cu)的每日允许暴露值(PDE),USP233提供了两种基于现代分析仪器的检测方法,并已由USP 下属的分析开发部门验证。新通则中所述两种方法分别是电感耦合等离子体原子发射光谱法(ICP-AES法或ICP-OES法)、电感耦合等离子体质谱法(ICP-MS 法),样品均采用封闭容器微波消解法。对于准备进入美国或相关市场或已在该市场有销售的原料药或制剂厂家,必须在新法规执行之前做好充分的准备,提前对即将上市申报的产品进行金属元素杂质风险评估;同时需要做好硬件和软件上的升级,按照法规的要求,开发和验证适合自己公司产品的金属杂质检测方法,保证上市产品符合法规要求。否则,即使现在药品申请已被FDA批准,在2015 年12 月1日新法规正式执行生效后,还需对工艺中的各个阶段潜在的、加入的或不经意引入的金属元素杂质进行风险评估,并再次经FDA批准,后续工作将非常烦琐。针对以上情况,PerkinElmer推出针对USP 232/233的解决方案来应对美国药典元素杂质的检测要求。解决方案下载地址:http://go.perkinelmer.com/l/32222/2014-08-26/28svh/32222/57362/PerkinElmer_USP232233.pdf
  • 药品研发中杂质与杂质对照品研究监控、新理念新技术研讨会召开
    p   由天津市滨海新区科学技术协会和中国蛋白药物质量联盟主办,北京医恒健康科技有限公司和天津市滨海新区蛋白药物质量和产业技术创新研究会承办的“药品研发中杂质与杂质对照品研究监控、新理念新技术研讨会”于12月10日在天津巨川百合酒店胜利召开。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/bc2519d0-e110-45f9-a4b9-a587227c56be.jpg" title=" 培训现场.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 培训现场 /span /strong /p p   本次研讨会来自全国各地的医药企事业单位及科研院所的药品研发人员、注册申报人员、质量控制人员、项目负责人等有关人员参加了本次研讨会。10日上午,研讨会开幕式由中国蛋白药物质量联盟秘书长史晋海博士主持,介绍了出席此次会议开幕式的嘉宾,包括天津市滨海新区科学技术协会学会处侯立群处长,三位演讲专家余立老师、周立春老师,山广志老师。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/3ed2bb10-7c99-43a4-a149-f4b53818d3c8.jpg" title=" 史晋海博士主持.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 史晋海博士主持 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/d08b2e76-4772-4265-a184-7061d03658ea.jpg" title=" 余立老师2 .jpg" / br/ /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 余立老师 /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/b04550f4-a0d4-4b49-96d8-975893232c64.jpg" style=" " title=" 周立春老师.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 周立春老师 /span /strong /p p strong span style=" color: rgb(0, 112, 192) " /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201712/insimg/94d80e5c-6b2f-49ab-8f61-a6f64f658cb3.jpg" title=" 山广志老师.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 山广志老师 /span /strong /p p   无论是创新药研发还是仿制药一致性评价,无论是原料药还是制剂产品,无论是药品临床前开发还是上市后质量监控,杂质的研究无疑都是重头戏。也是药品申报资料中出现问题最多的模块。由于药品中杂质含量的水平比较活性成分而言大多都是百分之几、千分之几、甚至更低数量级的,一种药品中含有几种、十几种、乃至几十种杂质,所以药品杂质的定性定量都远比活性成分难度要大的多。余立老师就杂质研究与控制思路为与会人员进行的讲解。 br/ /p p   杂质定向控制越来越细,质量标准中特定杂质越规定越多,定位,定量,测定响应因子,哪个也少不了杂质对照品。类杂质对照品的制备、纯化、结构确证,特别是赋值方法都有哪些要求,还有杂质对照品分装、保存时的注意事项的相关细节,山广志老师就在这次研讨会中介绍了这方面的常见问题与案例分析。 /p p   微信群中常有问杂质研究与杂质检测方法学验证方面的的问题。但微信交流信息局限大,讨论不方便也不具有系统性,解决一两个问题其他问题还是不明白。周立春老师用她30多年的一线审评与实验室工作经验为与会人员讲解了杂质研究与杂质检测的方法学验证。 /p p   会后问答环节讨论热烈。与会者意犹未尽,期待更多交流机会。 /p p   生物医药产业是天津市八大优势支柱产业之一,更是滨海新区重点发展产业。本次研讨会将创造机会,促进天津市滨海新区与顶级生物制药企业和专业人才的合作,极大地推动相关领域健康快速发展。此次会议搭建了具有国内影响力的生物医药专业交流平台,既利于增强新区医药企业实施创新发展及国际化战略的信心,又扩大新区医药企业在生物医药领域中的影响力,大力促进新区医药产业的健康发展。 /p p   /p
  • 肝素钠与其类似物杂质的高效分析
    由于肝素钠在分子量分布和电荷差异上的异质性,对其进行有效分析一直是一个挑战。而且,这些杂质通常具有与肝素钠相类似的特性,使得在使用分析方法时很难区分肝素钠与其杂质。为了有效将肝素钠从杂质中(包括生产过程产生的杂质如硫酸皮肤素和非法添加的杂质如多硫酸软骨素)分离出来,美国药典(USP)颁布了一种采用离子交换色谱鉴定肝素钠及其杂质的色谱方法(注:中国药典对肝素钠的检测方法和USP相同)。然而,目前市面上的离子交换色谱柱很少能够满足USP的分离度标准,因此,迫切需要有一种新型填料来对其进行改善。赛分科技近日开发了一种离子交换色谱柱&mdash &mdash Glycomix&trade SAX,可对如肝素钠这样的带多电荷聚糖样品实现高效分离。 图1肝素钠、硫酸皮肤素和多硫酸软骨素在Glycomix&trade SAX上的分离色谱图 色谱条件 Column: Glycomix&trade SAX, 4.6 x 250 mm Guard column: Glycomix, 4.6 x 50 mm Mobile phase: A: 0.04% NaH2PO4, pH 3.0 B: 0.04% NaH2PO4+14% NaClO4, pH 3.0 Flow rate: 0.22 mL/min Gradient: 20% - 90% B in 60 minutes Wavelength: 202 nm Column temp: 25 ℃Injection volume: 10 mL Pressures: 9.5 bar Sample: 20 mg/mL Heparin sodium 1 mg/mL Dermatan sulfate (DS) 1mg/mL Oversulfated chondroitin sulfate (OSCS) in H2O 在Glycomix&trade SAX柱上,肝素钠和硫酸皮肤素的分离度为3.8,肝素钠和多硫酸软骨素之间的分离度为5.8,远远超过USP所要求的1.0和1.5。 图2 肝素钠、硫酸皮肤素和多硫酸软骨素的标准曲线 图3 Glycomix&trade SAX的批次重现性 更多信息:http://www.sepax-tech.com.cn/products/tjpz1/lzjh/Glycomix/13.html 《Glycomix&trade SAX产品手册》 点击下载 关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站:www.sepax-tech.com.cn www.sepax-tech.com
  • 岛津:液质联用技术在药物杂质分析中的应用
    p   药物杂质是活性药物成分或药物制剂中不希望存在的化学成分。药品在临床使用中产生的不良反应除了与药品本身的药理活性有关外,有时与药品中存在的杂质也有很大关系。规范地进行杂质的研究,并将其控制在一个安全、合理的限度范围之内,将直接关系到上市药品的质量及安全性。 /p p   因此,杂质的研究是药品研发的一项重要内容,它包括选择合适的分析方法,准确地分辨与测定杂质的含量并综合药学、毒理及临床研究的结果确定杂质的合理限度,这一研究贯穿于药品研发的整个过程。 /p p   2017年7月19日,仪器信息网将组织举办“化学药物杂质研究及检测技术”网络主题研讨会,此次会议中岛津液相/液质应用工程师宋玉玲将带来《液质联用技术在药物杂质分析中的应用》的报告。 /p p   strong  报告摘要: /strong /p p   药物杂质分析相关技术介绍,包括UHPLC技术与相关应用系统、、杂质制备纯化技术、SFC技术和二维液相色谱技术及质谱技术 /p p   报告人姓名: /p p    strong 报告人简介: /strong /p p   担任岛津液相/液质应用工程师,在药物分析、生物样本分析方面具有多年丰富经验 /p p   欲了解本次会议的详细日程请点击: /p p    a title=" " href=" http://www.instrument.com.cn/webinar/meetings/ChemicalDrug/" target=" _self" http://www.instrument.com.cn/webinar/meetings/ChemicalDrug/ /a /p p /p
  • 知名专家聚姑苏,热议药物杂质研究新动向
    杂质控制是药品质量控制的核心内容之一,杂质研究及控制是药品安全保证的关键要素。我国药物杂质研究水平仍处于起步阶段,与国际前沿杂质研究相比呈现相对滞后的态势。国际上杂质研究不断吸纳分析科学成熟的新成就,分析仪器越来越专业化,联用技术越来越成熟,各类数据库越来越丰富,联机智能化解析系统越来越普及,为杂质研究提供了更为完善的利器。为助力我国药物杂质研究水平的快速提升,为期两天的“2017药物杂质研讨会苏州论坛”于11月2日在苏州市吴宫泛太平洋酒店开幕,多位业界权威专家与超过百位的与会者就药物杂质的研究方法与策略、申报和案例展开了深入探讨。本论坛由中国药学会制药工程专委会、美中药协中国分会 (SAPA - China)联合主办。岛津公司倾情赞助并承办了此次论坛。“2017药物杂质研讨会苏州论坛” 于11月2日在苏州市吴宫泛太平洋酒店开幕 论坛现场传真在论坛开幕上,中国药学会制药工程专委会主任委员俞雄先生首先发表致辞为论坛的召开送上祝福。他在致辞中详细介绍并解读了近期国家重磅出台的一系列医药领域相关新政,指出这些新政的推出令我国医药领域迎来了创新发展的大好局面。他在致辞中强调为进一步提升药物杂质分析水平,先进的分析方法与分析工具必不可少,期待通过此次论坛的举办能够促进药物分析技术的发展。在致辞的最后,他特别感谢岛津公司对会议举办的赞助支持。 随后,岛津公司分析仪器事业部吴彤彬事业部长发表致辞。他在致辞中谈到,岛津公司与医药行业专家用户密切沟通,倾听用户声音,开发出一系列具有世界领先水平、独具特色的药物分析工具与应用方法。当今,药物杂质分析重要性日益增加,好的分析工具与方法已成为推进医药行业发展的重要因素。在致辞的最后他预祝论坛获得圆满成功。华海药业副总裁、中国药学会制药工程专委会委员李敏博士介绍了美中药协创建发展的历程和近年来为促进医药和生物技术的发展、促进美中生物医药科技和商业领域的合作与交流以及协助会员事业发展而开展的卓有成效的活动。他特别感谢岛津公司为美中药协举办的多个活动所给予的大力度支持。 中国药学会制药工程专委会主任委员俞雄先生发表致辞岛津公司分析仪器事业部吴彤彬事业部长发表致辞华海药业副总裁、中国药学会制药工程专委会委员李敏博士介绍美中药协简短的开幕式结束后,论坛进入大会报告环节。首先由浙江大学求是特聘教授、博士生导师潘远江先生做了题为《现代分离分析技术在药物研究中的应用》的演讲。潘教授在演讲中首先介绍了现代质谱技术的发展与应用成果,其中涉及到了诺贝尔化学奖获得者岛津公司职员田中耕一先生的研究成就以及岛津公司先进的高端质谱仪的优异性能。潘教授在演讲中基于其长期从事有机分析、药物分析与质谱分析等领域的研究所获得的丰富科研成果为与会者详尽介绍了液质联用技术、现代逆流色谱技术等在药物杂质研究中的最新应用和发展趋势。潘教授的演讲引起与会者的热烈反响,双方召开了深入探讨。浙江大学求是特聘教授、博士生导师潘远江先生做演讲潘教授的演讲引起与会者的热烈反响大会报告环节,岛津分析应用支持中心姚劲挺经理做了题为《现代色谱及其联用技术在药物杂质分析中的应用》的演讲。他在演讲中详细介绍了岛津多种先进的药物杂质分析技术与应用。演讲内容包括:LC/LCMS在药物杂质分析领域的新技术:方法开发系统,用于SFC/LC杂质分析方法快速开发,兼容超临界色谱和液相色谱;高效能制备纯化系统,提高杂质制备效率;鬼峰捕集柱,解决流动相本底干扰,确保得到准确的杂质定量分析结果;二维杂质鉴定系统,用于实现不挥发性缓冲液流动相条件下直接进样进行杂质液质联用分析;三重四极杆液质联用仪进行基因毒性杂质定量分析技术等。岛津分析应用支持中心姚劲挺经理做演讲 与会者和姚劲挺经理探讨技术细节问题随后,华海药业副总裁、中国药学会制药工程专委会委员李敏博士做了题为《药物杂质结构快速解析的策略:运用LC-MSn分子指纹谱技术与合理的药物强降解研究的组合策略得到高可信度的杂质结构》的演讲。他在演讲中指出,当前各国药政部门对药物杂质研究的要求越来越高,如何开展好这项研究尤其是降解杂质的研究是本讲座的重点所在。如何将强降解研究做好还存在很多误区,对此,他结合其丰富的研究成果详尽讲述了运用LC-MSn分子指纹谱技术与合理的药物强降解研究的组合策略,快速得到高可信度的杂质结构和杂质的形成机理。华海药业副总裁、中国药学会制药工程专委会委员李敏博士做演讲在论坛首日的最后一个演讲是华海药业高等分析技术中心副主任、公司原料药分析总监助理朱文泉先生做的题为《药物杂质研究的申报要求与基本思路》的演讲。在演讲中,他剖析了当前药物申报在杂质研究中遇到的一些常见问题以及结合丰富的案例说明了如何满足注册申报的要求。他指出有效、全面、系统的开展药物的杂质研究变的尤为重要,为保证药品质量安全性,杂质研究也正发挥着越来越重要的作用。华海药业高等分析技术中心副主任、公司原料药分析总监助理朱文泉先生做演讲 论坛报告环节结束后,组委会特别安排了与参会者互动时间。演讲嘉宾和与会者就药物杂质的研究方法与策略、申报和案例展开了深入探讨。现场气氛非常热烈。演讲嘉宾和与会者展开了深入探讨,现场气氛非常热烈李敏博士和岛津公司分析仪器事业部刘兵经理(左)主持了今天的论坛论坛次日将有如下演讲,敬请继续关注后续报道。 王玉博士,江苏省药检院原副院长, 国家药典委员会理化专业委员会委员 演讲题目:有关物质分析方法建立和验证 李敏博士,华海药业副总裁, 中国药学会制药工程专委会委员 演讲题目:药物降解化学与药物降解杂质的研究 黄伟新博士,资深药物分析专家, CMC和CGMP法规独立顾问 演讲题目:如何确保分析实验室的数据完整性 张袁超博士,前FDA临床药理高级审评员 演讲题目:从新药临床试验申请(IND)到新药报批(NDA):美国新药申报中FDA对药物有关物质的要求 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 【技术知识】润滑油产生机械杂质的原因及解决方案
    润滑油产生机械杂质的三个原因NO.1由于加入新油前设备系统中本身存在的杂质而引起。在新设备和长期使用的设备中经常会有一些杂质产生,对此一般对设备用冲洗油进行冲洗,直到油中所含的杂质达到规定的指标。NO.2对润滑油的存储、运输和使用没有按规定的操作要求执行,导致在这些过程中杂质的进入,对油品质量产生影响。NO.3沉积物主要是高粘度级别的内燃机油加剂量较大,在低温下会有不同程度的析出。该沉积物并不是设备长期使用后产生的杂质,或者外界杂质进入污染油品,所以对油品的正常使用没有影响。解决润滑油机械杂质的处理方案不同的设备,设有不同的润滑油系统,有的系统较大,有的系统较小,不论大小油系统一般主要由油箱、油泵、油冷器、滤油器等设备和阀门、管道及仪表等组成,通过管道与机器本身的各润滑点,轴瓦、轴承箱、曲轴箱的油孔、油槽相连接,形成一套较为复杂的润滑油系统。新设备:润滑油管路系统在安装时,必须保持管内清洁干净,但这还不够,还应该对机组的润滑油系统进行油循环冲洗。如果油系统不洁净,管内有脏物,就会影响机组正常运行,甚至会烧坏轴瓦,所以通过油循环冲洗,为机组长期稳定运行提供保障。长期使用的设备:长期使用的设备经常会有一些杂质产生,对此,一般选用冲洗油对设备进行内部冲洗,冲洗至冲洗油中所含的杂质达到规定的指标,而且冲洗后的冲洗油应废弃或改做它用。如果要使用这些冲洗油,必须进行相应的油品分析化验,清洁度达到一定标准后才能使用,而且要求在使用前和使用中加强过滤,保证油品品质。相关仪器A1280机械杂质测定仪适用于测定石油产品中的各类轻、重质油、润滑油及添加剂的机械杂质的含量。应用于电力、石油、化工、商检及科研等部门。适用标准:GB/T 511
  • 原料药中杂质分离和特征描述战略性方法
    原料药中杂质的分离和特征描述的战略性方法 迈克尔 道. 琼斯, 玛丽安 特渥辛, 罗布 Plumb,宋相晋, 约翰 Shockcor, 乔斯 卡斯特罗 佩雷斯 和 安德鲁 奥宾 沃特世公司, 米尔福德市, 马萨诸塞州, 美国, 01757 简介 监测化合物中的杂质对于生产制剂和原料药的公司来说是有既得利益的,除了法规要求外,还有其它很多原因。杂质的鉴定可以帮助发现潜在未知的降解途径,虚假的过程/专利保护侵害,和/或遗传毒性影响。杂质的分析是劳动密集型的工作,包括方法开发,杂质分离技术和各种各样的分析方法,以得出所感兴趣杂质的真实结构。 这篇文章介绍了一种战略性的方法,该方法应用了高分离液相色谱理论和强制降解研究,以最大化生产原料药喹硫平中的杂质。高分离液质联用和核磁被用来解释结构。 方法学 分析 仪器: ACQUITY 超高效液相 色谱柱: ACQUITY UPLC™ BEH C18 规格: 100 x 2.1mm, 1.7µ m 流动相: A: 20mM Ammonium 碳酸氢铵, pH10 B: 乙腈 梯度: 见图 1 和 2 柱温: 650C 进样量: 3 µ L 检测器: ACQUITY PDA @ 250 nm ACQUITY SQD 扫描范围 100-1000amu 质谱条件 仪器: Waters® SYNAPT™ 软件: Masslynx™ 4.1 离子源: ES+ 毛细管电压 (kV): 3.2 提取电压 (V): 4.0 脱溶剂气温度 (0C): 350.0 源温度 (0C): 120.0 脱溶剂气流速 (L/Hr): 650.0 锁定质量: 300pg/µ L白氨酸/脑啡肽@ 50µ L/min 质谱/质谱参数设置 飞行时间 椎孔电压 (V): 15 碰撞能 (V): 变化从15到30 采集范围: 质谱 100 - 1000Da 质谱/质谱 50—600 Da 制备 沃特世质谱引导的纯化系统 泵 2454二元溶剂管理器 进样/收集器 2767 检测器 2998 光电二极管阵列 质谱 3100 色谱柱 100X19mm XBridge, 5 um 溶剂 A = 10 mm 碳酸氢铵 pH 10 溶剂 B = 乙腈 流速 25/mL/min 梯度 B 经过10分钟 从5% 到60% 95% 有机相保持5分钟 核磁 仪器参数见图9 观察,制备和分离 喹硫平的酸解 该杂质鉴定方法(以前建立的)被用来鉴定喹硫平原料药在0.1mol/L盐酸中降解的主要杂质。 图1: pH 9 的碳酸氢铵, ACQUITY BEH C18 2.1x100 mm 1.7um, 乙腈, 0.8mL/min. 650C, 20 分钟, 15-39%B到10.5分钟, 39-43%B到14.4分钟, 43-95%B到18分钟, 保持95%B到20分钟. 制备分离的准备 此方法为了更快的速度、更低的温度和更短的色谱柱,而进行了再优化,同时又能保持主要杂质和喹硫平间足够的分辨率 . 为什么呢? 在从超高效液相方法转换到制备型高效液相时,有些因素必须要考虑: 保持分离效率: L/dP (柱长度/颗粒度) 例如: 50 mm、1.7 um色谱柱的L/Dp为29,411,和具有30,000 L/Dp 值的150mm、5um制备柱等效 能使用更短的制备柱吗?在杂质402的分离中,100 mm的制备柱仍能提供足够的柱效以完全分离杂质。 在放大制备梯度中,对于制备流速,柱体积数必须保持合适的数值。如果这些因素都被考虑到,从超高效液相方法转换到制备型高效液相是能保证相似的选择性的。 从超高效液相放大到制备色谱 传统上, 从分析型高效液相放大到制备型高效液相使用同样的色谱柱长度和颗粒度,并运用下面的公式: Fp= Fa [(Dp)2]/[Da2] 注: Fp=制备柱的流速 Fa=分析柱的流速 Dp=制备柱的内径 Da=分析柱的内径 其它工具: Waters 制备放大计算器可以计算每个梯度段的时间,柱长度的变化和进样量。 聚焦梯度 *克利里等. 纯化过程中聚焦梯度的影响, Waters 应用文献 720002284EN 质谱引导的自动纯化 主要杂质m/z =402的分离在分析和化学上都很容易。 最大化产出: 8g/mL 喹硫平的储备液在 600C、0.1mol/L的盐酸中加热回流8小时, 以增加m/z=402 杂质的 产量 制备上样研究允许色谱柱进样20uL。 图3: 强制降解样品的制备色谱 仪器优势: 分离是通过Masslynx™ Fractionlynx™ 软件中的自动质量触发进行的。 ACQUITY BEH C18的方法可以无缝转换到XBridge C18 制备柱 通过超高效液相对感兴趣杂质的再优化可提供快速方法,以通过UPLC-SQD, UPLC-oaTof, 和/或UPLC MS/MS进一步确认分析 鉴定,确认和特征描述 分离的确认 通过质谱引导的纯化系统收集的m/z = 402的馏分被收集并挥干。该分离步骤得到了28.6mg m/z = 402的杂质。用甲醇稀释得到浓度为286µ g/mL和2.86µ g/mL的溶液,并用3分钟的UPLC-SQD方法进样以确认分离的质量 . 图4: 被分离杂质m/z=402的UPLC UV/SQD 确认 质量精度的重要性 杂质的质荷比为402,等于喹硫平(m/z = 384)加合了18 amu。样品进样到Waters SYNAPT™ MS可得到精确质量数以确认元素组成 . 图5: m/z = 402杂质的元素组成. 双键等价值(DBE) 、低的同位素匹配度(low i-Fit)、毫道(mDa)和结果都支持第一个分子式 加合可以在喹硫平结构中氧化一个点,同时减少一个双键 . 图6: 建议的结构. A.) 硫代氧化物 或 B.氮代氧化物 )? 氮代氧化物为基础的结构的确认 通常, 在低PH流动相的反相液相中,含有氮代氧化物杂质的化合物在原料药后被洗脱出来。超高效液相是在pH=9.0下进行的,所以使用pH=3.0的甲酸铵和乙腈的梯度检测速度变快 。 图7: 酸性流动相条件下进样时,酸降解喹硫平的洗脱顺序。因为感兴趣的峰在喹硫平原料药前被洗脱出来,所以氮代氧化物的可能性不大 . 质谱/质谱分析 精确质量数质谱/质谱分析是为了确认任何碎片数据的存在已进一步支持喹硫平的硫代氧化物降解形式。指示性的碎片最有可能是分子量很低的碎片,在那里所发生的裂解可以区分硫代氧化物和氮代氧化物。 图 8: 裂解分析显示了硫代氧化物/裂解为基础的结构。 通过分析m/z = 137.0063的碎片可得出: -元素组成是 C7 H5 O S -质量精度为 0.2毫道尔顿 -双键等价值(DBE) = 5.5, 对于环结构转换为4.5,而对于硫代氧化物为1.0。 如果N=C是完整的,由于四价碳缺少质子,所以不可能得到228.0480和175.1428的碎片 NMR 支持的数据 核磁数据和建议的结构是一致的 图 9: 被分离的喹硫平中m/z = 402杂质的C13-NMR and H-NMR 结论 从超高效液相转换到制备色谱 -保持L/Dp不变被证明是放大可能性的关键因素 -相容的化学性质可最小化分离度差异 -利用强制降解研究可增加最大化产出的潜能 -质谱引导的馏分收集可保证正确的杂质收集 杂质确认和说明 -ACQUITY UV/SQD 为很多的馏分组成提供快速确认 -高分辨率 SYNAPT MS为母离子和产物离子的元素组成确认提供很好的质量精度 -对于有显著不同色谱行为的结构,高/低PH值流动相测试可以帮助确定建议的结构 -尽管采集了核磁数据(不是决定性的),但它的精确质量质谱/质谱数据证明了杂质是硫代氧 化物而不是遗传毒性结构。
  • 赛默飞:基于Orbitrap技术的药物杂质定位及确证
    p   药物杂质是活性药物成分或药物制剂中不希望存在的化学成分。药品在临床使用中产生的不良反应除了与药品本身的药理活性有关外,有时与药品中存在的杂质也有很大关系。规范地进行杂质的研究,并将其控制在一个安全、合理的限度范围之内,将直接关系到上市药品的质量及安全性。 /p p   因此,杂质的研究是药品研发的一项重要内容,它包括选择合适的分析方法,准确地分辨与测定杂质的含量并综合药学、毒理及临床研究的结果确定杂质的合理限度,这一研究贯穿于药品研发的整个过程。 /p p   2017年7月19日,仪器信息网将组织举办“化学药物杂质研究及检测技术”网络主题研讨会,此次会议中赛默飞应用工程师侯朋艺将带来《基于Orbitrap技术的药物杂质定位及确证》的报告。 /p p strong   报告摘要: /strong /p p   1. 高分辨质谱仪用于杂质鉴定的优势:Orbitrap高分辨质谱仪具有确定化合物分子式的能力,同时具有高灵敏度用于检测低含量物质,所以在药物杂质分析应用中发挥重要的作用; /p p   2.Mass Frontier软件在结构解析中的应用:Mass Frontier软件可以帮助科研人员快速将杂质定位并进行碎片信息归属; /p p   3. DGLC-MS技术在杂质分析中的应用:为提高样品保留和改善分离,通常在流动相中加入缓冲盐和离子对试剂,这时会采用二维液相与质谱相连,改善流动相和质谱兼容性问题。 /p p   strong  报告人简介: /strong /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 侯朋艺,博士,毕业于沈阳药科大学药物分析学专业,目前就职于赛默飞世尔科技(中国)有限公司,担任应用工程师。拥有8年色谱质谱应用经验,主要致力于药物杂质分析、代谢产物和未知物鉴定等方面的应用方法开发和技术支持工作。 /p p   欲了解本次会议的详细日程请点击: /p p   http://www.instrument.com.cn/webinar/meetings/ChemicalDrug/ /p p style=" text-align: center " a title=" " href=" http://www.instrument.com.cn/webinar/meetings/ChemicalDrug/" target=" _blank" img title=" 点击参会.gif" src=" http://img1.17img.cn/17img/images/201707/noimg/fae887c6-7b2d-41f8-9b5d-d5d20ba56eab.jpg" / /a /p p & nbsp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制