当前位置: 仪器信息网 > 行业主题 > >

汽车地毯

仪器信息网汽车地毯专题为您整合汽车地毯相关的最新文章,在汽车地毯专题,您不仅可以免费浏览汽车地毯的资讯, 同时您还可以浏览汽车地毯的相关资料、解决方案,参与社区汽车地毯话题讨论。

汽车地毯相关的资讯

  • 实地探访比亚迪汽车检测实验室(图)
    &ldquo 山寨&rdquo 曾经是比亚迪汽车的代名词,但从F3速锐开始,比亚迪已经开始改变,投入巨大的资金进行研发实力的提升。今年前9个月,比亚迪的销量已经突破37万辆,同比增长超过2成,在中国品牌中仅次于长城,与吉利不相上下,实现了强势回归。   比亚迪的投入也得到了回报,2013年9月7日,中国汽车技术研究中心公布了2013年度第三批C-NCAP新车碰撞测试结果,比亚迪速锐以56.5的高分荣获五星安全评价,并一举刷新自主品牌56.3的最高记录,荣膺最安全自主轿车,超越了同批次碰撞的福特翼虎、大众新桑塔纳等众多合资车型。而早在在2011年第4批C-NCAP碰撞测试中,比亚迪S6凭借卓越的主被动安全性能,以总分46.0分获得五星安全评级,成为中国首款五星安全SUV。   速锐、S6的良好的碰撞试验成绩只是比亚迪近几年来强大技术实力的结。,&ldquo 技术、品质、责任&rdquo 是比亚迪的新口号,技术被摆在首要的位置,但它的影响力远远不如其在销售领域所瞩目。 它的技术实力究竟如何了呢?15日,网通社走进了比亚迪位于深圳坪山总部,实地探测其研发实力。   汽车检测领域实验室投资超10亿元   2004年,比亚迪汽车及零部件检测中心正式在上海组建成立,同年,汽车产业群各事业部针对各自产品的检测实验室也如雨后春笋般建立起来。十年的发展,公司不遗余力地加大检测领域建设的投入。目前,比亚迪汽车检测领域总投资额已超过10个亿,建立了120多个专业实验室,实验室总占地面积约30万平方米,拥有2500多套先进的检测设备,可以进行4000多项汽车试验 汽车工程研究院汽车及零部件检测中心,中央研究院材料分析测试中心,均通过了中国合格评定国家认可委员会认可。比亚迪汽车工程研究院副院长李高林表示,仅此次所参观的碰撞实验室、EMC实验室、NVH实验室三大实验室耗资约为4-5亿元,花了血本,其中,EMC实验室还处于建设中。   国内一般的实验室大多数是用来测试小型乘用车,比亚迪还要兼顾大巴,因此,其实验室的规模更大,要求更高,投入也更大。   三大实验室之碰撞实验室:&ldquo 五星&rdquo 成绩的背后   碰撞实验室是我们参观的第一个实验室,也是规模最大的实验室。尽管笔者见过不少实验室,但比亚迪庞大的规模还是让笔者大吃一惊。有了强大的碰撞实验室,比亚迪车型的碰撞成绩迅速上升,S6和速锐以超高分成绩获得了五星。比亚迪汽车工程研究院副院长李高林表示,今后比亚迪新开发的车型都要按照五星标准来设计。   比亚迪汽车安全碰撞实验室位于比亚迪深圳坪山总部,包含:整车碰撞实验室、模拟碰撞实验室、行人保护碰撞实验三个部分。其中整车碰撞实验可满足5吨以下车辆、时速120公里以内的所有碰撞测评,具备中国、欧洲、美国等国家地区的各种法规测试能力和新车评价测试能力,为改善车辆被动安全性能提供强有力的数据支持。    整车碰撞实验室分为三个试验区域,即正面碰撞区、中央碰撞区和室外碰撞区。正面碰撞区大厅长54米、宽30米,大厅内固定壁障质量超过1700吨,可以进行各种固定壁障的碰撞测试,包括正面100%重叠刚性壁障碰撞、正面40%重叠可变形刚性壁障碰撞、正面25%重叠刚性壁障碰撞、正面30度角刚性壁障碰撞、侧面刚性柱碰撞等,另外还有各种研发性固定壁障碰撞,如卡车尾部防护追尾碰撞、正面刚性柱碰撞等。            现场,几乎每天都有碰撞实验上演,但笔者参观之时,未能碰到实际碰撞实验,不过现场展示不少已经碰撞过的车辆,比亚迪也很精打细算,一辆车在正面碰撞实验后还可以侧面碰撞实验,节约成本。    翻滚实验图   但现场仅实验车辆跑道就长达250米,确实蔚为壮观,让笔者实在震撼了一番,比亚迪还是花了血本的。   车对车碰撞试验    除了单车实验外,比亚迪还进行大量车对车碰撞试验。在比亚迪看来,相对常规壁障碰撞试验而言,实车对碰能够更真实的复现交通事故场景,可为现代车辆相容性的研究积累大量有效数据。深圳的实验室共设计有七条轨道,轨道角度分别为0° 、15° 、30° 、45° 、60° 、75° 、90° ,可模拟多种试验效果。碰撞大厅设有高速摄像地坑,根据录像可观测碰撞时车辆底盘的运动情况,同时结合采集的各类传感器数据可对车辆性能进行全面分析。此试验能力对提升我司车辆安全性能设计水平有重大意义。   模拟碰撞试验   模拟碰撞试验被誉为开发乘员保护系统最有效的试验手段,碰撞实验室配备了国际先进的加速度模拟台车系统及假人、数采、高速摄像等高性能设备,能够精确模拟碰撞试验并获取碰撞中的各种数据,有效的协助汽车被动安全系统的开发,加快周期并降低成本。主要试验项目为研发性试验,类型包括乘员保护系统匹配试验、座椅鞭打试验、动态试验及破坏性碰撞模拟试验等。    比亚迪推崇垂直整合,自己能做的零部件都自己来做,以降低成本,但在更为高精尖的碰撞实验器材上,这一招却行不通了。大部分设备基本上都是外购,其中最让李高林心痛的是假人。&ldquo 70万元一个,穿在假人身上的一双皮鞋就200美元。&rdquo 他说,&ldquo 没办法,全世界就美国一家公司可以做。&rdquo     行人保护实验室   行人保护实验室是致力于研究人车碰撞时,车辆对行人造成的伤害的实验室,工程师通过试验数据分析,为发动机罩、前风挡玻璃、前舱总布置等涉及行人安全的部位提供设计参考,将行人受到伤害降到最低。同时该实验室还可完成汽车内饰、顶棚、座椅和转向管柱等相关冲击试验。   行人保护试验设备通过更换发射端装置,可分别完成头型、上腿型和下腿型的行人保护试验。设备的控制系统具有记录冲击点坐标、定位和重力补偿功能,并可在X、Y、Z 三个方向上进行调节,保证试验定位的精确性 通过调节油压得到需要的发射速度,并使用外部激光测速仪进行监测,以确保速度的准确性。   三大实验室之NVH实验室&mdash &mdash 享受宁静生活   在参观完比亚迪整车碰撞实验室之后,我们就来到NVH实验室,位于深圳坪山工业园一厂二期,计划分两期工程建设,业务领域涉及:整车NVH性能开发 基于客户需求的NVH性能优化 声学包设计与开发 基于相关标准法规的车外加速噪声降噪设计等。   NVH实验室总耗资也超过1亿元,规模巨大一期工程设有整车四驱半消声室(pass-by)、整车两驱半消声室、整车半消声室(无转鼓)、零部件吸隔声实验室、听音室、模态实验室等。NVH实验室建设工艺复杂,工序较多,由于从设计到施工均无较为成熟的经验,因此边设计边施工,结合施工现场实际情况,群策群力,取得了良好的效果,达到整车四驱半消声室、整车两驱半消声室均居世界领先水平!   站在实验室里,周围都是特制的吸引材料,李高林笑称,要是在室内工作人都会发疯,幸亏是在室外办公。   比亚迪的新车型,这两年静音功能进步神速,我想和NVH实验室不无关系。   三大实验室之EMC实验室&mdash &mdash 让智慧的汽车更安全更和谐   10万元的速锐配合遥控驾驶技术,15万元的思锐装有豪华车才有的夜视系统,充分显示了比亚迪的电子技术的先进性,这也和EMC(电磁兼容性Electro Magnetic Compatibility)实验室不无关系。    比亚迪于2004年在上海开始筹建EMC实验室,是国内汽车行业较早开展EMC测试的企业。目前,EMC实验室具备完善的汽车电子零部件及系统的电磁骚扰和抗干扰测试能力,满足国家标准、国际标准和法规要求,可开展燃油车及电动车零部件的EMC研发试验和认证试验。    整车EMC实验室2013年建成,具备公司研发车型(包括M1类乘用车、电动大巴)的整车EMC试验能力,以及电动车充电系统的EMC试验能力,实验室设计参数及指标处于国内领先、国际一流水平,目前仍然在建设中。    EMC实验室立足于汽车整车及零部件的电磁兼容测试,专注于电磁兼容的试验研究和设计分析,服务于产品研发和出口认证,助力于公司电动化电子化战略。电子,让汽车更智慧 EMC,让智慧的汽车更安全更和谐。
  • 汽车业“低碳”路在何方?
    被称作“拯救地球的最后机会”的哥本哈根气候峰会已经落幕。作为全球二氧化碳排放第二大行业的汽车行业将如何应对,中国车企的出路又在何方?   此前汽车专家陈光祖曾经表示,哥本哈根会议标志着汽车产业上低碳汽车新征程,建设低碳汽车将成为汽车产业一种新的“游戏规则”。   上个月25日,国务院常务会议决定,到2020年单位GDP二氧化碳排放要比2005年下降40%~45%,并提出相应的政策措施和行动。根据专家预测,随着我国汽车产业远远的成熟,汽车的碳排放量在总排放量中的比重会越来越高,最终可能会占到25%~28%的份额。   目前,欧盟已经在汽车行业的碳排放标准建设方面做出了表率。2008年11月,欧盟议会通过了以轿车为代表的碳排放法规总体规划, 2012年要达到130克/公里,2020年要达到95克/公里。   从某种意义上讲,“低碳”已经成为事关汽车企业生存和发展的严肃话题。   单从技术角度看,新能源汽车是最彻底的减排解决方案,但是从技术成熟度、推广应用成本、基础配套设施等方面看,新能源仍面临着较大的困难。   来自罗兰 贝格的预测数据显示,即便乐观估计,到2020年中国的新能源动力车的市场份额也只能达到15%,这意味着短期内,新能源汽车对实现2020年的减排目标的贡献将是非常有限的。   再者,从目前国内车企的现状看,加强生产销售全过程的节能环保和加快新能源车低油耗车的研发,成为他们身体力行“低碳”的主要举措。   例如,比亚迪坚持将电动车作为解决途径 神龙公司最新投产的第二工厂拥有全方位的节能减排考量,实现了水的零排放,使用无碳排放能源,降低排放污染 广汽本田将在降低废水排放、能源集约化建设、厂房建筑节能、能源动力站房建设中的节能降耗等方面积极促进减排工作 长安铃木加大对汽车低碳技术研发的重视程度与实际投入,尽快实现概念性技术的量化与生产 奇瑞则在生产方面最大限度实现几款车的共线生产,整合公司物流系统,改善和提升工艺水平,减少生产、运输过程中的能耗 东风日产则从着手生产更加环保节能的车型、建立绿色工厂和绿色专营店等多方面采取更多的节能减排措施 宝马汽车通过无污染的生产流程、研发低油耗和新能源汽车、实施绿色回收项目进行节能减排。   不过,除了企业自身高要求努力之外,更需要政府出台更为均衡的汽车产业政策。   已有专业人士指出,政府的决策和规划,才是最高境界的低碳。   这里不仅指的是政策,还有标准的细节。笔者认为,对于各车型的油耗,国家就应该在统一标准下进行严格地公示。   另外,国家还应着力使“整天开着大排量车的人为减碳做更多的事”。   汽车业的低碳之路,注定并不平坦。
  • “两会”汽车领域提案:聚焦“碳中和”目标 发展新能源汽车
    3月11日,十三届全国人大四次会议闭幕。作为国民经济重要支柱产业的汽车产业,依然是今年热议的焦点之一。国内汽车市场开始由增量市场转向存量市场,竞争进一步加剧;同时,在新技术浪潮下,中国汽车产业也从处于高速增长向高质量增长转变的新阶段。汽车领域代表就新形势下行业如何发展提出诸多提案,其中,“碳中和”目标下的新能源汽车如何发展成为被重点关注的领域;同时,推动汽车芯片国产化、智能网联汽车发展亦成为高频词。一、新能源汽车吉利集团李书福:中汽数据测算,2019年我国交通行业碳排放在12亿吨左右,其中商用车保有量仅占我国汽车保有量的12%左右,却制造了道路交通碳排放的56%。根据《中国移动源环境管理年报2020》数据,2019年全国货车氮氧化物(NOx)、颗粒物(PM)排放分别占汽车排放总量的83.5%、90.1%。汽车行业要实现碳排放达峰及排放污染物治理,货车的电动化势在必行。换电模式为货车电动化提供了可行的能量补给方式,国家也发布了一系列政策推动货车的电动化及换电模式示范运行,但目前货车电动化仍面临车辆最大总质量、整车长度等法规方面的障碍。针对货车电动化级重卡换电新模式、新业态发展过程中遇到的实际困难,建议对原标准GB1589-2016《道路车辆外廓尺寸、轴荷及质量限值》中质量及长度限值作补充规定。上汽集团陈虹:氢能源作为脱碳和未来清洁能源的重要解决方案之一,已经成了当下很多国家关注的重点。但是,目前氢能产业在制氢、储氢、运氢、加氢等各个环节发展受制于当前法规政策的种种限制。为此,陈虹建议:一是从国家层面尽快形成统一的中国氢能战略规划。二是在氢能管理政策法规层面有所突破。三是扩大全国碳排放权交易市场配额管理的减排项目范围和碳交易的试点范围,将工业副产氢提纯、可再生能源制氢及加氢站项目纳入减排项目范围,以进入国家碳排放权交易市场,提高绿色制氢项目受益范围,引导社会对于绿色制氢项目的投资积极性。四是在氢燃料电池汽车示范城市群对使用绿氢(可再生能源产生的氢能)进行一定时期的专项补贴。长城汽车王凤英:为实现2030年碳达峰及2060年碳中和的目标,保障国家能源安全,我国需发展车用氢能产业,推动燃料电池汽车示范运行规模,提高可再生能源制氢比例,以加快推进低碳减排。但我国氢能产业战略导向尚不明朗,支持政策尚不完善,加氢站管理缺位,车用氢能供给体系尚不健全,关键材料和零部件自主化能力还不足,整车制造及氢气价格过高导致产业化进程受阻。为支撑燃料电池汽车规模化示范应用,我国亟需解决产业发展所暴露出的种种问题此外,王凤英还建议推动中国新能源汽车产业全球化发展。她认为,发展新能源汽车已成为全球车企转型共识,国际竞争日益激烈。从产业、技术和商业模式的发展规律来看,中国新能源汽车加快全球化发展,有利于抢先占领全球化用户心智,改变汽车产业国际分工格局,提升国际竞争力。二、车用芯片长安汽车朱华荣:由于汽车核心芯片主要依赖进口,随着国际局势风云变化、全球半导体原材料和产能日益紧张、新冠疫情对供应链影响等,汽车芯片存在随时断供风险,且将成为阶段性和结构性问题长期存在,汽车芯片逐渐成为我国汽车工业发展中的主要‘卡脖子’环节。朱华荣表示,在保证产业链稳定供应基础上,建议国家出台积极政策来推动汽车芯片国产化,维护汽车供应链安全。具体包括,设立汽车产业核心芯片及生产设备国产化重大专项;强化激励政策鼓励企业加大投入;支持主机厂在整车开发过程中与国内汽车芯片商尽早开展汽车芯片定制化研发;加强行业标准制定等。广汽集团曾庆洪:中国汽车要强国应先“强芯”,要集中人力、财力、物力解决芯片问题,加强关键零部件产业链建设,坚持自主创新和开放合作两个不动摇,分别解决长期和短期问题。奇瑞汽车尹同跃:突破车载芯片“卡脖子”技术,应强化产业生态融合。他建议,明确车载芯片国产化率发展目标,加大芯片产业链建设、重点扶持及知识产权保护力度;从标准、规范、人才、技术层面给予芯片行业、零部件行业与整车以支持;在产业链生态上给与政策鼓励以及资金支持,推动芯片生态与部件生态、整车生态融合发展。上汽集团陈虹:单靠市场一股力量很难推动车规级芯片国产化,需要形成政府牵头,整车企业联合,针对头部芯片企业开展重点扶持的策略。他建议,在消费级芯片企业的扶持政策基础上,加大对车规级芯片行业的扶持力度,使整车和零部件企业“愿意用、敢于用、主动用”。同时,制定车规级芯片“两步走”的顶层设计路线,实现车规级芯片企业从外部到内部的动力转换。三、智能网联汽车广汽集团曾庆洪:现行交通安全法规是基于完全由人驾驶的车辆而设立的,智能驾驶汽车实际应用仍面临许多合法性难题;同时,还存在自动驾驶汽车道路测试缺乏操作指引,各地测试牌照没有形成互认机制,测试时间和资金成本高;受制于道路基础设施限制和车与外部信息交互(V2X)设备的装配率低,智能网联汽车暂时只能着重发展“单车智能”的技术路线方向,网联化发展进程较慢等发展智能网联汽车,法律法规要走在前面。曾庆洪建议,要尽快完善现行交通安全法规,确认“机器驾驶人”的法律主体资格;加快自动驾驶相关技术标准的编制和发布;完善现行自动驾驶汽车道路测试相关政策法规等。长城汽车王凤英:在我国现行相关法律法规中,产品管理、交通管理、责任界定、保险监管、网络安全管理、地理信息管理等方面的部分规定,不能完全适用于智能网联汽车,存在一些制约智能网联汽车商用化落地的“矛盾点”和可能触发潜在风险的“空白点”。王凤英建议,加快形成跨部门、跨行业、跨领域的统筹协调机制;加快推进智能网联汽车法律法规制修订工作;处理好科技进步与法律稳定性之间的关系。奇瑞汽车尹同跃:近年我国C-V2X得到快速发展,但由于各示范区场景、设备、方案的不同特点,作为主机厂端推进多场景应用会付出多重的准入及通讯协议匹配投入。因此,尹同跃建议,建立国家级测试示范区测试车辆上路准入结果互认机制;各国家级测试示范区使用统一的C-V2X通讯技术;国家层面推进车企上市新车具备嵌入式的蜂窝连接功能;建立芯片底层交互标准;鼓励地方建立C-V2X应用示范区,推动智能网联汽车产业发展,在政策和资金方面给予支持。此外,在促进L3级自动驾驶技术落地方面,尹同跃认为,L3级别自动驾驶应在低速场景下积极探索、先行先试,通过低速场景行驶里程,积累自动驾驶工况,为高速自动驾驶做技术储备等。四、汽车及零部件材料分析与测试评价网络大会我国是世界汽车产销第一大国,汽车产业可在实现碳达峰、碳中和目标中起中流砥柱作用,尤其是汽车轻量化、新能源汽车发展是大势所趋,对于节能减排有着积极意义。同时,汽车产品全生命周期评价 (LCA)可以对汽车全生命周期所产生的物耗、能耗与排放进行系统分析与科学评估。基于此,仪器信息网将于2021年3月16-17日组织召开第三届“汽车及零部件材料分析与测试评价技术”网络会议,特设汽车零部件测试技术、汽车新材料测试技术、新能源汽车测试技术、汽车全生命周期评价4个分会场。本次会议为期2天,20余位报告人将于云端为我们带来一场关于汽车测试评价技术的行业盛会!目前,一汽、重汽、比亚迪、蔚来、广汽、上汽、东风、福特、福田、华晨等知名车企,首钢、包钢、本钢、武钢、东北特钢等各大钢厂已报名,剩余免费名额不足100席,报名从速!无需下载报名软件与付费,长按识别下方二维码或点击报名链接即可免费报名。一键报名:https://www.instrument.com.cn/webinar/meetings/car2021/
  • 汽车高峰论坛 岛津发表汽车空气质量评价及异味评估新方法
    日前,由中国机械工程学会材料分会与中国汽车工程学会材料分会联合主办、岛津企业管理(中国)有限公司承办的“2018汽车行业新材料新能源新趋势高峰论坛”在上海隆重召开,本届高峰论坛邀请到业内权威专家就新能源汽车产业政策及发展趋势、动力电池生产技术路线、轻量化材料发展趋势及应用、车内空气质量评价及评估体系等方面发表了精彩的主题演讲。来自产业链相关企业及专家互相探讨交流发展趋势及相关技术热点与难点,共谋新能源汽车产业的发展与未来。在林逸教授、刘蕴博先生、王振波先生、王荣先生、龚沿东先生发表之后,上汽大众汽车质保实验室吕亚帆经理发表了题为《节能与新能源汽车关键部件的测试评价和论证体系》报告,他在报告中介绍了新能源汽车关键部件,解读了电芯的质量管控策略,并就电芯管控详尽介绍了五个维度的检测实验。南昌大学赣江特聘教授、机电工程学院刘勇副院长发表了题为《轻量化材料在汽车行业的应用及发展》的报告,围绕着汽车轻量化的背景和意义、镁合金在汽车中的应用、汽车轻量化的思考展开了论述。上汽大众汽车质保实验室吕亚帆经理发表题为《节能与新能源汽车关键部件的测试评价和论证体系》报告 南昌大学赣江特聘教授、机电工程学院刘勇副院长发表题为《轻量化材料在汽车行业的应用及发展》的报告岛津公司GC/GCMS 产品经理宋巍为与会专家献上了岛津最新的解决方案《汽车空气质量评价及异味评估新方法》。他首先就与车内VOC检测相关的中国法规进行了解读,介绍了车内空气VOC及醛酮类物质分析流程以及用于车内饰材料VOC与醛酮类分析的配置。随后报告了岛津公司提供的车内空气及饰材的醛酮类及VOC检测解决方案,包括TDGC/MS法分析VOC仪器平台、HPLC醛类分析方案以及车内气味分析定制分析系统。他特别强调岛津解决方案的理念在于:全面的产品线与一站式技术服务。岛津解决方案获得与会专家的高度肯定。岛津公司GC/GCMS 产品经理宋巍做题为《汽车空气质量评价及异味评估新方法》的报告 论坛结束后,与会专家参观了岛津公司上海分析中心,就岛津公司的全面解决方案与岛津技术专家进行了全面深入的现场交流
  • 汽车高峰论坛 岛津发表汽车空气质量评价及异味评估新方法
    p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/30b9c207-3bd5-4204-9de9-5f3cd9f3f442.jpg" title=" 汽车高峰论坛.jpg" alt=" 汽车高峰论坛.jpg" / /p p   日前,由中国机械工程学会材料分会与中国汽车工程学会材料分会联合主办、岛津企业管理(中国)有限公司承办的“2018汽车行业新材料· 新能源· 新趋势高峰论坛”在上海隆重召开,本届高峰论坛邀请到业内权威专家就新能源汽车产业政策及发展趋势、动力电池生产技术路线、轻量化材料发展趋势及应用、车内空气质量评价及评估体系等方面发表了精彩的主题演讲。来自产业链相关企业及专家互相探讨交流发展趋势及相关技术热点与难点,共谋新能源汽车产业的发展与未来。 /p p   在林逸教授、刘蕴博先生、王振波先生、王荣先生、龚沿东先生发表之后,上汽大众汽车质保实验室吕亚帆经理发表了题为《节能与新能源汽车关键部件的测试评价和论证体系》报告,他在报告中介绍了新能源汽车关键部件,解读了电芯的质量管控策略,并就电芯管控详尽介绍了五个维度的检测实验。南昌大学赣江特聘教授、机电工程学院刘勇副院长发表了题为《轻量化材料在汽车行业的应用及发展》的报告,围绕着汽车轻量化的背景和意义、镁合金在汽车中的应用、汽车轻量化的思考展开了论述。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/14de85c1-5574-4058-9e53-8a3b183027c9.jpg" title=" 上汽大众汽车质保实验室吕亚帆.jpg" alt=" 上汽大众汽车质保实验室吕亚帆.jpg" / /p p style=" text-align: center " 上汽大众汽车质保实验室吕亚帆经理发表题为《节能与新能源汽车关键部件的测试评价和论证体系》报告 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/75ca8a26-2091-4c26-9142-01ac72afa4f0.jpg" title=" 南昌大学赣江特聘教授.jpg" alt=" 南昌大学赣江特聘教授.jpg" / /p p style=" text-align: center " 南昌大学赣江特聘教授、机电工程学院刘勇副院长发表题为《轻量化材料在汽车行业的应用及发展》的报告 /p p   岛津公司GC/GCMS 产品经理宋巍为与会专家献上了岛津最新的解决方案《汽车空气质量评价及异味评估新方法》。他首先就与车内VOC检测相关的中国法规进行了解读,介绍了车内空气VOC及醛酮类物质分析流程以及用于车内饰材料VOC与醛酮类分析的配置。随后报告了岛津公司提供的车内空气及饰材的醛酮类及VOC检测解决方案,包括TDGC/MS法分析VOC仪器平台、HPLC醛类分析方案以及车内气味分析定制分析系统。他特别强调岛津解决方案的理念在于:全面的产品线与一站式技术服务。岛津解决方案获得与会专家的高度肯定。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/6eed177c-a5e0-4ea3-9ff8-890e0026385f.jpg" title=" 产品经理宋巍.jpg" alt=" 产品经理宋巍.jpg" / /p p style=" text-align: center " 岛津公司GC/GCMS 产品经理宋巍做题为《汽车空气质量评价及异味评估新方法》的报告 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/91d3c4f7-53ff-428c-a274-742c3de8b5f6.jpg" style=" " title=" 参观2.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/79db07c6-a1a8-43bd-983e-c16373177833.jpg" style=" " title=" 参观1.jpg" / /p p style=" text-align: center " 论坛结束后,与会专家参观了岛津公司上海分析中心,就岛津公司的全面解决方案与岛津技术专家进行了全面深入的现场交流 /p p br/ /p
  • 华腾地毯购置莫帝斯铺地材料热辐射测试仪
    华腾地毯(新余)产业园有限公司(VOXFLOR Industrial Park Co., Ltd.)是江西省新余市高新技术经济开发区与华源集团地毯有限公司合作创立的。项目总投资1.5亿元人民 币,一期占地266亩,一期厂房面积3万平方米,拥有抽丝、纺纱、簇绒、染色、覆底等高度一体化地毯加工生产线及设备,簇绒设备36台,方块毯簇绒产能位居亚洲第一。1997年华腾研发了国内第一款尼龙提花地毯。华腾也是中国地毯协会唯一指定的色彩图案研发中心。多年来华腾一直专注做中国最专业的方块地毯生产商。产品从发展之初,就努力与世界同步。产业园现已聚集了近10家地毯相关厂商,先后接待各省、市、地区代表团参观指导近百余次,公司目标是在江西建设中国最大的地毯产业集群。为了强化“华腾地毯”的品牌建设,推进公司的业务市场国际化进程,2014年1月1日,原公司名称江西华腾地毯产业园有限公司(CTTCC)更改为华腾地毯(新余)产业园有限公司(VOXFLOR Industrial Park Co., Ltd.)。 为确保华腾地毯品质的完美体现,华腾在原料上严格把关。在纱线使用上,华腾一直采用世界知名的英威达Antron尼龙66,环球尼龙66和首诺尼 龙66纱线,保证了产品的优异品质。通过对原料供应的控制,使所有产品经过抗静电、防污、阻燃、抗菌防螨整理,具有耐磨损,易清洗,无异味的特点。对于出售产品华腾予以长达15年以上的质量保证承诺。2012年,华腾和美国杜邦TM签订协议,杜邦TM在中国独家授权华腾在方块毯生产中使用杜邦TM最新研发的绿色环保Sorona?纱线。Sorona?纱线部分由可再生植物制造,具有天然的抗污,抗压,耐氯漂洗和抗紫外线的特点。可以做到很多污渍仅仅用水就可以清洁。Sorona?纱线的使用让华腾产品在品质和环保上都得到了一次大的飞跃。在地毯底背的研发上,华腾不断推陈出新。华腾的Mix-BacTM由回收可降解材料制作,脚感柔软,舒适耐用,尺寸稳定,弹性持久。从纱线采购到生产销售,华腾兼顾环保需要;同时做到了产品的部分可回收利用。华腾地毯拥有业内一流的研发力量。产品开发部由多名高素质的专业人员组成,并被中国工艺美术协会地毯专业委员会授权为行业新品开发中心,在技术开 发、图案 设计、配色等每一个环节上都配备专业人员负责深入研究;硬件配置上,采用国际一流的地毯设计、实样模拟软件和澳大利亚进口的专业地毯打样机,保证我们的设 计意图能够更快、更具体地得到体现。 经过多家对比,华腾地毯选择莫帝斯燃烧技术作为其合格供应商,用于其地毯的阻燃性能检测。 莫帝斯燃烧技术(中国)有限公司成立于2008年,100%的中国民族企业,其产品品牌为“莫帝斯”,其取义为Metis,她在古希腊神话中是水文和聪慧女神,是大洋河流之神俄刻阿诺斯和大洋女神泰西斯的女儿,也是雅典娜的母亲,她在一切生物中是最聪明的。“莫帝斯”品牌的寓意在于,我们的目标就是要制造出人性化和智能化的测试仪器,同时,当我们走出国门,进行品牌的推广时,便于提高海外市场的认知程度,避免因为品牌直译而产生的歧义。 莫帝斯燃烧技术(中国)有限公司自成立以来,在国内拥有众多知名用户,如公安部四川消防研究所、公安部天津消防研究所、公安部上海消防研究所、公安部沈阳消防研究所、中国标准化研究院、中国铁道科学研究院、中国船级社远东防火检测中心、中国科学院力学研究所、中国科技大学、北京理工大学、浙江理工大学、北京化工大学、浙江工业大学、中原工学院、中国南车、德国TUV南德意志集团、瑞士SGS通标标准技术服务有限公司等,莫帝斯致力于提供优质的燃烧测试仪器,为中国的阻燃材料以及燃烧测试研究提供最为有力的科研及检测武器。 www.motis-tech.com
  • 发展新能源汽车,助力“双碳”落地见效
    3月19日,中国新能源汽车大数据2023年产业大会在辽宁省沈阳市铁西区全球工业互联网大会会议中心召开。此次大会的主题为“智电新引擎蝶变新能源”,大会由一场主论坛和“新能源汽车安全体系建设”“新能源汽车大数据应用”两场分论坛组成。新能源汽车低碳环保、动力性能强,是汽车产业转型升级发展中的重要一步。要加强政策支持引导,加快核心技术攻关,完善充电基础设施等,推动新能源汽车行业持续、安全、健康发展,从而更好地推动节能减排,助力全面实现“双碳”目标。  出台相关政策支持,倡导绿色低碳出行。2022年,我国免征新能源汽车车辆购置税879亿元,同比增长92.6%,新能源汽车产销实现705.8万辆和688.7万辆,同比分别增长96.7%和93.4%。最新数据显示,我国新车销量中新能源汽车占比由2021年的1/8增至2022年的1/4,新车销售中每4辆车就有1辆新能源汽车,政策资金引导作用成效显著。下一步,要持续推广车购税免征政策等系列税费支持政策 出台运营补贴、通行路权、用电优惠、低碳排放区等支持政策,大力提高新能源汽车在城市公交、出租、环卫、邮政快递、城市物流配送等领域应用比例 继续扩大二手车的流通,推进新能源汽车下乡和以旧换新活动。通过政策支持和引导,推行节能低碳型交通工具。  加快核心技术攻关,为新能源汽车转型升级提供技术支撑。汽车是一个典型的集成技术,需要多个层次、多个领域的通力合作,新能源汽车的核心部件是动力电池,要加快动力电池存储容量技术研发,促进新能源汽车充电效率和续航能力获得更大突破,鼓励无线充电、智能充电、大功率充电的技术创新 加快动力电池安全防控技术攻关,提升动力电池热失控报警、安全防护、低温适应等性能水平 加快推进智能网联新能源汽车科技研发,突破单车感知决策、车路协同、人机共驾、以及各类信息安全威胁等若干核心关键技术,推动新能源汽车数字化转型和高质量发展。  完善充电基础设施等,大力发展清洁能源。目前,新能源汽车充电基础设施建设布局存在短板,急需合理布局充电设施,提速建设充电站、充电桩。比如扩容升级高速公路服务区充电设施、加快居住社区、停车场、加油站、公路沿线、客货运枢纽、郊区乡镇等建立充电站、充电桩,帮助解决充电桩不足、充电难、充电慢等问题。优化充电桩安全等级、操作界面,进一步提升充电桩使用率。同时,还要加强充电设施运维管理,完善充电车位管理配套措施,处理好充电车位被占用的情况。通过完善新能源汽车充电基础设施等,提高清洁能源的利用率,促进汽车产业节能减排,为绿色低碳高质量发展作出应有的贡献。  汽车产业是国民经济的重要支柱产业,在国民经济和社会发展中发挥着重要作用,发展新能源汽车是我国从汽车大国迈向汽车强国的必由之路,是推动绿色低碳发展的战略举措。发展新能源汽车,打造“绿色出行”低碳生活新模式,为交通领域清洁低碳转型、落实“双碳”目标助力。
  • 新能源汽车的“双碳”使命要靠这些——
    汽车行业的低碳发展,对于落实“双碳”战略具有战略意义。新能源、智能化的发展也为中国汽车产业换道超车、跻身国际一流水平提供了重要机遇。十年来,我国装备制造业取得了历史性成就、发生了历史性变革。汽车保有量从2012年的1.2亿辆增长到3.1亿辆,新能源汽车产销量连续7年稳居世界第一。当前,我国新能源汽车产业已进入全面市场化拓展期。汽车产业链非常长,涉及多领域交叉融合,汽车产业的低碳发展将推进整条产业链的低碳化进程,在减碳方面产生协同效应。9月11日下午,“海河零碳论坛周末沙龙”如约通过新金融传媒视频号及腾讯会议进行了线上直播,来自全国各地的双碳行业人士齐聚直播间,共同探讨“双碳目标下新能源汽车产业高质量发展的思考与建议研究”。本次论坛沙龙在天津海河教育园区管委会指导下,由南开大学产城发展校友会碳中和专委会、碳中和研究院、绿色金融中心、双碳产业投资家俱乐部、天创资本主办;江苏省产业技术研究院先进高分子材料技术研究所、元宇宙与碳中和研究院、山东省多能互补产业技术研究院协办;国家级经济开发区绿色发展联盟、天津泰达低碳经济促进中心、天津排放权交易所、天津市滨海新区环境创新研究院、南开大学循环经济与低碳发展研究中心、天津市环境保护产业协会、天津市企业家协会、天津全球成长型企业协会、天津市中小企业经济发展协会、滨海—中关村双碳联盟等多家单位联合主办;新金融传媒、凤凰网等多家机构支持。“双碳”目标的提出 对新能源汽车及动力电池产业是一个发展良机 但也存在一定的挑战和新的课题张铜柱中国汽车技术研究中心教授级高级工程师“双碳”背景下,交通行业减碳压力较大,将极大促进新能源汽车快速发展,动力电池产业面临较快发展机遇;电池生命周期碳排放,决定了不同国家、地区、不同企业的动力电池具有不同的低碳竞争力;动力电池将面临国际绿色贸易壁垒,生命周期绿色、低碳、循环发展成为重要课题。动力电池标准将更加重视环境、能源、资源效益的提升,构建绿色低碳循环发展标准框架;动力电池标准将着重加强动力电池生命周期碳排放管理和碳减排技术标准化;建立汽车生命周期各阶段主体企业单位产品综合能耗/碳限额(含动力电池、回收利用产品);动力电池标准将更加重视循环经济发展效益,通过生产端使用再生材料拉动报废端再生水平;动力电池标准将加强使用环节的能耗水平管控,提升电动车辆的能效;动力电池标准将构建生命周期管理的智能化标准体系,通过电子标识等技术开展生命周期溯源。在“双碳”背景下 汽车电动化过程中会有新风险出现赵明楠中汽数据有限公司生态业务部绿色低碳研究室主任汽车电动化过程中的新风险主要有五个方面:一是供应链风险,地方政府的减碳和经济指标双压力会直接影响属地工业企业。二是资源风险,全面电动化进程中,全球关键资源供给与需求矛盾将不断出现,锂在中短期供给无法满足需求,理想情景2037年供需平衡;镍在理想情景下供给始终可以满足需求;钴在理想情景下2058年供给可满足需求。三是成本风险,在“双碳”目标下,降碳资源(电池材料、绿色能源、低碳材料等)需求剧增,然而市场供应能力却压力剧增,导致相关资源成本上涨。四是合规风险,国内“两个角度,四种措施”的汽车全生命周期碳排放管理政策体系逐步推进。五是市场竞争风险,从发达国家消费者的低碳消费行为来看,消费者普遍未必会因为低碳消费观而购买更低碳的汽车,但无一例外都喜欢“指责”开高端汽车的消费者是“没有社会责任感的人”,因此走高端路线的纯电动汽车将不得不面对低碳消费观对自己潜在客户的负面影响,这也可以解释目前全球汽车行业减碳动作最大的都是高端车品牌。汽车行业该如何演好“双碳”目标下的新角色?构建绿色低碳采购体系,储备绿色低碳优秀供应商,设定针对高风险产品或工艺的能耗/碳排放水平线采购要求;构建自身关键资源闭环体系,保证资源稳定供给,提前建立资源闭环体系,一方面保证循环资源供应,应对电池材料资源短缺,另一方面确保汽车产品循环材料使用率,应对循环材料使用比例方面的法规;引进碳金融手段,对冲成本上升风险;“心中有数”,“合理规划”,规避合规风险,基于未来不同时间节点国内外碳排放管控力度,从市场需求、工厂及供应链、产品对标三个角度,评估宏观政策管理趋势,做好减排规划,抢占市场,应对风险,提升产品竞争力;根据所选减排目标的不同,可以输出单一方案或多项方案,汽车全价值链低碳成果总结能够全方位展示企业绿色低碳努力成果,提升企业及产品品牌效益。供应链成员的ESG行为缺失 会导致企业生产出现一系列的问题张木泽中汽数据有限公司生态业务部绿色低碳研究室工程师ESG是英文Environmental(环境)、Social(社会)和Governance(公司治理)的缩写,是一种关注企业环境、社会、治理绩效而非财务绩效的投资理念和企业评价标准。自2019年以来,我国ESG相关政策文件紧锣密鼓,涉及环境、社会责任、公司治理等各个方面,不断促进我国ESG发展。ESG在对企业自身行为提出约束的同时,更考量整个供应链的稳定性。汽车行业ESG现存四大问题。一是汽车行业与现行传统ESG体系不兼容。当前国内外传统ESG指标体系种类繁杂,垂直行业属性不足。同时传统ESG体系也无法针对汽车行业特征如产业链覆盖面广、智能网联化发展做出适应性调整。二是信息传递难以从单线模式走向网络化,导致ESG数据可靠性不足。每一级厂商ESG的评级需依靠上游供应商提供的信息和数据,这就导致目前ESG信息传递链多为从上游至下游的依次递归。对于整车厂或其他靠近下游的供应商而言,难以跨级获取全产业链的ESG信息,易导致对全产业链把握出现偏差,影响企业决策。三是信息收发重复性工作多,效率低。当前ESG信息收集任务分发机制无法保证每一级中的每一家企业ESG信息收集模板、统计指标完全相同,做不到准确、高效地收集分析产业链中的ESG信息。当产业链ESG信息收集模板、统计分析指标无法统一时,会造成下级供应商向多家上级供应商提供的信息存在偏差、时间截面不同、数据质量低等问题。四是ESG培训机制缺乏。ESG工作推广的一大难题是企业对ESG理念的认知、重视和资源投入不足。ESG培训机制的缺乏导致企业从理念、实际操作层面存在较大阻碍,并难以培养出企业ESG管理人员。我们要选择的赛道 要有一个超大容量的市场 新能源汽车就是这样一个赛道程伟天创资本合伙人投行部负责人我们要选择的赛道要有一个超大容量的市场,新能源汽车就是这样一个赛道。我国在这个产业中拥有最大最长的供应链体系,又是全球最大的单一市场,一旦这个市场开始发生产业升级的现象,就意味着这是一个拥有万亿级市场的赛道。我们为什么选择投资新能源汽车行业?首先,汽车产业是国民经济的支柱性产业,是一国制造能力的综合体现,欧美国家在经济腾飞的过程中,汽车工业也伴随着飞速增长。其次,新能源汽车行业是我国实现“双碳”目标的重要路径。第三,新能源汽车行业是一个能有效结合能源革命和信息革命的有效支点,汽车电动化是能源革命的主战场,汽车智能化是信息革命的主战场。最后,我国的新能源汽车行业存在弯道超车的可能性,我们通过新能源汽车的发展重塑了整个产业链的价值和生态,使得我国能够抢占先机。关于海河零碳论坛2022年“海河零碳论坛”由南开大学产城发展校友会碳中和专委会碳中和研究院等单位主办,国家级经济开发区绿色发展联盟、天津泰达低碳经济促进中心、天津排放权交易所、天津市滨海新区环境创新研究院、南开大学循环经济与低碳发展研究中心、天津市环境保护产业协会、天津市企业家协会、天津全球成长型企业协会、天津市中小企业经济发展协会、新金融传媒等多家机构支持。2022年“海河零碳论坛”致力于构建多元、开放的交流与合作平台。论坛以主旨演讲、行业聚焦、成果展示、深度分享等形式全面展示双碳战略目标下的实践成果,探寻“双碳”背景下经济转型和产业创新路径,打造“双碳”全产业链共生赋能平台,助力经济转型升级和可持续发展,共创绿色零碳未来。“海河零碳论坛”计划每年春季和秋季举办两次线下和线上结合的论坛,同时每周的周末都会安排固定时间举办线上沙龙交流活动。全力打造一个碳达峰碳中和的国际国内交流平台。9月18日下午2:30,“海河零碳论坛周末沙龙”邀请到天津港保税区管委会氢能产业发展局、氢能发展促进中心协助指导,携众多行业精英为大家带来分享《天津氢能产业发展与实践》,敬请持续关注!
  • 西宁市地毯式排查“化学火锅”坚决打击不法行为
    南京等地“化学火锅”坑人现象被媒体披露后,引起西宁市政府高度重视,根据市政府紧急部署,12月18日、19日,全市各级食品药品监管部门利用双休日,在市区内迅速展开对“化学火锅”的地毯式排查,决心对火锅店在火锅底料中添加非食用物质和滥用食品添加剂的不法行为进行坚决打击。   两天来,全市监督人员采取彻查火锅店食品库房和后厨操作现场等方式,对龙腾火锅、梭边鱼庄火锅、八一王火锅城、小肥羊火锅、石锅鱼火锅、恒欣火锅城等全市129家大中型火锅店进行了地毯式排查,暂未发现有使用媒体曝光的“飘香剂”、“火锅红”、“辣椒精”等化学添加剂的现象。   下一步,食品药品监管部门将结合2011年元旦、春节期间餐饮服务食品安全监管工作,在全市范围内对“化学火锅”展开过滤式细查,对在火锅底料中添加非食用物质和滥用食品添加剂的火锅店,一经发现,将严肃处理,绝不手软,确保全市人民饮食消费安全。为使非法添加非食用物质和滥用食品添加剂的不法餐饮服务单位无处可藏,市食品药品监督管理局提醒广大市民:如在就餐过程中发现食品安全问题,可及时拨打投诉举报电话:8817753。
  • 海克斯康“汽车品质与创新论坛”在长春举办
    2011年9月29日,海克斯康&ldquo 汽车品质与创新论坛&rdquo 活动在长春举办,来自中国计量科学研究院、吉林大学汽车学院、国内外的专家、用户代表出席了本次论坛峰会。 本次活动的举办,是在9 月全国质量月、吉林省计量科学研究院-海克斯康精密测量联合实验室成立以及海克斯康长春联络处升级为长春销售服务中心的大背景下举办,以&ldquo 低碳经济时代汽车品质技术创新方案&rdquo 为主题,来自国内外的专家就汽车制造业面临的产业升级、技术创新、结构调整的新形势,对于如何提高产品性价比、延长产品生命周期、确保产品品质与市场竞争力,实现节能降耗、降低成本以及提高绩效等诸多方面展开深入了探讨,并提出创新的解决方案。 &ldquo 低碳经济时代汽车品质技术创新方案,体现在如何不浪费,在提供贯穿汽车制造全过程的测量解决方案的同时,如何利用网络和软件技术的手段,实现测量过程的信息整合。&rdquo 海克斯康汽车产业运营总监韩建新先生在其演讲《测量信息化与汽车制造效率的提升》中这样表示。 海克斯康执行总裁周亮先生出席本次论坛峰会。 关于海克斯康: 海克斯康测量技术(青岛)有限公司,作为中国目前技术最先进、实力最强的三坐标测量机制造企业,是Hexagon计量产业集团的核心成员和十大测量产品制造基地之一。面向中国用户,海克斯康可提供Hexagon计量产业集团众多全球知名品牌的全系列测量产品以及完善的售后增值服务,并包括本地化的安装、校验、培训、技术支持和快捷的备件供应。无论用户选择哪一种来自集团的产品,都将得到海克斯康本地化、区域化的优质快捷服务。 全球化的产品和技术、本地化的设计与制造以及区域化的技术支持和技术服务,是海克斯康长期雄踞中国测量机行业榜首的中重要原因,为客户提供全面的计量解决方案是海克斯康雄厚技术实力的综合体现。 www.hexagonmetrology.com.cn
  • 惊呆了:汽车熔化!谈高低温试验箱对汽车行业的意义
    惊呆了:汽车熔化!谈高低温试验箱对汽车行业的意义2015年8月12日新闻,一名英国游客日前在意大利北部城镇旅行期间,发现一辆停泊了数天的法国车厂生产的汽车,车身及泵把均有金属碎片剥落,汽车两侧的后视镜亦似乎开始出现变形,在37摄氏度高温照射下开始熔化了。 看到这则因为小编也是惊呆了,按常理来说汽车在出厂前都会做一系列的测试:防尘试验、防水试验、高温老化、低温测试等等试验提前测试汽车性能的,怎么会在不到40℃的温度下就融化了呢?由此小编推断,此品牌的汽车一定未用高低温试验箱做高温老化试验。 高低温试验箱专用于模拟高低温环境提前测试产品耐高低温的性能,高低温试验箱温度广泛低温可至-70摄氏度,高温150摄氏度。汽车行业需做的环境测试很多而高低温是必须做的,一辆汽车耐高温程度应至少是80℃。若是在检测不合格产品不允许出厂直至改进性能合格为止。对于汽车行业也有针对做汽车测试的相应标准。
  • 第七届中国(广州)汽车零部件论坛成功举办
    新能源对汽车安全性的影响   第七届中国(广州)汽车零部件论坛成功举办   2014年11月20日,由国家汽车及零部件(广州)出口基地技术服务平台主办,中国电器科学研究院有限公司、威凯检测技术有限公司联合承办的&ldquo 第七届中国(广州)汽车零部件论坛&mdash Hi Tech 对汽车安全性的影响&rdquo 在广州拉开帷幕。广东省商务厅、广州市对外贸易经济合作局诸位领导、中国电器科学研究院有限公司陈伟升副总经理、薛守仁副总工程师、威凯检测技术有限公司谢浩江总经理、杨春荣副总经理,以及包括广汽本田、东风日产、广汽乘用车、广汽研究院、福迪汽车、广汽零部件、德赛西威、华为终端、马瑞利、铁将军、索哥波等整车和零部件企业,广东省汽车行业协会、广州市汽车行业协会、深圳市汽车电子行业协会、中山大学、华南理工大学等协会与高校共计200多人参加了会议。   随着&ldquo 智能&rdquo 、&ldquo 互联&rdquo 、环保&rdquo 等概念的推出,高科技加快了植入汽车的脚步,这对汽车的安全性、可靠性是一个极大的挑战。会上业内专家从&ldquo Hi Tech 对汽车安全性的影响&rdquo 的角度出发,与参会代表共同分享了汽车领域的前沿技术、发展趋势与质量保证最新要求。丰富的主题和专家们高水平的阐释,引发了企业代表的深入讨论和热烈交流。   今年下半年将迎来汽车市场高峰期   据广东省汽车行业协会秘书长罗兴安介绍,今年1-9月份,全省汽车生产156.49万辆,同比增长10.48%,出口持续低于去年同期水平,1-9月累计出口35051辆,同比下降4.99%。但罗秘书长同时表示,今年10月份到明年1月份是乘用车持续时间最长的市场高峰期,预计全年将完成汽车产销量230万,将高于去年同期水平。其中,在新能源汽车领域方面,广东省已经建立起包括从整车到零部件,涵盖了所有电动汽车品种的完整产业链以及相应的充换电设施、重点实验室、检测试验机构以及标准化委员会,关键技术有了重大突破。   中国汽车技术、汽车电商发展趋势   当前汽车技术的发展,新能源汽车和车联网技术的普及和应用是两大发展趋势。全国汽车标准化技术委员会电动车辆分会秘书长周荣先生判断,21世纪将是公路交通智能化的世纪,未来,汽车将通过智能交通系统(ITS)实现互联互通、综合管理,车辆靠自己的智能在道路上自由行使,公路靠自身的智能将交通流量调整到最佳状态,借助这个系统,管理人员可以对道路、车辆的行踪掌握得一清二楚。   在新能源汽车关键技术领域,汽车空调系统、电动系统以及转向系统三者之间独立运行与汽车在节能及安全性之间的矛盾是目前制约新能源汽车发展的瓶颈,也已被国家列入重点需要解决的技术难题。华南理工大学李礼夫教授在会上提出电动汽车系统集成控制方法,通过集成控制三大耗电系统将有望实现汽车节能及提高汽车安全性的目标。   广汽集团一直走在汽车技术发展的前端,本届论坛广汽集团汽车工程研究院首席专业总师黄少堂先生在其发表的&ldquo 车联网 VS 智能驾驶和智能电商&rdquo 的主题演讲中首次提出汽车集成电商的概念,他认为汽车是一个个性化的产品,如果通过电商将汽车零部件企业、整车企业、汽车保险、汽车后市场全部链接起来,线上定制、线下跟进,整合全产业链的商家,从而实现合理采购、阳光报价、检测透明、售后便捷,给用户一个价值打包,将会是汽车电商未来的发展之路。   广东电动汽车质量保障体系日益完善   广东新能源汽车发展一直走在全国前列,广东初步形成了较完善的新能源汽车生产体系,截止2014年10月份,广东累计推广新能源汽车超10000辆。产业的发展推动着广东电动汽车标准化工作的开展,广东省电动汽车标准化技术委员会秘书长王益群博士在会上介绍,到目前为止,广东已经编制了41项电动汽车地方标准,其中17项已经颁布,24项已经完成报批工作,还有35项预计将在2015年年底前完成。这些标准的制定和落实,将进一步推动电动汽车产业技术的发展。   广东省已经明确将新能源汽车产业列为近期重点发展的三大战略性新兴产业之一,为推动电动汽车产业的发展,今年在广东省发改委的支持下,威凯检测技术有限公司(CVC威凯)建成了华南地区首个带运行工况的第三方整车EMC测试实验室。CVC威凯汽车事业部经理林青在会上指出,汽车零部件集成在一起,容易相互干扰,这个问题在新能源汽车上尤为凸显。国家标准GB14023 CISPR12已经强制要求整车必须进行EMC测试,以保证汽车的安全性能。本次整车EMC测试实验室的建成,将有利于解决了整车和零部件企业,尤其是广东及周边地区企业产品送检成本高的难题。   广东东风日产乘用车技术中心系统开发部部长陈文进同时表示,目前市场上各充电器对GB/T的满足程度表现不一,各车企为推广电动车,保障用户充电安全,在与各充电机厂家进行对接联调工作中花费了巨大的人力物力,非车载交直流充电机产品进入强制性认证制度建设刻不容缓。他建议,未来可以由车厂和电网联合成立充电机产品强制性认证制度,从软件、硬件和管理三个层面上共同推动建设健康、良性、循环的新能源汽车局面。   作为广州国际汽车展的重要组成部分,中国(广州)汽车零部件论坛已经成功举办了六届,已经发展成为华南乃至全国最有影响力的行业盛会之一。本届论坛,主办方除了继续保持往届&ldquo 汇多方力量,促广泛交流,切实提升汽车零部件质量水平&rdquo 的一贯原则外,还紧扣汽车及其零部件领域的趋势和热点,邀请高水平的嘉宾进行技术分享,通过思想的碰撞和头脑风暴,为与会代表和行业创造更大的价值。中国电器科学研究院有限公司和威凯检测技术有限公司将持续发挥作为国家汽车及零部件(广州)出口基地技术服务平台的作用和意义,继续为推动全国汽车及零部件行业的发展作出应有的贡献。
  • 探索汽车美容的魔法术 ——胶带在汽车行业的天平应用案例
    胶带的应用早已渗入至各行各业的各个领域,如汽车行业中,汽车的外饰、内饰、车身、临时应用和电气系统领域均已用到。其中外饰应用主要是外饰件固定和车镜装配;内饰则是线束固定、减震降噪和内饰粘接 车身方面主要是激光标签、专业堵孔和永久表面保护;电气系统则主要是线束捆扎应用。自1928年理查德鲁发明透明胶带以来,经过一百多年的发展,胶带已被运用到人民生活、国防军工、生产消费等各个方面。而我国也已成为世界胶带生产及消费大国,据粗略统计,我国具有一定规模的胶带生产企业已达500余家。如何生产出优质的胶带已成为各胶带生产企业共同探讨的问题。胶带胶粘剂多烘一分则太过,少烘一分则太湿,都无法满足消费者的需要。所以胶粘剂的烘干是胶带生产环节中至关重要的一环。客户案例某世界著名的产品多元化跨国企业是世界公认的胶带行业第一品牌。主要产品包括双面胶带、标签、VHB强力胶带、胶粘剂、遮蔽胶带、包装系统、保护膜、和其它特种单面胶带等。下面让小编带你一起看看他们是如何把控此环节的呢? 产品应用 在胶带生产环节中,一项重要的环节就是需要在涂抹完胶粘剂后,将产品放入烘箱中进行烘干。但胶带若没烘干,则胶带表面胶粘剂太湿,无法使用;若烘的过干,则会导致胶带粘性差,产生气泡。客户需要先期通过实验确定烘箱的时间和温度。为此,客户制作了一套模拟烘箱的自动化设备,把涂有胶水的玻璃片放入设备中,通过天平实时测量胶水在烘箱中重量变化并发送给电脑中客户编写的软件,生成曲线,从而判断胶水是否达到烘干标准。最终确定烘箱的温度和烘烤时间。但气流对万分位天平有明显的影响,因为天平拆除了风罩, 并且称量支架暴露在烘箱气流中,这对天平的稳定性提出了很高的要求。客户接受的波动值在± 2mg,波动过大会 影响最终曲线的平滑性,导致测试结果误差过大。奥豪斯为该公司推荐的产品为EX324ZH。 *EX天平可仪表和称体分离,满足和设备配套的需求。测量需要满足万分位精度,性能稳定,有自动校准功能。 具体解决方案如下:通过降低称量支架高度,与秤盘牢固固定;设置天平滤波参数和自动回零;对设备整体进行密封。客户评价奥豪斯天平以其优异的稳定性能,使气流对万分位天平的影响降至最低,为客户解决需求,满足了客户的需求,也赢得了客户的信赖。Explorer系列天平概览:
  • News|欧波同亮相中国国际汽车动力总成论坛
    2018 年 4 月 19至20 日,中国国际汽车动力总成论坛在上海世纪皇冠假日酒店隆重举行,此次峰会邀请到270多位行业专家参与,包括了整车厂、动力总成专家、动力总成零配件专家,催化剂供应商,汽车动力总成检测商等,大家在论坛中共同交流、展示了各自领域的创新成果。 图1:论坛会场欧波同(中国)有限公司参加了此次论坛,并为汽车动力总成行业带来了蔡司全自动清洁度分析系统,受到现场众多专家及生产商的关注。 图2:欧波同展示区《中国制造 2025》提出将“节能与新能源汽车”作为重点发展领域,提升核心技术的工程化和产业化。目前中国在汽车动力总成技术上与国外水平有着较大的差距,国内车企亟待从技术领域取得突破。 图3:欧波同工作人员向参会专家介绍产品详情在论坛上,欧波同向汽车动力总成行业推荐的蔡司高速全自动清洁度分析系统,正是基于汽车零部件清洁度检测整体解决方案而推出的。零部件表面的洁净度对于零部件工作的可靠性和持久性有着非常重要的影响。因此,必须从每个环节的每一个细节入手来防止和减小污染物的产生,才可能保证安装后的系统能够安全可靠的运行。
  • 江苏地毯式排查重金属污染企业
    从5月开始,江苏省在深入开展整治违法排污企业保障群众健康环保专项行动中,重点组织开展了重金属污染企业专项检查与整治工作。   到目前为止,全省共出动环境执法人员6592人(次),采取地毯式排查方式,重点查处涉及重金属污染企业,基本摸清了全省重金属污染企业的“家底”和重金属污染物排放的现状。   记者从江苏省环保厅了解到,江苏省制定并印发的《2010年整治违法排污企业保障群众健康环保专项行动工作方案》中确定,今年的环保专项行动重点直指重金属污染企业,并明确了重金属污染专项整治的范围、重点内容和对严重违法企业强关重罚的要求。   经过江苏省环境执法人员一个多月来的检查,现已查明,目前全省共有涉及重金属企业1112家。其中,涉铅企业399家,涉铬企业677家,涉汞企业19家,涉镉企业43家,涉类金属砷企业23家。   在这次专项整治中,各级环保部门共发现存在违法问题的企业170家。各级环保部门已对其中的112家企业采取了限期治理措施。同时,依法取缔关闭23家,停产整顿35家。   同时,江苏省还结合污染源普查、排污申报、信访举报、日常监督性监测等数据资料和现场监察情况,对重金属污染企业进行了梳理,以全面掌握重金属污染企业的数量和重金属污染物排放现状。   江苏省对涉及第一类重金属污染物生产、使用或排放的企业、危险废物处置利用类企业开展认真全面排查,在此基础上进一步明确排查范围、重点区域和重点企业 对重点企业达标排放、建设项目审批、环保“三同时”制度落实情况进行逐家、逐项的检查;对存在环境违法问题的企业,下达整改通知书,明确整改要求,限期整治 对没有按时落实整改要求的企业,一律停产整顿,对无法整改到位的企业,依法建议当地政府予以取缔或者关停。
  • 岛津推出《电子探针在汽车材料中的应用》数据集
    汽车行业是一个涉及多种材料的综合性产业,材料应用的多元化是其突出的特点,虽然钢铁材料仍占主导地位,更安全、更节能、更环保的发展趋势要求,使得汽车轻量化设计越来越受到重视,高强合金、轻金属和非金属材料的应用发展前景广阔。 轻量化是汽车的发展趋势,在更安全的前提下,资源友好和环境友好的可持续发展战略使命也对汽车材料的应用和发展提出了更高的挑战。世界各国都在努力改进和研发新的汽车材料,提高材料的比强度、降低构件的重量、减少制造的成本和耗能。 主要涉及以下几个关键性材料: 一、高强度钢和超高强度钢的开发:可用于车身车架、横纵梁等关键部位。世界各国和各大车企都在大力参与开发各种高强度钢板,如冷轧含磷板、双相钢(DP 钢)板以及目前最先进的相变诱发塑性钢(TRIP 钢)板等。 二、轻金属包括镁合金、铝合金和钛合金等的应用呈现出越来越广的趋势。 (1)铝合金:密度约是钢铁的三分之一,现已广泛用于汽车发动机、变速器、差速器壳体、铝轮毂、转向节及各种换热器等部位,是汽车上应用最多的轻质金属材料。而且随着铸锻焊、冲压等制造技术的发展,会有更多的部件采用铝合金制造。(2)镁合金:镁合金的密度仅相当于铝合金材料的 66%左右,但在比强度和刚度等机械性能要明显优于钢铁和铝合金,而且在成型效率和尺寸稳定性方面也有很大的优势。目前镁合金在汽车上一般可用于发动机气缸体、壳体、进气歧管、方向盘、转向器、轮毂等零部件。由于镁元素化学特性特别活波,工艺难以控制这在一定程度上限制了镁合金的应用。 (3)钛合金:具有密度小、质量轻、比强度高、耐腐蚀及高低温性能优异等特点,使之可以在一些恶劣的工作条件中保障汽车的性能。但由于钛合金原材料获取困难,加工成本较高。在汽车制造中,一般将高强耐热钛合金用来生产发动机配气系统、曲轴连杆机构和底盘零件,例如气门、气门弹簧、凸轮轴、连杆、涡轮转子和紧固件等。 三、非金属材料在整车占比也在不断扩大。 其中塑料占很大比例,塑料在汽车上的应用有密度低,成形性好,耐腐蚀,弹性形变可吸收冲击能量,除常规的热塑性和热固性塑料外,也包括塑料纤维增强的复合材料。另外,陶瓷、复合材料和功能材料在车用材料领域也占有重要地位。 岛津公司作为全球著名的分析仪器厂商,自 1875 年创业以来,始终坚持创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术。早在上世纪 60 年代岛津公司就开始研制和生产电子探针,独有的 52.5°高检出角及兼顾高灵敏度和高分辨率的全聚焦晶体,可在微米级的微小区域到最大 90×90mm 的广域范围中可进行精准分析。电子探针 EPMA(Electron Probe Micro Analyzer)是将聚焦电子束照射到样品,通过激发样品发出的电子信号进行细微结构的观察,通过检测指定区域内发出的元素特征 X 射线进行定性、定量及面分析等多种测试分析。 为了更好的服务于岛津电子探针 EPMA 客户,岛津公司分析中心也开展了汽车行业多种材料的测试分析工作。本文集即是对这一工作的阶段性总结,供相关工作者参考。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅱ)
    助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅱ)原创 飞飞 赛默飞色谱与质谱中国高丽1. 前言 随着全球能源消费结构向低碳转型的加速,氢能作为一种来源丰富、绿色低碳、应用广泛的二次能源和工业还原物料而备受瞩目。氢能是我国战略性新兴产业和未来产业重点发展方向,是我国实现2060年“碳中和”目标的重要途径。氢燃料电池汽车的研发和应用是我国氢能利用的重点应用产业,氢气质量是确保燃料电池正常运行的关键因素之一。作为燃料电池能量来源的氢气主要来自工业副产氢、电解制氢、化工原料制氢和化石能源制氢,不同生产方式制取的氢气不可避免地会产生相应的杂质组分,会对燃料电池的性能和寿命产生不同程度的影响。经过十几年探索和验证,发现二氧化碳、甲烷、氮、氩、氦等杂质组分会降低氢气的分压,导致燃料电池局部氢气供应不足,可能造成电池反极并发生碳蚀现象。一氧化碳会占据PEM催化剂的活性位而阻碍氢气在催化剂上的吸附,降低氢气电离出质子的速率,严重时会导致催化剂完全失活等。由此可见,氢气的纯度及杂质含量会对PEMFC的性能造成严重的损害并降低其使用寿命、影响效率和安全等,因而,准确而快速的测定燃料氢气的纯度和杂质含量是极其重要的。赛默飞与北京石科院合作,采用1台气相色谱仪,配置TCD、FID和PDD三个检测器、多阀多色谱柱分析系统检测质子交换膜燃料电池汽车用氢气中氦、氩、氮、一氧化碳、二氧化碳和烃类组分,建立燃料电池用氢质量分析方案,所有测试结果均满足新修订国标的要求。2. 仪器及配置 表1 气相色谱仪仪器配置(点击查看大图)3. 结果与讨论 3.1氢中微量一氧化碳和二氧化碳检测用气体标准样品或通过气体稀释仪将一氧化碳和二氧化碳标气稀释至0.05 µ mol/mol~10 µ mol/mol 范围内的8个浓度级别并进行检测并绘制多点校正曲线(强制过原点),典型样品色谱图见图1,一氧化碳和二氧化碳测试校正曲线相关系数分别是0.9999和0.9992。图1 一氧化碳和二氧化碳分析(PDD流路)典型色谱图(点击查看大图)重复性及检出限测试用气体稀释仪配制0.05 μmol/mol的样品,平行测定至少10次,样品峰面积的相对标准偏差、方法检出限结果列于表2中。样品叠加色谱图见图2。从测试结果得到2种杂质的检出限均低于20 ppb。图2 一氧化碳和二氧化碳检出限测试谱图(点击查看大图)表2 样品组分低浓度点连续10针进样重复性及检出限测试结果(点击查看大图)3.2氢中烃类组分检测用气体标准样品或通过气体稀释仪将烃类标气分别稀释至6个浓度级别,甲烷浓度范围0.1 µ mol/mol~5.3 µ mol/mol,其他烃组分浓度范围0.1 µ mol/mol~2 µ mol/mol,绘制校正曲线(强制过原点)。烃类组分典型色谱图见图4,绘制校正曲线见图3,绘制校正曲线的线性相关系数均大于0.9992。图3 烃类组分(FID流路)典型色谱图(点击查看大图)重复性及检出限测试用气体稀释仪配制0.1 μmol/mol的样品,平行测定至少7次,样品保留时间、峰面积和峰高的相对标准偏差,方法检出限结果列于表3中,从测试结果得到烃组分杂质的检出限均低于0.1 ppm。表3 烃组分低浓度点连续7针进样重复性及检出限测试结果(点击查看大图)3.3氢中氦、氩、氮组分检测用气体标准样品或通过气体稀释仪将氦、氩、氮标气稀释至5个浓度级别(10 µ mol/mol~602 µ mol/mol范围内),绘制多点校正曲线(强制过原点),TCD流路典型样品色谱图见图4,测试校正曲线相关系数均大于0.9992。图4 氢中氦氩氮(TCD流路)典型色谱图(点击查看大图)重复性及检出限测试用气体标准样品平行测定7次, 样品保留时间、峰面积和峰高的相对标准偏差,方法检出限结果列于表4中,七针测试叠加色谱图见图5。从测试结果得到氦、氩、氮组分的检出限均低于10 ppm。图5 氢中氦氩氮低浓度点叠加色谱图(点击查看大图)表4 氦氩氮低浓度点连续7针进样重复性及检出限测试结果(点击查看大图)结 论方案操作简单,灵敏度高、能够满足质子交换膜燃料电池汽车用氢气对杂质的分析需求。经验证考察,各杂质组分相关系数均大于0.9992,满足GB/T 37244《质子交换膜燃料电池汽车用燃料 氢气》、团标T/CECA-G 0179—2022《氢气中氦、氩、氮和烃类的测定 气相色谱-热导和火焰离子化检测器法》和团标T/CECA-G 0181—2022《氢气中一氧化碳和二氧化碳的测定 气相色谱-氦离子化检测器法》对校准曲线相关系数、检出限等要求;同时,也完全满足 GB/T 3634.2和ISO 14687中规定的各杂质的检出限要求。如需合作转载本文,请文末留言。
  • Nexis视角 | 支招地摊2.0,让“科技”与“烟火”同步
    要说6月份以来,网络上什么词最火?不是直播带货不是新冠疫情而是“地摊经济”!这个名不见经传的词汇堪称2020年最大的黑马。强势进入公众视野成为了大家热议的话题。 截图来源:哔哩哔哩 6月1日,李克强总理在山东烟台考察时表示:地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机。一时间,地摊经济备受关注,全国多地相继制定出台鼓励新规,为地摊经济发展“松绑”, “地摊经济”扑面而来,成为家喻户晓的热词,大家纷纷摩拳擦掌,跃跃欲试。 “全民摆地摊”迅速成为刷爆朋友圈的素材,网络上甚至出现了很多资料《当代青年摆地摊新手指南》、《摆摊技巧》、《摆摊三大纪律八项注意》… … 国内某车企迅速推出了“摆摊神车”… … 图片来源:百度搜索大数据 地摊经济重新启动,小夜市上,穿梭在熙攘的人群中,听着街边商贩此起彼伏的叫卖声,各式特色美食、家居用品、服装、小饰品等应有尽有。听到最多的大家评价是:"热闹得很!"、" 喜欢这样的烟火味儿!" 、“这才是接地气的夜生活!”… … 。“地摊经济”一头连着经济,一头连着民生,有着其独具魅力的生机与活力。 网络上关于如何来审视当前正处于火热中的“地摊经济”,有不同的讨论角度:有从经济发展的角度来看,许多人通过“练地摊”开启了自主创业的第一步,为后期中国经济如火如荼的发展做了积累和铺垫;有从质量安全的角度来看,商贩们只要一辆小推车就能四处兜售各种食品和日用品,质量良莠不齐,许多人也在担忧背后隐藏的质量和安全问题;当然也有人从生意技巧的角度来剖析地摊生意好坏的主要影响因素,以食品为例,一个摊位的成功与否与所销售的食品品质和风味是直接相关… … 随着国家治理能力现代化水平不断提升,在这一波地摊热潮中,摆摊队伍增加了很多现代的新鲜血液,不少人还带着“新技术”和“新想法”。而在网络上,关于“地摊经济 2.0”的呼声也很高,其区别于传统的地摊和夜市,希望在科技的加持下,改变传统地摊的弊端,用科技为地摊带来新活力,塑造更安全,更规范的地摊经济。 今天我们就来探讨一下,假如新时代的仪器人来出谋划策,能为传统摆摊人带去哪些新思路。希望通过我们的讨论,能为中国传统地摊市场迈向“地摊经济 2.0”提供一点启发。 以地摊和夜市上的食品为例,硫化物是一类对食品感官质量具有重要影响的风味物质,虽然其在食品中的浓度非常低,但是对食品风味的影响不容小视,尤其是一些低分子量的挥发性硫化物。以非常受欢迎的食品“泡菜”为例,其具有非常强烈的特殊味道,但是如果其中含有即使是微量的硫化物,则泡菜的风味也会大受影响。GCMS-QP2020 NX + Nexis SCD-2030 传统上,硫化物对分析方法的灵敏度和分离效果的要求很高,用传统的气相色谱质谱法检测存在很大的挑战。本例中我们创新了分析方法,采用MonoTrap吸附+溶剂洗脱的前处理,利用岛津旗舰级气相色谱质谱联用仪GCMS-QP2020 NX + 硫化学发光检测器Nexis SCD-2030研究了泡菜包装袋释放的气体成分,充分利用了GCMS的定性优势和SCD在硫化物检测方面高选择性和高灵敏度的优势。分析结果如图1和图2所示:图1. GC-SCD的色谱图图2. GCMS TIC总离子流图 根据泡菜储存过程中包装袋所释放的气体,我们采用GCMS和GC-SCD相结合的方法检测到了8种含硫化合物,分别是:烯丙基二甲硫醚、硫代醋酸S-甲酯、二甲基二硫醚、甲基烯丙基二硫醚、二甲基三硫、3-丁烯基异硫氰酸酯、二烯丙基二硫、甲基烯丙基三硫醚。通过分析这8种含硫化合物的动态变化规律,可以为泡菜的生产、包装工艺优化和质量控制提供科学依据。 除了分析泡菜在包装袋的储存过程中所释放的痕量硫化物外,使用过的泡菜容器(坛子)也是一个很重要的气味指示物品。关于泡菜容器(坛子),我们可以首先用水进行充分冲洗,然后利用SPME的前处理方法(图3所示),结合岛津旗舰级气相色谱质谱联用仪GCMS-QP2020 NX + 硫化学发光检测器Nexis SCD-2030研究残留在泡菜坛子中的含硫化合物组成。 图3. 泡菜容器的前处理过程 分析谱图如下(部分):图4. GC-SCD和GCMS的分析谱图 通过GCMS和GC-SCD的结合分析法,我们从泡菜容器(坛子)中共检测到了36种含硫化合物,如下表1所示: 表1. 泡菜容器中检测出的含硫化合物如果仅用GCMS分析,则有部分含硫化合物会被掩盖在其他谱峰中(如图5所示),从而造成被遗漏和忽略的风险,而通过GCMS和GC-SCD的谱图结合分析,可以将含硫化合物很好的识别出来。 图5. GC-SCD谱图和GCMS TIC谱图的对比(红色:硫化物) 因此,使用GCMS和GC-SCD相结合的方法可以更准确的识别泡菜容器(坛子)中残留的挥发性硫化物,避免单独GCMS分析时遗漏和忽略某些组分的情况发生,从而为优化泡菜工艺和储存方法提供科学支撑。更详细的实验数据请参考岛津官网。 根据以上分析思路,我们还可以利用GCMS和GC-SCD相结合的方法分析食品制作过程中的常用食材,比如大葱、大蒜、韭菜、洋葱、萝卜、海藻、牛奶等,其中含有的典型硫化物如表2所示: 表2. 常见食材中的硫化物同时,也可以利用GCMS和GC-SCD相结合的方法分析一些非常受人欢迎的特殊气味食品,比如臭豆腐、豆腐乳、发酵肉制品、螺蛳粉、臭桂鱼、豆汁、卤煮、香椿、榴莲、红肠… … 图片来源:Pexels 摄影师:D??ng Nhan 地摊和夜市作为一种充满温情的城市记忆和接地气的经济形式,让我们更能深刻理解:小地摊,大民生,发展与梦想并存。地摊和夜市不仅是点亮一盏灯,温暖一座城,更是社会的生机和活力所在。 人间烟火味,最抚凡人心。让我们用新科技为传统生活带来新活力,支招地摊2.0,让“科技”与“烟火”同步。 参考资料:1、 Application News No. M288. New Approach to Food Smell Analysis Using Combination of GCMS and GC-SCD (1).2、 Application News No. M289. New Approach to Food Smell Analysis Using Combination of GCMS and GC-SCD (2).3、 地摊经济2.0,从此要被天天喊“出摊”了吗?星球上的科学,2020年6月5日。4、 让“地摊经济”成一种经济风口,红网,2020年6月1日。5、 打造地摊经济2.0版,让“文明风”与“烟火气”同步,新京报,2020年6月5日。
  • 助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)
    助力双碳,“氢”心打造-燃料电池汽车用氢质量分析方案(Ⅰ)原创 飞飞 赛默飞色谱与质谱中国高丽摘要:含硫化合物、甲醛、有机卤化物01背景氢能因为其具有绿色无污染、零排放等优势,是未来国家能源体系的重要组成部分,是我国战略性新兴产业和未来产业重点发展方向,是我国实现2060年“碳中和”目标的重要途径。氢燃料电池汽车的研发和应用是我国氢能利用的重点应用产业,我国也将其列为战略性新兴产业予以扶持,随着质子交换膜燃料电池汽车(PEMFCV)的发展,人们越来越关注燃料电池用氢质量对燃料电池性能的影响。作为燃料电池能量来源的氢气主要来自工业副产氢、电解制氢、化工原料制氢和化石能源制氢。不同生产方式制取的氢气不可避免地会产生相应的杂质组分,会对燃料电池的性能和寿命产生不同程度的影响。经过十几年探索和验证,我们了解到氢中杂质会对PEMFC的性能造成严重的损害作用并降低其使用寿命,不同种类的杂质如硫化氢、羰基硫、二氧化硫、硫醇、硫醚等都会对PEMFC阴极催化剂产生不可逆的毒化作用等等。综上,氢气的纯度及杂质含量会对PEMFC的性能造成严重的损害并降低其使用寿命、影响效率和安全等,因而,准确而快速的测定燃料氢气的纯度和杂质含量是极其重要的。2023年赛默飞与北京石科院合作,参与氢能新国标的修订工作。采用低温预富集技术与Thermo Scientific&trade ISQ&trade 7610气质联用仪、SCD检测器对燃料氢中硫化物、甲醛和卤化物等杂质进行检测,建立燃料电池用氢质量分析方案,所有测试结果均满足新修订国标的要求。02线性测试2.1 按实验测试条件进样,硫化物典型色谱图见图1;目标物浓度0.1 ppb-10 ppb范围内,7种含硫化合物相关系数均大于0.998,硫化物多浓度点校正曲线见表1;2.2 按实验测试条件进样,卤化物典型色谱图见图2;甲醛浓度1-400 ppb范围内,相关系数为0.9998、有机卤化物浓度在1-100 ppb范围内,8种有机卤化物相关系数均大于0.998,其多浓度点校正曲线见表2。图1 硫化物分析典型色谱图(点击查看大图)表1 硫化物线性相关系数(点击查看大图)1-甲醛;2-一氯甲烷;3-溴甲烷;4-三氯一氟甲烷;5-二氯甲烷;6-顺-1,2-二氯乙烯;7-三氯甲烷;8-四氯乙烯;9-氯苯图2 甲醛、有机卤化物TIC图和定量通道谱图(点击查看大图)表2 甲醛、有机卤化物线性相关系数(点击查看大图)向下滑动查看所有内容03重复性测试 3.1 按实验测试条件,对摩尔分数为0.05 nmol/mol混合硫化物标气连续测定7次,硫化物各组分RSD均小于5%,7针标气叠加谱图见图3,重复性测试结果见表3。1-硫化氢;2-羰基硫硫化物;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图3 0.05 ppb硫化物组分7针叠加色谱图(点击查看大图)表3 硫化物各组分重复性测试结果(点击查看大图)3.2 按实验测试条件,对摩尔分数为1 nmol/mol甲醛、有机卤化物标准气体连续测定7次,所有组分的RSD 表4 甲醛、有机卤化物各组分重复性测试结果(点击查看大图)04检出限测试含硫化合物的检出限值低至0.01×10-3 μmol/mol,样品色谱图见图5;甲醛检出限值低至0.1×10-3 μmol/mol,样品的TIC图见图6;一氯甲烷等卤化物检出限值低至0.5×10-3 μmol/mol,样品的TIC图见图7。1-硫化氢;2-羰基硫;3-乙硫醇;4-甲硫醚;5-二硫化碳;6-噻吩;7-二甲基二硫醚图5 硫化物检出限测试谱图(点击查看大图)图6 甲醛检出限测试TIC图(点击查看大图)1-一氯甲烷;2-溴甲烷;3-三氯一氟甲烷;4-二氯甲烷;5-顺-1,2-二氯乙烯;6-三氯甲烷;7-四氯乙烯;8-氯苯图7 有机卤化物检出限测试TIC图(点击查看大图)向下滑动查看所有内容总 结方案适用于GB/T 37244质子交换膜燃料电池汽车用氢气中含硫化合物、甲醛和有机卤化物的测定;也可用于工业氢、高纯氢和超纯氢中含硫化合物、甲醛和有机卤化物的测定。建立的燃料电池用氢质量分析系统实现:1. 方法的检出限和测定范围满足工作要求 2. 方法准确可靠,满足各项方法特性指标的要求 3. 方法具有普遍适用性,易于推广使用。如需合作转载本文,请文末留言。
  • 一汽/陕汽/比亚迪/中车技术专家齐聚,共探汽车失效分析技术
    汽车零部件失效分析是研究汽车零部件丧失其规定功能的原因、特征和规律;研究其失效分析技术和预防技术,目的在于分析零部件失效的原因,提出改进和预防措施,从而提高汽车可靠性和使用寿命。目前,失效分析已成为汽车材料及零部件检测的一个重要环节。汽车零部件的失效分析技术是一项涉及众多学科和工程技术的综合性工程技术。对于金属材料零部件而言,失效的主要类型包括断裂(开裂)、变形、磨损和腐蚀,而失效分析技术则涉及物理及化学学科、金属材料及金属工艺学、材料和工程力学,以及各种汽车工程技术等各门类学科何技术,同时也包括实践认知和逻辑推理等思维形式。为进一步加强汽车零部件失效分析技术和方法的交流,助力汽车产业持续提升安全性、可靠性、耐久性及高质量制造,仪器信息网将于2023年3月15-17日举办第五届“汽车检测技术”网络会议,联合中国汽车工程学会汽车材料分会特设“汽车零部件失效分析”专场。点击图片直达会议页面会议特邀一汽、陕汽、比亚迪、中车四大主机厂失效分析工程师,结合相关理论、大量工作实践与具体案例,从不同角度分享汽车零部件失效分析经验。部分报告预告如下( 点击报名 ) 。汽车工程学会材料分会理化及失效专业委员会研究员高工 刘柯军《汽车零部件失效分析的技术逻辑》(点击报名) 刘柯军高工自1982年进入一汽,一直从事汽车金属零部件的金相检验和失效分析工作,退休前任一汽技术中心材料部技术总监;长期从事失效分析工作,积累了大量的实际经验,现为汽车行业失效分析工作的技术带头人。汽车零部件失效分析是一项专门的工程技术,需要长期的技术时间积累,在此过程中失效分析工程师需要形成切实有效的认知技术和逻辑思维模式。本次会议中,刘柯军高工将分享汽车零部件失效分析的技术逻辑。中车戚墅堰机车车辆工艺研究所有限公司高级工程师 潘安霞《兔年读图——图解汽车零部件失效分析》(点击报名) 潘安霞高工为中车戚墅堰所失效分析高级工程师,现任全国机械工程学会失效分析分会委员、中国中车技术专家,中车计量理化培训讲师,主要从事轨道交通行业齿轮、紧固件、弹簧等关键零部件失效分析研究工作,著有《紧固件失效分析与案例》。本次报告中潘安霞高工将图解汽车零部件失效分析,通过齿轮、电池包、紧固件、轴承等零部件的典型失效案例讲解,说明损伤形貌的宏微观图片正确表征和解读是失效分析的重要环节。陕汽控股集团公司失效分析总监 白培谦《重型汽车零部件失效分析及改进》(点击报名) 白培谦总监自1987年参加工作以来,一直在陕汽从事检验、检测、失效分析和质量管理等技术工作,主要特长为失效分析和质量改进工作,对重型汽车的失效分析和质量改进有30多年的经验积累,发表论文40多篇,从事的失效分析及质量改进项目达1000多项,创造了很大的经济效益和社会效益。 本次报告中白培谦总监将重点分享重型汽车失效的特点分析、重型汽车常见的失效形式,以及如何做好失效分析工作,探讨质量改进方法,分析典型案例等。中国第一汽车集团有限公司高级工程师 陈成奎《汽车零件热疲劳典型案例分析》(点击报名) 陈成奎高工自1997年参加工作以来,一直从事与金属材料相关的零部件失效分析、检测分析及金属材料开发方面工作,解决各种零部件及总成失效问题200多项,为解决设计、生产和使用中存在的问题提供有力的支持。本次报告中陈成奎高工将分享汽车零件热疲劳典型案例分析,主要介绍热疲劳零件失效特征和热疲劳分析要点,分享典型的热疲劳案例,包括汽缸盖、制动鼓、排气歧管、散热器和活塞等热应力开裂案例;并介绍不同零件热疲劳开裂特点及失效原因。比亚迪汽车工业有限公司实验室主任 唐刚《汽车半轴失效模式的分析与探讨》(点击报名) 唐刚为比亚迪汽车工业有限公司材料实验室主任,现任中国汽车工程学会材料分会委员、机械工程学会失效分析分会专家、机械工程学会无损检测分会理事。主要从事金属零部件理化检验、失效分析、焊接工艺研究与检测,长期参与主持重大质量事故和失效分析工作,通过长期工作的实践和技术总结,在汽车相关领域金属零部件失效分析、轻量化焊接方面积累了一定的实际经验。半轴是汽车传动系统中一个重要的零部件,由于其自身特殊结构功能和使用状况等因素的影响,半轴的各种失效发生的频次非常高,而且是汽车重要结构件中失效频次最高的零件之一。本次会议中唐刚主任将分享汽车半轴失效模式的分析与探讨,主要从半轴结构特点、载荷性质、失效模式等方面来阐述汽车半轴失效的多样性和分析思路。中国第一汽车集团有限公司技术主任 李润哲《X射线残余应力检测在汽车上的应用》(点击报名) 李润哲为中国第一汽车集团有限公司研发总院材料与轻量化研究院金属材料开发主任。自1991年参加工作后,主要从事无损检测、X射线衍射分析、工业CT结构分析、喷丸工艺及金属材料开发工作。现任中国机械工程学会无损检测学会理事、中国机械工程学会吉林省无损检测分会负责人,吉林省分析测试协会常务理事,中国机械工程学会残余应力委员会委员,中国机械工程学会喷丸委员会委员。本次会议李润哲主任将分享X射线残余应力检测在汽车上的应用,内容包括:(1)残余应力基础知识;(2)X射线残余应力检测原理及标准; (3)X射线残余应力检测在汽车上应用示例; (4)X射线残余应力检测实践中注意事项。汽车零部件失效分析离不开各类分析检测仪器的助力。除了精彩的专家报告之外,北京欧波同光学技术有限公司业务发展(BD)工程师苏瑞雪、岛津企业管理(中国)有限公司应用工程师崔会杰、日立科学仪器(北京)有限公司电镜市场部副部长周海鑫也将在本会场分享其产品在汽车行业的应用案例。北京欧波同光学技术有限公司业务发展(BD)工程师 苏瑞雪《欧波同汽车材料检测显微分析解决方案》(点击报名) 岛津企业管理(中国)有限公司应用工程师 崔会杰《岛津电子探针在汽车材料分析中典型应用》(点击报名)日立科学仪器(北京)有限公司电镜市场部副部长 周海鑫《日立电镜在汽车行业的应用》(点击报名)以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/automobile2023/
  • 北科大与北汽、首钢共建低碳高性能汽车用钢开发与应用联合实验室
    近日,北京科技大学与北汽集团、首钢集团签署协议,共建低碳高性能汽车用钢开发与应用联合实验室,并举行实验室揭牌仪式。根据协议,联合实验室将协调三方研发资源,以高性能汽车用钢低碳、数字化制备与创新应用的关键技术开发为重点,围绕钢铁流程低碳共性工艺技术研究、汽车用钢数字化研发与制造、低碳高性能汽车用钢的研发和创新应用展开合作研究。此外,三方还将在人才培养方面展开合作,定向培养汽车用钢铁材料开发与应用领域人才,互派、互聘技术人员开展技术交流、联合研究,推进高层次领军人才培养。此次合作融合了北汽、首钢的科技创新需求和北科大优势学科供给,充分发挥校企各自优势,以联合实验室为载体,以项目为依托,强化科技创新与产业发展的高效协同,努力打造全国知名、行业引领、特色鲜明的一体化科研创新及应用平台,更好服务北京市高精尖战略产业的发展需求。在国家“双碳”战略背景下,汽车行业正在加速电动化、智能化、网联化、轻量化转型。作为国内汽车产业产品齐全、产业链完善、新能源汽车市场领先的国有大型汽车企业集团,北汽以此次与北科大、首钢联合成立实验室为契机,拓宽产学研合作,实现汽车碳排放在材料端和应用端的双重突破,打造国内一流的低碳材料开发应用能力,增强产业技术和产品性能的竞争力,促进产业化转型和升级,加快实现由传统工业化向新型工业化的转变。一直以来,北汽集团十分重视与高校和研发机构的深度合作。2012年12月,北汽集团成立院士专家工作站,定位于解决北汽技术攻关过程中的重大共性与关键技术难题,围绕轻量化和智能化发展战略,积极发挥院士专家的技术方向引领作用。中国工程院院士、北京科技大学教授毛新平进站以来,联合学校及科研团队资源,在北汽自主车型开发项目、技术能力提升项目等多方面开展深入合作,为北汽在车身精益化选材、材料认证能力提升、基础数据能力建设、新材料新工艺开发与验证等多方面给予指导帮助,研发成果在EU5、BJ80等平台产品搭载验证。
  • 电动汽车将引发三大产业变革 实现“碳中和”的核心突破口
    “碳中和”是中国与世界其他经济体的共同利益所在。而电动汽车将引发汽车、能源、人工智能三大产业变革。在这三大变革中,以电为主要驱动力的能源变革是实现“碳中和”的核心突破口。“电”这一行业正迎来一场产业变革,而这场变革的主角是亿万大众。具体而言,电动汽车推动了这场能源行业变革。燃油发动机被电机替代,电池取代了燃油,“交流电”与“直流电”可能再起争端,“直流电”在用户端更占上风,轻量化、小型化、智能化成为未来趋势。智慧交通与出行领域一直是愉悦资本深耕的投资根据地。愉悦资本从早年投资易车网,到后来支持蔚来汽车、摩拜单车、途虎养车等企业,再扩展到汽车充电、二手汽车配件及零部件再制造等循环经济领域,投资了能链集团、优信集团、源件星球等企业,进而支持了电动汽车智能化技术企业,如自动驾驶公司Momenta、激光雷达厂商Innovusion等。汽车在居民消费中占据较高比重。电动汽车产业则是被中国企业抓住的宝贵机遇。以“蔚小理”(蔚来、小鹏、理想三家车企)为代表的企业,成为中国电动汽车的拓荒者。在电动汽车如此大的产业崛起浪潮中,也出现了一些猜想:中国能否重现类似上世纪六七十年代日本汽车产业发展的情景?未来中国自造的电动汽车能否广泛出口到全球其他国家?这是一件让各方都充满期待的事。未来,电动汽车产业崛起将带来三大变革。首先是汽车行业的变革;其次是人工智能产业的变革,包括安防、辅助驾驶、自动驾驶等;最后是能源产业的变革。而能源正在成为新的基础设施,其变革将会引领几乎所有行业的变革。电动汽车引发的诸多变革中,特别重要的一项是充换电。电动汽车的充换电网络,会推动“电”整体发生一场巨大变革。以蔚来为例,其早年刚开始做充换电业务时,顶着不小的争议。到后来,国家能源局发布了由蔚来研究制定的相关换电行业标准。如今,换电网络已成为重要基础设施。截至今年7月4日,蔚来用户累计换电达到千万次。愉悦资本投资的能链智电于今年6月在美国纳斯达克上市。该公司探索创新发电场景,帮助充电桩运营商利用光伏为新能源汽车充电,实现清洁能源的自发自用,将绿电引入充电场站。其披露的数据显示,截至目前,其服务充电运营商超800家、充电站超3.3万座;2021年,充电量超过12亿度,约占中国公用充电市场18%。截至今年6月底,全国汽车保有量达3.1亿辆,意味着来自需求端的变革驱动力非常强劲。现在,全球企业家纷纷开展“碳中和”行动。被誉为“风险投资之王”的美国风险投资家约翰杜尔捐款11亿美元设立斯坦福可持续发展学院;2015年,微软公司联合创始人比尔盖茨建立了突破能源基金。2019年,美国纽约市前市长迈克尔布隆伯格向BeyondCarbon项目投资5亿美元,帮助关闭燃煤电厂。2020年,美国亚马逊公司创始人杰夫贝索斯捐赠100亿美元用于“BezosEarth Fund”计划,以应对全球气候变化。“碳”和“电”是同一枚硬币的不同面。实现“碳中和”的最大抓手是能源,电则是能源领域碳减排的核心突破口。统计显示,能源系统碳排放占比约为80%,其中电力系统碳排放占比超过40%。从宏大的叙事到落地生根,电动汽车的作用举足轻重。在实现“碳中和”的目标上,电动汽车将产生巨大的推动作用。电动汽车的普及提高了电池技术进步的边际贡献率,电池与储能技术的边际效应也在增加。同时,“电”的产业链升级正在启动,“碳”“电”交易市场正在形成,氢能与核能前途广阔。对于重构“电”行业,包括发电(风电、光电)、分布式储能、虚拟电网、输配电、调度等都在快速推进中。由于需求端市场巨大,哪怕是任何小的改进,都会产生经济效益。另外,二次电动化已经悄然启动。比如,愉悦资本投资的户外运动装备公司鱼尾科技,已经实现了用轻便、小型的设备为户外露营供电;水上运动智能硬件公司苇渡科技,研发了电动水翼冲浪板。能源正在与互联网/物联网、移动支付及中国制造一起,构成新基础设施,从而重构中国经济。在这一过程中,必将涌现出大量多样的“企业新物种”。中国创业潮历经了三个时代。第一个是启蒙时代,从1978年至1998年的20年,企业主要靠管理制胜。第二个是网络时代,从1998年至2018年的20年,互联网成为创业热土。第三个是新基础设施时代,从2018年开始,新能源、人工智能、物联网等一起形成了新基础设施,一批代表性的企业正在涌现。在“碳中和”引领的浪潮中,谁将是新的最伟大的企业与企业家?我们将拭目以待。
  • 新能源汽车国家大数据公布 千万吨碳减排如何评价?
    p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 近日,新能源汽车国家监管平台(下简称国监平台)公布我国新能源汽车最新大数据报告。 /span span style=" font-family:宋体" 截止 /span span 6 /span span style=" font-family:宋体" 月份,我国新能源汽车总量已突破 /span span 230 /span span style=" font-family:宋体" 万台,纯电动汽车为主要生力军。同期累计碳减排突破千万吨。涉及碳减排的汽车全生命周期评价再度成为舆论关注的焦点,汽车全生命周期该如何评价,这其中又会涉及到哪些检测方法呢? /span /p p style=" text-align:center" span style=" font-family:宋体" img style=" max-width: 100% max-height: 100% width: 600px height: 374px " src=" https://img1.17img.cn/17img/images/201907/uepic/b48cc411-5512-4bc3-8155-0f51148300e1.jpg" title=" 22.jpg" alt=" 22.jpg" width=" 600" height=" 374" border=" 0" vspace=" 0" / /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 根据报告,从 /span span 2017 /span span style=" font-family:宋体" 年 /span span 1 /span span style=" font-family:宋体" 月份至 /span span 2019 /span span style=" font-family:宋体" 年 /span span 6 /span span style=" font-family:宋体" 月份,国监平台累计接入新能源汽车 /span span 2,356,657 /span span style=" font-family:宋体" 辆,其中纯电动汽车数量占比 /span span 84.6% /span span style=" font-family:宋体" ,插电混合动力汽车数量占比 /span span 15.3% /span span style=" font-family:宋体" ,燃料电池汽车数量占比 /span span 0.01% /span span style=" font-family:宋体" 。从里程的维度看, /span span 2019 /span span style=" font-family:宋体" 年 /span span 1-6 /span span style=" font-family:宋体" 月全国新能源汽车累计运行里程为 /span span 155.4 /span span style=" font-family:宋体" 亿公里,其中在刚刚结束的 /span span 6 /span span style=" font-family:宋体" 月份,新能源汽车运行里程为 /span span 34.1 /span span style=" font-family:宋体" 亿公里,纯电动汽车运行里程为 /span span 28.2 /span span style=" font-family:宋体" 亿公里,纯电动汽车运行里程占比 /span span 82.7% /span span style=" font-family:宋体" 。同时, /span span 6 /span span style=" font-family:宋体" 月新能源汽车运行里程同比上个月增长 /span span 4.1% /span span style=" font-family:宋体" 。而从 /span span 2017 /span span style=" font-family:宋体" 年 /span span 1 /span span style=" font-family:宋体" 月至 /span span 2019 /span span style=" font-family:宋体" 年 /span span 6 /span span style=" font-family:宋体" 月,新能源汽车累计运行历程为 /span span 274.2 /span span style=" font-family:宋体" 亿公里,累计 /span span style=" color: rgb(0, 176, 240) " span style=" font-family: 宋体 " strong 碳减排 /strong /span strong 1302.7 /strong strong span style=" font-family: 宋体 " 万吨 /span /strong /span span style=" font-family: 宋体" 。 /span /p p style=" text-align:center" span style=" font-family: 宋体" img style=" max-width: 100% max-height: 100% width: 600px height: 361px " src=" https://img1.17img.cn/17img/images/201907/uepic/d475d1e2-f8eb-4f7b-b6a5-25ca4dcaeec5.jpg" title=" 33.jpg" alt=" 33.jpg" width=" 600" height=" 361" border=" 0" vspace=" 0" / /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 说到碳减排,近年来已经成为了汽车领域关注的一个热点话题,我国是汽车产销大国,汽车产品资源、能源消耗大,环境排放多。在资源、能源与环境的多重压力下,国家对汽车产品的节能减排要求日趋严苛。而汽车全生命周期评价( /span span LCA /span span style=" font-family:宋体" )是对汽车产品”从摇篮到再生”全过程所产生的物耗、能耗与排放进行系统分析与科学评估的方法,碳减排该领域研究的核心之一,因此也成为如今汽车及相关检测行业关注的热点之一。 /span /p p style=" text-align:center" span style=" font-family:宋体" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/b3c23c3f-f1ca-4097-a468-42668926a090.jpg" title=" 1.png" alt=" 1.png" / /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 在 /span span 2018 /span span style=" font-family:宋体" 年,中国汽车工程学会组织行业正式成立了汽车生命周期排放评价标准起草组和汽车生命周期排放评价研究工作组,并在 /span span 9 /span span style=" font-family:宋体" 月份正式出台了《汽车生命周期温室气体及大气污染物排放评价方法( /span span T/CSAE 91-2018 /span span style=" font-family:宋体" )》团体标准。根据标准规定,汽车全生命周期的评价主要包括汽车燃料周期评价(包括上游的能源开采和燃料的生产、运输、分配、存储等以及运行阶段的燃料消耗)和汽车材料周期评价(涵盖原材料的开采与运输、车用材料的生产与加工、整车制造、使用阶段的零部件替换以及车辆报废回收等过程)。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 在燃料周期上游阶段主要涉及的数据分析包括以下几个方面: /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border: none" tbody tr class=" firstRow" td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 能源效率 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 电力构成 /span /p /td /tr tr td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 运输方式 /span span / /span span style=" font-family:宋体" 距离 /span span / /span span style=" font-family:宋体" 比例 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 电厂排放因子 /span /p /td /tr /tbody /table p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 汽车燃料周期运行阶段的关键数据采用则主要基于 /span span GB 27999-2014 /span span style=" font-family:宋体" 乘用车燃料消耗量评价方法及指标的燃料消耗量数据和基于生态环境部机动车环保信息公开的大气污染物排放数据。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 在汽车燃料周期,可能涉及到的检测方法简介如下(下表由仪器信息网编辑自行整理,或不完全欢迎补充): /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border: none" tbody tr class=" firstRow" td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " strong span style=" font-family:宋体" 名称 /span /strong /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " strong span style=" font-family:宋体" 涉及仪器设备 /span /strong /p /td /tr tr td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 密度检测 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 密度计 /span /p /td /tr tr td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 容积检测 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 容积泵 /span /p /td /tr tr td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 动力蓄电池充放电测试 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 电化学工作站、电池充放电性能检测系统 /span /p /td /tr tr td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 续航里程试验 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 电度表、功率仪 /span /p /td /tr tr td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 行驶阻力测试 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 车速计、计时器、测距仪、称重仪、风速计、温度计、大气压力计 /span /p /td /tr tr td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 滑行试验 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 五轮仪 /span /p /td /tr tr td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 等速试验 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" —— /span /p /td /tr tr td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 尾气检测 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 尾气检测仪 /span /p /td /tr /tbody /table p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 而在汽车材料周期可涉及的仪器设备更是种类繁多,需要获得的关键数据主要包括以下几个方面: /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border: none" tbody tr class=" firstRow" td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 车俩部件重量与成分图谱 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 车身材料制造 /span /p /td /tr tr td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 动力电池 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " p style=" text-align: justify " & nbsp & nbsp span style=" font-family: 宋体 " 整车制造 /span span & nbsp /span /p /td /tr tr td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 零部件替换能耗、物耗清单 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align: justify " span style=" font-family:宋体" 零部件报废回收能耗、物耗清单 /span /p /td /tr /tbody /table p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 现如今 /span span LCA /span span style=" font-family:宋体" 已成为人类社会可持续发展不可或缺的重要推手,汽车 /span span LCA /span span style=" font-family:宋体" 对促进企业实施清洁生产、优化政府管理机制和引导民众绿色出行均具有十分重大的意义。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" img style=" max-width: 100% max-height: 100% width: 600px height: 131px " src=" https://img1.17img.cn/17img/images/201907/uepic/450070fa-aafb-4e73-8ad3-748e6fd34a02.jpg" title=" 44.png" alt=" 44.png" width=" 600" height=" 131" border=" 0" vspace=" 0" / /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 基于此,仪器信息网将于 /span span 2019 /span span style=" font-family:宋体" 年 /span span 7 /span span style=" font-family:宋体" 月 /span span 15 /span span style=" font-family:宋体" 日与湖南大学共同举办“汽车全生命周期评价”主题公益网络研讨会,邀请汽车全生命周期评价相关领域领导与专家以网络在线报告交流的形式,从不同视角讲解汽车全生命周期评价理念与方法,为广大网友揭开汽车 /span span LCA /span span style=" font-family:宋体" 的神秘面纱,会后还将与仪器设备检测机构和参会网友进行深入交流。时间临近,想获得免费学习机遇的网友请抓紧时间报名: /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 会议日程如下: /span /p table border=" 0" cellspacing=" 0" cellpadding=" 0" style=" " tbody tr class=" firstRow" td width=" 80" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 09:30-10:00 /span /p /td td width=" 205" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 树立生命周期理念 提升绿色发展水平 /span /p /td td width=" 233" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 迟晓光(北京生态设计与绿色制造促进会 ) /span /p /td /tr tr td width=" 94" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 10:00-10:30 /span /p /td td width=" 206" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 健全报废汽车回收体系,推动汽车绿色消费 /span /p /td td width=" 233" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 杜欢政(同济大学) /span /p /td /tr tr td width=" 80" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 10:30-11:00 /span /p /td td width=" 209" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 中国车用燃料路线全生命周期分析:模型与应用 /span /p /td td width=" 233" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 欧训民(清华大学) /span /p /td /tr tr td width=" 80" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 11:00-11:30 /span /p /td td width=" 209" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 汽车全生命周期末端——化腐朽为神奇的循环利用与再制造 /span /p /td td width=" 233" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 罗健夫(中国物资再生协会 span / /span 再制造分会) /span /p /td /tr tr td width=" 80" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 14:00-14:30 /span /p /td td width=" 209" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 动力电池 span VDA /span 结构的逆向 span LCA /span 分析研究 /span /p /td td width=" 233" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 余海军(湖南大学) /span /p /td /tr tr td width=" 80" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 14:30-15:00 /span /p /td td width=" 209" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 面向全生命周期的新能源汽车能耗评价方法一一基于大数据和单车测评 /span /p /td td width=" 233" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 抄佩佩(中国汽车工程研究院) /span /p /td /tr tr td width=" 80" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 15:00-15:30 /span /p /td td width=" 209" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 汽车轻量化生命周期评价及案例分析 /span /p /td td width=" 233" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 徐建全(福建农林大学) /span /p /td /tr tr td width=" 80" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 15:30-16:00 /span /p /td td width=" 209" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 燃料电池汽车生命周期评价及预测 /span /p /td td width=" 233" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 30px text-align: justify " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#333333" 陈轶嵩(长安大学) /span /p /td /tr /tbody /table p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" 演讲嘉宾介绍: /span /strong /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" img style=" max-width: 100% max-height: 100% float: left width: 130px height: 157px " src=" https://img1.17img.cn/17img/images/201907/uepic/531ae054-5915-460a-9dad-3fb5ba3ddb0b.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 130" height=" 157" border=" 0" vspace=" 0" / 杜欢政: /span /strong span style=" font-family:宋体" 教授、博士生导师,现任联合国环境署 /span span - /span span style=" font-family:宋体" 同济大学环境与可持续发展学院责任教授、同济大学可持续发展与新型城镇化智库副主任、同济大学循环经济研究所所长,兼任国家发展循环经济部际联席会议专家咨询委员会委员、国家社会科学基金重大项目首席专家和国家科技支撑计划首席专家、世界银行、国家发改委、工信部、科技部等部委循环经济专家等。主要研究领域为生态文明与绿色发展、资源循环利用产业、循环经济与区域经济、环境经济政策、城市废弃物资源化综合处理。研究模式为围绕重大现实问题开展多学科交叉的创新研究,形成政策、技术、商业模式相结合的一体化系统解决方案,在实证研究的基础上总结提炼科学理论与方法体系。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" br/ /span /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" img style=" max-width: 100% max-height: 100% width: 130px height: 156px float: left " src=" https://img1.17img.cn/17img/images/201907/uepic/87c674bf-b57c-499f-bb2f-90d3a81ccbd1.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 130" height=" 156" border=" 0" vspace=" 0" / 欧训民: /span /strong span style=" font-family:宋体" 清华大学能源环境经济研究所能源系统分析方向副教授 /span span / /span span style=" font-family:宋体" 研究员,兼任国际学术期刊 /span span Energy /span span style=" font-family:宋体" 交通能源领域编辑( /span span Subject Editor /span span style=" font-family:宋体" )、清华大学中国车用能源研究中心副主任和中国能源研究会能源系统工程专委会副秘书长。入选联合国 /span span IPCC /span span style=" font-family:宋体" 第六次气候变化评估报告交通章主要作者 /span span (Lead Author) /span span style=" font-family:宋体" 。研究方向为交通部门能源战略研究、交通部门能源及 /span span GHG /span span style=" font-family:宋体" 排放分析,以及能源路线全生命周期分析。近 /span span 10 /span span style=" font-family:宋体" 年来主持完成国家自然科学基金项目等课题 /span span 10 /span span style=" font-family:宋体" 余项,涵盖中国车用能源展望、车用燃料全生命周期分析、中国新能源汽车发展路径研究等,对多种车用燃料路线和燃料电池汽车在内的多种动力技术路线进行了经济、技术和战略多方面的分析研究。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" br/ /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" img style=" max-width: 100% max-height: 100% width: 130px height: 156px float: left " src=" https://img1.17img.cn/17img/images/201907/uepic/4163c16c-ac00-4a62-af06-72bde1725c50.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 130" height=" 156" border=" 0" vspace=" 0" / /span /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" 迟晓光: /span /strong span style=" font-family:宋体" 北京生态设计与绿色制造促进会秘书长,北京工业大学、大连理工大学特聘研究员,曾受聘参与工信部、发改委、科技部、环保部等机构项目的评审工作。长期从事工业产品生态设计与绿色制造理论与实践的研究工作。 /span /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" br/ /span /strong /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" br/ /span /strong /p p style=" text-indent: 28px text-align: justify " br/ /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" img style=" max-width: 100% max-height: 100% width: 130px height: 156px float: left " src=" https://img1.17img.cn/17img/images/201907/uepic/83002ac8-8a0c-490a-8f81-512bb9048108.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 130" height=" 156" border=" 0" vspace=" 0" / 罗健夫: /span /strong span style=" font-family:宋体" 中国物资再生协会副会长,高级工程师。先后参与我国《报废汽车回收管理办法》(国务院 /span span 307 /span span style=" font-family:宋体" 号令)、《汽车零部件再制造试点管理办法》、《循环经济引领行动》、《关于推进资源循环利用基地建设的指导意见》等文件的起草制定工作。承担并完成原国家经济贸易委员会、国家发展和改革委员会、环保部、工业和信息化部等单位委托的报废汽车回收拆解、汽车零部件及机电产品再制造、汽车尾气排放治理、节能与新能源汽车中动力电池回收等方面的有关工作。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" br/ /span /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体 color:#0D0D0D" img style=" max-width: 100% max-height: 100% width: 130px height: 156px float: left " src=" https://img1.17img.cn/17img/images/201907/uepic/6a89f835-aa84-4d9c-a026-f03c84fa98dc.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 130" height=" 156" border=" 0" vspace=" 0" / 陈轶嵩: /span /strong span style=" font-family:宋体" 长安大学车辆工程系副主任,兼任陕西省汽车工程学会副秘书长、陕西省新能源汽车技术创新战略联盟副秘书长、中国汽车工程学会青年工作委员会委员、中国汽车工程学会货运装备技术分会委员等社会兼职。从事汽车、能源、环境、管理交叉学科研究 /span span 10 /span span style=" font-family:宋体" 年,主要学术领域:新能源汽车全生命周期节能减排分析、汽车产业战略与产品技术规划。近三年来共主持 /span span 15 /span span style=" font-family:宋体" 项各类研究课题,以第一作者发表学术论文 /span span 17 /span span style=" font-family:宋体" 篇,其中 /span span SCI /span span style=" font-family:宋体" 、 /span span EI /span span style=" font-family:宋体" 检索 /span span 9 /span span style=" font-family:宋体" 篇,获批软件著作权 /span span 4 /span span style=" font-family:宋体" 项,出版专著 /span span 1 /span span style=" font-family:宋体" 部。曾应邀在欧亚经济论坛、亚太汽车工程年会、清华大学产业生态学术研讨会、上海通用五菱汽车公司、郑州宇通汽车公司等国际学术会议及企业论坛上做报告 /span span 10 /span span style=" font-family:宋体" 余次。 /span strong /strong /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" br/ /span /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体 color:#0D0D0D" img style=" max-width: 100% max-height: 100% width: 130px height: 156px float: left " src=" https://img1.17img.cn/17img/images/201907/uepic/9d4b1da9-971e-4aba-b37a-a46a52551f90.jpg" title=" 6.jpg" alt=" 6.jpg" width=" 130" height=" 156" border=" 0" vspace=" 0" / 抄佩佩: /span /strong span style=" font-family:宋体" 高级工程师、现任中国汽车工程院运营管理部部长、指数和数据运营中心副主任。新能源汽车与节能汽车产业“十三五”培育与发展规划、 /span span style=" font-family:宋体" 中国汽车零部件产业发展规划、中国节能汽车技术路线图等等多个国家重大课题、专项负责人,重庆、四川、贵州、浙江等多个省市地方政府汽车产业发展顾问,主导完成长安、宇通、丰田、海纳川、工程院、中海油、中汽协等 /span span 30 /span span style=" font-family:宋体" 多个行业、企业咨询规划项目。发表《中国汽车工业发展年度报告》《新能源汽车产业》等行业著作。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" br/ /span /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" img style=" max-width: 100% max-height: 100% width: 130px height: 156px float: left " src=" https://img1.17img.cn/17img/images/201907/uepic/53323aae-45c0-417c-8aad-ff6a66437e44.jpg" title=" 7.jpg" alt=" 7.jpg" width=" 130" height=" 156" border=" 0" vspace=" 0" / 余海军: /span /strong span style=" font-family:宋体" 湖南大学机械与运载工程学院博士,新能源汽车动力电池循环利用国家地方联合工程研究中心主任,新能源汽车动力电池循化利用战略联盟技术专家委员会副主任, /span span SAC/TC 294 /span span style=" font-family:宋体" 全国化标委废电池回收处理标准化工作组组长, /span span SAC/TC 114 /span span style=" font-family:宋体" 全国汽标委动力电池回收国家标准起草工作组负责人,湖南省发改委循环经济专家库专家,广东省享受地方政府津贴高层次人才。 /span /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" br/ /span /strong /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" br/ /span /strong /p p style=" text-indent: 28px text-align: justify " strong span style=" font-family:宋体" img style=" max-width: 100% max-height: 100% width: 130px height: 156px float: left " src=" https://img1.17img.cn/17img/images/201907/uepic/56a96bd4-cf87-4e5b-a8c1-54acbcfd7d76.jpg" title=" 8.jpg" alt=" 8.jpg" width=" 130" height=" 156" border=" 0" vspace=" 0" / 徐建全: /span /strong span style=" font-family:宋体" 副教授,硕导,福建农林大学汽车工程系主任。现为福建省汽车工程学会副秘书长,第三届中国机械工业教育协会车辆工程学科教学委员会委员。湖南大学国家重点学科车辆工程博士学位,台湾中兴大学访问学者,曾在清华大学汽车工程系进修半年。主要研究方向:汽车产品全生命周期评价、工程结构分析与优化、汽车先进设计制造技术、汽车技术与产业发展战略等。主持及参加国家级和省部级以上课题 /span span 10 /span span style=" font-family:宋体" 余项,其中国家自然科学基金项目 /span span 2 /span span style=" font-family:宋体" 项、国家“ /span span 863 /span span style=" font-family:宋体" ”项目 /span span 2 /span span style=" font-family:宋体" 项、国家软科学项目 /span span 1 /span span style=" font-family:宋体" 项、教育部博士点基金项目 /span span 1 /span span style=" font-family:宋体" 项、福建省自然科学基金项目 /span span 1 /span span style=" font-family:宋体" 项、湖南省软科学重点项目 /span span 1 /span span style=" font-family:宋体" 项。 /span /p p style=" text-indent: 28px text-align: justify " span style=" font-family:宋体" 报名方式请点击下方图片进入报名页面了解:( a href=" https://www.instrument.com.cn/webinar/meetings/cflca/" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 宋体 color: rgb(0, 176, 240) " strong 报名通道 /strong /span /a ) /span /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/cflca/" target=" _self" img style=" max-width: 100% max-height: 100% width: 600px height: 131px " src=" https://img1.17img.cn/17img/images/201907/uepic/32bd20bf-682e-4d4b-aa1e-d22e1196cc60.jpg" title=" 44.png" alt=" 44.png" width=" 600" height=" 131" border=" 0" vspace=" 0" / /a /p p style=" text-align: left text-indent: 2em " strong span style=" color: rgb(0, 176, 240) " 扫秒下方二维码添加仪器信息网小材子个人微信,提交汽车全生命周期主题网络研讨会报名成功的截图,即可免费获得一份《汽车生命周期温室气体及大气污染物排放评价方法(T/CSAE 91-2018)》团体标准资料。 /span /strong /p p style=" text-align: center text-indent: 0em " strong span style=" color: rgb(0, 176, 240) " img style=" max-width: 100% max-height: 100% width: 300px height: 300px " src=" https://img1.17img.cn/17img/images/201907/uepic/edb08f06-dcca-41f7-bf88-7a6734c972ef.jpg" title=" 小材子.jpg" alt=" 小材子.jpg" width=" 300" height=" 300" border=" 0" vspace=" 0" / /span /strong /p
  • 国家地毯质检中心落户天津市武清区崔黄口镇
    近日,从素有“地毯之乡”美誉的天津市武清区崔黄口镇传来喜讯,天津市地毯研究所暨国家地毯质量监督检验中心已正式落户该镇,并将于近期投入使用。检验中心的落户将为该镇地毯产业实现健康、快速、可持续发展提供有力的质量技术保障。   据了解,天津市地毯研究所暨国家地毯质量监督检验中心建立后,可为相关地毯、毛绒及部分纺织企业提供28个大项100余个子项目达到国际标准的检测服务,同时还将行使“天津市地毯设计中心办事处”、“天津市质量监督检验第七站”联络处等职能,发挥地毯新品研发、图案设计、工艺技术及检验检测、质量鉴定、信息交流等诸多方面的作用。另据介绍,该机构落户崔黄口镇,将有力地促进该镇地毯支柱行业的壮大发展,提高行业竞争力,更有效地应对欧盟及其他国家和地区的技术贸易壁垒,对今后该镇地毯行业产生深远的影响。
  • 把握"双碳"机遇,HORIBA积极助力本土新能源汽车产业进程
    11月10日,第六届中国国际进口博览会(以下简称"进博会")完满落下帷幕。本次进博会共有来自128个国家和地区的3486家企业参展。今年是全球性分析仪器制造商HORIBA第五次参展,重点展示了针对新能源汽车领域的分析与测量整体解决方案。现阶段,全球为实现"碳中和"而努力,新能源产业迎来时代契机。为把握发展机遇,HORIBA在全球范围大力布局新能源业务并实现了业绩快速增长。在中国市场,HORIBA则聚焦蓬勃发展的新能源汽车领域,力图加强本土需求对应能力,服务产业发展。构建清洁绿色低碳能源社会新能源的应用需要从全生命周期、全产业链系统考虑整体解决方案,通过内部联动实现产业全生命周期的减碳。HORIBA广泛服务于半导体、汽车、环境、能源、医疗和工业等领域,致力于从全产业链的角度出发,推动各领域的能源结构更加清洁、绿色、低碳化。以燃料电池汽车为例,解决方案涵盖材料研发与表征、气体监测、燃料电池测试、工程与咨询服务等方面,覆盖从原材料、零部件、子系统到整机,再到资源回收再利用等环节。本次进博会,HORIBA以"奔向清洁绿色低碳能源社会"为题,为观众带来了新能源汽车领域的完整解决方案,并与中国汽车技术研究中心有限公司(简称"中汽中心")举行了合作签约仪式。合作范围涵盖汽车行业标准与技术法规、测试装备采购、产品检测试验认证相关服务、关键共性技术研究与产品开发、工程咨询等领域。未来,双方还可能在氢能和燃料电池汽车方面展开更多合作。中国汽车技术研究中心有限公司(中汽中心)与 HORIBA 签订合作意向书推进本土化,服务中国市场双碳政策出台后,中国各行各业的降碳需求呈现增长且多样化趋势。这为HORIBA提供了新的课题与机遇。为满足新形势下客户的技术与服务需求,近年来,HORIBA加大在本土的投资和研发力度。位于上海嘉定,投资超5亿元人民币的HORIBA 厚立方大楼(C-CUBE)就是成果之一。大楼中的三大中心——汽车工程技术中心、前沿应用开发中心、先进服务中心,是HORIBA为客户提供新能源领域解决方案和服务的重要依托。厚立方的职能体现汽车工程技术中心设有多个实验室,服务于中国新能源汽车研发,覆盖从燃料电池、混合动力发动机、纯电动动力总成及整车的完整研发测试,提供整体解决方案及工程技术服务。对客户而言,该中心有利于帮助他们降低研发成本,将更多精力投入到产品革新,从而快速响应新能源市场的变化。前沿应用开发中心是HORIBA与科研伙伴、客户合作开发行业解决方案的载体。先进服务中心依托HORIBA在中国的强大售后服务团队,为用户提供仪器的本土校准、升级、维护等服务和专业培训。三个中心的紧密结合,意味着客户能够在厚立方大楼一站式解决问题、获得服务。厚立方开发的本土设备:DC10-LT PEMFC单体测试台厚立方对于HORIBA本土化的加持卓有成效。以其中开发的HORIBA DC10-LT PEMFC为例,这一单体测试台专门用于燃料电池单体、MEA等零部件开发和测试过程中,一体化设计便捷实用,测试结果高度可信、试验操作安全可靠。经过多年发展,中国已拥有较为完备的新能源汽车产业体系,产业优势正在从销量层面转向技术层面。HORIBA 作为本土产业链的一员,将为产业增强技术优势、实现创新突破提供支持,以推动该产业"领跑"未来。
  • 德国元素 | 新能源汽车行业车用半导体中碳硫氧氮的测定
    近年来有关第三代半导体的市场题材相当多,其中最令人瞩目者,当属碳化硅(SiC)功率器件在电动汽车的应用商机了。碳化硅器件在电动汽车的系统应用主要是逆变器、车载充电器(OBC)和DC-DC转换器等。相较传统的硅基模块性能,其可减少约50%电能转换损耗、降低20%的电源转换系统成本,并能提升电动汽车4%左右续航能力。目前电动汽车技术在世界各国净零碳排放政策强力带动下,已成为未来10年全球汽车产业的发展重点,许多大厂争相投入此领域布局。特斯拉,通用汽车,雷诺日产等公司都积极在碳化硅研发领域布局,建立对应的研发中心。碳化硅是一种无机碳化物,化学式为 SiC,是用石英砂、石油焦(或煤 焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温 冶炼而成。碳化硅在大自然也存在罕见的矿物,莫桑石。在 C、N、B 等非氧化物高技术耐火原料中,碳化硅为应用最广泛、最经济的一 种,可以称为金钢砂或耐火砂。碳化硅是由科学及艾奇逊在 1891 年电熔金刚石实验时,在实验室 偶然发现的一种碳化物,刚开始被认为是金刚石的混合体,故取名 金刚砂,1893 年艾奇逊研究出来了工业冶炼碳化硅的方法,也就是 大家常说的艾奇逊炉,一直沿用至今,以碳质材料为炉芯体的电阻 炉,通电加热石英 SiO2 和碳的混合物生成碳化硅。碳化硅中碳硫氧氮的含量对于器本身的晶体结构,以及相关性能影响极大。这里使用了来自德国元素Elementar的inductar CS cube 红外碳硫仪以及inductar ONH cube 氧氮氢分析仪对于碳化硅样品中碳硫氧氮的含量进行测量。实验部分inductar CS cube 红外碳硫仪:碳化硅粉末中碳硫的测定inductar CS cube 红外碳硫仪:碳化硅负极材料中碳硫的测定inductar ONH cube 氧氮氢分析仪:纯碳化硅粉末中氧氮的分析inductar CS cube 红外碳硫仪应用领域:黑色系金属合金,有色金属,有色金属,碳化物及陶瓷材料,地质矿物,电极材料的碳硫分析。特点:创新性坩埚设计,无需动力气清洁型燃烧(低灰尘和尘屑),无需外接吸尘器加热的除尘过滤器,配备了高效的风冷水冷装置可自由程序变化输出功率的感应炉 可自由程序变化的注氧流速燃烧过程可由光学摄像系统观察专利球夹设计,实现免工具维护inductar ONH cube 氧氮氢分析仪应用领域:黑色系金属合金,有色金属,有色金属,碳化物及陶瓷材料,地质矿物,氧氮氢分析。特点:无需配备石墨电极清扫刷进行清扫,提高做样效率可编程气体分流,通过睡眠模式进入省气模式无需配备动力气以及外置水冷机,可单坩埚完成测试,节省成本专利的球夹连接,实现免工具维护
  • 6大应用案例全析|电子探针如何为汽车材料拨云开雾?
    p style=" text-align: justify text-indent: 2em " 用于汽车制造的材料不仅有金属、陶瓷等无机材料,还包括塑料等有机材料。而且金属材料也要经过喷涂、热处理等多种不同的表面处理方法。电子产品也需要在耐热耐震等安全方面的可靠性保证。近年来随着环境保护意识的提高,也引起了汽车尾气催化剂、混合动力车的锂离子二次电池等的研发热潮。因此汽车行业是一个涉及多种材料的综合产业,不仅在研发过程,而且在品质管理(投诉问题解析)中也会用到多种多样的分析仪器。其中EPMA(电子探针)通过在数μm级的微小区域到最大90× 90mm的广域范围中可进行精准分析的自身特点,巩固了在汽车行业分析中的地位,成为必不可少的一部分。 /p p style=" text-align: justify text-indent: 2em " 例如在以下领域中会利用到EPMA: /p p style=" text-align: justify text-indent: 2em " ■金属涂装膜,以及热处理等表面处理的解析 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 动力系统等的金属部件解析 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 材料中的异物解析 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 电子产品的可靠性评价 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 尾气催化剂的研究 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 燃料电池等研究 /p p style=" text-align: justify text-indent: 2em " 除此之外,可以做很多其他多领域的解析。 /p p style=" text-align: justify text-indent: 2em " EPMA的原理是什么呢?EPMA(Electron Probe Micro Analyzer)可以将电子束照射到样品,通过样品发出的电子信号进行样品细微结构的观察(SEM观察)。首先在前面得到的样品表面放大图像中确定分析位置,通过检测上述分析区域发出的元素特征波长(能量)的X射线可以进行所含元素的定性等多种分析。EPMA可以做以下分析。 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 定性分析:微小区域所含元素的定性(B-U) /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 定量分析:测定所含元素的含量(wt%) /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 线分析:测定样品中1次元方向的任意元素含量分布 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 面分析(元素分布):测定样品中2次元方向的含量分布 /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 32px " ■ /span 状态分析:通过测量价带电子带相关的X射线光谱解析化学结构 /p p style=" text-align: justify text-indent: 2em " 下面本文将用几个案例来解析EPMA的应用: /p p style=" text-align: justify text-indent: 2em " strong 1.& nbsp 齿轮热处理效果解析 喷碳处理 /strong /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/c96f8ee0-5f95-4368-9e4b-83b14ce97e96.jpg" title=" 电子探针如何为汽车材料分析拨云开雾.png" alt=" 电子探针如何为汽车材料分析拨云开雾.png" / /p p style=" text-align: left text-indent: 2em " 在齿轮断面利用元素面分析法测定C(碳元素)的分布情况, span style=" text-indent: 2em " 可以发现合格品(右侧)的齿轮从外到里方向的热处理效果是很好的(红色部分表示C含量高的部分)。 /span /p p style=" text-align: justify text-indent: 2em " strong 2.& nbsp 金属材料中夹杂物的解析 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/b851f0ec-4f97-4228-b42c-4b7b110ca18c.jpg" title=" 电子探针如何为汽车材料分析拨云开雾2.png" alt=" 电子探针如何为汽车材料分析拨云开雾2.png" / /p p style=" text-align: left text-indent: 2em " 通过金属断面的分析确定夹杂物(MnS)的存在。 span style=" text-align: center text-indent: 0em " (右上:Fe分布、左下:Mn分布、右下:S分布) /span /p p style=" text-align: justify text-indent: 2em " strong 3.& nbsp 刹车制动试验解析 /strong /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/f9c9ac67-2fae-45c2-82d6-1eb87a877a12.jpg" title=" 电子探针如何为汽车材料分析拨云开雾3.png" alt=" 电子探针如何为汽车材料分析拨云开雾3.png" / /p p style=" text-align: left text-indent: 2em " span style=" text-indent: 0em " 刹车制动试验后,通过制动盘上的Si分布,分析与闸片的接触部分。 /span /p p style=" text-align: justify text-indent: 2em " strong 4.涂装膜中的异物解析 /strong /p p style=" text-align:center" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/9c31c621-9786-4a97-a41b-1a3952126df0.jpg" title=" 电子探针如何为汽车材料分析拨云开雾4.png" alt=" 电子探针如何为汽车材料分析拨云开雾4.png" / /strong /p p style=" text-align: left text-indent: 2em " 涂装膜中的异物解析例。因为是C主体的样品,可以判断是有机性异物。 /p p style=" text-align: justify text-indent: 2em " strong 5.固体高分子燃料电池(PEFC)的研究 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/7cf72076-c845-4cf1-abd5-40b7d1154a87.jpg" title=" 电子探针如何为汽车材料分析拨云开雾5.png" alt=" 电子探针如何为汽车材料分析拨云开雾5.png" / /p p style=" text-align: left text-indent: 2em " MEA(Membrane-Electrode-Assembry)的面分析结果。 span style=" text-align: center text-indent: 2em " 通过观察电解质、催化剂层区域中多个元素的变化,判断解释催化剂反应,以及劣化等过程。 /span /p p style=" text-align: justify text-indent: 2em " strong 6.接口接触面的接触不良解析 /strong /p p style=" text-align:center" span style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% " src=" https://img1.17img.cn/17img/images/202003/uepic/754b71c9-2f3a-4b05-b541-0691c3bbcd41.jpg" title=" 电子探针如何为汽车材料分析拨云开雾6.png" alt=" 电子探针如何为汽车材料分析拨云开雾6.png" / /span /p p style=" text-align: left text-indent: 2em " span style=" text-align: center text-indent: 0em " 汽车上装配有大量的电子产品, /span span style=" text-align: center text-indent: 0em " 电子产品连接接口的接触不良等的分析中EPMA也是有效的分析手段。 /span span style=" text-align: center text-indent: 0em " 上面这个分析例中可以发现是接触面形成的氧化物导致了接触不良。 /span /p p style=" text-align: justify text-indent: 2em " 综上所述,EPMA在汽车行业中使用涉及多种材料、以及零部件层面的研究开发,是问题解析等过程中必不可少的分析仪器。 /p p style=" text-align: right text-indent: 2em " strong 作者:赵同新 /strong /p p style=" text-align: right text-indent: 2em " strong 岛津企业管理(中国)有限公司上海分析中心应用工程师 /strong /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: justify text-indent: 2em " (注:以上文章为赵同新工程师的个人原创,文章内容不代表仪器信息网本网观点) /p
  • 半导体代工厂碳排放量远超汽车,多家企业已作出举措
    近日,随着全球半导体芯片需求的迅速增长,大型半导体代工厂碳排放量日益增加,甚至比传统的汽车制造商更多。根据外媒 businesskorea 援引 CNBC 的报道称,全球最大的半导体工厂台积电,2017 年的碳排放量为 600 万吨,2019 年为 800 万吨,而到了 2020 年迅速增长至 1500 万吨。 近日,随着全球半导体芯片需求的迅速增长,大型半导体代工厂碳排放量日益增加,甚至比传统的汽车制造商更多。根据外媒 businesskorea 援引 CNBC 的报道称,全球最大的半导体工厂台积电,2017 年的碳排放量为 600 万吨,2019 年为 800 万吨,而到了 2020 年迅速增长至 1500 万吨。
  • 三部门:加快研制新能源汽车等产品碳足迹国家标准
    国家发展改革委、市场监管总局、生态环境部近日联合发布《关于进一步强化碳达峰碳中和标准计量体系建设行动方案(2024—2025年)的通知》(下称通知)。其中提到,加快研制新能源汽车、光伏、锂电池等产品碳足迹国家标准,服务外贸出口新优势。根据通知,按照系统推进、急用先行、开放协同的原则,围绕重点领域研制一批国家标准、采信一批团体标准、突破一批国际标准、启动一批标准化试点。2024年,发布70项碳核算、碳足迹、碳减排、能效能耗、碳捕集利用与封存等国家标准,基本实现重点行业企业碳排放核算标准全覆盖。2025年,面向企业、项目、产品的三位一体碳排放核算和评价标准体系基本形成,重点行业和产品能耗能效技术指标基本达到国际先进水平,建设100家企业和园区碳排放管理标准化试点。按照统筹发展、需求牵引、创新突破的原则,加强碳计量基础能力建设,完善碳计量体系,提升碳计量服务支撑水平。2025年底前,研制20项计量标准和标准物质,开展25项关键计量技术研究,制定50项“双碳”领域国家计量技术规范,关键领域碳计量技术取得重要突破,重点用能和碳排放单位碳计量能力基本具备,碳排放计量器具配备和相关仪器设备检定校准工作稳步推进。通知提出16项重点任务。加快企业碳排放核算标准研制方面,通知提出,加快推进电力、煤炭、钢铁、有色、纺织、交通运输、建材、石化、化工、建筑等重点行业企业碳排放核算标准和技术规范的研究及制修订,制定温室气体审定核查、低碳评价等相关配套技术规范,支撑企业碳排放核算工作,有效服务全国碳排放权交易市场建设。制定面向园区的碳排放核算与评价标准。加强产品碳足迹碳标识标准建设方面,通知提到,发布产品碳足迹量化要求通则国家标准,统一具体产品的碳足迹核算原则、核算方法、数据质量等要求。加快研制新能源汽车、光伏、锂电池等产品碳足迹国家标准,服务外贸出口新优势。开展电子电器、塑料、建材等重点产品碳足迹标准研制。研究制定产品碳标识认证管理办法,研制碳标识相关国家标准。加大项目碳减排标准供给方面,通知要求,开展能效提升、可再生能源利用、余能利用、甲烷减排与利用等典型项目碳减排量核算标准研制工作。条件成熟时,推动将全国温室气体自愿减排项目方法学纳入国家标准体系,支撑全国温室气体自愿减排交易市场建设和企业环境、社会和公司治理(ESG)信息披露等应用场景。推动碳减排和碳清除技术标准攻关方面,通知提到,加快氢冶金、原料替代、热泵、光伏利用等关键碳减排技术标准研制,在降碳技术领域采信一批先进的团体标准。制定生态碳汇、碳捕集利用与封存等碳清除技术标准,尽快出台碳捕集利用与封存量化与核查、相关术语等通用标准。抓紧构建二氧化碳捕集、运输、地质封存全链条标准体系。加强重点产品和设备循环利用标准研制方面,通知要求,制定汽车、电子产品、家用电器等回收拆解标准,研究制定农用机械零部件回收利用相关标准。开展退役光伏设备、风电设备、动力电池回收利用标准研制,加大新能源产品设备的绿色设计标准供给,加快研制再生塑料、再生金属标准。按照《清洁生产评价指标体系通则》要求,研制钢铁、化工、建材等重点行业清洁生产评价系列国家标准。此外,通知还提出,各级财政通过设立专项资金等方式加大对碳计量基础能力建设、基础通用和急用先行标准的支持力度。统筹利用资金渠道,积极引导社会资本投入,支持碳排放统计核算和碳监测关键计量技术研究、仪器设备研发和应用、计量技术规范制定等。持续开展国际标准适用性分析,在电动汽车、新型电力系统、生态碳汇等领域提出一批国际标准提案,加强新领域新技术国际合作。
  • 日本汽车零部件巨头曝大规模造假,盘点汽车零部件质检项目
    近日,央视财经频道报道,2020年2月16日,日本汽车零部件供应商曙光制动器工业株式会社日前表示,其在日本工厂制造的刹车极其零部件中,该公司发现存在篡改检查数据等不正当行为!调查发现,该公司至少从2001年开始就有此类不当行为。这一消息引发网络热议,网友戏称”躬匠精神”.据了解,曙光制动器工业株式会社是丰田、本田、马自达、三菱等厂车企的供应商,约有11.4万件产品存在伪造刹车装置及其零部件的检查数据,这些零部件中有5000件零部件未能通过曙光制动器与汽车制造商户制定的质量标准。此外,曙光制动器在日本本土的四家工厂确认了造假行为。无独有偶,近几年,日本企业频繁曝出造假行为。由于近年来日本企业造假事件频发,“日本制造”已经引发了强烈的信任危机。众所周知,汽车零部件在生产过程中涉及多种项目的检测。仪器信息网跟随时事热点,简要整理了汽车质检常见检测项目,供广大感兴趣的用户参考。产品类别测试项目外饰件测试盐雾腐蚀/气体腐蚀/臭氧腐蚀氙弧灯老化/金属卤素灯阳光模拟老化/碳弧灯老化/荧光紫外灯老化高低温/高低温湿热循环/温度冲击/快速温变防尘/防水/淋雨测试振动/三综合振动/机械冲击机械耐久/疲劳/寿命涂层/镀层特性测试禁限用物质测试内饰件测试化学环保分析耐化学试剂燃烧特性金属卤素灯阳光模拟老化/碳弧灯老化高温红外光照测试高低温/高低温湿热循环/温度冲击/快速温变/低温落球振动/三综合振动操作性能测试机械耐久/疲劳/寿命耐摩擦/耐刮擦/硬币刮擦指甲硬度固化光泽度表皮黏附力/漆膜附着力/胶带附着力剥离强度汽车电子电器产品测试ELV及禁用物质测试耐化学试剂/耐电池液盐雾腐蚀/气体腐蚀/臭氧腐蚀防尘/防水/淋雨测试振动/三综合振动/机械冲击特定环境性能测试高低温/高低温湿热循环/温度冲击/快速温变功能性耐久/疲劳/寿命电学测试电磁兼容测试(CE /RE/ RI/BCI/ESD/ME/瞬态传导抗干扰/耦合传导抗扰度/电源间断跌落实验)产品认证座椅测试机械性能测试:H点/座椅总成纵向调节功能/滑道行程/静态刚度试验/颠簸和蠕动试验/模拟人体进出座椅试验/前坐垫向下强度试验/纵向调节疲劳试验/靠背骨架总成强度试验/靠背调节疲劳/头枕功能试验/座椅扶手强度和刚度试验气候老化测试:温度循环/耐低温耐潮湿、热老化、盐雾试验安规测试:阻燃测试化学环保测试线束测试机械性能试验:振动试验、机械冲击试验、跌落试验、插入/拔出力测试电性能试验:接触电阻、电压降测试、温升试验、耐电压测试、绝缘电阻测试环境试验:高低温、湿热试验、盐雾试验、防尘防水、耐试剂、气体腐蚀试验、耐臭氧试验化学环保测试:ELV、VOC、气味其它试验:尺寸测量、气密性试验、燃烧测试
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制