当前位置: 仪器信息网 > 行业主题 > >

气体组分

仪器信息网气体组分专题为您整合气体组分相关的最新文章,在气体组分专题,您不仅可以免费浏览气体组分的资讯, 同时您还可以浏览气体组分的相关资料、解决方案,参与社区气体组分话题讨论。

气体组分相关的资讯

  • HT8850上路啦——多组分温室气体分析走航测试
    上周,在经历了长期研发投入,昕甬智测2022年纯国产自主研发的新产品——HT8850便携式多组分温室气体分析仪首度公开亮相,搭上了合作伙伴的走航车,在宁波市郊进行温室气体观测。 图一 昕甬智测应用工程师现场操作HT8850温室气体分析仪 图二 全新开发上位机界面实时显示高精度、多组分观测数据 HT8850分析仪采用量子级联激光作为光源,专利设计中的中红外增强型积分腔,实现一机支持同时测量四温室气体组分:水汽、二氧化碳、甲烷、氧化亚氮。其特色如下:l 便携的仪器箱内实现快速响应、高准确度的温室气体测量l 多气体在吸收峰间不存在交叉干扰l 同步的水汽测量实现在线校正,一步到位获取气体的干基浓度密度l 低功耗的分析仪能够由太阳能或锂电池供电,上天下地、部署灵活 在数月的实验室测试之后,此次现场测试提供了真实现场条件下的仪器性能表现。昕甬智测将精益求精,继续更新迭代HT8850,为国家“碳中和”大目标贡献力量!
  • 中石化自主开发微痕量气体组分同位素分析新技术
    近日,石油勘探开发研究院无锡石油地质研究所实验研究人员应用自主开发的微痕量气体组分同位素分析新技术,对鄂尔多斯盆地的富烃类气藏、云南腾冲的温泉气、济阳坳陷地区二氧化碳气藏中的气体进行氢同位素分析,收到让地球化学研究人员满意的分析效果。历经40多年发展的无锡石油地质研究所实验研究中心在稳定同位素分析领域方面有着深厚的技术积累,逐步形成具有特色的同位素分析技术系列,得到国内外同行认可。面对油气勘探研究需要和目前同位素分析技术难题,在上级的支持下,这个所不断更新实验技术装备,引进3台不同型号的稳定同位素质谱仪,包括与其相配套的水平衡装置、预浓缩装置、气相色谱仪等先进设备。   同时,这个所着力加强技术创新和新技术的开发应用,坚持将传统技术方法与创新分析技术相结合,在原有稳定同位素分析技术的基础上,通过将稳定同位素质谱仪与其相配套的设备互相联接,成功开发了新同位素分析技术。   燃烧/高温裂解元素分析仪与稳定同位素质谱仪(Delta V)联机使用碳—氮、氢—氧同位素连续测定技术,可进行批量样品分析,具有样品量小、检测速度快、准确度高的特点,能满足沉积有机质碳、氢、氧、氮4种元素同位素组成的分析要求。使用燃烧装置能够实现一次进样同时检出样品中碳、氮同位素组成的目标,而使用裂解装置可同时在线测定其氢、氧同位素组成,还可用于水中氢氧同位素分析。   预浓缩装置与稳定同位素质谱仪(MAT253)联用测定微痕量气体组分的同位素分析技术,能满足低浓度甲烷气样品的碳氢同位素分析,同时利用天然气中各个组分在低温下被特定填料吸附的物理性能差异,对天然气中微痕量氢气的富集与分离,有效消除天然气中微痕量氢气同位素分析的技术瓶颈,为幔源流体中氢的地球化学研究提供有力技术支撑。   据悉,稳定同位素分析新技术的开发与应用,为石油天然气地质研究提供了丰富的地球化学信息,在油气成因类型判识、油气源对比、运移示踪和成藏机理研究等方面发挥着独特作用,深受课题科研攻关人员和油气田生产单位的欢迎。
  • HORIBA便携式红外多组分气体分析仪促销
    好消息,好消息!我司为回馈新老客户长久以来对我司的支持与厚爱,特推出HORIBA(堀场)红外多组分气体分析仪PG-300系列产品的促销活动。 凡在活动期间(2016-1-4——2016-2-4)购HORIBA(堀场)红外气体分析仪的新老客户,均可享受购仪器赠移动电源的优惠喔!机不可失,失不再来,有需求的客户现在就可以拨打我司电话(010-62151736)采购啦!
  • 精准捕捉多组分温室气体 | HT8840便携仪器在兰州完成安装培训
    项目内容:山地生态仪器安装验收项目时间:2024年7月项目地点:甘肃省兰州市萃英山部署仪器:HT8840便携式多组分高精度温室气体分析仪(CO2、CH4、N2O)项目内容在全球应对气候变化的过程中,温室气体(GHG)的排放和吸收是影响全球气候变化的关键因素,准确监测和分析温室气体的动态变化,对于制定科学的环境保护政策和实现碳中和目标具有重要意义。本项目通过部署HT8840便携式多组分高精度温室气体分析仪,对萃英山地区的温室气体排放和吸收情况进行监测。仪器培训与实地部署为了确保项目的顺利进行,海尔欣昕甬智测的技术人员前往兰州,为项目成员开设了仪器培训课堂,详细讲解了HT8840的操作流程、数据采集和维护方法,并与现场工作人员一起实地部署了项目仪器。仪器介绍HT8840便携式多组分高精度温室气体分析仪能够同时检测多种温室气体(CO2、CH4、N2O),并具备高精度、低功耗、易携带的特点,非常适合在复杂多变的山地环境中使用。多组分分析能力:能够同时检测二氧化碳(CO2)、甲烷(CH4)和一氧化二氮(N2O)等多种温室气体,采用中红外波段,独立强吸收谱线,无交叉干扰,使测量更精准。便携性和灵活性:高强度ABS材料箱体设计,防水耐用易携带,适合在复杂的山地环境中携带和操作,能够快速部署和启动,实现定点或移动连续自动检测。低功耗:主机功耗小于100W,可由太阳能或电池供电,实现连续不断电检测。
  • 190万!四川大学计划采购高压多组分气体吸附仪
    项目概况四川大学高压多组分气体吸附仪采购项目 招标项目的潜在投标人应在成都市高新区吉泰五路88号3栋7层1号(花样年香年广场)获取招标文件,并于2022年06月14日 10点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:SCZZ17-ZC-2022-0396项目名称:四川大学高压多组分气体吸附仪采购项目预算金额:190.0000000 万元(人民币)最高限价(如有):190.0000000 万元(人民币)采购需求:详见附件。合同履行期限:履约时间:(1)交货时间:【适用国产产品中标的情形】从预付款后,交货期为3个月内到场。所有技术文件及资料应在发货时一并交与需方验收人员。【适用进口产品中标的情形】交货期为6个月内到场。所有技术文件及资料应在发货时一并交与需方验收人员。(2)安装调试时间:仪器到达用户所在地后,根据采购人的通知,中标人在2周内安排仪器的安装调试,直至达到验收指标。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业采购的项目。3.本项目的特定资格要求:无。三、获取招标文件时间:2022年05月25日 至 2022年05月31日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:成都市高新区吉泰五路88号3栋7层1号(花样年香年广场)方式:现场报名或通过邮件方式报名。现场报名时,经办人员当场提交以下资料:供应商为法人或者其他组织的,提供单位介绍信或委托书原件、经办人身份证复印件;供应商为自然人的,只需提供本人身份证复印件。通过邮件方式报名时,请将汇款凭证、获取招标文件须提供的资料、单位名称、联系人、联系方式、邮箱地址、所购采购项目名称及采购项目编号等信息传至采购代理机构邮箱sczz@sczz84510079.com。售价:¥300.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年06月14日 10点00分(北京时间)开标时间:2022年06月14日 10点00分(北京时间)地点:成都市高新区吉泰五路88号(花样年香年广场)3栋16层开标厅五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜本项目采购预算品目为A030321-催化剂检验分析评价装置,预算金额为人民币190万元,最高限价为人民币190万元,投标报价超过本项目最高限价的作无效投标处理。监督部门:本项目同级财政部门,即财政部国库司。联系电话:010-68513070、010-68519967。 采购代理机构:四川中志招标代理有限公司开户银行:中国建设银行成都市高新支行帐 号: 5100 1406 1370 5152 6738通讯地址:成都市高新区吉泰五路88号3栋7层1号(花样年香年广场)联 系 人:郑女士电 话:028-87333799-0(报名相关事宜咨询)028-84510079-8011(项目相关事宜咨询)电子邮件:sczz@sczz84510079.com七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:四川大学     地址:成都市武侯区一环路南一段24号        联系方式:杜老师 028-85407782      2.采购代理机构信息名 称:四川中志招标代理有限公司            地 址:成都市高新区吉泰五路88号3栋7层1号(花样年香年广场)            联系方式:郑女士 028-84510079            3.项目联系方式项目联系人:郑女士电 话:  028-87333799-0(报名相关事宜咨询)、028-84510079-8011(项目相关事宜咨询)
  • 有效监测才能严格治理,看多组分气体监测仪如何应对环境空气污染!
    有效监测才能严格治理,看多组分气体监测仪如何应对环境空气污染! 2020 China 挥发性有机物污染防治科技大会现场精彩回顾 挥发性有机物(VOCs)种类繁多,对人体健康和生态环境危害巨大,是较为复杂的一类污染物。VOCs China 2020是我国专注于VOCs污染防治领域的全产业链、供应链的专业展览会,最大范围荟萃国内外VOCs污染综合整治产业链上下游的先进技术、工艺、材料和装备等进行展示与合作。 天津润泽环保惊艳亮相展会现场,所携产品与解决方案备受瞩目,实现了信息技术与环保产业的深度融合。 01 监控污染明星产品 面对日益严重的环境空气污染问题,只有及时有效的实时监测污染情况,获得真实可信的数据,才可以为环境管理者提供制订管理措施的依据。 多组分气体监测仪:一款用于检测工业有毒有害气体的仪器,检测气体种类选择范围包括硫化氢、氨气、甲硫醚、甲硫醇、二甲二硫、二硫化碳、苯乙烯、氮氧化物、臭氧、二氧化硫、氯化氢、氯气、TVOC等工业气体,可以基于这些污染气体浓度分析出臭气浓度OU值。 用户也可根据实际应用需求定制气体种类、数量及检测范围等。相比较传统的化学法气体检测系统,本仪器具有检测速度快、检测灵敏度高、检测参数多并种类选择灵活、操作简便、系统维护量少等特点,逐步成为环境检测站、工业园区、大型化工制药企业等应对环境空气污染监测的必要的气体检测设备。 02 天津润泽环保技术团队 天津润泽环保科技有限公司依托总部雄厚的研发实力、注重科技投入、超前的思维、完善的管理机制, 以其从容、自信的姿态在行业中勇往前行。倾力打造国家信任、客户满意的企业形象。 通过本次展会,天津润泽环保迎来了很多老伙伴,更结识了很多新朋友,我们希望能把这份缘分持续下去,一起为中国环保产业做出贡献。感谢大家的关注!
  • 190万!华南理工大学多组分气体穿透曲线分析仪采购项目
    项目编号:ZZ0230037项目名称:华南理工大学多组分气体穿透曲线分析仪采购项目预算金额:190.0000000 万元(人民币)最高限价(如有):190.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)1多组分气体穿透曲线分析仪 1套用于检测多组分材料的竞争性吸附测试。具体详见采购需求经政府采购管理部门同意,本项目(包组)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。本项目采购标的所属行业为: 工业 合同履行期限:合同签订之日至质保期结束。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-8711296232.采购代理机构信息名称:广东志正招标有限公司地址:广州市天河区龙怡路117号银汇大厦5楼联系方式:罗小姐 020-87554018 851656103.项目联系方式项目联系人:白小姐、朱先生电话:020-87581202
  • GPT-Li在锂电池原位产气量和气体组分分析中的应用
    锂离子电池在首次充电过程中,电解液与负极材料发生反应在表面形成固体电解质界面膜(SEI,Solid Electrolyte Interface),并伴随产气,如氢气、二氧化碳、甲烷等。该过程属于正常产气,被称为化成阶段。当锂电池在过充放电过程时,也会异常产气,导致电池形变、封装破损、内部接触不良,从而引起安全事故。因此,准确掌握电池的产气量大小、深入了解产气规律,有助于优化电池材料体系和电解液,对电池制作工艺优化至关重要。以往,对于从软包锂电池中提取气体样本一直是一项具有挑战性的工作。传统的方法是用一根锋利的针穿透软包电池,这样可以一次性测量气体,但在此过程中会破坏软包电池。而且,这种方法不适合与多种时间、不同电压或充电状态(SoC)相关的测量,也不允许连续监测电池内部的产气过程。因此,该传统方法存在的问题是测试具有破坏性,不能用于非侵入和重复气体取样。它也没有提供一种从软包电池中提取永久性气体而不损坏它的方法。为了克服这些限制,德国明斯特大学(University of Münster)的Jan-Patrick组于2020年引入了一种气体采样端口(GSP,Gas Sampling Port)用于从锂离子软包电池中原位采集产气(DOI 10.1149/1945-7111/ab8409)。GSP是一种基于聚丙烯(PP)的套管系统,它被热封到袋箔的内层。它允许非破坏性和重复气体采样,而不会显着影响袋状电池的电化学性能。通过引入GSP,研究人员能够对软包电池内形成的气体进行原位分析。这使他们能够在不损害电池完整性的情况下研究气体的产量和组成。关于产气量的测定,作者仍然采用的是传统的“阿基米德法”。这种方法的基本原理是将软包电池悬挂于流体中,如MilliQ水中。由于软包电池受到的液体浮力会对小型薄膜测压传感器施加一个力,则传感器中应变片的变形会导致电阻变化形成电信号,然后再转化为力数据。通过阿基米德浮力公式,其产生的浮力与同体积排开的液体的重量相等,即可换算出软包电池的产气量。但此方法为间接计算产气量,操作装置较为复杂、误差较大、精度不足、重复性不足。且此方法仅能用于软包电池的产气量测量,不具有兼容方形电池、圆柱电池的广泛性。GPT-Li原位锂电池产气量测定仪采用GMC(Gas Metering Cell)超微量气体流量测量专利技术,其原理为直接将锂电池产气引入GMC测量模块,当气体流过特殊设计的流道中的惰性液体时,会产生均匀的气泡并计数累计产气量。该技术的直接测量精度可达约30 μL,且支持连续或非连续气流的测量。将该技术结合不同的接口,可实时在线连续原位监测软包、方形、圆柱等各种类型电池的产气行为,并得到如产气量、产气速率等数据。同时,GMC测量模块可直接与GC、DEMS等气体组分分析设备串联,用于进一步的气体组分分析。相较于传统的排水法(基于阿基米德浮力定律)、集气法(基于理想气体状态方程),GPT-Li可实现直接动态监测气体的微量体积变化并与气体成分分析设备进行联动分析,有助于锂电池材料研发和电芯产气机理的分析研究。
  • HORIBA(堀场)红外多组分气体分析仪VA/VS-3000促销
    圣诞将至,为回馈新老客户长久以来对我司的支持与厚爱,今我司推出日本进口HORIBA(堀场)红外多组分气体分析仪VA/VS-3000的促销活动。 凡在活动期间(2014-12-22——2015-1-22)购HORIBA(堀场)红外多组分气体分析仪VA/VS-3000的新老客户,均可享受原价9.8折的优惠活动喔!机不可失,失不再来,有需求的客户现在就可以拨打我司电话(010-62151736)采购啦!
  • 应用案例 | T型光声池的光声光谱技术用于同时检测基于三重共振模态的多组分气体
    近日,来自西安电子科技大学、哈尔滨工业大学可调谐(气体)激光技术国家级重点实验室的联合研究团队发表了《T型光声池的光声光谱技术用于基于三重共振模态的多组分气体的同时检测》论文。Recently, the joint research team from School of Optoelectronic Engineering, Xidian University, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, published an academic papers T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality 油浸式电力变压器是现代电力分配和传输系统中最重要的绝缘设备之一。通过同时测量绝缘油中的溶解气体,如一氧化碳(CO)、甲烷(CH4)和乙炔(C2H2),可以在电力变压器的过热、电弧和局部放电故障的早期诊断中提供合适的解决方案。变压器故障主要可分为过热故障和放电故障。CO、CH4和C2H2的含量变化是变压器故障的主要指标。过热故障包括裸金属过热、固体绝缘过热和低温过热。裸金属过热的特征是烃类气体(如CH4和C2H2)浓度的上升。上述两种气体的总和占总烃类气体的80%以上,其中CH4占较大比例(30 ppm)。CO的浓度(300 ppm)强烈指示固体绝缘过热和变压器故障中的低温过热。当变压器处于放电故障时,C2H2会急剧增加(5 ppm,占总烃类气体的20%-70%)。因此,本研究选择CO、CH4和C2H2作为目标分析物。传统的多组分气体定量检测方法,如气相色谱仪、半导体气体传感器和电化学传感器,在实时监测、恢复时间、选择性和交叉敏感性方面存在一定限制。基于光声光谱技术的光学传感器平台具有高灵敏度、高选择性、快速响应、长寿命和成熟的传感器设备等优点,在多组分气体传感领域发挥着重要作用。已经开发出多种基于光声光谱技术的多组分气体传感器模式,如傅里叶变换红外光声光谱模式、基于宽带检测的热辐射体或黑体辐射体使用多个带通滤波器、多激光器与时分复用(TDM)方法的结合,以及采用多共振器和频率分割复用(FDM)方案。然而,由于宽带光源的相对弱强度,弱光声(PA)信号易受到背景噪声的干扰,这是高灵敏度检测的主要障碍。Oil-immersed power transformer is one of the most important insulation equipment in modern power distribution and transmission systems. Simultaneous measurements of the dissolved gases in insulating oil, such as carbon monoxide (CO), methane (CH4) and acetylene (C2H2), can represent a suitable solution in early diagnosis of overheating, arcing and partial discharge failures of power transformers . Transformer fault can mainly be divided into overheating fault and discharge fault. The content changes of CO, CH4, and C2H2 are the main indicators of transformer failure. Overheating fault includes bare metal overheating, solid insulation overheating and low temperature overheating. The bare metal overheating is characterized by the rising concentration of hydrocarbon gas, such as CH4 and C2H2. The sum of the above two gases accounts for more than 80% of the total hydrocarbon gas, and CH4 accounts for a larger proportion (30 ppm). The concentration of CO (300 ppm) strongly indicates the solid insulation overheating and the low temperature overheating in the transformer failure. When the transformer is in discharge fault, the C2H2 will increase dramatically (5 ppm, 20%&minus 70% of the total hydrocarbon gas). Therefore, CO, CH4, and C2H2 are selected as the target analytes in this work. The traditional quantitative detection of multiple analytes, such as gas chromatographs, semiconductor gas sensors and electrochemical sensors, were limited in terms of real time monitoring, recovery time, poor selectivity and cross sensitivity. Photoacoustic spectroscopy (PAS)-based optical sensor platforms, which feature the advantages of high sensitivity, high selectivity, fast response, long lifetime and well-established sensing devices, have played an important role in the field of multi-component gas sensing. Various PAS-based multi-gas sensor modalities have been developed, such as Fourier transform infrared PAS modality, broadband detection based thermal emitters or blackbody radiators using several band-pass filters, the use of multi-lasers combined time-division multiplexing (TDM) methods , and multi-resonators with frequency-division multiplexing (FDM) schemes. Due to the relatively poor intensity of the broadband source, the weak photoacoustic (PA) signals were sensitively affected by the background noise, which was a major obstacle to highly sensitive detection. 由于吸收和共振圆柱体共同决定了其共振频率,设计并验证了一种T型光声池作为适当的传感器。通过引入激励光束位置优化,从模拟和实验中研究了三种指定的共振模式,呈现了可比较的振幅响应。使用QCL、ICL和DFB激光器作为激发光源,同时测量CO、CH4和C2H2,展示了多气体检测的能力。A T-type photoacoustic cell was designed and verified to be an appropriate sensor, due to the resonant frequencies of which are determined jointly by absorption and resonant cylinders. The three designated resonance modes were investigated from both simulation and experiments to present the comparable amplitude responses by introducing excitation beam position optimization. The capability of multi-gas detection was demonstrated by measuring CO, CH4 and C2H2 simultaneously using QCL, ICL and DFB lasers as excitation sources respectively.图片显示了配备了T型光声池的基于PAS的多组分气体传感器配置的示意图。使用三个激发激光器作为激光源,包括DFB ICL(HealthyPhoton,型号HPQCL-Q)、DFB QCL(HealthyPhoton,型号QC-Qube)和NIR激光二极管(NEL),分别在2968 cm&minus 1、2176.3 cm&minus 1和6578.6 cm&minus 1处发射,以实现对CH4、CO和C2H2的同时检测。ICL、QCL和NIR激光二极管在目标吸收波长处的光功率分别为8 mW、44 mW和32 mW,通过热功率计(Ophir Optronics 3 A)进行测量。所有激光源都通过调节电流和温度控制来驱动。A schematic diagram of PAS-based multi-component gas sensor configuration equipped with the developed T-type PAC is shown in Fig. Three excitation laser sources, including a DFB ICL (HealthyPhoton, model HPQCL-Q), a DFB QCL (HealthyPhoton, model QCQube) and an NIR laser diode (NEL) emitting at 2968 cm&minus 1, 2176.3 cm&minus 1 and 6578.6 cm&minus 1, were employed to realize the simultaneous detection of CH4, CO and C2H2. The optical powers of the ICL, QCL and NIR laser diode measured by a thermal power meter (Ophir Optronics 3 A) at the target absorption lines were 8 mW, 44 mW and 32 mW, respectively. All the laser sources were driven by tuning the current and temperature control.Fig. The schematic diagram of multi-resonance PAS-based gas sensor configuration equipped with the developed T-type PAC for multi-component gas simultaneous detection. Operating pressure: 760 Torr.HealthyPhoton, model HPQCL-QHealthyPhoton, model QCQube结论建立了基于T型光声池的多共振光声光谱气体传感器,并验证其能够进行多组分同时检测,达到ppb级别的灵敏度。通过有限元分析(FEA)模拟优化和实验光束激发位置设计,三个指定的谐振频率的光声响应相互比较,确保了同时检测多种微量气体的高性能。选择了CO、CH4和C2H2这三种可燃气体作为目标气体,使用QCL(4.59 µ m,44 mW)、ICL(3.37 µ m,8 mW)和NIR激光二极管(1.52 µ m,32 mW)作为入射光束进行同时检测验证。F1模式下,光束照射到缓冲腔体壁上,信噪比(SNR)相比通过吸收圆柱体的情况提高了4.5倍。实验得到了CO、CH4和C2H2的最小检测限(1σ)分别为89ppb、80ppb和664ppb,对应的归一化噪声等效吸收系数(NNEA)分别为5.75 × 10&minus 7 cm&minus 1 W Hz&minus 1/2、1.97 × 10&minus 8 cm&minus 1 W Hz&minus 1/2和4.23 × 10&minus 8 cm&minus 1 W Hz&minus 1/2。对湿度交叉敏感性进行改进的研究提供了对光声光谱传感器在湿度松弛相关效应方面的更好理解。利用单个光声腔体和单个探测器进行多组分气体传感的这种开发的光声光谱模式,具有在电力变压器故障的早期诊断方面的独特潜力。Conclusions A T-type cell based multi-resonance PAS gas sensor was established and verified to be capable of multi-component simultaneous ppb-level detection. By the FEA simulation optimization and experimental beam excitation position design, the PA responses of the three designated resonant frequencies are comparable which guarantees the high performance of multiple trace gas detection simultaneously. The three combustible species of CO, CH4 and C2H2 were selected as target gases for the simultaneous detection verification using a QCL (4.59 µ m, 44 mW), an ICL (3.37 µ m, 8 mW) and a NIR laser diode (1.52 µ m, 32 mW) as incident beams. The SNR for F1 mode with the beam irradiating on the buffer wall was increased by 4.5 times than that of passing through absorption cylinder. The experimental MDLs (1σ) were achieved as of 89ppb (CO), 80ppb (CH4) and 664ppb (C2H2) have been acquired, respectively, corresponding to the NNEA coefficients of5.75 × 10&minus 7 cm&minus 1 W Hz&minus 1/2, 1.97 × 10&minus 8 cm&minus 1 W Hz&minus 1/2 and 4.23 × 10&minus 8 cm&minus 1 W Hz&minus 1/2. An improved humidification investigation regarding cross-sensitivity analysis provides a better understanding of PAS sensors in humidity relaxation related effects. This developed PAS modality of utilizing a single PAC and a single detector for multicomponent gas sensing exhibits unique potential for early diagnosis of power transformer failures.Fig. 1. Simulated spectral distribution characteristics of CO, CH4 and C2H2 based on HITRAN Database. Temperature and pressure: 296 K and 1 atm respectively.Fig. 2. Schematic structure of the developed T-type PAC.Fig. 3. Simulated sound pressure distribution of T-type PAC model for the three selected resonance modes by FEA method. Color bar: Simulated sound pressure (Pa).Fig. 4. Simulation results of the T-type PAC acoustic characteristics with the incident beam position optimization. (a) and (b): Two different incident ways of the excitation beam (c), (d) and (e): The simulated pressure amplitude response vs. frequency for F1, F2 and F3 detection, respectively.Fig. 6. The experimental results of PA signals for different resonance modes by scanning the incident excitation beam. (a) Schematic diagram of the light source scanning process in the T-type PAC. Dashed line: Central axis. (b) The PA amplitude of 100 ppm CO vs. the beam position of ICL source. (c) The PA amplitude of 50 ppm CH4 vs. the beam position of ICL source. (d) The PA amplitude of 50 ppm C2H2 vs. the beam position of DFB laser diode. Insert: The irradiated surface of PAC.Fig. 7. The experimental results for CH4 detection with the incident beam position optimization. (a) Two different ways (I1, I2) of incident excitation beam using ICL for CH4 measurement (b) The PA amplitude vs. frequency of F1 for the two incident ways (c) The PA spectra of 100 ppm CH4 in the ICL tunning range using both incidence ways (d) The PA signal amplitude of CH4 vs. gas concentration for two incidence ways.Fig. 8. Noise level analysis of F1, F2 and F3 modes for two incidence ways.Fig. 9. Experimental frequency responses of the developed T-type PAC.Fig. 10. The PA signal amplitudes vs. laser modulation amplitudes for multi-component gas sensing. (a) The ICL modulation amplitudes for 100 ppm CH4 detection (b) The QCL modulation amplitudes for 400 ppm CO detection (c) The NIR laser diode modulation amplitudes for 100 ppm C2H2 detection.Fig. 11. The experimental results for simultaneous detection of multi-component gases. (a), (b) and (c): Measured 2f-PAS spectral scans of the CO, CH4 and C2H2 absorption features for F1, F2 and F3 modes, respectively.Fig. 12. Schematic of the improved humidification system for humidity control.引用:Le Zhang, Lixian Liu, Xueshi Zhang, Xukun Yin , Huiting Huan, Huanyu Liu, Xiaoming Zhao, Yufei Ma, Xiaopeng Shao,T-type cell mediated photoacoustic spectroscopy for simultaneous detection of multi-component gases based on triple resonance modality,Photoacoustics 31 (2023) 100492.https://doi.org/10.1016/j.pacs.2023.100492
  • HORIBA红外多组分气体分析仪VA/VS-3000促销
    促销啦,促销啦,HORIBA红外多组份气体分析仪VA/VS-3000促销啦! 即日起,凡活动期间(2014-7-21——2014-8-21)在我司订购日本红外多组分气体分析仪的新老客户,均可享受购VA/VS-3000仪器赠送京东购物卡的优惠!促销不是天天有,该出手时就出手!(订购电话:010-82168186)
  • 打破国外垄断 国产微痕量多组分气体标物的创新之路 ——访中国测试技术研究院化学研究所副所长潘义
    由中国测试技术研究院化学研究所与四川中测标物科技有限公司共同完成的科技创新项目——《微痕量多组分气体标准物质制备新技术研究及应用》荣获了2019年度中国计量测试学会科学技术进步一等奖。据了解,该项目不仅实现了高活性、易腐蚀微痕量多组分气体标准物质及其制备技术的自主可控,还实现了多种产品的进口替代,并创造间接经济效益近千亿元,具有十分重要的经济社会效益。那么,什么是“微痕量多组分气体标准物质”?该项目有哪些创新?为何能取得如此大的经济效益?我国微痕量多组分气体标准物质的研发情况是怎样的?仪器信息网近期采访了中国测试技术研究院化学研究所副所长潘义,请他就以上问题进行了解答。 中国测试技术研究院化学研究所副所长 潘义仪器信息网:您能具体介绍下“标准物质”的概念以及何为“微痕量多组分气体标准物质”么?潘义:标准物质是具有准确量值的测量标准,具有足够均匀和稳定的特性,可以用来定性或定量。标准物质可以是单一的或混合的气体、液体和固体,气体标准物质是标准物质的重要组成部分。作为测量参考标准,标准物质是用于测量过程控制和测量结果评价不可缺少的工具,是建立一致可比的全球测量互认体系的物质基础和保障。在公平贸易、医疗卫生、环境监测、能源化工、先进制造,航空航天、安全防护、应急救灾和科学研究等国民经济的众多领域,每天都要进行千千万万次测量活动,这些测量活动中有80%都需使用标准物质以确保检测数据准确可靠。标准物质的技术水平直接影响到检测数据的质量,是确保检测数据准确可靠的“标尺”与“砝码”,是产品质量保证的源头,是确保测量结果可靠与国际互认的核心与关键。微痕量多组分气体标准物质是指量值在10-9至10-6数量级、组分数较多的一类气体标准物质。微痕量多组分气体标准物质的研制及其应用,对于统一我国气体分析量值体系,推动新的检测技术进步和确保产业的高质量发展,都具有十分重要的意义。仪器信息网:您能介绍下“微痕量多组分气体标准物质制备新技术研究及应用”这一项目的研究背景么?潘义:随着科学技术的迅猛发展,应用技术研究也有了长足进步,这也给全球标准物质研究带来挑战,即标准物质的定值特性已经由单一组分向多组分,常量、微量向痕量、超痕量转变,以满足越来越多样的应用需求。挥发性有机物、硫化物、氮氧化物、氨气、氯气、氯化氢、氟化氢等气体成分是环境监测、能源化工、医疗卫生、汽车制造、集成电路等国民经济领域重点监测的物质,具有含量低、组分多、易吸附、易腐蚀等特点。标准物质是确保这些气体组分监测数据准确可靠的“标尺”与“砝码”,但高精确度、高稳定性微痕量多组分气体标准物质的制备一直是我国的技术瓶颈,长期以来该类产品大部分依赖进口,受制于人。作为专业的国家级气体计量技术机构,我们有责任和义务开展科技攻关,解决这个“卡脖子”问题。本项目主要目标就是攻克微痕量多组分气体标准物质制备关键技术难题,研制出高质量的气体标准物质产品,替代进口,建立批量化生产线,并进行推广应用。仪器信息网:请问该项目主要取得了哪方面的创新?潘义:项目的突出技术创新体现在以下两个方面:首先是在宽沸点多组分精确制备技术方面取得了创新。我们克服了传统制备技术在转移过程中原料残留不均匀引起称量定值不准确的技术难题,在国内首次实现单个液体原料按照饱和蒸气压由低到高依次转移,大大提高了制备精度,降低了称量不确定度。其次是解决了铝合金气瓶内壁惰性化处理技术。项目组突破了高分子材料涂覆和金属镀层铝合金气瓶内壁处理技术,在国内首次攻克了微痕量多组分高活性组分(挥发性有机物、硫化物、氮氧化物、氯气、氯化氢、氟化氢等类)在气瓶中吸附严重和无法长期稳定存储难题,与普通气瓶相比,显著提升痕量活性气体的存储稳定性。此外,我们还在全惰性无死体积进样分析技术方面进行了集成创新,显著缩短了痕量吸附性、腐蚀性气体分析的系统吹扫稳定时间,降低了分析过程引入的不确定度;我们在产业化方面也进行了集成创新,项目组率先开发了气体标准物质智能化配气管理系统,实现条码管理生产流程,避免人为查找,进度可控;单组分标气制备效率可达到人均每天60瓶;还可自动生成原始记录和证书报告,自动计算定值,形成完整的产品质量追溯体系。这些产业化创新工作都是围绕提高产品质量和生产效率进行的。 仪器信息网:目前该项目取得了哪些研究成果?主要有哪些应用?该项目的完成具有哪些重要意义?潘义:项目取得国家一级标准物质2种,国家二级标准物质24种;制修订国家标准5项;取得授权发明专利和实用新型专利各1项;发表科技论文10篇;项目成果总体达到国内领先,部分成果填补国内空白,达到国际先进水平。项目的标准物质成果在计量校准、环境监测、能源化工、仪器研发和科学研究等行业得到了广泛应用,主要用于量值传递、生产过程质量控制、产品质量检测、仪器研发以及支撑标准制修订等方面。具体来讲,主要体现在以下几个方面:首先,项目的研究成果大大完善了我国微痕量多组分气体成分检测量值溯源体系,研究工作及成果得到气体计量测试领域国内外同行广泛关注和认可;项目发展的技术及研究成果,在服务国家重大专项,支撑国家工程实验室建设方面提供了技术支撑;多组分微痕量的VOCs气体标准物质研究成果推动了我国环境空气VOCs在线监测体系的加快建立;天然气全组分气体标准物质为天然气“提质增效”,促进天然气行业高质量发展做出了积极贡献;项目的微痕量硫化物气体标准物质研究成果还解决了长期制约我国氢能领域10-9量级硫化物杂质准确计量问题,确保氢能相关气体成分量检测数据的准确可靠。该项目的完成意味着我国实现了高活性、易腐蚀微痕量多组分气体标准物质及其制备技术的自主可控,满足了我国环境监测、能源化工等重点行业的需求,确保了国家检测数据的量值安全。我们的标准物质产品打破了国外垄断,价格已降至进口产品的2/3以下,供货周期缩短至进口产品的1/3以内,产品已经远销国(境)外。近年来我国生态环境部所重点关注的39种、57种、65种、117种等系列环境VOCs气态污染物检测,以前大部分使用的是美国Linde、法国液空等国外气体公司的产品,造成我国VOCs检测数据的量值溯源性受制于人。很高兴的是我们在微痕量多组分VOCs系列气体标准物质方面已经完全替代进口,氮气中42组分挥发性有机物混合气体标准物质(GBW 08196)、氮气中57组分挥发性有机物混合气体标准物质(PAMS臭氧前体物,GBW 08808)等系列VOCs气体标准物质现在也已经相继取得国家一级标准物质定级证书,确保了我国环境监测相关数据的溯源性实现自主可控。多家知名跨国分析仪器公司的解决方案都转而使用本项目研发的标准物质产品,项目团队的标准物质成果已经得到了国际认可。仪器信息网:您能否谈一谈本项目团队在标准物质国际互认方面所做的工作?潘义:作为建立化学测量最有效的工具,标准物质可以保证检测结果的准确性和溯源性。同时,标准物质也是全球测量互认体系的支撑。英国国家物理实验室(NPL)在微痕量多组分气体标准物质研究领域处于世界领先水平,其研发的30组分臭氧前体物VOCs气体标准物质被选择作为世界气象组织(WMO,World Meteorological Organization)的基准气体标准物质。项目团队分别于2016年和2018年与NPL进行了两次标准物质计量比对(制备比对),分别是1×10-6 mol/mol氮中42组分VOCs气体标准物质和0.1×10-6 mol/mol氮中30组分VOCs气体标准物质,两次比对结果En值均小于1,取得很好的国际等效度。正是通过积极参与国际比对,确保了多组分微痕量VOCs气体标准物质的国际等效,继而为社会提供更加准确可靠的测量结果溯源共享服务,实现“更准确、更高效、更广泛”的测量。在标准物质计量比对方面,下一步我们将按照国家市场监管总局关于加强计量比对的指导意见要求,加大力度持续开展环境保护、产品质量安全、医疗卫生、安全生产、食品安全等领域密切相关的重点气体标准物质的国际国内计量比对,为服务国家产业高质量发展做出积极贡献。仪器信息网:请问贵团队下一步的研究重点是什么?潘义:我们团队一直以来都是围绕气体成分量的测试计量技术与标准化开展研究工作,建立和完善相应的气体成分检测量值溯源体系。项目组下一步主要工作是加快完善环境监测、能源化工等重点领域所需要的气体标准物质体系,以满足行业高质量发展的要求;同时紧跟国际前沿气体计量研究方向,建立超低含量(10-12数量级)气体成分量检测溯源体系,开发超低含量气体成分量的测试计量技术完整解决方案,满足氢能与燃料电池、航空航天等行业的超精密测量需求。
  • “高精度多组分气体检测传感器研制”启动会召开
    3月17日,“智能传感器”重点专项“跨地域复杂油气管网安全高效运行状态监测传感系统及应用”课题“高精度多组分气体检测传感器研制”启动会在安光所召开,会议由张志荣研究员主持。   项目承担单位国家石油天然气管网集团有限公司陈朋超教授级高工、课题承担单位中科院合肥物质院张志荣研究员、课题参与单位国家石油天然气管网集团有限公司科学技术研究总院蔡永军副总监等相关科技人员20余人通过线上线下形式参加了交流会。   课题负责人张志荣研究员就承担的研究任务、总体目标、实施方案、研究队伍等进行了汇报。该课题主要针对油气管网微小泄漏感知能力不足、特殊场景传感器缺乏、区域站场泄漏逃逸不明晰等痛点及热点问题,以集成探头研发、激光吸收光谱技术、组网方式等研究内容为核心,建立两类型高性能传感系统,为构建管网传感器及系统综合试验平台,开发管网智能传感系统数字化应用平台,建立管网状态感知指标体系和传感器谱系提供技术支持,并在中俄和中缅油气管道的多个典型场景进行示范应用,为全面实现管网状态监测水平的提升和管道感知技术的自主可控贡献力量。   与会人员听取了汇报后,针对目标、任务和实施方案进行了深入且细致的讨论,充分肯定了实施方案的可行性,并针对涉及的中俄、中缅管道及站场的示范应用情况作了详细的讲解和分析,希望所研发的多类型传感器能够在多个场景形成突出的特色应用,解决现场亟需的技术难题,以切实行动贯彻习近平总书记“打造平安管道、绿色管道、发展管道、友谊管道”的重要指示要求。会后,与会人员还参观了超导托卡马克大科学装置。   “跨地域复杂油气管网安全高效运行状态监测传感系统及应用”项目,由国家石油天然气管网集团有限公司、中科院合肥物质院、哈尔滨工业大学、沈阳仪表科学研究院有限公司、机械工业仪器仪表综合技术经济研究所、国家管网集团西南管道有限责任公司、山东微感光电子有限公司、中科院金属研究所、中国石油大学(北京)、国家管网集团北方管道有限责任公司等优势研究机构联合承担。
  • 瑞士万通MARGA在线气体组分及气溶胶监测系统通过美国环保署(EPA)ETV认证
    ETV ( Environmental Technology Verification,环境技术认证)计划是由美国环境保护署( EPA )创建的一套程序和方法,用于评估创新技术解决威胁人类健康和环境问题的能力。ETV是对特定技术性能的定量评价,EPA的全体质量管理成员参与检测的整个过程,以确保检测数据的质量。 ETV计划进行技术认证的重点是已经全面市场化或准备好市场化的技术,不评估那些处在实验阶段的技术。 MARGA在线气体组分及气溶胶监测系统是由荷兰能源研究所(Energy research Centre of the Netherlands, ECN)与Metrohm及Applikon共同研制的,MARGA为大气研究提供了一种全新的、在线大气污染监测及研究手段。它采用独特的取样装置把颗粒污染物和酸性气体直接吸收到水相中,再使用离子色谱监测其成分,整个过程全自动进行。近年来已在美国及欧洲多个地方投入使用。 日前,MARGA在线气体组分及气溶胶监测系统顺利通过美国环保署(EPA)的ETV认证。 EPA官网认证报告下载:http://www.epa.gov/nrmrl/pubs/600r11106/600r11106vs.pdf MARGA资料下载:http://www.metrohm.com.cn/product/product_view.aspx?product_id=231 关于瑞士万通: 1950年,瑞士万通发明了第一支复合pH电极。 1954年,瑞士万通设计出第一台用于痕量分析的实用自动极谱仪。 1956年,瑞士万通开发出第一支活塞型滴定管。 1968年,在瑞士万通诞生世界首台数字化滴定仪,第一台数字化电子滴定管。 &hellip &hellip 2007年,瑞士万通研发出首台智能型离子色谱仪。 2010年,瑞士万通研制出世界首台紫外离子色谱。 Metrohm - 瑞士万通,是当今世界唯一全方位涵盖各类不同离子分析技术的国际化分析仪器公司。
  • 昕甬智测HT8800系列多组分温室气体分析仪:量子级联激光光谱技术在气体检测领域的应用优势
    在当前时代,环境问题、气候变化以及可持续发展已经成为全球关注的焦点。在这一背景下,气体检测技术变得尤为重要,以便实时监测和控制大气中的有害气体排放,保护人类健康和生态平衡。量子级联激光光谱技术作为一种先进的光谱分析技术,在气体检测领域具有显著的应用优势,以下是一些关键的优势:1. 高精度和高灵敏度: 量子级联激光光谱技术具有极高的分辨率和灵敏度。这使得它能够探测非常低浓度的气体,甚至在远距离下也能实现精确的检测。这对于监测罕见但有害的气体排放至关重要,例如甲烷等温室气体。2. 多种气体同时监测: 量子级联激光光谱技术可以针对多种不同的气体进行监测,而无需更换设备。这种多功能性使得它适用于不同场景下的气体监测需求,从工业污染到大气组成分析。3. 非侵入性: 与传统的气体采样方法相比,量子级联激光光谱技术是一种非侵入性的技术。它不需要直接接触气体样本,避免了可能引起污染或影响结果准确性的问题。4. 实时性: 量子级联激光光谱技术具有快速的数据采集和处理能力,使其能够实时监测气体浓度变化。这对于迅速响应气体泄漏事件或污染源的变化非常重要。5. 长距离探测: 量子级联激光光谱技术能够实现长距离的气体检测,这在一些需要遥感监测的场景下特别有用,如工业区域的气体排放监测。6. 节能环保: 由于量子级联激光光谱技术能够快速、精确地完成气体检测,它可以在很大程度上减少能源和资源的浪费,从而降低环境影响。总之,量子级联激光光谱技术在气体检测领域的应用优势主要体现在高精度、高灵敏度、多功能性、实时性、长距离探测以及节能环保等方面。随着技术的不断发展,它有望在环境监测、工业安全、气候研究等领域发挥越来越重要的作用。宁波海尔欣光电科技有限公司所应用的量子级联激光光谱技术,在气体检测领域的应用优势主要体现在高精度、高灵敏度、多功能性、实时性、长距离探测以及节能环保等方面。随着技术的不断发展,它将在环境监测、工业安全、气候研究等领域发挥越来越重要的作用。9月,海尔欣光电科技有限公司旗下品牌“昕甬智测”产品HT8800系列便携式高精度温室气体分析仪于中国甘肃省兰州市顺利进行现场安装、调试。HT8800系列便携式高精度温室气体(二氧化碳、甲烷、氧化亚氮、水)分析仪由宁波海尔欣光电科技有限公司自主研发、生产和销售,为“昕甬智测”品牌国产创新产品。该系列仪器基于量子级联激光技术设计,利用气体分子在中远红外的“指纹”吸收谱,使用半导体量子级联激光器(QCL)作为光源,使激光通过独创的中红外增强型光腔,被中红外光电探测器接收透射光并提取和分析透射光谱,准确反演获得目标温室气体成分的浓度,实现对目标温室气体分子的更精确、更及时、更科学的测量。更多详情请联系我们。
  • HORIBA红外多组分气体分析仪VA/VS-3000促销
    为回馈新老客户长久以来对我司的支持与厚爱,今我司推出HORIBA红外气体分析仪VA/VS-3000的促销活动。 凡在活动期间(2014-5-26——2014-6-26)购买VA/VS-3000的新老客户,均可享受买仪器即享9.8折的优惠喔!机不可失,失不再来,有需求的客户现在就可以拨打我司电话(010-62151736)采购啦!
  • TDLAS检测温室气体原理
    GHK-5100多组分温室气体分析仪基于TDLAS可调式半导体激光器吸收光谱技术,内置激光控制模块、吸收池、泵吸处理控制模块、信号处理模块,可实现进样气的实时在线及现场便携测量,通过扩展激光器可实现多组分气体同步测量。下文简单地为您介绍一下关于“TDLAS检测温室气体原理”。 TDLAS检测温室气体原理为通过电流和温度调谐半导体激光器的输出波长,扫描被测物质的某一条吸收谱线,通过检测吸收光谱的吸收强度获得被测物质的浓度。 TDLAS检测的是激光穿过被测气体通道上的分子数,获得的气体浓度是整个通道的平均浓度。TDLAS的气体浓度定量计算是以Beer-Lambert定律为基础,Beer-Lambert定律指出了光吸收与光穿过被检测物质之间的关系,当一束频率为V的光束穿过吸收物质后,在光束穿过被测气体的光强变化为: I(v)=I0(v)exp[-σ(v)CL] I(v):光束穿过被测气体的透射光强度 I0(v):入射光强度 σ(v):被测气体分子吸收截面 C:被测气体的浓度 L:光程 因此,可通过测量气体对激光的衰减来测量气体的浓度。值得注意的是σ(v)吸收截面是分子吸收线强S(V)和分子吸收线形φ(V)的乘积,吸收线强S(V)受到气体温度的影响,吸收线形φ(V)收到压力展宽的影响,因此在实际检测中,TDLAS分析仪需输入温度和压力值进行补偿,如果过程气体的温度和压力变化比较大,还需要通过接入温度和压力传感器实时进行温度压力补偿。 GHK-5100多组分温室气体分析仪采用模块化定制,体积小、重量轻,采用温度、压力补偿算法以及光源自动锁频技术,环境适应性强,满足用户高精度温室气体在线连续监测需求。
  • 光学气体传感器你选对了吗
    根据应用场景选择合适传感器光学气体传感器是多种分析设备的核心部件,直接决定了仪器的性能指标和功能,仪器设计之初,传感器选型非常重要。市面上各种原理、各个厂家的光学气体传感器琳琅满目,指标参数参差不齐,要如何选择最合适、性价比最高的传感器呢?实际上每款传感器都有其优缺点和适用范围,要么性能指标有优势,要么可靠性更值得信赖,要么价格便宜等等。要根据具体需求和应用场景选择合适传感器,比如经常要测量组分繁杂、湿度高的气体,最好选择UVDOAS、FTIR这类色散分光原理的气体传感器。关于传感器的性能、体积、功耗、扩展性、价格等要综合权衡。 传感器性能指标权衡选择光学气体传感器,首先传感器的关键指标参数要优于预研仪器的设计参数,除体积重量外,一般要考虑以下几点要素,(每个要素都很复杂,本期先简单描述,后面几期再根据反馈详细分析):1. 测量气体种类和干扰。前者好理解,要和仪器的目标气体一致,比如开发环境空气CO2分析仪器选择低量程LY-NDIR双通道CO2模块就完全能满足要求,但在背景气中有干扰组分的就要同时考虑干扰组分的同时测量,这是很多仪器开发者经常忽略的问题。比如开发污染源SO2分析仪选择NDIR原理就要考虑烟气常见组分CH4的干扰,因为红外波段CH4在SO2吸收峰处同样有吸收,会带来正干扰,当然选择紫外差分原理的如LY-UVDOAS系列的传感器就不用考虑CH4干扰。2. 量程、检出限和线性误差。分别代表了传感器的实际测量范围、最低响应浓度和结果正确度,其中量程和检出限指标是一对有点矛盾的参数,一般长光程设计的传感器,会有低的检出限和量程指标,反之亦然,当然,也有少数高端的传感器可以两者都兼顾,比如崂应的UVDOAS系列传感器,通过自适应调整光谱波段算法,测超低浓度时选择强吸收谱段反演计算测,超高浓度时选择弱吸收谱段反演计算,这样两个参数都能获得很优秀的指标。3. 响应时间、重复性和稳定性响应时间一般是T90、T10,表征了传感器的响应速度,跟气室体积、气体流速和平滑算法都有关系,因此也与精度、检出限指标有点负相关。关于重复性和稳定性,一般是在环境条件稳定的情况下,反复多次测量结果的一致性程度。4. 漂移(零漂、量漂)和适用温度范围漂移指标分为不同时间的漂移,常见的有1h/4h/8h/24h/月/年漂移,便携式仪器,小时漂移更重要,在线运行仪器月漂移也很重要,这关系到仪器设计或运行时的调零周期,有些仪器还需要设计自动调零气路。适用温度范围,在本文中不仅指传感器可工作的温度范围,还代表确保传感器精度/线性误差满足指标的温度范围,温度对光学气体传感器的影响非常大,所以需要确定精度是在什么温度范围内能满足。有些传感器比如崂应UVDOAS/NDIR/NDUV系列,采取了大量的措施确保了温度适用性,指标表里的误差均是指在工作温度范围内都能满足的误差;也有很多传感器指标误差中仅仅在室温条件满足(有些在指标表中看不出,有些会用温度漂移1℃示值漂移不超过满量程的多少来描述),这样就意味着仪器设计中要考虑增加对气体传感器应用环境的恒温设计或温度补偿算法,以满足仪器的高低温性能指标要求,据了解在多个领域的标准中都有仪器高低温适用性指标要求,毕竟仪器的客户群体大多分布在全国各地,四季温差、昼夜温差跨度非常大。5. 考虑升级和可扩展性,在仪器整个生命周期中,满足当前设计指标就可以?还是会根据市场需求而扩展升级(这种情况在快速发展的行业中是经常出现的,污染源监测行业指标就一直随着环保需求而不断收紧)?如果是后者,在核心传感器选型时就要考虑传感器的指标可扩展性,市面有少数高端传感器具备扩展空间,比如崂应的大部分UVDOAS传感器和NDIR传感器可以在硬件不变的情况下升级扩展量程,LY-UVDOAS更是可以在原基础上扩展测量气体的种类,然而这些扩展功能是基于深厚的技术水平的,能做到、做好的不多,有仪器扩展升级考量的要仔细甄别,选择对的传感器,有利于仪器的快速升级、缩减研发时间和成本。关于光学气体传感器的价格和价值这是个有意思的话题,本文简单一说。市面上不同传感器价格差异很大,这跟很多因素有关,最关键的还是指标。有些传感器是半定量的,有个不离谱的示值就可以,仅作为一个参考,这种很便宜;有些较准确,可以作为阈值判断用,价格一般;有些给出精确示值,比如误差在±5%以内,属于工业级的,价格较高;有些更高端的传感器给出更精确示值、表现非常好的环境使用性,比如误差在±2%甚至±1%以内,价格很高。不同等级的传感器,价格差异是数量级的,毕竟气体传感器做到一定精度指标之后,每一点小的提升,都会需要付出很高的成本代价去实现。所以,要根据预研仪器的要求和定位选择最合适的传感器。另外,传感器的附加值差异也很大,比如价格对比时,不要单独看一个传感器的价格,要看测一种气体的价格,比如多通道LYNDIR传感器一种气体的价格就明显低于多个单一气体传感器,同时去除了相互间的干扰,节省了体积,对仪器设计而言,增加功能同时省时、实力、省空间,性价比自然高很多。关于传感器之外的隐形附加价值也要权衡。比如购买崂应的传感器,就附加了定制化的解决方案,协助根据应用场景选择最佳好传感器、设计时用好,高质量的售后服务和可能的升级空间。最后,传感器基本选好了后,还要实测,尤其上文中提到的几个关键指标,毕竟光学气体传感器良莠不齐,自己测过才知道。欢迎致电崂应咨询交流。
  • 环保行业标准气体的稳定性研究
    标准气体的重要性环保一直是全社会热议的话题,国家也针对环境保护出台了诸多政策,例如HJ75-2017是关于监测二氧化硫、氮氧化物和颗粒物,HJ-604是关于总烃、甲烷和非甲烷总烃的监测方法,HJ759是关于环境空气挥发性有机物的测定,HJ1078则是关于固定污染源废气——甲硫醇等8种有机硫的监测。任何一种监测方法,都需要用到标准气体。标准气体就是监测的一把“标尺”,用它来校准仪器,才能确保检测出的数据的准确性,保证数据在可接受的误差范围内。但是许多人并不太了解这把影响监测数据准确性的”标尺“,因此,液化空气从标准气体的参数、国家标准物质证书、标准气体稳定性研究这几个方面,在1688直播间与大家进行了标准气体的知识分享,现在就让我们一起来回顾一下吧!1混配精度、分析精度与不确定度不确定度:表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。表明结果的可信赖程度。混配精度(BT):配置混合物与要求值的误差范围。分析精度(AA):使用仪器分析给出的值与真实值见的误差范围。也就是说,如果需要配制一瓶10ppm二氧化硫标准气体,氮气作为平衡气,你可能会得到如下结果。若混配精度为5%,则该标准气体的配制值范围为9.5~10.5ppm;若分析精度为1%,标称值为9.8ppm,则该标准气体的真实值范围为9.702~9.898ppm;不确定度为1%2国家标准物质证书购买环保标准气体的客户经常会要求标准气体带有国家标准物质证书,该证书分为一级证书和二级证书。一级证书一般由中国计量院出具,作为中国最权威的标准,而二级证书则是具有一定生产、分析能力的企业向计量院提出申请,由中国计量院进行考核,测试后颁发给企业定级认可证书。针对不同组分、不同浓度的标准物质,计量院都会出具一个对应的GBW(E)证书编号。而且,如果只是标准物质的不确定度变化,也需要重新审核证书。目前,液空中国一共有113个标物证书,覆盖了汽车、环保、石化、食品、检测等各行各业会使用的标准品。液空工厂生产的标准气体都带有以下的标准物质证书,证书上会表明对应的二级标物证书编号,可在国家标准物质资源平台中输入编号查询到相关的证书记录。3影响标准气体稳定性的因素FACTOR-1 原材料标准气体的平衡气主要为氮气、空气等,平衡气的水分、氧杂质含量越低,标准气体的组分浓度稳定性越好。FACTOR-2 管线材质主要指主要指瓶阀、减压阀、管路的材质。环保标准气体常含有强活性和强腐蚀性的组分,若使用铜阀、铜制减压阀,会对标气产生吸附和反应。因此,需要使用不锈钢的瓶阀和减压阀,保证浓度稳定。FACTOR-3 气瓶处理气瓶材质:标准气体气瓶常用铝合金制成,但铝合金有许多材质,合金含量不同,与瓶内物质的反应程度也不同。液空对多种铝合金进行了试验后,发现6061材质能够最有效地保证标准气体的稳定性,所以液空目前采用该种材质的气瓶充装标气。气瓶制造技术:液空采用的是拉拔瓶。该种气瓶是让金属在高温情况下,用模具一体成型,使得气瓶内壁的细纹相对较少。为什么要采用这种方式呢?这是因为,如果气瓶内壁有细小的裂缝,在清洗气瓶时,气瓶内壁便会吸附水分。而标准气体的使用时间往往长达半年至一年,瓶内干燥的气体一定会与裂缝中的水分发生动态平衡,导致裂缝中的水分析出来后与气体发生反应。这也解释了有些标准气体在一开始使用时的浓度是准确的,但后来变得不准确的问题。钢瓶内壁清洁度:也许你听说过涂层瓶,这种气瓶可有效隔绝气体与瓶壁的接触,保证标准气体的稳定性。液空经过多种技术的试验,目前主要选择通过对气瓶内壁进行钝化来保证标气的稳定性。钝化是指用高浓度的标气充满气瓶,例如使用高浓度的SO2,随后静置,让瓶壁吸附饱和SO2,再将气瓶进行清洗、抽真空、烘干后,充装客户需求的浓度。此时,因为瓶壁已经达到了吸附饱和状态,就不会再与气体发生反应。FACTOR-4 标气状态气瓶内的余压对标气浓度稳定性也有影响。每瓶标准气体至少含有两个组分,根据道尔顿分压定律,气瓶内不同组分承担的分压是不同的。在气体使用过程中,随着压力逐渐下降,不同组分的分压就会产生变化。而一些物质的反应是与压力相关的,当承担在各组分的压力不同时,便会发生化学平衡反应的移动,导致组分浓度变化。因此,建议每瓶标气留3-5bar余压。(关于液空标准气体稳定性研究的数据报告,可以联系客服4000529166)4疑问解答Q1 为什么很多标气的保质期能到一年,而有些只有半年或三个月呢?根据标气组分性质的不同,对于有活性或者腐蚀性的组分,其保质期就会受到影响,例如硫化氢、氯气等。Q2 为什么经常发过来的标气浓度和订气时所需求的不一致?因为标气是根据特定需求而特殊定制的产品,其生产方法是根据国际通用的重量法,一瓶一瓶地称出来的,然后再逐瓶通过相应的分析仪器得出数值,其分析报告上给的数值就是根据分析仪器上的读数而来的。由于人工控制和充装设备的不稳定性,一般很难刚好把读数落在需求的数值上,一般情况浓度越低,控制的难度就会越大。所以会产生本文中提到的混配精度、分析精度和不确定的概念。液空会利用先进的充装设备和技术,以及充装工的经验,将误差范围控制在我们提供的技术参数之内。如有特殊需求,液空可根据客户要求的误差范围进行配制。但在此情况下,液空可能需要配制多瓶标气,才能有一瓶的标气浓度落在要求的范围内,导致成本较高。Q3 NO2和NO可以互相转换,这个因素对NO2和NO标气有什么影响?根据反应方程2NO+O2=2NO2,在氧气存在的情况下,NO会反应成为NO2。因此,当配制NO标气时,要尽可能减少氧气,所以需要使用N2做平衡气。而且氮气的纯度越高,才可保证氧杂质的含量越少。当配制NO2标气,则需要大量氧气,所以建议用空气做平衡气。只有氧气充足时,NO2就不会向NO反应。需要注意的是,由于该反应方程为可逆反应,NO中必会存在NO2。但液空配制的标准气体,均使用99.9999%氮气作为平衡气,可保证NO2的含量控制在NO含量的5%以内。如果客户的应用要求更高,液空也可使用纯度更高的平衡气,使NO2的含量降到更低。Q4 对于Cl2和HCl标气,为什么当浓度在10ppm左右时经常测不出读数?因为这类物质易溶于水,比如HCL和水的溶解比例是1:700。当其浓度很低时,尽管气瓶已进行处理,但是减压阀、管路未经过吹扫、钝化,这类组分仍会被吸附。所以这类物质都需要用不锈钢材质的减压阀,并且要吹扫足够长的时间,用标气把管路保压钝化2-3个小时后再去使用和测定,这样才能得到比较准确的数据。
  • 带你解读EPA标准下的VOC标准气体
    讲到VOC标准气体,首先让我们一起来看看VOC这个概念从何而来?VOC是挥发性有机物质(Volatile Organic Compounds)的英文缩写,即在常压下,沸点在50~260℃之间的有机物。最早由美国环保署(EPA)提出,为了通过研究环境空气中的挥发性有机物来监测空气污染。液空与Airgas///美国Airgas工厂是EPA指定的长期合作厂家,与EPA合作开创了许多环保气,以生产环保气闻名。那么,液化空气与Airgas又有何联系呢?中国环监政策///早期,中国的环监标准大部分参考学习了美国EPA的经验,如TO14和TO15。随后,在2015年,我国环境部发布施行了HJ759《环境空气挥发性有机物罐采样/气相色谱-质谱法》,在2018年又发布了《2018年重点地区环境空气挥发性有机物监测方案》。这两个标准都详细指出了环境空气中需要重点监控的目标物。HJ759《环境空气挥发性有机物罐采样/气相色谱-质谱法》HJ759规定了测定环境空气中挥发性有机物的罐采样/气相色谱-质谱的方法,其方法原理是:用内壁惰性化处理的不锈钢罐采集环境空气样品,经冷阱浓缩,热解析后,进入气相色谱分离,用质谱检测器进行检测,通过与标准物质质谱图和保留时间比较定性,内标法定量。目的是将环境空气中的目标监测物控制在ppb甚至ppt级别。此标准中规定使用的检测67种目标物的标准气体,其中的64种组分就是Airgas提供的EPA标准下TO15-65组分标准气体。不含在内的3种组分:二甲二硫醚,甲硫醚,甲硫醇需要单独分开配置,因为二甲二硫醚会和醇类起反应,造成标气不稳定。此外,此标准中规定的内标标准气体也属于Airgas提供范围。(注:TO15-65组分标准气体中含有乙醇,HJ759规定的67种目标物未包含该物质。)2018年重点地区环境空气挥发性有机物监测方案《2018年重点地区环境空气挥发性有机物监测方案》中包含了4个直辖市,15个省会城市及计划单列市,以及59个地级城市,监测项目包括光化学反应活性较强或可能影响人类健康的VOCs,包括烷烃、烯烃、芳香烃、含氧挥发性有机物(OVOCS)、卤代烃等。直辖市、省会城市及计划单列市需要监测117种物质,地级城市需要监测70种物质。针对117种目标物,目前Airgas提供的便是以下三种产品的组合套餐:PAMS+TO15+13醛酮;针对70种目标物,可选择PAMS+13醛酮。VOC标准气体///除了组合套餐,Airgas工厂凭借高超的技术水平,还对监测117种目标物的标准气体进行了三合一升级。VOC标准气体应用于大气监测领域的纯气和混合气产品是液空集团的专业产品方案特点PAMS+TO15+13醛酮在价格接近的情况下,与方案二相比,该方案气量更多(3瓶 VS 1瓶),性价比更高。适合注重成本的客户。117种组分标准气体(三合一)三瓶气体整合为一瓶,可一次性进样,使用更方便。产品规格为了满足客户多样化的需求,Airgas设置了多种VOC标准气体的规格。产品规格浓度溯源1/6/30 L1ppm/100ppb溯源NIST配套减压阀Airgas的VOC标准气体的气瓶接口为美国CGA180,液空可提供配套减压阀。不锈钢单极减压阀,内部容积为3.03毫升。减压阀内部容积小,可减少因对减压阀内部管道进行吹扫而产生的气体浪费,节约成本。重量为0.6公斤,即使是女生也能轻松使用。出口压力:2 – 75 PSIG或1 – 30 PSIG常见问题///Airgas的VOC标准气体都有库存吗?按照国内需求备库存。目前备有PAMS+65+13醛酮组合套餐的1L规格,其他产品需要定制,时间为2-3个月。Airgas的VOC标准气体的质保期有多久?2018年,Airgas将标准气体的质保期从12个月提升至24个月。众所周知,对标气的稳定性和质保期来说,最重要的就是气瓶。Airgas对气瓶进行了专利技术的处理,并对活性组分进行了稳定性测试,取得了令人满意的测试结果。(如需要该测试报告,请联系400-052-9166)
  • 重点行业碳排放环境影响评价试点-温室气体在行动!
    引言近日,生态环境部发布《关于开展重点行业建设项目碳排放环境影响评价试点的通知》,在河北、吉林、浙江、山东、广东、重庆、陕西等地开展试点工作,试点行业为电力、钢铁、建材、有色、石化和化工等重点行业。 试点地区和行业名单评价因子:本次试点主要开展建设项目二氧化碳(CO2)排放环境影响评价,有条件的地区还可开展以甲烷(CH4)、氧化亚氮(N2O)、氢氟碳化物(HFCs)、全氟碳化物(PFCs)、六氟化硫(SF6)、三氟化氮(NF3)等其他温室气体排放为主的建设项目环境影响评价试点。 岛津温室气体气相色谱仪解决方案 全新“睡眠模式”,节能减排 岛津专为旗舰级气相色谱仪Nexis GC-2030开发了“睡眠模式”来降低功耗实现为了人类和地球的健康这一愿景,在不使用GC时,可通过切换至睡眠模式降低功耗(与传统机型相比可降低60%),按下唤醒按钮可立即恢复到待机状态,并开始设置。 同等的消耗,得到高效的成果 方案设计● 一条流路可完成CO2、CH4、N2O组分测量,同时可增加流路,扩展定制的分析仪配置可满足不同的监测要求。例如扩展第二条流路分析O2、N2/详细烃类/硫化物分析等。● 通过分析方案设计及应用可确保以最佳性能分析 ppm 级的温室气体。● 配备用于温室气体分析的色谱柱、消耗品、校准/校验样品和分析方法。 优势● 10分钟内可完成CH4、CO2、N2O温室气体组分分析。● 十通阀放空H2O及其他重组分,增强系统稳定性和色谱柱寿命。● 永久性气体组分通过甲烷转化炉由FID检测,O2不进入ECD,保护镍源。● ECD检测器确保对痕量 N2O 的检测,也可扩展对SF6的检测。● 用户必须配备氩甲烷尾吹气(Ar 95%,CH4 5%)。 流路图 十通阀阀进样,样品通过预柱预分离,十通阀反吹水及其它重组分。其余组分通过MC-1柱子,CH4,CO2通过甲烷转化炉由FID检测,N2O,SF6进入ECD检测。 色谱图FID通道:CH4,CO2ECD通道:N2O, SF6 岛津温室气体气相色谱质谱仪解决方案 岛津全新单四极杆型气相色谱质谱联用仪GCMS-QP2020以强劲的性能优势,智能化的分析软件,专属性的数据库和多种分析系统,可以开展氢氟碳化物(HFCs)、六氟化硫(SF6)、全氟碳化物(PFCs)分析方法的研究工作。 集成高灵敏度和低实验成本通过搭载全新高速度大容量涡轮分子泵,可保证在多种复杂条件下均能实现良好的GC状态和高灵敏度的检测。提升氦气、氢气、以及氮气作为载气时的仪器性能,降低实验室运行成本。高灵敏度和快速分析可缩短实验时间,大幅度提升工作效率。1,3-二氯苯(载气氦气)1,3-二氯苯(载气氮气) 智能化多组分同步分析显著提升分析效率GCMS Insight 软件包可显著提升多组分化合物同步分析的灵敏度和分析效率。利用Smart SIM数据库自动生成适合的SIM参数,即使同步分析多种化合物亦可获得高灵敏度。同时,软件LabSolutions Insight可缩短数据分析时间,加速实际样品审核。 多种定制前沿分析系统立足于未来实验室科技可根据用户的实际分析需求,量身定制专属性的分析系统。例如,根据分析样品的物理属性以及目标物的含量定制更合适的进样系统,利用快速扫描技术配合全二维色谱分离系统等。
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 何以成就标准气体行业“小巨人”?——访大连大特气体有限公司董事长曹作斌
    工业气体被喻为工业“血液”,随着中国经济快速发展,工业气体作为国民经济基础工业要素之一,在国民经济中重要地位和作用日益凸显。国家提出“中国制造2025”战略规划和供给侧改革,企业转型升级为产业发展提供政策利好。据有关统计预测未来五年工业气体行业以每年11%速度递增,到2025年达到2000亿市场规模。大连大特气体有限公司作为国内气市场的主要供应商之一,始终专注于特种气体产品的研发及生产,产品广泛应用于高校,科研院所,能源化工,冶金,电子,医疗等行业。2020年11月公司被工业与信息化部评定为国家级专精特新“小巨人”企业。近日,仪器信息网有幸采访了大连大特气体有限公司董事长曹作斌,请他分享了大连大特在气体领域的发展和对国内气体市场的看法。曹作斌,毕业于华东理工大学,1992年成立大连大特气体有限公司。先后在大连、包头、新疆、广州、上海、山西和成都成立7家分公司。曹作斌历任全国气体标准化技术委员会委员、全国化工标准物质委员会委员、全国化工标准物质委员会专家委员,荣获“2020年度全国气体标准化先进工作者”荣誉,被大连工业大学特聘为环境科学与工程学科硕士研究生联合指导教师。自创办企业以来,坚持以“创新 发展 再创新 再发展”为理念,领导企业坚持改革创新依靠科技进步与科学管理,使企业先后荣获了“国家专精特新'小巨人'企业”、“全国气体标准化试验研究与验证——色谱平台”等荣誉。带领企业实现了2个亿的创收,并让公司的发展在行业中始终保持领先地位。大连大特的“天时、地利、人和”1992年,曹作斌与华东理工大学的几个校友合作创办了大连大特气体有限公司。回顾近30年的创业之路,曹作斌表示,大连大特的创业成功离不开“天时、地利、人和”。行业的选择和团队的建设有一定的偶然因素,上世纪九十年代,创始团队赶上改革开放和标准气行业蓬勃发展的时期。虽然赶上了标准气行业快速发展的阶段,但标准气行业却是一个慢热行业,曹作斌认为。大连大特前期团队规模扩张很小,前十年业务递增缓慢。“大特的创始研发团队以北京化工大学、华东理工大学的学生为主,对技术的研发十分重视。但针对慢热行业,团队理念一致,对技术研发保持更大耐心,大特的六位创始股东始终坚持在公司高管岗位上。”曹作斌说到。“近十几年发展迅猛,这主要得益于人才梯队的建设,目前大连大特的中高层以80后为主。”曹作斌感慨到,“十几年来大特培养的80后中高层团队非常可靠,离职率都很低,特别是中层以上的没有人离职。”先进仪器设备和成熟稳定的检测人才团队铸就产品质量控制的基石大连大特定位于技术研发型企业,当前已经手握107个标准气体批号,也由此入选专精特新“小巨人”企业名单。大特始终坚持研发走在需求爆发前的战略举措,通过预判市场需求和导向,提前布局研发VOCs、电子气体等产品。2016年中,国务院《关于推进大气污染联防联控工作改善区域空气质量的指导意见》,VOCs污染问题已经引起了我国政府的高度重视。“通常产品研发周期至少两三年,其中难度较大的VOCs标准气研发时间更长。VOCs产品具有技术壁垒高的特点,主要体现在气体组分多、浓度误差低、钢瓶内壁技术保障浓度的稳定性等方面。2018年3月,43组分TO-14 VOCs标准气和4组分VOCs检测用内标标准气通过全国标准物质管理委员会办公室的审核,获批为国家二级标准物质。近些年大连大特对标发达国家的特种气体需求,在环境保护、尾气排放这方面不断研发VOCs产品。”曹作斌介绍道。对于气体企业来说,技术是本质,大连大特目前已获批118项标准物质证书、36项国内专利。大连大特技术的能力建设,在气体配置、检测、高纯气提纯、特殊气体制备以及气体配置设备研发等方方面面都有所体现,尤其在检测方面的能力尤为突出。“大连大特的检测中心目前拥有日本岛津的气质联用仪、美国PE公司的气质联用仪和傅立叶变换红外光谱仪等四五十台先进的仪器设备,以满足标准气体和高纯气体在精度和纯度等方面的产品质量控制要求。更是培养了一直成熟稳定的检测团队。”大特气体检测中心于2011年3月通过中国合格评定国家认可委员会实验室能力认可,在服务企业内部的同时,也对外提供气体的第三方检测业务服务。在发展过程中,大特也建设了一套稳定的人才梯队。大特的创始团队都是60后,因此十几年前就开始与高校合作搭建实习基地,通过校企联合培养优秀毕业生,构建了一只稳定可靠的第二梯队。“现在大特拥有几十人的研发团队,其中有三十多人在从事高难度产品技术研发。”曹作斌介绍说。从气体产品供应商到全流程整体服务商,从石化工业市场到高校研究院所实验室大连大特的从小到大的发展过程,始终伴随着中国石油化工的成长。“现在公司基本完成了从创业初期的产品供应商到面向石化行业实验室分析整体服务商的转变,提供多元化、全流程的服务。”曹作斌表示,大连大特已经成长为中国石化行业的主要标准气体供应商。中国标准气市场在近30年蓬勃发展,市场规模实现了近百倍的增长。曹作斌介绍,“我们创业前十年国内只有大型的石化企业在使用标准气,通过国内企业努力,逐渐替代了进口标准气。这些年标准气市场扩张很快,比如在环保、尾气排放等方面的检测用标准气量非常大。大特预判到各大科研院所、高校的研发能力的逐渐增强,在新领域的开发方面受益匪浅。”科研院所也逐渐成为标准气的重要市场。曹作斌表示,“中国的科研院所发展迅猛,从供气角度看,科研院所的实验室气体市场成长迅速,占比也越来越大。”而大连大特也和中科院化物所、清华大学、大连理工大学等高校和科研院所都建立了长期稳定合作关系。不过,与石化产业不同,高校院所产品需求呈现多元化、碎片化的特点。曹作斌表示,“我们针对不同产品需求,帮助科研院所完成混合、提纯以满足他们的科研需要。”同时,大特搭建了一套的流程支持科研院所碎片化的一些特殊服务。曹作斌介绍,“以中科院化物所为例,公司每天都有一台专车保运,而且有一个团队从配置、提纯、分析、检测等方面提供专门的保障。而且因为有时候做实验时间紧,他们希望按照他们提出的交货速度来完成。”第三方检测也是标准气体的重要客户。曹作斌介绍说,“第三方检测拥有仲裁的权利,因此在标准气采购方面非常慎重,也愿意与大特这样重视技术的企业合作,以保障检测结果的准确。虽然第三方检测没有科研院所的用气量增长迅猛,但需求稳定,对质量的要求也不容忽视。”对标准气市场来说,技术是本质,服务是保障。如何保障完善的全流程服务?大连大特始终坚持布局全国的市场,在内蒙、新疆、广东和上海成立了四家分公司,通过在长三角、珠三角、西部能源通道建立子公司,完善了全流程服务,目前客户群体有近万家,覆盖除西藏外所有地区。预计今年大连大特的子公司数量将增长到6家。曹作斌表示,“以包头公司为例,十多年来成功满足了西部通道能源化工领域客户的标准气配送需求,包头分公司已经成长为包头气体协会副会长单位。”近年来,大连大特也致力于开发实验室管路工程方面的业务。“我们组成工程部已有七八年,因为我们认为随着国内的科研院所的迅猛发展,实验室的规模在逐步扩大,需要我们这样专业的气体公司去帮他们安装实验室的管路。实验室管路工程一定是公司下一步努力发展的一个方向,而且占比会越来越大。”曹作斌表示,未来大特会成立专业的管路工程公司来发展相关业务。半导体等领域中国气体市场前景广阔“半导体行业是一个巨大的市场,甚至比整个工业标准气的市场大很多倍,具有非常高的成长性。”曹作斌谈到,过去半导体气体被外资垄断,国内企业涉足少。但由于现在中美贸易战,国家在推动国产化进程,下一步公司将考虑借助资本的资源整合,提高自己抗风险的能力。本土供应商如何占据更大市场份额?曹作斌认为,关键在于研发。“要不断的研发新产品和替代进口的同等产品。因为半导体行业对气体的要求非常严格,没有一个非常规范的研发团队和大量研发资金投入将很难实现国产替代。”研发出与媲美国外水平的电子气体需要时间。“目前包括大特在内的国内企业已经开始研发和攻克一些电子气体。未来1-2年时间,我们会丰富半导体产品,扩大品种,冲击半导体市场。”采访最后,曹作斌透露,目前大特已有混合气体产品进入某半导体公司的12寸线并投入使用,还有一些产品正在试用中。大连大特超级品牌日大连大特将在7月7日举办首场超级品牌日,为您展示各个园区的独特风采,并开启一场“六大工厂,奇特之旅”。三重好礼1. 直播间抽送大特果园自种樱桃。2. 豪华大礼:大连、广东、成都工厂任选一参观+周边游,全程酒店机票食宿全包。3. 报名前200,出席当天活动,且信息完整有效者,经由核实后,将赠送10元话费。点击图片报名
  • 赋能创“芯” | 赛默飞电子气体气相色谱分析解决方案
    赋能创“芯” | 赛默飞电子气体气相色谱分析解决方案原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼高丽电子气体是半导体工业中使用的一类特殊气体,广义上的电子气体是指具有电子级纯度的特种气体,广泛应用在包括集成电路、显示面板、半导体照明和光伏等泛半导体行业。电子气体按其门类可分为纯气、高纯气和半导体特殊材料气体三大类。其中,特殊材料气体主要用于外延、掺杂和蚀刻工艺,高纯气体则主要用作稀释气和运载气。按纯度等级和使用场合分类,可以分为电子级、LSI(大规模集成电路)级、VLSI(超大规模集成电路)级和ULSI(特大规模集成电路)级。按用途可分为大宗气体,包括氮气、氢气、氩气、氦气、氧气、二氧化碳等;电子特种气体,包括笑气、氨气、三氟化氮、四氟化碳、六氟化硫、氯化氢、甲烷等气体。电子气体的使用对电子工业的发展至关重要,随着技术的进步,对电子气体纯度和洁净度的要求也越来越高,需要达到5N(99.9999%)以上的纯度,因为即使是痕量级杂质和污染物也会对最终器件质量和制造产量造成严重影响。赛默飞针对电子大宗气体、电子特气分析需求,推出高纯气分析解决方案。配置Trace1600系列气相色谱主机、脉冲放电氦离子检测器(PDD)、可安装色谱柱的大体积阀箱、带吹扫保护气阀的多阀多柱分析系统等,为用户提供数十种电子气体杂质的检测方案。01高纯氙中杂质分析氙气是一种天然稀有的惰性气体。由于具有较高的密度,低导热系数及可吸收X射线等特征,氙气被广泛的应用于电子电器,光电工业,医疗,电子芯片制造等行业。近年来随着氙气被应用于越来越多高端性产品的生产,行业对氙气纯度的要求也非常严格。赛默飞Trace GC-PDD系统可对高纯氙气中ppb及至ppm级浓度的氢气,氩气,氧气,氮气,一氧化碳,甲烷,二氧化碳,氧化亚氮,氪气,六氟化硫,六氟乙烷等杂质进行定性定量检测,其灵敏度完全符合GB/T 5828-2006的要求,同时具有优异的分离度和重现性。1.1仪器配置及色谱分析条件表1 气相色谱仪仪器配置及色谱分析条件(点击查看大图)1.2氙气中杂质分析色谱图如图1所示,标准气体中氢气,氩气,氧气,氮气,一氧化碳,甲烷,二氧化碳,氧化亚氮,氪气,六氟化硫,六氟乙烷等组分均得到良好的分离效果,氧气和氩气实现了基线分离(分离度大于1.5)。标气中浓度较大的氙气组分通过反吹放空,不进入检测器,从而避免了样品中氙气基质对目标组分的干扰。图1 高纯氙气中杂质典型色谱图(点击查看大图)1.3重现性表2分别列出了各个组分样品连续进样6次的峰面积重现性:各个组分的峰面积相对标准偏差(RSD)均低于1%;表3分别列出了各个组分样品连续进样6次的保留时间重现性:各个组分的保留时间重现性相对标准偏差(RSD)均低于0.01%。表2 各杂质连续6针进样峰面积重现性(点击查看大图)表3 各杂质连续6针进样保留时间重现性(点击查看大图)从测试结果可以发现,方案完全满足国标GB/T 5828-2006中对各杂质组分的检测要求。Trace GC-PDD系统在高纯氙气痕量杂质的分析中表现出优异的性能。反吹技术避免了氙气基质对系统的干扰,高分离效率色谱柱的使用实现了无需使用冷却装置即可分离氩气和氧气。02高纯氪中杂质高纯氪无色、无臭、无味、无毒、不可燃的单原子气体,化学上惰性。广泛应用于各类照明中,是良好的保护气和发光气。还应用于电真空、激光器、医疗卫生等领域。目前,高纯氪主要由大型空分设备从空气中提取,因其在空气中含量极少。因此售价高昂,被誉为“黄金气体”。由于高纯氪中杂质组分含量要求极低,脉冲放电氦离子化检测器(PDD)对痕量杂质组分有很高的灵敏度,被用于做高纯气体中痕量杂质的检测。针对以上检测需求,赛默飞采用Trace 1600系列气相主机、带有脉冲放电氦离子检测器(PDD)、多阀多柱分析系统,实现稀有气体高纯氪中痕量的氢气,氩气,氧气,氮气,一氧化碳,四氟化碳,甲烷,二氧化碳,氙等9种杂质含量的检测。方案分离效果好,检测限低,重复性好,完全满足标准GB/T 5829-2006 氪气的检测要求。2.1仪器配置及色谱分析条件表4 气相色谱仪仪器配置及色谱分析条件(点击查看大图)2.2氪气中痕量杂质分析色谱图按照2.1的色谱分析条件,对标气样品进样测定。如图2所示,以高纯氪为底的标准气体中痕量的氢气,氩气,氧气,氮气,一氧化碳,四氟化碳,甲烷,二氧化碳,氙各组分离效果理想,氧气和氩气实现了基线分离(分离度大于1.5)。标气中绝大部分的基质组分氪气通过阀切换被放空,不进入检测器,从而避免了基质组分氪气对痕量目标组分的干扰。图2 高纯氪气中痕量杂质典型色谱图(点击查看大图)2.3重复性连续进标气样品6针,考察高纯氪标气中各样品组分的峰面积重复性,其峰面积相对标准偏差(RSD)均低于2.33%,重复性结果见表5;表6是高纯氪标气中各个样品组分连续进样6次的保留时间重复性结果,其保留时间重复性相对标准偏差(RSD)均低于0.03%。表5 高纯氪标气中各杂质组分连续6针进样峰面积重复性结果(点击查看大图)表6 高纯氪标气中各杂质组分连续6针进样保留时间重复性结果(点击查看大图)从测试结果可以发现,方案完全满足国标GB/T 5829-2006中对各个杂质组分的检测要求。方案实现一次进样,完成高纯氪中多痕量杂质组分的检测,通过阀放空技术,有效避免了高纯氪基质对痕量杂质的干扰;优化的色谱柱分析系统实现了样品气中氩气和氧气的基线分离。03电子特气六氟化硫和三氟化氮中杂质分析赛默飞针对电子气体六氟化硫和三氟化氮中杂质检测的要求,配置 Trace 1610和大体积色谱阀箱、双通道设计、配置两个PDD检测器。一次进样实现六氟化硫和三氟化氮样品中H2, O2+Ar, N2, CH4, CO, CF4, CO2, SF6, N2O, SO2F2杂质组分分析,方案满足标准GB/T 21287和GB/T 18867的检测要求。3.1仪器配置及色谱分析条件表7 气相色谱仪仪器配置及色谱分析条件(点击查看大图)3.2六氟化硫和三氟化氮中杂质分析色谱图按照3.1的色谱分析条件,分别对六氟化硫标气和三氟化氮标气样品进样测定。F-PDD通道用于分析六氟化硫和三氟化氮样品中H2, O2+Ar, N2, CH4, CO, 杂质组分;B-PDD通道用于分析六氟化硫和三氟化氮样品中CF4, CO2, SF6, N2O, SO2F2杂质组分。六氟化硫中杂质组分典型色谱图见图3和图4;三氟化氮中杂质组分典型色谱图见图5和图6。图3 六氟化硫中杂质分析F-PDD通道色谱图(点击查看大图)图4 六氟化硫中杂质分析B-PDD通道色谱图(点击查看大图)图5 三氟化氮中杂质分析F-PDD通道色谱图(点击查看大图)图6 三氟化氮中杂质分析B-PDD通道色谱图(点击查看大图)滑动查看更多3.3重复性连续进标气样品6针,考察三氟化氮标气中各样品组分的峰面积重复性,其峰面积相对标准偏差(RSD)均低于2.88%,重复性结果见表8。表8 电子气体三氟化氮标气中各杂质组分连续6针进样峰面积重复性结果(点击查看大图)从测试结果可以发现,方案完全满足国标GB/T 21287和GB/T 18867中对各个杂质组分的检测要求。方案实现一次进样,双通道同时分析,完成电子气体六氟化硫和三氟化氮中杂质的检测。总 结赛默飞提供模块化气相色谱仪(Trace 1600系列)、模块化PDD检测器、搭载功能强大的大体积阀箱多阀多柱分析系统,为多种电子气体中痕量杂质分析提供高效的解决方案。实现一次进样,完成样品中痕量杂质组分的检测;方案通过阀放空技术,有效避免了高纯基质组分对痕量杂质的干扰;方案可提供填充柱分析系统或毛细柱分系统,优化的毛细柱分析系统实现了样品气中微量氩气和氧气的基线分离。此外,赛默飞在电子气体、高纯气分析领域,为广大用户提供更多完全定制化的解决方案,满足用户各不相同的检测需求。如需合作转载本文,请文末留言。
  • 山西电力研发新型六氟化硫分解气体检测装置
    12月5日,在国网山西省电力公司500千伏福瑞变电站,山西电科院技术人员正应用新研发的基于拉曼光谱的六氟化硫分解气体检测装置进行现场检测。短短几分钟,他们便轻松完成全部工作。六氟化硫气体绝缘电气设备故障诊断是电力系统的一项常规试验,旨在通过检测六氟化硫气体中的特征气体组分,判断设备内部绝缘缺陷类型、放电水平和绝缘材料老化程度。传统的气体分析方法主要有两种,一种为传感器方法,该方法传感器需要定期校准,检测准确度较差;另一种为实验室气相色谱法,该方法需要人工取气、送样至实验室进行化学分析,耗时长,对于检测人员的操作要求较高,无法实现在线监测。针对这种情况,国网山西电力从2022年3月份开始,便率先着手开展基于拉曼光谱的六氟化硫气体分解特征组分检测技术及应用研究。专家们运用基于密度泛函理论,建模仿真研究六氟化硫气体分解特征组分的拉曼光谱图,设计气体样品池,搭建实验平台,测试六氟化硫气体分解特征组分的拉曼光谱特性;研究六氟化硫气体分解特征组分拉曼光谱检测信号预处理方法及光谱信号增强技术;研究基于光谱数据拟合的拉曼光谱检测谱峰特征参数提取技术,六氟化硫气体分解特征组分拉曼光谱非线性效应修正方法;研究六氟化硫气体分解特征组分拉曼光谱检测定性、定量分析方法;开展基于拉曼光谱的六氟化硫气体分解特征组分现场检测及应用研究。经过反复使用、改进和验证,最终于当年9月成功推出具有国内领先水平的新型六氟化硫分解气体检测装置。该装置利用激光照射六氟化硫气体样品,形成拉曼散射光谱,自动比对标准气体光谱,通过积分法获取六氟化硫分解特征气体浓度,精准研判GIS设备缺陷,相较于传统检测装置,气体检测由小时级缩短至分钟级,现场检测质效显著提升。此外,该装置还具有其他多个显著优点:检测过程不需要对气体样品进行预处理,也不需要消耗载气;对混合气体样品可直接进行检测,无需进行组分分离,检测周期短;检测稳定性好,基本不受环境温度的影响,设备可靠性高、维护量小;检测对激光波长没有特殊要求,利用单一波长的激光就能同时激发出多气体特征量的拉曼光谱从而进行混合气体定性、定量分析,更适合于在线监测及带电检测。据悉,六氟化硫分解气体检测装置自2022年应用以来,已在国网山西电力22座110千伏及以上电压等级变电站应用,累计完成气体检测150次,发现消除设备缺陷5处,成效十分明显。未来,山西电力将在更多的变电站应用该检测装置,积累更多的现场数据,持续探索六氟化硫气体分解特征组分的拉曼光谱检测体系,为六氟化硫绝缘电气设备运行状态的在线监测和故障的早期诊断提供实践基础。(完)
  • 湖北锐意推出碳通量气体检测、发动机排放检测及燃气热值分析等高端气体分析仪器
    9月28日,中国人民银行宣布为贯彻落实国务院常务会议关于支持经济社会发展薄弱领域设备更新改造的决策部署,设立了2000亿元以上设备更新改造专项再贷款,政策面向教育、实训基地、节能降碳改造升级、新型基础设施等十大领域。四方光电股份有限公司(688665.SH)旗下全资子公司湖北锐意自控系统有限公司(以下简称“湖北锐意”)是一家专业提供气体成分及流量测量方案的高新技术企业,基于四方光电核心气体传感技术平台的优势,开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业。湖北锐意针对国家政策以及当前研究热点问题,选择碳通量气体检测、发动机排放检测及燃气热值分析三个重点方向,推荐以下行业解决方案。一、碳通量气体检测解决方案实现“碳达峰”“碳中和”是国家做出的重大战略决策。通过监测数据可以预测未来的气候变化趋势和评价生态系统碳循环对全球变化的响应与适应特征,为“双碳”目标的达成提供参考数据,为现代地球系统科学、生态与环境科学关注的重大科学问题提供研究依据。碳通量在线监测网络主要包含土壤温室气体通量测量和大气环境涡度协方差测量系统两种方法。湖北锐意依托气体分析传感器平台优势,分别开发了土壤碳通量分析仪与大气环境涡度协方差测量系统。(一)土壤碳通量分析仪土壤生态系统中的碳元素主要是通过土壤呼吸来实现碳循环,对土壤呼吸过程中CO2释放量的准确监测是评价生态系统中碳汇过程的关键。通量测定法是最为常用的测定方法,即直接测定土壤和大气间的CO2交换量,也是评价土壤生态系统碳循环过程的关键。国家正在积极推动“双碳”政策,碳监测为碳计量提供准确的基础数据。垃圾填埋场、污水处理厂和煤矿等区域的无组织碳排放是碳监测的难点之一。土壤碳通量分析仪利用非分光红外气体分析技术(NDIR)测量CO2浓度、可调谐半导体激光吸收光谱技术(TDLAS)测量CH4、N2O浓度。仪器外形小巧便携,方便获取多个不同点位的数据,完成不同空间与高度限值的测量要求,支持长期、连续、准确的测量。主要应用于土壤碳通量监测、森林碳通量监测、温室气体排放监测、空气质量监测、城市污染气体排放监测、固定污染源排放监测;高校关于环境科学、农业学与林业学相关研究等。(据测量场景不同可选配多款型号气体测量室)土壤碳通量分析仪技术参数(二)大气环境涡度协方差测量系统涡度协方差(又称涡动相关法)技术是测量和计算大气边界层内垂直湍流通量的重要大气测量技术。大气环境涡度协方差测量系统结合多款气体分析仪与超声风速仪,模块化设计,外形小巧,安装灵活。相互无干扰,专为高空监测而设计。通过对微气象中的三维风速与气体浓度进行精确测量,完成对生态系统与大气之前湍流交换的监测,即时收集流动畸变数据。适用于边界层气象研究、生态系统温室气体含量监测、野外大气监测、碳水循环研究、空气通量研究、遥感数据验证等。图左:开路式(CO2/H2O)气体分析仪图中:开路式(CH4)气体分析仪图右:三维超声风速仪大气环境涡度协方差测量系统技术参数二、发动机排放检测解决方案内燃机工业是我国重要基础产业,也是节能减排的重点领域。近年来,我国已经颁布和实施了GB 18352.6-2016(轻型车国六)、GB 17691-2018(重型车国六)和GB 20891-2014的2020年修改单(非道路移动机械国四)等移动源新生产车排放法规以及GB 18285-2018(汽油车)、GB 3847-2018(柴油车)和GB 36886-2018(非道路移动机械)等在用车排放法规。其中引领内燃机行业技术发展的是新生产车排放法规,该法规体系中要求的高精度发动机排放检测设备,主要包括全流稀释排放测试系统和便携式排放测试系统,目前都是主要依赖国外进口产品。由于设备构成十分复杂且涉及多项高精度测量技术,进口设备往往十分昂贵,全流稀释排放测试系统单套价格通常会达到数百万元甚至是千万元以上,便携式排放测试系统单套价格也通常会达到百万元以上。进口设备不仅价格贵,还存在供货周期长、使用成本高等问题,显然不能完全满足我国作为内燃机产销第一大国的实际需求。湖北锐意依托气体成分流量仪器仪表研发平台基础优势,结合近20年发动机排放分析仪研发经验,吸收国际先进应用经验,对关键技术进行攻关突破,战略性加大投入,成功研发了全流稀释排放测试系统、便携式排放测试系统以及非常规气体分析仪等全系列产品,具有技术先进、功能齐全、测量准确、性能稳定、兼容性强和高效服务等特点,可满足科研机构、制造企业和检测机构等国内外用户的各种应用需求。(一)全流稀释排放测试系统基于全流稀释排放测试系统的实验室标准工况排放测试是我国移动源排放法规体系中被广泛采用的标准方法,湖北锐意针对性开发了Gasboard-9802发动机排放全流稀释定容采样系统(CVS)及其配套的Gasboard-9801发动机排放测试系统。Gasboard-9801发动机排放测试系统结合高精度氢火焰离子化检测技术(HFID)、紫外差分吸收光谱技术(UV-DOAS)、非分光红外技术(NDIR)、长寿命电化学传感器技术(ECD)与凝结核粒子计数技术(CPC),同时测量发动机排气中THC、NOx、CO、CO2、O2等气体体积浓度及颗粒物数量浓度,其超低量程同时具备准确性高和响应速度快的特点,完全满足排放法规技术要求以及实际应用需求。Gasboard-9802发动机排放全流稀释定容采样系统(CVS)具有功能齐全、准确性高和自动化程度高等特点,适用于轻型车、重型车和非道路移动机械等各种移动源国家排放法规,可满足各种工况下不同排量和不同燃料类型内燃机的法规排放测试试验需求。目前,湖北锐意的全流稀释排放测试系统设备已经逐步成功应用于科研机构、发动机制造企业、轻型汽车制造企业、摩托车制造企业及相关检测机构等。Gasboard-9801发动机排放测试系统技术参数应用案例1、 武汉某知名高校醇氢发动机排放测试研究项目2、 常州某大型发动机制造企业实验室排放气体检测项目(二)便携式排放测试系统基于便携式排放测试系统的实际工况车载排放测试是一种更能反映移动源真实排放水平的排放测试方法,已经被我国轻型车、重型车和非道路移动机械排放法规引入作为标准方法的重要补充,正在法规检测和市场监督抽查等应用场景中发挥越来越重要的作用。湖北锐意针对性开发了符合法规要求的Gasboard-9805便携式排放测试系统(PEMS)。该系统采用全自主的核心传感器分析技术,可实现排放物CO、CO2、NO、NO2、THC和PN浓度测量,以及排气流量、GPS数据、环境温湿度、大气压力的测量,并具备测试过程引导、自动计算排放总量、导出测试报告等功能。依托自主搭建的排气质量流量标定系统和颗粒物PN分析仪标定系统等关键标定平台,为便携式排放测试系统的溯源标定和质量检验提供了保障。目前,湖北锐意便携式排放测试系统已经成功应用于科研机构、机动车和非道路移动机械制造企业及相关检测机构等。Gasboard-9805便携式排放测试系统技术参数应用案例1、浙江某大型农用机械制造企业车载排放测试项目(三)非常规气体分析仪发动机尾气中NH3和N2O等非常规气体污染物排放已经成为当前国际研究热点和排放法规检测项目。湖北锐意分别采用高温紫外差分吸收光谱技术(UV-DOAS)和可调谐半导体激光吸收光谱技术(TDLAS)成功开发了发动机原排直采NH3分析仪和N2O分析仪,已应用于新能源发动机研发工作。NH3和N2O分析仪技术参数(四)在用车排放检测系统湖北锐意基于双光束红外(NDIR)、微流红外(NDIR)、非分光紫外(UV-DOAS)等核心气体传感技术,自主研发了包括气体传感器平台、尾气分析仪、透射式烟度计、振动式发动机转速表的在用车排放检测整体解决方案。产品具有高精度、稳定性好,抗干扰能力强等特点,满足: GB 18285-2018,GB 3847-2018,GB 7258-2017,GB 7258-2017,GB 20891-2014等国标以及JJF 1375,JJG 688-2017,HJ 1014-2020等技术要求。产品广泛应用于机动车检测机构、汽车制造厂、汽车修理厂、科研机构、环保执法部门等。三、燃气热值分析解决方案天然气、沼气以及工业生产中可燃气体的高效利用对节能减排具有十分重要的意义。准确测量可燃气体成分及热值并自动优化控制燃烧过程是提高燃烧效率和控制排放污染的重要途经。天然气等碳氢燃料的气体成分分析主要依赖气相色谱法,但该方法的响应时间达90s以上,往往不能满足大多数场合的实时控制应用需求。湖北锐意在气体分析传感器平台优势基础上吸收国际先进的产品设计理念和应用经验,并结合国内应用需求,自主研发了以光谱吸收技术原理为主的一系列气体成分及热值在线测量设备,具有精度高、响应快、功能齐全等特点,可满足石油天然气、沼气、污水气体系统、垃圾填埋、玻璃陶瓷、化工、电厂和内燃机等领域应用。(一)激光拉曼光谱气体分析仪激光拉曼光谱法可以使用一个激光光源同时探测除惰性气体之外的所有气体分子,是一种非常有潜力的过程气体成分在线监测技术。但激光拉曼光谱法的特征信号较弱,一定程度上限制了该技术在气体检测领域的广泛应用。2012年四方光电牵头承担 “激光拉曼光谱气体分析仪的研发与应用”国家重大科学仪器设备开发专项,解决了检测信号弱等诸多难题,成功开发了LRGA-6000激光拉曼光谱气体分析仪。设备融合10项授权发明专利,通过对仪器的发生装置、收集装置、探测装置等核心硬件进行激光功率增加、气体压力提高、作用光程增长、散射光大范围收集等技术创新,以及采用基于Ar基底自动扣除、基于标定气体干扰自动修正等激光拉曼特有的软件算法,消除环境温度、压力、干扰气体等对被测气体的影响,实现了对低密度过程气体的高精度监测,已广泛应用于天然气、乙烯裂解气、生物质燃气、变压器油溶解气、煤化工等各大领域。在热值监测领域,激光拉曼光谱技术具有突出优势。以往旧式热值仪往往只能监测总碳氢化合物的热值总量且易受水分影响,而湖北锐意激光拉曼光谱气体分析仪可以分别监测显示各组分热值,采用的特征指纹谱技术具有极强的抗干扰能力。在气体监测领域可取代气相色谱(GC)与质谱(MS):LRGA-6000激光拉曼光谱气体分析仪技术参数LRGA-3100激光拉曼光谱气体分析仪技术参数应用案例1、武汉某大型轧钢厂加热炉热值监测项目2、 非洲某大型天然气开采监测项目(二)煤气分析仪(便携型)湖北锐意煤气分析仪可同时监测8种气体浓度并自动计算显示煤气/天然气热值,且多组分同时测量无交叉干扰。据以往用户使用案例的监测结果统计来看,湖北锐意煤气分析仪在热值监测方面平均为用户节省约10%的燃烧热能,此数据反应到庞大的工业产量基数上,为用户企业节省了十分可观的燃料成本。湖北锐意红外气体分析技术包含公司授权专利12项。其中消除交叉气体干扰技术集成非分光红外气体传感器(针对CO、CO2、CH4和CnHm检测)、热导H2传感器以及电化学O2传感器,并通过软件进行修正得到准确的八组分浓度数据并计算热值。基于该技术开发的煤气分析仪能够与昂贵的在线气相色谱仪作用相当,省却了载气等长期耗材,并具备热值分析功能。主要应用于煤化工、钢铁冶金等领域的煤气成分及热值测量、高校科研院所的气体取样分析以及新能源行业的气体成分测量等。Gasboard-3100P煤气分析仪技术参数应用案例1、抚顺某石油化工研究院生物质原料热解实验室检测项目(三)便携红外天然气热值分析仪天然气作为一种新型清洁燃料也是一种混合气体,不同气源生产的天然气组分会有所不同,在天然气用作燃料时,因组分不同导致其热值出现差异。目前无论是工业还是民用,都对天然气具有依赖性。对燃烧过程中气体浓度及热值的连续监测,可精确了解天然气的燃烧效率,对于降低企业生产成本、改善大气环境、实现可持续经济发展等具有积极作用。湖北锐意便携式红外天然气热值分析仪可同时测量多种气体浓度,并自动计算天然气热值,可取代燃烧法热值仪。相较于适用于高校与职业院校教学科研/实验实训、燃气具生产企业、燃气计量检测部门、节能监测部门、环保和配气等行业、天然气公司、液化气厂、液化气站等。Gasboard-3110P便携式红外天然气热值分析仪技术参数
  • 湖北锐意推出碳通量气体检测、发动机排放检测及燃气热值分析等高端气体分析仪器
    9月28日,中国人民银行宣布为贯彻落实国务院常务会议关于支持经济社会发展薄弱领域设备更新改造的决策部署,设立了2000亿元以上设备更新改造专项再贷款,政策面向教育、实训基地、节能降碳改造升级、新型基础设施等十大领域。四方光电股份有限公司(688665.SH)旗下全资子公司湖北锐意自控系统有限公司(以下简称“湖北锐意”)是一家专业提供气体成分及流量测量方案的高新技术企业,基于四方光电核心气体传感技术平台的优势,开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业。湖北锐意针对国家政策以及当前研究热点问题,选择碳通量气体检测、发动机排放检测及燃气热值分析三个重点方向,推荐以下行业解决方案。一、碳通量气体检测解决方案实现“碳达峰”“碳中和”是国家做出的重大战略决策。通过监测数据可以预测未来的气候变化趋势和评价生态系统碳循环对全球变化的响应与适应特征,为“双碳”目标的达成提供参考数据,为现代地球系统科学、生态与环境科学关注的重大科学问题提供研究依据。碳通量在线监测网络主要包含土壤温室气体通量测量和大气环境涡度协方差测量系统两种方法。湖北锐意依托气体分析传感器平台优势,分别开发了土壤碳通量分析仪与大气环境涡度协方差测量系统。(一)土壤碳通量分析仪土壤生态系统中的碳元素主要是通过土壤呼吸来实现碳循环,对土壤呼吸过程中CO2释放量的准确监测是评价生态系统中碳汇过程的关键。通量测定法是最为常用的测定方法,即直接测定土壤和大气间的CO2交换量,也是评价土壤生态系统碳循环过程的关键。国家正在积极推动“双碳”政策,碳监测为碳计量提供准确的基础数据。垃圾填埋场、污水处理厂和煤矿等区域的无组织碳排放是碳监测的难点之一。土壤碳通量分析仪利用非分光红外气体分析技术(NDIR)测量CO2浓度、可调谐半导体激光吸收光谱技术(TDLAS)测量CH4、N2O浓度。仪器外形小巧便携,方便获取多个不同点位的数据,完成不同空间与高度限值的测量要求,支持长期、连续、准确的测量。主要应用于土壤碳通量监测、森林碳通量监测、温室气体排放监测、空气质量监测、城市污染气体排放监测、固定污染源排放监测;高校关于环境科学、农业学与林业学相关研究等。(据测量场景不同可选配多款型号气体测量室)土壤碳通量分析仪技术参数(二)大气环境涡度协方差测量系统涡度协方差(又称涡动相关法)技术是测量和计算大气边界层内垂直湍流通量的重要大气测量技术。大气环境涡度协方差测量系统结合多款气体分析仪与超声风速仪,模块化设计,外形小巧,安装灵活。相互无干扰,专为高空监测而设计。通过对微气象中的三维风速与气体浓度进行精确测量,完成对生态系统与大气之前湍流交换的监测,即时收集流动畸变数据。适用于边界层气象研究、生态系统温室气体含量监测、野外大气监测、碳水循环研究、空气通量研究、遥感数据验证等。图左:开路式(CO2/H2O)气体分析仪图中:开路式(CH4)气体分析仪图右:三维超声风速仪大气环境涡度协方差测量系统技术参数二、发动机排放检测解决方案内燃机工业是我国重要基础产业,也是节能减排的重点领域。近年来,我国已经颁布和实施了GB 18352.6-2016(轻型车国六)、GB 17691-2018(重型车国六)和GB 20891-2014的2020年修改单(非道路移动机械国四)等移动源新生产车排放法规以及GB 18285-2018(汽油车)、GB 3847-2018(柴油车)和GB 36886-2018(非道路移动机械)等在用车排放法规。其中引领内燃机行业技术发展的是新生产车排放法规,该法规体系中要求的高精度发动机排放检测设备,主要包括全流稀释排放测试系统和便携式排放测试系统,目前都是主要依赖国外进口产品。由于设备构成十分复杂且涉及多项高精度测量技术,进口设备往往十分昂贵,全流稀释排放测试系统单套价格通常会达到数百万元甚至是千万元以上,便携式排放测试系统单套价格也通常会达到百万元以上。进口设备不仅价格贵,还存在供货周期长、使用成本高等问题,显然不能完全满足我国作为内燃机产销第一大国的实际需求。湖北锐意依托气体成分流量仪器仪表研发平台基础优势,结合近20年发动机排放分析仪研发经验,吸收国际先进应用经验,对关键技术进行攻关突破,战略性加大投入,成功研发了全流稀释排放测试系统、便携式排放测试系统以及非常规气体分析仪等全系列产品,具有技术先进、功能齐全、测量准确、性能稳定、兼容性强和高效服务等特点,可满足科研机构、制造企业和检测机构等国内外用户的各种应用需求。(一)全流稀释排放测试系统基于全流稀释排放测试系统的实验室标准工况排放测试是我国移动源排放法规体系中被广泛采用的标准方法,湖北锐意针对性开发了Gasboard-9802发动机排放全流稀释定容采样系统(CVS)及其配套的Gasboard-9801发动机排放测试系统。Gasboard-9801发动机排放测试系统结合高精度氢火焰离子化检测技术(HFID)、紫外差分吸收光谱技术(UV-DOAS)、非分光红外技术(NDIR)、长寿命电化学传感器技术(ECD)与凝结核粒子计数技术(CPC),同时测量发动机排气中THC、NOx、CO、CO2、O2等气体体积浓度及颗粒物数量浓度,其超低量程同时具备准确性高和响应速度快的特点,完全满足排放法规技术要求以及实际应用需求。Gasboard-9802发动机排放全流稀释定容采样系统(CVS)具有功能齐全、准确性高和自动化程度高等特点,适用于轻型车、重型车和非道路移动机械等各种移动源国家排放法规,可满足各种工况下不同排量和不同燃料类型内燃机的法规排放测试试验需求。目前,湖北锐意的全流稀释排放测试系统设备已经逐步成功应用于科研机构、发动机制造企业、轻型汽车制造企业、摩托车制造企业及相关检测机构等。Gasboard-9801发动机排放测试系统技术参数应用案例1、 武汉某知名高校醇氢发动机排放测试研究项目2、 常州某大型发动机制造企业实验室排放气体检测项目(二)便携式排放测试系统基于便携式排放测试系统的实际工况车载排放测试是一种更能反映移动源真实排放水平的排放测试方法,已经被我国轻型车、重型车和非道路移动机械排放法规引入作为标准方法的重要补充,正在法规检测和市场监督抽查等应用场景中发挥越来越重要的作用。湖北锐意针对性开发了符合法规要求的Gasboard-9805便携式排放测试系统(PEMS)。该系统采用全自主的核心传感器分析技术,可实现排放物CO、CO2、NO、NO2、THC和PN浓度测量,以及排气流量、GPS数据、环境温湿度、大气压力的测量,并具备测试过程引导、自动计算排放总量、导出测试报告等功能。依托自主搭建的排气质量流量标定系统和颗粒物PN分析仪标定系统等关键标定平台,为便携式排放测试系统的溯源标定和质量检验提供了保障。目前,湖北锐意便携式排放测试系统已经成功应用于科研机构、机动车和非道路移动机械制造企业及相关检测机构等。Gasboard-9805便携式排放测试系统技术参数应用案例1、浙江某大型农用机械制造企业车载排放测试项目(三)非常规气体分析仪发动机尾气中NH3和N2O等非常规气体污染物排放已经成为当前国际研究热点和排放法规检测项目。湖北锐意分别采用高温紫外差分吸收光谱技术(UV-DOAS)和可调谐半导体激光吸收光谱技术(TDLAS)成功开发了发动机原排直采NH3分析仪和N2O分析仪,已应用于新能源发动机研发工作。NH3和N2O分析仪技术参数(四)在用车排放检测系统湖北锐意基于双光束红外(NDIR)、微流红外(NDIR)、非分光紫外(UV-DOAS)等核心气体传感技术,自主研发了包括气体传感器平台、尾气分析仪、透射式烟度计、振动式发动机转速表的在用车排放检测整体解决方案。产品具有高精度、稳定性好,抗干扰能力强等特点,满足: GB 18285-2018,GB 3847-2018,GB 7258-2017,GB 7258-2017,GB 20891-2014等国标以及JJF 1375,JJG 688-2017,HJ 1014-2020等技术要求。产品广泛应用于机动车检测机构、汽车制造厂、汽车修理厂、科研机构、环保执法部门等。三、燃气热值分析解决方案天然气、沼气以及工业生产中可燃气体的高效利用对节能减排具有十分重要的意义。准确测量可燃气体成分及热值并自动优化控制燃烧过程是提高燃烧效率和控制排放污染的重要途经。天然气等碳氢燃料的气体成分分析主要依赖气相色谱法,但该方法的响应时间达90s以上,往往不能满足大多数场合的实时控制应用需求。湖北锐意在气体分析传感器平台优势基础上吸收国际先进的产品设计理念和应用经验,并结合国内应用需求,自主研发了以光谱吸收技术原理为主的一系列气体成分及热值在线测量设备,具有精度高、响应快、功能齐全等特点,可满足石油天然气、沼气、污水气体系统、垃圾填埋、玻璃陶瓷、化工、电厂和内燃机等领域应用。(一)激光拉曼光谱气体分析仪激光拉曼光谱法可以使用一个激光光源同时探测除惰性气体之外的所有气体分子,是一种非常有潜力的过程气体成分在线监测技术。但激光拉曼光谱法的特征信号较弱,一定程度上限制了该技术在气体检测领域的广泛应用。2012年四方光电牵头承担 “激光拉曼光谱气体分析仪的研发与应用”国家重大科学仪器设备开发专项,解决了检测信号弱等诸多难题,成功开发了LRGA-6000激光拉曼光谱气体分析仪。设备融合10项授权发明专利,通过对仪器的发生装置、收集装置、探测装置等核心硬件进行激光功率增加、气体压力提高、作用光程增长、散射光大范围收集等技术创新,以及采用基于Ar基底自动扣除、基于标定气体干扰自动修正等激光拉曼特有的软件算法,消除环境温度、压力、干扰气体等对被测气体的影响,实现了对低密度过程气体的高精度监测,已广泛应用于天然气、乙烯裂解气、生物质燃气、变压器油溶解气、煤化工等各大领域。在热值监测领域,激光拉曼光谱技术具有突出优势。以往旧式热值仪往往只能监测总碳氢化合物的热值总量且易受水分影响,而湖北锐意激光拉曼光谱气体分析仪可以分别监测显示各组分热值,采用的特征指纹谱技术具有极强的抗干扰能力。在气体监测领域可取代气相色谱(GC)与质谱(MS):LRGA-6000激光拉曼光谱气体分析仪技术参数LRGA-3100激光拉曼光谱气体分析仪技术参数应用案例1、武汉某大型轧钢厂加热炉热值监测项目2、 非洲某大型天然气开采监测项目(二)煤气分析仪(便携型)湖北锐意煤气分析仪可同时监测8种气体浓度并自动计算显示煤气/天然气热值,且多组分同时测量无交叉干扰。据以往用户使用案例的监测结果统计来看,湖北锐意煤气分析仪在热值监测方面平均为用户节省约10%的燃烧热能,此数据反应到庞大的工业产量基数上,为用户企业节省了十分可观的燃料成本。湖北锐意红外气体分析技术包含公司授权专利12项。其中消除交叉气体干扰技术集成非分光红外气体传感器(针对CO、CO2、CH4和CnHm检测)、热导H2传感器以及电化学O2传感器,并通过软件进行修正得到准确的八组分浓度数据并计算热值。基于该技术开发的煤气分析仪能够与昂贵的在线气相色谱仪作用相当,省却了载气等长期耗材,并具备热值分析功能。主要应用于煤化工、钢铁冶金等领域的煤气成分及热值测量、高校科研院所的气体取样分析以及新能源行业的气体成分测量等。Gasboard-3100P煤气分析仪技术参数应用案例1、抚顺某石油化工研究院生物质原料热解实验室检测项目(三)便携红外天然气热值分析仪天然气作为一种新型清洁燃料也是一种混合气体,不同气源生产的天然气组分会有所不同,在天然气用作燃料时,因组分不同导致其热值出现差异。目前无论是工业还是民用,都对天然气具有依赖性。对燃烧过程中气体浓度及热值的连续监测,可精确了解天然气的燃烧效率,对于降低企业生产成本、改善大气环境、实现可持续经济发展等具有积极作用。湖北锐意便携式红外天然气热值分析仪可同时测量多种气体浓度,并自动计算天然气热值,可取代燃烧法热值仪。相较于适用于高校与职业院校教学科研/实验实训、燃气具生产企业、燃气计量检测部门、节能监测部门、环保和配气等行业、天然气公司、液化气厂、液化气站等。Gasboard-3110P便携式红外天然气热值分析仪技术参数
  • 北京“十四五”将建温室气体立体监测网
    记者5日从北京市生态环境局获悉,“十四五”期间,北京将建立天空地一体化的温室气体立体监测网络,用来科学表征北京市空气中温室气体浓度水平以及变化趋势。在线监控等技术手段助力环境执法党的十八大以来,北京市生态环境质量改善取得里程碑式突破,绿色低碳发展走在全国前列。2021年,北京市空气质量首次全面达标,联合国环境署评价北京大气治理为“北京奇迹”。环境科技是改善生态环境质量的有力武器。在传统监测方法的基础上,北京通过科研先行、试点应用,方法成熟后全面推广的方式,稳步采用先进的采样、数据传输、分析及预测预报等技术,支持构建了国际一流的天空地三维立体环境及污染源监测体系,提升动态化、精细化管控水平。热点网格、车载移动监测、在线监控等技术手段成为环境执法的秘密“武器”,北京还开展了无人机的应用,提高了执法监管的科技化和精准化水平。覆盖街乡镇的高密度监测网络,开展动态网格污染研判评估、获取污染高值区域和点位,为监管执法提供精准依据。重型柴油车远程在线监控系统实现了对几十万辆重型柴油车的实时监控。除传统的环境要素外,生物多样性、温室气体监测等体系的构建也已纳入工作安排。探索开展城市生态系统碳汇监测北京市生态环境监测中心副主任鹿海峰表示,温室气体监测是支撑减污降碳协同增效的一个重要技术手段。“十四五”期间,北京将逐步建立自动监测为主、遥感监测为辅,走航和手工监测为补充的天空地一体化的温室气体立体监测网络,用来科学表征北京市空气中温室气体浓度水平以及变化趋势。同时开展典型行业温室气体排放监测,进一步探索开展城市生态系统碳汇监测,进行减污降碳协同分析与评估,为北京市实现碳达峰碳中和目标,推进减污降碳协同增效提供有力的技术支撑。12月5日,北京市“科技赋能打好污染防治攻坚战”新闻发布会举行。去年,北京市空气质量六项主要污染物首次全面达标。记者获悉,北京市生态环境监测中心在空气质量监测网络建设、PM2.5来源解析、空气质量预报预警、污染源非现场监测等多个方向持续加大科研力度,产生了一系列创新性科研成果,有力支撑了空气质量改善。焦点1 率先建成城市PM2.5实时监测系统据鹿海峰介绍,自2012年起,北京按新实施的《环境空气质量标准》在全国率先建成了城市PM2.5实时监测系统并逐小时对社会发布,综合应用自动监测技术、组分监测技术、卫星遥感监测技术及地基雷达监测技术等手段,建成了国际一流的天空地三维立体监测体系,实时监测北京空气中的主要污染物变化情况;同时将物联网、大数据、人工智能技术有机融合,建立了千余个小型化传感器组成的街乡镇高密度监测网络。通过智能识别监测数据,建立动态网格污染研判评估系统,为生态环境执法提供精准依据,实现由传统现场“点对点”监管模式向远程“点对面”模式的转变。此外,通过构建“市-区-街乡镇”三级管理体系,全面提升了大气PM2.5污染的精细化、精准化、智能化管理水平。焦点2 将打造生态环境监测“智能感知”基地在开展水生态监测与评价方面,北京市生态环境监测中心充分利用卫星遥感、环境DNA技术等多种创新监测手段,持续开展涵盖理化指标、水生生物和生境状况三方面的水生态综合监测,并逐步完善本地化水生生物DNA条形码数据库。同时以水生态系统完整性为重点,初步构建了符合北京市地域特征的水生态监测与评价技术体系,全面科学客观评价全市水生态环境质量现状,剖析水生态问题产生的原因,为水生态环境管理和水生态修复成效评估提供重要技术支撑,助力推进水生态环境质量实现从“清澈见底”到“鱼翔浅底”的转变。下一步,北京市生态环境监测中心将推进大数据、区块链、人工智能等新技术在监测领域的深度应用,打造国际领先的生态环境监测“智能感知”创新示范基地,借助科技力量全力支撑打好污染防治攻坚战。焦点3 利用物联网等实时追踪联网车辆排放鹿海峰介绍,北京还推进污染源非现场监测,用数据精细刻画污染源特征。2018年以来,北京市生态环境监测中心在全国率先推进重型车排放远程在线监测技术,应用物联网、大数据技术手段,突破海量高并发数据接收与解译瓶颈,搭建了国际上首个重型车排放远程在线监测示范平台,实时追踪联网车辆的排放状态,哪里车多、哪些车违规上路、哪些车“带病”运行,都可以一目了然。深化重点排污单位自动监控数据应用,根据自动监控数据综合分析感知生产变化情况、污染物排放情况以及治理设施运行情况等。同时,这些数据经过聚合分析,对于各个区域、行业的运行与排放,可以实现逐小时的动态表征,支撑行业精细化监管。焦点4 发布三轮PM2.5源解析助力管理决策污染来源解析是识别PM2.5组分特征及主要贡献污染源的重要技术手段。鹿海峰称,北京开展三轮PM2.5源解析,助力管理决策。2014年,北京率先在全国首个发布PM2.5源解析结果,当时国内相关技术领域尚处空白,市生态环境监测中心用一年的时间组织研发了PM2.5中200余种化合物的监测方法,探索PM2.5源解析技术,迈出了历史性的一步,明确指出当时北京市大气环境PM2.5的主要来源分别是“机动车、工业源、煤炭、扬尘”。基于常量组分和痕量示踪物监测方法体系,北京于2018年发布第二轮PM2.5源解析报告,并成为第一个更新PM2.5源解析结果的城市,明确燃煤治理得到明显成效,移动源跃升为大气PM2.5首要来源。随后,市生态环境监测中心自主创新解析路线,实现区域传输定量评估及二次有机物定量解析两个突破,解析技术路线达到国际先进水平、精细化程度国际领先,并发布了第三轮PM2.5来源解析最新研究成果。源解析结果支撑了北京市“清洁空气五年行动计划”“蓝天保卫战三年行动计划”的措施制定。
  • 海尔欣昕甬智测在中国生态大讲堂中发表关于便携式多组分温室气体检测仪器的专题报告
    6月12-15日,2023年生态系统变化监测技术精品培训班在中国科学院地理科学与资源研究所进行。以国际生态系统监测最新进展、各类生态系统要素监测技术与规范、各类生态系统综合监测技术与规范、生态系统监测数据的管理与共享为主要议题,多名授课专家到场进行内容培训。From June 12th to 15th, 2023, the High-Quality Training Workshop on Ecosystem Change Monitoring Technologies was held at the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences. The main topics of the workshop included the latest developments in international ecosystem monitoring, monitoring technologies and standards for various ecosystem elements, integrated monitoring technologies and standards for various ecosystems, and management and sharing of ecosystem monitoring data. Several expert instructors were present to provide training on these subjects.宁波海尔欣光电科技有限公司受邀参加专题研讨。6月14日下午,海尔欣总经理王胤博士针对公司品牌“昕甬智测”HT8800系列便携式高精度温室气体分析仪,分享题为A portable, high-precision optical analyzer based on hybrid laser absorption cell for simultaneous measurements of N2O, CH4 and CO2 fluxes from soils(基于混合激光吸收池的便携式高精度光学分析仪,可同时测量土壤中的N2O、CH4和CO2通量)的案例应用与相关成果。该项目由清华大学深圳国际研究生院、宁波海尔欣光电科技有限公司、宁波诺丁汉大学联合研究。相关成果也在EGU2023中进行口头论述。HealthyPhoton Technology Co., Ltd. was invited to participate in a special seminar. On the afternoon of June 14th, Dr. Wang Yin, the General Manager of HealthyPhoton, presented a case study and relevant achievements on HT8800 series all-in-one multi-component portable greenhouse gas analyzer. The presentation is titled "A portable, high-precision optical analyzer based on hybrid laser absorption cell for simultaneous measurements of N2O, CH4, and CO2 fluxes from soils." This project is a joint research effort by Tsinghua University -SIGS, HealthyPhoton Technology Co., Ltd., and the University of Nottingham Ningbo China. The related achievements will also be orally presented at EGU2023.报告部分内容分享Part of the report content 如您想要获取报告全文,敬请咨询本网站。
  • 环保展热门展品盘点——温室气体篇
    2023年4月13日,由生态环境部和北京市人民政府主导,国家发展改革委、工信部、科技部、商务部等政府部门指导,有关行业组织和境外有关机构支持,中国环境保护产业协会主办的第二十一届中国国际环保展览会(CIEPEC2023)盛大开幕。环保展期间,众多环境领域热门产品一一亮相。而作为环境领域的热点,“双碳”成为本次环保展的热点方向之一。2021年9月,生态环境部发布《碳监测评估试点工作方案》,聚焦重点行业、城市和区域开展碳监测评估试点。国家号召,为取得更精确的碳排放数据,二氧化碳等温室气体也要像PM2.5等污染物一样被精准监控。相关信息显示,随着全国碳市场的一步步建立,截至2023年1月,我国已建成116个温室气体监测站点,其中26个高精度、90个中精度监测站点。温室气体监测,无疑会在接下来继续占据环境市场热点的位置。基于此,仪器信息网现独家策划“直击环保展!热门展品盘点”系列,今天带来的是温室气体篇(排名不分先后)。本次环保展,“高精度温室气体分析仪”似乎是各仪器企业不约而同关注到的商机。据了解,目前各大厂商推出的相关产品大体可分为高精度、中精度、低精度。其中,高精度温室气体分析仪主要是基于光腔衰荡光谱技术(CRDS)和离轴积分腔输出光谱检测技术,尤其以前者为主。据不完全统计,环保展上这几款高精度温室气体分析引人注目——海兰达尔 高精度温室气体监测系统海兰达尔是美国Picarro公司在国内的授权销售和售后服务商。据了解,Picarro的所有产品均基于其核心技术-光腔衰荡光谱(CRDS)技术,拥有超过45个光腔衰荡光谱专利。该高精度温室气体分析仪会自动进行水汽校正,排除掉水汽对CO2,CH4浓度测量的影响,这也是其如此高精度的最重要保证和Picarro产品区别于同类产品的最大特点。ABB LGR-ICOSTM GLA133无人机载高精度温室气体分析仪ABB展台上方悬挂着一台无人机,据了解,这台无人机为ABB LGR-ICOSTM GLA133无人机载高精度温室气体分析仪。该系列为基于无人机的微型便携式温室气体分析仪,重量轻便,适合安装在中型无人机(UAV)下面,仅需不到35w的电源,可同时测量并报告甲烷、二氧化碳和水蒸气浓度。并适合进行大面积的区域或难以进入的区域的温室气体排放通量测量。灵析光电 HGA-331高精度温室气体分析仪灵析光电推出的HGA-331高精度温室气体分析仪于聚光科技展台亮相。该分析仪由灵析光电自主研发,利用光腔衰荡光谱(CRDS)技术,可同时测量CO2、CH4、H2O三种气体浓度。分析仪独有的内部控温、控压算法,让分析仪具备了优异的精度、准确度、低漂移性能,可提供稳定到极致的测量。测量性能满足WMO标准,测量灵敏度达到十亿分之一(ppb),在数月运行中的漂移可以忽略不计。分析仪测量水汽,采用专有算法来校正样气中水汽的稀释效应,并输出CO2、CH4的干摩尔分数。岑锋科技高精度温室气体光腔衰荡光谱监测仪岑锋科技由中科院环境光学专业博士团队于2022年5月创立。该监测仪采用多波长-光腔衰荡光谱技术(CRDS),多组分同步探测等效吸收光程超60km,可达到ppb级灵敏度。精心设计的小型光学腔室、精确的温度和压强控制,让监测仪具备了一流的精度、准确度、低漂移和易用性。监测仪采用多波长CRDS技术,可实现多组分CO2/CO/CH4/H2O同步探测稳定的温度和压力控制,确保在外界环境条件变化的情况下进行准确测量。先河环保 XHCRDS100P高精度温室气体监测系统高精度监测领域,先河环保同样有展品展出。XHCRDS100P高精度温室气体监测系统包括XHCRDS100P监测仪、XHZDJY3000自动进样处理与控制系统等,可以对大气环境中的温室气体(CO2,CO,H2O,CH4)进行精准实时监测,具有已操作、稳定性高、维护量小等优点,适合各监测站点长期在线无人值守运行。河北子曰 高精度温室气体监测仪-ZYGHG201河北子曰的高精度温室气体监测仪-ZYGHG201同样采用光腔衰荡技术(CRDS),利用自主知识产权的光学测量结构及数据处理算法,测量光程可达30km,满足大气痕量气体的监测要求,可实现CO2,CH4,H20的连续在线监测。本次展会上的高精度温室气体分析仪远不止上述几款,中精度和低精度的产品也是厂商重点发展的对象,其中以固定源温室气体排放连续监测系统最多。谱育科技 EXPEC 2000 温室气体气相色谱在线连续监测系统谱育科技EXPEC 2000 温室气体气相色谱在线连续监测系统可配备温室气体专用型FID或ECD检测器,检测环境空气中CO2、CH4、CO、N2O和SF6等因子。样气先通过定量环,然后被温室气体专用色谱柱分离,CH4进入FID检测,CO和CO2先后进入甲烷转化炉,在镍催化剂作用下高温加氢还原为CH4后再被送入FID检测;NO和SF6被色谱柱分离后通过ECD检测。雪迪龙 AQMS-900GHG大气温室气体在线监测系统雪迪龙整合在气体分析领域的丰富经验,同样在本次展会上提供了碳监测解决方案。该系统依托比利时ORTHODYNE S.A.的GC-FID技术,采用FID检测器,灵敏度高,可同时分析环境空气中CO2、CH4、CO、NMHC;该系统分析周期≤10min,并采用高转换效率的甲烷转换装置,保证CO2、CO检出限。可适用于气象局、生态环境等部门对环境空气温室气体背景浓度监测、碳达峰、碳中和绩效评估、区域间温室气体浓度比较等。明华电子 MH3203 气体分析仪明华电子推出的MH3203 气体分析仪可实现固定污染源CO2、CO、CH4、N2O等气体检测,同时具备O2及烟温、流速等工况参数的测量功能。针对温室气体,该仪器可完成基于非分散红外(NDIR)、可调谐半导体激光吸收光谱(TD-LAS)、电化学传感器等技术多种气体的测量。锐意自控 温室气体排放分析仪Gasboard-3000GHG锐意自控的温室气体排放分析仪采用自主知识产权的微流红外隔半气室气体传感技术(国际发明专PCT/CN2018100767),可实现同时准确测量CO2、CH4、N2O等温室气体和烟气中的CO气体浓度变化,量程可低至200ppm,精度高达1%F.S.,具备抗气体交叉干扰能力强,漂移量更低等特点。同时针对高浓度CO2以及中高量程的CO测量需求,可选配公司自主知识产权的非分光红外NDIR气体传感器技术的传感器模组进行灵活配置,具备稳定性好、体积小、成本低等特点。皖仪科技 固定源二氧化碳排放连续监测系统固定源二氧化碳排放连续监测方面,皖仪科技在温室气体监测展台展出了固定源二氧化碳排放连续监测系统。其采用自主知识产权的非分光红外技术(NDIR),由温室气体监测子系统、温室气体参数监测子系统及数据采集与处理子系统组成,其中温室气体监测子系统的预处理单元、分析单元和数据采集与处理子系统安装在机柜内,可以连续监测二氧化碳浓度、氧含量等参数的湿基值、干基值和折算值以及根据温室气体温度、压力、流速、湿度等多项相关参数统计排放率、排放总量等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制