当前位置: 仪器信息网 > 行业主题 > >

汽车太阳膜

仪器信息网汽车太阳膜专题为您整合汽车太阳膜相关的最新文章,在汽车太阳膜专题,您不仅可以免费浏览汽车太阳膜的资讯, 同时您还可以浏览汽车太阳膜的相关资料、解决方案,参与社区汽车太阳膜话题讨论。

汽车太阳膜相关的资讯

  • 新能源检测技术线上论坛日程揭晓:10报告聚焦锂电/太阳能/电动汽车
    p style=" text-indent: 2em " span style=" text-indent: 2em " 新能源材料是解决能源危机的根本途径,是国家关注的重点领域,也是《中国制造2025》重要部分。当下,我国基于新能源发展的材料市场呈现出供不应求的态势: /span /p p style=" text-indent: 2em " 2011年福建宁德东侨经济技术开发区引进宁德时代新能源 “样板”,短短10年,锂电池集聚效应迅速形成,筑起一个千亿级产业集群。 /p p style=" text-indent: 2em " 2020年,7月23日,广西玉林市1300亿锂电材料项目开工,广西正大幅度提升新能源材料布局。 /p p style=" text-indent: 2em " 国家能源局日前数据,2020年上半年,全国新增光伏发电装机1152万千瓦。光伏行业新增相关企业2.5万家! /p p style=" text-indent: 2em " & nbsp 新能源材料作为新能源开发利用的关键,目前仍处于发展阶段,还存在转换效率低、能量密度低以及成本高等诸多问题。进一步拓展新能源材料的种类,深入研究其结构、组成、性能之间的关系,对新能源材料的发展与广泛应用都具有重要意义。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/xny2020/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/61f5685e-d829-4250-96b3-d507d8ea8589.jpg" title=" 640_300.jpg" alt=" 640_300.jpg" / /a /p p style=" text-indent: 2em " & nbsp 基于此,仪器信息网(instrument.com.cn)将于2020年8月17日,组织“新能源材料检测技术发展及应用”主题网络研讨会,邀请新能源材料领域研究应用专家、相关检测技术专家,以网络在线报告形式,针对当下新能源材料研究热点、相关检测新技术及难点、新能源市场展望等进行探讨,为同行搭建学习互动平台,增进学术交流,助力我国新能源材料产业快速发展。 /p p style=" text-align: center text-indent: 2em " span style=" font-size: 20px background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " strong 会议内容速览 /strong /span /p p style=" text-indent: 2em " span style=" background-color: rgb(0, 176, 80) color: rgb(255, 255, 255) " strong /strong /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border-collapse:collapse border:none" tbody tr style=" height:42px" class=" firstRow" td width=" 151" style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height=" 42" p style=" text-align:center" strong span style=" color:white" 会议形式? /span /strong /p /td td width=" 402" style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 42" p span style=" color:black" 9 /span span style=" color:black" 位专家线上报告 /span /p /td /tr tr style=" height:47px" td width=" 151" style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 47" p style=" text-align:center" strong span style=" color:white" 会议时间? /span /strong /p /td td width=" 402" style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 47" p span style=" color:black" 8 /span span style=" color:black" 月 span 17 /span 日 span 9:30 /span — span 16:30 /span /span /p /td /tr tr style=" height:47px" td width=" 151" style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 47" p style=" text-align:center" strong span style=" color:white" 哪些新能源材料? /span /strong /p /td td width=" 402" style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height=" 47" p span style=" color:black" 锂电、锂电用粘结剂、电动汽车、太阳能电池、燃料电池、光伏材料、铅酸电池 span & #8230 /span /span /p /td /tr tr td width=" 151" style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" color:white" 哪些检测项目? /span /strong /p /td td width=" 402" style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" color:black" 电池失效、电池缺陷、循环稳定性、安全性能、表界面分析、动力电池回收 span & #8230 /span /span /p /td /tr tr style=" height:42px" td width=" 151" style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 42" p style=" text-align:center" strong span style=" color:white" 哪些仪器技术? /span /strong /p /td td width=" 402" style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 42" p span style=" color:black" 光谱、比表面测试,密度测试、 span SEM /span 、 span TEM /span 、 span AFM /span 、 span XPS /span 、 span TOF-SIMS /span 、 span AES /span 、 span XAS& #8230 /span /span /p /td /tr tr style=" height:46px" td width=" 151" style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 46" p style=" text-align:center" strong span style=" color:white" 免费报名链接? /span /strong /p /td td width=" 402" style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 46" p span style=" color:black" a href=" https://www.instrument.com.cn/webinar/meetings/xny2020/" https://www.instrument.com.cn/webinar/meetings/xny2020/ /a /span /p /td /tr /tbody /table p style=" text-indent: 0em text-align: center " span style=" background-color: rgb(0, 176, 80) color: rgb(255, 255, 255) font-size: 20px " strong br/ span style=" color: rgb(255, 255, 255) font-size: 20px background-color: rgb(255, 0, 0) " 会议日程 /span /strong /span /p p style=" text-indent: 0em " span style=" background-color: rgb(0, 176, 80) color: rgb(255, 255, 255) " strong /strong /span /p table border=" 1" cellspacing=" 0" style=" margin-left: 2px border: none " align=" center" tbody tr style=" height:6px" class=" firstRow" td width=" 93" valign=" middle" nowrap=" " style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p span style=" font-family: Calibri letter-spacing: 0 font-size: 14px" /span strong span style=" color: rgb(255, 255, 255) " 报告时间 /span /strong /p /td td width=" 255" valign=" middle" nowrap=" " style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p strong span style=" color: rgb(255, 255, 255) " 报告名称 /span /strong /p /td td width=" 244" valign=" middle" nowrap=" " style=" background: rgb(0, 176, 80) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p strong span style=" color: rgb(255, 255, 255) " 主讲人 /span /strong /p /td /tr tr style=" height:20px" td width=" 93" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 9:30-10:00 /p /td td width=" 255" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 锂离子电池失效整体解决方案 /p /td td width=" 235" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 韩广帅 /p p (上海蓄熙新能源材料检测有限公司& nbsp ) /p /td /tr tr style=" height:20px" td width=" 93" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 10:00-10:30 /p /td td width=" 255" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 新能源新材料测试的光谱解决方案 /p /td td width=" 244" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 覃冰 /p p (岛津企业管理(中国)有限公司) /p /td /tr tr style=" height:20px" td width=" 93" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 10:30-11:00 /p /td td width=" 255" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 日本电子新一代智能化场发射扫描电镜 /p /td td width=" 244" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 陈青山 /p p (捷欧路(北京)科贸有限公司) /p /td /tr tr style=" height:20px" td width=" 93" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 11:00-11:30 /p /td td width=" 255" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 混合离子钙钛矿太阳能电池缺陷钝化研究 /p /td td width=" 244" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 杨智 /p p (西安交通大学) /p /td /tr tr style=" height:20px" td width=" 93" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 11:30-12:00 /p /td td width=" 255" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 钙钛矿太阳能电池的工作稳定性提高 /p /td td width=" 244" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 魏静 /p p (北京理工大学) /p /td /tr tr style=" height:20px" td width=" 93" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 12:00-14:00 /p /td td width=" 255" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 午休时间 /p /td td width=" 244" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 中午休息(全体参会人员) /p /td /tr tr style=" height:20px" td width=" 93" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 14:00-14:30 /p /td td width=" 255" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 锂电池用粘结剂材料研究进展及其检测技术发展 /p /td td width=" 244" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 邵丹 /p p (广州能源检测研究院) /p /td /tr tr style=" height:20px" td width=" 93" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 14:30-15:00 /p /td td width=" 255" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 大昌华嘉电池行业解决方案 /p /td td width=" 244" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 樊润 /p p (大昌华嘉科学仪器) /p /td /tr tr td width=" 93" valign=" middle" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 15:00-15:30 /p /td td width=" 255" valign=" middle" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 固体氧化物燃料电池技术及其发展前景介绍 /p /td td width=" 244" valign=" middle" nowrap=" " style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 王绍荣(中国矿业大学) /p /td /tr tr style=" height:20px" td width=" 93" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 15:30-16:00 /p /td td width=" 255" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 锂电池表界面分析一站式解决方案 /p /td td width=" 244" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 杨伟 /p p (天目湖先进储能技术研究院有限公司) /p /td /tr tr style=" height:20px" td width=" 93" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 16:00-16:30 /p /td td width=" 255" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 电动汽车动力电池回收利用问题剖析及对策建议 /p /td td width=" 244" valign=" middle" nowrap=" " style=" background: rgb(255, 255, 255) border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" p 陈轶嵩 /p p (长安大学& nbsp ) /p /td /tr /tbody /table p style=" text-align: center " img style=" width: 200px height: 200px " src=" https://img1.17img.cn/17img/images/202008/uepic/9ddb0dd2-9168-4d89-bc03-a85919cd2897.jpg" title=" 1.png" width=" 200" height=" 200" border=" 0" vspace=" 0" alt=" 1.png" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 290px " src=" https://img1.17img.cn/17img/images/202008/uepic/b14a8f57-5c03-4830-ac7f-ffec2c84bb8f.jpg" title=" 5e01816c22e42b15b7ca9a4644cf0e40.png" alt=" 5e01816c22e42b15b7ca9a4644cf0e40.png" width=" 200" height=" 290" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(255, 255, 255) font-size: 20px background-color: rgb(255, 0, 0) " strong 报告嘉宾 /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/a68fb138-96f3-4ab6-bb89-b391ed4136d1.jpg" title=" 王绍荣_副本.jpg" alt=" 王绍荣_副本.jpg" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 王绍荣 /span /p p style=" text-indent: 2em " 王绍荣,中国矿业大学教授,博导,江苏省双创人才,创新团队首席。固体氧化物燃料电池(SOFC)资深研发人员。早年留学日本,回国后在中国科学院上海硅酸盐研究所工作,2016年聘任中国矿业大学越崎学者。曾承担国家863项目和省部级项目多项,经历了SOFC关键材料、电池结构、电池制备技术、电堆组装技术、系统集成技术等研发;累计发表论文150余篇,申请专利40余项,出版专著1部,累计指导毕业研究生40多名。 span style=" color: rgb(255, 255, 255) font-size: 20px background-color: rgb(255, 0, 0) " strong /strong /span br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/5f5c497e-8c52-4e34-8469-8e58b5877681.jpg" title=" 魏静_副本.jpg" alt=" 魏静_副本.jpg" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 魏静 /span /p p style=" text-indent: 2em " span style=" color: rgb(0, 176, 240) text-align: center " /span span style=" text-align: center color: rgb(0, 0, 0) " 魏静, /span 北京理工大学,预聘副研究员,2012年于电子科技大学集成电路设计与集成系统专业获得学士学位,2017年于北京大学微电子与固体电子专业获得博士学位。2019年7月加入北京理工大学材料学院材料物理与化学系。主要从事新能源材料与器件、钙钛矿光电材料与器件等研究。以第一作者身份在Nat.Commun., Adv. Mater., Adv. Energy Mater. Nano Energy等杂志发表论文15篇,其中ESI高被引论文2篇,ESI热点论文3篇,总被引次数超过600。研究领域:新型能源材料与器件;钙钛矿光电材料与器件;微纳加工。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/f8cb6be9-5157-414d-b4f2-8bf77200f81e.jpg" title=" 杨智_副本.jpg" alt=" 杨智_副本.jpg" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 杨智 /span /p p style=" text-indent: 2em " 杨智,西安交通大学,副教授。2011.9-2015.12在西安交通大学电子学院研读博士,2014.2-2014.8新加坡南洋理工大学熊启华研究组,2018年在美国北卡罗来纳大学黄劲松访问学者,目前就职于西安交通大学,研究方向:新型纳米结构光电探测器,钙钛矿太阳能电池,半导体量子点发光,论文先后被先进功能材料、Solar RRL,ACS Applied Materials and Interfaces,Scientific Reports等期刊收录。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/f233a55f-c2a7-46e0-95b9-24616536fc71.jpg" title=" 陈轶嵩_副本.jpg" alt=" 陈轶嵩_副本.jpg" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 陈轶嵩 /span /p p style=" text-indent: 2em " 陈轶嵩,工学博士、长安大学车辆工程系主任,车辆工程专业建设责任教授、硕士生导师,“长安学者”青年学术骨干。兼任陕西省汽车工程学会副秘书长、中国工程院汽车强国战略研究专家、中国汽车工程学会青年工作委员会委员、中国汽车工程学会货运装备技术分会副秘书长、陕西日报汽车专刊特约评论员等职。从事汽车、能源、环境、管理交叉学科研究10余年,主要学术领域:新能源汽车全生命周期评价、汽车产业规划与政策分析。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/5a722c48-cccf-47d4-9b04-50e773d79dbd.jpg" title=" 韩广帅_副本.jpg" alt=" 韩广帅_副本.jpg" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 韩广帅 /span /p p style=" text-indent: 2em " 韩广帅,同济大学 助理研究员,上海蓄熙新能源材料检测有限公司 总经理。主要研究方向锂离子电池,电池失效分析。目前为国家质检总局缺陷产品管理中心汽车缺陷调查与鉴定专家,上海市科学技术委员会上海新能源领域技术专家,多家新能源汽车技术委员会委员。申请并授权专利10余项,发表论文10多篇。建立了完整的锂离子电池非破坏分析和非大气暴露下的破坏性分析解析研究体系。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/4f851ebe-8ebd-47f6-8884-7d5b26f424b1.jpg" title=" 邵丹_副本.jpg" alt=" 邵丹_副本.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " 邵丹 /span /p p style=" text-indent: 2em " 邵丹,博士,“广州能源检测研究院科技中心主任工程师”、“广东省动力电池安全重点实验室副主任”、“广东锂电关键新材料产业技术创新联盟专家技术委员会委员”、“广州市高层次人才”。长期从事电化学储能材料及器件相关技术开发工作。完成国家化学储能材料及产品质量监督检验中心、中华人民共和国WTO-TBT/SPS新能源材料及产品技术性贸易措施研究评议基地等国家级科技平台建设工作。主持完成多项省、市质量技术监督局科技项目,在国家科技部重点研发计划“新能源汽车”重点专项中担任项目骨干,在J. Mater. Chem. A,J. Power Sources,ChemElectroChem, Electrochim. Acta,J. Solid State Electrochem.等国际期刊发表多篇SCI文章。取得多项国际PCT和国内发明、实用新型专利。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/4f501f93-9a21-4cf5-84d1-e509ea77cdfd.jpg" title=" 杨伟_副本.jpg" alt=" 杨伟_副本.jpg" / /p p style=" text-indent: 2em text-align: center " span style=" color: rgb(0, 176, 240) " 杨伟 /span /p p style=" text-indent: 2em " 杨伟,博士,天目湖先进储能技术研究院有限公司测试分析中心工程师2015年在中科院物理研究所获得博士学位,随后在清华大学进行博士后研究工作,2018年加入天目湖先进储能技术研究院,负责锂电池材料及器件的测试与失效分析工作。主要从事材料测试分析、锂电池失效分析工作,到目前共发表论文20余篇,申请中国专利10余项,2019获得年江苏省双创博士项目支持。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/3c74a0c4-afea-4057-9ddb-f283468d0c0d.jpg" title=" 覃冰_副本.jpg" alt=" 覃冰_副本.jpg" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 覃冰 /span /p p style=" text-indent: 2em " 覃冰,中科院毕业后进入仪器行业工作已有11年,目前就职于岛津公司市场部,负责紫外可见近红外及荧光光谱仪产品的技术支持工作,在分子光谱的应用上有丰富经验。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/89369b2c-49e6-407f-8102-e16020bff0e9.jpg" title=" 陈青山_副本.jpg" alt=" 陈青山_副本.jpg" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 陈青山 /span /p p style=" text-indent: 2em " 陈青山,日本电子 扫描电子显微镜 应用工程师 陈青山先生。从事扫描电镜售前、售后应用支持工作16年,经验丰富,熟悉掌握各类型扫描电镜的原理及应用。多次赴日参加培训和研讨会,熟悉多个行业对于扫描电镜的应用需求。为用户提供过大量仪器应用解决方案。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/8789a595-c908-40bf-8254-14b0266f2801.jpg" title=" 樊润_副本.jpg" alt=" 樊润_副本.jpg" / /p p style=" text-indent: 0em text-align: center " span style=" color: rgb(0, 176, 240) " 樊润 /span /p p style=" text-indent: 2em " 樊润,2003年至今,一直从事材料颗粒表征的相关仪器销售和应用工作,并且对新能源领域众多材料的检测多有涉及,希望将相关的检测技术与大家分享。 /p p br/ /p
  • 欧阳院士:新发展格局与汽车产业变革
    近日,电动汽车行业最具代表性的盛会之一——中国电动汽车百人会论坛(2021)成功召开。而来自相关主管部门、主流车企、研究机构代表及行业专家,共议新发展格局与汽车行业变革。其中欧阳院士报告中谈到“如果有人告诉你,这个车能跑1000km,几分钟能充满电,还很安全,以目前的技术,他一定是骗子”也在网上引起来广泛的讨论。欧阳明高院士,在会议上作了题为《新发展格局与汽车产业变革》的报告,从能源的角度,围绕着“电和氢”两个主题进行了演讲。每次能源革命都是先发明新动力装置与交通工具,然后带动对能源资源的开发利用,并引发工业革命。而第三次能源革命,是以电池(光伏/锂离子电池/氢燃料电池)为动力,电和氢为可再生能源的能源载体,电动车为交通工具,引发了以可再生能源为基础的绿色化和以数字网络为基础的智能化的第四次工业革命。据介绍,中国纯电动车动力电池创新活跃,创新模式从政府主导向市场主导转型,从行业政治操作向公司商业运作转型。同时,电池材料创新要平衡比能量、寿命、快充、安全、成本等互相矛盾的性能指标,近年尚无大突破。电池系统结构大创新辅以电池单体材料小改进成为近年来中国动力电池技术创新的鲜明特征。目前电动车面临低温续航和安全等问题。欧阳院士表示,中国电动车环节适应性问题技术需求迫切,技术创新活跃,主要的三个途径包括,电池热管理系统效能优化,提高冬季续驶里程;面向冬季工况的动力系统废能综合利用和充电场景下电池的插枪保温和脉冲加热。安全是所有汽车追求的永恒主题,安全是靠安全技术保障的。纯电动汽车动力电池热安全解决技术主要分为本征安全(单体电池热失控与热设计)、被动安全(电池模块热蔓延与热管理)和主动安全(电池系统只能管理与充电控制)。中国动力电池安全问题研究早,热失控科学与技术走在世界前列。近年来,燃料电池也逐渐走入人们的视野。欧阳院士表示,今后十年左右燃料电池系统成本下降80%以上,与过去十年锂离子电池成本下降过程相似,国产70MPa塑料内胆纤维缠绕车载储氢瓶单位储氢成本未来也将大幅下滑,但目前氢能产业链的自主化程度和技术水平,和燃料电池比还有差距,电解绿氢技术、氢储运技术以及氢安全技术还需改进提升,氢燃料成本总体偏高。电和氢是可再生能源的主要载体。目前我国光伏发电成本已经与煤电相当,IEA预测光伏将是综合成本最便宜的能源,而硅基光伏与钙钛矿相结合的第三代光伏电池技术正在兴起、效率潜力巨大。据悉,单节太阳能电池通过新型高校材料设计与界面修饰方法,叠层太阳能电池将突破效率30%。储能技术是智慧能源系统的核心技术之一。电池和氢能各有特点,两者互补性强,共同构成主流储能方式。以锂离子电池为代表的动力电池是短周期分布式小规模可再生能源存储的最佳选择,氢能是集中式可再生能源大规模长周期储存的最佳途径。与化石能源分析全链条效率一样,可再生能源生产—运输—储存—利用要讲究全链条成本(并非效率)。电生产和传输成本低,但储存成本高;氢生产成本比电高,储存成本比电低。经过估算,如果有1亿辆电动汽车,车载电池能量达50亿度,储能潜力巨大,充电功率巨大,耗电量不大,因此需要建立智能充电车网与共享储能。对于商业目的的乘用车如共享单车、出租车等,原则上换电是一种不错的商业模式。换电的最佳应用场景是电动中重卡;充换电站一体化,换电电池放电快充,形成互补。最终的微网形态将是光—储—充—换多能互补一体化微网系统。报告最后,欧阳院士谈到了未来十年交通智慧能源生态建设。未来的指挥能源生态建设的黄金组合是分布式光伏+电池+电动汽车+物联网+区块链的分布式光—储—充一体化智慧能源系统;白银组合是集中式风电与光伏+氢能+燃料电池汽车+物联网+区块链的集中式风—光—电—氢一体化指挥能源系统。
  • 2012年我国汽车材料等领域建设情况汇总
    仪器信息网讯 2012年年中,仪器信息网就“资讯”频道“实验室动态”栏目发布的相关信息进行总结,并发布了“2012上半年我国汽车材料实验室建设情况”资讯,值2013年年初,仪器信息网再次将2012年7-12月期间发布的相关实验室信息进行归纳整理,为大家呈现最新的国内外实验室建设动态。仪器信息网从中整理、统计的信息中发现,“食品安全、生物医药、环境”等领域的重点或投资规模依旧较大,现将有关领域的实验室建设状况分类归纳,以飨读者。   据仪器信息网资讯频道统计,2012年,汽车、材料领域等与材料相关的实验室建设情况与生物医药领域实验室建设状况类似,相关行业企业建立检测实验室的较多。2012年汽车、材料领域实验室的建设资金投入额超亿元的也较多,如国家重型汽车质量监督检验中心投资金额达到20亿元,神龙汽车发动机试验室、奇瑞试验技术中心、国家汽车质量监督检验中心、国家特钢质检中心、国家级钢结构检测中心、国家纸及纸制品质检中心投入都在亿元以上。下表为2012年下半年我国汽车、材料等领域建设情况汇总。 2012年下半年我国汽车、材料等领域建设情况 实验室名称 新闻发布时间 地点 状态 投资金额 材料 国家高寒硅基材料及太阳能光伏产品质量检验中心 2012-12-27 牡丹江 建设中 8500万 新型道路材料国家工程实验室 2012-12-25 江苏 建成 国家管道元件产品质检中心 2012-12-3 沧州 建设中 7500万元 广西电子铝产品质检中心 2012-11-9 广西 建设中 3700万 核材料及服役安全联合实验室 2012-11-7 深圳 建成 国家石材建材矿产品放射性检测重点实验室 2012-11-1 厦门 建成 国家橡胶轮胎及制品质量监督检验中心广饶橡胶轮胎分中心 2012-9-25 东营 筹建 民用航空材料检测实验中心 2012-9-24 北京 筹建 国家材种鉴定与木材检疫重点实验室 2012-9-13 张家港 建成 汽车 必维(富宇)轮胎检测基地 2012-12-28 山东淄博 建设中 8000万 国内首家汽车产品缺陷工程分析实验室 2012-12-21 北京 建成 第三方车辆司法鉴定检测机构 2012-12-18 北京 建成 甘肃城市智能交通工程实验室 2012-12-4 甘肃 建成 国家内燃机及零部件产品质量检验中心 2012-11-19 玉林 建成 国家新能源机动车产品质量监督检验中心 2012-11-15 上海 建成 汽车安全实验室 2012-11-14 北京 建成 国家级汽车缺陷分析实验室 2012-11-12 北京 筹建 其他材料 中国石油-青科大成立合成橡胶应用联合实验室 2012-12-25 青岛 建成 国家地方联合工程研究中心(工程实验室) 2012-12-14 青岛 筹建 广西有色金属产品质量监督检验中心 2012-11-14 广西 建成 UL防火门目击测试实验室 2012-9-27 广州 建成 国家金刚石工具质量检测中心 2012-9-17 鄂州 建成 山东省蔬菜大棚用品质检中心 2012-9-17 寿光 筹建 国家纸及纸制品质检中心 2012-9-17 孝感 建设中 3.3亿元 2012年上半年我国汽车、材料等领域建设情况 实验室名称 新闻发布时间 地点 状态 投资金额 汽车领域 国家重型汽车质量监督检验中心 2012-7-7 山东 筹建中 20亿 山东汽车电子零部件电磁兼容实验室 2012-7-5 山东 建成   Intertek亚太电动汽车实验室 2012-7-2 上海 建成   华同华洋机动车检测中心 2012-6-26 天津 建成   燃气发动机国检中心 2012-6-21 南充市 筹建中   中国声学实验室 2012-5-28 上海 建成   神龙汽车发动机试验室 2012-5-7 武汉 建设中 5.18亿 奇瑞试验技术中心 2012-7-25 安徽芜湖 建成 14.5亿元 一汽-大众车辆安全中心 2012-5-22 长春 建成   清华大学苏州汽车研究院 2012-7-24 苏州 建成   国家级新能源汽车及汽摩配检测中心 2012-5-2 金华 筹建中   国家汽车质量监督检验中心 2012-7-13 北京 建成 6.35亿 材料领域 内蒙古石材检测中心 2012-7-27 内蒙古 建成 酒钢集团腐蚀实验室 2012-7-25 酒泉 建成 国家特钢质检中心 2012-7-24 黄石 建设中 1.7亿 国家节能建材产品质量监督检验中心 2012-6-7 湖北 建设中 9484万 武钢—神龙汽车用钢联合实验室 2012-6-4 武钢 建成   高性能润滑油脂联合实验室 2012-4-24 鞍山 筹建中   国家级钢结构检测中心 2012-4-9 江阴 建设中 1.5亿 硅酸盐建筑材料国家重点实验室 2012-3-21 武汉 建成   河北省材料近净成形技术重点实验室 2012-3-19 河北 建设中   中国绿色建筑材料国家重点实验室 2012-3-2 北京 建成
  • 岛津开发高精度鉴别汽车废旧塑料新技术
    ---以分析技术为能源的有效利用做贡献--- 在石油、天然气等传统能源发展的同时,太阳能、风能等新能源也在不断地发展。岛津公司面对这一能源多样化的发展趋势,正在为提高能源利用率积极进行着各种新技术开发。在汽车领域,如何提高废旧汽车产生的大量废弃塑料的回收率已经成为了一个课题。针对这一课题,岛津公司目前正在展开从各种材料混杂的汽车垃圾中高精度地鉴别出可再回收利用的聚丙烯的新技术研究。通过此技术可对材料再回收利用贡献力量,从而达到能源高效利用的目的。 2005年日本开始实施废旧汽车再生利用法,在此背景下,每年产生的约360万辆废旧汽车全部被回收,拆下来的金属、橡胶、塑料等部品也都再回收利用。完成报废申请手续的汽车,被拆卸部门。拆卸部门会对可再使用的诸如发动机之类的零部件进行回收,对轮胎或有色金属等材料进行再生使用。 在汽车领域,已建立起能够将大多数的汽车组成部品都进行再回收利用的体系,有效推行着资源的有效利用及环境负荷降低等活动。但是,上面提到的日本废旧汽车再生利用法中明确规定,到2015年,汽车再生利用率需达到严格的95%。这就要求汽车制造商进一步提高再生利用率。由于在回收可再生利用部分之后的汽车垃圾( Automobile Shredder Residue)中含有的废塑料往往和其它多种材料混合在一起,很难分类。以至于到目前为止只是对这些废塑料进行燃烧作为热能源使用或是进行填埋处理。如何对这些废塑料进行再生处理已成为了一个重要课题。 目前,我公司正在研究开发利用傅立叶变换红外光谱仪等高精度分析仪器对汽车废旧塑料进行分类的技术。这种技术是把细小的、鳞片状的汽车垃圾(ASR)依次检测,按照各种材料进行分类。本研发以鉴定在汽车废旧塑料中约占50%的聚丙烯作为目标,为了防止其它材料的混入,争取能够实现高精度的识别性能及准确快速的分类技术。 争取基于这种鉴定技术的系统,达到99%以上的聚丙烯识别率,1小时内可鉴定处理100kg。今后还将继续推进此技术的研究,通过现场反复的实验验证,争取2014年能够在日本国内发售。此外,在进军世界市场的同时,还将对家电及OA机器等领域推广该技术。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 珠海汽车环境试验室(舱),环境试验舱 汽车排放室 环境模拟实验机
    http://www.oven.cc环境试验舱 汽车排放室 环境模拟实验室,汽车环境试验室(舱), 广东宏展科技有限公司为汽车生产厂家以及科研院所提供汽车各项性能试验的环境.可模拟汽车在道路上行驶时的各种气候条件(风速、温度、湿度、日照)和汽车运行状态(车速、行驶阻力等),以测定汽车在一定条件下运行的性能及与汽车工作的相容性。本试验室是汽车测试的重要研究手段,可大大缩短汽车的研发周期。 环境模拟参数 空气温度控制范围:-40~60℃ 温度精度 ± 0.5℃ 风速范围控制范围:0.5m/s~10m/s 风速精度± 0.1m/s 空气湿度控制范围:-30~95%RH 湿度精度± 5%RH 大气压力控制范围:0.03~0.1Mpa 排废气量和新风处理排废气量:2000m3/h 新风处理量:约2000m3/h,有调节室内外压力平衡的系统 日照强度控制范围:0-100000LUX 降水量控制范围:0~10 mm/h 降水精度± 0.2 mm/h www.oven.cc
  • 日本汽车零部件巨头曝大规模造假,盘点汽车零部件质检项目
    近日,央视财经频道报道,2020年2月16日,日本汽车零部件供应商曙光制动器工业株式会社日前表示,其在日本工厂制造的刹车极其零部件中,该公司发现存在篡改检查数据等不正当行为!调查发现,该公司至少从2001年开始就有此类不当行为。这一消息引发网络热议,网友戏称”躬匠精神”.据了解,曙光制动器工业株式会社是丰田、本田、马自达、三菱等厂车企的供应商,约有11.4万件产品存在伪造刹车装置及其零部件的检查数据,这些零部件中有5000件零部件未能通过曙光制动器与汽车制造商户制定的质量标准。此外,曙光制动器在日本本土的四家工厂确认了造假行为。无独有偶,近几年,日本企业频繁曝出造假行为。由于近年来日本企业造假事件频发,“日本制造”已经引发了强烈的信任危机。众所周知,汽车零部件在生产过程中涉及多种项目的检测。仪器信息网跟随时事热点,简要整理了汽车质检常见检测项目,供广大感兴趣的用户参考。产品类别测试项目外饰件测试盐雾腐蚀/气体腐蚀/臭氧腐蚀氙弧灯老化/金属卤素灯阳光模拟老化/碳弧灯老化/荧光紫外灯老化高低温/高低温湿热循环/温度冲击/快速温变防尘/防水/淋雨测试振动/三综合振动/机械冲击机械耐久/疲劳/寿命涂层/镀层特性测试禁限用物质测试内饰件测试化学环保分析耐化学试剂燃烧特性金属卤素灯阳光模拟老化/碳弧灯老化高温红外光照测试高低温/高低温湿热循环/温度冲击/快速温变/低温落球振动/三综合振动操作性能测试机械耐久/疲劳/寿命耐摩擦/耐刮擦/硬币刮擦指甲硬度固化光泽度表皮黏附力/漆膜附着力/胶带附着力剥离强度汽车电子电器产品测试ELV及禁用物质测试耐化学试剂/耐电池液盐雾腐蚀/气体腐蚀/臭氧腐蚀防尘/防水/淋雨测试振动/三综合振动/机械冲击特定环境性能测试高低温/高低温湿热循环/温度冲击/快速温变功能性耐久/疲劳/寿命电学测试电磁兼容测试(CE /RE/ RI/BCI/ESD/ME/瞬态传导抗干扰/耦合传导抗扰度/电源间断跌落实验)产品认证座椅测试机械性能测试:H点/座椅总成纵向调节功能/滑道行程/静态刚度试验/颠簸和蠕动试验/模拟人体进出座椅试验/前坐垫向下强度试验/纵向调节疲劳试验/靠背骨架总成强度试验/靠背调节疲劳/头枕功能试验/座椅扶手强度和刚度试验气候老化测试:温度循环/耐低温耐潮湿、热老化、盐雾试验安规测试:阻燃测试化学环保测试线束测试机械性能试验:振动试验、机械冲击试验、跌落试验、插入/拔出力测试电性能试验:接触电阻、电压降测试、温升试验、耐电压测试、绝缘电阻测试环境试验:高低温、湿热试验、盐雾试验、防尘防水、耐试剂、气体腐蚀试验、耐臭氧试验化学环保测试:ELV、VOC、气味其它试验:尺寸测量、气密性试验、燃烧测试
  • 重磅!美国宣布对14类商品加征301关税,最高加征100%,新能源汽车在列!
    5月14日,美方发布对华加征301关税四年期复审结果,宣布在原有对华301关税基础上,进一步提高对自华进口的电动汽车、锂电池、光伏电池、关键矿产、半导体以及钢铝、港口起重机、个人防护装备等产品的加征关税。电池部件(非锂电池):2024年提高至25%电动汽车:2024年提高至100%口罩:2024年提高至25%电动汽车锂电池:2024年提高至25%非电动汽车锂电池:2026年提高至25%医用手套:2026年提高至25%天然石墨:2026年提高至25%其他重要矿产:2024年提高至25%永磁体:2026年提高至25%半导体:2025年提高至50%港口起重机:2024年提高至25%太阳能电池(无论是否组装成组件):2024年提高至50%钢铝制品:2024年提高至25%注射器和针头:2024年提高至50%报告还提出了以下建议: (1)建立针对国内制造业所用机械的排除程序,包括对某些太阳能制造设备的19项排除建议;(2)为美国海关和边境保护局增拨资金,以加大301条款行动的执行力度;(3)加强私营公司与政府当局之间的协作与合作,以打击国家支持的行为;以及(4)继续评估支持供应链多样化的方法,以提高我们自身供应链的复原力。下周,美国贸易代表署将发布联邦公报,公布有关人士就国内制造业所用机械的拟议修改和排除程序信息发表意见的程序。对此,商务部和外交部第一时间进行了回应。5月14日晚,商务部发布“商务部新闻发言人就美方发布对华加征301关税四年期复审结果发表谈话”。其中提到,美方出于国内政治考虑,滥用301关税复审程序,进一步提高部分对华产品加征的301关税,将经贸问题政治化、工具化,是典型的政治操弄,中方对此表示强烈不满。世贸组织早已裁决301关税违反世贸组织规则。美方非但不予以纠正,反而一意孤行,一错再错。美方提高301关税,违背了拜登总统“不寻求打压遏制中国发展”“不寻求与中国脱钩断链”的承诺,也不符合两国元首达成的共识精神,这将严重影响双边合作氛围。美方应立即纠正错误做法,取消对华加征关税措施。中方将采取坚决措施,捍卫自身权益。此外,5月14日,外交部发言人汪文斌主持例行记者会并回答相关问题时表示:“我们要告诉大家的是,中方一贯反对违反世贸规则单方面加征关税,将采取一切必要措施维护自身正当权益。”
  • 工信部公开征集对新能源汽车、光伏、锂电等领域342项行业标准的意见
    近日,工业和信息化部公开征集对涵盖集成电路、新能源汽车、太阳能光伏、锂离子电池等多个关键领域的共计342项行业标准的意见,截止日期为2024年10月20日。如对拟立项标准项目有不同意见,请在公示期间填写《标准立项反馈意见表》(见附件)并反馈至工业和信息化部科技司,电子邮件发送至KJBZ@miit.gov.cn(邮件主题注明:第十二批标准立项公示反馈)。小编摘录了新能源汽车、太阳能光伏、锂离子电池这三个领域所涉及的部分行业标准项目,以供读者参阅。新能源汽车太阳能光伏锂离子电池附:标准立项反馈意见表.doc
  • 奥林巴斯手持XRF分析仪为汽车玻璃行业提供解决方案
    汽车是现代工业文明璀璨的代表作之一。汽车玻璃是汽车组件中重要的安全件之一,主要目的是保护乘员在行驶过程中,不因为飞来外部异物而导致受伤,同时也保护乘员不受到高速行驶下的风压的影响。  但是现在的一些汽车玻璃也具有如加热、隔热、憎水、集成天线等功能。在汽车玻璃的产线多样化的同时,也对各大汽车玻璃制造商的检测工艺提出了更大的挑战。  汽车玻璃的自爆现象  目前大部分汽车使用的是钢化玻璃,就是经过钢化处理的玻璃,通过浮法工艺制造的玻璃加热到软化温度后,经由骤冷步骤制成。表面呈现向内的压应力,而内部呈现向外的张应力,故其在收到冲击时会需要先抵消表层压应力,从而提高其耐冲击性能。而且,钢化玻璃相比于普通平面玻璃,在碎裂时会形成钝角的颗粒状,保证了乘员的安全。  但钢化玻璃存在自爆风险,因此在生产钢化玻璃的过程中会引入少量的硫化镍杂质,可能由于:   玻璃生产设备中含有镍   原材料中含有微量的镍、硫   使用了含硫燃料  硫化镍结晶在达到379°C的会发生晶相转变,在低温时硫化镍晶体的体积会膨胀约2%~4%, 破坏钢化玻璃内部的应力平衡,埋下自爆的隐患。  功能性玻璃  普通的钢化玻璃,经过处理后可以实现如天线、加热或者隔绝外部热量的功能。  集成天线和加热线的汽车玻璃  夹层玻璃内表面中使用导电金属涂料印刷天线后,经由烧结使涂料和玻璃一体化。再通过导线将其和车内信号放大器相连后,可以接收FM/AM、电视信号、GPS信号等。相比于以前车上的点状天线, 其横排的结构可以使其接收信号的能力更加稳定和可靠。  同时也可以通电加热,实现除霜除雾的效果,确保在寒冷天气驾驶时的视野清晰。  隔热玻璃  在夹层玻璃中间涂覆极细的金属粉末后,由于太阳能量可以被金属颗粒吸收和反射,从而可以达到隔热、降温的作用。在不少高端车型上已经应用了这一类技术。  为汽车玻璃行业提供解决方案:XRF手持式光谱仪——VANTA分析仪  奥林巴斯VANTA手持式XRF分析仪为汽车玻璃业界提供业已成熟的科学解决方案。分析仪发射X射线,X射线撞击被测样品的表面后,样品表面发出荧光。 探测器接收到的荧光后,可以分析样品中含有的化学元素以及成分。除此以外,根据收集到的荧光,分析仪也可以辨别0-60微米区间涂层的厚度。  利用VANTA手持式XRF分析仪 汽车玻璃厂家可以获得如下的好处:   快速检测原片中镍(Ni)的含量, 确保出厂的原片中不含有硫化镍杂质,杜绝钢化玻璃在用户使用时发生自爆的情况。   快速检测夹层玻璃内金属涂料的厚度和均一性,以及其化学成分,确保成品符合设计需求。
  • 阐述环境监测仪器行业未来趋势
    鉴于际经验,我入环境治理投资加速增长周期。按照际经验,大分发达家人均GDP过8000美元开始大规模环保投资,而新兴业家人均GDP过2000美元到4000美元环保投资开始大幅增长。2012年我人均GDP过6,000美元,已到治理污染改善环境的加速环保投资阶段。未来5-10年我环保投资在GDP中所占比例上升至3%左右达到改善环境的程度是种长期然趋势。 紫外辐照计是宽谱线率测量仪,主要用于测量紫外线的辐射能率密度,即每平方厘米的辐射能率。单位为:微瓦/平方厘米(μW/cm2),探测器位于仪器的前端面,使用方便快捷,测量可靠。 紫外辐照计主要是建筑膜,太阳膜、隔热玻璃等对紫外线的阻隔性能测试,紫外线源(太阳,紫外灯等)的辐射强度测量以及用于紫外消毒,固化;气象和农业生产域; 测试太阳膜或隔热玻璃对紫外线的阻隔性能时,两步测量中光源距离应保持相同。对不同强度的紫外源,选择合适的档位量程。不使用时,请按“POWER”键关机。更换电池时,需打开后盖,移去旧电池,换上6F22碱性电池。避免与腐蚀性物品接触、远离温湿的环境。 环境监测仪器行业规模小,资产规模10亿以上的企业占了行业销售规模的40%,行业相对集中。但端仪器直被外资垄断,产PM2.5监测仪器市场占有率仅为15%,未来端仪器的口替代空间大,行业并购未来成为趋势。
  • 2016汽车测试及质量监控博览会(中国)(Automotive Testing Expo China 2016),今年起移师上海世博展览馆3号馆!
    2016汽车测试及质量监控博览会(中国)(Automotive Testing Expo China 2016),今年起移师上海世博展览馆3号馆!将比历届展会介绍更多参展商和更多技术。占据上海世博展览馆3号馆的汽车测试及质量监控博览会(中国),将借助新车销售的快速增长,以及市场对更高质量和更安全的汽车的需求,汇聚世界领先的测试设备供应商和测试服务提供商,举办一场繁忙的三天盛会! Q-Lab公司将携手其代理商,知名仪器经销商翁开尔贸易公司参加本届展会:展台号: 5000(上海世博展览馆3号馆)日期:2016年9月27-29日交通:轨道交通7、8号线(耀华路站)、8号线(中华艺术宫站3号口)可直达! 本届展会我们向业界介绍一系列适用于汽车行业的光老化测试设备,腐蚀测试设备。 展位(展台号5000)镇宅神器一QUV紫外加速老化试验机 - 世界上使用最广泛的老化试验机紫外线会造成曝露在户外的耐用材料的光降解。 QUV试验机的紫外荧光灯能模拟关键的短波紫外线,真实地再现由阳光造成的物理性能损伤。 损伤类型包括褪色、光泽消失、粉化、龟裂、开裂、模糊、起泡、脆化、强度减小和氧化。 QUV紫外测试仪能重现太阳光、雨水和露水造成的损害 。 在几天或几周之内,就能够再现户外数月或数年造成的损害。QUV紫外加速老化试验机是最简单、最可靠、最易用的老化试验机。世界各地使用的QUV试验机达数以淋计,它是世界上使用最广泛的老化试验机。 展位(展台号5000)镇宅神器二Q-SUN Xe-3氙灯试验箱Q-SUN Xe-3氙灯试验箱能再现全光谱太阳光和雨水造成的损害。在几天或几周之内,Q-SUN试验箱就能够再现数月或数年户外老化造成的损害。 Q-SUN Xe-3试验箱是一款全功能的光稳定性、色牢度及耐光性试验箱,而且价格非常合理。它采用三根独立的氙灯灯管。Q-SUN Xe-3试验箱的滑出式样品托架尺寸为451mm x 718mm,在曝晒立体零件或大部件时非常方便。所有的Xe - 3试验箱都提供湿度控制功能,还可以选配喷淋、双喷淋、背喷及低温功能。 Q-SUN Xe-3是唯一拥有双喷淋功能的氙弧试验箱。这个功能可以将第二种液体(如酸雨或肥皂液)喷淋到测试样品上。 Q-SUN Xe-3是最可靠、最易用、最被广泛认可的全尺寸氙灯试验箱。 展位(展台号5000)镇宅神器三Q-FOG CRH 循环腐蚀盐雾箱循环腐蚀测试可提供对自然大气腐蚀极佳的实验室模拟。研究表明,循环腐蚀测试结果在结构、形态和相对腐蚀速率方面与户外类似。 Q-FOG CRH循环腐蚀箱可进行传统盐雾、Prohesion(干湿交替混合盐雾试验)及绝大部分汽车循环腐蚀测试。其最大特点是可以调节相对湿度并精确控制上升时间。同时还有备选的冲洗功能。Q-FOG CRH箱有两种尺寸,以满足多种测试要求。 Q-FOG CRH循环腐蚀盐雾箱是最简单、最可靠且最容易使用的带有RH控制的腐蚀箱。 Q-FOG CRH的问世使得带有RH控制的腐蚀盐雾箱的性价比得到了真正的突破。它可满足绝大多数的汽车腐蚀测试标准,例如GMW 14872和SAE J2334以及其它标准,例如Ford、ISO、GB/T、VW、Volvo、Chrysler和Renault等。该盐雾箱除了具备CCT型号所具有的所有特性和优点之外,还新增最新研发的空气预调节装置实现相对湿度控制。此外,CRH型号还有一个备选的喷淋功能。雾滴更大,流量更高,喷淋时间比盐雾功能下雾化溶液的时间更短。CRH盐雾箱有先进的喷嘴清洁功能,可防止喷嘴堵塞—这也正是市场上其它产品频繁碰到的问题。 在一台Q-FOG CRH盐雾箱中可通过一系列实验条件间的循环实现不同盐雾测试条件。即使是极其复杂的测试循环也可通过Q-FOG控制器轻松编程。 型号Q-FOG CRH600-HSC:传统盐雾和Prohesion测试,湿度控制,喷淋模块,箱容量为640升。Q-FOG CRH1100-HSC:传统盐雾和Prohesion测试,湿度控制,喷淋模块,箱容量为1103升美国Q-Lab公司中国代表处 info.cn@q-lab.com +86-21-5879-7970 扫描关注Q-Lab中国微信公众账号:耐候腐蚀设备及测试专家耐候腐蚀测试领域咨询、技术零距离!
  • 金华正在筹建汽车及汽摩配国家级检测中心
    由于没有权威的新能源汽车及汽摩配产品检测机构,金华市新能源汽车及汽摩配企业只好将产品送往深圳、上海、广州等地检测,金华市企业因此每年不得不担负额外的外送费用。   2011年末,国务院办公厅正式印发的《关于加快发展高技术服务业的指导意见》中明确将“检验检测服务”列为国家重点发展的8个高技术服务业领域之一,这是“检验检测服务”首次以一个产业整体被突出标示。《国务院关于进一步促进中小企业发展的若干意见》也要求加快中小企业公共服务基础设施建设,重点支持在重点领域建设一批产品研发、检验检测、技术推广等公共服务平台。   目前,全国汽摩配相关国家质检中心共有21家,基本上分布在国内已经形成的汽车产业主要集聚区,如天津、上海、江苏、吉林、重庆、湖北、浙江、河南等地。   金华市新能源汽车及汽摩配产业正处于快速发展期,在块状经济向现代集群经济转型升级的关键时期,企业十分需要检测力量的支撑,来提升产品质量。而当前,很多企业的检测能力比较薄弱,检测需求十分迫切,中小企业急需政府建设一个高水平的检验检测公共技术服务平台,以降低企业运行成本,实现“工业强市”和“浙中崛起”。   到2015年外送检测   费用约为7500万元   按相关测算,检验检测需求与生产总值的比例为0.05%。也就是说,到2015年,当金华市汽车产业总规模由目前的600亿元提高到1500亿元时,相关企业每年外送检测费用约为7500万元。   目前,全市汽车整车及汽摩配生产企业近2000家,占全省的30%左右,行业总产值达600多亿元,从业人员近20万人,已涌现出青年集团、今飞集团、万里扬集团、众泰集团等一批龙头企业。汽车产业的产值、销售、利税等主要指标在制造业中均占10%左右,已形成一个较为完整的产业板块,成为金华市第三大产业,市区第一主导产业。   “轮毂产品很多,只需去市场看看,就能模仿出来。”永康一家轮毂生产企业相关人员说,这类产品构造简单,如果依靠自己研发,根本不划算,所以该企业并没有将大量资金投入研发中。   记者了解到,由于大多数企业尚处于模仿阶段,在创新体系的建设和运行、研发以及创新资金投入、人才开发等方面仍处于低水平。金华市大量汽摩配产品的设计和制造技术基本上是模仿,整车销售规模与国内领先者相比差距很大。从零部件企业看,数量多、规模小,大部分产品主要供应非主流整车和部件企业及二三级汽配市场。以齿轮为例,金华市的齿轮生产企业大多是生产精度较低,为货车及农用车配套的低端产品。   当前,影响和制约金华市汽车相关产业进一步快速发展与成长的主要问题在于自主技术创新能力与产业的快速发展需求严重不相适应。而企业进行自主技术创新,就需要不同于一般质量控制的先进检测技术支持。   建立公共检测平台   是企业的迫切要求   记者在浙江万里扬集团有限公司采访时,该公司相关负责人十分热心地让记者参观检测室。该负责人自豪地说,企业建有专业的检测室,公司技术中心是省级技术中心,配置了爱德华三坐标测量仪、美国MM3525齿轮检测线和变速器性能试验台等高端检测设备,检测设备原值达500余万元,能开展齿形齿向、金属材料及性能试验等。   即使是这样的企业,在其700万元的年检测费用中外送费用就高达500万元,主要是一汽等企业要求出具独立的第三方检测报告,并指定送重庆、襄樊、上海等国家质检中心检测。送样到外地检测而产生的交通、人力等费用也不是一个小数目。   武义一家生产工业链条的小型企业业主告诉记者,企业产品主要销往国内汽配市场,没有独立的检测室,每年产品外送检测费用为0.6万元,外送交通、人力等费用0.4万元,主要送检项目为金属材料分析、链长精度和抗拉强度等。   因自身检测条件和本地技术机构检测能力所限,一些中小企业对金属材料的金相分析、金属涂镀磨损等检测及三坐标测量机的检定,都需要到上海或江苏去检测或检定 生产许可证、强制性产品认证企业需要将产品送到上海、重庆、广州等地去型式试验。因此,金华市企业希望金华能拥有一个被主流整车汽车厂认可的第三方检测机构。  金华市正在筹建   国家级检测中心   尽快建设一家国家级新能源汽车及汽摩配检测中心,对金华市打造产业基地,发挥行业引领作用,促进金华市汽摩配产品加工技术创新和提高质量、保障交易,具有重要意义。《浙江省公共检验检测能力建设“十二五”规划》中也有重点建设和全面提升包括金华汽车和零部件在内的产业集群公共检验检测能力的要求。   目前我省的检测机构主要有国家电机及机械零部件质检中心、浙江省新能源汽车零部件质检中心、浙江电动车辆产品质检中心、浙江省汽车摩托车配件产品质检中心和浙江绿色动力电源质检中心质量检验中心。其中,浙江省新能源汽车零部件质检中心的母体是金华市质量技术监督检测院。   为更深入了解产业发展现状,发现产业转型升级存在问题,提升产业发展水平,助推金华赶超发展,今年4月,市质监局组织人员抽取了300家企业(有效样本为288个),来摸底调查新能源汽车及汽摩配企业企业的检测需求。调查显示,有168家企业已建检测室,检测设备原值为44945万元,平均每家企业投入检测设备为268万元。这些企业每年检测费用为7823万元,其中外送检测费用达3128万元,其中外送产生的交通、人力等费用达391万元。   针对企业需求,金华市拟筹建的新能源汽车及汽摩配国家质检中心主要建设内容为:新能源汽车及汽摩配专业实验室建设、科研中试基地建设、标准与信息服务平台建设。其中专业实验室要具备汽车零配件、材料分析、精密测量等检测能力,覆盖原材料、零配件、成品等检测项目。该国家质检中心筹建完成后,将具备“国内领先、世界一流、国际互认”的能力水平。
  • 解决方案 | 手持式光谱仪用于汽车转化膜检测
    转化膜是通过化学或电化学工艺在金属基底表面形成的涂层,它可以改变金属表面颜色并改善金属的耐腐蚀性、油漆附着力等物理和化学性能。常见的转化膜有:阳极氧化膜,铬酸盐转化膜或磷酸盐转化膜等。磷酸锌等相关的复合转化膜长期以来都被用于汽车车身、零部件的预处理。在过去的十年中,基于锆(zr)和钛(ti)的新型涂层被越来越多的被使用,取代了磷酸盐基涂层作为预处理层1,2。锆和锆 / 钛基涂层比锌和锌锰镍磷酸盐具有许多优势 1,2 :• 更好的耐腐蚀性• 更薄的涂层• 减少环境影响和废水排放• 降低运营成本(减少废物和化学品消耗) 锆基和钛基转化镀膜提高了涂料的附着力,增强了对铝合金车身的防腐性能此前,尼通xl3t 手持式光谱仪已广泛应用于化学涂层生产商、汽车企业以及许多工业企业中。尼通xl3t 手持式光谱仪可以对铝合金、冷轧钢(crs)、电镀锌(eg)和热浸镀锌钢(hdg)等基材上的锆和钛涂层进行质量控制。新型的尼通xl5 plus 手持式光谱仪具备强大的基本参数算法,可以为此类应用提供更加简便的工作流程。使用尼通xl5 plus 手持式光谱仪对钛和锆转化镀膜进行非标检测尼通xl5 plus 手持式光谱仪是一款新型的高性能 x 射线荧光(xrf)光谱分析仪,它的几何结构紧凑,又小又轻,同时具备石墨烯窗口的大面积硅漂移探测器和功能强大的5w x射线管,为苛刻的应用(如薄涂层测量)提供了优秀的灵敏度。尼通xl5 plus 手持式光谱仪尼通xl5 plus 手持式光谱仪的非标涂层模式可准确确定纯金属、合金、塑料或木材各种基底上最多4层涂层的厚度3。检测合金(如钢或铝合金)上的钛和锆转化镀层的涂层厚度也十分轻松。不仅如此,尼通xl5 plus 手持式光谱仪操作简单,用户开机即可使用,无需校准,也无需接受复杂的技术培训。结果与讨论下述案例中,利用尼通xl5 plus 手持式光谱仪对 hdg、crs 和铝合金表面 zr和ti转化膜的多个样品进行了分析。首先在配置曲线(分析方法)中设定基底材料(例如钢或铝合金牌号)、涂层元素(例如镀锌钢的锌、锆或钛)以及测量单位和测量时间。图 1a-d 显示了实验室获得的参考值与使用尼通xl5 plus 手持式光谱仪在不同基地材料上进行 zr 和 ti 测量的相关图。线性回归的相关系数r2、斜率和截距如图 1a-d 所示。r2 值表示数据相互关联的程度,其中相关性r2为1。理想情况下,相关性的斜率应等于或接近 1。当 r2 大于 0.98时,使用尼通xl5 plus 手持式光谱仪镀层模式可直接测得不同基底上 zr 和 ti的涂层厚度,与实验室参考值具有很强的相关性。当 r2 值在 0.93 左右时,hdg 上的 zr(图 1b)以及铝合金上的 zr 和 ti 的斜率也接近于 1(图 1c 和 1d),zr 在 crs 上的斜率为 0.804(图 1a)。这种偏离理想值 1 的情况很有可能与涂层中除 zr 以外的化合物及元素有关,其影响基体的密度和质量吸收系数,从而影响 zr 的信号。在这种情况下,对于给定的公式,可以使用标准化功能进行简单的微调整,以提高精度。另一个需要注意的案例,在测量铝合金板上的 zr 涂层时,图中线性回归的截距值为 9.03。这与基底材质中也含有 zr 有关。事实上,锆和钛通常以微量的形式存在于铝合金中,合金牌号标准中没有具体规定。因此,对于给定批次和配方的锆基转化镀膜,只需测量一个涂层样品和一个未涂层样品,然后计算结果的差异即可。如图 3a 所显示的一个示例,其中铝合金板上的锆涂层测量涂层重量为 23.9 mg/m2,而预期值为 15 mg/m2。同一批次的未涂覆基板的 zr为 9.0 mg/m2(图 3b),应从涂覆样品的结果中减去该值。得到的 zr 净值为 14.9 mg/m2,非常接近预期值 15 mg/m2。只有当涂层很薄时,才能进行这样的减法。图 3 a) 涂有 15 mg/m2 zr 的 aa5082 铝合金样品的分析结果,b) 同批次 aa5082 合金未进行涂层样品的分析结果结论尼通xl5 plus 手持式光谱仪非常适合检测现代转化膜,测量的zr 和 ti 在钢、镀锌钢或铝合金等不同基体上的预期值和测量值之间取得了良好的相关性和一致性。与尼通xl3t手持式光谱仪的经验校准法相比,尼通xl5 plus 手持式光谱仪的基本参数模式更易于使用,更灵活,并且不需要许多参考样品。无需标准样品进行校准,仅使用每种涂层类型的少量样品进行检测,即可获得准确数据。如果需要更高精度,用户可以微调分析仪的配置曲线,达到更好准确度。尼通xl5 plus 手持式光谱仪是汽车和金属表面处理行业中控制 zr 和ti 转化镀膜的涂层厚度的理想设备。可以快速获得投资回报:• 提高生产力。尼通xl5 plus 手持式光谱仪在几秒钟内实时显示测量的涂层厚度。在涂层过程中实现及时控制,辅助在成品或半成品的质量控制中快速作出决策。• 具有较低的初始投资和较低的运营成本,而分析性能可与实验室仪器相匹配。• 易于使用。尼通xl5 plus 手持式光谱仪的方法开发和操作不需要实验室人员即可完成。• 无损分析。分析仪接触样品表面不会造成损伤。手持式设计可以直接在成品上进行测量,无需切割样品将其带到实验室。• 用途广泛。尼通xl5 plus 手持式光谱仪不仅可以用于涂层测量,还可用于确定非涂层材料(如铝合金)的合金牌号等。参考文献1.gardob"3. m. bauer, application note: measuring metal coating thickness at line using the thermo scientific niton xl5 plus, thermo fisher scientific, tewksbury, ma, usa
  • 大规模设备更新和汽车以旧换新,仪器设备厂商有哪些机会?
    2月19日,比亚迪官宣,推出比亚迪秦PLUS和驱逐舰05两款荣耀版混动车型,最低售价仅7.98万元。就在同一天,五菱、长安汽车、哪吒汽车、北京现代、上汽通用别克等多家车企品牌陆续发布多款车型的降价消息。新能源汽车再次打响“价格战”。3月13日,国务院印发《推动大规模设备更新和消费品以旧换新行动方案》的通知,特别提出实施消费品以旧换新行动,开展汽车以旧换新。据悉,汽车以旧换新政策细则正在紧锣密鼓地制订中。有行业人士预估,有望撬动千万辆级汽车市场。当“价格战”叠加以旧换新政策,整个汽车行业无疑会变得更加“内卷”。为保持市场份额和盈利空间,各大车企纷纷将提质增效列为2024年首要任务。在这样的大背景下,高精度、自动化、智能化的仪器设备需求将迎来增长。高精度仪器设备能够确保汽车零部件和整车的制造精度,提升产品质量和性能;自动化和智能化的仪器设备能够降低人工操作的误差,提高生产效率。为助力汽车产业提质增效,仪器信息网将于2024年3月19-21日举办第六届“汽车质量控制与检测技术”网络会议。会议聚焦汽车零部件失效分析、新能源汽车测试、汽车尺寸测量三大主题,邀请20余位来自车企、钢厂、高校、检测机构等资深专家以及知名科学仪器企业技术代表分享精彩报告。点击图片直达会议页面1、汽车零部件失效分析失效分析是研究汽车零部件丧失其规定功能的原因、特征和规律;研究其失效分析技术和预防技术,目的在于分析零部件失效的原因,提出改进和预防措施,从而提高汽车可靠性和使用寿命。失效分析最重要的分析方法包括金相分析、无损检测、化学成分分析、力学性能测试等。本次会议,来自一汽、东风、中车、奔驰、抚顺特钢、北科大的行业专家将分享汽车零部件失效分析思路与案例,欧波同将分享其智能化汽车材料显微分析解决方案。2、新能源汽车测试新能源汽车的安全性一直备受关注,目前国家政策层面正逐步出台相关法律法规,完善新能源汽车测试,仪器设备厂商也纷纷推出新能源汽车测试解决方案,本次会议,中汽研、招商车研、北汽新能源、四川新能源汽车创新中心、国联汽车动力电池研究院等资深工程师将分享新能源三电系统测试分析技术,日本电子、仪景通、天津三英、梅特勒托利多技术专家将展示其产品在新能源汽车测试领域的应用。3、汽车尺寸测量在汽车制造过程中,尺寸偏差的来源主要有设计偏差、零件制造偏差、装配过程偏差和质量检测偏差等。这些偏差经过传递和累积,可能导致最终整车尺寸质量不能满足设计要求。因此,对车身制造尺寸偏差的研究及控制尤为重要。本次会议,高校科研院所几何精密测量仪器研发专家以及检测机构应用专家,将分享机器视觉、3D扫描仪、激光跟踪仪在汽车尺寸测量方面的应用。欢迎大家免费报名参会!也欢迎仪器设备厂商分享汽车检测领域解决方案!赞助联系人:韩经理(手机号:18910514091 邮箱:hanyf@instrument.com.cn)扫码报名抢位附会议日程:报告时间报告题目报告嘉宾单位3月19日 专场一:汽车零部件失效分析09:00-09:40汽车零部件疲劳失效分析冯继军东风商用车技术中心工艺研究所 专家总师09:40-10:10欧波同智能化汽车材料显微分析解决方案苏瑞雪北京欧波同光学技术有限公司 业务发展(BD)工程师10:10-10:50齿轮失效模式及影响因素探讨邵亮一汽集团研发总院全重实验室 高级主任10:50-11:30汽车非调质钢连杆胀断失效分析张朝磊北京科技大学 副教授11:30-14:00午休14:00-14:40汽车钢典型缺陷的金相表征技术及与失效的关系程丽杰抚顺特殊钢股份有限公司 高级专家14:40-15:20机械零部件失效分析工程技术属性-AI智能助力企业数字化转型李平平中车戚墅堰机车车辆工艺研究所股份有限公司 高级工程师15:20-16:00汽车金属零部件涂层性能试验及评价宋伟伟北京奔驰汽车有限公司 高级工程师16:00-16:40汽车零部件失效分析的基本程序与应用宫秀勉德国莱茵TÜV大中华区 工业服务与信息安全项目经理3月20日 专场二:新能源汽车测试09:00-09:30面向新一代动力电池(全固态电池)的原位表征与测试技术研究李华锋四川新能源汽车创新中心(欧阳明高院士工作站) 实验室主任09:30-10:00专业的汽车生产环境检测系统-PCI系统的介绍朱明芬捷欧路(北京)科贸有限公司 应用工程师10:00-10:30锂离子电池快充策略的制定及应用朱阳阳北京新能源汽车股份有限公司 高级经理10:30-11:00Evident光学显微镜在新能源汽车产业的应用吴丹霞仪景通光学科技(上海)有限公司 高级产品经理11:00-11:30X射线三维CT技术在新能源汽车检测的应用康馨予天津三英精密仪器股份有限公司 应用工程师11:30-12:00锂离子电池析锂检测方法及其应用高敏国联汽车动力电池研究院 高级工程师12:00-14:00午休14:00-14:30面向全生命周期精细化管理的动力电池内外状态预测模型陈思言吉林大学汽车工程学院 副教授14:30-15:00Evident X射线荧光分析仪在新能源汽车产中的应用谈思涵仪景通光学科技(上海)有限公司 产品经理15:00-15:30原料及零部件质量控制与检测对汽车安全的影响黄永康梅特勒托利多科技(中国)有限公司 细分市场专家15:30-16:00三元电池过充燃烧特性及其安全边界研究方升国联汽车动力电池研究院 高级工程师16:00-16:30新能源汽车充电性能测试解决方案及充电连接装置要点解读黄林波招商局检测车辆技术研究院有限公司 新能源试验研究中心 检测师16:30-17:00新能源汽车能量流测试分析张胜强中汽研软件测评(天津)有限公司 高级工程师17:00-17:30汽车声学包设计之测试与仿真庞金祥比翱科技集团 研发总监3月21日 专场三:汽车零部件尺寸测量09:30-10:00汽车关键零部件机器视觉在线检测技术卢荣胜合肥工业大学 教授10:00-10:30全自动化3D扫描在汽车尺寸测量中的应用肖华根优尔鸿信检测技术(深圳)有限公司 技术总监10:30-11:00激光跟踪仪及其在汽车尺寸测量中的应用董登峰中国科学院微电子研究所 研究员参会指南1、点击会议页面链接或扫描下方二维码报名;会议页面:https://www.instrument.com.cn/webinar/meetings/automobile2024/2、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接;3、本次会议不收取任何注册或报名费用;4、会议联系人:牛编辑(手机号:13520558237 邮箱:niuyw@instrument.com.cn)
  • 长城汽车自主建设一流汽车碰撞实验室
    伴随着中国汽车工业井喷式增长,国内自主品牌无论是在汽车安全理念,还是汽车安全技术方面,都取得了很大发展,且逐渐与国际接轨。记者从长城汽车了解到,长城汽车作为中国汽车企业代表,率先在业内发起并倡导“三维安全论”,即“车辆的安全来自于对车辆本身、车内乘员,以及路边行人的全方位保护”。   据介绍,2007年,长城汽车开始自主建设汽车碰撞实验室,长城全系车型在生产过程中、出厂前,都可在这里做实景安全模拟碰撞试验,并根据碰撞后产生的真实数据对各款车型进行相应的安全技术调校,保证所有出厂的产品都能达到一个最好的安全状态。
  • CNAS发布汽车和摩托车检测领域实验室能力认可准则
    2011年2月11日,中国合格评定国家认可委员会发布了发布CNAS-CL13:2011《检测和校准实验室能力认可准则在汽车和摩托车检测领域的应用说明》及转换实施安排的通知。具体内容如下所示: 关于发布CNAS-CL13:2011《检测和校准实验室能力 认可准则在汽车和摩托车检测领域的应用说明》及转换实施安排的通知 相关实验室和评审员:   经批准,中国合格评定国家认可委员会(CNAS)于2011年2月1日发布CNAS-CL13:2011《检测和校准实验室能力认可准则在汽车和摩托车检测领域的应用说明》,2011年3月1日开始实施。以下就文件修订情况和转换实施安排做出说明:   一、文件修订说明   CNAS-CL13:2011是对CNAS-CL13:2006的第一次修订。本次修订根据实验室认可和检测技术的发展状况,基于明确认可要求、确保认可质量、降低认可风险的原则,结合中国合格评定国家认可委员会(CNAS)技术委员会机械专业委员2   会行业专家及相关方意见来实施。本次修订主要在条款5.2.1中增加了对道路试验驾驶人员的相关要求 细化了5.3.1条款中有关汽车和摩托车检测领域设施和环境条件的相关要求 增加了5.5条款中关于设备的相关要求等,并进行了文字修改和调整。修订前后的差异详见CNAS-CL13:2011《检测和校准实验室能力认可准则在汽车和摩托车检测领域的应用说明》发布稿。   二、CNAS-CL13:2011《检测和校准实验室能力认可准则在汽车和摩托车检测领域的应用说明》的转换实施安排   1. 新版《检测和校准实验室能力认可准则在汽车和摩托车检测领域的应用说明》(CNAS-CL13:2011)于2011年2月1日发布,2011年3月1日实施,自实施之日起该领域所有新申请的实验室(含对该领域的扩项)均应满足新版文件的要求。   2. 2011年3月1日至2011年4月31日为文件转换过渡期,过渡期间该领域新申请的实验室(含对该领域的扩项)按照CNAS-CL13:2011接受评审,已获认可实验室可以自愿选择按照新版文件接受评审,但实验室应分析CNAS-CL13修订前后的差异,在此基础上对相关文件和要求进行必要的调整。   3. 2011年5月1日起,原CNAS-CL13:2006将停止使用,申请或获得该领域认可的实验室应该满足CNAS-CL13:2011的要求,CNAS在该领域的认可评审活动,包括初/复评、扩项、监督,均将按照CNAS-CL-13:2011要求进行。   CNAS-CL13:2011《检测和校准实验室能力认可准则在汽车和摩托车检测领域的应用说明》可在CNAS网站认可规范栏目下载,请相关实验室和评审员遵照实施。   特此通知。
  • 德国Comemso电动汽车与充电桩互操作性测试中间人模式
    德国Comemso电动汽车与充电桩互操作性测试中间人模式德国科尼绍Comemso EV充电分析仪/模拟器,通过对充电过程中控制信号和负载回路的监测与评价,为充电中各种问题的分析和解决提供有效的途径。CCS, ISO 15118 / DIN 70121 ,IEC 61851测试系统方案 充电桩通信协议DIN70121、ISO15118、GB/T 27930区别要点DIN70121、ISO 15118、GB/T 27930三者都是针对电动汽车充电设施的充电接口通信这种特定应用场景设计的通信协议。ISO15118、DIN70121基于PLC通信,GB/T27930基于CAN通信。GB/T 27930是针对我国国标GB/T20234.3的直流充电接口制定的协议,而ISO15118除了传统传导式充电外,还涉及到了V2G(向电网回馈电能)和无线充电部分内容。DIN70121是针对欧洲和北美充电接口(Combo,交直流合二为一的一种充电接口)定义的一种通信协议。从分层结构上讲,ISO 15118分为三层,即应用层、互联层和物理层,ISO15118的物理层涵盖了部分数据链路层的功能(因此,称为物理层或许也不太确切)。DIN70121标准中明确指出主要参考了ISO/OSI的7层参考模型,并在规范中进行了描述。GB/T 27930在ISO/OSI的7层参考模型基础上的简化模型,简化后分为三层:物理层、数据链路层以及应用层。CCS一致性测试系统解决方案通信协议一致性及互操作测试保障了互操作,但是真正做好非常不易。首先要求测试规范定义者及测试系统开发者有通信专业知识,需要精通要待测试的通信技术和协议细节。在精通技术和通信协议基础上,还需要制定协议实现一致性声明(PICS),测试套结构和测试目的(TSS&TP),抽象测试集及部分协议实现测试的额外信息(PIXIT)三个主要协议测试规范文档等工作。PASSIVE GATEWAY “comemso是一家创新型公司,在汽车和电子移动领域建立了自己的地位。我们很高兴能将客户的需求作为新产品的基础,并用我们的创新技术与之互补,从而创造出具有卓越功能的新系统。” 德国科尼绍充电测试仪CCS,CHAdeMO3.0,GBT标准 CCS, ISO 15118 / DIN 70121 ,IEC 61851测试系统方案PLC-SNIFFER(PASSIVE)德国科尼绍Comemso公司发源于德国斯图加特企业工业的摇篮;科尼绍Comemso作为CharIN.e.v的会员,德国科尼绍Comemso GmbH是ISO15118-4 、ISO15118-5, DIN70121测试规范的主要起草者。MANIPULATING GATEWAY德国科尼绍Comemso电动汽车充电桩分析仪,能够用于测试充电功能和互操作性,高精度、准确的测试数据,符合欧标、日标、国标;戴姆勒和宝马等知名德国企业的合作伙伴。符合交流AC标准:IEC61851-1,SAEJ1772和GB/T18487.1-2015符合直流DC标准: IEC 61851-1, DIN 70121, ISO 15118, SAE J1772 和IEC 61851-23.通讯协议分析标准:GB/T27930-2011和GB/T27930-2015标准专为不同类型的使用而设计1、充电全过程中进行实时测试分析(Man-in-the-Middle模式):放在EVSE-EV中间,对充电过程进行监测;可以长时间进行数据记录l 电流负载回路品质监测:设定负载电流的允许波动范围,自动纪录超过设定范围的片段数和位置。l CP信号品质监测:设定控制信号的平台值、频率、占空比等参数的误差允许范围。2、EV Test模式 电动汽车测试模拟EV Test模拟充电桩,和电源组合进行动作,检测电动汽车l EV端响应速度测试l CP信号耐受性模拟测试l PP响应模拟测试3、 EVSE Test模式测试EVSE充电桩EVSE Test模拟电动汽车,搭配电源电子负荷,检测充电桩l EVSE输出CP信号的品质检测l 负载响应速度测试lEV端R误差模拟测试l EV端故障模拟测试l 线路、接口故障、老化测试l CP信号短路测试产品优势1、 领先的测量技术在充电系统分析领域2、 交流充电分析符合IEC 61851-1 充电模式1, 2 3, SAE J1772 和GB/T 18487.1-2015 (AC).3、 充当PLC跟踪器(纪录SLAC,V2G消息),实时测量AC / DC电流和电压4、 DC直流充电分析符合IEC 61851-1 充电模式4, DIN 70121, ISO 15118 和 SAE J1772, 同时也满足IEC61851-23附件 CC (可选).5、 对整个充电过程进行长期分析6、 无需示波器!在几个小时的每个时段内进行硬实时和自动化测试,以符合控制传输信号的标准。7、 可以检测和记录电流中断或组件损坏的原因,例如, 关于具有特定充电站的特定电动车辆之间的“不兼容”。8、 适用于不同充电连接器接口和应用的大量连接器和适配器。9、 可实现CAN接口功能测试(EV测试/ EVSE测试)的实时测量, 分 析和控制,半自动化和测试库。10、模块化扩展选项,适用于软件和硬件。11、坚固的外壳,适合移动户外使用,电池供电,IP66封闭式外壳,IP54开放式外壳。12、直观的操作/简便的测试自动化。13、国际知名的新能源汽车厂、充电桩制造商中广泛的成功使用。Head-office:Unit 2309, BANK OF AMERICA TOWER 12, HARCOURT ROAD CENTRAL,HONG KONGMainland-office:21/F, PEARL RIVER TOWER, NO.15 ZHUJIANG WEST ROAD, TIANHE DISTRICT, GUANGZHOU热线电话:400-8018-534, 400-860-5168转3111 020-83655027, 0755-23228005FAX:400-860-5168E-mail:order@freeboard.com.cn
  • “两会”汽车领域提案:聚焦“碳中和”目标 发展新能源汽车
    3月11日,十三届全国人大四次会议闭幕。作为国民经济重要支柱产业的汽车产业,依然是今年热议的焦点之一。国内汽车市场开始由增量市场转向存量市场,竞争进一步加剧;同时,在新技术浪潮下,中国汽车产业也从处于高速增长向高质量增长转变的新阶段。汽车领域代表就新形势下行业如何发展提出诸多提案,其中,“碳中和”目标下的新能源汽车如何发展成为被重点关注的领域;同时,推动汽车芯片国产化、智能网联汽车发展亦成为高频词。一、新能源汽车吉利集团李书福:中汽数据测算,2019年我国交通行业碳排放在12亿吨左右,其中商用车保有量仅占我国汽车保有量的12%左右,却制造了道路交通碳排放的56%。根据《中国移动源环境管理年报2020》数据,2019年全国货车氮氧化物(NOx)、颗粒物(PM)排放分别占汽车排放总量的83.5%、90.1%。汽车行业要实现碳排放达峰及排放污染物治理,货车的电动化势在必行。换电模式为货车电动化提供了可行的能量补给方式,国家也发布了一系列政策推动货车的电动化及换电模式示范运行,但目前货车电动化仍面临车辆最大总质量、整车长度等法规方面的障碍。针对货车电动化级重卡换电新模式、新业态发展过程中遇到的实际困难,建议对原标准GB1589-2016《道路车辆外廓尺寸、轴荷及质量限值》中质量及长度限值作补充规定。上汽集团陈虹:氢能源作为脱碳和未来清洁能源的重要解决方案之一,已经成了当下很多国家关注的重点。但是,目前氢能产业在制氢、储氢、运氢、加氢等各个环节发展受制于当前法规政策的种种限制。为此,陈虹建议:一是从国家层面尽快形成统一的中国氢能战略规划。二是在氢能管理政策法规层面有所突破。三是扩大全国碳排放权交易市场配额管理的减排项目范围和碳交易的试点范围,将工业副产氢提纯、可再生能源制氢及加氢站项目纳入减排项目范围,以进入国家碳排放权交易市场,提高绿色制氢项目受益范围,引导社会对于绿色制氢项目的投资积极性。四是在氢燃料电池汽车示范城市群对使用绿氢(可再生能源产生的氢能)进行一定时期的专项补贴。长城汽车王凤英:为实现2030年碳达峰及2060年碳中和的目标,保障国家能源安全,我国需发展车用氢能产业,推动燃料电池汽车示范运行规模,提高可再生能源制氢比例,以加快推进低碳减排。但我国氢能产业战略导向尚不明朗,支持政策尚不完善,加氢站管理缺位,车用氢能供给体系尚不健全,关键材料和零部件自主化能力还不足,整车制造及氢气价格过高导致产业化进程受阻。为支撑燃料电池汽车规模化示范应用,我国亟需解决产业发展所暴露出的种种问题此外,王凤英还建议推动中国新能源汽车产业全球化发展。她认为,发展新能源汽车已成为全球车企转型共识,国际竞争日益激烈。从产业、技术和商业模式的发展规律来看,中国新能源汽车加快全球化发展,有利于抢先占领全球化用户心智,改变汽车产业国际分工格局,提升国际竞争力。二、车用芯片长安汽车朱华荣:由于汽车核心芯片主要依赖进口,随着国际局势风云变化、全球半导体原材料和产能日益紧张、新冠疫情对供应链影响等,汽车芯片存在随时断供风险,且将成为阶段性和结构性问题长期存在,汽车芯片逐渐成为我国汽车工业发展中的主要‘卡脖子’环节。朱华荣表示,在保证产业链稳定供应基础上,建议国家出台积极政策来推动汽车芯片国产化,维护汽车供应链安全。具体包括,设立汽车产业核心芯片及生产设备国产化重大专项;强化激励政策鼓励企业加大投入;支持主机厂在整车开发过程中与国内汽车芯片商尽早开展汽车芯片定制化研发;加强行业标准制定等。广汽集团曾庆洪:中国汽车要强国应先“强芯”,要集中人力、财力、物力解决芯片问题,加强关键零部件产业链建设,坚持自主创新和开放合作两个不动摇,分别解决长期和短期问题。奇瑞汽车尹同跃:突破车载芯片“卡脖子”技术,应强化产业生态融合。他建议,明确车载芯片国产化率发展目标,加大芯片产业链建设、重点扶持及知识产权保护力度;从标准、规范、人才、技术层面给予芯片行业、零部件行业与整车以支持;在产业链生态上给与政策鼓励以及资金支持,推动芯片生态与部件生态、整车生态融合发展。上汽集团陈虹:单靠市场一股力量很难推动车规级芯片国产化,需要形成政府牵头,整车企业联合,针对头部芯片企业开展重点扶持的策略。他建议,在消费级芯片企业的扶持政策基础上,加大对车规级芯片行业的扶持力度,使整车和零部件企业“愿意用、敢于用、主动用”。同时,制定车规级芯片“两步走”的顶层设计路线,实现车规级芯片企业从外部到内部的动力转换。三、智能网联汽车广汽集团曾庆洪:现行交通安全法规是基于完全由人驾驶的车辆而设立的,智能驾驶汽车实际应用仍面临许多合法性难题;同时,还存在自动驾驶汽车道路测试缺乏操作指引,各地测试牌照没有形成互认机制,测试时间和资金成本高;受制于道路基础设施限制和车与外部信息交互(V2X)设备的装配率低,智能网联汽车暂时只能着重发展“单车智能”的技术路线方向,网联化发展进程较慢等发展智能网联汽车,法律法规要走在前面。曾庆洪建议,要尽快完善现行交通安全法规,确认“机器驾驶人”的法律主体资格;加快自动驾驶相关技术标准的编制和发布;完善现行自动驾驶汽车道路测试相关政策法规等。长城汽车王凤英:在我国现行相关法律法规中,产品管理、交通管理、责任界定、保险监管、网络安全管理、地理信息管理等方面的部分规定,不能完全适用于智能网联汽车,存在一些制约智能网联汽车商用化落地的“矛盾点”和可能触发潜在风险的“空白点”。王凤英建议,加快形成跨部门、跨行业、跨领域的统筹协调机制;加快推进智能网联汽车法律法规制修订工作;处理好科技进步与法律稳定性之间的关系。奇瑞汽车尹同跃:近年我国C-V2X得到快速发展,但由于各示范区场景、设备、方案的不同特点,作为主机厂端推进多场景应用会付出多重的准入及通讯协议匹配投入。因此,尹同跃建议,建立国家级测试示范区测试车辆上路准入结果互认机制;各国家级测试示范区使用统一的C-V2X通讯技术;国家层面推进车企上市新车具备嵌入式的蜂窝连接功能;建立芯片底层交互标准;鼓励地方建立C-V2X应用示范区,推动智能网联汽车产业发展,在政策和资金方面给予支持。此外,在促进L3级自动驾驶技术落地方面,尹同跃认为,L3级别自动驾驶应在低速场景下积极探索、先行先试,通过低速场景行驶里程,积累自动驾驶工况,为高速自动驾驶做技术储备等。四、汽车及零部件材料分析与测试评价网络大会我国是世界汽车产销第一大国,汽车产业可在实现碳达峰、碳中和目标中起中流砥柱作用,尤其是汽车轻量化、新能源汽车发展是大势所趋,对于节能减排有着积极意义。同时,汽车产品全生命周期评价 (LCA)可以对汽车全生命周期所产生的物耗、能耗与排放进行系统分析与科学评估。基于此,仪器信息网将于2021年3月16-17日组织召开第三届“汽车及零部件材料分析与测试评价技术”网络会议,特设汽车零部件测试技术、汽车新材料测试技术、新能源汽车测试技术、汽车全生命周期评价4个分会场。本次会议为期2天,20余位报告人将于云端为我们带来一场关于汽车测试评价技术的行业盛会!目前,一汽、重汽、比亚迪、蔚来、广汽、上汽、东风、福特、福田、华晨等知名车企,首钢、包钢、本钢、武钢、东北特钢等各大钢厂已报名,剩余免费名额不足100席,报名从速!无需下载报名软件与付费,长按识别下方二维码或点击报名链接即可免费报名。一键报名:https://www.instrument.com.cn/webinar/meetings/car2021/
  • 新能源汽车引领下年更新159条标准——2021汽车材料及零部件测试标准盘点
    2021年可谓标准“元年”,中共中央、国务院印发《国家标准化发展纲要》,将推动标准化与科技创新互动发展作为重要任务之一,研究制定新能源汽车、智能网联汽车和机器人等领域关键技术标准,推动产业变革。我国是汽车产销第一大国,随着新能源汽车、智能网联汽车技术的快速发展和应用,充分发挥标准的引领和规范作用,已成为支撑我国汽车产业转型升级和高质量发展的推动力。回顾过去这一年,我国批准发布大量汽车标准,本文就国家标准、行业标准及主流团体标准进行了简要盘点,以飨读者。国家标准国家标准分为强制性标准和推荐性标准两种,强制性标准主要包括汽车的安全性标准、汽车排放物的控制标准、汽车操声限制标准、汽车燃油消耗量限制标准等。2021年,由全国汽车标准化技术委员会(SAC/TC114)归口管理的国家标准共58项。序号标准号标准名称发布日期实施日期1GB 17675-2021汽车转向系 基本要求2021/2/202022/1/12GB 19578-2021乘用车燃料消耗量限值2021/2/202021/7/13GB 26512-2021商用车驾驶室乘员保护2021/2/202022/1/14GB/T 39851.2-2021道路车辆 基于控制器局域网的诊断通信 第2部分:传输层协议和网络层服务2021/3/92021/10/15GB/T 39895-2021汽车零部件再制造产品 标识规范2021/3/92021/10/16GB/T 39897-2021车内非金属部件挥发性有机物和醛酮类物质检测方法2021/3/92021/10/17GB/T 39896-2021厢式货车系列型谱2021/3/92021/10/18GB/T 32694-2021插电式混合动力电动乘用车 技术条件2021/3/92021/10/19GB/T 26779-2021燃料电池电动汽车加氢口2021/3/92021/10/110GB/T 19753-2021轻型混合动力电动汽车能量消耗量试验方法2021/3/92021/10/111GB/T 19237-2021汽车用压缩天然气加气机2021/3/92021/10/112GB/T 18386.1-2021电动汽车能量消耗量和续驶里程试验方法 第1部分:轻型汽车2021/3/92021/10/113GB/T 39901-2021乘用车自动紧急制动系统(AEBS)性能要求及试验方法2021/3/92021/10/114GB/T 39899-2021汽车零部件再制造产品技术规范 自动变速器2021/3/92021/10/115GB 9656-2021机动车玻璃安全技术规范2021/4/302023/1/116GB 40164-2021汽车和挂车 制动器用零部件技术要求及试验方法2021/4/302022/1/117GB/T 40032-2021电动汽车换电安全要求2021/4/302021/11/118GB/T 31498-2021电动汽车碰撞后安全要求2021/8/192022/3/119GB/T 40432-2021电动汽车用传导式车载充电机2021/8/192022/3/120GB/T 40494-2021机动车产品使用说明书2021/8/192022/3/121GB/T 40499-2021重型汽车操纵稳定性试验通用条件2021/8/192022/3/122GB/T 40501-2021轻型汽车操纵稳定性试验通用条件2021/8/192022/3/123GB/T 40509-2021汽车转向中心区操纵性过渡特性试验方法2021/8/192022/3/124GB/T 40507-2021乘用车 自由转向特性 转向脉冲开环试验方法2021/8/192022/3/125GB/T 40512-2021汽车整车大气暴露试验方法2021/8/192022/3/126GB/T 40521.1-2021乘用车紧急变线试验车道 第1部分:双移线2021/8/192022/3/127GB/T 40521.2-2021乘用车紧急变线试验车道 第2部分:避障2021/8/192022/3/128GB/T 38146.3-2021中国汽车行驶工况 第3部分:发动机2021/8/192022/3/129GB/T 40429-2021汽车驾驶自动化分级2021/8/192022/3/130GB/T 24347-2021电动汽车DC/DC变换器2021/8/192022/3/131GB/T 40428-2021电动汽车传导充电电磁兼容性要求和试验方法2021/8/192022/3/132GB/T 34015.4-2021车用动力电池回收利用 梯次利用 第4部分:梯次利用产品标识2021/8/192022/3/133GB/T 40433-2021电动汽车用混合电源技术要求2021/8/192022/3/134GB/T 40430-2021道路车辆 基于控制器局域网的诊断通信 符号集2021/8/192022/3/135GB/T 34015.3-2021车用动力电池回收利用 梯次利用 第3部分:梯次利用要求2021/8/192022/3/136GB/T 14172-2021汽车、挂车及汽车列车静侧倾稳定性台架试验方法2021/8/192022/3/137GB/T 40822-2021道路车辆 统一的诊断服务2021/10/112022/5/138GB/T 40861-2021汽车信息安全通用技术要求2021/10/112022/5/139GB/T 5334-2021乘用车 车轮 弯曲和径向疲劳性能要求及试验方法2021/10/112022/5/140GB/T 39851.3-2021道路车辆 基于控制器局域网的诊断通信 第3部分:排放相关系统的需求2021/10/112022/5/141GB/T 33598.3-2021车用动力电池回收利用 再生利用 第3部分:放电规范2021/10/112022/5/142GB/T 38775.7-2021电动汽车无线充电系统 第7部分:互操作性要求及测试 车辆端2021/10/112022/5/143GB/T 12678-2021汽车可靠性行驶试验方法2021/10/112022/5/144GB/T 27840-2021重型商用车辆燃料消耗量测量方法2021/10/112022/5/145GB/T 19754-2021重型混合动力电动汽车能量消耗量试验方法2021/10/112022/5/146GB/T 40712-2021多用途货车通用技术条件2021/10/112022/5/147GB/T 40711.2-2021乘用车循环外技术/装置节能效果评价方法 第2部分:怠速起停系统2021/10/112022/5/148GB/T 38775.5-2021电动汽车无线充电系统 第5部分:电磁兼容性要求和试验方法2021/10/112022/5/149GB/T 40578-2021轻型汽车多工况行驶车外噪声测量方法2021/10/112022/5/150GB/T 12535-2021汽车起动性能试验方法2021/10/112022/5/151GB/T 40625-2021汽车加速行驶车外噪声室内测量方法2021/10/112022/5/152GB/T 5909-2021商用车 车轮 弯曲和径向疲劳性能要求及试验方法2021/10/112022/5/153GB/T 40711.3-2021乘用车循环外技术/装置节能效果评价方法 第3部分:汽车空调2021/10/112022/5/154GB/T 39037.1-2021用于海上滚装船运输的道路车辆的系固点与系固设施布置 通用要求 第1部分:商用车和汽车列车(不包括半挂车)2021/10/112022/5/155GB/T 40711.4-2021乘用车循环外技术/装置节能效果评价方法 第4部分:制动能量回收系统2021/10/112022/5/156GB/T 40855-2021电动汽车远程服务与管理系统信息安全技术要求及试验方法2021/10/112022/5/157GB/T 40857-2021汽车网关信息安全技术要求及试验方法2021/10/112022/5/158GB/T 40856-2021车载信息交互系统信息安全技术要求及试验方法2021/10/112022/5/1行业标准汽车行业标准主要包括汽车整车、发动机及各大总成的性能要求、技术条件等表明产品本身质量水平的标准。2021年,由全国汽车标准化技术委员会(SAC/TC114)归口管理的行业标准共9项。序号标准号标准名称发布日期实施日期1QC/T 1149-2021大件运输专用车辆2021/5/172021/10/11QC/T 1152-2021电动摩托车和电动轻便摩托车用DC/DC变换器技术条件2021/8/212022/2/12QC/T 1153-2021汽车紧固连接螺栓轴力测试 超声波压电陶瓷片法2021/8/212022/2/13QC/T 1154-2021汽车微电机用换向器2021/8/212022/2/14QC/T 1155-2021汽车用USB功率电源适配器2021/8/212022/2/15QC/T 1156-2021车用动力电池回收利用 单体拆解技术规范2021/8/212022/2/16QC/T 271-2021微型货车防雨密封性试验方法2021/8/212022/2/17QC/T 550-2021汽车用蜂鸣器2021/8/212022/2/18QC/T 62-2021摩托车和轻便摩托车减震器2021/8/212022/2/19QC/T 942-2021汽车材料中六价铬的检测方法2021/8/212022/2/1团体标准本文仅整理由中国汽车工程学会(CSAE)批准发布的团体标准,共92项。中国汽车工程学会标准化工作最早始于2006年,2014年入选首批团体标准试点单位。以下标准自发布之日起生效。序号标准号标准名称发布日期1T/CSAE 172-2021电动乘用车剩余里程准确度评价试验方法2021/2/262T/CSAE 173-2021基于道路载荷谱的汽车用户使用与试验场试验相关性分析评价规程2021/3/293T/CSAE 174-2021汽车产品可靠性增长开发指南2021/3/294T/CSAE 175-2021汽车可靠性设计的用户定义方法2021/3/295T/CSAE 176-2021电动汽车电驱动总成噪声品质测试评价规范2021/3/296T/CSAE 177-2021电动汽车车载控制器软件功能测试规范2021/4/127T/CSAE 179-2021汽车用高韧性热镀铝硅合金镀层热冲压钢板技术要求2021/4/128T/CSAE 180-2021轻型汽车道路行驶工况2021/4/129T/CSAE 40-2021乘用车塑料前端框架技术条件2021/4/1210T/CSAE 178-2021电动汽车高压连接器技术条件2021/5/1311T/CSAE 181-2021汽车室内润滑脂气味测试及评价方法2021/5/1312T/CSAE 182-2021汽油机油低速早燃性能测试方法2021/5/1313T/CSAE 184-2021电动汽车动力蓄电池健康状态评价指标及估算误差试验方法2021/5/1314T/CSAE 185-2021自动驾驶地图采集要素模型与交换格式2021/5/1315T/CSAE 186-2021电动汽车动力蓄电池箱火灾用气体防控装置2021/5/1316T/CSAE 183-2021燃料电池堆及系统基本性能试验方法2021/6/1117T/CSAE 75.2-2021汽车防锈包装规程 第2部分:动力总成及其主要零部件2021/6/1118T/CSAE 191-2021全球典型地区气候环境老化严酷度分级2021/6/1119T/CSAE 192-2021汽车零部件电镀和涂装实验室 通用技术要求2021/6/1120T/CSAE 193-2021汽车用自攻螺钉在热塑性塑料上拧紧扭矩性能试验方法2021/6/1130T/CSAE 199-2021汽车用高真空压铸铝合金减振器支座技术条件2021/6/3031T/CSAE 200-2021汽车用铝合金直锻工艺轮毂技术条件2021/6/3032T/CSAE 201-2021汽车用薄钢板冲压极限减薄率测试方法
  • 广电计量子公司获福特汽车、小鹏汽车第三方实验室能力认可
    近期,广电计量检测(重庆)有限公司可靠性与环境试验实验室、化学分析检测实验室先后成为福特汽车授权认可的第三方实验室,认可范围覆盖了油漆内外饰、功能耐久性、气味VOC检测等各大类别。此外,广州广电计量检测(上海)有限公司电磁兼容检测实验室也获得了小鹏汽车授权的全项认可。广电计量近期屡获国内外知名汽车制造商授予的检测资质,充分表明了合作伙伴对广电计量技术能力、实验设备、人才团队、质量管控等全方位综合实力的肯定,为后续展开深入合作打下了重要基础。福特汽车公司(Ford Motor Company)是全球最大的汽车生产商之一,旗下拥有的汽车品牌有福特(Ford)、林肯(Lincoln);小鹏汽车是中国领先的智能电动汽车设计及制造商之一,也是融合前沿互联网和人工智能创新的科技公司。据广电计量相关负责人介绍,福特汽车、小鹏汽车对汽车的测试要求极为严苛。此次通过对实验室试验设备、试验环境、安全措施、现场操作、检测报告等方面的层层评审,评审专家们对广电计量的硬件配置、保密措施以及工程师的测试水平和服务意识给予了高度评价。作为汽车行业的质量技术合作伙伴,广电计量一直坚持以客户为中心,通过打造以供应商链研发试验一体化质量管控为代表的多元创新服务模式,切实解决汽车行业供应链质量管控难题。目前,广电计量已成为国内外近50家主机厂认可和授权实验室,在广州、天津、上海、无锡等全国20多个计量检测基地建有配套的汽车服务网络,可提供从整车到零部件,从原材料采购、研发、生产准备到大批量生产,覆盖汽车全产业链的一站式检测技术服务方案。
  • 汽车及汽车零部件强制认证执行标准发布
    为保证强制性产品认证制度的有效实施,现就汽车及汽车零部件产品强制性认证执行标准的有关要求公告如下:   一、新申请认证的产品需按照附表中所列标准要求(含实施日期要求)进行认证。   二、对于标准修订的情况,如果无新增试验项目,已获证产品无须再进行实验,可直接换发新版认证证书 对于新版标准实施前已经出厂、投放市场并且已经不再生产的获证产品,无需按新版标准重新进行确认和换发新版认证证书。   三、对于已获证产品,如标准已明确规定在生产产品实施过渡期的,持证人应在标准规定的日期前,依据相应标准完成认证证书的变更、换版工作 如标准规定的实施过渡期不足本公告发布后12个月的,持证人应在本公告发布后12个月内依据相应标准完成认证证书的变更、换版工作。   四、对于在本公告规定的各标准换版截止日期后,仍未完成证书换版工作的,认证机构应暂停相应产品的认证证书,逾期三个月仍未完成证书换版工作的,认证机构应撤销相应产品的认证证书。   五、各相关指定实验室应在2011年12月31日前,向我委认证监管部上报依据附表中所列标准检测能力情况,以及获得实验室资质认定和认可的情况。   表1.新修订的标准 序号 标准号及名称 发布日期 实施日期 认证标准执行日期规定 1 GB 11555-2009《汽车风窗玻璃除霜和除雾系统的性能和试验方法》(汽车认证实施规则试验项目编号:01—06,01-07) 2009.09.30 2011.01.01 无 2 GB 11550-2009 《汽车座椅头枕强度要求和试验方法》(汽车认证实施规则试验项目编号:02-04) 2009.09.30 2011.01.01 新认证的M1类车型,自2011年1月1日实施,新认证的M1类外的车型,本标准自2011年7月1日起实施;在生产M1类车型,自2012年1月1日实施,对于在生产的M1类外的车型,本标准自2012年7月1日起实施。 3 GB 11566-2009 《乘用车外部凸出物》(汽车认证实施规则试验项目编号:02-07)2009.09.30 2011.01.01 新认证车型,自2011年1月1日实施;对于在生产车型,自2012年1月1日实施。 4 GB 11552-2009《乘用车内部凸出物》(汽车认证实施规则试验项目编号:02—08) 2009.09.30 2012.01.01 新认证车型,自2012年1月1日实施;在生产车型,自2013年1月1日实施。 5 GB 16897-2010《制动软管的结构、性能要求及试验方法》(汽车认证实施规则试验项目编号:06-03) 2010.01.10 2011.07.01 无 6 GB/T 18332.1-2009《电动道路车辆用铅酸蓄电池》(汽车认证实施规则试验项目编号:02-20) 2009.05.06 2009.11.01 无 7 GB 7063-2011《汽车护轮板》(汽车认证实施规则试验项目编号:02-10) 2011.05.12 2012.01.01 对于新认证车型,自2012年1月1日实施;对于在生产车,自2014年1月1日实施。 8 GB 11557-2011《防止汽车转向机构对驾驶员伤害的规定》(汽车认证实施规则试验项目编号:02-14) 2011.05.12 2012.01.01 对于新认证车型,自2012年1月1日实施,对于在生产产品,自2013年1月1日实施。 9 GB 11568-2011《汽车罩(盖)锁系统》(汽车认证实施规则试验项目编号:01-15) 2011.05.12 2012.01.01 无 10 GB14023-2011《车辆、船和自由内燃机驱动的装置无线电骚扰特性 限值和测量方法》(汽车认证实施规则试验项目编号:03-06) 2011.07.29 2012.01.01 无   表2.新增的标准 序号 标准号及名称 发布日期 实施日期 认证标准执行日期规定 1 GB 26134-2010《乘用车顶部抗压强度》(汽车认证实施规则试验项目编号:01-21) 2011.01.14 2012.01.01 无 2 GB/T 14172-2009《汽车静倾翻稳定性台架试验方法》(汽车认证实施规则试验项目编号:01—03) 2009.03.23 2010.01.01 无 3 GB24315-2009《校车标识》(汽车认证实施规则试验项目编号:01-01-01) 2009.09.30 2010.01.01 无 4 GB 24406-2009《专用小学生校车座椅及其车辆固定件的强度》(汽车认证实施规则试验项目编号:02-03) 2009.09.30 2010.07.01 无 5 GB 24407-2009《专用小学生校车安全技术条件》(汽车认证实施规则试验项目编号:01-18) 2009.09.30 2010.07.01 新认证车型自2010年7月1日实施,其中第4.2条2012年1月1日实施。 6 GB 25990-2010《车辆尾部标志板》(汽车认证实施规则试验项目编号:04-15) 2011.01.10 2012.01.01 无 7 GB 25991-2010《汽车用LED前照灯》(汽车认证实施规则试验项目编号:04-02) 2011.01.10 2012.01.01 无 8 GB/T 24552-2009《电动汽车风窗玻璃除霜除雾系统的性能要求及试验方法》(汽车认证实施规则试验项目编号:01-06/07) 2009.10.30 2010.07.01 无 9 GB/T 24549-2009《燃料电池电动汽车 安全要求》(汽车认证实施规则试验项目编号:02-20) 2009.10.30 2010.07.01 无 10 GB/T 4094.2-2005《电动汽车操纵件、指示器及信号装置的标志》(汽车认证实施规则试验项目编号:01-12) 2005.07.13 2006.02.01 无 11 GB 26511-2011《商用车前下部防护要求》(汽车认证实施规则试验项目编号:02-22) 2011.05.12 2013.01.01 对新认证车型自2013年1月1日实施,对在生产产品自2015年1月1日实施。 12 GB 26512-2011《商用车驾驶室乘员保护》(汽车认证实施规则试验项目编号:02-23) 2012.01.01 2012.01.01 无 13 GB/T 18487.1-2001《电动车辆传导充电系统一般要求》(汽车认证实施规则试验项目编号:02-20) 2001.11.02 2002.05.01 无   二○一一年十一月二十五日
  • 中国最大汽车安全实验室建成
    11月9日,一辆崭新的宝马新3系以64公里的时速在激烈的对壁障碰撞后,碎片四溅,前胎爆裂。为庆祝中国汽车研究中心全新安全试验室启用,宝马新3系在目前国际最先进的汽车安全试验室进行了正面40%碰撞试验。该试验按照C-NCAP 2012年版管理规则实施,碰撞速度由2006年版管理规则的56km/h提升至64km/h,对汽车的结构耐撞性、车型安全设计的要求进一步提高。   中汽中心实车碰撞试验室1999年投入使用, 13年来实车碰撞试验室共进行各类实车碰撞试验5000余次,积累了丰富的实车碰撞经验。2006年,中汽中心推出C-NCAP(中国新车评价规程),至今试验室成功完成178款车型的C-NCAP评价试验。2012年8月31日,中汽中心历时3年、耗资20亿元的新院区建成,作为中汽中心的重点试验室——汽车安全试验室建筑面积超过4万平方米,呈扇形结构,可进行多角度车对车碰撞试验,是目前国际最先进的汽车安全试验室之一。汽车安全试验室总长310米,宽165米,共设置8条轨道,直线轨道长260米,角度轨道长135米。在直线轨道上,可实现2吨重车辆以最高140km/h的速度、7吨重车辆以最高80km/h的速度进行车对壁障碰撞试验,以及两辆3吨重车辆以最高80km/h的速度进行车对车正面碰撞试验。在角度轨道上,可实现3吨重车辆以最高80km/h的速度进行碰撞试验。直线轨道和角度轨道联合使用,可以实现车对车不同速度下多角度碰撞试验,更真实地模拟实际道路交通事故。此外,汽车安全试验室还拥有各类试验壁障及翻滚试验场,可以模拟实际交通环境中的各种事故形态。   中汽中心主任赵航表示,13年来,中汽中心积累了大量碰撞安全数据,这些数据将成为中国汽车工业发展的基础数据,并可以为中国自主汽车品牌分享,对于提高我们汽车工业水平产生积极影响。
  • 事关电动汽车!国标《机动车冷却液 第2部分:电动汽车冷却液》征求意见
    11月15日,根据国家标准化管理委员会标准制修订计划,交通运输部已组织完成了《机动车冷却液 第2部分:电动汽车冷却液》国家标准的征求意见稿,并公开征求意见。截止时间为2024年1月14日。本标准是GB 29743《机动车冷却液》系列标准的第2部分,其中第1部分GB 29743.1-2022《机动车冷却液 第1部分:燃油汽车发动机冷却液》已于2022年发布。本标准由交通运输部公路科学研究所牵头起草,参与起草的单位还有中公高远(北京)汽车检测技术有限公司、宁德时代新能源科技股份有限公司、统一石油化工有限公司等。电动车冷却液是新能源汽车用量最大的一种工作液体,实现电池热管理系统的温控目标;作为新兴产品,国内外标准尚无相关内容。电动车冷却液标准的建立,对促进我国电动汽车产业健康发展具有重要意义。本标准规定了电动汽车冷却液的产品分类、技术要求和试验方法、检验规则,以及标志、包装、运输和贮存等要求,适用于纯电动汽车动力电池热管理系统中,以乙二醇为防冻剂原料调配而成的电动汽车用冷却液的生产、检验和使用。本标准规定的技术要求包含三方面的内容,分别为通用要求、理化性能要求和使用性能要求。具体指标如下表。通用要求外观颜色气味理化性能要求密度(20.0℃)冰点(原液和50%体积稀释液)沸点(原液和50%体积稀释液)pH值(原液和50%体积稀释液)灰分水分氯含量硫酸盐含量硼含量储备碱度对汽车有机涂料的影响使用性能要求电导率(25.0℃)静态腐蚀(80℃±2℃,336h±2h)循环台架腐蚀(80℃±2℃,1064h±2h)橡胶材料兼容性(80℃±2℃,168h±2h)泡沫倾向(30℃±1℃及80℃±1℃)高温稳定性(135℃±1℃,168h±2h)储存稳定性(60℃±2℃,336h±2h)耐硬水稳定性(90℃±2℃,336h±2h)沉淀物体积标准附件还规定了电车冷却液电导率、静态腐蚀、循环台架腐蚀试验方法以及电车冷却液与橡胶材料兼容性试验方法。详细内容见附件。本标准是强制性国家标准,且为首次制定,填补了电动车冷却液相关领域标准的空白。附件:编制说明_机动车冷却液 第2部分:电动汽车冷却液.pdf征求意见稿_机动车冷却液 第2部分:电动汽车冷却液.pdf
  • 长安汽车成立美国研发中心
    上周,长安汽车美国研发中心在“汽车之城”底特律正式挂牌成立。至此,继意大利、日本、英国等海外中心之后,长安汽车“五国九地、各有侧重”的全球研发布局基本完善。   据了解,长安汽车美国研发中心此次进驻,将是第一家中国整车企业在底特律设立研发中心。   据长安汽车有关负责人介绍,作为中国汽车自主品牌的领军企业,公司一直坚持自主创新的理念。此次成立的美国研发中心,将专攻汽车底盘技术,包括底盘性能开发、底盘工程化设计、底盘技术研究以及底盘制造工艺研究等。新开发的各项底盘技术,将主要应用于长安汽车未来自主研发的中高级轿车及SUV车型。   以全球化体系为平台,加速企业核心能力的提升,是长安汽车近几年来在科技研发方面的核心战略。据了解,在中国自主品牌车企中,长安的“五国九地”全球研发体系独一无二 “各有侧重”的有意识布局,也成就了一个更加全面、完善的研发体系。主攻汽车外型设计的意大利都灵研发中心、主攻汽车内饰和模型的日本横滨研发中心、主攻发动机和变速器的英国诺丁汉研发中心、主攻底盘技术的美国底特律研发中心以及基于国内市场的分别位于重庆、上海、北京、哈尔滨和江西的五个本土研发中心,24小时不间断的协同研发,使得这一体系更加强大。
  • 上海汽车芯片检测认证公共实验室落地嘉定,打造中国汽车芯片的“检测认证一体化中心”
    为更好地承载上海集成电路“北翼”功能定位,加快推进汽车芯片公共性研发平台、汽车芯片第三方检测认证机构等建设,日前,上海汽车芯片检测认证公共实验室揭牌启用,这也是国内各机动车检测平台中率先开展建设车规级芯片检测认证的公共实验室。汽车芯片检测认证公共实验室由上海机动车检测认证技术研究中心有限公司承建,可提供芯片功能及可靠性、功能安全、信息安全、失效分析等汽车芯片检测服务。在上海汽检的汽车芯片检测实验室里,多台设备正在24小时不间断地运行。芯片检测研究实验室主管工程师刘力介绍:“我们当前开展的是车规级芯片的功率循环测试,根据相关的模型推算,在实验室内部完成一周左右的测试时间,可以很好地模拟芯片装车10年间的应用表现。”汽车芯片耐久测试目前,上海汽车芯片检测认证公共实验室已经建成针对车规级认证标准AEC-Q100的全套测试能力,拥有十万级无尘净化间、ATE等集成电路自动测试系统、超声扫描显微镜等实验检测设备。如何给芯片做体检?在超声扫描显微镜下,正常芯片上产生的白色斑驳就相当于我们人体的“病灶”。芯片检测研究实验室主任助理张瑜一边演示一边向记者介绍:“我们现在看到的这张图片,是通过超声波扫描显微镜拍摄的。通过这个测试,我们可以锁定芯片哪个区域发生了损坏,这是属于芯片的一个无损测试方式。就好比我们进行体检过程中的第一步,先锁定这个芯片的病灶在哪个位置。”汽车芯片超声波影像随着汽车“三智”不断发展,全球汽车芯片市场不断扩大。嘉定作为汽车生产制造的前沿阵地,对于汽车芯片的需求旺盛。“从行业公布的数据来看,新能源车单车从2012年平均使用567颗汽车芯片增长至2022年平均使用1459颗。长期来看,芯片对于汽车的重要性会不断提升。”张瑜说,“目前,上海汽检已投入4000万元以上的资金,建成2个高水平的汽车芯片实验室,将通过打造中国特有的汽车芯片标准体系,建立一个系统化、自主可控的汽车芯片可靠性评估技术规范和检验检测认证服务体系。”汽车芯片功能检测上海汽检方面表示,目前实验室已服务包括泛亚汽车、上汽英飞凌等5家以上企业,进行了10款左右芯片产品的检测验证。未来,实验室将继续深耕检测技术研究,建立完整的车规级审核评价能力和一站式审核评价服务平台,与上下游产业伙伴共同赋能国产芯片,推动国产半导体产业的高速发展。下阶段,汽车芯片检测认证公共实验室将通过建设六大平台:集成电路测试服务平台、第三代半导体测试服务平台、汽车专用传感器芯片测试服务平台、多芯片模组测试服务平台、汽车被动组件测试服务平台和芯片失效分析服务平台,为芯片企业和汽车企业提供从研发到验证到失效分析溯源的完整服务能力,并实现芯片性能测试、芯片测试技术及设备开发、标准研究、芯片可靠性和一致性评估、混响室等芯片集成验证,推动长三角汽车芯片检测能力互联互通,测试资源共享。
  • 皓天鑫与通达汽车成功合作,大型冷热温控试验箱助力汽车零部件质量提升
    皓天鑫与通达汽车成功合作,大型冷热温控试验箱助力汽车零部件质量提升近日,东莞市皓天试验设备有限公司与通达汽车零部件制造有限公司达成合作,为其提供大型冷热温控试验箱,以满足通达汽车在产品质量检验与控制方面的需求。该试验箱的引入将为通达汽车的产品质量提升提供有力支持,进一步巩固其在汽车零部件制造领域的市场地位。通达汽车作为一家成立于 1996 年的汽车零部件制造与销售企业,一直以来都非常重视产品质量。为了更好地满足客户需求,提高产品质量和可靠性,通达汽车决定引进先进的试验设备。经过多方考察和比较,最终选择了广东皓天检测仪器有限公司的大型冷热温控试验箱。东莞市皓天试验设备有限公司是一家专业从事环境试验设备研发、生产和销售的企业。公司拥有先-进的生产技术和设备,以及一支经验丰富的研发团队。其产品广泛应用于电子、电器、汽车、航空航天等领域,深受客户好评。此次合作的大型冷热温控试验箱采用了先-进的温度控制技术和湿度控制技术,能够模拟各种复杂的环境条件,对汽车零部件进行严格的测试和检验。该试验箱具有温度范围广、温度变化率快、温度波动小、湿度控制精度高等优点,能够满足通达汽车对产品质量检验与控制的高要求。此外,该试验箱还采用了智能化的控制系统,操作简便,易于维护。同时,东莞市皓天试验设备有限公司还为通达汽车提供了优质的售后服务,确保试验箱的正常运行和使用。通过此次合作,东莞市皓天试验设备有限公司与通达汽车建立了良好的合作关系。双方将继续加强合作,共同推动汽车零部件制造行业的发展。同时,东莞市皓天试验设备有限公司也将不断提升自身的技术水平和产品质量,为客户提供更加优质的产品和服务。   产品名称:大型冷热温控试验箱(水冷式)   控制器:7英寸超大触摸智能可程序温湿度控制器:   内箱容积:20m³   内箱尺寸(约)2.5 *2.5mm *3m (宽*高*深)   外箱尺寸(约):具体以实际尺寸为准   温度范围:-40℃~90℃ (水冷式)   湿度:30%~95%RH   温度变化率:降温约 1 ℃/min,升温约 3 ℃/min(非线性空载)   温度波动:温度≤±0.5℃ ;湿度≤±3.0%RH   温湿度误差:温度:≤±2℃ ; 湿度:≤±5.0%RH   温度均匀度:≤±1℃   内壁材料:内板材质为SUS304 不锈钢   外壁材料:碳素钢板,表面作静电彩色喷塑处理+聚胺标准保温板   箱体保温材料:硬质聚氨酯泡沫
  • 汽车社会蓝皮书:汽车增长挑战环境保护
    中国网1月23日讯 由中国社会科学院社会学研究所中国汽车社会研究网完成,以“汽车社会与规则”为研究主题,针对中国汽车社会存在问题进行了深入分析,并提出了政策建议的《汽车社会蓝皮书》今日发布。   《汽车社会蓝皮书》认为,2012年中国正式进入“汽车社会”,每百户家庭私人汽车拥有量超过了20辆。   蓝皮书认为2012年中国汽车社会发展表现出如下特点:   中国冲过“汽车社会”门槛进入加速期   如果私人汽车的增长保持这样的速度,5年多私人汽车保有量就会翻一番,百户家庭汽车拥有量将会达到40辆,10年左右百户汽车拥有量将达到或接近60辆,多数家庭将拥有汽车。   庞大的产销量基数下,汽车保有量增长惊人   中国汽车工业的产销增速已经放缓,不再可能出现几年前那种“井喷式”的增长,但由于国内汽车产销量都近2000万辆,未来汽车工业即使是零增长,汽车保有量的增加依然非常惊人。   后发地区汽车增速快,全国汽车人口快速增加   以千人汽车拥有量看,增速排在前面的地区是宁夏、青海、新疆、河南、江西、甘肃、陕西、内蒙古、安徽、广西等地区增速都超过了20%。2012年上半年,汽车驾驶人已经达到了1.86亿。   汽车使用环境恶化   交通拥堵已经成为几乎国内所有大中型城市的共同问题,2012年汽车社会发展指数显示,汽车环境得分下降。   汽车增长对环境保护的挑战加剧   汽车的增加加大了减排的难度。环境保护面临新的挑战,特别是像氮氧化物、PM2.5这些污染物与汽车直接相关,降低污染的难度加大,成本增加。汽车不仅带来空气污染,也带来声污染。   蓝皮书认为中国汽车社会面临如下困扰:   民众汽车消费意愿提高与汽车使用成本上升的矛盾   民众汽车消费欲望不断提高,无车者意向购买率和有车者换车意愿均高。调查显示,城市无车者一年内有购车意愿的比例为24.7%,二年内有购车意愿的比例为31.6%,五年内有购车意愿的比例为28.8%,合计的比例为85.1%,而永远不打算买车的比例为2.7%。2012年因燃油价格、城市停车费用、汽车行驶不畅造成在途时间延长等经济和时间成本的增加,整体的汽车使用成本在上升。汽车使用成本上升最快的是时间成本,随着各城市汽车保有量的快速上升,一二线、甚至许多三线城市交通拥堵越来越严重,堵车花费时间增加,在途时间延长,时间成本增加很快。   汽车产业增长预期强劲与各地受迫性汽车限制政策出台的矛盾   汽车行业对汽车增长的预期一直很高,汽车业界对于中国汽车产销的预测一直非常乐观。即使按照中国汽车工业协会《“十二五”汽车工业发展规划意见》,产量3000万辆,15%出口,每年增加的汽车将是2550万辆,短期内爆发式的增长将给国内的交通、能源、停车空间等汽车环境带来空前的压力。与汽车业界“增长派”不同的是城市管理者的“限制派”,近两年,北京、上海、广州三个一线城市实行了汽车限购政策,成都、杭州等城市实行了现行政策,北京、贵州则实行了限购、限行双重政策。   汽车社会管理缺乏系统性和科学性   出于不同管理部门的汽车社会管理政策缺乏统筹,出台的汽车政策常常不兼容,如政府管理部门出台汽车限购政策,汽车行业则认为这些政策违反了汽车产业发展政策。不同行业和部门对于汽车的管理也存在缺乏科学性,如2012年国庆中秋小型车高速公路不收费的政策,缺乏前期调研,对高速公路流量增加可能造成的影响没有科学的估计,造成一些时段、路段的大拥堵,甚至连是否收卡,以及免费结束时段如何衔接等都很混乱。   汽车社会规则不完善,汽车社会风险加剧   目前的交通法规的制订还存在不够完善的问题,一些法规缺乏可操作性。一些地方交通管理部门为了个人和部门的利益,对于交通违章和超载存在以罚代管,只罚不管。汽车的增加使得社会风险加剧,社会的脆弱性突显,对社会管理提出了更高的要求,暴露了许多社会管理的问题和弱点。   汽车成为社会分化象征,汽车问题升级为社会问题   随着中国贫富差距的拉大,这种财富差距比较突出地表现在汽车的消费上,从不到3万的国产微型车到车展车价纪录刷新的1.5亿的豪车。巨大差距带来的是社会对贫富差距的不满,集中反映在人们对于豪车违法、横行事件的“标签化”反应。公车超标、公车私用、公车特权也成为引发民众不满的工具。汽车社会分化的另一个现象是汽车与民族情绪的结合,汽车品牌成为区分爱国与否的标准。湖南长沙、山东青岛、陕西西安等多地发生推翻、打砸日系车和烧4S店等行为。   路权意识缺失,文明状况堪忧   “中国式过马路”成为大家议论的焦点,其中存在一个重要的问题就是我们的路权不明晰。路权意识的缺失是造成交通秩序混乱的根源。交通法规没有能够强化人们的路权意识,混乱的相互侵犯路权使得尊重路权在实际效果上受到了惩罚,在大家都抢行的情况下如果礼让就寸步难行,长期下去就没有人坚持尊重别人路权。在城市道路日益拥挤的情况下,路权之争越来越激烈,影响到社会车辆出行的公务车拉开了政府官员与民众的距离,带来了负面影响。   面对已然来临的“汽车社会”和随之而来的一系列问题,蓝皮书提出以下建议:   一、未来汽车的发展及其走向并不是由作为汽车产业主要角色的生产厂商和消费者来决定,而是由城市空间来决定,更具体地是由各城市的决策部门和政策决定的。中央政府应该制订全面的汽车社会发展规划,把汽车相关的不同方面纳入整体规划,特别是解决汽车产业与城市管理之间的矛盾,统合不同部门汽车相关政策,使得这些政策不再出现不兼容的问题,确保汽车社会能够可持续发展。   二、各地政府,特别是城市政府应该研究当地汽车社会发展现状,研究出台科学的、系统的汽车社会管理体系,不再只从交通上解决汽车社会问题,而是从汽车社会的宏观角度协调汽车社会的不同方面,使得汽车社会可以有序、可持续、和谐发展。   三、各地应该切实评估目前汽车限制性政策的利弊,采取疏堵结合的方式调节汽车的增长速度。限制汽车购买和使用,提高汽车使用成本已经成为未来一、二线城市管理者不得不祭出的无奈之招,未来几年深圳、武汉、杭州、成都、西安等将可能加入汽车限购行列,上海、广州、深圳、武汉、西安等将逐步实行汽车限行政策。在汽车成为民众消费必选项的情况下,出台适当的汽车政策要能够做到既不伤害汽车产业又能满足民众需求。   四、各级党政机关应该重视汽车社会带来的社会问题,加强社会管理,处理好汽车社会下的公平问题,处理好公车、校车等问题,通过有效的途径,从法律上、纪律上、道德上、文化上建立健全汽车社会的规则,使得汽车社会进入良性运行。   五、以明确路权、保障路权为突破口,通过法律、教育等手段强化民众的路权意识,惩罚侵权行为,不断提高全社会的汽车文明程度。   六、提高全社会的汽车风险意识,落实交通安全法规的执行,有效降低汽车事故的发生,减少生命财产的损失。
  • 福田汽车节能减排重点实验室正式启动
    本月20日,由北京市科学技术委员会和北京新能源汽车产业联盟共同主办的“科技北京中国行”活动在福田汽车节能减排重点实验室正式启动。在仪式上,台湾成运汽车公司和福田汽车正式签订了采购75辆欧V混合动力新能源客车的购买合同,福田汽车还向北京市西城区环卫处等三家用车单位交付了新能源汽车产品。 北京市科委党组书记、副主任杨伟光表示,北汽福田新订单的签订,标志着北京市在新能源汽车产业化推广应用上又取得了新的进展。福田汽车党委副书记赵景光也称,国家政策的支持对福田新能源汽车的发展起到了很大的指引扶持作用。 行业专家们认为,福田汽车这样的企业是新能源汽车产业的领军者,其高速发展的同时,将自然地“甩掉”那些企图浑水摸鱼的行业“泡沫”企业。“新能源汽车产业正是需要福田这类领军企业高速先行,实现整个行业的跨越式发展。”一位政府相关领导这样对记者说。 “现在家家企业都在嚷着推出绿色环保的‘新能源车’,争先恐后,看着好像很热闹,但近看却大多是‘泡沫’。”一位业内知名人士对记者说,虽然新能源汽车是国家扶持的重点,这个行业的远景也不错,但也有太多名不副实的产品掺杂其中,让整个行业里充斥着泡沫。不过,该人士也同时表示,在大家的合力推动下,新能源产业正高速发展。泡沫散去后留下的才是赢家,行业新格局的雏形初现,新能源汽车产业即将出现跨越式发展。眼下提到我国在新能源汽车研发推广方面的成绩,有实际意义的多是指商用车,而客车更是行业力推的重点。 整个行业正享受“泡沫” 福田汽车“退潮时见真伪” 新能源汽车在研发、应用、推广等方面,国家无论是政策的出台,还是在财力、物力上,都给予了大力的支持。“正是这些支持让很多企业‘积极’起来,别管真的假的,都争抢着推出‘新能源车’。”一位专家告诉记者,现在不少企业推出的所谓新能源车都是“水货”,“随便从哪里买几个零配件装上就敢冠以新能源车之名,但真有实际意义的并不多”。国家对新能源车行业的支持使一些小企业看到了“机会”,他们对“新能源车”的变形解释,搞乱了行业,制造了大量泡沫。 “不久前,吉林一家企业推出了一款‘新能源车’,号称充电半个小时能跑300多公里……”一位现场专家与记者谈起这个事情,颇有些哭笑不得的意味。“姑且先不讨论这个‘技术’的真伪,我就想问问,一块手机电池,你充电半个小时,能用多久?”该专家称,行业里有太多这样的厂家企图浑水摸鱼,眼下福田这类大企业在技术、产品等方面的高速发展,正是清理行业的最佳利器。 据赵景光介绍,福田汽车从2003年开始研发新能源汽车,目前旗下新能源汽车已实现了产业化和商业化运营,氢燃料电池客车、混合动力客车、电动环卫车等产品处于国内领先水平。 福田欧V混合动力客车在各地的高质量运行,正式打开了福田新能源汽车产业化和商品化运营的大门,拓宽了福田新能源汽车走向全国乃至世界各地的道路。福田汽车正以实际行动为行业摒除杂质,推动新能源汽车走向正规化。 国家政策大力扶持 正处发展好时机 实际上,眼下我国新能源车的发展正处于初级阶段,这个阶段需要国家政策大力扶持。而国家及各地政府也在几年前就陆续出台税收等相关政策,支持鼓励企业发展新能源车。 据了解,北京市市委、市政府自“九五”开始,就高度关注新能源汽车研发、示范应用与产业化工作,持续支持新能源汽车研发及产业化推广工作。据政府相关人士介绍,在研发方面,自“十五”以来,北京市科技经费投入新能源汽车工作近3亿元;最近,又建立了新能源汽车联席会议制度;另外,北京经过“九五”、“十五”和“十一五”发展,已有50多家从事新能源汽车及关键部件技术研发的单位,研发力量已基本成体系。 “如何把北京的现有资源利用好,更好地实现科研成果向产业化的转化,是当前北京市重点关注的。”杨伟光表示,北京市科委今后将重点推进几方面的工作,“第一要着力提升生产企业自主创新能力;第二,重点培育和支持关键核心零部件的产业化,完善产业链;第三,建立技术支撑与服务体系”。杨伟光称,相信通过以上几方面的工作,北京新能源汽车的发展能够取得更大的成绩。 已取得一定成绩 新能源车将现大发展 国家的政策支持对企业的发展有很大的推动促进作用,福田及一批优秀的汽车企业正是受益者。据悉,在政府推动新能源汽车等交通节能技术发展,加快发展汽车产业等科技政策的支持和指引下,一批优秀的汽车企业已在新能源车研发、生产等方面取得了成绩。 赵景光说,福田汽车2003年开始布局“新能源”,并一直把“新能源的研发与应用”作为企业发展的核心战略。“近年来,福田投入了大量资金和科研力量致力于新能源的开发。历经多年努力,福田终于掌握了新能源领域的未来核心技术,在新能源汽车的研发和推广上领先了国内同行一步。” 目前,以福田欧V混合动力客车为主的一批汽车企业已在新能源汽车的发展上取得了较为明显的成绩。去年12月28日,由国家科技部和北京市政府牵头成立的北京新能源汽车设计制造产业基地在福田汽车成立;今年3月13日,北京新能源汽车产业联盟成立。 可以说,在政府相关部门的支持与业内产业联盟的推动下,集聚效应正在显现,并形成新能源汽车发展的强大合力,推动新能源汽车行业出现跨越式发展。
  • 皓天设备与通达汽车零部件制造联合,助力汽车产业持续发展
    皓天设备与通达汽车零部件制造联合,助力汽车产业持续发展6月13日,皓天设备与通达汽车零部件制造签署战略合作协议,双方将在多个方面展开合作,共同助力汽车产业的持续发展。此次战略合作签署的高低温湿热试验箱,复合式盐雾试验箱等设备,标志着皓天设备与通达汽车零部件制造在汽车产业领域的合作迈入了新的阶段。 根据协议,双方将在以下几个方面展开合作:一是加强销售渠道拓展,共同开拓国内市场,提高汽车零部件的可靠性;二是加强品牌推广,提升双方品牌影响力;三是加强数字化转型,利用现代技术提升运营效率和客户服务水平。  皓天设备与通达汽车零部件制造的合作将充分发挥双方的优势,实现资源共享和优势互补。皓天设备作为国内技术型的设备制造商,在汽车产业领域有着丰富的经验和技术积累,能够为通达汽车零部件制造提供优质的设备和技术支持;通达汽车零部件制造作为国内知名的汽车零部件制造商,在汽车零部件制造领域有着深厚的积累和广泛的市场渠道,能够为皓天设备提供更广阔的市场空间和应用场景。  双方的合作将为汽车产业的持续发展注入新的动力。通过加强销售渠道拓展和品牌推广,双方将提高汽车零部件的可靠性和稳定性,为消费者提供更加优质的产品和服务;通过加强数字化转型,双方将利用现代技术提升运营效率和客户服务水平,为企业的可持续发展提供有力支持。  此次战略合作的签署,是皓天设备与通达汽车零部件制造在汽车产业领域的一次重要合作,也是双方共同推动汽车产业持续发展的一次积极尝试。双方将以此次合作为契机,进一步加强沟通和协作,共同推动汽车产业的持续发展。
  • 引领汽车科学评估 共话LCA绿色未来——汽车全生命周期评价主题网络研讨会成功召开
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 2019年7月15日,由仪器信息网和湖南大学汽车全生命周期评价中心联合举办的首届汽车全生命周期评价主体网络研讨会成功召开。8位绿色制造及汽车全生命周期评价领域的资深专家,从不同角度揭开汽车LCA的神秘面纱,将汽车全生命周期评价的理念与方法娓娓道来。 /span /p p style=" text-align: justify text-indent: 2em " strong 绿色发展的“政策指挥棒” /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 600px height: 358px " src=" https://img1.17img.cn/17img/images/201907/uepic/e12e25e6-67c5-4ed5-b331-26498a6665e7.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 600" height=" 358" border=" 0" vspace=" 0" / /strong /p p style=" text-align: justify text-indent: 2em " 会议由北京生态设计与绿色制造促进会副会长兼秘书长迟晓光领衔开场,他报告的题目是《树立生命周期理念 提升绿色发展水平》,创新驱动、绿色发展是《中国制造2025》的重要着力点。迟晓光指出,绿色发展研究的重点是工业产品的落地。而LCA作为全面评估产品绿色水平的工具,已在全球范围内获得认可,并已纳入ISO14000系列标准。报告中,他总结了我国制造业绿色发展现状,并分享了我国在政策层面对生命周期评价(理念)的支持和我国生命周期评价的研究现状,表示自2007年开始,车用燃料、汽车零部件、包装产品等LAC的案例研究成为LCA领域内的热点之一。( a href=" https://www.instrument.com.cn//webinar/video_105384.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " strong 点击学习完整版报告视频 /strong /span /a ) /p p style=" text-align: justify text-indent: 2em " strong 健全报废汽车回收体系 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 600px height: 327px " src=" https://img1.17img.cn/17img/images/201907/uepic/1d0c3bb7-9e47-4b7c-9584-e85058a5c686.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 600" height=" 327" border=" 0" vspace=" 0" / /strong /p p style=" text-align: justify text-indent: 2em " 同济大学教授杜欢政认为当前的社会已经从工业文明向生态文明转型,指出今年6月我国最新印发了《推动重点消费品更新升级 畅通资源循环利用实施方案》(2019-2020),明确要畅通资源循环利用,共建绿色产业生态。他从健全报废汽车回收体系的角度切入,分享了推动汽车LCA评价的方法。2011年至今,我国报废汽车数量增长近十倍,预计到2020年将达到1851万量,创新构建废旧汽车闭环回收体系,不仅是汽车LCA评价研究的重要环节,也是提升汽车产业发展,推动绿色消费的重要举措。报告中杜欢政还分享了宝马电动汽车电瓶的回收再利用以及日本废旧汽车回收利用方式等经典案例( a href=" https://www.instrument.com.cn//webinar/video_105385.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 点击学习完整版报告视频 /span /strong /a ) /p p style=" text-align: justify text-indent: 2em " 中国物资再生协会副会长罗健夫带来了《汽车全生命周期末端——化腐朽为神奇的循环利用与再制造》的精彩报告,他层层递进,先后介绍了我国再制造行业的发展以及汽车零部件再制造相关的政策法规。此外,罗建夫在报告中还分享了我国报废汽车回收拆解的行业情况,现如今,我国汽车产品循环利用的主管部门是国家商务部市场体系建设司,2019年6月21日,商务部公布《全国报废机动车回收拆解企业名单》,目前全国报废机动车回收拆解企业已达732家。( a href=" https://www.instrument.com.cn//webinar/video_105387.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " strong 点击学习完整版报告视频 /strong /span /a ) /p p style=" text-align: justify text-indent: 2em " strong 燃料与轻量化的LCA分析 /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/ab43d3a3-d507-4288-8c73-029a78cc52cc.jpg" title=" 3.jpg" alt=" 3.jpg" / /strong /p p style=" text-align: justify text-indent: 2em " 现如今,我国正在发展多种车用替代燃料/新型动力车辆以保障未来车用能源供应安全。由于各技术路线间存在原料、开采、加工、运输和利用方式等差异性,对它们的能耗和温室气体(GHG)排放情况的对比研究,需要进行“从矿井到车轮”的全生命周期(LC)微观分析。清华大学能源环境经济研究所能源系统分析方向副教授/研究员欧训民为网友们介绍了中国车用能源全生命周期分析模型(TLCAM)。模型中递进包含两个部分:终端能源LC计算平台和具体燃料/车辆路线LC分析程序。计算得到中国主要终端能源品种的LC化石能源和GHG排放强度清单,并对传统油气基、生物质基、煤基车用燃料和车用电力路线进行了LC能耗及GHG排放微观分析。 /p p style=" text-align: justify text-indent: 0em " script src=" https://p.bokecc.com/player?vid=721B15EE1C203A679C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=700& height=550& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script br/ /p p style=" text-align: center text-indent: 0em " strong 欧训民《车用燃料/动力技术全生命周期分析方法及应用》报告视频全集 /strong /p p style=" text-align: justify text-indent: 2em " 福建农林大学汽车工程系主任/副教授徐建全报告的主题为《汽车轻量化生命周期评价及案例分析》。汽车轻量化虽然能够有效降低使用阶段的能耗及排放,但如果把涵盖材料获取、材料加工、零部件加工制造、整车装配、使用及回收利用的全生命周期都考虑进去,轻量化并不一定节能减排,成本也可能增加。以往评价汽车产品的轻量化效果主要关注汽车的运行使用阶段,而未能从整个汽车生命周期的各个阶段予以综合考虑,也未进行汽车轻量化全生命周期多目标优化研究。针对这些问题,徐建全介绍了汽车轻量化生命周期评价的几个案例,研究成果可以为企业开展汽车轻量化评价和指导绿色设计提供理论依据。( a href=" https://www.instrument.com.cn//webinar/video_105390.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " strong 点击学习完整版报告视频 /strong /span /a ) /p p style=" text-align: justify text-indent: 2em " strong 新能源汽车LCA全聚焦 /strong /p p style=" text-align:center" strong img style=" max-width: 100% max-height: 100% width: 600px height: 375px " src=" https://img1.17img.cn/17img/images/201907/uepic/9e6cd58f-b1a1-4cdd-83d5-0c57f60c6c5a.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 600" height=" 375" border=" 0" vspace=" 0" / /strong /p p style=" text-align: justify text-indent: 2em " 动力电池是新能源汽车的关键核心零部件,相当于新能源汽车的心脏。动力电池的结构非常复杂,就其核心模块而言,有非常多的形态和方式。其中VDA模块是目前的主流品种,湖南大学的余海军博士以此结构为研究对象,从逆向LCA角度进行深度分析,并分享了从中得出的正向开发改进建议,进而推动后端循环利用技术和装备系统的开发和工程化应用。( a href=" https://www.instrument.com.cn//webinar/video_105388.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 点击学习完整版报告视频 /span /strong /a ) /p p style=" text-align: justify text-indent: 2em " 中国汽车工程研究院指数和数据运营中心副主任抄佩佩从新能源汽车测试评价、新能源汽车运营数据测试评价两个维度切入,探讨了基于全生命周期的新能源汽车评价方法。她从矿产资源耗竭、化石能源耗竭、环境影响负荷等维度对电动汽车和燃油汽车进行了LCA评价和比对,指出了我国目前了电动汽车产业存在的若干问题。( a href=" https://www.instrument.com.cn//webinar/video_105389.html" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 点击学习完整版报告视频 /span /strong /a ) /p p 长安大学汽车学院车辆工程系副主任陈轶嵩为我们带来了《燃料电池汽车全生命周期评价及动态预测》,当前燃料电池汽车已经引起了我国乃至世界新能源汽车领域的重点关注,将成为未来汽车产业技术竞争的制高点。陈老师运用GaBi软件建模,以我国燃料电池技术2020年发展目标为基础,结合美国DOE2020年的燃料电池汽车技术计划,对2020年我国燃料电池汽车的全生命周期节能减排绩效进行定量评价计算和预测分析。最后以市场畅销的丰田Mirai燃料电池汽车作为评价对象,构建数学计算模型对燃料电池汽车燃料循环四种制氢方案的全生命周期能耗、排放进行评价计算分析,基于分析结果对当前最常用的电解水制氢法进行情景模拟。( a href=" https://www.instrument.com.cn//webinar/video_105391.html" target=" _self" strong span style=" color: rgb(0, 176, 240) " 点击学习完整版报告视频 /span /strong /a ) /p p style=" text-align: justify text-indent: 2em " 会议得到了广大网友的热烈响应,总体报名出席率高达近80%,远超一般网络研讨会平均出席水准。会议期间,各位网友积极发问,专家们也就相关主题与网友们进行了答疑解惑和积极互动。 /p p style=" text-align: justify text-indent: 2em " strong 特别鸣谢: /strong 本次会议从策划、筹备、到圆满召开,全程得到了湖南大学汽车全生命周期评价中心杨沿平教授等专家的大力支持和悉心指导,在此对杨老师和湖南大学汽车生命全生命周期评价中心的支持和付出致以衷心的感谢。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制