当前位置: 仪器信息网 > 行业主题 > >

清洁能力

仪器信息网清洁能力专题为您整合清洁能力相关的最新文章,在清洁能力专题,您不仅可以免费浏览清洁能力的资讯, 同时您还可以浏览清洁能力的相关资料、解决方案,参与社区清洁能力话题讨论。

清洁能力相关的资讯

  • 根据工艺能力判断合适的清洁验证总有机碳TOC限值
    观察根据擦拭和淋洗样品总有机碳(TOC)的历史或当前数据而采用工艺能力方法,能够证明清洁工艺及用于此工艺的限度是否可行、可实现、可检验。在下图所示的工艺中,上下游过程都使用1ppmC的“默认”限值,此限值将用于确定工艺能力。但是,TOC样品通常接近TOC方法的检测限(LOD)或定量限(LOQ),因此最可行的方法是使用单侧接受标准来显示工艺能力。对于单侧接受标准来说,工艺能力比率是Cnpk,而不是传统的CpK方法。评估限值对于任何清洁工艺来说,要评估两个清洁验证关键性质量属性(TOC擦拭和淋洗样品)的某个接受标准是否切实可行和可以实现,通常对于特定的生产工艺,使用工艺能力指数。如果从工艺中采集的历史或当前TOC数据满足特定的工艺能力比率,则TOC与对特定工艺的当前接受标准,适用于清洁验证。为表明这种判断,请看以下例子,表现了使用这个特定的设备,对特定的生产工艺进行的清洁工艺的合适程度。将评估以下TOC接受标准:&bull 上下游TOC擦拭样品:统计原理要评估已建立的接受标准是否切实可行和可以实现,需使用工艺能力指数。工艺能力指数旨在确定,考虑到已经观察到的当前与历史上的TOC擦拭与淋洗数据的变化率,该清洁工艺是否能够满足此接受标准。为了判断此方法是否合适,合适的工艺意味着,已建立的接受标准从统计学的角度来看,是合理的。合适的工艺是指能够确保工艺能力指数大于或等于1.25的工艺。此特定比率与传统的大1.33同,因为清洁验证接受标准是单侧规格1。为了选择工艺能力指数的正确计算方法,需同TOC擦拭和淋洗数据分布一起来考虑接受标准的类型(单侧或双侧)。如果TOC擦拭和淋洗接受标准确定TOC擦拭百分比分布目前用于特定产品清洁过程的清洁验证,使用对设备性能确认(PQ)或持续确认(定期监测)和产品转换所进行的整个清洁过程的TOC擦拭和淋洗数据。以上示例数据用直方图形式来确定正态分布。如上表所示,数据显示了同正态分布的明显偏离。大部分数据非常接近方法的检测限,因此将数据转换为近似正态分布是不合理的。所以,TOC擦拭数据要求用百分比分布来计算工艺能力比率,百分比分布应由统计程序来确定。 // 在此示例中,TOC擦拭数据的百分比分布确定了TOC擦拭数据的99.5%为0.8 ppm或800 ppb,TOC淋洗数据的百分比分布确定了TOC淋洗数据的99.5%为0.6 ppm或600 ppb。这些数值在用百分比分布来计算单侧规格工艺能力指数时很重要。对于新的清洁工艺,可升级或更换现行方法,用TOC来验证关键性的清洁工艺参数(TACT)。确定擦拭和淋洗样品的TOC工艺能力确定百分比分布之后,应使用以下公式来确定TOC擦拭和淋洗样品的工艺能力指数。对于单侧规格(如清洁验证应用中的规格),指数计算公式为:CnpK =(USL - 中位数)/(p(0.995) - 中数)其中:&bull Cnpk=非参数工艺能力指数&bull USL=Upper Specification Limit, TOC清洁验证擦拭和淋洗样品的规格上限值&bull 中位数=样品的50%百分比分布。由于TOC数据的50%非常接近检测限,因而TOC样品的中位数通常为0.1 ppm,或者0与检测限的中点值。&bull p (0.995)=数据的 99.5 %可以用此计算方法和相应的百分比分布(擦拭:0.8 ppm;淋洗:0.6 ppm)来计算工艺能力(Cnpk)如下:TOC擦拭:Cnpk=1.4;TOC淋洗:Cnpk=1.8单侧接受标准的合格工艺是指能力指数大于或等1.25的工艺,这表明清洁验证工艺及其关键性参数(时间、搅拌/速度、浓度、温度)能够满足TOC擦拭和淋洗所收集样品的参考文献1. Montgomery, D.C., (1991). Introduction to Statistical Quality Control, 统计质量控制入门, John Wiley and Sons New York, New York, 第373页2. NIST/SEMATECH e-Handbook of Statistical Methods, 统计方法手册, 第6.1.6节, What is Process Capability? 什 么 是 工 艺 能 力 ?http://www.itl.nist.gove/div898/handbook/index.htm◆ ◆ ◆联系我们,了解更多!
  • 清洁验证新创想
    使用过程专属性分析方法来提高生产设备的使用率并降低成本。优势 Sievers分析仪的清洁验证新创想项目,能通过以下方法帮助医药和生物制药公司提升生产力:&bull 最小化清洁时生产设备停产时间&bull 削减不必要的分析测试,以降低成本&bull 通过监控经验证的设备清洁过程,来降低产品污染风险例如,一个客户能够把清洁时的停产时间降低 67%,将生产能力提高,从而每天可额外增加$30,000 的收入。挑战事实上,我们打交道的每个制药或者生物制药企业,都对如何在验证设备清洁过程时最小化停产时间感兴趣。他们都认同停产通常是因为需要取样、分析和上报大量的不同化合物的测试结果(见图一)。同时,他们也绝对不希望增加产品受污染的风险,因此宁愿牺牲效率而过度设计清洁过程。过去的十几年间我们与全球的上百家客户一起开发分析测试战略,以降低测试形形色色污染物时的失败风险,同时极大程度降低了经验证的分析方法的数量,以及减少每天运行这些方法的时间。很多案例中,我们能帮助客户:&bull 提高生产设备的生产力&bull 追踪现有清洁过程的工艺性能&bull 确保系统不会随着时间失控偏移当前阶段长久以来,很多企业都以测试工艺中的产品,来建立分析测试策略。也就是,他们使用专属性分析方法,例如HPLC。以确定在生产中某种化合物是否存在,并证明在经过清洗后,它不再存在于系统中。图1. 某客户与清洁相关的停产时间问题是,像HPLC这种设计用于检测某种化合物“指纹”的方法,在最新PDA行业指南中被认为“在用于判定清洁过程是否有效时,通常不是适用的技术。”1,2类似HPLC的产品专属性方法:&bull 非常昂贵——每个样品的成本通常是非专属性方法(如TOC法)费用的3倍。&bull 需要很多定制或专门的方法来检测原料药(API)、因清洁过程而降解的产品、清洁剂以及赋形剂。&bull 无法从意料之外的来源中检测出杂质,最多是可能检测出“鬼峰”,并必须对它们进一步调查。建议使用非产品专属性分析技术,例如TOC和电导率方法,并不是简单地证明某种化合物已经被去除,而是用于证明经验证的清洁过程(相关的清洁时间,清洁动作,清洁剂和温度)是按设计执行的,并去除了生产设备中所有最难清洁的化合物。此外,全球很多公司在过去十几年间都在做这一改变。今天,这个转变的过程已经非常容易,因为类似于注射剂协会(PDA,Parenteral Drug Association)等机构已经写了清晰的指南,如 Sievers 分析仪这样的公司也提供了详细的协议。分析方法更少成本更低质量更好参考目录1. Parenteral Drug Association (PDA) (2010). Technical Report No. 49: Points to Consider for Biotechnology Cleaning Validation.注射剂协会(PDA)(2010)No. 49 技术报告:生物技术清洁验证需要考虑的几个点。2. Parenteral Drug Association (PDA) (2012). Technical Report No. 29: Points to Consider for Cleaning Validation.注射剂协会(PDA)(2012)No.29 技术报告:清洁验证需要考虑的几个点。3. Sievers Instruments Customer Case Study: At-line TOC Reduces Cleaning Verification and Product Changeover Costs 92% For Pharmaceutical Manufacturer. Doc. 300 00204 Rev A.Sievers 分析仪客户案例分析:在线 TOC 能帮助制药企业将清洁验证和产品更换的成本降低92%,文档号 300 00204。◆ ◆ ◆联系我们,了解更多
  • 普洛帝荧光表面清洁度检测仪升级更新
    普洛帝荧光表面清洁度检测仪,其诞生之日起,便以其出类拔萃的检测性能与稳健的运行表现,在清洁度检测领域独树- -帜,赢得了广大用户的青睐。然而,时代的车轮滚滚向前,市场的需求日新月异,科技的进步更是日新月异。为了紧跟时代的步伐,满足市场的日益增长需求,普洛帝公司决定对其明星产品一-荧光表面清洁度检测仪进行升级更新。此次升级更新,可谓是普洛帝荧光表面清洁度检测仪的蜕变重生。在硬件方面,普洛帝摒弃了传统的荧光传感器,采用了更为先进的型号,搭配高速数据处理芯片,使得检测精度和速度都得到了质的飞跃。同时,新一代仪器还加强了结.构的优化,增强了仪器的稳定性和耐用性,确保在恶劣的工作环境下也能稳定运行。在软件方面,普洛帝同样不遗余力地进行创新。升级后的仪器配备了全新的智能分析系统和用户界面,使得仪器能够自动识别和分析不同类型的表面污染物,为用户提供更加直观和便捷的操作体验。无论是初学者还是资深用户,都能轻松驾驭这台高效、智能的清洁度检测仪器。值得一提的是 ,普洛帝荧光表面清洁度检测仪的升级更新还体现在其应用领域的拓展上。新一代仪器不仅适用于传统的工业制造领域,还可广泛应用于医疗卫生、环境监测、食品安全等多个领域。其精准的检测能力和高效的数据处理能力,为这些领域提供了更为可靠和高效的清洁度检测解决方案,为人们的生活质量保驾护航。总之,普洛帝荧光表面清洁度检测仪的升级更新是一次颠覆性的技术革新。 它不仅为用户提供了更加优质、高效、便捷的清洁度检测服务,还展现了普洛帝公司不断创新、追求卓越的企业精神。我们有理由相信,随着这一升级更新的推出,普洛帝荧光表面清洁度检测仪将在未来的市场竞争中继续保持领先地位,为用户创造更多的价值,书写更加辉煌的篇章。
  • 首个煤炭清洁转化实验室落成 建设工作已展开
    8月31日,首个国家能源煤炭分质清洁转化重点实验室在西安落成。实验室将以重大关键技术研发、推广与应用为核心,取得一批国际领先的重大科技成果并产业化,打造我国煤化工技术新的研发平台和转化基地。中国石油和化学工业联合会会长李勇武、陕西省副省长李金柱为实验室揭牌。   国家能源煤炭分质清洁转化重点实验室是国家能源局为构建能源科技体系,满足能源行业发展和技术进步的要求而设立的,由陕西煤业化工集团公司主导建设。根据我国能源资源禀赋特点和能源产业发展现状与趋势,该实验室将在煤炭分质清洁转化领域,构建国际一流的“政产学研用”协同创新平台,推动科技创新,有效解决该领域关键技术和重大技术难题,快速提升我国煤炭清洁利用自主创新能力和国际竞争实力。   据了解,重点实验室技术研发平台由煤热解技术研究部、热解焦清洁应用技术研究部、煤制化学品技术研究部、煤基新材料技术研究部和环保与节能技术研究部等5个研究部组成,主要研究方向包括煤热解技术、热解焦清洁应用技术、煤制化学品技术、煤基新材料技术、环保与节能技术、专用设备的研究与开发等。将在煤炭分质清洁转化与应用领域,以重大关键技术研发、推广与应用为核心,建立国际一流的科研管理机制和科研基础设施,汇聚和培养国际一流科技人才,取得一批国际领先的重大科技成果并产业化。   李勇武在揭牌仪式上表示,成立国家能源煤炭分质清洁转化重点实验室,有利于提升我国煤炭利用领域科技原创水平,突破国外技术垄断和知识产权壁垒,引领和带动产业技术进步。他希望陕煤化集团充分利用这个高端平台,加强协同创新,聚集创新人才,努力攻克一批制约行业和企业发展的共性关键技术难题,大力促进成果转化,引领和带动行业技术进步,促进能源结构调整和产业升级。   据国家能源煤炭分质清洁转化重点实验室主任、陕煤化集团副总经理尚建选介绍,实验室建设实质性工作已展开,包括投资近20亿元建设西安总部等三大基地,为实验室配备了一流的科研基础设施 在煤炭、化工等四个领域引进了150名硕士、博士作为实验室专职研发人员 与国内一流的科研院所和高校进行合作等。
  • 两会聚焦:核、风、光等清洁能源将迎机遇
    3月8日,十三届全国人大四次会议在北京人民大会堂举行第二次全体会议。受全国人大常委会委托,栗战书委员长向大会报告全国人大常委会工作。在今后一年的主要任务中,栗战书提到,围绕建设现代化经济体系、促进科技创新,制定科学技术进步法等;完善环境噪声污染防治法等;加快推进涉外领域立法,围绕反制裁、反干涉、反制长臂管辖等,充实应对挑战、防范风险的法律“工具箱”。科技创新和立法的实现“金山银山就是绿水青山”的“杀手锏”,但一直以来,我国制造业集中于污染大,耗能高的产业链中低端,掣肘着我国环保事业的发展,产业链升级迫在眉睫。同时,清洁能源的研究和产业化是科技创新的重要方向。近年来,我国大力发展新能源产业和清洁能源研究,以核能为例,国家能源局中国核电发展中心和国网能源研究院有限公司于2019年7月发布《我国核电发展规划研究》,建议核电发展应该保持稳定的节奏,经测算,2035年核电要达到1.7亿千瓦的规模,2030年之前,每年需保持6台左右的开工规模。但相关清洁能源技术面临着国外制裁、干涉、长臂管辖等阻挠,相关立法在此显得尤为重要。栗战书在报告中还提到,连续3年先后检查大气污染防治法、水污染防治法、土壤污染防治法实施情况,实地检查22个省份的78个地市,召开74场座谈会,暗访170个单位和项目,梳理20类82个问题,点名曝光143个单位存在的问题。与此同时,推进科技创新和环保相关法律法规的制定、完善和实施还是“十四五”规划的重要内容。“十四五”规划中明确提出,推进能源革命,建设清洁低碳、安全高效的能源体系,提高能源供给保障能力。加快发展非化石能源,坚持集中式和分布式并举,大力提升风电、光伏发电规模,加快发展东中部分布式能源,有序发展海上风电,加快西南水电基地建设,安全稳妥推动沿海核电建设,建设一批多能互补的清洁能源基地,非化石能源占能源消费总量比重提高到20%左右。“十四五”大型清洁能源基地布局示意图 图源 十四五规划纲要草案发展光、风、核清洁能源不仅是出于“绿水青山”的原因,更是出于国家安全的考虑。数据显示,2020年,中国共进口原油5.42亿吨,同比增长7.3%,为全球最大原油进口国,为此花费了1763亿美元。降低对原油的依赖,一方面社会更环保,另一方面也是为了经济安全,而发展清洁能源更是其中的“重中之重”。未来,以光、风、核为主的清洁能源研究和产业化必将得到国家的研究经费和政策的大力支持。随着大量经费和风投资金的涌入,相关产业的上游设备和仪器也将迎来发展机遇。
  • PAT应用:清洁验证和产品转换时的旁线TOC分析
    Sievers® M9便携式TOC分析仪具有功能多样性,极大提高清洁验证和产品转换的效率。自从2004年推出《PAT—制药行业发展、生产和质量保证的框架》行业指南以来,制药业就已经利用各种工具来实现理想的产品质量。上述指导文件提供了科学的和基于风险的框架,旨在支持企业在药品开发、生产、质量保证方面实现创新和高效。该框架建立在对工艺理解的基础之上,帮助企业进行创新,帮助监管机构作出风险管控决策。在创新时,需要用“旁线at-line”方法从工艺流程中获得测量数据,例如,在接近工艺流程的地方测量样品的总有机碳(TOC)。本文证明了旁线TOC分析法对于清洁验证的定期擦拭取样的适用性和能力,探讨了如何用Sievers® M9便携式TOC分析仪将旁线TOC分析法应用到产品转换过程。本文还展示了Sievers M9便携式分析仪的多功能性,并举例说明如何用TOC分析法来提高效率,确保在清洁和产品转换过程中不会发生显著污染。此外,本文还举例说明了旁线TOC过程分析技术(PAT,Process Analytical Technology)的应用。在验证文档中加入便携式TOC分析仪的使用2006年,一家大型制药公司在清洁验证时使用了旁线TOC分析法。公司在制定了验证主计划、选择了最坏情况、确定了接受标准之后,就用《Sievers清洁验证支持包》中的任务模板和报告编制了具体的验证任务和报告,以进行TOC清洁验证。验证文档和分析结果表明,TOC分析法(用Sievers UV过硫酸盐和膜电导法)非常适用,在分析方法的验证和达标过程中回收了难以回收的化学成分。此外,TOC分析仪为便携式仪器,可以方便地用于监测生产设施的各种位置。公司使用Sievers认证的系统适用性标样,并在取样之前和之后进行系统适用性测试。用TOC分析法进行定期监测(清洁确认)和产品转换监测根据任务报告,定期(或在切换产品时)进行直接取样(擦拭取样)。经过验证,直接取样(擦拭取样)和间接取样(淋洗取样)的接受标准确定为1.25 ppm C。尽管耐用性验证研究显示了成功的结果,但公司仍选择最具挑战性的区域来代表最坏情况,用擦拭取样和TOC分析对其进行定期监测。图1是大型Chromaflow色谱柱上的4个“最坏情况”或具有挑战性的位置。图 1. 擦拭取样的最坏情况位置协议指出,应在擦拭后进行注射用水(WFI,Water for Injection)淋洗,以确保系统清洁,且擦拭过程不会污染系统或设备。在擦拭取样后,将Sievers便携式TOC分析仪移至原位清洗(CIP,Cleaning in Place)滑橇的位置,以分析WFI淋洗液。在最终淋洗循环时,采集TOC淋洗样品以再次证明系统中没有痕量取样物质(污染物)残留。如何实现PAT—旁线TOC分析在实验室中制备擦拭样品和淋洗样品,并测试系统适用性。在通过系统适用性测试之后,为TOC样品分配实验室信息管理系统(LIMS,LaboratoryInformation Management System)编号。用设定的擦拭区域信息来标记样品,并将样品信息输入实验室电脑或设备专用的记录中。将取样材料和TOC分析仪拿到原位清洗和旁线取样的生产车间。采集擦拭样品并重新连接部件之后,用M9便携式分析仪的集成在线取样器(iOS,Integrated On-Line Sampler)开始TOC分析。将分析结果记录在实验室电脑和相应产品转换的文档中。完成对棉签的TOC分析之后,就开始WFI淋洗,按照相关程序设定的时间提取淋洗样品。用Sievers M9便携式分析仪旁线提取和分析淋洗样品,以确保没有来自棉签或环境的痕量物质污染设备。表1是生成的完整文档的示例。精简流程,提高质量此例是使用创新仪器进行PAT应用的众多实例之一。通常,可以用Sievers M9便携式分析仪在几分钟或几小时内完成产品转换监测或样品定期监测,帮助一个或多个产品设施提供高效率。此方法简便易行,可以节省产品转换成本,且不影响分析性实验室进行定期水取样或其它清洁验证的TOC取样。质控和生产团队可以实时记录分析结果,快速签署验证包和产品转换记录,严格确保设备清洁,为下一批产品的生产做好准备。*如果发生偏差或TOC故障,产品转换或定期监测程序要求生成事故报告,LIMS编号应记录在实验室电脑和设备专用的记录中。◆ ◆ ◆联系我们,了解更多!
  • 中石油清洁柴油国Ⅳ上市
    据了解,面对大气污染问题,近年来我国全面加快油品质量升级步伐,从2018年起实施国V清洁柴油标准目标。中石油加大技术创新力度,设立了劣质重油加工、炼油催化剂以及国Ⅳ汽油生产技术推广应用等涉及油品升级的重大科技专项。他们通过一系列自主研发成果为公司汽柴油质量升级提供了强有力的技术支撑,包括从常减压到催化、焦化、加氢等都需要新建一系列配套设施,而这些配套设施的建设和完善都需要一个周期。去年,中石油按期完成了14个国Ⅳ车用柴油升级项目,目前所有炼厂具备国Ⅳ车用柴油生产能力。 业内人士认为,质量升级并非一日之功。作为国内成品油的主要供应商之一,中石油加速完成油品质量升级和国Ⅳ柴油置换工作,背后是其履行政治责任、社会责任的重要体现。
  • 国内首家由校企建设的清洁能源研发中心落户长沙
    中国内首家清洁能源研发“大脑”落户长沙。8日,由中科恒源科技股份有限公司、西北工业大学共同打造的 “离网型风力与风光互补发电技术研究中心”在长沙正式揭牌。这是我国第一个由校企共同建设的清洁能源研发中心。   路灯不需电网供电,仅依靠自身装备的小型风力、光源发电设备就可长期照明。这都是中科恒源研发的清洁能源产品。中科恒源是湖南本土高新技术企业,其全永磁悬浮风光互补供电系统目前已成功应用于全国20多个省、直辖市。此次与西北工业大学合作,旨在建立航空高技术转换为民用离网型风力与风光互补发电系统的研发平台,以全面提升清洁能源研发能力。   而西北工业大学作为国内唯一集航空、航天和航海学科的综合性、研究型大学,在过去几十年里承担并成功完成了许多国家国防和民用重大项目研发,培养了大量在国内航空、航天科研和生产领域的领军人才。有关专家指出,名校与名企联手,将全面推进我省乃至全国清洁能源产业发展。
  • 贵州筹建国家煤炭清洁产品质检中心
    国家质检总局日前下文,批准贵州筹建国家煤炭清洁转化产品质量监督检验中心。据贵州质监局有关负责人介绍,国家煤炭清洁转化产品质量监督检验中心落户贵州,将为贵州发展煤炭清洁转化产品提供基础,增强煤化工企业的市场竞争力,提升研发能力。
  • 仪器护航冬奥清洁能源供电
    ——华北电力大学功率器件可靠性团队 邓二平 博士 “张北一场风,从春刮到冬,张北的风,点亮北京的灯”,讲述的是我国 2020 年投运的张北柔直工程为2022年北京冬奥会实现世界首次100%清洁能源输送,为北京冬奥会的顺利召开提供可靠绿色能源。张北柔直工程是当时世界上电压等级最高(±500kV)、输送容量最大(9000MW)的清洁能源低碳发展的重大工程,也是服务绿色冬奥的“涉奥六大工程”之一。柔直换流阀(3000MW)和直流断路器(±500kV)是张北柔直工程获得的国际首创的核心技术和关键设备,而4500V3000A压接型IGBT器件作为核心中的核“芯”成为整个工程关键。IGBT器件是所有电能转换和控制保护的核心元件,其运行可靠性,尤其是长期运行可靠性和状态评估关系着整个工程的可靠性和冬奥会的用电安全。张北柔直工程用 4500V3000A 压接型 IGBT 器件是当时乃至现在世界上功率最大的器件,还缺少实际工程应用经验和长期可靠性的评估和验证。国内在大功率的可靠性测试设备和测试技术领域更是空白,需要重点突破以下几个方面:1)压接型 IGBT 器件特殊参数的实时在线监测和分析,压接型 IGBT 器件属于新型封装,存在所有前所未有的技术难题;2)测试效率和测试精度,对于柔直工程用器件,可靠性和精度要求高,测试数量要求多,如果测试效率不能提高(如国外设备单次只能1只器件),将大大增加测试评估时间成本和设备成本;3)设备大容量和高可靠性,可靠性测试设备第一关键要满足参数和功能测试需求,如 3000A 以上的测试能力,第二关键是设备自身的强可靠性。华北电力大学功率器件可靠性团队在国家级人才黄永章教授的带领下,2013 年开始从事国产高压大功率压接型 IGBT 器件的封装研究,为器件的国产化奠定了一定的理论基础。为实现对国产压接型 IGBT 器件的可靠性评估和填补空白,2016 年初开始与国际半导体专家德国开姆尼茨工业大学 Josef Lutz 教授团队合作进行功率器件的可靠性研究,特别是压接型 IGBT 器件功率循环测试方法、测试技术和测试装备的研制。2017年底,邓二平博士带领团队研究生在新能源电力系统国家重点实验室(华北电力大学)建设了国内高校首家高压大功率器件可靠性实验室,包括直接服务于张北工程用 4500V3000A 压接型 IGBT 器件的 90kW3000A 功率循环测试装备、10 kV/200ºC高温反偏和 200 V/180 ºC高温栅偏测试装备等,填补了国内空白。下图1为 90kW 3000A 功率循环测试装备,是当时世界上功率最大、测试效率最高、功能最全的功率循环测试装备。(a) 装备总览(b) 压接型IGBT器件测试夹具图1 华北电力大学功率器件可靠性团队研制的90kW3000A功率循环测试装备结合张北柔直工程的测试需求,此装备的核心创新点包括:1)在传统单条测试支路的基础上,增加了多条测试支路和辅助支路,提高了测试装备的测量精度和测试效率。通过辅助支路的调节,可同时完成不同测试条件的实验,比如通过辅助支路分指定测试支路分流等;2)可同时或分别测试焊接式 IGBT 模块和压接型IGBT器件,最大测试通道为12个,而且每个通道的测试能力均为 3000A,极大的提高了整体测试效率;3)功率循环周期为秒级,极限测试能力可达到 300ms/周期,可根据特定工况进行指定条件下的功率循环条件考核,为柔直工程奠定基础;4)设置了四个关键测量时序,实时监测待测器件的通态压降、结温和热阻等关键老化参数,可自动进行失效模式的分析;5)独特的水路设计,外循环水-内循环水-散热器-被测器件的协同优化设计,可实现内水 15ºC~80ºC 任意调节,且每个被测器件的流速和温度可独立调节,大大提高测试能力的多样性和散热效率。本团队研制的功率循环测试装备为张北工程用 4500V3000A 压接型 IGBT 器件提供了系列可靠性测试,尤其是功率循环和热阻测试,为器件可靠性评估提供了设备和方法基础。功率循环测试和热阻测试主要为换流阀用压接型IGBT器件的设计和可靠性评估提供依据;热阻测试则为直流断路器件用压接型IGBT器件的设计奠定实则数据基础。比如,同时对ABB、TOSHIBA和中车的器件进行对比测试,通过辅助支路的调节可实现不同厂家不同器件特性的器件在同一温度条件下同步测试,大大提高了测试效率和公正性,下图2为测试电路图。此测试装备还可通过转接头同步实现焊接式IGBT模块的功率循环高效率测试。(a) 测试电路示意图,3条测试支路+1条辅助支路实现功能多样化(b) 压接型IGBT器件测试夹具图2 不同厂家4500V3000A压接型IGBT器件功率循环测试为了进一步提升此功率循环测试装备的测试水平和测试能力,2021年团队在原有技术的基础上对整个回路进行更为精细化的设计,设备信噪比再次提升 10dB 以上。同时,还集成了团队具有独创性的世界首个多芯片结温分布测量系统,可以在功率循环过程中对每颗芯片的状态进行实时监测,如下图3所示。这些新技术和测试回路的升级,为未来更多的柔直工程用压接型IGBT器件提供先进的测试和分析,如半导体行业巨头企业德国Infineon,日本TOSHIBA和南瑞联研半导体有限公司等的 4500V3000A 压接型 IGBT 器件的结温分布和可靠性评估分析。这些压接型 IGBT 器件将进一步应用到我国更先进的柔直工程中。(a) 升级后第二代90kW3000A功率循环测试装备 (b) 压接型IGBT器件结温分布测试,世界首次图3 升级后的90kW3000A功率循环测试装备,结温测量精度达±0.1ºC冬奥会作为一项世界瞩目的体育盛事,体现的是一个主办国方方面面的实力和科技水平,离不开所有科研人员的辛勤付出,也正是这样的机会,能进一步推动和促进我国科技水平的提升。华北电力大学功率器件可靠性团队科研人员很荣幸能参与其中一项细小的工作,并提供相应的测试技术,为我国柔直工程的发展和国家科技进步贡献自己微薄的力量。团队在此技术的基础上,结合我国能源行业发展的需求,进一步研制了系列功率循环测试装备(100A, 250A, 500A, 750A, 1000A, 1500A, 2000A, 3000A),如下图4所示,相应的测试技术广泛服务于我国的电网、高铁、电动汽车和工业应用各领域,如中国铁科院、株洲中车时代半导体等公司。 图4 团队产业化后的标准功率循环测试装备,1500A+6个测试通道服务于冬奥会所建设的张北柔直工程使得我国柔性直流输电技术得到了进一步大力发展和成熟,国内拟建设更多的柔直工程,并提出了4500V5000A压接型IGBT器件的需求。国外半导体企业Infineon、ABB和Toshiba均相继推出了4500V5000A器件,以望抢占中国市场。可喜的是,株洲中车时代半导体有限公司也推出了具有我国自主知识产权的4500V5000A压接型IGBT器件,而此前的 4500V3000A 压接型 IGBT 器件也己成功应用到我国柔直工程。南瑞联研半导体有限公司作为后起之秀也即将推出同等级的器件,以期打破国外的市场垄断和技术封锁。而国内并没有能满足其可靠性评估的功率循环测试装备,华北电力大学器件可靠性团队2022年也筹划研制6个测试通道的120kW6000A功率循环测试装备,以期填补国内空白和提供行业亟需的测试技术,下图5为初步设计的 6000A 功率循环测试装备结构示意图。 图5 团队初步设计的6000A功率循环测试装备,4500V5000A压接型IGBT器件专用
  • 《青海省能源领域碳达峰实施方案》印发:将实现清洁能源装机占比91%左右
    近日,青海省发展改革委网站发布“关于印发《青海省能源领域碳达峰实施方案》的通知”,文件要求:到2025年,实现清洁能源装机容量达到8400万千瓦以上,清洁能源装机占比91%左右,清洁电力外送量超过512亿千瓦时;到2030年,清洁能源装机容量达到1.4亿千瓦以上,清洁能源装机占比达到全国领先水平。 青海省能源领域碳达峰实施方案   为深入贯彻落实党中央、国务院和省委、省政府关于碳达峰碳中和的重大战略决策和总体部署,扎实推进青海省能源领域碳达峰工作,根据《国家发展改革委 国家能源局关于印发〈推动能源绿色低碳转型 做好碳达峰工作的实施方案〉的通知》(发改能源〔2022〕280号)、《青海省碳达峰实施方案》(青政〔2022〕65号)等要求,结合我省实际,制定本实施方案。   一、总体要求   (一)指导思想   以习近平新时代中国特色社会主义思想为指导,全面贯彻落实党的二十大精神,深入贯彻习近平生态文明思想和习近平总书记对青海工作系列重要指示精神,落实“四个革命、一个合作”能源安全新战略,立足新发展阶段,贯彻新发展理念,构建新发展格局,坚决落实省第十四次党代会决策部署,深入实施“一优两高”发展战略,以构建产业“四地”为主体的绿色低碳循环发展经济体系为重点,以打造国家清洁能源产业高地为抓手,以构建新型电力系统为突破口,加快清洁能源高比例、高质量、市场化、基地化、集约化发展,积极推动清洁能源开发利用,加快构建清洁低碳安全高效的现代能源体系,支撑全省碳达峰目标实现。   (二)基本原则   目标导向、统筹推进。强化顶层设计,贯彻我省碳达峰实施方案,将碳达峰碳中和目标任务落实到能源领域全过程。明确目标路径,合理把握行动节奏,科学安排重点任务,压实各方责任,有力有序推进实施。   绿色低碳、保障安全。立足“三个最大”省情定位,以绿色低碳发展为引领,坚持就地消纳与外送并举,充分挖掘清洁能源潜力。优化基础性、保障性支撑电源布局,强化多能融合的电力供应保障体系,打造安全可靠的新型电力系统。   创新驱动、转型升级。充分发挥科技创新对实现碳达峰碳中和目标的关键支撑作用,加强能源关键技术研发,促进科研成果转化。以能源电力低碳发展为重点,加快电能替代,减少煤炭等化石能源消耗,促进能源梯级综合利用。   开放合作、互利共赢。充分利用省内外要素资源,深化省际能源合作,不断扩大省外能源市场。积极引进先进技术和优秀人才,加强能源技术联合攻关,搭建能源开放共享平台,打造清洁能源合作新样板。   (三)总体目标   到2025年,国家清洁能源产业高地初具规模,清洁能源装机容量达到8400万千瓦以上,清洁能源装机占比91%左右,清洁电力外送量超过512亿千瓦时。打造以非化石能源为主的“多极支撑、多能互补”能源生产体系,建立安全高效的能源保障体系,探索构建新型电力系统。   到2030年,国家清洁能源产业高地基本建成,清洁能源装机容量达到1.4亿千瓦以上,清洁能源装机占比达到全国领先水平。能源绿色低碳技术创新能力显著增强,能源转型体制机制更加健全,清洁低碳安全高效的能源体系初步形成,如期实现碳达峰目标。   二、提升多极支撑清洁能源供给能力   (四)持续推进常规水电开发。科学有序推进黄河上游水能资源保护性开发,积极推进规划内大中型水电站有序建设,以及后续水电前期研究论证工作。全力推进玛尔挡、羊曲水电站建成投产,加快推进茨哈峡、尔多等水电站的前期工作。深化利用黄河上游水电,加快推进黄河上游已建水电站扩机改造。有序实施宁木特等黄河上游水电站开发建设规划。适时推进小水电退出工作,升级改造符合政策要求的水电机组,进一步提高水电站效率。   (五)集约化发展风电光伏。统筹推进风电、光伏发电规模化发展,采用多能互补开发模式,以沙漠、戈壁和荒漠化地区为重点,在符合国土空间规划、用途管制要求和气候可行性论证的基础上,谋划布局“三类一区”大基地,重点加快海南戈壁基地、柴达木沙漠基地建设,分阶段适时推进源网荷储一体化、光热一体化等市场化项目建设。因地制宜推广光伏治沙。   (六)因地制宜发展分布式新能源。加快分布式光伏在各领域应用,创新实施分布式光伏+工业、商业、校园、社区、交通等“光伏+”工程,积极推动光伏建筑一体化开发。重点在西宁、海东、海西等地利用大型工业园区、经济开发区、公共设施、居民住宅,推动分布式光伏等发电应用。积极发展分散式风电。   (七)稳妥发展光热发电。发挥光热发电灵活调节、电网支撑和促进新能源消纳的优势,推进光热发电多元化开发建设。创新技术发展模式,示范推进光热与光伏一体化友好型融合电站。加快建成多个十万千瓦级的光热发电项目,推动各类型光热发电关键部件、熔融盐等核心材料和系统集成技术开发,着力培育自主知识产权的光热发电核心技术和产业链优势。   (八)加快培育能源新品种。把握能源发展新方向,科学布局地热、氢能、核能等能源供给新品种,形成未来能源发展新支撑。加快泛共和盆地及周边地热资源勘查开发利用步伐,探索建设兆瓦级干热岩发电示范项目。创新氢能与光伏、储能等协同发展模式,在西宁、海西、海南等地区开展可再生能源制氢示范项目。积极推进青海核电场址普选、保护和初步可行性研究分析等前期工作。   三、加快推动清洁化供热   (九)提高燃煤供热清洁化水平。深度挖掘工业、电力等领域低品位余热资源,充分利用既有热电联产机组的供暖能力,有序推进燃煤热电联产项目建设。在西宁等人口集中区延伸集中供暖覆盖范围,逐步开展燃煤供暖锅炉环保达标改造或分散燃煤锅炉清洁化替代工作。   (十)提升可再生能源供热能力。采用电能替代方式进行清洁供暖改造,实施三江源地区清洁取暖工程,加快推进海西州、西宁市清洁取暖试点城市建设。因地制宜开展农牧区被动式太阳能暖房改造试点,建设分布式太阳能供热供暖系统,推广低温空气源热泵采暖,鼓励地热资源丰富地区开发水热型和干热岩型地热能供热项目。   四、提升新型电力系统资源配置能力   (十一)加快推进特高压外送通道建设。积极扩大绿色电力跨省跨区外送规模,支撑清洁能源基地建设,实现青海清洁能源在全国范围内优化配置,服务全国碳达峰目标实现。加快青豫特高压直流外送通道配套电源建设,实现满负荷送电。推进第二条特高压外送通道工程及配套电源建设,研究论证后续跨区特高压外送输电通道和配套清洁能源基地。   (十二)加快构建省内坚强骨干电网。重点围绕清洁能源基地开发和输送、负荷中心地区电力需求增长、省内大型清洁电源接入需求,建设各电压等级协调发展的坚强智能电网。加强750千伏骨干电网建设,提升东西部电网断面输电能力,满足海西、海南两大清洁能源基地互济需求。加强新能源汇集的330千伏输变电工程建设,为新能源大规模开发创造条件。优化调整330千伏电网结构,提高供电能力可靠性。   (十三)加强省际电网互联互通。发挥青海与周边省区之间资源互补、调节能力互补、系统特性互补的优势,加强省间电网互联,扩大资源优化配置范围。“十四五”期间,建成郭隆至武胜第三回750千伏线路。根据海西特高压外送通道构建方案和建设时序,适时推进羚羊至若羌双回750千伏线路,实现青海与新疆电网互联。   (十四)打造清洁低碳的新型配电系统。高起点高标准建设中心城市(区)配电网,供电质量达到国内先进水平,城镇地区适度超前建设配电网,支撑新型城镇化下的清洁用能需求。以清洁能源产业发展支撑乡村振兴,加快推进新一轮农村电网巩固提升,重点推进新型小镇、中心村电网和农业生产供电设施改造升级。实施涉藏地区电网延伸工程,采用微电网等方式,解决离网供电区供电问题。   五、提升多能互补储能调峰能力   (十五)发展优质调峰电源。持续推进实施新一轮抽水蓄能中长期规划,积极推动抽水蓄能电站建设。开工建设贵南哇让、同德、南山口等抽水蓄能电站,开展玛沁、龙羊峡储能(一期)等项目前期和研究论证工作,力争“十五五”建成投产一批抽水蓄能项目。开展太阳能热发电参与系统调峰的联调运行示范,提高电力系统安全稳定水平。建设一定规模的清洁高效煤电,有序推动煤电向基础保障性和系统调节性电源并重转型。发挥燃气电站深度应急调峰和快速启停等优势,结合天然气供应能力和电力系统发展需求,因地制宜合理布局一定规模的燃气电站。   (十六)推进新型储能设施建设。积极推广“新能源+储能”模式,合理布局一定规模电化学储能电站,推动电源侧、电网侧百万千瓦级化学储能示范基地建设,提升电力系统灵活性,提高电力系统安全稳定水平,实现电力系统中短周期储能调节。开展压缩空气储能等新型储能试点,探索发电企业、第三方储能运营企业联合投资电网侧共享储能运行模式,推进商业化发展。   (十七)提高能源需求侧响应能力。加强能源供需统筹协调,通过市场化手段,推动实施需求侧响应,引导电力用户及新能源汽车等需求侧资源自主响应调节,提高能源系统经济性和运行效率。加快推动工业领域负荷参与电力需求侧响应,加强蓄热电锅炉、5G基站以及盐湖化工、有色等高载能行业中间歇性负荷的需求侧管理。积极推进需求侧终端设备智能化改造和需求侧响应管理平台建设。探索电动汽车有序充放电运营模式,挖掘电动汽车等生产生活充放电设施在调峰方面的潜力,提升清洁能源本地消纳能力。   六、加强能源技术研发与创新   (十八)推进清洁能源技术创新。加快高效率低成本光伏电池技术研究,提高光伏转换效率。开展高海拔、低风速高原型风机研究,提升风电效率。促进新能源涉网性能改进升级,提高主动支撑能力和快速响应能力,具备参与系统高频、低频扰动快速调整能力,加强高比例清洁能源电力系统稳定性可靠性技术研究,支撑清洁能源高比例消纳和大规模外送。探索化石能源发电碳捕集、利用与封存技术研究,积极参与投入碳捕捉、储存以及利用(CCUS)项目。加强废弃光伏组件资源回收研究。   (十九)推动储能技术示范。围绕储能关键技术、关键材料,开展技术研发,建立储能相关标准体系。积极筹建先进储能技术国家重点实验室,谋划建立储能实证基地。开展光储一体化电站实证基地建设,建立具有光储融合发展综合效能评价方法和检测手段,逐步完善技术标准体系。开展储能并网性能研究,研究制定规模化储能集群智慧调控系统,支撑高比例清洁电力的安全可靠运行。   (二十)探索示范氢能绿色开发技术利用。开展可再生能源制氢技术研究,建立氢气储运网络,推进槽车、管道等运输方式试点,形成规模化绿色氢气供给能力。开展氢能绿色制取、安全储输、高效利用及氢电耦合技术研究,实现绿电制氢、储氢、运氢、氢能高效利用及氢电耦合系统安全运行技术的突破和创新。探索氢能多元化利用场景,推进氢能在盐湖化工、能源化工领域替代煤炭等化石能源的试点示范。在西宁、海东、海南等地区开展氢燃料电池公交车、物流配送车试点,配套建设加氢站和氢气储运等基础设施。   七、深入推进体制机制改革   (二十一)促进电力行业市场化体制机制建立。推动电力交易机构独立规范运行,优化调度交易机制。加快电力市场建设,完善市场运行规则,丰富市场交易品种,不断扩大交易规模和范围。探索后补贴时代适应新能源发展的市场模式,健全电力中长期交易市场、辅助服务市场、现货市场,推动电力市场规范运行。稳妥有序开展新一轮监管周期输配电价成本监审和输配电价核定工作,合理核定输配电价。完善差别电价、阶梯电价和惩罚性电价政策,建立峰谷电价动态调整机制,进一步扩大销售侧峰谷电价执行范围,积极探索多种清洁能源电力打捆后参与跨省区替代交易。鼓励清洁能源发电企业通过出售绿证等方式,助力完成消纳责任权重考核,实现清洁电力绿色价值。   (二十二)健全保障能源安全的风险管控机制。强化煤炭煤电兜底保障作用,建立健全以企业社会责任储备为主体、地方政府储备为补充,产品储备与产能储备有机结合的煤炭储备体系。提升电网负荷预测和管理调度水平,增强电力供应安全和应急保障能力。完善能源预警机制和应急预案,加强应急备用电源建设和能源气象保障服务,提升应对极端天气和突发情况的应急处置与事后快速恢复的能力。加强重要能源设施、能源网络安全防护,构建新型电力系统网络安全防护体系。   八、构建开放共享能源合作体系   (二十三)积极推进省际能源合作。充分利用对口帮扶政策优势,加强与长三角、京津冀等区域和对口援青省(市)的衔接,争取援青省份电力市场缺口。依托特高压直流外送通道,加强与其他省份合作,实现省际间资源优势互补,推动清洁能源在更大范围内消纳。建立与央企长效合作机制,充分发挥央企社会责任,推进清洁取暖等能源民生工程建设。   (二十四)深化国际开放交流。举办“一带一路”清洁能源发展论坛,建立国际合作机制,构建对外开放战略通道,搭建能源资源领域投资合作平台,培育“互联网+展会”新模式,推进清洁能源开发和碳达峰碳中和一致行动。对接有关国际化平台及国内高端论坛平台,谋划与能源基金会等国际相关机构开展常态化合作。推动光伏、熔融盐、储能等领域技术、装备和服务走出去,打造“一带一路”清洁能源建设合作新样板。   九、加强组织实施   (二十五)加强组织领导。各地区碳达峰碳中和工作领导小组统筹规划、组织协调本地能源领域碳达峰工作任务。健全部门、市州联动协调工作机制,各相关部门按照职责分工,定期对各市州和重点行业能源领域碳达峰工作进展进行调度,开展效果评估,督促各项目标任务落实落细。   (二十六)强化协调联动。坚持系统思维,增强能源领域与工业、建筑、交通等其他重点领域、重点行业的碳达峰实施方案之间的衔接,确保各领域、各行业碳达峰工作协调配套、协同推进,科学有序、按时保质完成能源领域碳达峰工作任务。   (二十七)加大资金支持。加大财政资金投入,统筹低碳领域建设资金,对可再生能源开发利用、资源节约和循环利用先进适用技术研发示范等给予支持。创新投融资政策,鼓励各银行业金融机构利用绿色发展基金、绿色保险、碳金融等金融工具和相关政策为能源低碳发展服务。   (二十八)夯实数字支撑。充分依托青海省能源大数据中心、青海省智慧双碳大数据中心等平台,实现全省能源领域碳排放数据汇集,为碳排放监测、碳减排分析、碳核查评估、碳峰值预测等提供有力支撑,构建具有创新、高效、开放的青海特色能源数字“双碳”服务支撑体系生态圈。
  • 奥豪斯工业台秤与平台秤的维护之清洁篇(一)
    对于汽车,科学的维护与保养可以延长其使用寿命,提升驾驶体验。对于工业衡器,科学的维护与保养同样重要。工业衡器需要周期性的维护与保养,在这其中,清洁是非常重要的一环,必不可少。关于清洁的知识有很多,本次先与您聊聊OHAUS产品的IP防护等级及材质与清洁之间的关系。清洁方式与产品的材质及IP防护等级直接相关。简单来说,防护等级在IP65以下的产品建议按干式使用场合的产品进行清洁。防护等级在IP65及以上的产品,按照与该IP等级相对应的测试压力和温度指南进行清洁。用户有责任确保所使用的清洁剂适用于所接触的材质。一般来说,在进行清洁之前,首先需要清除掉产品表面明显的堆积异物,然后,清除掉所有明显污垢和灰尘。如这些污垢或灰尘长期残留在产品上,会滋生细菌,甚至会导致腐蚀,影响使用。!OHAUS产品IP防护:IP65以下(干式使用场合)材质:ABS塑料ABS塑料外壳有其优势,如表面光滑,容易清洁,且不透水,具有一定的强度、韧性和耐冲击性;同时,它也有一定的劣势,如ABS塑料外壳表面易被划伤,如采用过硬的擦洗垫或其他类似工具进行擦拭,很可能对其表面造成物理损伤并产生划痕,表面的划痕会造成细菌聚集,进而产生污染。可使用柔软的干布或略湿的布轻轻擦拭产品表面,或使用中性的清洁剂进行局部清洁,禁止使用淋水、喷水的方式或高压清洗器进行清洁。严禁使用酸性、碱性、研磨材料、氯化物、酮或脱脂剂(包括酒精)进行清洁,此类清洁剂可能会导致塑料发生老化、变黄,甚至溶解。!OHAUS产品IP防护:IP65或更高防护等级材质:塑料建议使用中性的清洁剂进行清洁,按照与该IP等级相对应的测试水压进行冲洗清洁。另外,严禁使用酸性、碱性、研磨材料、氯化物、酮或脱脂剂(包括酒精)进行清洁,此类清洁剂可能会导致塑料发生老化、变黄,甚至溶解。! OHAUS产品IP防护:有IP65或更高防护等级材质:不锈钢304不锈钢是铬镍奥氏体不锈钢,是常用的不锈钢合金。该牌号不锈钢易于成型和制造,具有出色的耐腐蚀性。在正常使用中,不锈钢由一层薄薄的氧化铬保护而免受腐蚀。来自大气的氧气与不锈钢中的铬结合形成这种钝化铬氧化膜,可防止进一步腐蚀,这被称为“钝化”。如果产品表面带有污垢或其他材料,那么钝化过程就很难发生,不锈钢的抗腐蚀性就大大减弱。如Defender 5000不锈钢平台秤、台秤,或Defender3000不锈钢台秤。316不锈钢是以304不锈钢为基体,加入一定量的钼(Mo)元素,成分主要是06Cr17Ni12Mo2,其耐腐蚀性和高温强度均有较大的提高,都有了很大的提高,可在苛刻的条件下使用。如Defender 6000不锈钢系列超级防水台秤。所以,对于不锈钢材质的产品,一定要定期进行清洁,以保持保护钢的钝化涂层。注意避免使用含氯化物的洗涤剂清洁不锈钢产品,应使用pH值高于7的清洁溶液进行清洁。另外,为避免产生划痕(可能会导致生锈),请勿使用粗磨性化合物进行清洁,使用研磨垫或错误的清洁剂很容易损坏不锈钢;如果可能,清洁后用水彻底冲洗后进行风干处理。!OHAUS产品IP防护:IP65或更高防护等级材质:ABS塑料以Valor 2000(V22)防水秤为例,其独特的防潮、防水设计,使用产品的IP防水等级达到8级,即IPX8等级。所以,V22可以采用强烈冲水的方式进行清洁。提高了清洁效率。注意,由于其外壳是ABS塑料,所以禁止使用可能对其表面造成物理损伤的清洁器具清洁,如禁止使用研磨垫,易产生划痕,会造成细菌聚集。产品面板的清洁OHAUS产品的面板通常采用PET(Polyethylene Terephthalate聚对苯二甲酸乙二醇酯)或PC(聚碳酸酯)材质,PET表面平滑而有光泽,耐蠕变,且耐抗疲劳性好;PC材料的强度高、耐疲劳性好。面板的清洁方式可以参考与ABS塑料相同的方式进行,严禁使用酸性,碱性,研磨材料,氯化物,酮或脱脂剂(包括酒精)进行清洁。碳钢喷塑秤体的清洁对于碳钢喷塑的秤体的清洁方式,参考与ABS塑料相同的方式进行,禁止使用研磨垫等进行清洁,以避免破坏表面的涂层。铝制与不锈钢称重传感器铝制称重传感器被广泛应用在台秤、案秤、计数秤、便携秤等。与不锈钢传感器相比,其性价比更高。不锈钢称重传感器的耐腐蚀性较好,且具有良好的耐冲击性能与抗过载能力。所以,使用不锈钢称重传感器的产品,可以获得更好的耐腐蚀性和更易清洁的用户体验。奥豪斯的Defender 6000台秤采用焊接密封的不锈钢传感,同时具有IP68及IP69K的高防护等级,这种更高水平的密封有助于保护称重传感器上的应变片免受湿气损坏,环境耐受性更好,可在恶劣的工业环境中长期使用。其清洁方式简单、高效,可使用高温高压的水进行冲洗清洁。
  • 【清洁度显微镜微百科】产品和检测设备与时俱进
    # 始于航天,行于汽车清洁度最早的历史应用于航空航天工业,也可以用符号Sa表示。60年代初美国汽车工程师( SAE )和美国宇航工业协会( SAE )开始使用统一的清洁度标准,从而全面地应用于航空和汽车行业。机电仪表产品的清洁度是一项非常重要的质量指标。清洁度表示零件或产品在清洗后在其表面上残留的污物的量。一般来说,污物的量包括种类、形状、尺寸、数量、重量等衡量指标;具体用何种指标取决于不同污物对产品质量的影响程度和清洁度控制精度的要求。(摘自:百度百科)而汽车行业中关于清洁部件的要求,最早则由罗伯特博世公司(Robert Bosch)在1996年为了提高柴油汽车发动机共轨喷射系统的生产质量而提出的,他们在生产流程中发现小喷嘴很容易被系统中残留的污染颗粒堵塞,因此提出了生产中清洁部件的质量规范,由此诞生了零部件清洁度测试标准。此后,在汽车系统中很多可靠性问题都被归因于微粒子污染,即零部件清洁度不足。(摘自网络)产品与要求一同进化随着汽车工业的的大规模发展,汽车类产品的制造技术日益复杂,为了保障汽车的行驶安全,因此需要更高水平的污染控制能力。(当然,不仅是汽车、航空航天、重型机械和电气工程行业,技术产品日益复杂,因此对生产条件和生产部件的清洁要求也日益提高。)技术设备和部件表面上残留的污物可能会导致设备性能不可靠和/或很差;在制造过程中,设备上残留的颗粒会造成停工、延误交货时间、浪费材料和能源以及退货等问题。技术清洁度检测应用包括对ABS系统、柴油喷射器、制动卡钳、液压系统、管道、PCB、互连系统和较大重型机械部件的清洁情况进行检测。清洁度检测过程技术清洁度检测是一个包含了一系列准备步骤和检测步骤的较为复杂的过程,此文将对技术清洁度的检测过程进行概括介绍。检测之前对部件的准备工作分为如下步骤:部件清洗准备阶段始于从生产线上取下一个部件样本并进行清洗(在提取步骤之前)。提取在放置于无尘室的提取柜中去除被测部件上的颗粒。可以通过冲洗、喷洗、晃动冲洗或超声波清洗的方法去除颗粒。过滤对提取液进行过滤,并在滤膜上收集提取的颗粒(过滤材料包括纤维素、聚酯、玻璃纤维和尼龙网布)。烘干并称重滤膜被烘干,并准备接受进一步分析。滤膜烘干后,会留下所有杂质,然后,使用分析天平对其称重检测过程包括以下步骤:图像采集和载物台的移动烘干的滤膜被放置在电动显微镜的载物台上,以采集检测所需的图像。颗粒的探测观察滤膜的图像,以找到表现为明亮背景中黑色区域的颗粒。粒径的测量根据不同参数对所探测到的颗粒进行测量,这些参数包括:最大卡尺直径(与颗粒投影相切的两条平行线之间的距离)和等效圆直径。粒径的分类对颗粒进行了测量之后,将颗粒分成不同的粒径级别组。两个主要粒径等级为差值(由最小和最大粒径定义)和累积(仅由最小粒径定义)。颗粒计数外推法在滤膜中定义一个区域进行扫查,并探测其中的颗粒。这些区域可以是滤膜尺寸(整个滤膜区域)、流经区域(颗粒所覆盖的滤膜区域)、最大扫查区域(检测所能扫查的最大区域),以及检查区域(由用户定义的实际扫查区域)。颗粒计数归一化由外推法获得的颗粒计数被归一为某种比较值,从而可以对多次测量获得的结果进行比较。归一化方法包括清洗区域(归一为1000平方厘米区域的颗粒计数)、清洗体积(归一为100立方厘米区域的颗粒计数)、清洗样件(归一为单一样件的颗粒计数),以及过滤流体(归一为1毫升或100毫升过滤流体的颗粒计数)。污染水平的计算这种分类水平不是由粒径决定的,而是由(大多数国际标准)所定义污染级别中的颗粒总体数量决定的。清洁度代码的定义某些标准将测量数据的表现方式简化为简要的说明。这种清洁度代码根据标准而定义,并由粒径的级别和污染水平构成。最大审核值进行核查以获得最大审核值是一个可选步骤。如果需要获得一个最大审核值,则会在检测配置中确定,也可能会确定一个颗粒绝对数量值或者一个最大清洁度代码。反光颗粒和非反光颗粒的区分金属颗粒和非金属颗粒之间的区别是通过确定颗粒是否反光而完成的(这种区分极其重要,因为金属颗粒会造成比非金属颗粒大得多的伤害)。纤维鉴别在滤膜上探测到的纤维通常与滤膜上发现的其他颗粒来自于不同的地方(例如:纤维可能来自工作服或者抹布)。因此需要根据评估清洁度所使用的标准,识别、分析或忽略纤维。结果的复核在复核结果的过程中可能会执行以下操作:删除被错认为颗粒的项目;将靠得很近并被错认为是单个大颗粒的多个颗粒分开;将靠得很近并被错认为是不同颗粒的一个颗粒的组成部分融合在一起;修正错误的颗粒标签(例如:金属或非金属)。报告的创建技术清洁度检测报告可以包括某些颗粒采集参数的说明、颗粒分类表、颗粒区域覆盖的详细信息,以及最大颗粒的图像。CIX清洁度显微镜:为技术清洁度检测而设计技术清洁度检测向检测人员提出了一系列挑战,其中包括在检测过程中核查检测结果,同时观察反光和非反光颗粒,每天检测多个样本,基于不同的标准修正并重新计算结果,以及制作合规性报告分享结果。OLYMPUS CIX系列清洁度显微镜,特别为技术清洁度检测而设计,不仅可以迎接上述挑战,而且使用方便,可以使用户在非常舒适的条件下完成检测。OLYMPUS CIX系列清洁度显微镜的高端光学部件,硬件和软件的无缝整合,以及无需维护的可靠设计,确保了图像条件的再现性,并使清洁度检测成为一项可以轻松完成的日常任务。
  • 赛默飞世尔科技最新推出AquaTec TM 水清洁剂
    赛默飞世尔科技最新推出AquaTec TM 水清洁剂 中国上海(2007年6月29日)-赛默飞世尔科技(Thermo Fisher Scientific,原热电公司)最新推出AquaTec TM 水清洁剂。它是目前世界上最方便、最有效的水清洁方式,能有效消除所有水生污染物对CO2培养箱、水浴的潜在危害,为细胞生长提供理想的培养环境。AquaTec TM 对600多种细菌、病毒、孢子和真菌等微生物能提供长达6个月的高效防护。有了AquaTec TM ,无须再使用刺激性的化学品来消毒,使用安全方便,不需要特别的废弃物处理程序。 AquaTec TM 的消毒功能已在各类实验室用水中得到了广泛验证,实验表明, AquaTec TM 在不同厂家生产的设备中都能使用。 AquaTec TM 在各种实验室温度下进行了微生物测试。作为一中有效的消毒工具,AquaTec TM 的长度只有3英寸(77mm),将其放入水中后,无须进行烦琐的混合或浓度测试。具有自我调控能力,可根据水位高低自动维持合适的抗菌浓度,省却了烦琐的持续监控和测试时间,以及设备拆卸步骤,节省您的宝贵科研时间。AquaTec TM 提供选配的固定托架方便其在水中的定位,并标配更换提醒标记提醒用户及时更换AquaTec TM。 若需了解更多信息,敬请访问www.thermo.com/aquatec
  • 分析方法验证:在制药行业中采用TOC方法进行清洁验证
    寻求改进质量和提高效率的药品生产商对使用Sievers® 总有机碳(TOC)分析仪进行清洁验证的兴趣越来越浓。大多数制药或生物科技厂家目前都配有TOC分析仪以符合美国药典USP、中国药典ChP的水检测要求,以放行纯化水或注射用水用于清洁或生产过程。因此,大多数厂家已经拥有用于清洁验证的TOC测定方法。TOC是FDA认可的一种方法①,用于评估所给样品中所有含碳的化合物,以确保所有设备的清洁都符合所建立的清洁标准。TOC分析允许开发一种方法,用于检测由化合物、分析物或残留物通过直接(擦拭)或间接(冲洗)取样而形成的碳浓度。潜在目标残留物包括药物活性成分(API)、药品赋形剂、蛋白质、蛋白质副产品和清洁剂或成分。1996年,国际协调会议(ICH)在FDA(CDER & CBER②)的协助下,创建了指导文件《Q2B:分析步骤的验证》。该文档的目的是为制药公司如何考虑清洁验证分析程序的各种验证特征提供参考。本文提供了与下列参数相关的多个实例,这些实例均与TOC方法验证有关,因而此应用说明呼应了Q2B指导文件:检出限和定量限确定分析物的准确度和精确度线性和回收百分比分析方法的稳固性③检出限和定量限检出限(LOD)用于评估何时信号是仪器噪音的结果还是化合物的反应。LOD被视为样本中分析物的最低检测量,但没有必要的足够的统计确定性来定量。定量限(LOQ)是对数据有意义还是无意义提供指导而建立的值。低于LOQ的仪器反应表示存在有机物,但无法定量实际浓度。分析仪中的读数高于已建立的LOQ则被视为可定量或有意义的数据。为了确定背景TOC的浓度并推导出用于清洁验证方案的LOD和LOQ,必须准备低TOC的水空白或棉签空白(如果适用)来计算实验中水和小瓶的碳成分。一旦已经从这些样本中确定了标准偏差,则通常是将标准偏差分别乘以3和10来获得LOD和LOQ④。确定分析物的准确度和精确度了解TOC分析方法验证中准确度和精确度的区别非常重要。准确度与测得值和分析物的真实值的接近程度相关。通常,准确度是计算仪器验证时测得的标准品的TOC浓度与预期的标准品TOC浓度的差值百分比(即+7%)所得。精确度通过标准偏差或RSD(相对标准偏差)度量。精确度与所给样本的多个分析结果相互之间的接近程度相关。在TOC方法验证期间,通过分析加了(添加)已知浓度的目标残留物的样品可以测定准确度和精确度,并可以评定差值百分比和RSD。ICH文件推荐至少在三个浓度级别上至少进行九次测定来评估准确度和精确度,这三个浓度级别涵盖了仪器的指定范围⑤。线性和回收百分比验证通常,线性测试校验仪器反应值是否与所研究分析物的浓度具有线性关系。图1演示了TOC浓度范围从1.00 ppm到7.50 ppm,牛血清白蛋白(BSA)的线性关系,其中含低TOC水的小瓶中加了已知浓度的BSA。这个例子演示了理论浓度(x轴)对所测得的浓度(y轴)作图所得到的两者之间的线性关系,y=(m)x+b。分析仪的反应值与所研究化合物的相关系数(R² )应大于0.97。图1. 数据使用Sievers实验室TOC分析仪获得为了确定TOC方法用于分析目标残留物的适用性,有必要确定分析方法可达到的回收率。以下例子使用CIP-100制备已知TOC度的溶液,并将已知量的样本放到不锈钢片上,演示了直接取样方法。在BSA的例子中,在不锈钢片上添加三个递增浓度的CIP-100清洁液,擦拭不锈钢片,然后将此棉签放到已知量的低TOC水中。表1提供了从不锈钢片表面获得的回收百分比结果。分析方法的稳固性与实际回收率同样重要的是,用于确定所研究化合物回收百分比的TOC分析方法的重现性或稳健性。在清洁验证方法开发中稳固性是指结果不受方法中参数、或样本之间的小而微妙的变化的影响的能力。还提供了正常使用期间的可靠性指示(例如各个分析员的取样方法)。若希望得到高回收率,回收率一直保持可重复性也同等重要或更为重要,并在整个方法开发期间一直需要对回收率进行检测。表1和表2提供了CIP-100棉签回收率分析信息,由两个不同的分析员测试样本间的变化。要考虑的最后几点评估制药产品质量水平的测试步骤要遵从各项要求。具体到清洁验证来说,当前的药品生产质量管理规范[21 CFR 211.194(a)] 要求,用于评估药品是否符合已建立规范的测试方法必须满足准确度和可靠性的合适标准⑦。同时考虑到分析方法的验证是通过实验室研究建立的过程,本应用说明中说明的(TOC)方法的性能特征满足计划进行的分析应用的某些要求,例如符合药典的水排放和清洁验证。参考文献FDA网站:www.fda.gov/cder/guidance/cGMPs/equipmenthtm。药品评估与研究中心(CDER)和生物制品评估和研究中心(CBER)。Guidance for industry Q2B: Validation of Analytical Procedures. Methodology. November 1996. ICH, FDA, CDER, CBER.Taylor, John K. Quality Assurance of Chemical Measurements. Lewis Publishers imprint of CRC Press 1987.USP Validation of Compendial Methods.The Swab Recovery Determination of CIP-100 in Solutions by TOC Analysis Using a Sievers TOC Analyzer, Steris Corporation Analytical Method 1993. 7. 21 CFR 211.194(a) Laboratory Records.21 CFR 211.194(a) Laboratory Records.◆ ◆ ◆联系我们,了解更多!
  • 【全新】清洁验证支持包 — 助您轻松完成清洁验证规程
    清洁验证是近年来,国内外制药企业与监管机构关心与讨论的热点话题。在各国与各地食品药品监督管理总局(FDA)的检查中,清洁验证的问题位于最常见十大检查缺陷之一。◆ ◆ ◆背景在中国,清洁验证的实行开始于2011年。中国卫生部于2011年春,发布2010版《药品生产质量管理规范(2010修订)》(GMP 2010)。其中,第一百四十三条,第一次明确提出了对与药品直接接触的设备表面,需要做清洁验证。第一百四十三条 清洁方法应当经过验证,证实其清洁的效果,以有效防止污染和交叉污染。清洁验证应当综合考虑设备使用情况、所使用的清洁剂和消毒剂、取样方法和位置以及相应的取样回收率、残留物的性质和限度、残留物检验方法的灵敏度等因素。清洁验证,是工艺验证的一部分。现在的流行趋势,认为它也应该应用药品生产的生命周期的规律。建议在药品研发及最初生产工艺设计时,就制定出清洁验证的标准操作规程SOP。清洁验证样品的分析方法选择有很多,比如液相色谱LC、气相色谱GC、气相色谱质谱联用GC-MS、紫外UV、滴定、电导率、总有机碳TOC、pH等。无论选择何种分析方法,均需要根据GMP指南,在清洁验证SOP的设计阶段,通过分析方法的方法验证。选择强有力的分析方法,对于清洁验证样品的检测,非常关键。GE分析仪器部建议您,对于有机的目标化合物,选择总有机碳TOC方法,事半功倍。◆ ◆ ◆TOC方法的优势1. 检测灵敏度非常高,达到ppb(μg/L)级别通常LC的检测限均在ppm(mg/L)级别。一般来说,清洁验证的样品是非常干净的水样,与清洁前的清洁用水无任何肉眼可见的差异,GMP要求其无肉眼可见的颜色与异物。这样的样品,经常低于LC的检测限,仪器报告“未检出”。如果采用TOC方法,则可以准确检测低浓度样品。2. 分析时间短,一般2-6分钟相比于LC动辄1-2个小时的分析时间,TOC的分析时间非常短,一般单次分析时间仅2-6分钟。GE的高端TOC仪,分析时间仅2分钟。3. 方法稳定性好,仪器校准周期通常在3个月至1年不同于LC的方法,由于色谱柱的老化、流速的改变等原因,样品出峰的保留时间易于漂移,需要每次检测前,使用标准品校准仪器。TOC方法的校准稳定性很长,一般校准一次可以稳定3个月以上。GE的高端TOC仪,稳定周期达到1年。即一年校准一次即可。4. 消耗品成本低相比于LC高纯的流动相、昂贵的色谱柱,TOC的消耗品成本低很多,仅为UV灯与化学试剂盒。自1993年美国食品药品监督管理局US FDA出版《清洁验证检验指南》(Inspection Guide on Cleaning Validation )以来,多项研究已发表,证明了总有机碳分析法在检测污染物含量方面可以胜任。总有机碳TOC分析法是在评估清洁有效性时,检测污染物残留的一种可接受的方法。总有机碳分析法适合质量保证检测、设备放行、USP水放行、棉签采样、淋洗采样、原位清洗(CIP)应用和在线过程控制。总有机碳和电导率分析法可代替专属性品种和清洗剂残余检测法。在美国与欧洲,经过了过去20多年对清洁验证工作的探索,目前有大约超过一半的药企,清洁验证的分析方法采用总有机碳TOC法。为了更好地帮助全球的制药企业采用简单便捷的TOC方法,开发清洁验证的SOP,GE分析仪器专门编写了《清洁验证支持包》,支持您快速使用TOC方法,建立清洁验证的SOP。立刻联系我们,了解《清洁验证支持包》的详细内容!
  • 清洁验证支持包——助您轻松完成清洁验证规程
    背景清洁验证是近年来,国内外制药企业与监管机构关心与讨论的热点话题。在各国与各地食品药品监督管理总局(FDA)的检查中,清洁验证的问题位于最常见十大检查缺陷之一。在中国,清洁验证的实行开始于2011年。中国卫生部于2011年春,发布2010版《药品生产质量管理规范(2010修订)》(GMP 2010)。其中,第一百四十三条,第一次明确提出了对与药品直接接触的设备表面,需要做清洁验证。第一百四十三条 清洁方法应当经过验证,证实其清洁的效果,以有效防止污染和交叉污染。清洁验证应当综合考虑设备使用情况、所使用的清洁剂和消毒剂、取样方法和位置以及相应的取样回收率、残留物的性质和限度、残留物检验方法的灵敏度等因素。清洁验证,是工艺验证的一部分。现在的流行趋势,认为它也应该应用药品生产的生命周期的规律。建议在药品研发及最初生产工艺设计时,就制定出清洁验证的标准操作规程SOP。清洁验证样品的分析方法选择有很多,比如液相色谱LC、气相色谱GC、气相色谱质谱联用GC-MS、紫外UV、滴定、电导率、总有机碳TOC、pH等。无论选择何种分析方法,均需要根据GMP指南,在清洁验证SOP的设计阶段,通过分析方法的方法验证。选择强有力的分析方法,对于清洁验证样品的检测,非常关键。Sievers分析仪建议您,对于有机的目标化合物,选择总有机碳TOC方法,事半功倍。TOC方法的优势01检测灵敏度非常高,达到ppb(μg/L)级别通常LC的检测限均在ppm(mg/L)级别。一般来说,清洁验证的样品是非常干净的水样,与清洁前的清洁用水无任何肉眼可见的差异,GMP要求其无肉眼可见的颜色与异物。这样的样品,经常低于LC的检测限,仪器报告“未检出”。如果采用TOC方法,则可以准确检测低浓度样品。02分析时间短,一般2-6分钟相比于LC动辄1-2个小时的分析时间,TOC的分析时间非常短,一般单次分析时间仅2-6分钟。Sievers的高端TOC分析仪,分析时间仅2分钟。03方法稳定性好,仪器校准周期通常在3个月至1年不同于LC的方法,由于色谱柱的老化、流速的改变等原因,样品出峰的保留时间易于漂移,需要每次检测前,使用标准品校准仪器。TOC方法的校准稳定性很长,一般校准一次可以稳定3个月以上。Sievers的高端TOC分析仪,稳定周期达到1年。即一年校准一次即可。04消耗品成本低相比于LC高纯的流动相、昂贵的色谱柱,TOC的消耗品成本低很多,仅为UV灯与化学试剂盒。自1993年美国食品药品监督管理局US FDA出版《 清 洁 验 证 检 验 指 南 》(Inspection Guide on Cleaning Validation)以来,多项研究已发表,证明了总有机碳分析法在检测污染物含量方面可以胜任。总有机碳TOC分析法是在评估清洁有效性时,检测污染物残留的一种可接受的方法。总有机碳分析法适合质量保证检测、设备放行、USP水放行、棉签采样、淋洗采样、原位清洗(CIP)应用和在线过程控制。总有机碳和电导率分析法可代替专属性品种和清洁剂残余检测法。在美国与欧洲,经过了过去20多年对清洁验证工作的探索,目前有大约超过一半的药企,清洁验证的分析方法采用总有机碳TOC法。为了更好地帮助全球制药企业采用简单便捷的TOC方法,开发清洁验证,Sievers分析仪专门编写了《清洁验证支持包》,支持您快速使用TOC方法,建立清洁验证的SOP。此文档有偿销售,如有意购买,请联系我们。◆ ◆ ◆联系我们,了解更多!
  • 揭密清洁验证中的最大残留限值(MCL)计算
    药品生产中清洗过程的主要目的之一,是去除产品或洗涤剂残留,以防止潜在污染转移到生产的下一产品中。确保不会出现这种情况的一个必要程序,是建立经科学证明的合格标准限值。本文专为使用TOC建立合格标准进行逐步讲解。合格标准的Sievers® 推导合格标准的Sievers推导是一个多步计算,并将碳和API贡献系数应用到最终的合格标准结果上。每一步骤的说明如下:1每日容许摄入量每日容许摄入量(ADI)被认为是安全水平,通常与毒性水平一起用于合格标准计算,以减少各批次之间的残留风险。根据生产的产品,通过应用安全系数,从未观察到作用剂量NOEL(Non-observed Effect Level)值计算至ADI 值。2后续产品中的最大残留限值(MCL, MaximumCarryover Limit)可计算MCL以显示后续产品B中产品A浓度的绝对量。此计算中的大多数系数可在法规档案、产品标签和公司规定的验证文件(如主计划、协议、认证或步骤)中非常容易找到。以下修正的公式(原来由Foreman和Mullen开发)给出允许的最大残留浓度。其中:MCL = 最大残留限值(mg)ADI = 每日允许摄入量(mg)B batch = 后续产品B的批量(mg)B max dose = 产品B的最大剂量(mg)3单位表面积的绝对限值计算MCL之后,下一步是确定共用生产设备的表面积上可能污染含量的残留限值。其中:MCL = 最大残留限值(mg)SSA = 用于生产产品A和B的设备的共用表面积(cm2)有时无法确定MCL计算中的某些系数。例如,在开发阶段,确定产品A和B的剂量规定可能太早。因此建议使用体积计算以确定正常运行时设备的处理容量。其中:MCL = 最大残留限值(mg)ADI = 每日允许摄入量(mg)矩形设备的容积=长 x 宽 x 深(cm3)圆柱形设备的容积=圆形面积 x 深(cm3)圆锥形设备(如V型混合器)的容积=圆形面积 x深/3(cm3)SSA = 用于生产产品A和B的设备的共用表面积(cm2)务必认识到此系数的推导,是假设所有产品残留体积均匀分布在设备的共用表面积。推导的下一步提供一种解决方案,通过验证的TOC分析方法确定所分析的擦拭或漂洗样品中的限值。4每个样品分析响应的绝对限值当为通过直接(擦拭)和间接(漂洗)样品的分析响应计算清洁验证样品中的绝对限值时,有两种选择。其中:SSA的限值 = 根据设备的共用表面积计算的MAC限值(mg/cm2)SA = 如果使用棉签,所擦拭的面积(cm2)V = 用于脱附棉签的体积,(从棉签顶部提取化合物)或漂洗的样品体积(mL)5API和碳贡献回收系数(专用于TOC分析)API和碳贡献回收系数可使用化合物的分子量进行计算。碳百分比(%C)从化合物的经验公式推导。其中:产品API% = 产品中API的浓度mg C = 分子式中的碳的量乘以12MW = 化合物的分子量每个样品的限值 = 样品中的浓度(mg/L,ppm)考虑到TOC是专用于测定溶液中碳浓度的分析方法,此步骤对于确定使用TOC清洁验证的合格标准至关重要。使用TOC合格标准进行产品分组在评测多个产品以及被认为是“最恶劣组份”的潜在化合物的合格标准之后,产品分组表和TOC一起使用,以确定适当的合适水平。在合格标准计算时,更改产品、批次、API和碳贡献,很容易实现。在计算出以不同的顺序分批的各产品组的结果后,应通过科学判断选择合格标准。表1显示在批次产品B之后的产品D,导致最恶劣的情况。因此,提倡基于最恶劣的情况,选择的合格限值。进一步说明科学地说,MCL定义为在最后批次产品“B”中产品“A”的总浓度。这只是假定产品“A”的所有残留将在产品“B”的指定批次均匀混合。最重要的是,产品知识、工艺、清洗剂、清洗过程和分析方法,为建立最好地显示清洗过程能力的标准,提供有力的支持,并确保后续的产品不会受到污染。使用包含碳百分比系数的Sievers推导,使得MCL公式可用于计算可量化的TOC限值;没有碳百分比系数时,MCL得到的是可量化的化合物浓度,而不是TOC浓度。参考资料:◆ ◆ ◆联系我们,了解更多!
  • 《京津冀及周边地区重点工业企业清洁生产水平提升计划》印发
    工业和信息化部关于印发《京津冀及周边地区重点工业企业清洁生产水平提升计划》的通知   工信部节[2014]4号   北京市、天津市、河北省、山西省、内蒙古自治区、山东省工业和信息化主管部门,有关中央企业,有关行业协会:   为贯彻落实《国务院关于印发大气污染防治行动计划的通知》(国发〔2013〕37号),加强工业领域大气污染防治工作,促进区域大气环境质量改善,我们制定了《京津冀及周边地区重点工业企业清洁生产水平提升计划》。现印发给你们,请认真贯彻执行。   工业和信息化部   2014年1月3日   京津冀及周边地区重点工业企业清洁生产水平提升计划   为贯彻落实国务院《大气污染防治行动计划》(以下简称《大气十条》),加快推进京津冀及周边地区大气污染综合防治工作,促进区域大气环境质量持续改善,根据《京津冀及周边地区落实大气污染防治行动计划实施细则》,制定本提升计划,实施期限为2013年至2017年。   一、区域清洁生产水平提升的必要性   京津冀及周边地区(包括北京市、天津市、河北省、山西省、内蒙古自治区、山东省)是我国经济发展重点区域,也是污染物排放高度集中的区域之一。据测算,2011年京津冀及周边地区排放的主要大气污染物二氧化硫为638万吨、氮氧化物685万吨、烟(粉)尘421万吨,均占全国相应总排放量的30%左右。其中,工业排放二氧化硫577万吨、氮氧化物502万吨、烟(粉)尘354万吨,分别占区域污染物排放总量的90%、73%和84%,是京津冀及周边地区大气污染的重要源头 区域内钢铁、水泥、有色金属等重点工业行业排放的二氧化硫、氮氧化物和烟(粉)尘分别占工业排放的24%、22%和49%,是大气污染物排放的重点行业。   近年来工业企业推行清洁生产,有效减少了大气污染物的产生量,但仍有大批先进适用的清洁生产技术和环保装备未得到全面推广应用大气污染物排放量大的状况未得到根本转变。认真贯彻落实《大气十条》“对钢铁、水泥、化工、石化、有色金属冶炼等重点行业进行清洁生产审核,针对节能减排关键领域和薄弱环节,采用先进实用技术、工艺和设备,实施清洁生产技术改造”的要求,编制并实施《京津冀及周边地区重点工业企业清洁生产水平提升计划》,对实现到2017年重点行业排污强度比2012年下降30%以上目标,加强京津冀及周边地区大气污染防治工作,从源头减少大气污染物的产生量,降低末端排放量,全面提升区域内工业企业清洁生产水平,增强区域工业可持续发展能力具有重要意义。   二、基本思路和主要目标   (一)基本思路   坚持源头减量、全过程控制原则,以削减二氧化硫、氮氧化物、烟(粉)尘和挥发性有机物产生量和控制排放量为目标,充分发挥企业主体作用,加强政策引导和支持,推广采用先进、成熟、适用的清洁生产技术和装备,加快推进重点行业和关键领域工业企业实施清洁生产技术改造,促进技术升级与产业结构调整相结合,全面提升京津冀及周边地区工业企业清洁生产水平,确保完成行业排污强度下降目标,促进区域环境大气质量持续改善。   (二)主要目标   到2017年底,京津冀及周边地区重点工业企业,通过实施清洁生产技术改造,可实现年削减主要污染物二氧化硫25万吨、氮氧化物24万吨、工业烟(粉)尘11万吨、挥发性有机物7万吨。具体分解指标如表:   三、主要任务   在钢铁、有色金属、水泥、焦化、石化、化工等重点工业行业,推广采用先进、成熟、适用的清洁生产技术和装备,实施工业企业清洁生产的技术改造,有效减少大气污染物的产生量和排放量。   (一)钢铁行业   采用石灰(石)-石膏法、氧化镁法、循环流化床等技术,主要实施烧结烟气脱硫技术改造,综合脱硫效率达到70%以上。   采用湿式静电除尘器、袋式除尘器(覆膜滤料)、电袋复合除尘器、移动极板除尘器等技术装备,实施高效除尘技术改造。   (二)有色金属行业   采用动力波(或高效)湿法脱硫、有机溶液循环吸收脱硫、活性焦脱硫、金属氧化物脱硫等技术,实现制酸尾气等烟气脱硫技术改造。   采用铝电解槽上部多段式烟气捕集、新型电解铝干法净化、重有色金属冶炼湿法改干法等高效除尘技术措施,实施除尘技术改造。   (三)水泥行业   采用水泥炉窑低氮燃烧、分级燃烧和非选择性催化还原(SNCR)等技术,实施脱硝技术改造。   采用高效低阻袋式除尘技术,实施除尘系统改造。   (四)焦化行业(含钢铁联合企业焦化厂)   采用HPF工艺、栲胶工艺(TV)、真空碳酸钾工艺、FRC工艺等焦炉煤气高效脱硫净化技术,实施焦炉煤气脱硫改造。   采用袋式除尘器(覆膜滤料)等高效除尘技术装备,实施除尘地面站改造。   (五)石化和化工行业   采用泄漏检测与修复(LDAR)技术、油罐区、加油站密闭油气回收利用技术、吸附吸收技术、高温焚烧技术等,实施有机工艺尾气治理技术改造。   采用高效密封存储技术、冷凝回收技术、吸附吸收技术、高温焚烧高效脱硫除尘技术等,实施化工含VOC废气净化技术改造。   (六)装备制造业   调整燃料结构,采用高温低氧燃烧等先进燃烧技术,减少锻造烟气中氮氧化物含量 使用高效混砂机配合袋式除尘器,从源头控制铸造粉尘排放 采用整体通风空调式、集中式、固定式、移动式等烟尘净化措施,对焊接、切割烟尘进行综合治理。   (七)工业锅炉   实施高效节能锅炉系统改造,推广高效煤粉技术,鼓励建立集中式锅炉专用煤加工中心,改善工业燃煤品质,对燃煤工业锅炉实施湿式静电除尘器、袋式除尘器等高效除尘技术改造。   四、保障措施   (一)组织实施清洁生产水平提升计划。地方工业主管部门、区域内中央企业,一是要根据本提升计划,2014年6月底前完成本辖区和本企业集团实施计划制定工作,落实企业主体责任 二是要加强指导和考核,督促有关企业实施清洁生产技术改造项目,确保目标任务如期完成 三是要每年年底前报告计划落实情况。   (二)做好技术支持和信息咨询服务。有关行业协会、科研院所和咨询机构要充分发挥自身优势,做好技术引导、技术支持、技术服务和信息咨询、交流研讨等工作,推动京津冀及周边工业行业清洁生产水平提升,促进区域工业行业可持续发展能力。   (三)加强政策引导支持力度。充分利用工业转型升级、技术改造等专项资金,支持京津冀及周边地区清洁生产技术改造,对符合条件的项目优先给予支持。地方工业和信息化主管部门要充分利用中央和地方财政资金,加大对清洁生产技术改造项目的支持力度,促进项目顺利实施。 文章转载自:工业和信息化部
  • 863计划项目“生物质制清洁燃料关键技术与示范”通过验收
    p   近期,科技部高新司组织专家对“十二五”国家863计划项目“生物质制清洁燃料关键技术与示范”进行了验收。该项目由东南大学牵头,河南省科学院能源研究所有限公司、中国科学技术大学等多家单位共同承担。 /p p   该项目通过对生物质进行热化学转化、化学催化等方法制备液体燃料,拟突破品味提升、产品提纯、规模化生产及液体产品在动力装置中的运行验证等关键核心技术,打通工艺路线,提高转化效率,开发高效低能耗生产装置,形成数个大规模生物质制备高品味液体燃料的示范工程,为我国进一步拓展生物质能应用领域奠定技术基础。 /p p   经过三年的研究,项目取得了一系列成果。开发了千吨级生物油加氢制取含氧液体燃料中试装置,制备的含氧液体燃料能够与汽柴油混合使用 建成了百吨级利用生物油制备燃油中试装置,油品转化率达到95.3% 建立了规模为1000吨/年的以生物质为原料水解生产乙酰丙酸乙酯联产糠醛中试装置,形成了3000吨/年生产工艺包,完成了系列生物质柴油替代燃料配方设计和生产。完成了1000吨/年规模乙酰丙酸酯化工艺中试,酯化收率达到91.76%。建立了年产10000吨生物油和6000吨炭粉的生物质稳定热解制备生物油示范工程,生物油产率52.3%,开发了100kg/h生物油催化调试中试装置和处理能力为12kg/h的连续进料中型浆态床生物油临氢精炼制备车用燃料试验装置等。 /p p   专家组一致认为,项目完成了合同任务书规定的任务,同意通过验收。 /p
  • 环保部官员质疑水电清洁 称其比火电污染严重
    “水电在某种程度上可能比火电造成的污染更严重。”2010年12月22日,环境保护部污染防治司副司长凌江在“中国水污染控制战略与政策创新研讨会”上作出这样的表态。环保官员直接质疑水电大坝,这在过去相当罕见。   但这种看法很快就遭到了水利专家的“反质疑”。次日,中国水利发电工程学会副秘书长张博庭就发表了一篇题为“环保官员应该懂得科学常识和起码的逻辑”的文章,认为“这位环保官员没有任何新意,而不过是重复一些伪环保污蔑水电的谎言”。   “"十二五"规划提出了要优先开发水电,目前上报的目标比我预测的高出很多。”张博庭在接受时代周报记者采访时透露,在水利部上报的规划中,常规水电开工目标已由6300万千瓦上调到8300万千瓦,抽水蓄能电站开工目标也从5000万千瓦上调到8000万千瓦,而直到2010年底,中国水电装机容量仅能达到2.07亿千瓦的水平。   如果上述目标最终获得认可,中国的水电将在西南争议地区密集开工,而其所依据的最重要理由也是环保—降低碳排放量。   毫无疑问,水电之争还将延续下去,它的未来尚未明朗 而唯一可以确定的是,无论是它的支持者还是反对者,都希望能通过“环保”来说服对方,在争论中把握住话语权。   水电“不清洁”?   凌江在当天的会上透露,环保部近期在处理一个水域因水电开发而造成的水污染问题,结果发现,由于水流减缓和富营养化,该水域“水白菜疯长,水生态系统遭到严重破坏”。他还进一步阐述认为,水电开发还带来了移民后移,地质破坏造成水土流失等问题,其损失都十分巨大。   事实上,对于水电建设是否破坏环境的争论已经延续多年。从20世纪80年代开始,世界水电大坝建设就开始趋缓,到了1998年,世界水坝委员会经过两年集中调查之后发表了《水坝与发展》报告,提出水坝对于环境的破坏令人难以接受的结论。这份报告后来也成为了许多环保人士的共识。   “受到类似观点的影响,这些年水电的建设非常被动,在宣传上往往处于劣势。”张博庭承认该报告给水电带来了非常负面的影响,但他同时认为,水电的负面作用被反坝者夸大了,强大的反坝舆论,使得“十一五”规划中的水电工程,最终只完成了1/3。而此次水利部门提交1.63亿千瓦的新增目标更多的是要为“十一五”补课。   “水库水质降低,绝不是水库本身污染了水体,而是水库对水体的要求高于河流。”张博庭认为,既然污染来自于岸上的排污,就不应当简单地认为是水电建设造成了河流污染,反而更能借此形成“倒逼”机制,严控流域中的排污现象,改善水质,“因为,凡是建设了水库的地方,都不再容许有人想把河流当作下水道使用,任意排放污水。”   但这样的理由未被环保人士所信服。   “所谓的倒逼机制,有时是很可笑的。比如说长江三峡淤积了大量小砾石,靠水库排沙系统是冲不掉的,会逐步堆积在水库里,为了保持库容,减少淤积,解决办法就只能是在上游再建一个水坝,最后一级一级地往上建,直到所有的河流都隔断,全部修建水库,这种下游倒逼上游建水库的机制,最后也无法解决问题。”著名环保人士、云南省大众流域管理研究及推广中心主任于晓刚表示,尽管水电界宣称中国水电技术非常成熟,但泥沙淤积问题是水电无法解决的重大难题之一。   “水质污染不仅仅来源于水体自净能力的降低,水库本身因生物腐烂也产生沼气污染,在某些热带国家,类似的水电污染排放并不亚于火电站。”于晓刚还进一步补充道,大坝对环境破坏的污染是多方面的,不仅仅是库区水质,水电对库区的生物多样性、下游的湿地环境造成很大的破坏,而且由于库区居民被后移安置,不得不上山毁林开垦新田,更会造成严重的水土流失问题。   张博庭也承认,目前水电开发成本中移民安置资金所占比例越来越高,几乎占总投入的一半。但是,据于晓刚了解,如此巨大的安置费用也仅能解决房屋、田地都在库区内的居民的移民问题,而房屋在库区外的居民,则只能“后靠”安置,因生存而破坏环境的行为不可避免。   水质污染、沼气排放、生态多样性危机、湿地消失、泥沙淤积、地震威胁等接踵而至的环保问题似乎已经足够将水电挤出清洁能源的行列。   话语权之争   “各部门在水电项目上力争更大的话语权的行为可以理解,作为一个水电专家,我是希望水电能够更好地被合理利用,而不是被妖魔化。”张博庭对本报记者说,但他强调,“但无论怎样,最终还得以科学说话。”   一直以来,我国的决策层对待水电的态度相当谨慎。早在2008年度国家提出4万亿振兴计划时,首批投资中电力行业核准投资逾千亿元,其中955亿元用于广东阳江核电工程和浙江秦山核电厂扩建工程。此外,国家投资40亿元财政资金用于支持农村电网完善和城市电网改造,而水电未被纳入其中。   而在2009年十一届全国人大二次会议开幕当天,温家宝总理所作的政府工作报告提出,要积极发展核电、风电、太阳能发电等清洁能源,其中对“水电”并未着墨。此后在时任西藏自治区政府主席的向巴平措等人大代表的建议下,修改后的政府工作报告表述调整为“积极发展核电、水电、风电、太阳能发电等清洁能源”。   自此,我国的水电项目逐步升温。今年下半年以来,以金沙江龙开口和鲁地拉为代表的水坝工程陆续通过环评开工,而这两项工程曾在2009年6月被环保部强力叫停。当时环保部给出的理由是,这两项分别属于华能、华电集团的工程在没有经过环境影响评价的情况下,擅自进行大江截留,“对金沙江中游生态影响较大”。   这两项工程的重启意味着环保部原来的叫停动作被自己逆转。同时,同样因“未批先建”暂停多年的金安桥水电站也获得了国家发改委的正式核准。水电工程纷纷由“违规”转为“合法”。   记者获悉,以上重启工程都是金沙江中游水电开发“一库八级”方案的组成部分,据金沙江中游水电开发有限公司总经理高盈孟称,八级中的梨园和观音岩项目的开工手续正在努力运作之中,这意味着金沙江中游水电开发已经全面解禁。   发改委也已明确表达了对大规模水电工程的支持。   今年8月,发改委副主任、国家能源局局长张国宝对媒体表示,中国承诺2020年非化石能源占一次能源15%的目标当中,有9%要靠水电,大大高于核能的4%,在可用的4亿千瓦水力资源中,有3.8亿千瓦必须得到开发。   “在能源中长期规划中应该突出水电的战略地位。”张国宝当时说道。而在《中共中央关于制定国民经济和社会发展第十二个五年规划的建议》中,对于水电也明确使用了“积极发展”一词。   要实现这样的目标,大规模上马水电工程似乎已经不可避免。   据张博庭分析,在“十二五”期间,绝大多数水电工程都将会在西南流域上马。而另一方面的情况是,正是西南地区脆弱的生态、频发的地质灾害,使得几乎每个大型水电站的上马都面临着巨大的反对声浪。   “过去我们在地质条件最好的地方都兴建了水坝,而现在只能在地质条件最差、地震风险最大的西南山地来建水坝。”于晓刚同时强调,尽管水利部门有足够大的权力影响决策,但“如果他们使用漏洞百出的话语,最终还是要崩溃”。   碳排压力倒逼水电提速   “环保官员之所以对水电有这样的言论,我觉得主要跟他们的考核指标有关,过去环保部只关心二氧化硫等有毒气体的排放,而并没有将二氧化碳的排放纳入到环保指标之中,只要加入碳排指标,相信他们也会支持大力发展水电。”张博庭说。   张认为,水电的发电量并非目前的太阳能、风能所能比拟。“坦率地说,当初叫停了金沙江的工程,损失的电量相当于这几年的太阳能、风能项目都白建了。在减排压力下,现在也没有别的便宜能源可以代替水电。”   “我们不仅仅需要解决能源硬件供应的问题,对于能源政策和管理为主的软件供应更值得重视。”于晓刚举例说,在德国和美国等国家的太阳能小区里,鼓励居民在家里安装太阳能发电设备,并给予资金支持,用不完的电力还能够上电网出售。“但在我们国家,要将居民自产的电卖给供电方,有可能允许吗?在供电政策方面,国家没有为生态环境保护和居民利益进行很多的调整,更多的是受到水电企业利益左右。在软件建设方面我们存在巨大差距。”   “实际上能源应该是多方面供给的,而不应该由国家来认定,我们就集中发展水电或者核电,其他的解决办法都边缘化。这就造成我们在不断牺牲生态来换取能源。”于晓刚说。   “在碳排压力下,对于能源供应一下子找不到方便的办法,这是增加水电项目的原因。但是,应当注意中国的环境问题是复合性的、高度综合性的,除气候变化外,还有别的问题。加上西南地区的地质与生态非常脆弱,对此绝不能掉以轻心。我们需要具体问题具体分析,充分考虑利弊与利益各方的意见,进行冷静客观的权衡,才能做出有远见的决策。”长期关注水电问题的中国社会科学院环境与发展中心研究员郑易生向本报表示,越是在决策遇到压力和困难的时候,越应该严格坚持已有的法律和程序,包括公众参与等,综合各方意见来进行决策。“在这方面,我们已经有过不少教训。”   郑易生同时认为,能源政策是气候政策最重要的部分,并不是气候政策就等同于能源政策。更加全面的政策(包括环境、能源、其他资源、经济、社会、文化等方面的政策综合)向可持续的增长方式的深刻转变才是我们根本的出路。   郑易生举例说,“水资源的问题对于中国来说就是致命的大问题,而不仅仅只有能源问题,不能仅仅为了治一个病,别的病就假装没有了。”
  • “钢铁侠”背后的清洁能源之梦【GDS微课堂-5】
    同学们好呀!在上上节课的“微课堂3”中,我和大家探讨了在打造钢铁侠的战衣盔甲,GDS发挥了什么作用。这节课,我们来看看大热的清洁能源和GDS的关系~提到“钢铁侠”的原型埃隆马斯克(Elon Musk),大家反应应该是 SpaceX(太空探索技术公司)以及Tesla Inc.(特斯拉公司)。其实,除了太空旅行和自动驾驶领域,马斯克还是美国居民太阳能电池板的大供应商太阳城公司(SolarCity)的董事会主席。图片来源:Pixabay你知道马斯克为什么这么看重太阳能吗?因为加速全世界向可持续的清洁能源的转变,是马斯克从少年开始就有的梦想,而太阳能无疑是合适的选择。太阳能作为一种持久、普遍、巨大的能源,可以说是取之不尽用之不竭,且相比于其他能源,不会对生态环境造成污染,是好利用的清洁能源之一。图片来源:Pixabay目前太阳能的有效开发方式主要为太阳能电池。太阳能电池又称为“太阳能芯片”或“光电池”,是一种有半导体镀层的特种器件,它能将照在太阳能电池板上的太阳光转变成电能输出。太阳光照在半导体PN结上,形成新的空穴-电子对,在PN结内建电场的作用下,光生空穴流向P区,光生电子流向N区,接通电路后就产生电流。在这一过程中,实际发挥作用的就是玻璃基底或金属基底上那层薄薄的镀层。因此可以说太阳能电池光电转换效率的高低、稳定性和大面积重复性的好坏与镀层的性能息息相关。而GDS能够快速、灵敏地检测镀层样品中各元素随深度分布的情况,非常适合分析太阳能电池。接下来我们来看看3个典型案例,感受一下GDS如何在整个镀层制作过程中提供镀层结构、掺杂元素及工艺条件优化信息,从而提高太阳能电池的性能。案例一提供镀层结构信息我们先来看看下面两张图,是通过GDS获取的铜铟镓硒太阳能电池的深度剖析图。考考大家,你能分辨出哪个是正常质量的电池,哪个是加工失败的电池吗?图一图二图一中横坐标是深度,纵坐标是各元素含量随深度的变化,我们可以看到各元素含量随着深度改变的变化趋势基本一致,说明元素在各层分布均匀,多数元素在加工过程中得到很好地融合,镀层结构良好,所以它是正常质量的电池;图二中我们可以直观的看到不同深度下各种元素含量差异明显,说明这些元素在加工时没有充分融合,导致太阳能电池不具备光电转化功能,所以属于加工失败的产品。怎么样?这样分析一下是不是立刻就分清楚了呢?案例二提供掺杂元素信息实际镀层加工过程中,我们会利用掺杂元素来改善镀层性能,提高太阳能电池的效率,而掺杂元素在镀层中的含量及位置,对太阳能电池的整体性能影响非常大。但是实际掺杂元素的含量都比较低,对掺杂元素的监控也就变成了一个难题。当然,遇见GDS,这都不是事了。我们以不锈钢为基底的太阳能电池为例,利用GDS进行了检测:图三:不锈钢为基底的太阳能电池中各元素随深度的分布图四:0-40s低含量元素放大图数据来源:Prog. Photovolt: Res. Appl. (2013) ? 2013 John Wiley & Sons,Ltd.通过图三,我们可以直观地了解到各个镀层、交界层及基底中元素的变化趋势,并通过这些信息表征镀层的质量及相互渗透等现象,和上面的案例类似,这里就不多做说明了。而图四通过对0~40s低含量元素的放大,则更清晰地显示出掺杂元素B、P在a-Si:H层中的分布,可以看到,相比较而言B的分布比P更集中且与界面间的渗透更少。通过这样的方式,GDS就可以帮助研究人员轻易的实现对掺杂元素的监控了。案例三提供工艺条件优化信息这里举个简单的例子,现在有三种不同结构的镀层材料,我们如果想判断哪种材料的光电转化能力强,该怎么做呢?很简单,我们可以把三种材料经过相同加工处理后(在550℃退火),再利用GDS检测镀层中元素分布,研究这三种材料的镀层融合情况,分析终形成的镀层结构,如下图中a/b/c图显示:其中黑线为Mo,蓝线为Cu,橙线为In,红线为Ga,绿线为Se。(a) Cu-In-Ga+Se结构的太阳能光伏电池在550°C退火后测定元素分布状况;我们可以看到,在Cu-In-Ga+Se结构中,Ga元素(红线)没有均匀的混入镀层,而是聚集在后交界面。(b) Cu-In+Se结构的太阳能光伏电池在550°C退火后测定元素分布状况;我们可以看到,在Cu-In+Se结构中,Cu、In和Se的混合很均匀。(c) Cu-Ga+Se结构的太阳能光伏电池在550°C退火后测定元素分布状况;数据来源:F. Oliva et al. / Thin Solid Films 535 (2013) 127–132我们可以看到,在Cu-Ga+Se结构中,各元素的含量随深度的增加差异较大,并未均匀混合,因此得出CuGaSe2的生成反应并未完成。这样一比较,你知道选哪种材料了吧?对的,选(b),Cu+In+Se结构的材料在经过550℃的退火后,各元素间融合更加均匀,太阳能电池的光电转化功能也就越强。此外,我们还可以对同一种材料进行不同加工工艺,从而分析不同条件对材料镀层性能的影响。如下图中,c图依旧是Cu-Ga+Se结构经过550℃退火的结果,d图中Cu-Ga+Se结构不仅经过550℃,同时延长了退火的浸泡时间。 (c) Cu-Ga+Se结构的太阳能光伏电池在550°C退火后测定元素分布状况;(d) 延长了退火时间后,Cu-Ga+Se结构太阳能光伏电池的元素分布状况;两张图对比后,我们可以看出,延长退火时间可以促进Ga元素向吸收层扩散,利于元素间更好的融合,从而提高太阳能电池光电转化效率。通过上面的几个例子,相信大家都能感受到,利用GDS可以很好的掌控太阳能镀层制作过程,研究相关工艺处理后镀层性能的提高。而在实际使用过程中呢,因为GDS可以同时测定Na、Cu、In、Ga、Se、Mo、Sn等70余种元素,又不需要制备样品,而且GDS自身分析速度也较快(几微米/分钟),所以说有了GDS,提高研究效率,都是分分钟的事情啦。HORIBA光谱入门手册自2014推出以来备受好评,为了帮助大家更好地理解,我们发布了GDS微课堂系列文章。除了GDS,光谱入门手册还包括拉曼、辉光放电、椭圆偏振光谱等系列合集。 HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界
  • 成功进行清洁验证的5大秘诀
    制药企业不断面临进行清洁验证的挑战以下是确保实施成功、合规清洁验证的五种方法Part 01为您的清洁程序确定合适的技术和最有效的部署方案(实验室、在线、旁线)了解您的清洁过程。为清洁过程选择正确的技术是成功实施清洁验证的关键。对于清洁验证,有许多常用的分析方法。专属性方法 如在清洁过程中对特定分析物进行UV/VIS或HPLC试验。尽管可以对目标分析物进行检测并使人们确信目标分析物已经清洗干净,但这些测试无法检测到可能影响产品质量、产量、效能或安全的其它化合物,如降解物或洗涤剂。这种类型的分析仅限于在实验室使用。非专属性方法 如总有机碳TOC分析法,与专属性方法相比,可对清洁度有更全面的了解。TOC法不只是检测一种分析物,而是通过采用一种方法来检测清洁剂、降解物、API和赋形剂。TOC还可根据您的工艺提供多种最佳部署方案(实验室、在线、旁线)。了解有关最佳部署方案长按识别二维码,获取更多信息Part 02简化方法验证和仪器确认需要进行方法验证和仪器确认,以表明方法参数适当,并且仪器适用于该方法。尽管这些对于清洁程序的成功与否至关重要,但方法验证和仪器确认并不一定非得很复杂。开发一种合适的方法来提供充分的化合物回收率、线性、稳固性和专属性数据,并设定合适的接受标准。重要的是要证明这些分析数据满足要求,并确保所选择的技术能够满足可靠的方法开发需求。方法开发和验证应本着实用性、可实现、可验证并具有说服性原则。对仪器进行全面确认,以验证仪器的安装、操作和性能满足其预定的用途要求。一些仪器制造商会提供相关文件和服务来协助您全面完成仪器确认工作。Part 03选择最佳消耗品,以实现最佳回收率和样品可靠性样品瓶和标准品等消耗品会对分析方法的成败产生极大影响。请确保您为清洁工艺选择可追溯、合规和和合适的消耗品。应该定期对系统进行挑战,以确保方法的适用性。选择浓度合适的一种或多种化合物,以反映您的清洁工艺,并且对清洁验证使用的仪器进行适当的挑战。一些供应商会提供特殊消耗品,以提高验证方法成功实施的概率。例如,如果您的工艺涉及到蛋白质检测,则对TOC样品瓶进行预先酸化可大大提高经常被漏报的粘性蛋白质的回收率。在开发检测方法时,请考虑此类解决方案。在线分析相较于实验室分析,可以降低使用样品瓶的成本并提高样品的可靠性。自动化分析在一定程度上消除了取样误差,同时节省了金钱和时间。Part 04利用数据来控制、深入了解和优化清洁工艺选择能够生成可信、可验证并用于故障排除和重要CGMP决策数据的技术。如果数据没有经过验证且不准确,就很难深入了解和控制清洁工艺。拥有准确的数据可以使人们对结果充满信心,并以此做出重大质量决策。如果采用TOC,在选择具体TOC技术进行清洁验证时应格外小心,因为某些技术不适合用于精确分离和检测。TOC分析仪提供了可以洞悉清洁工艺的三个单独的数据,以最终实现对清洁工艺的控制、深入了解和优化。一个样品分析可以给出无机碳、总有机碳和电导率数据。通过这些数据可用于确定清洁工艺失败的根本原因,采取纠正和预防措施或优化清洁周期。Part 05数据可靠性在CGMP设置中,数据可靠性比以往任何时候都重要,在清洁验证中实施分析技术时必须考虑数据可靠性。FDA已经对采用相关分析方法时不遵守数据可靠性标准多次发出了警告函。具体来说,当采用HPLC时,常见的问题是没有对峰值进行积分或没有对鬼峰产生的原因进行调查。在清洁验证中出现未知峰不可避免,但必须对其进行彻底调查并记录。使用TOC进行清洁验证不仅可以全面了解清洁度,并且一些分析仪还完全符合21 CFR PART 11规定的要求和数据可靠性准则。数据应保存在安全的数据库中,能够随时访问,所有工作均应保存在安全审核记录中。在利用数据做出重要质量决策时,需要制定和实施强有力的程序来保证数据的可靠性和安全性。当采用在线TOC分析进行清洁验证时,由于不存在数据转录、打印和未验证数据传输的环节,因此具有更高的数据安全性和可靠性。◆ ◆ ◆联系我们,了解更多!
  • 【水力发电】高效清洁的能源,一定要搭配高效全面的检测方式
    水力发电厂的运维工作水力发电——不会浪费的清洁能源随着全球发电量逐年增加,各类发电方式可谓各显神通,其中包含了火电、风电、核电、水电、太阳能发电、地热发电等等各类方式。在对发电量的高要求之下,对于天然的、清洁的能源所带来的发电效率,提出了更高的要求。因为电不适合储存的特性,消耗过多的资源来过多的发电只会造成浪费。另一方面,当发电能力不足时,电荒可能会造成停电,从而引起生产、生活的不便。而水力资源既不会产生资源浪费,还具备较高的发电效率。电力公司把水力发电厂和其他发电厂结合起来,使电力供应保持在最佳水平。水力发电的特点水力发电能有效地适应电力需求的波动。这一特征来源于水力发电厂的产生过程。与燃烧式涡轮系统发电不同,水力发电利用水流的能量。因此,它只需调节水流量,就能有效地控制发电量。除此之外,水力发电还具有发电效率高、二氧化碳排放少等优点。水力能是由水流产生的,当水流自由下落时,如在水坝中,水力能可实现最大化。其他发电厂,如火力发电厂,由于使用海水冷却蒸汽,所以集中在海岸附近,而水力发电厂则位于山区,以利用高差。水力发电厂的检测重点对于水力发电而言,水轮机涡轮叶片的运转效率决定了其最终的发电效率,而这也对涡轮叶片、尤其是叶片根部的检测提出了相当高的要求。(水力发电厂剖面图) 在水力发电厂的正常运作过程中,叶片会产生一定的疲劳损耗,同时水中难免有一些泥沙小石子,也会对叶片产生一定的损伤。再额外考虑到叶片的焊接工组中还可能出现一定的缺陷等问题,使得叶片检测显得尤为必要。 案例分享:水轮机转轮叶片无损检测 以下为水轮机转轮叶片的无损检测应用案例:(水轮机外貌) 作为水力发电厂内的重要组成部分,水轮机的无损检测工作非常重要。通过对于转轮叶片的日常在役无损检测,可以规避绝大部分的意外故障,以规避水电站整体因故障导致发电效率降低。(水轮机转轮叶片) 本案例采用了双面单侧、沿线扫查的无损检测方式,采用Omniscan MX2相控阵探伤仪进行数据采集,使用Tomoview离线分析软件得到的检测结果:(1号叶片) 通过观察相控阵探伤仪屏幕,我们可以轻松判断1号叶片上的是否损伤情况,也能断定1号叶片可通过检测。(2号叶片) 同样,我们也可以使用相控阵探伤仪观察2号叶片,发现二号叶片中存在较多缺陷,无法通过检测,需要进行后续的维修或更换,才能继续保持工作效率。水力发电厂的估计寿命通常都在百年以上,相较于其他类型发电厂而言长的多。对于水力发电而言,定期检查以确保设施的安全运行管理乃重中之重,这也是水电设施能够长时间供给电力的核心因素。 *文中叶片图片源自实拍,如有侵权请联系删除
  • 徕卡,您身边的清洁度专家
    可快速简单地进行过滤颗粒计数徕卡LAS X ID Modules分析软件 清洁度专家您的成功取决于是否能通过高质量产品获得客户满意度。零部件的清洁度决定产品的性能、使用寿命和整体质量。 ISO、VDA 和 SAE 等汽车和其他行业的国际和地区标准日益严格,必须进行严格的清洁度分析才能确保合规性。 清洁度专家 软件是一种使用简单的高质量解决方案,可根据您的应用需求提供可靠、可重复的分析结果。因为清洁度很重要通过多样品测量改善工作流程 满足国际、国家标准以及个性化要求通过激光光谱获得用于识别污染源的更多信息管理多个样品同时分析多个样品,提高工作流程效率,借助自动化颗粒分析简化您的过程。例如,将来自一个过滤过程的多个过滤样品组合到一个单一批次进行分析,并为每个过滤器分配不同的颗粒分类设置。轻松生成报告,共享您的结果。现在,您可以在每个批次中一次分析多个过滤器,节省时间设置不同的颗粒分类参数,例如每种过滤器的长度和宽度限值以圆形或矩形扫描图形进行测量使用显微镜进行除技术清洁度分析以外的其他任务符合甚至超越标准检查是产品安全的重要步骤,对于产品的可靠性和标准合规性非常关键。为了获得必要的证明书,记录零部件的清洁度至关重要。清洁度专家 软件有助于按照各种国际和国家标准对您的技术清洁度进行分类 兼顾个性化要求通过存储和调用功能获得可靠、可重复的结果通过测量颗粒高度,而不仅仅是长度和宽度,全面测定颗粒造成损害的可能性根据外部或内部标准快速生成报告识别污染源 何必费心搜寻 – 分析全搞定! 假如您可以将目视检查和化学检查组合在一个工作流程解决方案中,将会为污染源识别带来莫大的帮助。清洁度专家 软件与独特的全新激光诱导击穿光谱 (LIBS) 系统相结合,为您带来灵活的二合一分析解决方案。轻松快速地掌握污染的更多信息,为您的业务带来决策优势。LIBS 的灵活性无需将颗粒传输到电子显微镜 (SEM) 或其他设备,即可获得颗粒的化学指纹图谱消除额外的样品制备和系统调节在内部进行化学分析,节省时间和资金 根据光学信息和化学信息作出明智决策 获得完整的图像清晰透明的成像结果不可或缺,因为它有助于您识别不需要的污染颗粒。有了更多的信息,您就可以更好地做出决定。文档资料对于指导和证实如何提高清洁度是不可或缺的,成像过程记录至关重要 即使是单个颗粒,您也可以调整匹配质量,匹配质量表示了采集到的被分析颗粒的光谱与数据库中参考光谱之间的匹配程度。匹配度较高(即数值较大)的匹配将自动突出显示,为您解读分析结果提供指导。将 Cleanliness Expert 软件与 LIBS 分析相结合可获得以下优势:一眼就可以高效获得软件和报告中显示的额外信息更清晰地观察结果,便于操作和分析能够调整每个颗粒的匹配质量软件设计简单直观,任何用户均可使用清洁度专家 软件的设计以用户为出发点。用户界面可根据特定需求进行配置,使得不同熟练程度的操作者可以轻松浏览。软件通过直观的方式指导用户快速开始分析。为得到可靠、可复制的结果,所以系统设置存储在一个配置文件中,可自动调用。选择 清洁度专家 软件轻松快速地区分反光 (金属) 颗粒和非反光颗粒自动调焦和自动检测功能互动式过滤图,在查看结果的过程中显示动态图像的位置软件由编码显微镜进行校准,因此自动化分析准确无误轻松生成报告,共享您的结果清洁度分析流程从两大知名企业的强强联合中受益通过“来源单一”的“成套”清洁度分析解决方案优化您的清洁度工作流程。徕卡和 Pall 共同推出了独特、完备的部件清洁度集成工作流程解决方案。从提取 (例如从部件上分离颗粒) 到使用合适的徕卡光学评估系统完成分析,PALL 提供全面的整套解决方案来装备您的清洁度实验室。 工作流程包括来自 Pall 的清洗机和过滤器来自徕卡的光学和化学分析解决方案 由来自徕卡和 Pall 的应用专家提出工作流程优化建议
  • 使用Sievers M9分析仪检测清洁验证样品0.2M NaOH中的TOC
    目的 本研究证明Sievers® M9 TOC分析仪能够通过测量总有机碳(TOC)和电导率来检测和定量分析残留的微量0.2M NaOH(一种常用清洗剂)。背景信息稀NaOH溶液是制药业中常用的基本清洁剂,用于在转换产品前清洗生产设备。在进行清洁验证时,必须确定设备的最后冲洗液中是否有残留的清洁剂。NaOH分子本身不含碳,因而不产生TOC信号,但我们可以通过测量电导率来有效地检测NaOH。NaOH常伴随有痕量的有机碳,我们无法通过测量电导率来检测这些有机碳。如果不能清除这些有机碳,就会影响产品质量。因此检测NaOH中的碳污染,能够提高清洁工艺的验证效率。本研究中的数据表明,可以用Sievers M9分析仪来有效地测量NaOH的TOC和电导率。实验测试计划对酸化的0.2M NaOH溶液(pH值为1.68)的初步分析结果显示,0.2M NaOH含有约2.8%(质量百分比)的碳。对未酸化的0.2M NaOH的分析结果显示,其电导率为3.4 μS/cm。使用上述碳含量和电导率的分析数据,来完成以下测试步骤。用M9分析仪测量TOC向0.5 ppm 0.2M NaOH储备溶液中分别加入4种浓度的KHP溶液(KHP浓度分别为0.5 ppm、1 ppm、5 ppm、20 ppm),得到不同TOC浓度的溶液,用于Sievers M9分析仪的测试。KHP溶液由20,000 ppm储备溶液制成。0.5 ppm 0.2M NaOH溶液的含碳量为2.8%(质量百分比),来自酸化的0.2M NaOH。M9分析仪的自动加试剂功能(Auto Reagent)能够自动确定分析所需的最佳试剂流量。当运行未知TOC浓度的样品时(例如进行清洁验证时),自动加试剂功能能够节省操作时间。表1列出了在本研究中进行TOC分析时所采用的最佳试剂流量。表1:TOC分析的最佳试剂流量用M9分析仪测量电导率用20 μS/cm储备溶液制成4种电导率浓度的0.2M NaOH溶液。使用20 μS/cm电导率储备溶液,基于非酸化的0.2M NaOH电导率3.4 μS/cm基础之上,使用0.2M NaOH溶液稀释至0.1%(质量比)配制而成。所有的0.2M NaOH溶液均在干净的低TOC玻璃器皿中制备,然后立即移到Sievers认证的TOC样品瓶(认证TOC小于10 ppb)中进行分析。对所有样品重复测量4次,不舍弃任何测量结果。测试设备Sievers M9实验室型TOC分析仪,序列号:1401-0043Sievers自动进样器,序列号:09040005DataPro2软件校准和确认TOC校准用标准的多点系统任务来校准Sievers M9分析仪。表2列出了校准数据。校准包括TC和IC通道。校准参数在设定值内。R2为1.0,表示校准在预期范围内是线性的。表2:0-50 ppm校准的结果TOC确认用蔗糖来确认2 ppm处的校准。表3列出了确认结果。表3:校准后对2 ppm TOC KHP标样测量的结果结果和讨论表4列出了将不同浓度的KHP加入0.5 ppm 0.2M NaOH溶液中的TOC测量值,图1是线性回归结果。表4:0.5 ppm 0.2M NaOH和0.5、1、5、20 ppm KHP的TOC测量结果图1:TOC与0.2M NaOH/KHP浓度的线性回归结果加入KHP的0.2M NaOH的TOC回收率在0.5–20 ppm浓度范围内是高度线性的(R2=0.996)。0.5 ppm 0.2M NaOH的TOC为582±13ppb,是Sievers M9分析仪的0.03 ppb检测限的16,000倍以上。这些数据表明,痕量的0.2M NaOH不会影响Sievers M9分析仪准确和精确地检测有机碳。表5列出了0.5-20 μS/cm范围内NaOH的电导率测量结果,图2是线性回归结果。表5:0.5–20 μS/cm 0.2M NaOH的电导率测量结果图2:电导率与0.2M NaOH浓度的线性回归结果0.2M NaOH的电导率在0.5-20 μS/cm范围内是高度线性的(R2=0.999)。0.5 μS/cm 0.2M NaOH的电导率为0.1±0.02 μS/cm,是Sievers M9分析仪的0.01 μS/cm检测限的10倍以上。因此可以用Sievers M9分析仪通过测量电导率来准确、精确地检测0.2M NaOH。结论同时测量电导率和TOC的能力使得Sievers M9分析仪能够在清洁验证时有效地检测出残留的清洁剂。Sievers M9的电导率功能可以检测到大于0.5 μS/cm的NaOH(是一种市售的碱性清洁剂)。当痕量的0.2M NaOH中的KHP浓度范围是0.5-20 ppm时,TOC响应为线性(R2=0.9996),表明NaOH基质效应对TOC测量的影响微乎其微。由于NaOH分子本身不含有机碳,无法通过测量TOC来检测痕量的0.2M NaOH,但同时测量TOC和电导率就能够准确了解冲洗液中是否含有污染物和化合物。因此在验证清洁工艺时,具有电导率功能的Sievers M9分析仪是测量无机离子和有机化合物的最佳仪器。◆ ◆ ◆联系我们,了解更多!
  • 中国煤电清洁发展与环境影响发布研讨会在京召开
    p style=" margin-top: 10px margin-bottom: 0px padding: 0px list-style: none color: rgb(41, 39, 39) font-family: 宋体 font-size: 14px white-space: normal background-color: rgb(255, 255, 255) text-align: center " img alt=" 0919-(53).jpg" width=" 550" height=" 367" src=" http://www.cec.org.cn/d/file/yaowenkuaidi/2017-09-21/52b6fde762702861f85f508053f94cf7.jpg" style=" margin: 0px padding: 0px list-style: none " / /p p style=" margin-top: 10px margin-bottom: 0px padding: 0px list-style: none color: rgb(41, 39, 39) font-family: 宋体 font-size: 14px white-space: normal background-color: rgb(255, 255, 255) text-align: center " span style=" margin: 0px padding: 0px list-style: none color: rgb(0, 0, 255) " 大会现场图片 /span /p p style=" margin-top: 10px margin-bottom: 0px padding: 0px list-style: none color: rgb(41, 39, 39) font-family: 宋体 font-size: 14px white-space: normal background-color: rgb(255, 255, 255) "   9月19日,中国电力企业联合会会同中国环境保护产业协会、清华大学、新华网在京召开“中国煤电清洁发展与环境影响发布研讨会”。中电联党组成员、专职副理事长王志轩出席会议并致辞。会上,环境保护部大气司司长刘炳江作大会致辞,中电联发布《中国煤电清洁发展报告》,中国环境保护产业协会易斌秘书长专题介绍《煤电烟气污染控制技术与装备发展》,清华大学贺克斌院士专题介绍《煤电排放控制与空气质量改善》,中国环境监测总站唐桂刚副主任专题介绍《我国燃煤电厂烟气污染物排放监测技术》,美国环保协会北京代表处首席代表张建宇、中国电力工程顾问集团有限公司副总工龙辉别介绍了美国、欧洲、日本燃煤电厂大气污染控制经验。发布会由中电联副秘书长兼行业发展与环境资源部主任安洪光主持。 /p p style=" margin-top: 10px margin-bottom: 0px padding: 0px list-style: none color: rgb(41, 39, 39) font-family: 宋体 font-size: 14px white-space: normal background-color: rgb(255, 255, 255) text-align: center " img alt=" 0919-(41).jpg" width=" 550" height=" 367" src=" http://www.cec.org.cn/d/file/yaowenkuaidi/2017-09-21/5ef66ba785acf098db4042d5bf8f1f44.jpg" style=" margin: 0px padding: 0px list-style: none " / /p p style=" margin-top: 10px margin-bottom: 0px padding: 0px list-style: none color: rgb(41, 39, 39) font-family: 宋体 font-size: 14px white-space: normal background-color: rgb(255, 255, 255) "   刘炳江充分肯定了煤电行业对大气污染减排的重大贡献。他指出,“十一五”以来,煤电是我国达标排放率较高的行业,减排成效巨大,为空气质量改善立下头功。刘司长强调,目前非电行业污染治理技术、管理能力存在较大差距,二氧化硫、氮氧化物、烟粉尘等大气污染物排放量占全国四分之三以上,是大气污染治理的重点领域,下一步工作将加快推进工业炉窑、燃煤锅炉和散煤等污染治理。 /p p style=" margin-top: 10px margin-bottom: 0px padding: 0px list-style: none color: rgb(41, 39, 39) font-family: 宋体 font-size: 14px white-space: normal background-color: rgb(255, 255, 255) text-align: center " img alt=" 0919-(58).jpg" width=" 550" height=" 367" src=" http://www.cec.org.cn/d/file/yaowenkuaidi/2017-09-21/9fbf4827e533190997d6c5b5f60efea9.jpg" style=" margin: 0px padding: 0px list-style: none " / /p p style=" margin-top: 10px margin-bottom: 0px padding: 0px list-style: none color: rgb(41, 39, 39) font-family: 宋体 font-size: 14px white-space: normal background-color: rgb(255, 255, 255) "   王志轩指出,电力是经济发展的先行官,改革开放以来,我国电力工业快速发展,为经济社会发展和人民生活水平提高做出重要贡献。但受多种因素影响,对能源转型、电力发展中的重大问题还存在认识误区。为了让各界更多的了解电力实际情况和取得成就,中电联编制并发布《中国煤电清洁发展报告》,首次系统阐述了中国煤电发展现状以及在能源体系和电力中的作用,全面梳理了煤电治理污染、提高效率、降低资源消耗、推进循环经济发展、推进清洁发展的措施和行动,系统展示了煤电清洁发展的成效和存在的主要问题,对中国电力转型和煤电清洁发展的趋势做了展望。王志轩强调,电力转型是能源转型的核心,煤电在电力转型的过程中仍然发挥着不可替代的作用。 /p p style=" margin-top: 10px margin-bottom: 0px padding: 0px list-style: none color: rgb(41, 39, 39) font-family: 宋体 font-size: 14px white-space: normal background-color: rgb(255, 255, 255) text-align: center " img alt=" 0919-(205).jpg" width=" 550" height=" 367" src=" http://www.cec.org.cn/d/file/yaowenkuaidi/2017-09-21/d0bbb647d7df6d79368bbbcf684fd7e3.jpg" style=" margin: 0px padding: 0px list-style: none " / /p p style=" margin-top: 10px margin-bottom: 0px padding: 0px list-style: none color: rgb(41, 39, 39) font-family: 宋体 font-size: 14px white-space: normal background-color: rgb(255, 255, 255) "   会议安排了媒体问答环节,王志轩副理事长、易斌秘书长、贺克斌院士,国电科学技术研究院副院长朱法华、龙辉副总工针对参会媒体提出的我国煤电脱硫技术路线选择、湿烟气排放、烟气中可溶性盐污染、是否安排烟气换热器(GGH)、氨逃逸对环境影响、煤电行业对大气环境影响等十一个热点、焦点问题进行了详细解答。媒体问答由中电联行环部副主任潘荔主持。 /p p style=" margin-top: 10px margin-bottom: 0px padding: 0px list-style: none color: rgb(41, 39, 39) font-family: 宋体 font-size: 14px white-space: normal background-color: rgb(255, 255, 255) text-align: center " img alt=" 0919-(88).jpg" width=" 550" height=" 367" src=" http://www.cec.org.cn/d/file/yaowenkuaidi/2017-09-21/b5bc3c168cde5aa7038c2db9e2fb8042.jpg" style=" margin: 0px padding: 0px list-style: none " / /p p style=" margin-top: 10px margin-bottom: 0px padding: 0px list-style: none color: rgb(41, 39, 39) font-family: 宋体 font-size: 14px white-space: normal background-color: rgb(255, 255, 255) "   来自国家发改委、能源局、环保部等国家部委及所属研究机构,国网、华能、大唐、华电、国电、国家电投、神华、浙能等电力企业及所属电力研究机构、电力环保公司,中央电视台、新华社、人民日报等27家主流媒体,以及相关研究机构、环保人士等200余人参加了会议。 /p
  • 使用Sievers M9分析仪检测清洁验证样品0.2M KOH中的TOC
    目的 本研究证明Sievers® M9 TOC分析仪能够通过测量总有机碳(TOC)和电导率来检测和定量分析残留的微量0.2M KOH(一种常用清洗剂)。背景信息稀KOH溶液是制药业中常用的基本清洁剂,用于在转换产品前清洗生产设备。在进行清洁验证时,必须确定设备的最后冲洗液中是否有残留的清洁剂。KOH分子本身不含碳,因而不产生TOC信号,但我们可以通过测量电导率来有效地检测KOH。KOH常伴随有痕量的有机碳,我们无法通过测量电导率来检测这些有机碳。如果不能清除这些有机碳,就会影响产品质量。因此检测KOH中的碳污垢,能够提高清洁工艺的验证效率。本研究中的数据表明,可以用Sievers M9分析仪来有效地测量KOH的TOC和电导率。实验测试计划对酸化的0.2M KOH溶液(pH 值为 1.78)的初步分析结果显示,0.2M KOH含有约3.7%(质量百分比)的碳。对未酸化的0.2M KOH的分析结果显示,其电导率为4.4 μS/cm。使用上述碳含量和电导率的分析数据,来完成以下测试步骤。用M9分析仪测量TOC向1 ppm 0.2M KOH储备溶液中分别加入4种浓度的KHP溶液(KHP 浓度分别为0.5 ppm、1 ppm、5 ppm、20 ppm),得到不同TOC浓度的溶液,用于Sievers M9分析仪的测试。KHP溶液由1,000 ppm储备溶液制成。1 ppm 0.2M KOH溶液的含碳量为3.7%(质量百分比),来自酸化的0.2M KOH。M9分析仪的自动加试剂功能(AutoReagent)能够自动确定分析所需的最佳试剂流量。当运行未知TOC浓度的样品时(例如进行清洁验证时),自动加试剂功能能够节省操作时间。表1列出了在本研究中进行TOC分析时所采用的最佳试剂流量。用M9分析仪测量电导率用20 μS/cm储备溶液制成4种电导率浓度的0.2M KOH溶液。使用20 μS/cm电导率储备溶液,基于非酸化的0.2M KOH电导率4.4 µ S/cm基础之上,使用0.2M KOH溶液稀释至0.1%(质量比)配制而成。所有的0.2M KOH溶液均在干净的低TOC玻璃器皿中制备,然后立即移到Sievers认证的TOC样品瓶(认证TOC小于10 ppb)中进行分析。对所有样品重复测量4次,不舍弃任何测量结果。测试设备Sievers M9实验室型TOC分析仪,序列号:1611-2048Sievers自动进样器,序列号:14030016DataPro2软件校准和确认TOC校准用标准的多点系统任务来校准Sievers M9分析仪。表2列出了校准数据。校准包括TC和IC通道。校准参数在设定值内。R2为1.0,表示校准在预期范围内是线性的。TOC确认用蔗糖来确认2 ppm处的校准。表3列出了确认结果。结果和讨论表4列出了将不同浓度的KHP加入1 ppm 0.2M KOH溶液中的TOC测量值,图1是线性回归结果。加入KHP的0.2M KOH的TOC回收率在0.5-20 ppm浓度范围内是高度线性的(R2=1)。1 ppm 0.2M KOH的TOC为1020±12.6 ppb,是Sievers M9分析仪的0.03 ppb检测限的30,000倍以上。这些数据表明,痕量的0.2M KOH不会影响Sievers M9分析仪准确和精确地检测有机碳。表5列出了0.5-20 μS/cm范围内KOH的电导率测量结果,图2是线性回归结果。0.2M KOH的电导率在0.5-20 μS/cm范围内是高度线性的(R2=0.996)。0.5 μS/cm 0.2M KOH的电导率为0.1±0.03 μS/cm,是Sievers M9分析仪的0.01 μS/cm检测限的10倍以上。因此可以用Sievers M9分析仪通过测量电导率来准确、精确地检测0.2M KOH。结论同时测量电导率和TOC的能力使得Sievers M9分析仪能够在清洁验证时有效地检测出残留的清洁剂。Sievers M9的电导率功能可以检测到大于0.5 μS/cm的KOH(是一种市售的碱性清洁剂)。当痕量的0.2M KOH中的KHP浓度范围是0.5-20 ppm时,TOC响应为线性(R2=1),表明KOH基质效应对TOC测量的影响微乎其微。由于KOH分子本身不含有机碳,无法通过测量TOC来检测痕量的0.2M KOH,但同时测量TOC和电导率就能够准确了解冲洗液中是否含有污染物和化合物 。因 此 在 验 证 清 洁 工 艺 时 , 具 有 电 导 率 功 能 的Sievers M9 分析仪是测量无机离子和有机化合物的最佳仪器。◆ ◆ ◆联系我们,了解更多!
  • 清洁验证的TOC方法:您是否在合适的应用中使用了合适的方法?
    美国食品药品管理局(FDA)及相关的国际组织,致力于制定长期法规,服务大众,确保药品的效力、一致性和纯度。《当前优良操作规范(current Good Manufacturing Practices,cGMPs)》中的法规条例要求生产商按照详细的过程和规范,来确保产品质量和安全¹。长久以来,制药行业设计清洁验证程序时,都围绕来源于HPLC数据的主观的限值和不切实际的回收率测试。实际上,很多淋洗样品都只是达到药典对于产品放行的规定,而非设备放行规定。本文旨在启发读者,重新思考目前清洁验证中使用的分析方法,并质疑是否在合适的应用中使用了合适的方法。01当前阶段过去几十年,其他行业已开始陆续使用因技术发展而产生的过程质控战略,事实证明其更高效、更有效。但制药行业却因为各种原因对于这一改进战略的采纳十分缓慢,其中,过程分析技术(PAT)的监管不确定性就是原因之一。另外,之前对于清洁过程验证的检查指南(1993)被USFDA以外的监察机构,指导性机构(ICH,PIC/s)所广泛采用,用于指导客户使用一个简单框架或生命周期法来进行清洁过程的验证。然而,最近业内和监管者同时注意到,使用TOC方法能实现质量的提升和成本的控制,很多制药企业开始采用非专属性方法进行实时放行,以及清洁过程控制和生产设备放行。指导文件,如FDA PAT文档所描述的,及FDA 2011年《过程验证指南》,提供了如何使用非专属性方法,以符合cGMP关键的中清洁应用的框架。02期望阶段总有机碳(TOC)是一种关键质量属性(CQA,Critical Quality Attribute),是检测清洁的关键过程参数(CPP,Critical Process Parameters)的众多手段之一。依靠定期实验室淋洗或棉签取样的专属性方法(例如HPLC),与使用已确认、经方法验证并在清洁验证生命周期的各关键步骤使用TOC仪相比较,前者相对效率低且不可靠。但是,这种TOC的应用只能与清洁相关的过程验证生命周期方法配合使用。在这一应用中每个阶段都可能影响TOC值。例如,用户需要了解潜在的使用TOC时所需的各种因素,及其对分析方法产生的影响。03未来阶段要注意到,大部分的药典方法都不是专门为确认持续过程的分析仪,而预定或设计的。法规的指南建议用户可考虑将TOC方法作为清洁验证或确认的测试方法的一种“可替代的分析方法”。¹简单来说,用户有责任通过规定的方法与工艺验证过程,对其预定的用途,建立分析仪的适用性。除了为清洁过程验证所使用的方法建立系统适用性,在清洁验证生命周期中还有其他重要步骤需要考虑,以确保TOC符合cGMP、质量专章与行业指导文件。步骤如下:设计▲生产设备的目标用途▲清洁剂和最差情况的化合物▲对生产设备的TOC取样(棉签或淋洗法)▲回收率百分比研究▲验收限值或标准(风险评估和工艺产能)▲其他验证方法(ICH Q2 R1)确认(生产设备)▲生产设备的TOC取样(棉签或淋洗法)持续确效▲生产设备的TOC取样(棉签或淋洗法)04采取行动如之前所述,越来越多公司正在使用TOC分析进行清洁验证,因为它更快、更简便,而且比其他分析方法更经济。TOC方法的样品检测量大,并减少了清洁验证协议实施的时间。即便在生物制药行业经常遇到的化合物难溶于水,或者含大量蛋白质情况下,也依旧有效,尽管如果清洁过程的设计是有效的话,这些化合物不应该存在。另外,FDA在检测污染物残留的规章指南中,已经接受了TOC方法。很简单地就可以断定,在清洁验证的生命周期中,多种化合物必然需要多种分析测试。在多种测试中,某些意料之外的杂质或清洁剂可能会被忽略,又或者在色谱法分析中出现未知峰。TOC能测出多种目标化合物,因为它是一种非专属性方法。然而,遵循以下步骤,以确保成功的转换及正确应用的实施还是非常重要的:分析仪器的确认分析仪器确认是一个过程,确保对特定测试使用分析方法是能符合目标用途的。根据cGMP规定,“企业所使用的检测方法的准确度,灵敏度(检测限),专属性和重现性(精确度)必须确立并有文件证明。”²在这种情况下用TOC法进行清洁过程验证的测试之前,对分析仪器进行严格的确认就尤为重要。此方法包括由USP所建议的安装确认、运行确认和性能确认(IQ/OQ/PQ)。方法和过程验证清洁验证的TOC实施方案通常由四个关键部分组成,以确保有效、高效地转换为用TOC分析进行清洁过程验证。回收率(可行性)测试回收率测试或者可行性测试常被作为建议方法,以确定分析物是否适用TOC方法。通常,这种研究只要确定在工艺物料流中,哪种化合物是最难从设备表面清除的。这一研究的目的是为了论证,设备表面或水溶液中,目标化合物的回收率。研究应该在可控条件下的实验室进行,但应尽可能反映制药生产中清洁过程的真实情况。方法验证和取样灵敏度测定模板规定指出,制药或生物制药企业必须有文件记录的程序,包含一系列额外进行的对清洁过程方法验证的测试。这些协议用于证明一个系统或过程(常见或特殊的),能在可靠的方式及控制中实现其目标用途,生产出的产品能持续满足之前确定的规格。这些规范采用了ICH Q2(R1)中提及的验证特性,包括线性、准确度和精确度。此外,基于直接与间接取样技术确定灵敏度,是最好的操作。³设备性能确认通常,所有制药处理设备、管路、连接器、玻璃器皿和备件的自动或手动清洗顺序,都按照同样的工艺流程,即在最后的淋洗步骤时采样,并使用经验证的分析方法进行分析。这个步骤通常会包括TOC、电导率、内毒素、微生物限度和pH。其他用于设备性能确认的分析包括产品专属性试验。然而,TOC仅仅是确认生产设备的众多工具之一。⁴.⁵持续确效(日常监控或产品切换)TOC仅仅是清洁过程的验证状态或产品切换时的日常监控的多种手段之一。也有其他独特的方法,在实验室以外,收集样品,分析TOC,并报告结果或通过/失败标准。若把TOC方法从实验室转换至生产区域,能实时“在使用点”检测,这将是一个有效果且有效率的途径。但是在转换前,必须建立并执行比较性协议。¹参考文献1.FDA网站:www.fda.gov/cder/guidance/cGMPs/equipment.htm#TOC2.“黄金表格(The Gold Sheet).” FDC 报告,March 2005 ◆ ◆联系我们,了解更多!
  • 与HPLC相比,用TOC分析进行清洁验证的优势
    科技的发展和生产成本的提高使全球制药工业开始衡量提高效率和产量的其他途径。在这个竞争激烈的行业中,至关重要的是降低过高的成本,消除那些不必要且冗长的验证工作,同时最大限度地确保药品质量。过去几年里,将总有机碳TOC分析这种非专属性方法用于清洁验证的做法受到了越来越多关注,因为事实证明,高效液相色谱(HPLC)之类的专属性分析检测是清洁验证过程中的瓶颈,在很大程度上造成了设备在清洁之后的停工期。本文探讨:与传统的分析方法相比,用非专属性方法进行清洁验证的优势,帮助制药行业认识到使用TOC分析这种新方法后,资源生产力的增强、产量的提高、设备停工期的减少和收入的增加。为什么采用TOC进行清洁验证?进行清洁验证越来越多的公司利用TOC分析来进行清洁验证,因为它比其它方法更快速、简便和经济。TOC方法可以获得较高的样品分析量,减少清洁验证规程的执行时间。即使是对一般认为不溶于水的化合物和生物技术行业里常见的大分子蛋白也同样实用。此外,FDA已经将TOC方法1规定为检测污染物残留的标准程序。在清洁验证调查中,经常需要根据一个以上的目标残留物或化合物建立接受标准限制。HPLC的局限性在于,它在一次试验中,只能检测一种残留物。因此在清洁验证中,多种化合物就需要多个分析实验才能完成。在这些实验中许多无法预料到的污染物和清洁剂可能会被忽略,在色谱中就会显示出许多不明的峰。由于TOC是一种非专属性方法,所以可检测到超过一种的目标化合物。HPLC的最大缺点:假峰、管制审查、高额的维修费用由于设置和分析耗时过长,使用HPLC的结果经常是,要花一两天的时间才能认证设备符合清洁标准,由此造成生产停机。(HPLC)不明的峰以及高额的维修费用都是导致停工的原因。另外,在对制药设施进行检查后,FDA发出的警告信中,HPLC是被引用最多的分析方法。近期的警告信所提到的问题有,HPLC方法会导致不充分的检测,无法确定不明的峰,无法在使用之前校正仪器,检测的线性程度低,仪器准确度的不足,无法在分析之前使仪器达到合适状态等等。2实验室运行HPLC仪器的操作人员培训及认证程度不足也受到高度关注。一封最近的警告信写道:“......HPLC测试的流程不全面,因为样品的运行时间和保留时间......在你们提供的实验方法里没有确定。我们的调查员发现贵实验室的员工习惯性地在活性峰洗脱后停止色谱的运行,导致不能检测到在活性峰之后洗脱的峰。”3加强这方面的监督,说明FDA意识到了HPLC的缺点。这些认识在FDA “Guide to Inspections of Pharmaceutical Quality Control Laboratories"(《FDA药品质量控制实验室审查指南》)中得到了进一步体现。“有时公司员工没有受到充分的培训,也没有充分的时间去弄清需要进一步调查和解释的情况。所以他们在遇到色谱中无法解释的峰时,就将其忽略,而不是进一步确认。”4众所周知,用HPLC分析进行清洁验证会有许多不确定因素。不明的峰,也就是“假峰”,是不确定因素之一,可导致冗长的排除困难时间和验证操作的失败。以往的进样、污染物、气泡、柱内的污垢,磨损的保护柱,以及样品中痕量的污染物和清洁剂都是导致HPLC需要更换组件的因素。比如,磨损的聚合物接头或管材,被污染的保护柱会影响峰形,需要更换。根据峰形的变化,保护柱需要每周甚至每天更换,这大大地增加了计划外的维修费用。使用成本一般情况下,一台TOC分析仪的价格比一台HPLC仪器低37%。大部分制药设施中都有在线TOC分析仪用于确认USP标准的纯水使用。同一台分析仪可用于纯水检测和清洁验证,节省了一大笔购买资金。另外,TOC分析的操作费用也要比HPLC仪器低40%到80%。TOC不会占用额外的时间来进行频繁的维修,无需更换柱子以及去除污染物,更不使用具有良好脱气性的溶剂,及每天进行柱子的平衡和检测器的校正等。由于有不能确定的化合物以及仪器正常运行所需的众多复合组件,HPLC的操作费用会增加。由HPLC引起的停产所耗成本表1显示的“停工期计算”比较了制药工业中常用于清洁验证的分析方法所引起的停产造成的相关费用。“停工期计算”显示制药公司使用HPLC和TOC按315个生产日(每个工作日24小时,每周工作7天),生产一种“大受欢迎”的制剂。5使用750种资源进行药物产品生产,产品年毛利为$2,500,000,000。用TOC来进行清洁验证,制药企业由停产所造成的花费可降低97%。表1.停工期计算非专属性方法的简便性HPLC操作要求随时关注样品的分析,员工需进行专门的培训。TOC分析不需要专门的培训,将分析方法开发时间降低60%。TOC还可以减少最终用户的决定点,消除停工期和人工造成的错误,优化清洁验证和认证过程。简化的TOC备案过程可确保合规性和促进实时备案,这样可以加快所检查仪器、检查结果的认可过程。因此可以尽快恢复生产,这一点对制药企业来说是非常重要的。不溶有机物的回收率百分比对于非专属性方法的使用,有人认为如果有不溶有机物,用TOC进行清洁验证的回收率较差,回收百分比不可能超过50%。表2比较了用HPLC和TOC对三种“不溶有机物”进行分析的棉签法回收百分比。表2.棉签法回收6TOC在20毫升水中回收浓度为4μg/cm2或百万分之一的试样,反应有效率在50以上。6清洁验证支持包在美国与欧洲,经过了20多年对清洁验证工作的探索,目前有大约超过一半的药企,采用总有机碳TOC法进行清洁验证。为了更好地帮助制药企业采用简单便捷的TOC方法,开发清洁验证的SOP,Sievers分析仪专门编写了《清洁验证支持包》,支持您快速使用TOC方法,建立清洁验证的SOP。如您对采用TOC进行清洁验证的方法感兴趣,或有任何疑问,点击文末的“阅读原文”填写信息,我们的应用专家将尽快与您联系,协助您简化清洁验证。参考文献1.FDA网站:www.fda.gov/cder/guidance/cGMPs/equipment.htm#TOC。2."The Gold Sheet." FDC报告,2005年3月。3.FDA网站:www.accessdata.fda.gov/scripts/wlcfm/indexdate.cfm。4.FDA指导文档 : Guide to Inspections of Pharmaceutical Quality Control Laboratories。5.假设生产设备的例行维护造成停产,相关计算可联系Sievers分析仪获取。6.Andrew W. Walsh 为本文提供了内容。◆ ◆ ◆联系我们,了解更多!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制