当前位置: 仪器信息网 > 行业主题 > >

葡萄糖生物传感器

仪器信息网葡萄糖生物传感器专题为您整合葡萄糖生物传感器相关的最新文章,在葡萄糖生物传感器专题,您不仅可以免费浏览葡萄糖生物传感器的资讯, 同时您还可以浏览葡萄糖生物传感器的相关资料、解决方案,参与社区葡萄糖生物传感器话题讨论。

葡萄糖生物传感器相关的论坛

  • 美制成新型生物传感器 可探测唾液及眼泪中的葡萄糖浓度

    中国科技网讯 据物理学家组织网近日报道,美国普渡大学等机构的研究人员制成了新型生物传感器,能够以非侵入的方式进行糖尿病测试,探测出人体唾液和眼泪中极低的葡萄糖浓度。这项技术无需过于繁复的生产步骤,从而可降低传感器的制造成本,并可能帮助消除或降低利用针刺进行糖尿病测试的几率。相关研究论文发表在《先进功能材料》杂志上。 目前的大多数传感器都能测量血液中的葡萄糖,但却不能探测眼泪和唾液中的葡萄糖浓度,而新方法能够应用于唾液、眼泪、血液和尿液中,这在之前还未被证实过。 新型生物传感器包括3个主要部分:石墨烯制成的纳米片层、铂纳米粒子和葡萄糖氧化酶。其中的纳米片仿若微小的玫瑰花瓣,每片花瓣均包含着多个堆叠的石墨烯层。花瓣的边缘也悬挂着不完整的化学键,使铂纳米粒子可以附着在这里。纳米片和铂纳米粒子相结合能够形成电极,随后葡萄糖氧化酶也可附着在铂纳米粒子上。酶能将葡萄糖转化为过氧化物,并且在电极上产生一个信号。 通常情况下,在获得具有纳米结构的生物传感器成品前,需要经历复杂的处理步骤,其中包括光刻、化学处理、蚀刻等。而这些纳米片花瓣的好处就是,它们能够在任一表面上生长,也无需经历这些步骤,因此可称得上是商业化的理想选择。 除了糖尿病测试,此项技术还可用于感测多种化合物以契合其他的医疗状况。例如可将葡萄糖氧化酶替换为谷氨酸氧化酶来测量神经递质谷氨酸,以进行帕金森症和阿尔茨海默症的测试,或是使用乙醇氧化酶来监测体内的酒精。其不仅应用范围很广,同时还兼具快速和便携的优势。 研究人员称,这是首次在这么宽的检测范围内发现如此低的传感极限。这种探测器能探测到浓度为0.3微摩尔的葡萄糖,比其他基于石墨烯、碳纳米管或金属纳米粒子等材质的电气化学生物传感器更为敏感。 此外,这款传感器还能区分源自葡萄糖和其他化合物的信号,如一般存在于血液中的尿酸、抗坏血酸和对乙酰氨基酚等化合物,其通常会导致对传感器的干扰。此外,这些化合物还具有电化学活性,这意味它们自己就能产生电子信号,而不用像葡萄糖一样,需要和酶发生反应后才能生成单个信号。(张巍巍) 《科技日报》(2012-8-28 一版)

  • 新型生物传感器可探测唾液及眼泪中的葡萄糖浓度

    研究人员最近发明了一种新类型的生物传感器,可以探测唾液、眼泪和尿液中葡萄糖的浓度,并可能以成本低制造,因为其并不需要较多的生产步骤。“这是一种内在的,估计身体内葡萄糖含量的非侵入性方法,”Jonathan Claussen这样说。他以前是普度大学博士生,现在是美国海军研究实验室的科学家。“因为它可以检测唾液和眼泪中葡萄糖的含量。它是一种平台,可能最终有助于消除或减少使用针刺测试糖尿病的频率。我们目前正在证明它的功能。”Claussen和普渡大学博士生Anurag Kumar 领导该项目,参与者包括机械工程系教授Timothy Fisher,农业与生物工程系教授D·Marshall Porterfield,以及其他在普渡大学Birck纳米技术中心的研究人员。研究的结果详细的报告于在本周的期刊the journal Advanced Functional Materials上。研究的结果醒目的刊登于杂志的封面上,署名包括Claussen, Kumar, Fisher, Porterfield,及普渡大学的研究人员David B. Jaroch, M. Haseeb Khawaja, 和 Allison B. Hibbard.“大多数传感器通常可以测量血液中的葡萄糖,”Claussen说。”然而绝大多数并不能检测眼泪和唾液中的葡萄糖。我们研究的传感器的独特性是,它可以感觉到所有四种不同体液中的葡萄糖:包括唾液,眼泪,血液和尿。在这之前还没有出现过类似的(传感器)。”该传感器主要有三部分:由被称为石墨的材料制成的、类似小玫瑰花瓣的层薄片,为一种单原子厚度的碳薄膜;铂纳米颗粒及葡萄糖氧化酶。每个花瓣由几层的石墨彼此堆叠。花瓣边缘有可晃动的,不完整的化学键,其缺陷使得铂纳米粒子可以附加于其上。电极由纳米片花瓣和铂纳米粒子结合形成,然后葡萄糖氧化酶连接至铂纳米粒子上。葡萄糖氧化酶可将葡萄糖氧化,同时在电极上生成信号。“通常情况下,当你想制作一个纳米生物传感器,在得到最终产品之前,你必须完成大量的加工步骤,”Kumar说。”这些步骤涉及化学处理,光刻,蚀刻等。好在这些花瓣可以生长在几乎任何物质的表面,而不需要使用以上任何这些步骤,因此它可能是理想的商业化产品。”除了糖尿病测试,该技术还可用于感应其他疾病发展过程中的各种化合物。

  • 【求助】求葡萄糖生物传感器中的计时电流法相关问题

    最近做葡萄糖电化学生物传感器,在做计时电流实验时出现了很头疼的问题,请大家帮忙分析一下,先谢谢了!工作站上只有chronoamperometric, 选择的是单跃迁的,起始E0 设为0V,起始t0设为0s,E1设为0.65V,t1设为2000s,多壁碳纳米管修饰玻碳电极,根据文献先平衡300s,每隔100s加入10uM 的过氧化氢,加样4-6次,搅拌(各种搅拌速度都试过),结果得到的i-t 曲线背景干扰很大,很乱,无任何趋势,得不到像文献中的阶梯状的i-t 曲线,重复多次也不行,数据用origin平滑处理也不行,工作电位E1 也考察了,还是不行,已经做了很多次了,请大家忙帮分析一下,提供一些建议和经验,不胜感激!附件为我做的i-t曲线[~189856~]

  • 【求助】求葡萄糖生物传感器中的计时电流法相关问题

    [size=4]最近做[B]葡萄糖电化学生物传感器[/B],在做[B]计时电流实验[/B]时出现了很头疼的问题,请大家帮忙分析一下,先谢谢了!工作站上只有chronoamperometric, 选择的是单跃迁的,起始E0 设为0V,起始t0设为0s,E1设为0.65V,t1设为2000s,多壁碳纳米管修饰玻碳电极,根据文献先平衡300s,每隔100s加入10uM 的过氧化氢,加样4-6次,搅拌(各种搅拌速度都试过),结果得到的i-t 曲线背景干扰很大,很乱,无任何趋势,得不到像文献中的阶梯状的i-t 曲线,重复多次也不行,数据用origin平滑处理也不行,工作电位E1 也考察了,还是不行,已经做了很多次了,请大家忙帮分析一下,提供一些建议和经验,[B]不胜感激![/B][/size][~189854~]

  • 【求助】球葡萄糖电化学生物传感器中计时电流法相关问题

    最近做葡萄糖电化学生物传感器,在做计时电流实验时出现了很头疼的问题,请大家帮忙分析一下,先谢谢了!先做的事双氧水的i-t,工作站上只有chronoamperometric, 选择的是单跃迁的,起始E0 设为0V,起始t0设为0s,E1设为0.65V,t1设为2000s,多壁碳纳米管修饰玻碳电极,根据文献先平衡300s,每隔100s加入10uM 的过氧化氢,加样4-6次,搅拌(各种搅拌速度都试过),结果得到的i-t 曲线背景干扰很大,很乱,无任何趋势,得不到像文献中的阶梯状的i-t 曲线,重复多次也不行,数据用origin平滑处理也不行,工作电位E1 也考察了,还是不行,已经做了很多次了,请大家忙帮分析一下,提供一些建议和经验,不胜感激! 附件是我做的i-t曲线[~189859~]

  • 【求助】球葡萄糖电化学生物传感器中计时电流法相关问题

    最近做葡萄糖电化学生物传感器,在做计时电流实验时出现了很头疼的问题,请大家帮忙分析一下,先谢谢了!先做的事双氧水的i-t,工作站上只有chronoamperometric, 选择的是单跃迁的,起始E0 设为0V,起始t0设为0s,E1设为0.65V,t1设为2000s,多壁碳纳米管修饰玻碳电极,根据文献先平衡300s,每隔100s加入10uM 的过氧化氢,加样4-6次,搅拌(各种搅拌速度都试过),结果得到的i-t 曲线背景干扰很大,很乱,无任何趋势,得不到像文献中的阶梯状的i-t 曲线,重复多次也不行,数据用origin平滑处理也不行,工作电位E1 也考察了,还是不行,已经做了很多次了,请大家忙帮分析一下,提供一些建议和经验,不胜感激! 附件是我做的i-t曲线[~189859~]

  • 【转帖】葡萄糖传感器的电化学

    葡萄糖传感器的电化学: 在葡萄糖和葡萄糖氧化酶(GOx)存在时,稀溶液中羧酸二茂铁(FCA)的循环伏安实验。"空白“实验(蓝色)信号显示没有葡萄糖存在时的循环伏安图。当FCA+中电化学生成 Fe(III) 时,葡萄糖被氧化。在氧化条件下,电极上不断生成FCA+。阳极电流的大小取决于酶和葡萄糖的浓度。关键词: 循环伏安法, Cyclic Voltammetry. 电分析化学, Electroanalytical Chemistry. 生物化学, Biochemistry.为什么没有人只是测量葡萄糖呢?一定要引入传递介质吗?

  • 【分享】生物传感器的研究现状及应用

    一、 引言 从1962年,Clark和Lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(PCR)的发展,应 用PCR的DNA生物传感器也越来越多。 二、 研究现状及主要应用领域 1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。 (1). 原材料及代谢产物的测定 微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(Psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(Trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。 此外,还有用大肠杆菌(E.coli)组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌—胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。 (2). 微生物细胞总数的测定 在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的。

  • 【分享】生物芯片之电化学生物传感器

    电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。

  • 【原创】生物传感器产业现状和发展前景

    [em02] 生物传感器研究起源于20世纪的60年代,1967年Updike和Hicks把葡萄糖氧化酶(GOD)固定化膜和氧电极组装在一起,首先制成了第一种生物传感器,即葡萄糖酶电极。到80年代生物传感器研究领域已基本形成。其标志性事件是:1985年“生物传感器”国际刊物在英国创刊;1987年生物传感器经典著作在牛津出版社出版;1990年首届世界生物传感器学术大会在新加坡召开,并且确定以后每隔二年召开一次。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=27454]生物传感器产业现状和发展前景[/url]

  • 电化学生物传感器

    电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。(2) 微生物电极传感器    由于离析酶的价格昂贵且稳定性较差,限制了其在电化学生物传感器中的应用,从而使研究者想到直接利用活的微生物来作为分子识别元件的敏感材料。这种将微生物(常用的主要是细菌和酵母菌)作为敏感材料固定在电极表面构成的电化学生物传感器称为微生物电极传感器。其工作原理大致可分为三种类型:其一,利用微生物体内含有的酶(单一酶或复合酶)系来识别分子,这种类型与酶电极类似 其二,利用微生物对有机物的同化作用,通过检测其呼吸活性(摄氧量)的提高,即通过氧电极测量体系中氧的减少间接测定有机物的浓度 其三,通过测定电极敏感的代谢产物间接测定一些能被厌氧微生物所同化的有机物。   微生物电极传感器在发酵工业、食品检验、医疗卫生等领域都有应用。例如:在食品发酵过程中测定葡萄糖的佛鲁奥森假单胞菌电极 测定甲烷的鞭毛甲基单胞菌电极 测定抗生素头孢菌素的Citrobacterfreudii菌电极等等。微生物电极传感器由于价廉、使用寿命长而具有很好的应用前景,然而它的选择性和长期稳定性等还有待进一步提高。(3) 电化学免疫传感器    抗体对相应抗原具有唯一性识别和结合功能。电化学免疫传感器就是利用这种识别和结合功能将抗体或抗原和电极组合而成的检测装置。   根据电化学免疫传感器的结构可将其分为直接型和间接型两类。直接型的特点是在抗体与其相应抗原识别结合的同时将其免疫反应的信息直接转变成电信号。这类传感器在结构上可进一步分为结合型和分离型两种。前者是将抗体或抗原直接固定在电极表面上,传感器与相应的抗体或抗原发生结合的同时产生电势改变 后者是用抗体或抗原制作抗体膜或抗原膜,当其与相应的配基反应时,膜电势发生变化,测定膜电势的电极与膜是分开的。间接型的特点是将抗原和抗体结合的信息转变成另一种中间信息,然后再把这个中间信息转变成电信号。这类传感器在结构上也可进一步分为两种类型:结合型和分离型。前者是将抗体或抗原固定在电极上 而后者抗体或抗原和电极是完全分开的。间接型电化学免疫传感器通常是采用酶或其他电活性化合物进行标记,将被测抗体或抗原的浓度信息加以化学放大,从而达到极高的灵敏度。   电化学免疫传感器的例子有:诊断早期妊娠的hCG免疫传感器 诊断原发性肝癌的甲胎蛋白(AFP或αFP)免疫传感器 测定人血清蛋白(HSA)免疫传感器 还有IgG免疫传感器、胰岛素免疫传感器等等。(4) 组织电极与细胞器电极传感器   直接采用动植物组织薄片作为敏感元件的电化学传感器称组织电极传感器,其原理是利用动植物组织中的酶,优点是酶活性及其稳定性均比离析酶高,材料易于获取,制备简单,使用寿命长等。但在选择性、灵敏度、响应时间等方面还存在不足。   动物组织电极主要有:肾组织电极、肝组织电极、肠组织电极、肌肉组织电极、胸腺组织电极等。测定对象主要有:谷氨酰胺、葡萄糖胺 6 磷酸盐、D 氨基酸、H2O2、地高辛、胰岛素、腺苷、AMP等。  植物组织电极敏感元件的选材范围很广,包括不同植物的根、茎、叶、花、果等。植物组织电极制备比动物组织电极更简单,成本更低并易于保存。   细胞器电极传感器是利用动植物细胞器作为敏感元件的传感器。细胞器是指存在于细胞内的被膜包围起来的微小“器官”,如线粒体、微粒体、溶酶体、过氧化氢体、叶绿体、氢化酶颗粒、磁粒体等等。其原理是利用细胞器内所含的酶(往往是多酶体系)。(5) 电化学DNA传感器    电化学DNA传感器是近几年迅速发展起来的一种全新思想的生物传感器。其用途是检测基因及一些能与DNA发生特殊相互作用的物质。电化学DNA传感器是利用单链DNA(ssDNA)或基因探针作为敏感元件固定在固体电极表面,加上识别杂交信息的电活性指示剂(称为杂交指示剂)共同构成的检测特定基因的装置。其工作原理是利用固定在电极表面的某一特定序列的ssDNA与溶液中的同源序列的特异识别作用(分子杂交)形成双链DNA(dsDNA)(电极表面性质改变),同时借助一能识别ssDNA和dsDNA的杂交指示剂的电流响应信号的改变来达到检测基因的目的。   已有检测灵敏度高达10-13g/mL的电化学DNA传感器的报道,Hashimoto等[8]采用一个20聚体的核苷酸探针修饰在金电极上检测了PVM623的PatⅠ片断上的致癌基因v myc。电化学DNA传感器离实用化还有相当距离,主要是传感器的稳定性、重现性、灵敏度等都还有待于提高。有关DNA修饰电极的研究除对于基因检测有重要意义外,还可将DNA修饰电极用于其它生物传感器的研究,用于DNA与外源分子间的相互作用研究[9],如抗癌药物筛选、抗癌药物作用机理研究 以及用于检测DNA结合分子。无疑,它将成为生物电化学的一个非常有生命力的前沿领域。   生物电化学所涉及的面非常广,内容很丰富。以上介绍的只是该交叉学科一些领域的概况。可以相信,随着相关学科的发展,生物电化学将进一步蓬勃发展。

  • 生物传感器的研究现状及应用

    一、 引言 从1962年,Clark和Lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。 近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(PCR)的发展,应 用PCR的DNA生物传感器也越来越多。 二、 研究现状及主要应用领域 1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。 (1). 原材料及代谢产物的测定 微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。 在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(Psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。 当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(Trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。 此外,还有用大肠杆菌(E.coli)组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌—胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。 (2). 微生物细胞总数的测定 在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的。 (3). 代谢试验的鉴定 传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等。 2、 环境监测 (1). 生化需氧量的测定生化需氧量(biochemical oxygen demand –BOD)的测定是监测水体被有机物污染状况的最常用指标。常规的BOD测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种SPT1和SPT2,并将其固定在玻璃碳极上以构成微生物传感器用于测量BOD,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中BOD的测定,其测量最小值可达2 mg/l,所用时间为5min。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中BOD的测定提供了快捷简便的方法。 除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的BOD值。该传感器的反应时间是15min,最适工作条件为30°C,pH=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(Fe3+、Cu2+、Mn2+、Cr3+、Zn2+)所影响。该传感器已经应用于河水BOD的测定,并且获得了较好的结果。 现在有一种将BOD生物传感器经过光处理(即以TiO2作为半导体,用6 W灯照射约4min)后,灵敏度大大提高,很适用于河水中较低BOD的测量。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的BOD值。它使用三对发光二极管和硅光电二极管,假单胞细菌(Pseudomonas fluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中。 (2). 各种污染物的测定常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。 测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(NOx-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的NOx-进行了测量,其效果较好。 硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在pH=2.5、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是Chromatium.SP,与氢电极连接构成。 最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌(E.coli)中,用来检测砷的有毒化合物。 水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5

  • 生物芯片之电化学生物传感器

    前面已经讲过生物芯片是生物传感器的延伸,所以生物传感器的研究就是生物芯片的研究基础中的重要部分了!下面对电化学生物传感器方面的研究进行简单的介绍。须指出的是,生物芯片中用到的生物传感器与传统的电化学传感器有一些不同,但这并不妨碍我们将传统电化学传感器的认识应用到生物芯片的研究中去。电化学生物传感器   传感器与通信系统和计算机共同构成现代信息处理系统。传感器相当于人的感官,是计算机与自然界及社会的接口,是为计算机提供信息的工具。   传感器通常由敏感(识别)元件、转换元件、电子线路及相应结构附件组成。生物传感器是指用固定化的生物体成分(酶、抗原、抗体、激素等)或生物体本身(细胞、细胞器、组织等)作为感元件的传感器。电化学生物传感器则是指由生物材料作为敏感元件,电极(固体电极、离子选择性电极、气敏电极等)作为转换元件,以电势或电流为特征检测信号的传感器。图1是电化学生物传感器基本构成示意图。由于使用生物材料作为传感器的敏感元件,所以电化学生物传感器具有高度选择性,是快速、直接获取复杂体系组成信息的理想分析工具。一些研究成果已在生物技术、食品工业、临床检测、医药工业、生物医学、环境分析等领域获得实际应用。   根据作为敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA传感器等。(1) 酶电极传感器   以葡萄糖氧化酶(GOD)电极为例简述其工作原理。在GOD的催化下,葡萄糖(C6H12O6)被氧氧化生成葡萄糖酸(C6H12O7)和过氧化氢:   根据上述反应,显然可通过氧电极(测氧的消耗)、过氧化氢电极(测H2O2的产生)和pH电极(测酸度变化)来间接测定葡萄糖的含量。因此只要将GOD固定在上述电极表面即可构成测葡萄糖的GOD传感器。这便是所谓的第一代酶电极传感器。这种传感器由于是间接测定法,故干扰因素较多。第二代酶电极传感器是采用氧化还原电子媒介体在酶的氧化还原活性中心与电极之间传递电子。第二代酶电极传感器可不受测定体系的限制,测量浓度线性范围较宽,干扰少。现在不少研究者又在努力发展第三代酶电极传感器,即酶的氧化还原活性中心直接和电极表面交换电子的酶电极传感器。  目前已有的商品酶电极传感器包括:GOD电极传感器、L 乳酸单氧化酶电极传感器、尿酸酶电极传感器等。在研究中的酶电极传感器则非常多。(2) 微生物电极传感器    由于离析酶的价格昂贵且稳定性较差,限制了其在电化学生物传感器中的应用,从而使研究者想到直接利用活的微生物来作为分子识别元件的敏感材料。这种将微生物(常用的主要是细菌和酵母菌)作为敏感材料固定在电极表面构成的电化学生物传感器称为微生物电极传感器。其工作原理大致可分为三种类型:其一,利用微生物体内含有的酶(单一酶或复合酶)系来识别分子,这种类型与酶电极类似 其二,利用微生物对有机物的同化作用,通过检测其呼吸活性(摄氧量)的提高,即通过氧电极测量体系中氧的减少间接测定有机物的浓度 其三,通过测定电极敏感的代谢产物间接测定一些能被厌氧微生物所同化的有机物。   微生物电极传感器在发酵工业、食品检验、医疗卫生等领域都有应用。例如:在食品发酵过程中测定葡萄糖的佛鲁奥森假单胞菌电极 测定甲烷的鞭毛甲基单胞菌电极 测定抗生素头孢菌素的Citrobacterfreudii菌电极等等。微生物电极传感器由于价廉、使用寿命长而具有很好的应用前景,然而它的选择性和长期稳定性等还有待进一步提高。(3) 电化学免疫传感器    抗体对相应抗原具有唯一性识别和结合功能。电化学免疫传感器就是利用这种识别和结合功能将抗体或抗原和电极组合而成的检测装置。   根据电化学免疫传感器的结构可将其分为直接型和间接型两类。直接型的特点是在抗体与其相应抗原识别结合的同时将其免疫反应的信息直接转变成电信号。这类传感器在结构上可进一步分为结合型和分离型两种。前者是将抗体或抗原直接固定在电极表面上,传感器与相应的抗体或抗原发生结合的同时产生电势改变 后者是用抗体或抗原制作抗体膜或抗原膜,当其与相应的配基反应时,膜电势发生变化,测定膜电势的电极与膜是分开的。间接型的特点是将抗原和抗体结合的信息转变成另一种中间信息,然后再把这个中间信息转变成电信号。这类传感器在结构上也可进一步分为两种类型:结合型和分离型。前者是将抗体或抗原固定在电极上 而后者抗体或抗原和电极是完全分开的。间接型电化学免疫传感器通常是采用酶或其他电活性化合物进行标记,将被测抗体或抗原的浓度信息加以化学放大,从而达到极高的灵敏度。   电化学免疫传感器的例子有:诊断早期妊娠的hCG免疫传感器 诊断原发性肝癌的甲胎蛋白(AFP或αFP)免疫传感器 测定人血清蛋白(HSA)免疫传感器 还有IgG免疫传感器、胰岛素免疫传感器等等。(4) 组织电极与细胞器电极传感器   直接采用动植物组织薄片作为敏感元件的电化学传感器称组织电极传感器,其原理是利用动植物组织中的酶,优点是酶活性及其稳定性均比离析酶高,材料易于获取,制备简单,使用寿命长等。但在选择性、灵敏度、响应时间等方面还存在不足。   动物组织电极主要有:肾组织电极、肝组织电极、肠组织电极、肌肉组织电极、胸腺组织电极等。测定对象主要有:谷氨酰胺、葡萄糖胺 6 磷酸盐、D 氨基酸、H2O2、地高辛、胰岛素、腺苷、AMP等。  植物组织电极敏感元件的选材范围很广,包括不同植物的根、茎、叶、花、果等。植物组织电极制备比动物组织电极更简单,成本更低并易于保存。   细胞器电极传感器是利用动植物细胞器作为敏感元件的传感器。细胞器是指存在于细胞内的被膜包围起来的微小“器官”,如线粒体、微粒体、溶酶体、过氧化氢体、叶绿体、氢化酶颗粒、磁粒体等等。其原理是利用细胞器内所含的酶(往往是多酶体系)。(5) 电化学DNA传感器    电化学DNA传感器是近几年迅速发展起来的一种全新思想的生物传感器。其用途是检测基因及一些能与DNA发生特殊相互作用的物质。电化学DNA传感器是利用单链DNA(ssDNA)或基因探针作为敏感元件固定在固体电极表面,加上识别杂交信息的电活性指示剂(称为杂交指示剂)共同构成的检测特定基因的装置。其工作原理是利用固定在电极表面的某一特定序列的ssDNA与溶液中的同源序列的特异识别作用(分子杂交)形成双链DNA(dsDNA)(电极表面性质改变),同时借助一能识别ssDNA和dsDNA的杂交指示剂的电流响应信号的改变来达到检测基因的目的。   已有检测灵敏度高达10-13g/mL的电化学DNA传感器的报道,Hashimoto等[8]采用一个20聚体的核苷酸探针修饰在金电极上检测了PVM623的PatⅠ片断上的致癌基因v myc。电化学DNA传感器离实用化还有相当距离,主要是传感器的稳定性、重现性、灵敏度等都还有待于提高。有关DNA修饰电极的研究除对于基因检测有重要意义外,还可将DNA修饰电极用于其它生物传感器的研究,用于DNA与外源分子间的相互作用研究[9],如抗癌药物筛选、抗癌药物作用机理研究 以及用于检测DNA结合分子。无疑,它将成为生物电化学的一个非常有生命力的前沿领域。   生物电化学所涉及的面非常广,内容很丰富。以上介绍的只是该交叉学科一些领域的概况。可以相信,随着相关学科的发展,生物电化学将进一步蓬勃发展。

  • 【分享】生物传感器技术未来发展特点

    21世纪是生命科学和信息科学的世纪。生物传感器正是在生命科学和信息科学之间发展起来的一门交叉学科。生物传感器研究的全面展开是在20世纪80年代,20多年来发展迅速,在食品工业、环境监测、发酵工业、医学等方面得到了高度重视和广泛应用。 一、生物传感器四大应用领域 生物传感器正进入全面深入研究开发时期,各种微型化、集成化、智能化、实用化的生物传感器与系统越来越多。 1.食品工业 生物传感器在食品分析中的应用包括食品成分、食品添加剂、有害毒物及食品鲜度等的测定分析。 在食品工业中,葡萄糖的含量是衡量水果成熟度和贮藏寿命的一个重要指标。中华反应釜网了解已开发的酶电极型生物传感器可用来分析白酒、苹果汁、果酱和蜂蜜中的葡萄糖等。 亚硫酸盐通常用作食品工业的漂白剂和防腐剂,采用亚硫酸盐氧化酶为敏感材料制成的电流型二氧化硫酶电极可用于测定食品中的亚硫酸含量。此外,也有用生物传感器测定色素和乳化剂的报道。 2.环境监测 近年来,环境污染问题日益严重,人们迫切希望拥有一种能对污染物进行连续、快速、在线监测的仪器,生物传感器满足了人们的要求。目前,已有相当部分的生物传感器应用于环境监测中。 二氧化硫(SO2)是酸雨酸雾形成的主要原因,传统的检测方法很复杂。Marty等人将亚细胞类脂类固定在醋酸纤维膜上,和氧电极制成安培型生物传感器,可对酸雨酸雾样品溶液进行检测。 3.发酵工业 在各种生物传感器中,微生物传感器具有成本低、设备简单、不受发酵液混浊程度的限制、能消除发酵过程中干扰物质的干扰等特点。因此,在发酵工业中广泛地采用微生物传感器作为一种有效的测量工具。 微生物传感器还可用于测量发酵工业中的原材料和代谢产物。另外,还用于微生物细胞数目的测定。利用这种电化学微生物细胞数传感器可以实现菌体浓度连续、在线的测定。 4.医学领域 医学领域的生物传感器发挥着越来越大的作用。生物传感技术不仅为基础医学研究及临床诊断提供了一种快速简便的新型方法,而且因为其专一、灵敏、响应快等特点,在军事医学方面,也具有广阔的应用前景。 中华反应釜网了解在临床医学中,酶电极是最早研制且应用最多的一种传感器。利用具有不同生物特性的微生物代替酶,可制成微生物传感器。在军事医学中,对生物毒素的及时快速检测是防御生物武器的有效措施。生物传感器已应用于监测多种细菌、病毒及其毒素。 二、未来生物传感器几大特点 近年来,随着生物科学、信息科学和材料科学发展的推动,生物传感器技术飞速发展。可以预见,未来的生物传感器将具有以下特点。 1、功能多样化:未来的生物传感器将进一步涉及医疗保健、疾病诊断、食品检测、环境监测、发酵工业的各个领域。目前,生物传感器研究中的重要内容之一就是研究能代替生物视觉、听觉和触觉等感觉器官的生物传感器,即仿生传感器。 2、微型化:随着微加工技术和纳米技术的进步,生物传感器将不断地微型化,各种便携式生物传感器的出现使人们在家中进行疾病诊断,在市场上直接检测食品成为可能。 3、智能化与集成化:未来的生物传感器必定与计算机紧密结合,自动采集数据、处理数据,更科学、更准确地提供结果,实现采样、进样、结果一条龙,形成检测的自动化系统。同时,芯片技术将越来越多地进入传感器领域,实现检测系统的集成化、一体化。 4、低成本、高灵敏度、高稳定性和高寿命:生物传感器技术的不断进步,必然要求不断降低产品成本,提高灵敏度、稳定性和延长寿命。这些特性的改善也会加速生物传感器场化、商品化的进程。

  • 国标法BOD标准溶液配制方法和微生物传感器快速法怎么不同呢

    国标法,稀释方法,配制BOD标液,用的葡萄糖和谷氨酸,各150mg,制成1L的溶液,说BOD为180~230mg/L。中间值200吧。 微生物传感器快速法,用的葡萄糖和谷氨酸,各1.705mg,制成1L的溶液,说BOD为2500mg/L。如果按照国标稀释法,2500mg/L溶液,应当称取的量为1.875。我用的方法为压差法。如果我想要配制4000的标样,我该称取多少葡萄糖和谷氨酸呢?按照国标稀释法还是快速法?。

  • 【转帖】使用葡萄糖氧化酶GOD来探索酶传感器须知!

    [quote]原文由 [B]leotron[/B] 发表:使用葡萄糖氧化酶GOD来探索酶传感器实现方法的研究做的是最多的了。大家有没有进一步做血液或血清样品中葡萄糖浓度的检测?有几个问题请教。如下:1. 样品前处理一般如何操作?2. 具体采取哪种电化学方法更为合适?循环伏安法,时间-电流法,计时电流法?还是其它?不同的方法获得的传感器参数(检测极限,线性范围,灵敏度等)不一样,操作起来的方便程度也不一样。3. 如何让修饰的电极真正成为传感器,即具有可知的且较稳定性能指标的检测装置?有哪些方面需要考虑?欢迎讨论。[/quote]

  • 生物传感器技术发展现状和未来展望

    从上世纪60年代Clark和Lyon提出生物传感器的设想开始,生物传感器的发展已经距今已有40 多年的历史了。作为一门在生命科学和信息科学之间发展起来的一门交叉学科,生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。随着社会的进一步信息化,生物传感器必将获得越来越广泛的应用。一、生物传感器的定义与其发展历史回顾   作为生物,最基本特征之一就是能够对外界的各种刺激作出反应。其所以能够如此,首先是由于生物能感受外界的各类刺激信号,并将这些信号转换成体内信息处理系统所能接收并处理的信号。例如,人能通过眼、耳、鼻、舌、身等感觉器官将外界的光、声温度及其它各种化学和物理信号转换成人体内神经系统等信息处理系统能够接收和处理的信号。现代和未来的信息社会中,信息处理系统要对自然和社会的各种变化作出反应,首先需要通过传感器将外界的各种信息接下来并转换成信息系统中的信息处理单元(即计算机)能够接收和处理的信号。  生物传感器定义为"使用固定化的生物分子(immobilized biomolecules)结合换能器,用来侦测生体内或生体外的环境化学物质或与之起特异性交互作用后产生响应的一种装置"。生物传感器由两个主要关键部份所构成,一为来自于生物体分子、组织部份或个体细胞的分子辨认组件,此一组件为生物传感器信号接收或产生部份。另一为属于硬件仪器组件部份,主要为物理信号转换组件。因此,如何已生化方法分离、纯化甚或设计合成特定的生物活性分子(biological active materials),结合精确而且响应快速的物理换能器(transducers)组合成生物传感器反应系统,实为研究生物传感器的主要目的。  生物传感器可以如上述的那样,依照其感受器中所采用的生命物质而称为组织传感器、细胞传感器、酶传感器等等,也可根据所监测的物理量、化学量或生物量而命名为热传感器、光传感器、胰岛素传感器等,还可根据其用途统称为免疫传感器。药物传感器等等。生物传感器中的信号转换器,与传统的转换器并没有本质的区别。例如,可以利用电化学电极、场效应管、热每器件、压电器件、光电器件等器件作为生物传感器中的信号转换器。依照信号转换器的不同,也可将生物传感器进行分类,如压电晶体生物传感器、场效应管生物传感器等。  生物传感器的发展,自1962年Clark和Lyon两人提出酵素电极的观念以后,YSI公司于七零年代即积极投入商品化开发与生产,启开了第一代生物传感器于1979年投入医检市场,最早的商品为血糖测试用酵素电极。YSI公司的上市成功与八零年代电子信息业的蓬勃发展有很密切的关系,并且一举带动了生物传感器的研发热潮。Medisense公司继续以研发第一代酵素电极为主,于1988年由于成功的开发出调节(mediator)分子来加速响应时间与增强测试灵敏度而声名大噪,并以笔型(Pen 2)及信用卡型(companion 2)之便携式小型生物传感器产品,于1988年上市后立即袭卷70%以上的第一代产品市场,成为生物传感器业的盟主。第二代的生物传感器定义为使用抗体或受体蛋白当分子识别组件,换能器的选用则朝向更为多样化,诸如场效半导体(FET),光纤(FOS),压晶体管(PZ),表面声波器(SAW)等。虽然第二代的生物传感器,自八零年代中期即开始引起广泛的研发兴趣,但一般认为尚未达医检应用阶段,预定相关技术须待世纪末前方能成熟。目前可称的上第二代的生物传感器产品为1991年上市的瑞典商Pharmacia所推出的BIAcore与BIAlite两项产品。  Pharmacia 公司于1985年成功地开发出表面薄膜共振技术(SPR, Surface Plasma Resonance),利用此一光学特性开发出可以于10-6g/ml到10-11g/ml之低浓度下,进行生物分子间交互作用的实时侦测式生物感测仪器。第三代的生物传感器定位在更具携带式,自动化,与实时测定功能。  二、生物传感器的分类  生物传感器微生物电子产品(bioelectronic product)。为了能够获得最佳的信号传递,固定化的生物组件通常与信号转换组件紧密地接合在一起。基本上,由信号产生方式(mode of signal generation)的不同,可以将生物传感器区分成两种主要类型:  1.生物亲和性传感器 (Bioaffinity sensors)  当固定生物组件与待测定之分析物发生亲和性结合(bioaffinity binding)时,造成生物分子形状改变与/或引起诸如荷电、厚度、质量、热量或光学等物理量的变化。此种经由分子辨认─结合类型的生物传感器有免疫传感器、化学受体传感器等,其分析可为荷尔蒙、蛋白质、醣类、抗原或抗体,而相对应的受体可为荷尔蒙受体、染剂、外源凝集素(lectins)、抗体或抗原等。  2.生物催化型感应器(Biocatalytic biosensors)  此类传感器之信号侦测并不在于分子辨认─结合的阶段,而且当固定划分子与待测物反应后,产生生化代谢物质,再经特定电极侦测特定代谢物后以电子讯号表现出来。最为人所熟悉的为属第一代生物传感器的酵素电极。目前有关此类生物传感器的两个主要研究发展方向为(1)使用酵素共轭物(enzyme conjugates)、环系酵素群(cycling enzymes)和系列酵素来组合生物传感器,(2)使用微生物细胞或动、植物组织切片或可渗透性细胞(permealized cells)等来当作分子辨认组件。  三、生物传感器在当前的主要应用领域  1.发酵工业  因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。所以具有成本低、设备简单、不受发酵液混浊程度的限制、能消除发酵过程中干扰物质的干扰的微生物传感器发酵工业中得到了广泛的应用。  2.食品工业  生物传感器可以用来检测食品中营养成分和有害成分的含量、食品的新鲜程度等。如已经开发出来的酶电极型生物传感器可用来分析白酒、苹果汁、果酱和蜂蜜中的葡萄糖含量,从而衡量水果的成熟度。采用亚硫酸盐氧化酶为敏感材料制成的电流型二氧化硫酶电极可用于测定食品中的亚硫酸含量。此外,也有用生物传感器测定色素和乳化剂的应用。  生物传感器在医学领域也发挥着越来越大的作用:临床上用免疫传感器等生物传感器来检测体液中的各种化学成分,为医生的诊断提供依据;在军事医学中,对生物毒素的及时快速检测是防御生物武器的有效措施。生物传感器已应用于监测多种细菌、病毒及其毒素。生物传感器还可以用来测量乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。  4.环境监测  环保问题已经引起了全球性的广泛关注,用于环境监测的专业仪器市场也越来越大,目前已经有相当数量的生物传感器投入到大气和水中各种污染物质含量的监测中去,在发达国家如英国、法国、德国、西班牙和瑞典,在水质检测过程都采用了生物冷光型的生物传感器。生物传感器因其具有快速,连续在线监测的优点,相信在未来,还会有更广泛的应用。

  • 【求助】葡萄糖氧化酶传感器在血液中测试响应下降问题``

    我通过几种方法制备了葡萄糖氧化酶电极,利用恒压(0.3-0.5V)这PBS溶液中测试葡萄糖响应良好,100mg/dl的糖响应在2uA左右,但将电极放入血液中测试时,响应下降明显,而且有时出现尖峰,同时背景电流就带来很大的干扰,不知道各位达人有没遇到同样的情况。 我在葡萄糖氧化酶电极制备完成后,再固定扩散限制层和生物相容层,效果还是不明显,不知道各位有没试过对葡萄糖氧化酶电极再修饰。

  • 水质,生化学需氧量(BOD)的测定 。微生物传感器快速测定法, 我用的是LY—05型BOD速测仪,

    水质,生化学需氧量(BOD)的测定 微生物传感器快速测定法,我用的是LY—05型BOD速测仪, 以下均为优级纯。 0.5moL/L磷酸盐缓冲溶液:称68g磷酸二氢钾和134g磷酸氢二钠溶于蒸馏水中,稀释至1000mL。 0.005moL/L 磷酸盐缓冲溶液(清洗液):取10mL 0.5moL/L的磷酸盐缓冲溶液 溶于1000mL的容量瓶中,用蒸馏水定容。 葡萄糖—谷氨酸标准溶液:无水葡糖和谷氨酸各称1.705g,溶于0.005moL/L的磷酸盐缓冲溶液的使用液中,并用此溶液稀释至1000mL混匀既得2500mg/L的标准溶液。10mg/L葡萄糖—谷氨酸标准使用液(临用前配置):取4mL 2500m/L的葡萄糖—谷氨酸标准溶液,用0.005moL/L的磷酸盐缓冲溶液定容。我的生物膜已经活化好,就用清洗液洗脱了12个小时了,我用10mg/L标准进行测定,看电流量和电流差值,这是我做的, 我想知道为什么电流差值不大于30。

  • 【求助】关于葡萄糖传感器的问题

    我最近正在做关于血糖仪的项目,但是做出的酶电极在跟葡萄糖反应时测得的电流老是不稳,请问是什么原因?是不是选用的包埋的材料不对?

  • 【分享】介绍两本关于生物传感器的国内最新专著

    1.《电分析化学与生物传感技术》(仪器网网上书店有介绍,参见:[url]http://www.instrument.com.cn/book/shtml/20060615/1009048.shtml[/url])[img]http://www.instrument.com.cn/book/pic/9048.jpg[/img]鞠晃先2006-04 本书目录 前言 序言 第一章 电化学基础知识 1.1 电化学的含义 1.2 非法拉第过程 1.3 电极反应的实质——法拉第过程及其影响因素 1.4 电解过程中物质的扩散及电迁移 第二章 电分析化学基本方法 2.1 平面电极上的扩散电流及计时安培法 2.2 球面电极和柱面电极上的扩散与一般扩散电流公式 2.3 滴汞电极上的扩散电流 2.4 直流极谱的可逆波、不可逆波和动力波 2.5 线性变位伏安法与循环伏安法 2.6 交流伏安分析 2.7 电极体系的交流阴抗 2.8 方波和脉冲技术 2.9 半微积分极谱法 2.10 溶出伏安分析 2.11 流体动力学伏安法 2.12 控制电流的电分析方法 参考文献 第三章 超微电极电分析化学 3.1 微电极的类型及制备 3.2 微电极的基本特性 3.3 超微电极上的扩散及电流方程 3.4 超微电极阵列 3.5 超微电极的应用 参考文献 第四章 酶促反应电分析化学 4.1 酶促反应 4.2 酶促反应的电化学研究 4.3 酶促反应的电化学生物传感 4.4 基于酶促反应发展的其他电化学生物传感器 参考文献 第五章 生物膜基生物电分析化学 5.1 Langmuir-Blodgett(LB)膜分析 5.2 脂双层膜 5.3 多层磷脂膜 参考文献 第六章 凝胶膜生物传感器 6.1 溶胶-凝胶过程 6.2 溶胶-凝胶的特点 6.3 生物分子的溶胶-凝胶固定与膜电极 6.4 溶胶-凝胶电化学生物传感器的应用 6.5 有机相生物传感器 参考文献 第七章 蛋白质电化学与纳米电分析化学 7.1 蛋白质在电极上的直接电化学 7.2 固定化蛋白质的直接电化学研究方法 7.3 纳米粒子修饰电极上蛋白质固定与直接电子传播 7.4 纳米粒子在传感器制备中的应用 参考文献 第八章 超分子电分析化学 8.1 超分子化学的基本性质——识别和催化 8.2 电化学传感器中的超分子化学 8.3 超分子电化学研究 8.4 超分子化学在化学修饰电极中的应用 参考文献 第九章 电化学免疫分析与免疫传感器 9.1 免疫分析概述 9.2 电化学免疫分析 9.3 均相电化学免疫分析 9.4 毛细管电化学酶联免疫分析法 9.5 免疫传感器 9.6 电化学免疫传感器在临床诊断中的应用 参考文献 第十章 DNA电化学分析与序列识别 10.1 DNA的结构和性质 10.2 DNA浓度的电化学检测 10.3 DNA电化学传感器 10.4 PCR技术-电化学检测联用 10.5 酶联放大DNA电化学生物传感 10.6 DNA序列电化学分析中的纳米技术 10.7 电化学DNA传感器的应用 参考文献 第十一章 电致化学发光分析 11.1 电化学发光过程 11.2 电化学发光反应用主要类型及应用 11.3 电化学发光传感器及其应用 11.4 ECL联用技术 11.5 电化学发光成像法 11.6 电化学发光的发展前景 参考文献 第十二章 细胞电化学与细胞传感 12.1 细胞电化学意义 12.2 细胞的介电行为与电化学性质 12.3 细胞电泳及肿瘤组织检测 12.4 细胞在新型仿生界面的增殖与固定技术 12.5 细胞膜上蛋白质的电化学免疫分析 12.6 电化学药敏检测方法 12.7 电场对肿瘤细胞的电化学疗法 12.8 细胞电化学发展思路 参考文献 第十三章 电分析化学联用技术 13.1 液相色谱/毛细管电泳-电化学检测 13.2 光谱电化学法 13.3 石英晶体微天平-电化学系统 13.4 扫描电化学显微镜 13.5 电化学扫描隧道显微镜 13.6 电化学原子力显微镜法 参考文献 2.《生物兼容性电极构置及应用》[img]http://images.joyo.com/m/md_bkbk608821.jpg[/img]罗国安2006-07前言序言第一章 绪论1.1 生物电化学的发展过程1.2 生物兼容性电极在生物电化学研究中的作用1.3 生物兼容性电极的制备和表征1.4 生物兼容性电极的应用领域及相应研究进展参考文献第二章 溶胶凝胶技术用于生物分子固定化及酶膜电极制备2.1 溶胶凝胶技术过程及其对生物分子的固定化2.2 葡萄糖氧化酶在溶胶凝胶体系中的固定化及其活性保持研究2.3 HRP酶膜电极的制备及其工作性能参考文献第三章 纳米氧化物生物兼容性电极3.1 纳米氧化物的合成与表征3.2 纳米氧化物膜电极的制备3.3 纳米氧化物膜电极对H+响应特性的研究3.4 纳米TiO2电极上实现对多巴胺与抗坏血酸的同时检测3.5 葡萄糖氧化酶在纳米TiO2膜上的固定及其催化活性研究3.6 纳米SnO2修饰石墨电极对神经递质的分离检测及对NO的识别3.7 复合固体纳米SnO2修饰石墨电极测定生物体内的NO参考文献第四章 碳纳米管修饰电极的构置及应用研究4.1 碳纳米管4.2 CNT在分析化学领域的研究进展4.3 CNT的功能化研究进展4.4 碳纳米管镶嵌修饰电极的构置及对神经递质的电分离测定4.5 环糊精/碳纳米管复合修饰电极的构置及在分子识别领域中的应用参考文献第五章 自组装生物兼容性电极的构置及研究5.1 自组装硫醇单层膜电极的性能及其在酶传感器中的应用5.2 自组装磷脂双层膜电极的电化学和光电化学性质研究5.3 自组装混合双层膜电极的性能及其对生物膜功能的模拟5.4 DNA自组装电极的构置及性能参考文献第六章 核酸性质的电化学研究6.1 DNA与硫堇分子相互作用的研究6.2 多巴胺与DNA分子间相互作用的研究6.3 电化学法研究大黄素与DNA的相互作用6.4 本章小结参考文献第七章 蛋白质性质与功能的表面电化学研究7.1 电极界面性质对细胞色素c电化学行为的影响7.2 heme蛋白在纳米TiO2膜电极界面上的直接电子传递过程7.3 天花粉蛋白诱导细胞凋亡机理的研究7.4 本章小结参考文献第八章 生物兼容性电极的展望8.1 在生命科学研究中的应用8.2 新型化学修饰电极8.3 在分析化学中的应用参考文献号召大家买原版著作![em26]

  • 生物传感器

    新开一个生物传感器的讨论群,敬请加入。欢迎一切和电化学工作站相关人士,共同探讨!站内联系

  • 生物传感器特点

    这款[url=http://www.f-lab.cn/biosensors/fo-ppr.html][b]生物传感器[/b][/url]采用光纤光学[b]粒子等离激元共振[/b]技术FO-PPR,提供一流的[b]生物分子传感[/b]功能,非常适合[b]生物分子探测[/b]和[b]生物分子实时交互[/b]分析,广泛用于医学研究和生命科学研究以及生物制药诊断和质量控制。[b]生物传感器特色[/b]15分钟完成测量仅仅需要3步骤即可完成实验:生物芯片安装,样品微注射,结果探测具有无需标记的专利技术便携式设计,方便移动超高灵敏度,具有探测10^-9克灵敏度生物传感器工作过程生物传感器FO-PPR采用了高灵敏度光纤光学粒子等离激元共振技术,通过检测金纳米颗粒AuNPs的表面激元散射,在光纤上表现出折射率变化,从而实时监测分子结合事件。[img=生物传感器]http://www.f-lab.cn/Upload/FO-PPR.jpg[/img]生物传感器:[url]http://www.f-lab.cn/biosensors/fo-ppr.html[/url]

  • 【资料】一则老新闻:2009年全球生物传感器产品市场预测

    由于微细加工和小型化之类的快速科技进步正在使生物传感器开始向发展中国家渗透,在美国、欧洲、中国和印度的稳步增长将使该市场的全球总销售额增长9.5%,于[color=red]2009年突破40亿美元[/color]。 据Kalorama Information近日发布的一项新研究报告《医疗与生物传感器和传感器系统:市场、应用和全球竞争》称,2005年生物传感器营业收入达到29亿美元,而医疗应用占该销售额的最大份额。然而,随着生物防卫和环境领域以及工业控制应用的强劲增长,生物传感器成为进行快速精确分析的首选方式,该市场正在开始转移。 在过去4年中,生物传感器研发的方向有了显著变化,对在生物表达化学、表面定性、分子标记以及纳米技术领域新出现的生物技术创新作出响应,并带动了在各种环境下应用的增长。 不过,成功并不只是基于创新和技术。与令人印象深刻的研究结果相对照,化学药剂、生物处理和临床诊断行业的商业化进程很有限。 该研究报告作者James P.Smith博士指出:“生物传感器很昂贵,不论是对开发商还是对终端用户而言都是如此。要让一种医疗传感器问世可能耗费[color=red]5年[/color]时间和[color=red]4000万美元[/color]研发成本,这种时间和成本因素能让传感器开发商望而却步。大众市场兴趣能让生物传感器一时受宠,也能让其未出实验室便遭遗弃。例如,占据[color=red]80%[/color]以上医疗生物传感器市场的[color=red]血糖生物传感器[/color]所取得的成功没有任何其他传感器能与之匹敌。”

  • 请教生物传感器教材

    我将来读博士想读电化学方向的,主要研究生物传感器在测量人体神经作用方面的应用,但是对此刚刚涉足,请教大虾这方面有哪些书比较好,电化学和生物传感器方面的

  • 【求助】葡萄糖和葡萄糖酸分离

    求各位高手帮忙一下,怎样用HPLC分离葡萄糖和葡萄糖酸 或者是葡萄糖和葡萄糖酸钠? 应该用什么样的柱子和检测器呢?拜托拜托!!

  • 普通打印机打印出荧光生物传感器

    开发适用于纸质传感器的发光材料,一直是一项重大挑战。可视化纸基生物传感器具有众多优点,然而也存在着缺点。那就是普通的发光材料难以固定在纸质衬底上,同时其光学活性也很容易丧失。因此,想要找到适用于纸质传感器的发光材料难度很大。 近日,中科院合肥物质科学研究院智能所研究人员成功研制出了一种发光氧化石墨烯,能够具有高荧光量子产率,并且可以通过普通打印机在衬底上打印出荧光“开”的生物传感器。该研究对我国多种生物分子研究具有重要意义。 该研究基于氧化石墨烯上功能基团的有机胺化反应制备而成,发光氧化石墨烯可以充满“墨水”用于普通打印机。因为其稳定的发光和二维的平面结构,因此通过普通喷墨打印机也可以将图案打印在微孔滤膜上。打印的图案在紫外灯下可呈现稳定的荧光,最后通过滴加各种配体修饰的银纳米颗粒、与配体对应的目标生物分子,就可以形成可视化荧光“开”的纸质传感器。该研究能够实现对生物硫醇、蛋白质、DNA等可视化检测,在生物学领域将会发挥重要作用。

  • 【原创】大家都用什么仪器做生物传感器?

    以前的生物传感器大都是电化学生物传感器,现在生物传感器的种类多了,希望知道大家都用什么做生物传感器。比如用锁相放大器、前置放大器和多功能数据采集器的组合等。请各位不吝赐教,我将给有效的帖子50积分的奖励。

  • 【我们不一YOUNG】生物传感器在水环境检测中的应用研究

    [font=&][color=#666666]本研究旨在探讨生物传感器在水环境检测中的应用。通过综合分析相关文献和实验数据,我们发现,生物传感器在水中重金属离子检测、有机物检测、微生物监测和p H值监测等方面具有广泛的应用前景。生物传感器利用生物体的特异性反应和信号转导机制,能够高效、快速、准确地检测水中的污染物质并提供定量信息。[/color][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制