当前位置: 仪器信息网 > 行业主题 > >

汽轮机燃烧室燃烧

仪器信息网汽轮机燃烧室燃烧专题为您整合汽轮机燃烧室燃烧相关的最新文章,在汽轮机燃烧室燃烧专题,您不仅可以免费浏览汽轮机燃烧室燃烧的资讯, 同时您还可以浏览汽轮机燃烧室燃烧的相关资料、解决方案,参与社区汽轮机燃烧室燃烧话题讨论。

汽轮机燃烧室燃烧相关的资讯

  • 危险的汽轮机检修还能不停工?FLIR产品让您实现
    汽轮机是将蒸汽的能量转换成为机械功的旋转式动力机械,又称蒸汽透平。主要用作发电用的原动机,也可直接驱动各种泵、风机、压缩机和船舶螺旋桨等。还可以利用汽轮机的排汽或中间抽汽满足生产和生活上的供热需要 。那么在日常的检修中,要如何注意呢?传统检测弊端多,亟待解决众所周知,汽轮机依靠氢气来运转,这是一种非常易燃的气体。当对系统进行维护时,需要将氢气从系统中清除,并用惰性气体二氧化碳(CO2)替换。当使用传统检测方法时,定位涡轮发电机上的二氧化碳泄漏耗时耗力,特别是当需要关闭设备进行维护时。一个难以发觉的小泄漏可能会成为一个巨大的、代价高昂的问题,甚至是一个严重的安全隐患。但这些问题肉眼难以发现。例如,如果一个喷嘴安装的方向不对,在出现问题之前,没有人会知道。幸好,随着科学技术的发展,一种无需停机的简便安全地检测方法已广泛使用。那就是使用FLIR光学气体成像热像仪、热像仪和电气测试设备等检查工具的组合,可以帮助您实时可视化气体,以定位小泄漏、验证维修并避免昂贵的停机。FLIR产品组合,解决汽轮机检修问题OGI热像仪:二氧化碳可作为氢冷发电机系统泄漏检测的示踪气体,使用FLIRGF343光学气体成像热像仪可以实时显示二氧化碳气体的轨迹,因此可帮助您精准定位泄漏源。更多具体操作详情戳这里:氢冷发电机气体泄漏只能找氢气?你需要换一种思维......连接处的二氧化碳气体泄漏热像仪:FLIR热像仪在汽轮机检修系统中也非常有用,在使用标准预防性维护计划无法检测到涡轮发电机的潜在问题时,FLIR E53可以很好地定位问题点。例如,FLIR热像仪可以检测到衬垫材料失效而发生的空气泄漏问题。工业内窥镜:在汽轮机运行的过程中,就可以使用FLIR VS80工业内窥镜套件观察汽轮机的变形、裂纹、烧蚀等,还可以对电厂汽轮机叶片进行定期的查验,观察叶片有无裂纹、变形等情况。及时避免设备出现安全隐患,有效防止停机停工带来的损失!降低风险,节约成本计划外停机对汽轮机相关的整个系统来说是一个成本高昂、不必要的负担。使用FLIR光学气体成像热像仪、热像仪和工业内窥镜等,可以代替传统的检查方法,通过实时观察CO2的泄漏和热点变化以及近距离查看机械磨损情况,来提高工作效率。FLIR各个产品的组合使您能够及早发现泄漏和热异常,从而节省维护和停机成本,及早发现潜在危险还可以避免人员受到严重伤害,妥妥滴“一举两得”呀~在汽轮机检修的过程中你遇到了哪些难题呢?
  • 德国Freiberg公司Omega/Theta单晶X射线衍射仪技术交流——东方汽轮机站
    德国Freiberg公司Omega/Theta单晶X射线衍射仪技术交流——东方汽轮机站2018年7月23日,德国Freiberg公司Omega/Theta单晶X射线衍射仪中国独家代理-锘海半导体仪器董事长殷明、工程师成海丽、夏瑞一行在东方汽轮机有限公司举行技术交流会议。工程师夏瑞就Omega/Theta单晶X射线衍射仪的原理、配件、功能、软件操作及前沿应用案列等内容进行详细讲解,交流了Omega/Theta单晶X射线衍射仪独特的Omega扫描快速测量方法,讨论了该设备可做整块涡轮叶片取向映射的独特技术,为今后合作打下了良好的基础。 德国Freiburg公司Omega/Theta单晶X射线衍射仪介绍德国Freiberg公司 Omega/Theta XRD采用先进的Omega扫描方法测定晶体结构并检测单晶取向,该仪器具有扫描速度快(约是传统200倍)、测量精度高(0.003°)、可靠性强(>99%)等特点,可同时扫描多个晶体方向,也可做整块晶体取向映射,适用生产研发型企业,可集成在自动生产线中。 除此之外,Freiberg公司还有针对小型试样测试的桌上型DDCOM XRD和SDCOM XRD可供选择。 Omega/Theta XRD转移技术:可高效率锯割多个铸锭的方向同时测定所有晶体取向用于钢丝锯、磨削等的各种样品架和转架装置自动晶片分类和处理摇摆曲线测量最高精度:0.003°DDCOM设计用来测量8~225mm的晶片和铸锭参考平面与测量平面相同标记所有晶体取向无需水冷最高精度:0.01° SDCOM可测量小至1mm大到铸块的晶体用于钢丝锯、磨削等的各种样品架和转架装置标记所有晶体取向无需水冷最高精度:0.01°Omega/Theta单晶X射线衍射仪在单晶高温合金领域的应用 Omega/Theta单晶X射线衍射仪可快速、精准测试整块涡轮叶片单晶取向,操作简便,制样方便。整块涡轮叶片只需30分钟快速映射单晶取向3D成像。α方向:参考方向与晶格的[100]方向之间的夹角β方向:[100]矢量在参考平面上投影的旋转角γ方向:[001]矢量在参考平面上投影的旋转角Omega/Theta单晶X射线衍射仪在其他领域的应用 Si、SiC、AlN、GaAs、Quartz、LiNbO3、BBO等 100多种半导体、光学晶体等材料分析研究 晶圆生产自动分析分类 单晶镍基高温涡轮叶片晶体取向分析 航空航天领域单晶材料研发及质量控制
  • 检测汽轮机油中带色不溶物---ASTM D7843标准漆膜倾向指数测定仪
    石化产业是国民经济重要的支柱产业,产品覆盖面广,资金技术密集,产业关联度高,对稳定经济增长具有重要作用。但仍存在产能结构性过剩、自主创新能力不强、产业布局不合理、环保压力加大等问题。石油化工产业作为高污染性产业,面临结构性改革的矛盾,国家政策引导对于促进石化产业持续健康发展具有重要意义。 石化工业作为国民经济的重要支柱产业和原材料配套工业,在后疫情时代有着新的机遇和未来。疫情过后,石化产业将重构,进入新的变革与调整期。 我国石油化工产业将朝着原料多元化、产品需求差异化、营销电商化、产业绿色低碳化、产业智能化等方向发展。A1390漆膜倾向指数测定仪,依据ASTM D7843标准,适用于检测汽轮机油中带色不溶物的测定。监测评定汽轮机油生成油膜的倾向性,避免漆膜沉积影响设备散热,导致油液加速老化及润滑性能下降。仪器特点1、采用数字化光泽控制技术,搭载智能操作系统,配合液晶显示,一目了然,操作自如; 2、10000组标样10000组试样超大容量的内存空间,实现完全记录,现场对比分析更加从容;3、3000mAh大容量高品质锂电池,轻松解决续航问题;4、内置通讯接口,可轻易完成与PC端的测量数据传输。5、轻便手持,便于在工厂和偏远地带进行测量技术参数测量几何图形: 45/0图像捕捉显示:4.5cm Color TFT光源: 立三方向25 LED (8可见波长 1 UV)色差公式:△E*ab重复行:△E0.07测量间隔:0.5秒重量:约800g尺寸:199mm*68mm*90mm
  • 第三十六届国际燃烧会议在首尔隆重召开
    LaVision在韩国首尔召开的国际燃烧会议(ISOC)上为燃烧领域的专家学者展示最前沿的创新产品。 LaVision公司自创建伊始,便以为燃烧领域提供先进的成像解决方案为己任。执着于这一信念,跨越超过25年岁月,始终如一,持之以恒,为LaVision公司赢得了引以为豪的声望。在首尔举行的第36届国际燃烧会议上,我们荣幸地展示了最新的产品创新成果。这一两年举办一次的会议活动为分享燃烧领域应用的相关想法和经验提供了一个理想的科学沙龙。火焰的LIF层析成像 我们的FlameMaster 3D-LIF成像系统可为湍动燃烧分析提供火焰中OH自由基的瞬态3D-LIF成像。采用多台配有双象器的增强型相机进行3D-LIF信号的层析重构。我们还展示了一幅题为“层流和湍动喷射火焰中的层析OH激光诱导荧光”研究进展海报。另外这种实验装置可以同时进行OH和燃料的3D-LIF成像测量。配备高速相机和高重复频率激光器还可进行时间分辨的3D-LIF成像。湍动喷射火焰中OH的瞬态3D-LIF层析重构成像背景纹影(BOS) BOS是一种简单,效费比高,对测试对象尺寸无限制的用于气体流动,混合以及热流体可视化测量的成像测试方法。LaVision的BOS成像测试系统可以测量绝对2维或轴对称流体,如锥状本生火焰的3维气体密度和温度场。BOS测量得到本生火焰3维温度场改进的致密喷雾激光成像测量 结构化激光照明平面成像(SLIPI)是一种用于喷雾特别是致密喷雾的高对比度创新成像技术。LaVision公司的SprayMaster喷雾测量系统支持时间平均和瞬态SLIPI喷雾成像。内窥式成像 内窥式(激光)成像广泛用于光学通道受限的燃气轮机,内燃机和工业炉窑等应用对象场合。LaVision提供多种可见光波段和紫外波段内窥镜用于PIV,LIF和火焰自发光观测。内窥镜产品包括用于相机和激光的型号。相逢在首尔 本次ISOC大会于7月31日至8月5日在首尔会展中心(Coex Convention & Exhibition Center in Seoul)举行。众多与会专家来到我们的展台对我们展示的智能成像测试系统表现了浓厚的兴趣,并就其个性化的需求和我们进行了卓有成效的交流。我们也为各位专家解决其测量任务给予了有价值的建议。更多关于该次会议活动的信息请访问该届大会和LaVision公司网站。
  • ASTM D4378-22《蒸汽、燃气及联合循环涡轮机矿物油在运行中监测的标准实施规程》标准解读
    长期以来,发电行业一直认为涡轮机油的运行监测是确保涡轮长期无故障运行的必要手段。用于发电的两种主要类型的固定式涡轮机为蒸汽涡轮机和燃气涡轮机;涡轮机可以作为单独的涡轮机,也可以配置为联合循环涡轮机。联合循环涡轮机有两种类型:第一种连接燃气轮机和蒸汽轮机,具有单独的润滑回路。第二种将蒸汽和燃气轮机安装在同一轴上,并具有共同的润滑回路。润滑要求非常相似,主要重要的区别就是燃气轮机油受到明显较高的局部热点温度和水污染的可能性较小。汽轮机油通常可以使用很多年。相比之下,燃气轮机油的使用寿命较短。燃气轮机的优点之一是能够快速响应发电调度要求。因此,越来越多的现代燃气轮机被用于峰值负载或循环负载(频繁的机组停止和启动),使润滑油处于可变条件(非常高到环境温度),这给润滑油增加了额外的压力。为了确保工厂设备的安全、可靠和具有成本效益的运行。我们就需要通过对在用润滑油进行有意义的取样和测试,来帮助用户验证润滑油在整个生命周期中的状态。收集数据和监测显示润滑油退化迹象的趋势进行相应的处理和补救措施。现行标准ASTM D4378-22《Standard Practice for In-Service Monitoring of Mineral Turbine Oils for Steam, Gas, and Combined Cycle Turbines》,中文译为《蒸汽、燃气及联合循环涡轮机矿物油在运行中监测的标准实施规程》第一版发布于1984年,上一版为2020年,最新版为ASTM D4378-22。本操作规程涵盖了有效监测蒸汽和燃气轮机(作为单独或联合循环涡轮机)中使用的矿物涡轮机油的要求。本操作规程包括取样和测试计划,以验证润滑油在整个生命周期中的状态,并通过确保所需的改进,使润滑油的当前状态达到可接受的目标。本操作规程的目的是帮助用户,特别是电厂运行和维护部门,保持涡轮所有部件的有效润滑,防止出现与油降解和污染有关的问题。本操作规程中提到的各种试验参数的值是指示性的。事实上,要对结果进行正确的解读,需要考虑设备类型、操作工作量、润滑油回路设计、补油水平等诸多因素。涡轮机油的性能多数涡轮机油由深度精制的石蜡基矿物油复合抗氧化剂和防锈剂而成。依据其质量等级不同,还可以添加少量的其他添加剂,如金属钝化剂、降凝剂、极压添加剂和消泡剂。涡轮机油的主要功能是润滑和冷却轴承和齿轮。在有些设备中,涡轮机油也可以充当调节液压油。新涡轮机油应具有良好的抗氧化性,并提供足够的防锈性、抗乳化性以及抗泡特性,同时能抑制油泥和漆膜沉积物的形成。然而,这些油在涡轮润滑系统中使用期间不能保持不变,因为润滑油会经历热应力和氧化应力,这些应力使润滑油中的基础油的化学成分降低,并逐渐耗尽润滑油中的添加剂。在不损害系统安全或效率的情况下,可以容忍某些恶化。良好的监测手段是必要的,以确定何时润滑油性质发生了足够大的变化,以证明可以在很少或没有损害生产计划的情况下实施纠正措施。影响涡轮机油使用寿命的因素影响涡轮机油使用寿命的因素有:(1)系统的类型和设计,(2)油系统运行前条件,(3)新油的质量,(4)系统的运行条件,(5)油品受污染状况,(6)补油率,(7)油品的处理和储存条件。涡轮机油检测项目、异常原因及处理措施涡轮机油的闪点,与大多数润滑油一样,涡轮机油的闪点必须远高于最低适用安全标准要求。然而,闪点对于测定涡轮机油废油的降解程度意义不大,是因为正常涡轮机油降解对其闪点值的影响不大。闪点测试对于检测涡轮机油中低沸点溶剂的污染非常有意义(燃油稀释)。在ASTM D4378-22的最新发布标准中,更新了常用的闪点测定方法包含了D6450(连续闭杯法),D7094(连续闭杯法),D92(克利夫兰开杯法)和D93 (宾斯基马丁闭杯法)。每次使用相同的测试方法,以确保闪点的准确趋势。 —开杯闪点:适用于评估散装润滑油(新油)性质及其在运输中的安全性能。 —闭杯闪点:适用于评估设备运行中润滑油(在用油)的性质。闭杯闪点值与润滑油中非常少量的轻组分(低至0.1%)息息相关。即我们所说的润滑油污染分析或燃油稀释。在用油目测项目、异常原因及处理措施注1:为了保持一致性,建议如下: (1)在静置5分钟后进行目视检查,(2)使用透明的样品容器,(3)使用聚焦照明来增强目视观察取样后,涡轮机油的气味检查:是否具有异常气味;静置1小时后,涡轮机油的气味检查:刺激性难闻气味;异常原因:过热导致机油开裂;处理措施:调查原因。检查粘度,酸值,闪点等指标。汽轮机油检测项目、异常原因和处理措施注1:采样频率:新涡轮机安装完12个月内,建议的采样频率为每1至3个月,或与润滑油或状态监测供应商商定。正常运行为每4至6个月一次,或与润滑油或状态监测供应商商定。以上述采样频率仅作为参考。对于服务年限较长的,易出现故障的涡轮机或接近使用寿命的机油,建议增加采样频率(建议采样间隔缩短减半)。本检测项目可适用于大多数涡轮机。采样频率基于连续运行或总累计使用时间得到。注2:对于燃气轮机(见表6)和蒸汽轮机(见表5)具有独立润滑回路的联合循环系统,应遵循单个涡轮类型的试验项目。燃气轮机油检测项目、异常原因和处理措施单轴联合循环涡轮机油检测项目、异常原因和处理措施A. 警戒极限值适用于润滑油使用的任何阶段,除非另有说明。闪点:在用润滑油闪点比新油的下降15°C或更多(相同闪点测试方法)。 —异常原因:可能润滑油被污染了。 —处理措施:查明原因。结合其他试验结果比较,考虑处理或换油。C. 如果怀疑润滑油被污染了,其他测试(如闪点、泡沫性、水分、锈蚀和空气释放值)可能有助于确定污染的程度和影响。外部供应商或油品供应商也可以协助进行更深入的分析。闭杯闪点方法更适合于评估设备在用润滑油的性质。闭杯闪点值与润滑油中非常少量的轻组分(低至0.1%)息息相关。润滑油闪点测定解决方案油闪点测定解决方案1987年,奥地利格拉布纳仪器公司Grabner Instruments成立;1992年设计和生产了世界上第一台微量闭口闪点测定仪MINIFLASH;1999年,由Grabner根据MINIFLASH编写和提交的ASTM D6450(常闭杯闪点方法)(已编译成电力行业DL/T 1354,石化行业SH/T 0768,出入境行业SN/T 3077.1);2003年,由Grabner根据MINIFLASH编写和提交的ASTM D7094(改进常闭杯闪点方法)(已编译成出入境行业SN/T 3077.2)标准发布。ASTM D6450/D7094标准充分考虑闪点测试的危险性,Grabner发明了连续闭杯闪点测试方法和仪器MINIFLASH系列闪点测定仪。使其成为最安全的闪点测定仪器。微量闪点测定仪+12位自动进样器全自动微量闭口闪点测定仪MNIFLASH FPH VISION 作为Grabner最新的工业4.0智能化的全自动微量闭口闪点测定仪,因其微量1ml、快速3-5min、电弧点火、无明火、无刺激性气体、点火保护技术、爆炸探测技术、空气补偿控制等先进技术,使其成为最安全的闪点测定仪。1、高安全性、无明火、无刺激性气体、连续闭口测试过程 2、微量:1ml样品量3、快速:测试时间3-5min4、测试温度高达400℃5、燃烧稀释功能用于状态监控,判断在用油污染和泄漏情况6、完全适用于变压器油、汽轮机油或其他油样的闪点测试7、完全满足DL/T 1354, ASTM D6450/D7094, SH/T 0768, SN/T 3077.1/28、全自动、一键式操作过程9、10英寸全彩触摸屏10、便携式设计,可现场测试
  • TOC分析的在线高温燃烧法比较:催化燃烧与非催化燃烧
    简介工业用水和废水的工艺监测技术必须长时间运行,且维护要求低,才能提供稳定可靠的监测数据来帮助决策者做出正确的工艺决策。采用高温燃烧法的总有机碳(TOC,Total Organic Carbon)分析技术具有处理多种样品类型所需的稳健性。就燃烧氧化技术来说,催化燃烧和非催化燃烧有所差别,主要体现在工艺监测的运行时长、维护要求、使用成本等方面。本文概述了在线催化与非催化高温燃烧TOC之间的主要差别。为了方便起见,下文将这些燃烧技术分别简称“高温催化燃烧(HTCC,High Temperature Catalytic Combustion)”或“催化法”,和“高温非催化燃烧(HTNCC,High Temperature Non-Catalytic Combustion)”或“非催化法”。本文中的比较只适用于在线技术和高温燃烧TOC技术。想了解更多?燃烧法检测TOC主要用于监测含有废水、工艺水、工业废水中常见的高分子化合物和难氧化有机化合物的样品。催化燃烧包括在一个炉子中加热样品,使用铂金催化剂支持氧化。添加催化剂的目的是为了确保样品中所有的有机碳都被完全氧化。催化燃烧法的炉温不够高,无法仅通过温度来彻底氧化样品中的有机碳。非催化高温燃烧法将炉管中的样品加热到更高温度,能够确保彻底氧化样品中的有机碳。非催化法无需使用催化剂,从而减少了诸多干扰因素。为了防止频繁出现维护问题,必须充分考虑高温非催化燃烧和高温催化燃烧中的盐含量。高温催化燃烧的温度比高温非催化燃烧低。采用高温催化燃烧时,未燃烧的盐会“毒害”催化剂,甚至“毒害”燃烧管。虽然替换燃烧管和催化剂,可以帮助催化燃烧装置在含盐的环境中运行,但会限制分析仪的测量范围和性能,还会增加维护工作量。如果采用高温非催化燃烧,所有的盐都会在更高的温度下彻底燃烧。无需催化剂意味着减少维护工作量。催化燃烧和非催化燃烧之间的最大区别在于工艺设备的维护要求、运行时间、使用成本。Sievers® TOC-R3非催化在线型TOC分析仪Sievers TOC-R3采用非催化高温燃烧法,具有维护简单、使用成本低、运行时间长等优点。Sievers TOC-R3使用光电离检测器(PID,Photoionization Detector)来直接监测挥发性有机化合物(VOC,Volatile Organic Compound),或使用电化学检测器(ECD,Electrochemical Detector)来监测总氮(TN,Total Nitrogen),因而具有满足任何应用需求的灵活性。即使对于挑战性样品基质,此款分析仪的自动稀释、冲洗、标准品检查等功能,都能大大延长仪器的运行时间。此款分析仪采用稳健的模块化设计,能够对样品基质变化做出快速响应。此款分析仪还具有预测诊断功能,提供无与伦比的可靠性。结论与催化燃烧法相比,非催化燃烧法要求更少的耗材和更低的维护要求,这意味着仪器的使用成本更低、运行时间更长。有了更长的运行时间和更可靠的监测数据,非催化燃烧法就能更好地帮助决策者做出正确的工艺决策。Sievers TOC-R3采用非催化高温燃烧法,功能稳健且灵活,能够满足所有应用需求。◆◆◆联系我们,了解更多!
  • TOC分析的在线高温燃烧法比较:催化燃烧与非催化燃烧
    简介 工业用水和废水的工艺监测技术必须长时间运行,且维护要求低,才能提供稳定可靠的监测数据来帮助决策者做出正确的工艺决策。采用高温燃烧法的总有机碳(TOC,Total Organic Carbon)分析技术具有处理多种样品类型所需的稳健性。就燃烧氧化技术来说,催化燃烧和非催化燃烧有所差别,主要体现在工艺监测的运行时长、维护要求、使用成本等方面。本文概述了在线催化与非催化高温燃烧TOC之间的主要差别。为了方便起见,下文将这些燃烧技术分别简称“高温催化燃烧(HTCC,High Temperature Catalytic Combustion)”或“催化法”,和“高温非催化燃烧(HTNCC,High Temperature Non-Catalytic Combustion)”或“非催化法”。本文中的比较只适用于在线技术和高温燃烧TOC技术。想了解更多? 燃烧法检测TOC主要用于监测含有废水、工艺水、工业废水中常见的高分子化合物和难氧化有机化合物的样品。催化燃烧包括在一个炉子中加热样品,使用铂金催化剂支持氧化。添加催化剂的目的是为了确保样品中所有的有机碳都被完全氧化。催化燃烧法的炉温不够高,无法仅通过温度来彻底氧化样品中的有机碳。非催化高温燃烧法将炉管中的样品加热到更高温度,能够确保彻底氧化样品中的有机碳。非催化法无需使用催化剂,从而减少了诸多干扰因素。为了防止频繁出现维护问题,必须充分考虑高温非催化燃烧和高温催化燃烧中的盐含量。高温催化燃烧的温度比高温非催化燃烧低。采用高温催化燃烧时,未燃烧的盐会“毒害”催化剂,甚至“毒害”燃烧管。虽然替换燃烧管和催化剂,可以帮助催化燃烧装置在含盐的环境中运行,但会限制分析仪的测量范围和性能,还会增加维护工作量。如果采用高温非催化燃烧,所有的盐都会在更高的温度下彻底燃烧。无需催化剂意味着减少维护工作量。催化燃烧和非催化燃烧之间的最大区别在于工艺设备的维护要求、运行时间、使用成本。Sievers® TOC-R3非催化在线型TOC分析仪Sievers TOC-R3采用非催化高温燃烧法,具有维护简单、使用成本低、运行时间长等优点。Sievers TOC-R3使用光电离检测器(PID,Photoionization Detector)来直接监测挥发性有机化合物(VOC,Volatile Organic Compound),或使用电化学检测器(ECD,Electrochemical Detector)来监测总氮(TN,Total Nitrogen),因而具有满足任何应用需求的灵活性。即使对于挑战性样品基质,此款分析仪的自动稀释、冲洗、标准品检查等功能,都能大大延长仪器的运行时间。此款分析仪采用稳健的模块化设计,能够对样品基质变化做出快速响应。此款分析仪还具有预测诊断功能,提供无与伦比的可靠性。结论与催化燃烧法相比,非催化燃烧法要求更少的耗材和更低的维护要求,这意味着仪器的使用成本更低、运行时间更长。有了更长的运行时间和更可靠的监测数据,非催化燃烧法就能更好地帮助决策者做出正确的工艺决策。Sievers TOC-R3采用非催化高温燃烧法,功能稳健且灵活,能够满足所有应用需求。◆ ◆ ◆联系我们,了解更多!
  • 首台国产海上平台燃气轮机投用
    中国海油近日发布消息,在深圳东南约180公里的陆丰8-1平台,我国首台具有完全自主知识产权的海上平台燃气轮机成功“点火”,正式投入使用。燃气轮机被誉为装备制造业“皇冠上的明珠”,是工业强国的重要标志,世界上仅有少数国家具备独立自主研制能力。对于海上油气平台来说,燃气轮机发电机组是海洋装备的“心脏”。长期以来,我国海上油气平台应用的燃气轮机发电机组一直依赖进口,面临采办周期长、购置价格高、维修保养难等问题。中国航发燃气轮机有限公司研发中心产品设计室主任申春艳介绍,这次完成建设的7兆瓦级燃气轮机,代号为“太行7”,具有功率大、启动快、能耗低、维护简便等优点。每小时发电量超过5000千瓦时,相当于500个家庭1天的用电需求,可以满足1座海上油气平台全部生产和生活需要。与同功率燃油发电机组相比,每年可减少近8万吨二氧化碳排放。海上油气平台在狭小的空间里需要安放密集设备,同时处于高湿、高盐、高腐蚀的恶劣环境,每年夏秋季节还将面对台风的冲击。该项目的成功建设填补了国内海上平台燃气轮机应用领域的空白。“太行7”燃气轮机是在“太行”航空发动机基础上衍生发展的7兆瓦级轻型航改燃气轮机,已突破含“双燃料”“海洋三防”“多级压气机设计”“气冷涡轮叶片设计”在内的多项关键技术,累计形成新技术、新工艺、新标准、新材料、新规范数百项,有力支撑了燃机产业发展。中国海油深圳分公司深水工程建设中心副总经理高爽介绍,“太行7”燃气轮机全面实现了核心零部件自主制造,也将因此产生较大的经济效益。同功率的国产机组较进口机组成本低15%,由于使用了国产标准元器件和技术服务方案,设备运维成本也将大幅下降,“中国方案”为海洋油气装备全链条自主可控和海上油气田效益开发提供了全新路径。项目建设期间,中国海油深圳分公司与中国航发燃气轮机有限公司合作,成立高层级管理项目小组,联合高校、科研院所、终端用户、产业链上中下游近300家单位开展攻关,从成套施工图设计到机组出厂用时不到1年,从陆地安装到完成海上调试用时不到3个月。陆丰8-1平台总监岳宗领介绍,目前,平台电力系统已成功并入陆丰油田群“新区”电网,通过一根6.3公里长的海底电缆连接至陆丰14-4平台,成为油田群的电力核心,为海上石油开采提供不竭动力。 (经济日报记者 黄晓芳)
  • 我首个工业气体燃烧技术实验室启动
    3月26日,林德中国研发中心燃烧技术实验室在苏州正式启动。该实验室是林德位于上海的中国研发中心的有机延伸,同时也是我国第一家工业气体公司所有的燃烧技术实验室。   林德集团东亚区总裁方世文介绍,实验室将专门致力于包括富氧燃烧、纯氧燃烧在内的气体应用技术研究和硬件设备开发,为中国市场开发各种成熟可靠、经济高效的燃烧与热处理应用技术解决方案和纯氧燃烧装置。以纯氧燃烧技术为例,使用氧气替代空气作为氧化剂可在燃烧时减少70%烟气总量,减少尾气排放。与空气相比,将氧气应用于工业燃烧过程,可以节约30%&mdash 60%燃料,在获得更高产量的同时,还能极大地降低二氧化碳和氮氧化合物的排放。   苏州高新区党工委委员、高新区管委会副主任张文彪表示,林德集团长期从事关于高效节能、绿色减排的燃烧技术的研究,这对于促进苏州工业企业绿色环保生产,实现可持续发展具有重要的现实意义和实用价值。
  • 威卡威佛吉亚汽车内饰有限公司与我们汽车内饰燃烧试验箱合作成功
    秦皇岛威卡威佛吉亚汽车内饰有限公司与我们汽车内饰燃烧试验箱合作成功汽车内饰材料燃烧试验箱适用范围:本燃烧试验装置适用于鉴别汽车(轿车、多用乘客车、载货汽车和客车)内饰材料水平燃烧特性。满足GB8410、TL1010、GM6090M、DIN7520、GM9070P、MVSS302的标准规定。一、主要参数:1、 该设备由控制箱、燃烧箱、燃烧灯、电磁阀、高压点火器、试品夹具、煤气管和信号控制线组成;2、 燃烧时间:0~99.99/S/M/H;3、 燃烧箱:由不锈钢箱制作,长385mm,进深204mm,高度360mm;燃烧箱底部设10个直径19mm 的通风孔,四壁靠近顶部四周有宽13mm的通风槽。整个燃烧箱由4只高10mm的支脚支承着。在燃烧箱顶部设有安插温度计的小孔,此孔设在顶部靠后中央部位,中心距后面板内侧20mm。4、 煤气灯喷咀内径为9.5mm;5、 喷咀口部中心处于试样自由端中心以下19mm处;6、 金属梳的长度至少为110mm,每25mm内有7~8个光滑圆齿;7、 钢板尺精度1mm;8、电源:220V/50Hz9、气源:煤气或石油液化气10、通风橱:燃烧箱应放在通风橱中,通风橱内部容积为燃烧箱体积的20~110倍,而且通风橱的长、宽、高的任一尺寸不得超过另外两尺寸中任一尺寸的2.5倍。(本仪器已配置)
  • 成都建成中西部首个国家燃烧实验室
    9月6日,成都市产品质量监督检验院电线电缆燃烧特性国家级实验室技改升级后正式投运。据悉,该实验室当前的技术水平和综合能力为国内领先,多项检验能力均为西南地区独家具备。   电线电缆产业是我国仅次于汽车产业的第二大产业,产品品种满足率和国内市场占有率均超过90%。但从产业发展水平来看,还存在行业集中度低、技术力量分散、产品科技含量不高等问题。为适应电线电缆产业发展,占领产业高端,成都市产品质量监督检验院建立了国家电线电缆燃烧实验室,填补了西部地区无阻燃、抑烟以及无卤性能电线电缆检测的空白。   成都国家燃烧实验室总面积660m2,总资产300多万元,拥有电缆耐火特性(冲击带喷淋)试验装置、成束电缆燃烧试验装置等20余台(套)专用设备,能够进行电缆燃烧烟密度测量、卤酸气体释出测定、单根绝缘电缆燃烧、水平燃烧等13项试验,形成了阻燃、耐火、低烟无卤电线电缆产品的全项检测能力,同时预留了低压成套设备母线槽产品水平燃烧、变压器产品燃烧和矿用电缆燃烧的发展空间。目前,国内只有北京、上海、江苏、广东拥有具备电线电缆多种项目检测能力的同类燃烧实验室。成都建立的国家燃烧实验室设备自动化操作程度高,实验过程和实时再现监控能力强,技术水平、综合能力达到了西部第一、国内领先水平。   电线电缆燃烧特性检验对于普通人来说可能并不熟悉,但这项性能的系列指标其实关系到千家万户的安全。成都质检院电器检测中心工程师李健告诉记者,电线电缆的燃烧特性除了包括了高温条件下是否能正常工作等,还包括了在燃烧状态时产生的烟浓度等,“现在的高层建筑越来越多,这些指标不但关系控制安全隐患,在发生火灾之类的灾难时也能减低损失。”   据介绍,随着中国经济的快速发展,各行各业特别是高层建筑、地铁工程、易燃易爆场所建设对高性能的阻燃、耐火、低烟无卤电线电缆产品需求量急剧增加,加之各级政府对重大工程的质量安全以及老百姓对居住环境消防安全的高度重视,相应的阻燃、耐火、低烟无卤电线电缆产品也成为市场推广的必然趋势。   “我们正是综合分析了原有实验室能力和对现有标准的满足程度,实施了此次重大技改升级工程。”实验室相关负责人告诉记者,目前的实验室新增了母线垂直燃烧试验装置、冲击带喷淋试验装置等,多项检验能力均为西南地区独家具备,“成都地铁所用本地企业生产的电线电缆就是送我这里检验。”   据悉,成都市产品质量监督检验院电线电缆燃烧特性实验室是目前西南唯一的一家国家级实验室。此次技改升级投运后,预计每年可为西南地区相关企业节约研发测试、长途包装运输、特性试验等各项费用数千万元。
  • 新疆成立首家煤炭燃烧与沾污特性实验室
    9月6日,准东煤燃烧与沾污特性实验室揭幕仪式在昌吉举行,该实验室成为新疆首家专业研究煤的燃烧与沾污特性实验室。   该实验室由特变电工下属的新疆天池能源有限责任公司与上海发电设备成套设计研究院共同建设。实验室燃烧平台建于新疆天池能源有限责任公司位于五彩湾的南露天矿区,该实验室将力争三年内成为国家重点实验室,共同深入探讨煤的燃烧与沾污特性,研发推广100%燃烧准东煤技术。   该实验室建立填补了新疆作为煤炭大省无煤炭燃烧实验室的空白,实验室的建立将更好地服务与准东煤炭资源转换,为今后电厂安全、经济、高效、长期的燃烧准东煤奠定了良好的技术基础。   目前准东煤燃烧课题已被自治区人民政府列为2012年自治区重点技术创新支持项目,国家科技部已将研制“1000MW等级超超临界准东煤锅炉研制课题”列为十二五期间863科技攻关项目内容,天池能源公司作为课题参与单位已完成课题入库工作。
  • 确立680℃燃烧法、TOC走向世界
    1980年中国天津举办国际展会,岛津展出TOC-10B仪,这是TOC仪的海外首次亮相,森田作为展示说明人员也参加了此次展会。在当时的中国,TOC仪还是新颖且有些陌生的仪器。当时的天津,大街上满是穿着人民制服骑着自行车的人们,这点给森田留下了深刻的印象。 1983年研发完成的TOC-500给岛津TOC仪带来突破性进展。测量的基本单元发生了显著变化。也就是说,燃烧温度由原来的950°C变更为680°C。必须100%测量所有有机物的TOC仪,无可厚非燃烧温度越高越好。但是,当样品中含有盐分时使用950°C燃烧法,高温下熔化的盐分会侵蚀燃烧管和催化剂,会大幅缩短燃烧管的寿命。海水和许多废水中都含有盐,因此影响很大。森田用反向思维解决了这个问题,先设定680°C燃烧温度可满足必要的性能,之后研究了燃烧方法、氧化催化剂和数据处理方法等。罗曼罗兰曾说:“每个人都有他的隐藏精华,和任何别人的精华不同,它使人具有自己的气味。”然而大多数人会在汹涌人潮背后随波逐流,多数人会沿袭前人道路,将权威学说全盘接受,而森田不落窠曰,他以笃定的自我信念守护思维的火种,明确设想,埋首推演、试验,论证了680°C这一有效燃烧温度。 森田还改变了一直以来TOC仪运维作业中重要难点--燃烧管的更换方式。这一改良大大缩短了作业时间,这引起了海外用户的关注。1987年匹兹堡展览上展出岛津TOC-500,这是在美国举办的规模宏大的分析仪器展览会,为了展示TOC-500的易维护性,森田通过简单的操作,在几分钟内完成了运行中TOC-500的燃烧管更换,看到此过程的观众露出了惊讶的表情。这是因为为确保950°C型燃烧温度TOC仪燃烧管不发生破裂,在更换时必须先切断电源等待电炉温度下降,然后打开装置,打开电炉,更换燃烧管后再组装成原样,之后通电等到950°C,实质上这一流程需要一天的时间。 TOC-500的首次海外展出也在中国。在美国匹兹堡展的2年前,即1985年,在北京举行的国际性展览会上展出了该仪器,森田也参加了该展会,与5年前的天津展会相比,对TOC监测仪感兴趣的参展者有所增加,几天的展会上一直有观众前台展台参观TOC并细心询问仪器情况。另外,在岛津完成680°C燃烧法研发时,日本的TOC仪的法定方法 (JIS) 中采用的是900°C燃烧法。作为TOC仪器JIS方案制定委员的森田向委员会提交了使用680°C燃烧法可实现同样性能的证明数据,之后法定方法中也承认了680°C燃烧法。 具有突出特点的产品商品力很强。TOC-500的推出,不仅在国内市场,在进入的海外市场也获得了很高的声誉。广泛应用在欧洲的大型化学、药品厂家和美国南部的石油精炼、化学厂家。在礼节性拜访瑞士著名药品厂商时,该公司实际操作仪器的技术人员走过来对森田说“一直以来,我使用了很多TOC仪器,但岛津TOC-500是第一”,森田感到非常高兴。 未完待续… …
  • 中国首个燃烧模拟环境实验室建成
    高仿真模拟火场高危环境的燃烧模拟环境实验室,近日在上海东华大学建成。东华大学5日披露,该实验室拥有一个模拟中国人体型构造、可在不同活动姿势下精准感知高温热流、精确预报身体皮肤烧伤程度的燃烧假人。这对研发热防护新型服装材料,科学合理设计热防护装备,有效遏制火灾、战场和热辐射等危险环境对人体造成的热伤害,具有重大科学价值。   前身为中国纺织大学的上海东华大学,一直致力于推动中国功能防护服装的创新和评价研究,东华“火人”是其服装生物假人家族30年来的最新成员,它的“兄长”“神五假人”、“神七假人”曾在模拟环境气候条件下试穿宇航服,为神舟系列载人航天工程中宇航员在舱内外安全行走提供了科学保障。   “火人”设计项目负责人、东华大学服装设计与工程系主任李俊介绍,燃烧假人系统依据中国成年男性的体型度身定制的,身体表面均匀分布135个高温传感器,各部位关节都可活动,能模拟人体的多种着装姿态。   据介绍,如何准确评价消防服、阻燃耐高温作业服等特种服装的防护性能,是个困扰业界的难题。普遍使用的面料燃烧实验,无法反映其对人体作用的实际效果,容易在使用中造成防护不足。有了“火人”,它就可以穿着成衣在“火海”中走一遭,其拥有的精密仪器可对人体的实际防护效果作出准确评估。   据悉,该实验室是中国内地第一个燃烧假人实验室,综合运用了生物传热分析技术、材料改性技术、人机工程制造技术、传感器技术、燃烧工程和自动控制技术等,达到了国际领先水平。
  • 如何使用高温燃烧器分析铝元素(火焰法)
    铝的原子化温度很高,为2700℃,因此使用原子吸收分光光度计分析时,需要采用高温燃烧器,并选择N2O作为助燃气体来进行测试。但是使用高温燃烧器可能存在如下问题:通常情况下,使用高温燃烧器测定时,碳会附着在燃烧器火焰口导致测定数值偏低。日立原子吸收分光光度计ZA3000系列采用偏振塞曼校正法和双光束干涉效应解决了这个问题,下面我们通过具体实验来证明。使用高温燃烧器分析铝(火焰法)此次实验对每组样品重复测定10次,每组依次测定空白样品 — 样品 A — 样品 B— Al 30mg/L,以确认高温燃烧器测定数据的稳定性。实验共测定了40个样品,测试完成后查看燃烧器火焰口碳附着量。■ 测试条件:√ 使用高温燃烧器(P/N:7J0-8857)测定样品。√ 样品 A、样品 B是在河水中添加了Al。 ■ 测试数据: ■ 测试结果: 重复10次测定各样品,其定量值RSD波动在0.9%~1.1%,由此证明,使用日立原子吸收分光光度计ZA3000可以得到稳定的定量值。 测定结束时火焰口只附着极少量的碳,并且没有影响测定结果的稳定性。 综上所述,日立原子吸收分光光度计ZA3000系列采用偏振塞曼校正法和双光束干涉效应,即使燃烧器火焰口附着碳,也不会造成基线波动,从而获得了稳定的定量值。
  • 52000000条轮胎燃烧损失严重,借助FLIR Axxx系列热像仪也许能避免......
    新闻52000000条轮胎燃烧,浓烟滚滚近日,科威特废弃轮胎垃圾场发生火灾,现场浓烟滚滚,堪称灾难。据悉,垃圾场内的轮胎,堆放的十分密集,大约堆放着5200万条废弃轮胎,轮胎燃烧释放的致癌化合物和重金属会对人体造成严重影响。科威特国家环境保护局从2020年11月起决定处理旧轮胎,因为它们以这种形式存放了30多年,偶尔会发生火灾,该国需要迅速将其扑灭。小菲想说,为什么不在火灾发生前就阻止呢?“未雨绸缪”永远要比“亡羊补牢”损失小与其不停地灭火不如在火灾发生前就制止将危险的苗头扼杀在摇篮中今天小菲给大家推荐一款菲力尔高度可配置固定热像仪解决方案——FLIRAxxx系列助你将损失降低!FLIR Axxx系列热像仪目前包含三种型号,分别为A400/500/700,它提供多种镜头选择和电动调焦功能,拥有出色的图像质量,针对不同需求,FLIR Axxx系列热像仪有红外图像流和智能传感器两种配置,真正做到了从客户的角度用心出发!当然,这两种配置都可以实现自动化控制,协助您对关键设备的监控。监测热问题,提高响应速度配置图像流模式以后,FLIR Axxx系列热像仪具有精确检测、识别制造和工业过程中热问题所需的强大监控能力。在线红外监测功能实现过程控制优化,提升质量控制水平,及早发现异常状况,防患于未然,杜绝停机停产。FLIR Axxx系列热像仪符合GigE Visionn® 和GenICam™ 的行业标准,具有强大的实力、出色的灵活性,可有效提高产品质量、生产效率、维护便利性和整体安全水平。同时,它还可以提前检测火灾隐患,加快火灾响应速度,帮助减少人员伤害和设备损坏。实时监控,及时报警作为一个智能传感器,当你对FLIR Axxx系列热像仪进行功能配置后,便得以实现先进的红外热成像、边缘计算和工业物联网(IIoT)功能,将FLIR Axxx系列热像仪快速融入IIoT网络中,可大幅简化网络融合工作。拥有无与伦比网络连接性能的FLIR Axxx,可以满足复杂的远程监控、报警和分析需求。通过对废弃轮胎垃圾场7*24小时的实时监控,FLIR Axxx系列热像仪能为操作人员呈现出火灾风险较高的关键区域。如果定制高级智能传感器模式,您还可以根据温度源调整温度测量和报警选项哦~因此,FLIR Axxx系列热像仪非常适用于监控关键基础设施,评估产品质量、检测热量积聚和筛查体温异常等应用。5千多万条轮胎的垃圾场发生火灾产生的后果是非常严重的如果能实时监控好结果也许就没有那么糟糕因此,我们要做好“防患于未然”选择FLIR Axxx固定安装式红外热像仪进行7*24小时自动化监控预警
  • 成都公交车燃烧事故车厢内检测出汽油成分
    核心提示:7日晚成都市就65公交车燃烧事故举行第五次新闻发布会。发布会称车厢内多处残留物检测出汽油成分,不排除过失或故意引发燃烧。因此,目前可以判定有人携带易燃物品上车,但要确定是谁携带,还需要时间。 7日晚11点成都市就65公交车燃烧事故举行第五次新闻发布会,参加会议的有四川省安监局副局长苏国超、成都市交委主任胡庆汉、成都市公安局副局长何建生、成都市卫生局副局长 沈传勇、成都市民政局副局长陈翔军。 市交委主任胡庆汉代表成都公交系统向死难者及受伤人员表示歉意和哀悼,并表示将改善公交出行拥挤情况,增加公交系统安全系数。而此次燃烧事故车辆是否超载将由调查组认定。 65公交车燃烧事故调查组技术组副组长、成都市公安局副局长何建生通报情况,经调查车上乘客反映车内有汽油味,车辆未发现爆炸痕迹。车辆中后部燃烧较严重。 经DNA比对目前已确认20名遇难者身份,其中女性13人,男性7人。 在车厢内多处残留物检测出汽油成分,不排除过失或故意引发燃烧。何建生表示,目前可以判定有人携带易燃物品上车,但要确定是谁携带,还需要时间。公交车车门在中部偏后。目前有证据证明,在起火以后驾驶员曾用手操作开门开关。 省安监局副局长苏国超表示,对全省公交车辆进行技术改造的工作正在酝酿。 成都市民政局副局长陈翔军表示,目前关于死者和伤者的赔付方案目前还没有确定。
  • 中航工业沈阳发动机设计研究所采购航空燃油燃烧器
    中航工业沈阳发动机设计研究所(简称中航工业动力所,代号六O六所),始建于1961年8月,首任所长为刘苏少将,是国内大中型航空发动机设计研究中心,先后研制11种型号的涡喷、涡扇发动机。昆仑、太行两大发动机的成功研制,走出了一条中国自主创新研制航空发动机的道路,更实现了我国航空发动机研制历史上的伟大跨越。近年来所产品研制实现了历史性突破,改革调整进一步深化,研制能力和手段得到大幅提升,人才队伍建设进一步加强,职工工作生活条件持续改善,所的综合实力显著增强。在新的历史机遇期,中航工业沈阳发动机设计研究所确立了“突出主业,做大做强军机、民机、燃机‘三大主业’;拓展领域,围绕产品的全价值链发展,围绕主业的相关多元化发展,围绕核心技术的体系发展;提升能力,不断夯实设计能力、研保能力、人才支撑、管理创新‘四个平台’;和谐发展,全面建设一流科研队伍、一流产品服务、一流管理体系、一流研制手段、一流工作生活环境的‘五个一流’现代化和谐研究所,推动我国航空发动机产业又好又快发展”的总体发展思路。  今年,莫帝斯所提供的美国MarlinEngineering FAA NEXGEN燃油燃烧器,中标中航工业沈阳发动机设计研究所该类项目测试项目。美国MarlinEngineering FAA NEXGEN燃油燃烧器,是美国联邦航空管理局FAA认可的NexGen航空燃油燃烧器之一,可适用于众多航空材料燃油燃烧测试。由于FAA之前所认可的Park DPL 3400、Lennox Model OB-32, 以及Carlin Model 200 CRD 均已经停产,FAA发展了下一代航空燃油燃烧器NexGen燃烧器。NexGen燃烧器采用了上一代燃烧器的操作原理,同时可以精确的测量输入气体及燃油的试验参数,同时仪器可便于FAA未来的升级。通过配置不同的试验装置,可满足众多航空燃油燃烧测试标准,如座椅燃烧测试、隔热隔音材料耐烧穿试验、货舱衬板耐烧穿试验、软硬管组件、电动引擎装置及电气连接件的防火试验等。可满足的标准为FAR 25.853、FAR25.855、FAR25.855、FARs 25.863、FARs 25.867等,同时可满足国内MH/T 6086、HB 7263、MH/T 6041、GB/T 25352、HB 7044等测试方法。
  • 浙大与法国液化空气集团联合成立煤燃烧实验室
    10月28日,法国液化空气集团与浙江大学在杭州正式宣布成立联合实验室,以开发更加清洁高效、应用氧气进行煤燃烧的解决方案。法液空在氧气助燃领域已开发出高度专有的技能,拥有800多项与氧气助燃相关的专利,这次为实验室配备了专门为中国市场设计的最先进的试验性燃烧炉,能够测试2兆瓦以下的、使用燃油和煤粉的新燃烧器。   图为浙大能源系热能工程研究所所长岑可法院士(左二)与法液空中国总裁兼首席执行官夏华雄(右二)为开幕典礼剪彩。
  • 锅炉燃烧试验中心开建 总投资2亿元
    8月7日,世界最先进的锅炉燃烧试验中心在哈电集团哈尔滨锅炉厂有限责任公司正式开工建设。试验中心建成后,将成为世界热容量最大、系统功能最完善、控制系统最先进、最接近工程实际的技术先进的综合性大型燃烧试验平台,对提高我国发电设备的燃烧效率,降低SO2、NOx、CO2的排放,有效节约能源、保护环境意义重大。   据悉,该项目总投资为2亿元,占地面积约6000平方米,包括热态实验台、冷态实验台和煤化分析实验室。项目首期建设30兆瓦燃烧验证热态试验台,10兆瓦多功能燃烧热态试验台,50千瓦一维炉热态试验台以及全炉膛冷态模化试验台,预计明年下半年投入使用。据介绍,锅炉燃烧试验中心以建设国家级技术研究中心为目标,无论是试验台容量的选择还是研究方向的定位均将达到“中国最好,世界一流”的水平,将成为我国提高机械工业技术创新能力的重要基地。该燃烧试验中心还将具备煤、灰的成分和特性分析能力,自主研发新型燃烧器能力和锅炉燃烧特性研究能力等。
  • 国内石化行业首个燃烧新技术研发中心落户高新区
    洛阳网4月2日讯 2日,洛阳瑞昌石油化工设备有限公司与华中科技大学合作成立的国内石化行业首个燃烧新技术研发中心,在高新区揭牌。   瑞昌公司是一家主要以研发、制造炼油化工燃烧设备为主的高新技术企业。公司自1994年成立以来,围绕石化行业中的加热炉节能减排技术开展研发和产业化工作,在加热燃烧方面获得多项国家专利。华中科技大学是首批列入国家“211工程”重点建设和“985工程”建设的大学,其能源动力学院的国家煤燃烧重点实验室在煤燃烧技术上处于国内领先水平。此次双方合作成立“燃烧新技术研发中心”,将针对石油化工和煤化工行业市场急需高效、节能、环保燃烧技术的现实,共同研究开发“低氮氧化物燃烧技术”以及适应工业管式炉特点的低污染、低排放燃烧技术。   据介绍,该项目落户高新区,将对我市加快建设创新型科技园区步伐,促进节能环保装备产业基地建设具有重要示范意义。
  • 燃烧假人技术难题,莫帝斯一举攻克
    自2018年以来,莫帝斯历经三年,一举攻克了燃烧假人的所有技术难点!自接到北京市劳动保护科学研究所的项目以来,莫帝斯组织精兵强将并会同业内的专业人士共同研发制造,攻克了众多技术难点,终于突破了该产品的所有技术难关。 目前该产品不仅仅获得了北京市劳动保护科学研究所技术专家的认可,同时通过了美国UL工作人员现场技术审核,审核中“裸体”校准测试以及标准服测试一次性获得了通过,同时数据和美国杜邦数据进行了比对,所有的结果均取得了优势的成绩。 燃烧假人作为燃烧仪器“皇冠上的明珠”,集成了众多技术难点。如燃烧假人在测试过程中,需要1秒钟采集到1240个数据并进行计算分析,得出二级烧伤和三级烧伤的数据;火焰吞没模型需要无死角地将火焰强度均匀施加在不规则的假人表面,以获得均匀的火场暴露值;烧伤模型的建立,需要在数据后台进行上万次的运算等等。?莫帝斯燃烧技术(中国)有限公司成立于2008年,为全资的中国民族企业,其产品品牌为“莫帝斯”,其取义为Metis,她在古希腊神话中是水文和聪慧女神,是大洋河流之神俄刻阿诺斯和大洋女神泰西斯的女儿,也是雅典娜的母亲,她在一切生物中是最聪明的。“莫帝斯”品牌的寓意在于,我们的目标就是要制造出人性化和智能化的测试仪器,同时,当我们走出国门,进行品牌的推广时,便于提高海外市场的认知程度,避免因为品牌直译而产生的歧义。莫帝斯燃烧技术(中国)有限公司自成立以来,在国内拥有众多知名用户,如公安部四川消防研究所、公安部天津消防研究所、公安部上海消防研究所、公安部沈阳消防研究所、中国标准化研究院、中国铁道科学研究院、中国船级社远东防火检测中心、中国科学院力学研究所、清华大学、中国科技大学、北京理工大学、浙江理工大学、北京化工大学、浙江工业大学、中原工学院、中国南车、德国TUV南德意志集团、瑞士SGS通标标准技术服务有限公司、青岛四方车辆研究所等,莫帝斯致力于提供优质的燃烧测试仪器,为中国的阻燃材料以及燃烧测试研究提供最为有力的科研及检测武器。
  • 我国成功研发燃煤锅炉混氨燃烧技术
    1月24日,国家能源集团在京召开技术发布会,正式对外发布燃煤锅炉混氨燃烧技术。该技术日前顺利通过中国电机工程学会与中国石油和化学工业联合会组织的技术评审。 专家一致认为,该技术在40兆瓦燃煤锅炉实现混氨燃烧热量比例达35%属世界首次,项目为我国燃煤机组实现二氧化碳减排提供了具有可行性的技术发展方向,对我国实现碳达峰碳中和目标有重大促进作用,建议在更大容量的煤粉锅炉上进行工业示范。 燃煤发电的二氧化碳排放量巨大,目前占我国总二氧化碳排放量的34%左右,因此,减少燃煤发电的二氧化碳排放是我国顺利实现碳达峰碳中和目标的关键。 与氢相比,氨体积能量密度高,单位能量储存成本低,大规模储存和运输基础设施与技术成熟完善,是一种极具发展潜力的清洁能源载体和低碳燃料。 国家能源集团所属烟台龙源电力技术股份有限公司(以下简称龙源技术)相关负责人表示,考虑到目前可再生能源生产氨的能力有限,短期内不可完全替代煤炭,因此,采用氨与煤在锅炉中混燃的方式降低燃煤机组的二氧化碳排放,是现阶段更加可行的技术发展方向。 然而,目前全球范围内将氨作为低碳燃料的研究仍处于起步阶段,且皆集中在实验室小尺度研究,还未能在工业尺度条件下验证将氨作为低碳燃料大规模使用的可行性。 国家能源集团通过对氨煤混燃机理实验研究、40兆瓦燃煤锅炉混氨燃烧工业试验研究,验证了燃煤锅炉混氨燃烧的可行性,开发了燃煤锅炉混氨燃烧技术,为我国未来燃煤机组实现大幅度碳减排探索出了一条有效技术路径,将会有力地支撑国家碳达峰碳中和目标的顺利实施。 “该技术成果首次以35%掺烧比例在40兆瓦燃煤锅炉上实现了混氨燃烧工业应用,开发了可灵活调节的混氨低氮煤粉燃烧器,并配备多变量可调的氨供应系统,完成了对氨煤混燃技术的整体性研究,为更高等级燃煤锅炉混氨燃烧系统的工业应用提供了基础数据和技术方案。”龙源技术相关负责人说。 研究已初步表明,燃煤锅炉混氨燃烧对机组运行的影响很小,燃料燃尽和氮氧化物排放优于燃煤工况,表明现有燃煤机组只需进行混氨燃烧系统改造,而锅炉主体结构和受热面无需进行大幅改造,即可实现混氨燃烧,达到大幅降低二氧化碳排放的目标。 专家组认为,该项技术成果将改变传统高碳排放的燃煤发电方式,逐步实现化石燃料替代,大幅度缩减燃煤机组碳排放,为我国未来燃煤机组实现大幅度碳减排探索出一条有效技术路径,为推动我国化石能源高效清洁高效利用,国家“双碳”目标的实现提供了有力的技术支撑。 中国工程院院士黄其励表示,该项目的第一完成单位龙源技术在二十年前自主开发的等离子体点火及稳燃技术,通过技术鉴定后迅速在全国推广,节约了大量的锅炉点火和低负荷稳燃用油,为我国燃煤机组节油作出了巨大的贡献。国家能源集团作为“大国重器”,勇担社会责任,科技创新引领强企之路的步伐从没有间断,在国际上首次开发出了高比例混氨燃烧技术,走在了世界前列。
  • 催化燃烧技术终结者——红外气体分析技术
    催化燃烧技术传感器应用广泛并且价格便宜,但易被污染中毒、缺乏安全自检、要求定期维护、标定以及使用寿命短。红外气体传感器这些年发展迅速,克服了以上催化燃烧的缺点,符合IEC61508安全标准,在检测碳氢化合物气体时可提供快速可信的检测结果。本文将就两种传感器的不同优缺点作出比较,以供大家了解。催化燃烧 催化燃烧最早起源于十九世纪六十年代采矿业,早期简单的铂丝线圈传感器由于能耗大、零点漂移严重不适于连续操作。 当前催化燃烧检测器连接两个铂丝线圈,每个都包裹着氧化铝粘土。检测单元包裹着催化剂,可燃气通过时可促进氧化发热。 催化燃烧优点 1、 检测器价格低廉、供应广泛; 2、 可使用各种可燃气,如果方法正确,可用于特殊物质检测; 3、 装置简单,除了标准气,没有其他特殊的维护装备; 催化燃烧缺点 1、 易中毒,如果暴露在有机硅、铅、硫和氯化物组分中,将失去对可燃气的作用; 2、 易产生烧结物,阻止可燃气与传感器接触; 3、 没有自动安全防护装置; 4、 在某些环境下灵敏度会下降(特别是硫化氢和卤素); 5、 需要至少12%的氧气浓度,在氧气浓度不足情况下工作效率明显下降; 6、 如暴露在可燃气体浓度过高的环境下,会被烧坏; 7、 使用时间越长,灵敏度越低; 8、 寿命有限,最长3-5年; 9、 需定期进行气体测试和标定;红外技术 包含一个原子以上的气体能吸收红外光,这样碳氢化合物和一些气体比如二氧化碳、一氧化碳能通过红外技术进行检测。二氧化碳气体分析示意图 为了区分红外吸收,气体和其他物质比水,需要额外增加一个波长宽带为2.7-3um的传感器。碳氢化合物在此范围没有吸收峰。这可以阻止错误报警发生和减小干扰物质的信号。双光束设计就是被用来防止光学组分污染造成错误报警。 红外技术优点 1、 较快的反应速率:响应时间一般小于7秒; 2、 自动故障操作:电源错误、信号错误、软件错误都能反馈给控制系统; 3、 对污染性气体的信号抗干扰能力强; 4、 寿命长,一般大于10年; 5、 维护成本低; 6、 无需氧气; 7、 高浓度可燃气体条件下,不会烧坏; 8、不会烧结,相应的问题也不会发生; 红外技术缺点 购买价格高于催化燃烧检测器 催化燃烧需要定期测试(通过标气)。有些海洋石油平台通常每六周需测试一次,每3-5年需要更换一次,这样需要耗费大量的成本。 不会烧结的红外气体检测仪器可自我检测,比检测如灯、传感器、窗口、软件等这些不可恢复的问题,从而大大降低出现问题的可能性。较少的零点、量程漂移及高灵敏度意味着红外气体检测仪器的校准和常规维护少,一般为6-12个月。 同时,红外传感器的价格近年已经显著下降,虽然价格还是高于催化燃烧检测器,但实践经验表明,红外传感器的成本可通过减少维护成本来降低。故红外气体传感技术取代催化燃烧技术大势所趋。 四方仪器自控系统有限公司,以自主知识产权的红外传感器核心技术为依托,成功研制红外烟气、沼气、煤气、尾气、天然气等节能减排仪器仪表,并已广泛应用于电力、钢铁、有色金属、煤化工、石油化工、垃圾焚烧、厌氧发酵、机动车及发动机检测、石油天然气勘探、煤层气综合利用、空分、节能环保部门、科研院校及民用等领域。 红外传感器可检测特征吸收峰位置的吸收情况,以确定某种气体的浓度。这种传感器过去都是大型的分析仪器,但近些年,随着以MEMS技术为基础的传感器工业的发展,这种传感器的体积已经由10升,45公斤的巨无霸,减小到2毫升(拇指大小)左右。 微型红外传感器 使用无需调制光源的红外传感器使得仪器完全没有机械运动部件,实现免维护,有效降低维护成本,从而降低工业过程气体的监测成本。(欢迎转载,转载请注明来源:工业过程气体监测技术)
  • 第三届燃烧流场的光学诊断技术学术研讨会即将召开
    p   燃烧过程复杂恶劣,对瞬态环境的实时诊断技术要求极其苛刻。燃烧流场的光学诊断技术主要是以激光技术、光谱技术、光电探测技术、数据图像处理技术等为基础的一种综合性测试诊断技术,可以实现燃烧场温度、组分及浓度、火焰构造和流速等参量信息的高时空分辨精确测量,而且测量对燃烧过程无扰动。这些参数的测量对于研究燃烧场的瞬态化学反应动力学过程,如固体推进剂燃烧动力学、超声速燃烧动力学、汽车和飞机发动机燃烧效率和污染控制、以及保障电站锅炉安全和经济运行等具有重要意义。 /p p   为了促进我国本领域技术的完善与发展,学会定于2016年11月16-18日在西安召开“第三届燃烧流场的光学诊断技术学术研讨会”。会议组委会将邀请国内外该领域的知名专家和学者到会共同交流,深入探讨燃烧流场的光学诊断技术领域所取得的最新研究成果。诚挚欢迎国内外相关领域研究院所的科研人员以及高等院校的教师、研究生等踊跃参加。 /p p   主办单位:中国工程院信息与电子工程学部,国家自然科学基金委员会,中国光学工程学会 /p p   承办单位:中国光学工程学会,中国宇航学会光电专委会 /p p   联办单位:空军工程大学 等离子体动力学国家重点实验室,激光与物质相互作用国家重点实验室 /p p   大会主席:乐嘉陵 院士(中国空气动力研究与发展中心),李应红 院士(空军工程大学) /p p   刘晶儒 研究员(西北核技术研究所) /p p   征文范围,全文截稿时间(第三轮):2016年10月30 日 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201610/insimg/433bf8ce-0c6f-4346-9936-e3f5a8d6d9bd.jpg" title=" 1.png" / /p p   投稿须知:会议邀请作者将原创的论文投往本会议,文章长度为4-8页,中英文兼收,所有文章必须严格符合会议征稿主题,投稿论文必须是从未在任何会议、期刊及杂志上出版。投稿请登录在线投稿系统 http://events.kjtxw.com/tougao/1426492999.html /p p   论文发表:会议来稿将收录在会议论文集中。其中,中文优秀稿件推荐至《红外与激光工程》EI、《光学精密工程》EI、《强激光与粒子束》EI、《航空动力学报》EI、《实验流体力学》中文核心、《太赫兹科学与电子信息学报》科技核心,正刊出版 英文稿件推荐至SPIE会议论文集,EI核心检索。 /p p   特邀专家报告 /p p   燃烧场及等离子体诊断技术研发 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201610/insimg/5c2f1a46-0b5a-427e-bb72-de1454c1c6f8.jpg" title=" 2.png" / /p p img src=" http://img1.17img.cn/17img/images/201610/insimg/c1a5df59-3a51-40ba-8b61-e551204b4784.jpg" title=" 5.png" / /p p    strong 无论是否投稿均欢迎参会。 /strong /p p   会议注册:请登录http://events.kjtxw.com/register/1426492999.html,在线报名。 /p p   会议费:2605 元/人,包括文件、餐、杂支等。三人以上参会,注册费优惠为2405元/人。 /p p   会议稿件发表在SPIE会议论文中,将加收版面费2200元/篇。 /p p   汇款时请务必注明“姓名+燃烧” /p p   开户行:工行北京科技园支行,户名:中国光学工程学会,账号:0200296409200177730 /p p   联系人:吴迪,022-58168520,wudi@csoe.org.cn, /p p   地址:天津市空港经济区中环西路58 号-8358-9,邮编300308 /p p style=" text-align: right " img src=" http://img1.17img.cn/17img/images/201610/insimg/6f61f933-7729-4a76-9522-0d50d86acfff.jpg" title=" 6.png" / /p
  • 研究揭示西安黑碳气溶胶来源第一为生物质燃烧源
    黑碳作为大气中一种典型的吸光性气溶胶,对全球和区域气候都有着深远影响。它可以改变太阳辐射平衡,抑制边界层发展,沉降到冰雪表面会降低其反照率,加速冰川融化。但是在计算其辐射强迫时仍存在很大不确定性,这种不确定性主要来源于老化过程对黑碳颗粒物光学性质的改变。而黑碳颗粒物主要来源于含碳燃料的不完全燃烧。已有研究表明,新鲜排放的黑碳在被释放到大气中后会通过碰并、凝结和非均相氧化等过程与多种来源的颗粒物、气态污染物之间发生老化作用,表面形成包裹层,导致其在混合态、形貌、粒径和化学组成上发生变化,从而影响黑碳的物理化学及光学性质。为了更好地了解城市大气中黑碳的性质差异及评估吸光性影响因素,中国科学院地球环境研究王启元研究员课题组使用单颗粒黑碳光度计(SP2)、光声气溶胶消光仪(PAX)以及在线重金属分析仪(Xact625)等高时间分辨率在线仪器对西安市高新站点2020年11月大气气溶胶进行连续在线监测,并采用PMF与线性回归结合的方法建立黑碳吸光增强倍数与源的关联。PMF模型是目前常用的污染物源解析方法,在给出污染源类别的同时,还能得出确切的污染源的贡献率,近年来被广泛应用于污染物源解析研究中。他们的结果表明:观测期间西安黑碳气溶胶平均浓度2.16 微克 /立方米;PMF源解析出4个主要来源,分别为生物质燃烧源(38%),燃煤源(29%)、交通运输源(29%)、扬尘源(4%);降水后厚包裹黑碳的浓度降幅高达83%,而薄包裹黑碳为39%。作为颗粒粒径更大的厚包裹黑碳其核的质量中值粒径却小于薄包裹黑碳颗粒,分别为141 纳米和176纳米。其次,黑碳核的吸光截面积变化范围较大,为3.79 - 5.95 平方米/克,且与整体颗粒的吸光截面积具有显著相关性,相关系数为0.58(p 0.01)。另外,他们还发现在观测期间黑碳的平均吸光增强倍数为1.37±0.11;经过源解析结果表明,二次老化、燃煤、扬尘、生物质燃烧和机动车排放对吸光增强倍数的贡献分别为37%、26%、15%、13% 和 9%。其中二次老化过程是主要贡献源。上述相关研究成果近日发表于《总环境科学》(Science of The Total Environment)期刊。  (a) 应用PMF进行黑碳质量浓度源解析谱图;(b) 各排放源对总黑碳质量浓度的相对贡献百分比。(a) 大气中含黑碳颗粒物和黑碳核的光吸收系数时间序列;(b) 大气中含黑碳颗粒物和黑碳核的吸光截面积(MAC)时间序列;(c) 大气中含黑碳颗粒物吸光截面积(MAC)相对频率分布;(d) 黑碳核吸光截面积(MAC)相对频率分布。图片均由论文作者提供论文相关信息:https://linkinghub.elsevier.com/retrieve/pii/S0048969723016157
  • 岛津参加第八届全国青年燃烧学术会议
    2023年4月22-23日,由中国工程热物理学会燃烧学分会主办,中国科学院广州能源研究所华南理工大学、中国工程热物理学会燃烧学专业委员会青年工作委员会、中国科学院可再生能源重点实验室、广东省新能源和可再生能源开发与利用重点实验室、广东省能源高效清洁利用重点实验室以及中国科学院广州能源研究所青年创新促进会协办的“第八届全国青年燃烧学术会议”在广州成功举办。岛津企业管理(中国)有限公司(以下简称“岛津”),作为优秀的仪器厂商也参加了此次会议并宣传了“化学化工学科-质子交换膜燃料电池研究解决方案”等相关内容。22日,中国科学院广州能源研究所袁浩然研究院主持此次会议的开幕式,首先对前来参会的各位专家、学者表示感谢并宣布此次会议开幕。岛津在《固体燃料热转化的碳控制新技术》分会场宣传了“全新X射线光电子能谱仪”和“EPMA-8050G”等产品,并在会议间隙播放了岛津宣传片。分会场宣传片播放岛津展台此次会议,岛津展台展示了众多分析表征相关技术和解决方案,其中《质子交换膜燃烧电池研究》方案随会议资料一同发放给与会专家。与会老师与岛津工作人员就相关技术展开深入交流。本届大会旨在全面展示近年来我国青年燃烧学者在燃烧科学和技术研究方面的最新进展和成果,深入探讨燃烧学科所面临的机遇和挑战,继承和弘扬往届的优良传统和经验,增进广大青年燃烧学者之间的了解和合作,促进我国燃烧科学和技术的发展。本文内容非商业广告,仅供专业人士参考。
  • 燃烧吧,卡路里!经典膨化食品热量的科学测试——自动氧弹量热仪 ATC300A
    摘要本文利用ATC 300A自动氧弹量热仪测试了四种膨化类食品(薯片、仙贝、小馒头、干脆面)的燃烧热值,测试结果与其包装上营养成分表的能量值差值在0.16~0.53 kcal/g之间,RSD(相对标准偏差)均在0.2%以内。图1测试样品展示前言卡路里(calorie)作为一种热量单位被广泛应用于营养计量和健身指导中,它和食品包装上营养成分表里单位为焦耳(joule)的能量值一样,都反映了食品氧化过程中所释放的热量,我们可以根据 1 cal= 4.1868 J对其进行换算。那么食物能提供给我们的热量与其完全燃烧后所释放的热量有什么区别?食物在人体内的消化吸收过程是非常复杂的,对于一些食物组分例如蛋白质中的氮元素等,人体无法消化吸收,在代谢产物(尿素、尿酸、肌酐等)中仍存在一定能量。但尽管人体氧化的方式与氧弹量热仪有所不同,食物完全氧化所释放出的总热量却是相同的。为了得到食物的生理热值,我们可以在氧弹量热仪燃烧测试的基础上进行一些代谢校正。例如,不考虑人体基础代谢等复杂因素,分别测量食物的燃烧热值以及排泄物热值,就可以确定某种食物的有效热值。食品营养成分表中的能量值就是三大营养素的能量系数(脂肪37 kJ/g、碳水化合物17 kJ/g,蛋白质代谢校正后17 kJ/g)与其含量的乘积之和。本文利用ATC 300A自动氧弹量热仪测得四种膨化类食品的燃烧热值并与营养成分表中的能量值进行了对比,同时计算了不考虑蛋白质代谢校正(能量系数为22 kJ/g)时的能量值;可以发现代谢校正所带来的总体偏差不大,但不同食品样品的燃烧热值偏差不同。除了蛋白质含量的因素,可能还因为相同营养素有着不同来源;像牛肉、牛奶中脂肪的燃烧热值实际是不同的,但营养素归类下却有着相同的能量系数。图2 自动氧弹量热仪 ATC 300A实验方法1. 实验条件&bull 测试仪器:之量科技 ATC 300A自动氧弹量热仪&bull 测试方法:GB/T 213-2008&bull 环境温度:24.4~ 26.3 oC&bull 实验样品:薯片、仙贝、小馒头、干脆面2. 测试过程&bull 打开ATC 300A自动氧弹量热仪;&bull Step1:在样品池中称取一定质量样品,用棉线连接点火丝与样品并固定;&bull Step2:安装氧弹,并设置实验参数,填写样品质量等;&bull Step3:开始实验,在测试环境准备好后,仪器自动进行测试;&bull Step4:实验结束,取下氧弹并进行清理;&bull Step5:重复三组测试,记录实验数据。实验结果在实验开始前,我们对每种样品分别进行了碾碎与压片处理以保证测试样品的均匀性与一致性,如图3所示。在压片过程中需控制压片力度,如薯片含油量较高,力度过大会导致油分析出影响测试结果。图3样品预处理(a)碾碎后样品(b)小馒头压片展示(c)压片后样品(d)装样薯片、小馒头、仙贝和干脆面每种样品进行3次重复测试,燃烧热测试结果汇总见表1。测试结果重复性较好,RSD均在0.2%以内。表1 燃烧热测试结果汇总燃烧热J / g薯片小馒头仙贝干脆面123935.0 16548.921535.522750.7223925.716558.121505.322766.8323995.116544.921505.222771.6平均值23951.9 16550.6 21515.3 22763.0 包装能量值22666.715870.0 20620.0 20550.0 无代谢校正能量值22967.6 16017.3 20860.7 21018.1 RSD(%)0.1570.0410.0810.078燃烧热平均值与包装上营养成分表(如图4所示,蛋白质能量系数17 kJ/g)里的能量值相比,差值在680.6~2213.0 J/g之间,不考虑蛋白质代谢校正(能量系数22 kJ/g)的差值在533.3~1745.0 J/g之间。图4(a)薯片(b)小馒头(c)仙贝(d)干脆面样品包装上的营养成分表由于本次选择的样品为膨化类食品,成分以脂肪和碳水化合物为主,蛋白质含量较低,代谢校正对测试结果的影响相对较小,更多考虑为营养素能量参数对不同来源的相同营养素存在一定偏差导致的。根据上述测试结果,燃烧热值一定程度上可以代表我们能够从食物中获取的“卡路里”。除了人体代谢外,不同来源的相同营养素用同样的能量参数去计算也会带来一定误差;以本文测试的膨化类食品为例,不考虑蛋白质代谢修正的燃烧热值与包装能量值差值为12.7~41.7 kcal(大卡)/100g,对“卡路里”摄入严格的人群可能需要考虑该影响。结论本文利用ATC 300A自动氧弹量热仪测试了四种膨化类食品的燃烧热值,测试结果与其包装上营养成分表的能量值较为接近,其差值可能包含了营养学上对于不同营养素的燃烧热值基于人体代谢的修正,以及不同来源的相同营养素能量参数的差异。 仪器推荐自动氧弹量热仪 ATC 300A符合GB 384、GB/T 213、ASTM 4809、ASTM D240等标准,测试时间<10min(快速法),热容量波动≤0.20%,功能高度自动化,能快速准确地测试各种可燃物的燃烧热值。欢迎联系我们,了解更多技术亮点、参数规格及应用案例。
  • 面条被曝添加食用胶增加弹性 湿面条能燃烧
    面条店使用的柠檬黄、蓬灰等添加剂,在粮油店调料店就可买到   近日读者投诉称,卖面条的在面条里掺食用胶,买回的湿面条能点着燃烧!记者调查时发现,确有一些经营者在使用化工添加剂,一些粮油店也销售这些添加剂。不法商贩在面条中添加化工产品如食用胶、柠檬黄、蓬灰、复合磷酸盐等,以增强面条的筋度和弹性,有的加入明矾使面条白亮光洁。   绝对猛料   面条掺食用胶,湿面条能燃烧   19日,郑州的赵女士向记者投诉称:“有个亲戚做面条生意,里面掺有食用胶。这样的面条咋煮都不会断,亲戚说卖面条的都加有这种东西,米线里也掺有食用胶,吃起来很筋。我上网一查,很多人说吃一碗米线等于吃进一个塑料袋。”   20日,家住经三路的张先生对记者说:“中午我从农贸市场买回湿面条,做饭时两根面条掉火旁很快被燃着了。我拿几根面条用火机点燃,想不到面条都燃烧了,烧后有股刺鼻的气味,烧后的粉末发硬,面条里到底添加的是啥东西?”   骇人调查   面条店用得多,添加剂卖得俏   3天来,记者在枣庄农贸市场和都市村庄暗访10多家面条店,发现做面条的在面条里掺有添加剂。在一家面条店记者看到,面条里掺有一种叫“蓬灰”的添加剂。记者问:“这东西添进去能吃吗?”女店主说:“现在都用这种东西,拉面、面条和米粉中都加有这东西。”   记者在枣庄市场一面条店以买面粉为名进入店内,见地上放着一瓶落满灰尘的玻璃瓶,内装铁红色添加剂。拂掉灰尘后记者看到是半瓶柠檬黄。记者问这是干啥用的,老板说:“是往热干面里加的。”   记者在另几家面条店调查时,有店主直言不讳地说:“现在有哪家不用添加剂?”   记者调查时了解到,面条店使用的柠檬黄、蓬灰、复合磷酸盐等,在粮油店调料店都可买到。记者在枣庄农贸市场问几家粮油店,果真有卖的。记者分别买几种后,与一店主攀谈:“这些东西卖得好吗?”   女店主:“卖得可好了,市场卖面条的都用这个。卖面条的有的在面中加有明矾,这样面条看上去白亮光滑,好卖。明矾加到油条里,炸出的油条好看还不塌架。”   另一调料店老板告诉记者:“我这里添加剂都卖完了,马上要进货。” 记者买来湿面条试验,湿面条一点就烧出了火苗   眼见为实   记者亲自试验,面条烧出火苗   记者分别购买了5种面条,在点燃试验后发现湿面条真的可以燃烧,还烧出了火苗,如不人为熄灭,长长的面条可全部烧完。面条烧后发出皮毛烧焦的气味,很刺鼻,剩下发黑的灰烬用手捏感觉非常硬。   为验证购买的面条与自己做的手工面有无区别,记者和面后做成面条用火点燃,面条着火后很快自动熄灭,燃后的灰烬一捏即成碎末。
  • 找回蓝天白云,要让富氧烟气再循环燃烧技术大显身手
    p   “一个相比于鲁霾的沉重,冀霾的激烈,沪霾的湿热和粤霾的阴冷,我更喜欢京霾的醇厚,它是如此的真实,又是如此的具体。黄土的甜腥与秸秆焚烧的碳香充分混合,再加上尾气的催化和低气压的衬托,最后再经热源袅袅硫烟的勾兑,使得京霾口感干冽适口,吸入后挂肺持久绵长,让品味者肺腑欲焚,欲罢不能。”这是网友在雾霾来袭的日子里写下的段子,曾一次次刷爆“朋友圈”。其实,调侃段子的背后,透露出的则是对雾霾天气的万般无奈。亚洲开发银行和清华大学在发布的《中国国家环境分析》报告提出,尽管政府部门一直在积极治理大气污染,但世界上污染最严重的10个城市中,中国仍占了7个,在中国500个大型城市中,只有不到1%达到世界卫生组织空气质量标准。在前不久的2016中国环保上市公司峰会上,环保部环境规划院副院长兼总工程师王金南指出,目前我国几乎所有与大气污染物有关的指标的排放,在全世界都是第一,整个大气环境所面临的压力前所未有。 /p p   空气污染真的要了人的命,工业锅炉烟气排放难辞其咎 /p p   雾霾是身体健康的“隐形杀手”,甚至比2013年那场突如其来的“非典”还可怕。这并非耸人听闻。 /p p   “研究结果显示,中国2013年大气PM2.5所致共91.6万例过早死亡。其中燃煤导致的空气污染而过早死亡的达到36.6万例。如果采取行动控制空气污染,2030年之前大气污染水平将大幅度下降,这将避免27.5万例过早死亡。”2016年8月18日,清华大学和美国健康影响研究所联合发布的《中国燃煤和其他主要空气污染源造成的疾病负担》报告指出。“91.6万例过早死亡”,这个冰冷的数据表明人类寿命因空气污染已付出了高昂的代价。 /p p   《报告》称,燃煤产生的颗粒物是大气PM2.5的最重要来源因素,2013年对PM2.5年均浓度的贡献率达到40%。而在特定省市(重庆、贵州、四川),其贡献率甚至高达近50%。燃煤已是中国疾病负担的重要贡献因素之一,2013年,燃煤产生的大气污染导致死亡率已明显高于高胆固醇甚至吸毒。 /p p   据《报告》的首席科学家、清华大学大气污染与控制研究所所长王书肖介绍,这是第一次在国家和省级层面对中国燃煤和其他颗粒物空气污染的主要来源引起的当前和未来的疾病负担进行的综合评估。评估结果显示,2013年中国的PM2.5人口加权平均浓度为54微克/立方米,估计99.6%的人口生活在超出世界卫生组织空气质量指南标准(10微克/立方米)的地区,工业燃煤排放导致15.5万例死亡,工业过程排放导致9.5万例死亡。“到2030年,燃煤对PM2.5年均浓度的贡献率将上升到44%—49%之间。即便按照最严格的能源消耗和污染控制理念,煤炭仍将是大气PM2.5和疾病负担的最大单一来源。” /p p   中国疾病预防控制中心在《大气污染与公众健康》报告中也指出:燃煤导致的大气污染已成为影响中国公众健康的最主要危险因素之一。专家估计,如果在燃烧技术和煤的转换上没有大的突破,我国的大气污染可能还会加重。“和燃煤电厂排放相比,工业和民用燃煤还存在很大减排潜力,减少工业和民用燃煤污染排放应成为未来大气污染治理的优先管理策略。”中国工程院院士、清华大学环境学院教授郝吉明曾为此呼吁。 /p p   “要环保必禁煤”?煤炭是我国目前仍不可替代的主要能源 /p p   为减少燃煤对大气造成的污染,我国在重点城市及人口稠密的中心城区设立了“禁烟区”,这使得一些人错误地认为“要环保必禁煤”,甚至一些中小城市脱离缺乏天然气、电等清洁能源的实际,不顾燃油的二硫化碳污染更严重和光化学烟雾污染的危害,也依葫芦画瓢地展开了“环保禁煤”。但实际上,小型燃煤锅炉仍源源不断地大批出厂,用户出于经济利益的考虑,和环保部门玩起了“双行头”:检查时就开启烧油、燃气锅炉,人一走依旧是燃煤锅炉当家。 /p p   临汾市曲沃县立恒钢铁公司转炉车间冒红烟 唐山市滦县兴隆钢铁有限公司3号高炉无组织排放严重 石家庄市晋州塑胶制品厂燃煤小锅炉正在运行 天津市北辰区河北工业大学供热站两台燃煤锅炉烟气无法达标排放……2月19日至20日,2017年第一季度空气质量专项督查的18个督查组, 对京津冀及周边地区18个城市大气污染工作进行现场督导检查,发现包括上述问题137个。由此看来,如全面实施禁煤还难以符合当下中国的国情。 /p p   众所周知,我国的化石能源特点是“富煤少油缺气”,煤炭在我国一次性能源结构中处于绝对位置,50年代的比例曾高达90%。数据显示,2010年,煤炭在我国一次能源消费结构中占68%,到2015年才降到64%。当前,中国煤炭年消耗量仍约占世界煤炭消费量的一半,达40亿吨。 /p p   在《中国可持续能源发展战略》研究报告中,20多位中科院和工程院院士一致认为,即使到2050年,我国煤炭所占能源比例仍然不会低于50%。可以预见,能源资源条件决定了我国以煤炭为主的能源消费结构在短期内难以转变,未来几十年内,在清洁能源不具备经济性的情况下,煤炭仍是我国不可替代的最主要能源。 /p p   中国迫切需要适合国情的治理大气污染的实用技术,燃煤工业锅炉将成为大气污染治理的主战场 /p p   其实,找出污染源头并不难。据不完全统计,我国在用工业锅炉约有47万余台,其中燃煤锅炉占到80%,每年所消耗标准煤约4亿吨。以达到大气污染物排放限额标准Ⅰ时段为例,每公斤标煤实际烟气量按13.46Nm3/kg计算,每年向大气排放烟气达53.84亿Nm3、烟尘16.152万吨、二氧化硫538.4万吨、氮氧化物1346万吨。数据显示,工业锅炉(65吨/小时以下)中烟尘、二氧化硫、氮氧化物等污染的排放比普通煤电厂还高出2—4倍。 /p p   为此,中国环发国际合作委员会在提交的一份建议中指出:煤炭将长期作为中国的主要能源,应推广清洁高效的洁净煤技术, 鼓励研究、开发适应中国国情的技术装备,加速自身的研究开发与自主创新。 /p p   2014年11月6日,国家能源局、国家发改委、环保部等七部委联合发布《燃煤锅炉节能环保综合提升工程实施方案》:到2018年,推广高效锅炉50万吨,完成节能改造40万吨,提高燃煤工业锅炉运营效率6个百分点,计划节约4000万吨标准煤。 /p p   这是继火电行业大幅提高排放标准后,国家部委首次针对其他燃煤工业锅炉的环保提标改造措施。业内人士表示,在环保压力倒逼下,燃煤工业锅炉行业迎来了以燃煤清洁化、替代化为主要技术路线的节能减排革命,将催生数千亿元的改造、运营市场。到2018年,燃煤工业锅炉改造市场将高达4500亿元。 /p p   据了解,在火电与其他燃煤工业锅炉行业之间一直存在大气污染物排放双重标准,燃煤工业锅炉标准低,与火电超临界、超超临界机组相比,技术水平和环保措施落后至少十年。我国工业锅炉平均热效率仅为60%,较国外低20%—25%。工业窑炉超过16万座,年耗煤量3亿吨,供热窑炉平均热效率仅为40%,较国外低10%—30%。技术装备落后、环保设施不到位是导致燃烧效率低、污染物排放浓度高的直接原因。 /p p   消除工业污染,中国要走自己的治霾道路 /p p   我国自2013年起已出台一系列治霾政策与法规,环保治理虽初见成效,但仍任重道远。专家表示,我国工业化进程比发达国家晚,雾霾成因更为复杂,治霾要充分考虑自身国情。作为发展中国家,在现阶段资金不足,缺乏先进的、适用的新技术是我国在发展能源工业中消除污染、保护环境很难逾越的障碍。 /p p   对污染防治技术,中国政府报告明确指出:我国环境科技研究的任务,应该是发展适合我国国情的实用技术,努力协调经济发展和环境保护之间的关系,控制环境污染的发展。根据我国的能源结构、资源条件和经济能力,以燃煤为主的基本格局将成为我国大气污染控制的出发点和立足点。今后的研究方向是采用综合的、低投资、低运行费、高效益、适合国情的技术。 /p p   “煤炭本身不是污染,可以通过技术进步实现洁净利用,我国要实现以节能减排治理雾霾天气,必须靠科技手段解决。”烟台华盛燃烧设备工程有限公司董事长姜政华在接受科技日报记者采访时一语中的。他认为,当前社会普遍对治霾的难度认识还不够充分,同时经济效益至上和监管力量薄弱也降低了雾霾治理的效果。我国的一些环保技术如电厂超低排放等已达到甚至超过了国际先进水平,大部分电厂也安装了在线实时监测系统,但仍然有许多工厂偷排,其实都是经济在作祟。更重要的是,关于雾霾治理的技术路线还缺乏创新。无论是英国、美国还是日本,都经历过从制定标准到标准执行、从技术开发到技术应用的过程。我国应该从科学研究出发,针对现实问题,多方参与治理,才能重现“蓝天”。 /p p   大气污染催生新技术,“控制锅炉烟气排放总量”在我国首次提出 /p p   面对我国严峻的空气污染治理形势,企业家们看在眼里,急在心里。日前,姜政华就在国内率先提出了“控制锅炉烟气排放总量,减少废烟气向大气排放”新方法,旨在通过采用富氧烟气再循环技术,为我国工业锅炉及电厂中小型锅炉实现大幅度节能减排找到新的出路。 /p p   烟气再循环是指把锅炉煤炭燃烧后排出的烟气抽回10%—20%,再送进锅炉作为一部分送风助燃,故称烟气再循环。因抽回的烟气中含氮量比空气中含氮气低又称为低碳燃烧技术,烟气再循环低碳燃烧技术是当前大型火力发电锅炉的标准配置,技术成熟。 /p p   姜政华提出的“控制锅炉烟气排放总量”新方法,正是在这个技术之上采用富氧烟气再循环技术,可使减排、节能效率大为提高。 /p p   目前,热电厂锅炉采用烟气再循环技术时的烟气回收率一般都控制在10%—20%。如烟气再循环率太高,造成烟气太多,燃料就得不到充足的氧气,会出现燃烧不稳定或不完全燃烧,导致热损失增加,同时还会增加黑烟的产生量。 /p p   富氧烟气再循环是把锅炉煤炭燃烧后排出的烟气由原来抽回15%—20%增加到50%—70%,在50%—70%的烟气再循环中再增加一定的富氧,姜政华将这项技术命名为富氧烟气再循环混合燃烧技术。据介绍,该技术原理由研究者Home(霍姆)和Steinburg(斯坦伯格)于1981年提出。“此前我国膜法制氧富氧助燃技术尚不完备,所以国内目前还没有企业从事该技术研发。” /p p   据姜政华介绍,目前一般富氧烟气再循环可抽回50%烟气。工业锅炉如采用该技术后,烟气量可以降低烟尘排放50%,降低二氧化硫排放50%,降低氮氧化物排放50%。 /p p   “在工业燃煤锅炉采用富氧烟气再循环是可行的、技术是成熟的。不仅如此,在工业燃油、燃气、燃生物质工业锅炉、火电厂、中小炉窑等都可采用富氧烟气再循环燃烧技术,以有力控制烟气排放总量,达到减少雾霾的形成。该技术是节能减排可持续发展、治理大气污染最行之有效的简便方法,为我国工业锅炉特别是循环流化床锅炉应用膜法制氧开辟出了一条全新的路径。”姜政华告诉记者:“烟气湿度和温度都能影响雾霾天气,治理脱硫脱硝不能放松,最重要的还是采用富氧烟气再循环技术,减少烟气排放总量,此才是根治我国雾霾天气的必由之路。” /p p   姜政华认为,在进行大气污染治理时,最重要的设计数据之一是锅炉运行实际烟气排放量。但目前我国在用锅炉大气污染物排放限额标准都是以排出烟气每立方米含烟尘、二氧化硫、氮氧化物多少计算,而没有限定锅炉实际烟气排放总量。 /p p   工业锅炉运行炉膛出口空气过量系数标准应是1.3,按系数1.3计,以每公斤标煤实际烟气量按10.36Nm3/kg计算,每年就向大气排放烟气41.44亿Nm3,工业锅炉运行炉膛出口空气过量系数运行好的锅炉在1.7左右,按系数1.7计,以每公斤标煤实际烟气量按13.46Nm3/kg计算,每年就向大气排放烟气53.84亿Nm3,大部分工业锅炉运行炉膛出口空气过量系数都在2.0左右,按系数2.0计,以每公斤标煤实际烟气量按15.28Nm3/kg计算,每年就向大气排放烟气61.12亿Nm3,工业锅炉运行炉膛出口空气过量系数一般在2.0左右。与工业锅炉运行炉膛出口空气过量系数1.3相比多向大气排放烟气19.68亿Nm3,排放烟尘590.4万吨,排放二氧化硫1968万吨,排放氮氧化物4920万吨。 /p p   因烟气总量是根据空气过量系数的变化而变化,所以导致数据差距非常大,锅炉超排放烟气量也是直接形成大气污染的主要因素。“比较可靠的方法是在锅炉运行中实际测定排烟量,也可以根据锅炉热力计算书、热工测试报告,得出锅炉在运行负荷下的限额排放,不得超额排放排烟量。” /p p   现有热力设备最大的节能制约因素在于空气燃烧法。在常规的化石燃料燃烧装置中,燃烧过程都是以空气来助燃,空气中含有大量的氮气(接近79%),因此导致烟气中CO2的浓度较低(约为13%—16%),直接分离CO2需要消耗大量的能量,致使成本过高。“如果能在燃烧过程中大幅度提高烟气中CO的浓度,使浓度达到无需分离即可回收,就能有效控制CO2的排放。富氧烟气再循环技术就是在这种原理下产生的。”在姜政华看来,控制锅炉烟气排放总量采用烟气再循环技术应用十分灵活,既可在锅炉系统上使用,也可在其他燃烧设备、燃烧技术配合使用,都能达到降低氮氧化物生成量的目的。“通过降低燃烧器氧气的浓度,烟气还可用来输送二次燃料。如利用省煤器后烟气(温度为250℃—350℃)的一部分烟气再循环,并可以实现调节炉膛温度的作用。” /p p   现有工业锅炉的燃烧方式使NOx排放较高,无法通过燃烧调整达到国家环保要求。“就拿目前普遍采用的SNCR和SCR燃烧后脱硝技术,其运行成本不但高,且脱硝剂为化工产品,在消防等方面存在安全隐患,如氨逃逸会造成二次污染。”姜政华分析说。 /p p   相比之下,O2/CO2混合富氧燃烧技术的优越性就十分明显。首先,采用烟气再循环比达到50%左右后,以烟气中的CO2替代助燃空气中的氮气,与增加的富氧一起参与燃烧,使排烟中CO2体积分数大于95%,可直接回收CO2,与常规空气燃烧相比,SO2、NO排放量大为降低。再者,富氧烟气再循环使得燃烧装置的排烟量仅为传统方式的1/4,使锅炉烟气排放量明显减少,排烟热损失的降低,也使得锅炉热效率显著提高。此外,通过调整CO2的循环比例,还可以实现燃烧、传热的优化设计。 /p p   膜法富氧燃烧技术已在我国钢铁、水泥等行业成功应用,节能减排效果显著 /p p   2012年8月18日,由烟台华盛燃烧设备工程有限公司研制的“MZYR-12000富氧助燃节能装置”在中国企业500强—河南天瑞集团汝州水泥有限公司日产5000吨的水泥回转窑上投入运行。这是目前我国水泥炉窑配备的最大膜法富氧助燃装置。运行效果显示,炉窑火焰温度提高了200℃,二次风温提高100℃,节煤率达到8.18%。通过在线仪表测试,炉窑排放烟气中NOx浓度降低了15.64%,二氧化硫浓度降低7.71%,烟气流速降低2.28%,各项排放指标达到了设计要求。 /p p   该装置采用国内尖端制造技术,率先把膜法制氧设备大型化。为保障在恶劣环境下的使用,该公司精心设计了自洁式PLC控制空气过滤系统,可确保膜组件使用寿命长达10年以上。同时,该装置还首次采用大型集成化膜组件,使富氧流量每小时可达24000立方米,能满足日产10000吨水泥炉窑和企业自备热电联产每小时450吨以下的锅炉使用。局部全富氧助燃技术的应用,不仅让工业炉窑节能率达到了10%—15%,也使设备性价比更加合理。该装置填补了该领域的国内空白,已达到国际同类产品领先水平。 /p p   研究表明,煤炭(包括油品、天然气)在氧浓度为26%时燃烧最完全,速度最快,温度最高,热辐量强度最大,其燃烧机理是高分子膜在压力差的作用下,使空气中的氧气优先通过进入,以提高工业炉窑内氧气的含量,让燃料中的挥发份和没燃尽的碳粒子在富氧中充分燃烧,最大化地转为热能,在不增加燃料的前提下,火焰温度提高100℃—350℃,由此达到节能之目的。 /p p   当前,我国工业总体上尚未摆脱高投入、高消耗、高排放的发展方式,资源能源消耗量大,生态环境问题比较突出,迫切需要加快构建科技含量高、资源消耗低、环境污染少的绿色制造体系。工业和信息化部在印发的《工业绿色发展规划(2016—2020年)》的通知中规定指出,未来五年,是落实制造强国战略的关键时期,是实现工业绿色发展的攻坚阶段。 /p p   “结合国家政策和要求,在我国大力推动以富氧代替空气助燃,锅炉采用控制烟气排放总量的方式,更符合工业绿色发展的方式,此举不仅有利于推进节能降耗、实现降本增效,更补齐了工业绿色发展中的重要短板。”姜政华表示。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制