当前位置: 仪器信息网 > 行业主题 > >

平移边界层立体

仪器信息网平移边界层立体专题为您整合平移边界层立体相关的最新文章,在平移边界层立体专题,您不仅可以免费浏览平移边界层立体的资讯, 同时您还可以浏览平移边界层立体的相关资料、解决方案,参与社区平移边界层立体话题讨论。

平移边界层立体相关的资讯

  • 中科光电参与“近海海洋边界层大气污染综合立体探测技术研发及应用示范”项目研究
    2018年12月21日至23日,中科院合肥物质科学研究院在合肥组织召开了国家重点研发计划“大气污染成因与控制技术研究”重点专项——“近海海洋边界层大气污染综合立体探测技术研发及应用示范”项目(以下简称 “该项目”)启动与实施方案论证会。这是聚光科技(杭州)股份有限公司下属子公司无锡中科光电技术有限公司(以下简称“中科光电”)继参与2016年“大气污染成因与控制技术研究”重点专项和2017年“国家大气污染防治攻关”之后又一国家级大气污染防治科研项目。  会议成立了由技术专家、管理专家和财务专家组成的实施方案论证专家组。中科院合肥物质科学研究院院长匡光力研究员代表项目承担单位致欢迎辞,表示将认真做好项目的组织实施和过程管理工作。中科院前沿科学与教育局地球科学处处长段晓男对项目的启动表示祝贺,对项目的科学实施提出了期望和具体建议。中国21世纪议程管理中心资源环境处处长王磊介绍了“十三五”期间课题管理规划改革方案以及大气专项管理办法,对项目承担单位的组织和管理工作提出了总体要求。  与会专家认真听取了重点项目负责人刘建国研究员和各课题负责人的实施计划方案汇报,充分讨论了项目实施方案和管理机制,形成并论证通过了该项目的实施方案。潘德炉院士代表项目专家组对项目研究工作提出具体要求,强调了加强海洋探测特色仪器与设备的关键技术突破、有效构建立体探测系统的重要性。专家们在论证会上充分交流  该项目汇聚了中科院合肥物质科学研究院、中科院大气物理研究所、国家海洋局第二海洋研究所、中国科学技术大学、复旦大学、中国海洋大学、厦门大学、南京信息工程大学、中国环境监测总站、中国气象局气象探测中心、国家海洋环境监测中心、国家卫星海洋应用中心、深圳市环境监测中心站、上海卫星工程研究所、中科光电等长期从事近海海洋边界层大气污染相关研究的优势单位,将针对近海大气边界层多污染物共存、环境条件复杂(高湿、高盐等)、时空变化不均匀等特点,以快速、在线、立体监测技术研发为核心,研发集成具有自主知识产权、多元数据归一的海洋大气边界层立体探测技术系统,实现近海大气边界层理化结构的高时空分辨率探测;并在黄海、渤海、南海等海域开展技术应用示范,形成相应的技术规范,支撑国家环境监测网络建设,为我国近海大气污染科学研究提供技术保障。 各课题负责人汇报实施计划方案  作为参与此项目的唯一企业,中科光电有幸承担了子课题任务——“近海海洋边界层大气污染物输送通量探测技术研究”。通过此课题将获取高准确度的气溶胶消光系数、退偏振比,并建立准确的近海岸颗粒物质量浓度与消光系数的关系模型,进而识别海源、陆源气溶胶并定量估算气溶胶的近海洋输送,实现对气溶胶传输通量测量的精确化。通过与课题内(间)的风场、污染场数据结合,建立高精度的输送通量反演方法,为定量评价近海海洋污染物提供数据基础。  中科光电总经理万学平先生和业务发展部总监、子课题负责人王界博士出席了项目启动会,并和与会人员就此项目的实施进行了深入交流。 参会人员合影
  • 大气边界层污染垂直加强观测试验启动
    p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201812/uepic/67f76a1b-1bfc-4a97-b7e5-0de6a85ef5df.jpg" title=" 1.jpg" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201812/uepic/fbabd4b1-7a49-4d9f-88f6-0af16db14e26.jpg" title=" 2.jpg" / /p p style=" text-indent: 2em text-align: center " 中科院大气物理所供图。 /p p style=" text-indent: 2em text-align: justify " 从中国科学院大气物理研究所获悉,该所主持的国家重点研发计划项目“陆地边界层大气污染垂直探测技术”日前在河北省望都县启动了大型大边界层污染加强观测试验。 /p p style=" text-indent: 2em text-align: justify " 这次观测试验预计将持续10天左右,主要探测平台是一个32米长、1900立方米的大型系留汽艇,艇上载有二氧化硫、二氧化氮、臭氧、一氧化碳、PM2.5、总挥发性有机物,以及气溶胶质谱、粒径谱、黑炭和颗粒物计数等大气污染观测仪器,同时还搭载有风速、风向,温度、湿度、气压、三维湍流脉动风速脉动温度等气象要素观测仪器。 /p p style=" text-indent: 2em text-align: justify " “这是一次在京津冀地区开展的规模较大的多平台、多要素大气边界层综合观测试验,将获得冬季重污染期间点面结合、三维立体的大气污染垂直分布信息。”项目首席科学家、中科院大气物理所研究员胡非说,此次观测试验的特点是测量要素全,观测范围全,观测的时空分辨率高,观测的连续性和空间代表性强。 /p p style=" text-indent: 2em text-align: justify " 在这次观测试验中,项目自主研发的新型臭氧激光雷达、二氧化氮激光雷达、高空湍流超声风速仪探测系统以及涡度相关PM2.5湍流通量观测系统等均属首次亮相,自主研发的基于汽艇浮空器平台的“软塔”梯度观测系统,也拟在实验后期开展观测试验。 /p p style=" text-indent: 2em text-align: justify " 胡非认为,这次试验将为不同大气污染探测设备的对比校验、数据质量控制、数据融合和归一化、标准化研究,以及大气污染模式的发展提供帮助,为我国大气污染垂直探测技术和科学研究的发展作出贡献。 /p p style=" text-indent: 2em text-align: justify " 在望都加强观测的同时,项目还在津冀地区开展了包括北京325米高塔和天津255米高塔梯度观测、激光雷达走航观测、飞机观测和地面台站观测在内的同步协同观测。 /p p style=" text-indent: 2em text-align: justify " 此外,为与京津冀地区的观测相对照,由项目参加单位在珠三角地区也同时实施了大气边界层污染加强观测试验,主要探测平台有深圳356米高塔和广州600米电视塔,以及大气污染移动观测车等。 /p p style=" text-indent: 2em text-align: justify " 据了解,离地面1~2千米厚的大气边界层是大气污染的主要发生地,为深入认识大气污染机理和开展大气污染防治,迫切需要进行污染物在大气边界层内的垂直分布规律研究。目前国内外有多种大气边界层和大气污染探测设备和分析仪器,但它们之间的可比性、融洽性和校准技术研究还很不够,制约着该领域的发展。“陆地边界层大气污染垂直探测技术”项目旨在解决基于塔基、地基遥感、艇基和飞机等一体化探测平台的边界层三维垂直结构探测技术。 /p
  • 中科光电受邀参加“大气-气溶胶-边界层-云”华北地空联
    2016年5月28—29日,大气、气溶胶、边界层和云相互作用试验研究会在河北邢台召开。中国科学院院士吴国雄、中国工程院院士丁一汇、北京大学环境科学与工程学院院长朱彤、河北省气象局副局长彭军、邢台市气象局局长赵黎明、北京师范大学全球变化与地球系统科学研究院首席科学家李占清、中国科学院大气物理研究所、中国科学院合肥物质研究院、中国气象局大气探测中心、北京师范大学、中国科学院遥感与数字地球研究所、德国马普研究所等相关专家、学者都参加了此次会议。无锡中科光电技术有限公司作为受邀企业,也参加了此次会议。 会议前,参会人员对“大气-气溶胶-边界层-云”华北地空联合实验观测现场进行了参观。无锡中科光电与各单位的领导、专家一起参观了在邢台气象观测站的数十种观测仪器和设备,认真听取了实验人员的讲解和资料分析。北京师范大学全球变化与地球系统科学研究院首席科学家、“千人计划”学者、此次观测试验负责人李占清教授指出,“邢台气象观测站的实验,首次采用双飞机对云内外以及边界层内外开展观测。此次观测实验还联合了中国气象局、中国科学院、北京大学等单位,利用各自先进的仪器设备和探测技术,形成了一套完整的大气-气溶胶-云-降水的综合观测系统,是开展气溶胶、云物理、人工影响天气、天气和气候变化研究最完整的观测设施。” 会议开始时,河北省气象局副局长彭军和邢台市气象局局长赵黎明对各专家、学者的到来表示欢迎,并指出此次大气、气溶胶、边界层和云相互作用试验研究会对了解河北省大气、云、地面三者之间的相互作用,以及近地面边界层的污染和大气稳定度对云和降水的重大意义。接着,各专家、学者分别对河北气象情况、地空联合试验、气溶胶光学与辐射特性主题进行了详细的介绍和分析。 无锡中科光电技术有限公司对快速源解析走航车进行了详细的讲解,强调数据应用的重要性,利用基于振镜的快速扫描技术和车载多轴DOAS技术,采用走航快速源解析监测方法和数据分析方法,构建了车载走航快源解析系统。无锡中科光电首创了国内走航与锥形扫描应用技术,综合了点、线、面源锥形扫描识别和垂直走航观测方法,对重点污染区域中污染物进行3D扫描和移动走航追踪观测,可有效获取区域污染物空间立体分布、变化规律和排放特征,实现污染区域快速源解析,做到大气灰霾追因与控制。 无锡中科光电始终致力于大气灰霾追因与控制技术,大力发展地基遥感监测设备和数据分析能力,解析颗粒物污染来源、污染特征及污染变化趋势,为短时间空气质量预警预报提供了及时、有效、准确的数据支撑。无锡中科光电也将随时保持与各专家、学者及同行的技术交流和研究成果分享,共同为绿色中国不断努力和奋斗!
  • 污染物监测升级 无人机助力大气环境立体监测
    p   伴随着一声“开始降落”的指令,在河北望都县农村环境研究站,新研制的无人机大气立体监测装备完成污染物监测和数据传输任务之后稳稳落地。 /p p   12月中旬,中国科学院生态环境研究中心痕量气体大气化学研究组协同多家单位成功开展了无人机大气立体监测系统实验。据项目负责人张成龙介绍,这一监测系统首次将低功耗大流量颗粒物采样技术、多通道真空气体采样技术与无人机技术结合,契合了当前大气污染科学迫切需要全方位精细化监测的需求。 /p p strong   填补大气环境监测和研究盲区 /strong /p p   在对流层大气中,大气污染物多从近地面垂直向上或水平扩散,作为大气化学反应重要驱动力的太阳辐射则自上而下传输。因此,张成龙认为,大气环境化学研究不能只关注近地面污染,还要关注一定高度范围(特别是边界层)内的大气层结构和成分变化,否则很难全面揭示对流层实际的大气化学反应过程。 /p p   此前已有多种大气环境垂直监测方法得到应用,如大气边界层塔、有人飞机、气球及气艇等。但边界层塔位置固定,高度通常在300米以下,且多建于城市地区 有人飞机只能在数百米及以上的高度飞行 气球或气艇抗风能力和移动性差,需要填充大量氦气,单次运行成本高。这些方法已经无法满足新时期大气污染研究的需求。 /p p   “无人机的机动性和灵活性可以有效弥补上述缺陷,让原来不容易接近的地方变得容易到达,使大气监测真正做到动态性和立体性。”张成龙说,“农村地区不同于城市地区,它的下垫面多为农田和低矮村庄,大气污染物处于较低大气层,正好是无人机适合飞行和采集样本的高度。” /p p   无人机大气立体监测系统为农村大气面源污染的深入研究提供重要工具,也为区域大气氧化性、大气光化学过程及二次颗粒物形成等深入 研究提供基础数据。 /p p strong   精准化大气研究工具 /strong /p p   记者了解到,在中科院无人机大气监测系统实验成功之前,市场上已经有少数无人机产品应用于环境监测领域并和政府环境执法活动展开合作。对此,为本次无人机大气监测系统提供无人机设备的华翼天基科技有限公司相关负责人表示:“市场上的无人机设备不仅用于环保,也用于电力、消防等,并不专业,只是搭载几种空气传感器,远远不能解决大气多样化和精准化的监测需求。” /p p   为此,张成龙带领团队为提升系统精准化做出了一系列努力。 /p p   在传感器选择阶段,研发团队找到曾对传感器精度做了长期比对工作的南京信息工程大学教授庞小兵进行取经。庞小兵告诉《中国科学报》记者,大气传感器会受到大气温度、湿度、其他共存成分以及电信号噪音的干扰,因此要通过多种技术手段降低上述因素对传感器精度的影响。 /p p   最终,他们确定了具有较强抗干扰能力、能在实际大气气体中提取精确信息的低功耗大流量颗粒物采样器、多通道真空气体采样器以及传感器。传感器可一次性记录和传输10种参数,包括颗粒物、PM2.5和PM10等常规污染物参数。除此之外,采样设备随无人机升空之前,要经过地面标准台站的数据校准 无人机升空之后,还要保证提前计算设计好的采样器体积、续航能力等均满足远程控制、GPS三维定点悬停以及收集足够分量大气样品的要求。 /p p   该立体监测系统攻克了低功耗大流量颗粒物采样以及多通道真空气体采样等关键技术,实现大气颗粒态、气态以及液态等样品的立体化定点采样,为大气污染全方位立体化的精确诊断提供重要的技术支持。 /p p strong   从无到有的科研“创业” /strong /p p   在张成龙看来,这次无人机大气监测系统的实验成功是一次从无到有的科研“创业”。没有充足的资金来源,参与研制并提供传感器、采样器、无人机的企业也没有向他索取任何费用,但他们却向着一个共同的目标努力。 /p p   这支由交叉学科领域的人员临时搭建的“梦之队”,不断突破技术难点,根据大气采集监测系统需要满足的科研要求对产品进行完善。华翼天基相关负责人表示:“为了提升监测系统在高空收集样品时的抗风能力和稳定性,我们专门为无人机设计了气动外形结构。” /p p   谈到无人机大气监测系统的应用前景,张成龙则认为“一千个人有一千个想法”。目前也有一些科研单位出于兴趣联系他们。在立体化精准化大气化学研究工具的应用前景之外,他大胆设想,未来在火灾、垃圾焚烧、环境污染执法等应急监测领域,无人机可以到达人们无法接近的地方发挥更大的作用,希望不同行业的人看到这个系统都能对其应用萌生不同的想法。 /p p /p
  • “霾伏的真相”-立体监测
    大气环境作为国民经济和社会可持续发展重点关注领域,建立大气环境监测系统,准确了解灰霾分布、发展趋势,开展重污染天气灰霾成因解析,为环境规划与管理、环境影响与评价、环境监督与执法、污染控制及政府宏观决策提供科学依据,对于改善人类的生存环境、提高人民生活质量、保持社会稳定发展具有重要的深远意义。   采用先进环境监测技术,监测大气污染变化是必然的选择。先进环境监测技术与仪器是环境保护的重要基础、环境管理的基本手段。先进环境监测技术与仪器的发展是环境监测向前发展的必要条件,是推动环境监测实现监测技术现代化的巨大动力。  无锡中科光电技术有限公司作为中国立体监测与数据分析服务标杆性企业,在中国科学院安徽光学精密机械研究所的大力支持下,中科光电成功产业化了针对颗粒物和气体成分分析的大气颗粒物监测激光雷达、大气臭氧探测激光雷达(以下简称:颗粒物激光雷达、臭氧激光雷达)与多轴差分吸收光谱仪等地基遥感设备,同时在整体解决方案层面,公司把仪器工程、环境科学和气象科学紧密结合,形成了一系列针对灰霾研究与来源追踪的、具有竞争优势的解决方案,为我国灰霾治理提供有力的技术支撑。一、 大气复合污染(灰霾)立体监测解决方案  大气复合污染(灰霾)立体监测解决方案结合近地面空气质量监测、近地面颗粒物污染。  物物理特征监测、近地面颗粒物化学特征监测、近地面大气光化学反应特征监测、地基遥感监测、机载星载监测、区域气象气候数据,实现对污染物的全指标、全区域监测,为空气污染源解析及空气污染预测预报提供可靠依据,摸清本底污染物浓度变化影响,对大气灰霾污染控制措施的执行效果、判断标准的实施情况及改善环境的进展进行评价。二、大气颗粒物监测激光雷达组网观测解决方案  大气颗粒物监测激光雷达组网观测解决方案旨在建设完整的区域灰霾实时监控、预报预警、应急联动决策系统,说清各省、市区域内大气污染物的局地和区域输送来源,量化特定地区的污染物排放总量,识别邻省、市间跨界输送污染物种类,解决区域内跨界输送污染事件纷争,了解和分析大气污染物的输送过程,说清大气环境中污染物变化趋势,解析逆温层结构,评估大气稳定度,说清大气污染扩散能力,为灰霾预警预报工作提供可靠数据。三、“地空一体化”扬尘在线监控系统解决方案  “地空一体化”扬尘在线监控系统由扬尘噪声在线监控系统、大气颗粒物扫描激光雷达、系统监控平台等部分组成。系统可全面实时获得主要建筑工地、道路、码头、混凝土搅拌站、重点工业工矿企业等污染源排放的扬尘(TSP、PM10、PM2.5)质量浓度、噪声、视频、录音、温度、湿度、风速风向等近地面数据,同时结合大气颗粒物扫描激光雷达获得的区域水平及立体空间内扬尘分布,解析区域内扬尘消光系数,退偏振度、边界层高度、能见度等信息,说清扬尘沉降情况、区域间扬尘的输送,从而实现对整个城市区域内扬尘来源,现状,发展变化趋势的掌握。应用量化数据和直观图片,对扬尘施工进行有效过程管控,做到科学取证、快速执法、精准管理。 四、大气复合污染灰霾移动监测解决方案  大气复合污染灰霾移动监测解决方案旨在针对城区和区域污染现状,对重点污染区域中污染物的变化特征及规律进行移动观测和探索,研究路线规划区域内的重点工业污染面源污染物的排放特征,摸清 “局地污染物”的排放对污染形成的贡献。大气复合污染灰霾移动监测是对固定站点监测空白区域、天气突发区域监测的有力补充,同时应用灰霾移动监测系统可开展走航追踪观测,对典型时段的具体原因进行追踪分析,以掌握区域污染天气的全面性,为6小时、12小时、24小时的短期空气质量预测的时效性和精确度提高,提供数据支撑。五、超级站数据分析服务  1)说清现状。通过综合分析数据如实反映环境质量现状和污染来源的真实情况。  2)深度分析。最大限度的发挥各种监测数据的应用价值,集结有效数据,说清污染特征、污染来源及污染变化趋势,为环境污染的预警预测提供有效的数据支撑。  3)突出特色。对汇总数据进行特色加工形成监测报告,让管理机关等不同层面的人得到其想要的结果。  4)提出建议。站在全局的角度去思考,找出存在的问题,分析问题的形成原因,从开展环境管理和发展区域经济的影响因素方面分析原因,针对存在的问题提出相应的合理可行的建议。 六、超级站运营维护服务  目前我国环境监测体系人员队伍建设不足,无力进行相关的研究及设备监管工作,使得投入无产出,资源大量无端浪费。同时多样化的环境指标所带来的环境监测设备品牌多、商家多、服务水平参差不一、管理人员联系困难、费用管理困难等问题日益突出。超级站运营维护服务通过专业化、标准化的服务理念及流程,对超级站进行唯一的服务接口、统一的质量要求、统一的维护资料、长期稳定可靠的服务管理,为各有需求单位提供定制化的服务,保证环境监测数据的真实可靠。   中科光电自成立以来定位于区域性大气环境立体监测,重点发展、推广环境立体监测技术和解决方案。站在新时代的前端,中科光电秉承着“协同,创新,责任,客户”的核心价值观和“受客户尊重,令员工自豪”的企业愿景,励志成为中国立体监测与服务标杆性企业,愿为中国“突围霾伏”时刻准备着、奉献着!
  • 2014雾霾立体监测与预警应用学术研讨会成功举行
    近期,&ldquo 2014年雾霾立体监测与预警应用学术研讨会&rdquo 在无锡召开。本次学术研讨会由国家环境光学监测仪器工程技术中心、中国仪器仪表学会环境与安全检测仪器分会联合主办,中科院安徽光学精密机械研究所、无锡中科光电技术有限公司承办。来自中国环境监测总站、中国气象局、中国环境科学研究院、北京大学、复旦大学、南京信息工程大学、暨南大学、中国科学院大气物理研究所、遥感与数字地球研究所、城市环境研究所、多地省市环境监测站及气象局业务部门的两百余位专家学者参加了本次研讨会。   在会上,与会专家学者共同研讨了当前雾霾立体监测与预警面临的新任务、新问题、新机遇;交流了该领域的新技术、新装备、新进展。围绕雾霾监测与预警的发展需求及质量控制、标准体系现状与进展,厘清了我国雾霾立体监测技术与应用在技术路线、重点产品、质量控制、标准建设未来发展的方向和策略,以促进环境监测技术对环境管理的支撑作用和产业发展。   会议由中科院安徽光机所刘建国所长主持,特邀嘉宾中国工程院魏复盛院士、中国环境监测总站李国刚副站长致开幕词,与会专家汇报了各自研究的成果与进展。特邀嘉宾中国工程院刘文清院士报告了&ldquo 区域大气污染立体监测技术与应用案例&rdquo ;北京大学环境科学与工程学院副院长邵敏教授报告了&ldquo 大气复合污染防控中的VOCs研究需求&rdquo ;中国气象局大气成分观测中心张晓春主任报告了&ldquo 中国气象局环境气象观测业务及其发展需求&rdquo ;中科院大气边界层物理和大气化学国家重点实验室主任王自发研究员报告了&ldquo 嵌套网格空气质量预报模式NAQPMS自主研制与应用&rdquo ;复旦大学环境科学与工程系主任杨新教授报告了&ldquo 单颗粒气溶胶质谱对污染过程的动态分析&rdquo ;中科院遥感与数字地球研究所遥感科学国家重点实验室副主任陈良富研究员报告了&ldquo 空气质量卫星遥感监测技术进展&rdquo ;上海市环境监测中心伏晴艳总工报告了&ldquo 基于系留气球的大气环境垂直观测研究&rdquo ;中国环境监测总站潘本锋高工(代)报告了&ldquo 颗粒物激光雷达在大气复合污染(灰霾)中的应用&rdquo 等。   会议期间,与会专家领导参观了无锡中科光电技术有限公司陈列于会场展示区的偏振气溶胶激光雷达、微波辐射计等雾霾立体监测系统核心设备,对该类国产设备给予了极高的关注及好评,殷切期望中科光电等国内企业,以气象、环保业务需求为导向,不断进取,推动大气环境立体监测产业的蓬勃发展。
  • 安徽蓝盾“雷达综合立体监测”助力“金砖蓝”
    金砖国家领导人第九次会晤9月5日在美丽的滨海城市厦门圆满落幕。习近平总书记在金砖领导人晚宴欢迎致辞中用“抬头仰望是清新的蓝,环顾四周是怡人的绿”来形容厦门,这无疑是对奋战在第一线的环保工作者们最好的肯定。为了这一抹“金砖蓝”,有各级政府的不懈付出,有环保工作者的夜以继日,也有像安徽蓝盾光电子这样的环保企业的默默坚守。为全面保障金砖会晤期间厦门市的环境空气质量,安徽蓝盾光电子提供了多台气溶胶激光雷达和大气环境综合立体监测走航车参与此次保障工作。采用雷达组网与走航分析软件,将多台气溶胶激光雷达定点观测数据和走航车的移动观测数据结合,实时监测厦门市气溶胶的三维时空分布、演变趋势和周边环境对本地的影响,为金砖会晤期间的大气污染调控与环境改善提供给力的数据支撑。与此同时,安徽蓝盾光电子成立一支由了资深专家和数据分析工程师等组成的金砖保障团队。保障团队听党指挥、能打胜仗、作风优良,肩负光荣的使命,以饱满的热情做好数据分析和设备运维,以专业的素养为会商指挥中心提供及时、准确、全面的环境监测数据和分析报告。 蓝盾立体探测系列产品介绍 气溶胶激光雷达主要功能探测大气气溶胶的垂直分布和时空演变特征;监测云(云底、云高、云层数)时空演变;探测大气边界层的结构和时空演变;监测颗粒物质量浓度(如PM10等)的空间分布;大气能见度测量;监测大气中不同粒径大小颗粒物的时空分布;识别球形与非球形粒子(卷云、沙尘、烟尘等)分布;判定局地污染和外来污染对本地空气质量的影响度;结合风廓线雷达数据计算颗粒物输送通量。 大气环境综合立体监测走航车主要功能利用走航观测设备获取大气污染剖面数据,绘制大气污染的三维空间分布图,查明污染物的排放源、类型、污染程度;查找污染物可能的输送通道与来源情况,弄清城市之间区域输送的影响;计算污染物的输送通量;对雷达组网监测数据进行补充。 臭氧激光雷达主要原理功能大气臭氧探测激光雷达基于差分吸收原理,利用臭氧的吸收特性测量气体的浓度分布。激光雷达选取两个激光波长,利用待测吸收气体对两个激光波长的吸收差别,确定了两个脉冲激光共同路径上臭氧的浓度,从而实现对臭氧时空分布的探测。差分吸收激光雷达测量的结果具有高时空分辨率,测量精度高等特点。
  • 区域颗粒物时空立体分布雷达组网监测
    p ■ 系统概述 /p p & nbsp & nbsp 近年来,对于环境质量检测的联网综合监测系统的需求越来越迫切,这一类联网综合测量系统的特点是利用分布在区域内相关的多个单点测量设备的数据,再结合相关气象及环境信息数据,使用一定的算法分析模型计算出区域内各空间位置的环境数据从而对区域内总体的环境质量情况有一个明确的掌握和了解,进而还可以预算出未来一段时间内的区域环境质量情况变化做到对环境质量的提前预警预报。激光雷达设备由于其能向一定程度的高空探测环境数据,所以如果使用相关算法分析模型利用激光雷达测量的高度空间的环境测量数据作为基础数据来进行计算繁衍,就可以在很大程度上进行区域内空间立体环境质量数据的监测和预测,对于整个区域的立体空间环境监测和预报有着很大的现实意义,比如一个城市区域或一个工业园区空间立体监测等。 /p p img title=" 640.webp.jpg" src=" http://img1.17img.cn/17img/images/201601/uepic/53deeae0-078b-4d52-a0a2-cc8b1303ed58.jpg" / /p p ■ 系统功能说明 /p p (1) 雷达组网解决的问题 /p p ※ 空间立体评价区域环境空气质量:区域污染的时空立体演变情况、区域污染的生消过程、典型区域污染过程的解析、区域污染的主要来源等; /p p ※ 区域污染贡献率问题:区域污染输送通量计算,本地污染及外来污染所占的贡献率; /p p ※ 区域环境空气质量预警预测:通过相应的计算模型结合环境气象信息来预测未来一段时间内空间立体区域的环境空气质量变化; /p p (2)雷达组网系统主要有四个部分的功能 /p p ※ 区域内联网的雷达设备信息及状态监视 /p p ※ 区域内联网的各雷达单点设备数据收集与显示 /p p ※ 区域立体空间雷达数据的由点到面的同化繁衍计算 /p p ※ 区域立体空间雷达数据的未来发展预测数据的计算 /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p (3) 雷达组网系统中实时雷达测量数据主要有以下类型 /p p ※ 355消光系数 /p p ※ 532消光系数 /p p ※ 退偏振度 /p p ※ 波长指数 /p p ※ 颗粒物浓度空间分布 /p p ※ 边界层 /p p ※ 能见度 /p p ※ 光学厚度 /p p ※ 污染物分布 /p p ※ 污染物输送通量 /p p (4) 雷达组网系统会使用相关计算模型结合相关环境和气象数据来进行区域空间立体雷达检测数据的同化繁衍计算,可以在系统中进行立体空间雷达数据的展示 /p p style=" TEXT-ALIGN: center" img title=" 6401.webp.jpg" src=" http://img1.17img.cn/17img/images/201601/uepic/f30a694d-a87f-4f6b-b39e-6c3efec20b9b.jpg" / /p p ※ 各高度水平层面的雷达数据繁衍计算 /p p ※ 各垂直剖面的的雷达数据数据繁衍计算 /p p (5) 雷达组网系统会使用相关计算模型结合相关环境和气象数据来进行区域空间立体雷达检测数据的未来一段时间的预测计算,可以对未来的空气质量的变化趋势进行提前预警预测 /p p br/ /p p & nbsp 安徽蓝盾LGJ-01激光雷达系统以激光为光源,运用空间遥感技术原理,利用其发射的激光与大气的相互作用,产生包含气体分子和气溶胶粒子有关信息的辐射信号,再结合相关反演算法就可以从中得到关于气体分子和气溶胶粒子的信息。 /p p & nbsp 本激光雷达同时发射出355nm和532nm激光,利用接收望远镜收集气溶胶、沙尘暴粒子等对激光的后向散射信号,通过接收355nm信号以及532nm的2路消偏信号,分析其回波强度和消偏振特性,可解析出大气中粒子的属性,识别沙尘暴粒子(非球形)及气溶胶粒子的垂直廓线信息。 /p p & nbsp 该款雷达可置于室内、室外环境(配置箱体)。 /p p & nbsp 适用于:环境监测、气象探测、相关研究单位。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 1px HEIGHT: 1px" title=" 6402.webp.jpg" src=" http://img1.17img.cn/17img/images/201601/uepic/04c46d7b-7571-4eba-acc3-91b50e2c18ac.jpg" / img style=" WIDTH: 357px HEIGHT: 327px" title=" 6402.webp.jpg" src=" http://img1.17img.cn/17img/images/201601/uepic/22393891-a47c-4092-b5ef-91ac27bb9f77.jpg" / /p p br/ /p p 关注微信公众号“蓝盾环保”请扫描以下二维码,为您提供及时的环保行业动态信息和解决方案! /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 307px HEIGHT: 244px" title=" 6403.webp.jpg" src=" http://img1.17img.cn/17img/images/201601/uepic/3f91991c-3402-4a9a-92a0-fdc9f5958ad4.jpg" / /p
  • 专业与专注,成就大气环境综合绩效服务商 ——记无锡中科光电技术有限公司“立体监测”创新之路
    无锡中科光电技术有限公司总经理 万学平   近年来,每逢国家重大活动及国际赛事,就有一批环境监测科技人员利用先进的雷达激光立体监测技术,为活动和赛事提供环境检测服务——他们来自无锡中科光电技术有限公司。  中科光电成立于2011年8月,由聚光科技(杭州)股份有限公司和中国科学院安徽光学精密机械研究所刘文清院士团队共同发起创建。截至目前,他们的客户已遍布全国33 个省直辖市的环保、气象、科研高校系统,激光雷达的国内市场份额已经达到60%以上。产品先后获得了3 项江苏省高新技术产品、江苏省专精特新产品、国家专利优秀奖等多项荣誉。在经过各项国家级、省级、市级重大科技项目的参与过程中,中科光电的激光雷达产品系列,取得了阶段性的进展,并先后参与了2013 年南京亚青会、2014 年南京青奥会、2015 年青运会、2015 年乌镇物联网大会、2016 年上合组织政府首脑理事会、2016年G20 峰会、2017 北京一带一路大会等空气质量保障工作。为活动保障工作准确判断污染的时间、程度、评估大气污染类型,预判污染物的走向及污染过境时的大气整体状况提供了详实的第一手信息。专业专注是中科光电最主要的企业基因  在企业化发展过程中,他们始终坚持产学研一体化,将物联网技术与立体监测技术相结合、将大气环境科学与仪器工程相结合,共同联合开发生产了多波长颗粒物激光雷达、高能扫描颗粒物激光雷达、臭氧激光雷达、多轴差分紫外光谱仪、激光测风雷达、激光温湿雷达、立体走航监测车等多款立体监测产品。  相比于国内外同类激光雷达,中科光电的产品具备特有的技术优势。多波长激光雷达为豪焦级激光器,激光能量高,在重污染天气状况下,能够穿透霾层探测高空8~10km 范围内的污染物分布信息、监测边界层完整的变化过程,同时多波长设计,可有效获取颗粒物的尺度分布信息,全粒径响应,实现更细小颗粒物的占有比,适用于中国目前典型的细粒子环境污染现状。此款雷达是国内首款多波长激光雷达,也是引领环境监测部门对雷达应用需求的创新产品。高能扫描颗粒物激光雷达为国内首台基于快速扫描振镜的产品,能够同时获得区域内垂直(0-270o)、水平(0-360o)立体监测数据,为说清区域内污染排放特征、污染源分布等提供重要信息。同时,也是国内首台在时速120km/h 范围内仍然能边走边测的车载遥感监测设备,可针对污染源进行快速溯源、应对污染突发事件、对污染团进行追踪监测。臭氧探测激光雷达采用一体化结构设计技术,能够有效保护光路稳定、抑制灰尘累积、降低光损耗、保证产品稳定性能。该产品可同时监测颗粒物后向散射系统及臭氧浓度的时空分布,是国内首台颗粒物和臭氧时空分布信息能够同时监测的激光雷达设备,可有效监测臭氧的空间变化过程及臭氧与细粒子之间的转化过程。  无锡中科光电针对跨区域环境污染现象、污染来源无法说清、预警预报不精确等地方重大环境管理需求,在立体监测装备的支撑下,开发形成了多套应用解决方案,如:车载快速溯源解决方案、车载遥感监察解决方案、立体网格化监测解决方案、区域环境质量保障解决方案、大气监测超级站解决方案、城市与区域立体监测解决方案等,为地方政府与环境管理部门提供大气环境综合分析与监控预警应急决策一体化的整体支撑服务。坚守创新做细分行业的“隐形冠军”  在细分领域专注专业地工作,是中科光电支持的发展之路。  作为科技型企业,“ 技术创新”是企业的灵魂,是企业发展、立足生存的根本。一是对原有激光雷达技术进行优化,提升产品质量,不断推进产品零部件国产化率,降低成本,改变国内高端设备依靠进口的市场格局;二是加大研发投入、关注客户实际需求,对现有技术与新技术、新需求进行结合,赋予产品更强大、更丰富的功能,提高产品性价比,为客户创造更大的价值空间;三是满足日益国际化的竞争趋势,保持对国际、国内科技前沿的紧密关注,对公司的发展战略方向持续性提出质疑并快速反应,开发生产环境监测领域立体监测技术新产品;四是坚持产品创新与应用创新全面发展,加强企业先进制造水平,提升高端的供给能力,坚持以服务改善空气质量为导向,将中科光电打造成有内涵、有竞争力的国有科技型企业,在环境立体监测这一细分领域做大做强,为实现“中国蓝”贡献自己的力量,也能够早日走向国际,彰显中国智造的力量。不忘初心引领“智慧环保”前行  目前国内立体监测激光雷达产品的种类还比较单一,其中颗粒物激光雷达相对成熟,但大气成分监测激光雷达(O3、SO2、NOX、CO、VOCS)、气象激光雷达(风、温、湿、水汽)技术还处于起步和筹划阶段。中科光电已经做好了针对以上产品的应用扩展研究计划和产品开发计划,该系列产品将如中科光电的颗粒物激光雷达一样引领行业市场发展。  激光雷达目前还没有正式的国家规范标准,很多单位对于激光雷达的性能校验也一直存在着疑问。为了保持激光雷达的有效探测距离及探测精度、保证激光雷达的稳定性及准确性,保证雷达数据的有效性和一致性,我们将与中科院安光所刘文清院士团队共同设计相关的技术规范标准,并积极推进相关管理部门及行业用户的认可。为立体监测行业的发展贡献一份力量。  统一产品运营维护标准、提供高端运营维护服务,是中科光电目前正在部署的发展战略。他们将运用信息化系统管理,调配专业的环境工程服务人才组成客服团队,实现售前、售中监控,售后定期维护的全过程服务,使客户服务成为公司强有力的竞争王牌。  我国全指标、多样化的大气环境监测工作起步较晚,大多数情况,监测数据开发利用不足,缺少针对性强的监测数据分析,从而找不出存在的主要环境问题、对区域环境质量的变化解释不清。对监测站汇总数据进行特色加工形成监测报告,站在全局的角度思考,找出环境存在的问题,分析环境问题形成的原因,针对存在的问题提出相应的合理可行的建议,是中科光电未来三年发展的业务方向之一。中科光电正在并将持续组建专业化、标准化的环境咨询服务队伍,为各有关部门提供定制化的综合数据分析服务,共同研究、探索各监测数据间的相关性,扩展监测数据的应用价值,构建成熟的数据分析模型,使得综合分析业务成为可以效仿的工作形式,给各级地方政府当“ 参谋”、做“ 大气环境医生”,为地方空气质量达标与持续改善提供更有力的支撑。图为中科光电大气环境立体走航观测车为“一带一路”空气质量做保障
  • 上到臭氧层,下到地下水! 生态环境部开启“全方位立体监管”模式
    p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/f161c99f-e85a-4007-9779-c4064a0f0598.jpg" title=" 环境保护.jpeg" alt=" 环境保护.jpeg" / /p p   张波终于快要摆脱“生态环境部水环境管理工作有关负责人”这一绕口的头衔了。 /p p   张波原本是环保部水环境管理司的司长,今年3月,国务院机构改革开始,撤销原环保部,成立生态环境部。但由于“三定”方案一直没有公布,环境部的内设机构也没有确定,张波的头衔也就没能确定下来。这期间,他只能以“生态环境部水环境管理工作有关负责人”的名义出席新闻发布会,感觉有点别扭。 /p p   9月11日上午9点55分,中国政府网发布了《生态环境部职能配置、内设机构和人员编制规定》,也就是人们常说的“三定”方案。方案内容与8月初坊间流传出来的版本基本一致,最后一条“本规定自2018年8月1日起施行”也显示,这个文件其实早在一个月前就已经开始实施了。 /p p   说起“三定”方案后环境部最大的变化,全国工商联环境商会首席政策专家骆建华表示,新的生态环境部整合了原本分散在各部门里的各类环境因子,如大气、水、土、海洋、碳排放等,统一进行监管,这样更有利于理顺监管机制。 /p p   而按照机构改革的时间表,“三定”方案是在6月20日前报批的,年底之前就要落实到位。机构确定后,接下来还要讨论人事的问题。各个新司局的“掌门人”都是谁?成为公众关心的下一个悬念。 /p p   “管天管地管空气” /p p   “环保部门管的事现在越来越多了,最早的时候就是管管企业,做做环评、三同时等。后来增加了辐射和固废,把看不见的辐射这一块也管起来了。再后来是集中处理设施,也就是污水处理厂、垃圾处理厂。现在又增加了海洋、流域和气候变化,几乎把所有与环境有关的都管起来了。”一位从业30多年的老环保人表示。 /p p   相比于改革之前,此次“三定”方案增加了中央生态环境保护督察办公室、综合司、海洋生态环境司、应对气候变化司、固体废物与化学品司等5个司局级单位,将原政策法规司与科技标准司整合为法规与标准司,还增加了长江、黄河、淮河、海河、珠江、松辽、太湖流域生态环境监督管理局等七大派出机构,并加挂国家消耗臭氧层物质进出口管理办公室牌子。 /p p   此前,环境部整合其他部委的先例只有一次,就是1998年国家核安全局并入原国家环保总局,当时的原因是国家核安全局的上级单位原国防科工委撤销,所以才被并进了原国家环保总局。 /p p   更多的时候,环境部都是在增设新的职能和机构。例如,2016年,原环保部撤销了污染防治司和污染物排放总量控制司,又按照不同的环境要素设置了新的水环境管理司、大气环境管理司和土壤环境管理司,从而实现了“退二进三”。 /p p   这一次国务院机构改革,环境部新增的机构则大多是整合原发改委、海洋局、水利部、国土部等其他部委的职能。骆建华表示,这么做是为了整合各类环境因子,统一进行监管。 /p p   “过去环境因子分散在各个部门,协调起来比较麻烦。比如海上漏油事故归海洋局管,环保部门发表不了意见,有时候不利于事故的处理。”他表示,现在无论空中、地下、海里、水里,都统一归环境部全方位立体监管了,更有利于污染问题的解决。 /p p   环境部部长李干杰也表示,我国生态环境保护体制机制方面长期存在两个突出问题,一是职能交叉重复,叠床架屋、多头治理,二是监管者和所有者没有很好地区分,既是运动员又是裁判员。 /p p   “组建生态环境部,整合分散的生态环境保护职能,实现了所有者和监管者分开,还可以实现‘五个打通’:打通‘地上和地下’,打通‘岸上和水里’,打通‘陆地和海洋’,打通‘城市和农村’,打通‘一氧化碳和二氧化碳’。”他表示。 /p p   “以前环保部号称是‘上管天,下管地,中间还要管空气’,现在不光这些了,上到臭氧层,下到地下水,中间还有看不见的辐射,包括海里的、河里的,以后都要管起来了。”前述老环保人说。 /p p   “权力不是无限大” /p p   其实,早在“三定”方案公布之前,原发改委应对气候变化司及国家应对气候变化战略研究和国际合作中心、原国家海洋局生态环境保护司、原南水北调办环境保护司,以及水利部、原国土资源部部分人员的转隶工作就已经落实,基本上实现了工作的“无缝衔接”。 /p p   虽然所有环境因子都被统一监管了,但环境部的权力也不是无限大,它主要的职责定位还是“监管”,统一行使生态环境监管者职责。 /p p   “环境部的主要职能应该还是制定法律,制定规划,督促规划落实,当上下游发生环境冲突时,协调上下游的矛盾。”骆建华说,比如当上游污染下游水质时,如何协调解决纠纷 上游为保护下游水质做出牺牲时,如何协调下游进行生态补偿,这些都需要中央层面来协调。 /p p   “三定”方案也显示,环境部的主要职责主要包括建立健全生态环境基本制度、重大生态环境问题的统筹协调和监督管理、监督管理国家减排目标的落实、环境污染防治的监督管理,以及统一负责生态环境监督执法等。 /p p   “重点是强化四大职能,一是制度制定,即统一制定生态环境领域政策、规划和标准 二是监测评估,即统一负责生态环境监测工作,评估生态环境状况,统一发布生态环境信息 三是监督执法,即整合污染防治和生态保护的综合执法职责、队伍,统一负责生态环境执法 四是督察问责,即对地方党委政府和有关部门生态环境工作进行督察巡视。”李干杰也表示。 /p p   在骆建华看来,未来,环境部还要进一步厘清它与其他国务院部门之间横向的交叉关系,以及中央与地方纵向的分工关系。横向方面,管发展、管生产、管行业的部门也要按照职责清单抓好生态环境保护,谁的事情谁干,谁的孩子谁抱。 /p p   “比如农业面源污染,就需要农业部门来管理,环保部门也不能让农民少用化肥和农药,它主要的职责还是监管。”骆建华说。 /p p   纵向方面,也要把中央的环保职责和地方各级的环保职责梳理清楚,搞清楚互相之间的边界,这样一旦出了问题,才好进行追责和问责。 /p p   “现在中央这一块才刚刚调整到位,地方调整还需要一个过程。包括部门设置、人员配置等,还需要一定的时间,慢慢才会将地方的环保职能理顺到位。”骆建华说。 /p
  • 半导体所在多层石墨烯边界的拉曼光谱研究方面获进展
    单层石墨烯(SLG)因为其近弹道输运和高迁移率等独特性质以及在纳米电子和光电子器件方面所具有的潜在应用而受到了广泛的研究和关注。每个SLG样品都存在边界,且SLG与边界相关的物理性质强烈地依赖于其边界的取向。在本征SLG边界的拉曼光谱中能观察到一阶声子模-D模,而在远离边界的位置却观察不到。研究发现边界对D模的贡献存在一临界距离hc,约为3.5纳米。但D模的倍频模-2D模在本征SLG边界和远离边界处都能被观察到。因此,D模成为研究SLG的晶畴边界、边界取向和双共振拉曼散射过程的有力光谱手段。   SLG具有两种基本的边界取向:&ldquo 扶手椅&rdquo 型和&ldquo 之&rdquo 字型。与SLG不同,多层石墨烯(MLG)中每一石墨烯层都具有各自的边界以及相应的边界取向。对于实际的MLG样品,其相邻两石墨烯层的边界都存在一个对齐距离h。h可以长到数微米以上,也可短到只有几个纳米的尺度。当MLG的所有相邻两石墨烯层的h等于0时,我们称之为MLG的完美边界情况。MLG边界复杂的堆垛方式以及存在不同h和取向可显著影响其边界的输运性质、纳米带的电子结构和边界局域态的自旋极化等性质。尽管SLG边界的拉曼光谱已经被系统地研究,但由于MLG边界复杂的堆垛方式,学界对其拉曼光谱的研究还非常少。   最近,中国科学院半导体研究所博士生张昕、厉巧巧和研究员谭平恒等人,对MLG边界的拉曼散射进行了系统研究。他们首先对MLG边界进行了归类,发现N层石墨烯(NLG)的基本边界类型为NLGjE,即具有完美边界的jLG置于(N-j) LG上。因此,双层石墨烯(BLG)的边界情况可分为BLG1E+SLG1E和BLG2E两种情况。研究发现:(1)NLG1E边界与具有缺陷结构的NLG的D模峰形相似,其2D模则为NLG和(N-1)LG的2D模的叠加。(2)在激光斑所覆盖区域的多层石墨烯边界附近,相应层数石墨烯的2D模强度与其面积成正比,而相应的D模强度则与在临界距离内的对齐距离(如果h
  • 空气网格化监管系统进入立体化监测时代
    p style=" text-align: right "    i ——北京伟瑞迪科技有限公司、国信聚远科技服务(北京)有限公司和山东山宇环境科技公司联合推出大气环境立体化网格监管系统 /i /p p   为切实推进生态环境攻坚专项行动,打好重点区域大气污染综合治理攻坚战,强化督查已经成为新的环境执法长效机制。环境治污,监测先行。在推进环境管理从污染防治向环境质量管理转变、努力满足人民群众对生态环境质量更高期待和要求的新形势下,致力于国内城市精准治污的高效网格化环境监管系统应运而生。因其精准、科学,能有效提升治理区域大气污染的工作效率,能为环境监管提供数据和技术支持等优势,成为城市环境监测的新主流,也备受一些地方政府的喜爱。 /p p   目前,主流网格化环境监管系统的解决方案是将某个城市以乡镇、社区(村)为单元,分级划定大气污染防治管理网格,大范围、高密度的布点,建设基于传感器技术的空气质量监测“微站”,做到城市区域网格全覆盖,实时监测每个网格内主要污染物的动态变化和趋势,客观真实反映污染现状,快速捕捉污染异常排放行为并自动报警,形成一张空气监测的“天网”。 /p p   除此之外,网格化环境监管系统可同步将“微站”和现有的空气质量标准站点结合起来,进行监测数据叠加、对比分析和校准,从而获取全城市高密度、高频度的空气污染物浓度监测数据,运用基于GIS的后台数据分析系统,进行监测数据的筛查校准、统计分析和动态图绘制,实现城市区域大气污染物浓度的时空动态变化趋势分析,对污染源起到最大程度的监管作用,为环境执法和决策提供直接依据。 /p p   然而,现有网格化环境监管系统仅能提供近地面的“微站”监测数据,无法获取不同高度层的污染变化趋势,只能依靠污染物扩散趋势进而去判断、追溯污染来源 “微站”监测数据准确度相对较低,在监测数据质量控制上大都采用监控平台与标准的常规大气自动监测站数据进行比对和基因算法校准的方式。总之,现有网格化监管系统还有不少亟须提升、完善的地方。 /p p   针对现有网格化监管系统之不足,北京伟瑞迪科技有限公司、国信聚远科技服务(北京)有限公司和山东山宇环境科技公司强强联合,综合利用“微站”技术、傅里叶变换红外光谱技术和激光雷达探测技术,以提升网格化环境监管系统效能为中心,开放融合,集众所长,集成天地一体化立体监测、精准溯源、靶向管控及科学评估等最先进的物联网理念和技术,既将“精准”放在对污染源的精准把控上,又追求对数据的监测精准上,鼎力推出城市大气环境立体化网格监管系统,可实现对城市空气VOCs等有害气体、细颗粒物、臭氧的立体化、网格化、全方位、全过程监控。 /p p   该系统根据城市无组织排放源的分布特点,在城区、商业餐饮、工地、环路和主干道、工业园区、工矿企业边界等敏感区域,构建以傅里叶变换红外光谱技术和激光雷达探测技术为网格中心,以“微站”为网格高密度监测点的立体化、网格化、全方位实时监测网络。 /p p   平台包括网格监测、空气质量监控预警、污染溯源、趋势分析、应急响应、决策支持等功能模块 拥有在线监测、执法监督、精细管理、精准溯源、统计应用、在线指挥功能,成为集众所长、多项融合、开放包容的的环保大数据平台。通过物联网技术手段,实现生态环境攻坚的精准施策和靶向管控。具备以下特点: /p p   1、“立体式”协同监测网络和专业性的数据校准体系。充分考虑城市产业结构和排污强度,针对不同地区不同排污特点,通过科学合理的“组合布点”适当细化网格,“微站”与“边界站”相结合,组成“立体式”协同监测网络和专业性的数据校准体系。 /p p   2、地面污染源监测无死角,智能高效的溯源解析。除网格化监测数据之外,系统还可收集气象数据、重点污染源在线监测数据、空气质量标准化监测站点数据,根据浓度水平和变化数据,为精准治理提供依据,为治理考核提供技术支撑。消除监管盲区,提升环境监管效能。 /p p   3、多种污染物实时快速分析,三维空间数据精准展示:可同时监测多种污染气体,时间分辨率精确到1min。采用遥感傅里叶变换红外光谱技术,远距离对气体多组份混合排放物进行实时监测、连续自动快速分析,可获得地面或高空大区域三维空间数据。可测定大气中污染物的总携载量、污染源排放量、烟羽的动态分布、大气扩散参数及进行定量研究点源、监测优化选点等,实现环境监测数据模型化、精细化、准确化。 /p p   4、监测与监管的协同联动,便捷、综合化的监管。系统发现异常排放,可自动报警并将报警信息发送至相关责任单位,实现监测与监管协同联动。污染物数据可通过监控中心、手机APP等管理平台实时查看,科学分析,实时捕捉和快速锁定主要污染排放来源。 /p p   5、基于空气质量监测数据,进行定量化、精细化分析。建立气体污染快速决策与评估体系,分析城区的污染来源及贡献,并提出不同的污染减排建议,对产生的环境影响进行评估,弄清大气重污染的成因和来源,为城区及时了解污染现状及污染物来源提供技术支撑,同时为城市大气污染防治提供科学有效的综合解决方案。 /p p    i strong 关于伟瑞迪 /strong /i :北京伟瑞迪科技有限公司是以国家重点高等院校研究技术成果为基础成立的创新型高科技企业,致力于提供智慧环保、环境监测、污染防控、安全管理等系统解决方案和专业的技术应用服务。先后推出工业园区气体污染在线立体防控系统、城市空气质量实时多尺度智能分析决策系统、LDAR综合管理系统和噪声扬尘在线监测系统等,可真正实现工业园区和城市污染源的实时精细网格化管理,快速有效提升区域空气质量。 /p p    i strong 关于国信聚远 /strong /i :国信聚远科技服务(北京)有限公司是我国环境光学领域高科技创新企业,构建了基于傅里叶变换红外光谱、紫外差分吸收光谱和激光雷达等为核心的多种技术平台,可提供区域环境监测、化工园区环境监测、安全预警应急监测、污染源在线监测和区域无组织排放实时监测等多种技术设备与解决方案。 /p
  • 伟瑞迪 I 空气网格化监管系统进入立体化监测时代
    导读:构建以傅里叶变换红外光谱技术和激光雷达探测技术为网格中心,以“微站”为网格高密度监测点的立体化、网格化、全方位实时监测网络。——北京伟瑞迪科技有限公司、国信聚远科技服务(北京)有限公司和山东山宇环境科技公司联合推出大气环境立体化网格监管系统  为切实推进生态环境攻坚专项行动,打好重点区域大气污染综合治理攻坚战,强化督查已经成为新的环境执法长效机制。环境治污,监测先行。在推进环境管理从污染防治向环境质量管理转变、努力满足人民群众对生态环境质量更高期待和要求的新形势下,致力于国内城市精准治污的高效网格化环境监管系统应运而生。因其精准、科学,能有效提升治理区域大气污染的工作效率,能为环境监管提供数据和技术支持等优势,成为城市环境监测的新主流,也备受一些地方政府的喜爱。目前,主流网格化环境监管系统的解决方案是将某个城市以乡镇、社区(村)为单元,分级划定大气污染防治管理网格,大范围、高密度的布点,建设基于传感器技术的空气质量监测“微站”,做到城市区域网格全覆盖,实时监测每个网格内主要污染物的动态变化和趋势,客观真实反映污染现状,快速捕捉污染异常排放行为并自动报警,形成一张空气监测的“天网”。  除此之外,网格化环境监管系统可同步将“微站”和现有的空气质量标准站点结合起来,进行监测数据叠加、对比分析和校准,从而获取全城市高密度、高频度的空气污染物浓度监测数据,运用基于GIS的后台数据分析系统,进行监测数据的筛查校准、统计分析和动态图绘制,实现城市区域大气污染物浓度的时空动态变化趋势分析,对污染源起到最大程度的监管作用,为环境执法和决策提供直接依据。然而,现有网格化环境监管系统仅能提供近地面的“微站”监测数据,无法获取不同高度层的污染变化趋势,只能依靠污染物扩散趋势进而去判断、追溯污染来源 “微站”监测数据准确度相对较低,在监测数据质量控制上大都采用监控平台与标准的常规大气自动监测站数据进行比对和基因算法校准的方式。总之,现有网格化监管系统还有不少亟须提升、完善的地方。  针对现有网格化监管系统之不足,北京伟瑞迪科技有限公司、国信聚远科技服务(北京)有限公司和山东山宇环境科技公司强强联合,综合利用“微站”技术、傅里叶变换红外光谱技术和激光雷达探测技术,以提升网格化环境监管系统效能为中心,开放融合,集众所长,集成天地一体化立体监测、精准溯源、靶向管控及科学评估等最先进的物联网理念和技术,既将“精准”放在对污染源的精准把控上,又追求对数据的监测精准上,鼎力推出城市大气环境立体化网格监管系统,可实现对城市空气VOCs等有害气体、细颗粒物、臭氧的立体化、网格化、全方位、全过程监控。  该系统根据城市无组织排放源的分布特点,在城区、商业餐饮、工地、环路和主干道、工业园区、工矿企业边界等敏感区域,构建以傅里叶变换红外光谱技术和激光雷达探测技术为网格中心,以“微站”为网格高密度监测点的立体化、网格化、全方位实时监测网络。  平台包括网格监测、空气质量监控预警、污染溯源、趋势分析、应急响应、决策支持等功能模块 拥有在线监测、执法监督、精细管理、精准溯源、统计应用、在线指挥功能,成为集众所长、多项融合、开放包容的的环保大数据平台。通过物联网技术手段,实现生态环境攻坚的精准施策和靶向管控。具备以下特点:  1、“立体式”协同监测网络和专业性的数据校准体系。充分考虑城市产业结构和排污强度,针对不同地区不同排污特点,通过科学合理的“组合布点”适当细化网格,“微站”与“边界站”相结合,组成“立体式”协同监测网络和专业性的数据校准体系。  2、地面污染源监测无死角,智能高效的溯源解析。除网格化监测数据之外,系统还可收集气象数据、重点污染源在线监测数据、空气质量标准化监测站点数据,根据浓度水平和变化数据,为精准治理提供依据,为治理考核提供技术支撑。消除监管盲区,提升环境监管效能。  3、多种污染物实时快速分析,三维空间数据精准展示:可同时监测多种污染气体,时间分辨率精确到1min。采用遥感傅里叶变换红外光谱技术,远距离对气体多组份混合排放物进行实时监测、连续自动快速分析,可获得地面或高空大区域三维空间数据。可测定大气中污染物的总携载量、污染源排放量、烟羽的动态分布、大气扩散参数及进行定量研究点源、监测优化选点等,实现环境监测数据模型化、精细化、准确化。  4、监测与监管的协同联动,便捷、综合化的监管。系统发现异常排放,可自动报警并将报警信息发送至相关责任单位,实现监测与监管协同联动。污染物数据可通过监控中心、手机APP等管理平台实时查看,科学分析,实时捕捉和快速锁定主要污染排放来源。  5、基于空气质量监测数据,进行定量化、精细化分析。建立气体污染快速决策与评估体系,分析城区的污染来源及贡献,并提出不同的污染减排建议,对产生的环境影响进行评估,弄清大气重污染的成因和来源,为城区及时了解污染现状及污染物来源提供技术支撑,同时为城市大气污染防治提供科学有效的综合解决方案。关于伟瑞迪:北京伟瑞迪科技有限公司是以国家重点高等院校研究技术成果为基础成立的创新型高科技企业,致力于提供智慧环保、环境监测、污染防控、安全管理等系统解决方案和专业的技术应用服务。先后推出工业园区气体污染在线立体防控系统、城市空气质量实时多尺度智能分析决策系统、LDAR综合管理系统和噪声扬尘在线监测系统等,可真正实现工业园区和城市污染源的实时精细网格化管理,快速有效提升区域空气质量。  关于国信聚远:国信聚远科技服务(北京)有限公司是我国环境光学领域高科技创新企业,构建了基于傅里叶变换红外光谱、紫外差分吸收光谱和激光雷达等为核心的多种技术平台,可提供区域环境监测、化工园区环境监测、安全预警应急监测、污染源在线监测和区域无组织排放实时监测等多种技术设备与解决方案。
  • 无人机监测系统填补技术盲区 助力大气监测精准度升级
    p   12月中旬,中国科学院生态环境研究中心痕量气体大气化学研究组协同多家单位成功开展了无人机大气立体监测系统实验。这一监测系统填补了大气环境监测和研究盲区,提升了监测的精准程度,契合了当前大气污染科学迫切需要全方位精细化监测的需求。 /p p   伴随着一声“开始降落”的指令,在河北望都县农村环境研究站,新研制的无人机大气立体监测装备完成污染物监测和数据传输任务之后稳稳落地。 /p p   12月中旬,中国科学院生态环境研究中心痕量气体大气化学研究组协同多家单位成功开展了无人机大气立体监测系统实验。据项目负责人张成龙介绍,这一监测系统首次将低功耗大流量颗粒物采样技术、多通道真空气体采样技术与无人机技术结合,契合了当前大气污染科学迫切需要全方位精细化监测的需求。 /p p   填补大气环境监测和研究盲区 /p p   在对流层大气中,大气污染物多从近地面垂直向上或水平扩散,作为大气化学反应重要驱动力的太阳辐射则自上而下传输。因此,张成龙认为,大气环境化学研究不能只关注近地面污染,还要关注一定高度范围(特别是边界层)内的大气层结构和成分变化,否则很难全面揭示对流层实际的大气化学反应过程。 /p p   此前已有多种大气环境垂直监测方法得到应用,如大气边界层塔、有人飞机、气球及气艇等。但边界层塔位置固定,高度通常在300米以下,且多建于城市地区 有人飞机只能在数百米及以上的高度飞行 气球或气艇抗风能力和移动性差,需要填充大量氦气,单次运行成本高。这些方法已经无法满足新时期大气污染研究的需求。 /p p   “无人机的机动性和灵活性可以有效弥补上述缺陷,让原来不容易接近的地方变得容易到达,使大气监测真正做到动态性和立体性。”张成龙说,“农村地区不同于城市地区,它的下垫面多为农田和低矮村庄,大气污染物处于较低大气层,正好是无人机适合飞行和采集样本的高度。” /p p   无人机大气立体监测系统为农村大气面源污染的深入研究提供重要工具,也为区域大气氧化性、大气光化学过程及二次颗粒物形成等深入研究提供基础数据。 /p p   精准化大气研究工具 /p p   记者了解到,在中科院无人机大气监测系统实验成功之前,市场上已经有少数无人机产品应用于环境监测领域并和政府环境执法活动展开合作。对此,为本次无人机大气监测系统提供无人机设备的华翼天基科技有限公司相关负责人表示:“市场上的无人机设备不仅用于环保,也用于电力、消防等,并不专业,只是搭载几种空气传感器,远远不能解决大气多样化和精准化的监测需求。” /p p   为此,张成龙带领团队为提升系统精准化做出了一系列努力。 /p p   在传感器选择阶段,研发团队找到曾对传感器精度做了长期比对工作的南京信息工程大学教授庞小兵进行取经。庞小兵告诉《中国科学报》记者,大气传感器会受到大气温度、湿度、其他共存成分以及电信号噪音的干扰,因此要通过多种技术手段降低上述因素对传感器精度的影响。 /p p   最终,他们确定了具有较强抗干扰能力、能在实际大气气体中提取精确信息的低功耗大流量颗粒物采样器、多通道真空气体采样器以及传感器。传感器可一次性记录和传输10种参数,包括颗粒物、PM2.5和PM10等常规污染物参数。除此之外,采样设备随无人机升空之前,要经过地面标准台站的数据校准 无人机升空之后,还要保证提前计算设计好的采样器体积、续航能力等均满足远程控制、GPS三维定点悬停以及收集足够分量大气样品的要求。 /p p   该立体监测系统攻克了低功耗大流量颗粒物采样以及多通道真空气体采样等关键技术,实现大气颗粒态、气态以及液态等样品的立体化定点采样,为大气污染全方位立体化的精确诊断提供重要的技术支持。 /p p   从无到有的科研“创业” /p p   在张成龙看来,这次无人机大气监测系统的实验成功是一次从无到有的科研“创业”。没有充足的资金来源,参与研制并提供传感器、采样器、无人机的企业也没有向他索取任何费用,但他们却向着一个共同的目标努力。 /p p   这支由交叉学科领域的人员临时搭建的“梦之队”,不断突破技术难点,根据大气采集监测系统需要满足的科研要求对产品进行完善。华翼天基相关负责人表示:“为了提升监测系统在高空收集样品时的抗风能力和稳定性,我们专门为无人机设计了气动外形结构。” /p p   谈到无人机大气监测系统的应用前景,张成龙则认为“一千个人有一千个想法”。目前也有一些科研单位出于兴趣联系他们。在立体化精准化大气化学研究工具的应用前景之外,他大胆设想,未来在火灾、垃圾焚烧、环境污染执法等应急监测领域,无人机可以到达人们无法接近的地方发挥更大的作用,希望不同行业的人看到这个系统都能对其应用萌生不同的想法。 /p
  • 开放融合,集众所长,北京伟瑞迪创新推出城市环境空气立体网格化监管系统
    为切实推进生态环境攻坚专项行动,打好重点区域大气污染综合治理攻坚战,强化督查已经成为新的环境执法长效机制。强化督查在方法上突出执法重点,在区域上突出污染防治重点地区;在行业上紧盯“散乱污”企业,集中优势兵力,注重执法效率;切实传导压力,严肃追责问责。环境治污,监测先行在推进环境管理从污染防治向环境质量管理转变、努力满足人民群众对生态环境质量更高期待和要求的新形势下,如果依然沿用过去环保部门传统的人工排查和监管,显然会力不从心。只有依靠科技手段,精准找到污染源头、科学施策,对症下药,才能让每一处污染无处遁形,才能形成真正的科学决策!近年来,致力于国内城市精准治污的高效网格化环境监管系统应运而生。因其精准、科学,能有效提升治理区域大气污染的工作效率,能为环境监管提供数据和技术支持等优势,成为城市环境监测的新主流,也备受一些地方政府的喜爱。甘肃兰州、山东济南、河南郑州、北京通州、山东济宁、河北廊坊等市已经实施了城市网格化监测系统,而且正在如火如荼的迅猛发展。网格化环境监管系统网格化环境监管系统,顾名思义,就是将某个城市以乡镇、社区(村)为单元,分级划定大气污染防治管理网格,大范围、高密度的布点,建设基于传感器技术的空气质量监测“微站”,做到城市区域网格全覆盖,实时监测每个网格内主要污染物的动态变化和趋势,客观真实反映污染现状,快速捕捉污染异常排放行为并自动报警,形成一张空气监测的“天网”。“微站”和现有的空气质量标准站点可同步结合起来;进行监测数据叠加、对比分析和校准,从而获取全市高密度、高频度的空气污染物浓度监测数据。运用基于gis的后台数据分析系统,进行监测数据的筛查校准、统计分析和动态图绘制,实现城市区域大气污染物浓度的时空动态变化趋势分析,对污染源起到最大程度的监管作用,为环境执法和决策提供直接依据。一般来说,网格化环境监管系统由感知层、平台层和应用层三个部分组成,其显著特点有“四可一高效一及时”,即:结果可信,污染可管、事件可查、行为可控、处置高效、发现及时。网格化监管体系建设是问题不断解决、措施不断完善、功能不断升级、效能不断提升的过程。目前,已建设网格化环境监管系统的城市感知层的神经末梢大都是网格人员或视频图像采集系统。对于网格内所有污染源类型、规模、治污设施运行等依靠统计台账来监管;对于企业的环境违法行为依靠人工巡查、发现、上报;依靠污染物扩散趋势进而去判断、追溯污染源;在监测数据质量控制上大都采用与标准的常规大气自动监测站数据进行比对和基因算法校准的方式。总的来说,该系统还有不少亟须提升、完善的地方。伟瑞迪公司是一家以提升网格化环境监管系统效能为中心的公司,是以国家重点高等院校研究技术成果为基础成立的创新型高科技企业,致力于提供智慧环保、环境监测、污染防控、安全管理等系统解决方案和专业的技术应用服务。先后推出工业园区气体污染在线立体防控系统、城市空气质量实时多尺度智能分析决策系统、ldar综合管理系统和噪声扬尘在线监测系统等,可真正实现工业园区和城市污染源的实时精细网格化管理,快速有效提升区域空气质量。伟瑞迪开放融合,集众所长,与山东山宇环境科技公司和国信聚远科技服务(北京)有限公司达成战略合作,集成天地一体化立体监测、精准溯源、靶向管控及科学评估等最先进的物联网理念和技术,既将“精准”放在对污染源的精准把控上,又追求对数据的监测精准;鼎力推出城市大气环境网格化立体监管系统。 该系统根据城市无组织排放源的分布特点,在城区、商业餐饮、工地、环路和主干道、工业园区、工矿企业边界等敏感区域高密度布点(1~3×1~3平方千米),建设全面覆盖区域的网格实时监测网络。平台包括网格监测、空气质量监控预警、污染溯源、趋势分析、应急响应、决策支持等功能模块;拥有在线监测、执法监督、精细管理、精准溯源、统计应用、在线指挥等功能,成为集众所长、多项融合、开放包容的的环保大数据平台。通过物联网技术手段,实现生态环境攻坚的精准施策和靶向管控。网格化环境监管系统优势★“立体式”协同监测网络,实现城乡全覆盖。专业性的数据校准体系,充分考虑各城市产业结构和排污强度,针对城市、商业、乡镇、工业企业、工业园区、道路交通、建筑工地、区域边界、污染物传输通道等多种监测对象和参数,通过科学合理的“组合布点”适当细化网格,在城区近郊及远郊区县、传输通道上建立边界站,组成“立体式”协同监测网络和专业性的数据校准体系,实现对城乡监测网络全覆盖。★消除监管盲区,提升环境监管效能。地面污染源监测无死角,智能高效的溯源解析。二代“黑匣子”、厂界噪声和有组织及无组织排放特征污染物监测“微站”,可以24小时在线监控小微污染源工况、治污设施运行情况和主要污染物的动态变化及趋势;实时捕捉企业污染异常排放行为并自动报警,并精准锁定到具体排放污染源;对企业违法行为进行溯源和查证。结合气象数据,重点污染源在线监测和空气质量标准化监测站点环境质量参数的浓度水平和变化数据,为精准治理提供依据,为治理考核提供技术支撑。★实现多种污染物实时快速分析,三维空间数据精准展示。系统可同时监测多种污染气体,时间分辨率精确到1min。采用遥感傅里叶变换红外光谱技术,远距离对气体多组份混合排放物进行实时监测、连续自动快速分析,可获得地面或高空大区域三维空间数据。可测定大气中污染物的总携载量、污染源排放量、烟羽的动态分布、大气扩散参数及进行定量研究点源、监测优化选点等,实现环境监测数据模型化、精细化、准确化。★便捷、综合化的监管,实现与监测的协同联动。系统发现异常排放,可自动报警并将报警信息发送至相关责任单位,实现监测与监管协同联动。污染物数据可通过监控中心、手机app等管理平台实时查看,科学分析,实时捕捉和快速锁定主要污染排放来源。★优质的软件平台,灵活的方案配置。通过中心端软件平台,实现多站点数据集成、分析、上报和发布。可根据政府管理机构的不同部门、不同级别的不同需求定制开发多种监管功能,可分大气环境监管型或环境监督执法型。★低成本运行,高密度布点。微观站设备成本投入低,适合大范围、高密度布点。可实时、连续、长期运行,操作简单,维护方便,运行成本低,运维费用较低。★提供科学有效的综合解决方案。基于空气质量监测数据,进行定量化、精细化分析,建立气体污染快速决策与评估体系,分析城区的污染来源及贡献,并提出不同的污染减排建议,对产生的环境影响进行评估,弄清大气重污染的成因和来源,为城区及时了解污染现状及污染物来源提供技术支撑。
  • 超站联盟会议 ▏听大师们谈超级站技术和京津冀及周边地区的污染
    2017年12月1日,中国大气超站联盟技术交流会暨京津冀及周边地区大气重污染成因研讨会在山东德州隆重举行。此次会议由北京大学环境科学与工程学院、中国环境监测总站共同主办。会议邀请了环保部环境监测司环境质量监测处处长肖建军、中国21世纪议程中心资源环境处处长王磊、国家大气污染防治攻关联合中心主任/中国环境科学研究院院长李海生、中国环境监测总站站长柏仇勇、中国工程院院士刘文清、张远航等多位领导专家出席。会议就大气重污染过程的立体探测与气象影像判识、京津冀及周边地区大气重污染成因综合观测实验、京津冀及周边地区大气重污染成因与来源分析、超级站综合观测实验质控与数据共享、超级站运行和数据分析的技术交流与经验分享等主题进行了研讨,做了专项报告。中科光电激光雷达为多位专家学者的报告提供了有力的数据支撑。张远航院士主持开幕式开幕式致辞柏仇勇站长在开幕式致辞上发表了重要讲话,他认为:1.要通过超站联盟实现资源整合和互联共享,要实现已建超站的联合,专家资源的共享。2.各级监测站要积极参与到超站联盟中去。3.加强国产仪器的研发投入,总理基金两个方面,观测与数据共享。4.科研院所专家资源应参与到污染成因、机理及来源解析中去。柏站长还表示,十九大有两个号召,一是打好大气污染防治攻坚战,二是打赢蓝天保卫展。要说的清,说的准,说的明。大会主旨报告在大会主旨报告中,众多专家学者分享了自己现阶段的研究项目。中科光电激光雷达以精准的监测结果,为多个研究项目提供了理想的数据。中国科学院安徽光学精密机械研究所(以下简称“安光所”)刘文清院士在会上报告了《大气污染立体探测与超站联网监测》,着重提出了超站的区域质控中心建设问题。目前,全国超站点位众多,仪器设备众多,数据种类多样且数据量大,未来需要通过平台进行数据集成共享、组网联动。地基遥感设备的质控及数据分析是超站良好运行的重要组成部分,包括颗粒物激光雷达、臭氧激光雷达、多轴差分吸收光谱仪等。中科光电依托安光所,以环境光学监测仪器工程技术中心为支撑,持续为地基遥感提供核心技术,在立体监测设备层面追求不断更新。 刘文清院士汇报中提及立体监测新设备——双镜微脉冲激光雷达在新设备的研发层面,中科光电与刘院士团队联合研发出一款立体监测新设备——大气颗粒物监测激光雷达(双镜微脉冲激光雷达)。雷达集所有功能为一体,机身小巧轻便,双望远镜光路结构设计更是真正实现激光雷达零盲区探测。该雷达以集成化、零盲区、便携性、多参数、可视化等优势获得了众多关注。北京大学环境与工程学院研究员陆克定、郭松在汇报中也以激光雷达为实验设备。郭松在《德州超级站综合观测进展》的报告中,用大气臭氧探测激光雷达为京津冀的大气污染提供了强力观测。中科光电与安光所作为现阶段臭氧激光雷达技术研发最为成熟的团队,已领先将臭氧激光雷达推向了国内市场。 左图陆克定报告,右图郭松报告 中国环境监测总站大气室主任宫正宇研究员做了《区域组分网建设进展与污染过程分析》的报告,其中展示了国家区域站和组分网大气颗粒物监测激光雷达监测结果(含中科光电产品),对典型污染过程成因进行了分析研究。宫正宇认为,组分网固定站点和污染带输送通道区域站激光雷达监测较好地组成了颗粒物的立体空间监测网络。此外,总站程麟均博士在报告中提出了激光雷达数据统一标准的需求,认为这是大范围区域组网分析的必不可少的基础工作。 左图宫正宇报告,右图程麟均报告 安光所研究员张天舒在大会上提到,利用模式结合组网分析、走航追踪等监测方法,能够更好的研究污染过程,有利于掌握京津冀的气溶胶区域污染分布。这两种监测方法已熟练应用于中科光电的监测业务中。同时,安光所与中国气象科学研究院研究员张小曳展开课题合作。在课题研究中,激光雷达消光系数为研究异常逆温下的气溶胶垂直分布污染及边界层层结结构提供了优质的监测数据,有效支撑了污染扩散趋势研究。 左图张天舒报告,右图张小曳报告中科院大气物理所研究员胡非,在《边界层结构和湍流过程对大气重污染的影响》报告中提出了物质边界层的概念,并用激光雷达的反演来计算边界层高度的差别,以此进行了讨论。聚光科技工程师唐静玥在会上介绍了仪器国产化的公关研制现状,她认为,目前大多数国产仪器依托高校科研院所走出一条产学研相结合的道路。例如,中科光电依托中科院安光所进行的产业化之路。 左图胡非报告,右图唐静玥报告中科光电技术总监郑龙飞也在此次大会分享了《超站平台在厦门金砖保障的应用》,给大家展示了安光所、中科光电在金砖保障期间的超站数据平台的功能应用。保障期间,中国科学技术大学教授刘诚为厦门超站提供了大力支持。刘诚团队通过将卫星反演数据实时推送进平台,直观了解到厦门地区污染物时空分布,掌握了大气层污染物变化趋势,与地基遥感监测数据相互佐证。金砖保障期间刘诚团队的卫星遥感监测凭借着严格的数据质控、数据分析及报告系统核心模块,安光所、中科光电不负众望,满足了专家们的会商需求,得到了福建省环境监测中心、厦门市环境监测中心高度肯定。中科光电技术总监向大家展示金砖保障期间超站数据平台的功能应用院士互动会议期间,中科光电业务总监盛世杰就超站建设、质控等向张远航院士进行了请教。张院士表示未来要进一步加强推动超站建设规范落地,加强提升设备质控和数据共享能力。除此之外,将超站运作建设形成指南且尽快形成草案,通过京津冀大气重污染公关项目推动超站的联网监测,建立合作机制、共享机制。张院士呼吁欢迎更多的像中科光电这样的企业能够加入到超站联盟中来,为总站及全国的超站业务出力。中科光电一直以来热忱的参与了众多超级站大型观测项目,如15年福建青奥会,17年厦门金砖会晤等,并踊跃参与高校、科研院课题合作研究,积极响应十九大“打好大气污染防治攻坚战”、“打赢蓝天保卫战”的两个号召,共同推进超级站的资源整合、数据共享和国标建立,全力支持我国的环境事业。
  • “地空一体化”扬尘在线监控系统
    扬尘是由于地面上的尘土在风力、人为带动及其他带动条件下而进入大气的开放性污染源,是环境空气中总悬浮颗粒物的重要组成部分,也是雾霾形成的主要原因之一。城市扬尘源具有开放性、空间多源性、广泛性、排放随机性等特征。当前城市区域扬尘来源分为一次扬尘和二次扬尘。一次扬尘是在处理散状物料时,由于诱导空气的流动,将粉尘从处理物料中带出而污染局部地带。二次扬尘是由于流动空气及设备部件转动生成的气流,把沉落的粉尘再次扬起而导致的。城市扬尘种类  工地扬尘主要成分粒径分布排放特点影响程度矽尘、水泥厂、木屑粉尘、石膏粉尘、岩棉泡沫尘等粒径10um的颗粒物约占65%;粒径1um的颗粒物约占95%面源排放25%~40%市区施工工地对城市环境空气质量影响较大     交通扬尘主要成分粒径分布排放特点影响程度块、沙土、垃圾、废物、生物碎屑、路面老化破损、尾气排放、机动车刹车片、轮胎磨损等粒径10um的颗粒物约占47%;粒径1um的颗粒物约占95%线源排放25%~35%;主干交通车流、人流量大,对城市环境空气质量影响较大。   工业粉尘、烟尘主要成分粒径分布排放特点影响程度金属粉尘、木材粉尘,水泥粉尘、生物粉尘、金属融粒,木油煤不完全燃烧产生的烟尘等粒径分布范围广,机械加工和粉碎产生的粉尘粒径较大,不完全燃烧产生的烟尘和冶金产生的金属融粒粒径较小。室内排放为主,封闭性较好,烟尘主要通过点源对外排放15%~30%一般离市区比较远,封闭性较好,对城市环境空气质量影响较小。 城市扬尘监控现状  当前城市扬尘在线监测手段可进行颗粒物浓度、噪声、视频、温湿压、风等多重参数综合监测,但由于城市扬尘排放具有无组织排放、排放源类型复杂、易扩散及存在偷排、漏排现象等特点,导致城市扬尘监控仍面临以下问题:  监控难:工地多、无组织,扬尘布点监控难,监测人力少;  分析难:局地以及外源传输的一次、二次粗、细颗粒物混杂,扬尘监控网络未建立,数据积累不足,监测数据简单堆积,需要逐一甄别,效率低;近地面点式监测,难以说清楚区域内扬尘的来源、分布和变化趋势;  追责难:收集证据难,且未建立明确的评价指标、体系以及依法追责制度,难以实现追责和有效管理。 “地空一体化”扬尘在线监控系统   中科光电“地空一体化”扬尘在线监控系统由扬尘噪声在线监控系统和颗粒物扫描激光雷达两大部分组成。  扬尘噪声在线监控系统  扬尘噪声在线监控系统智能化地集成了颗粒物、噪声、云台摄像机、风速风向传感器,温湿度传感器等监测设备,可全面布设在区域内各主要建筑工地、道路、码头、混凝土搅拌站、重点工业工矿企业等颗粒物污染排放源附近,实时获得tsp、pm10、pm2.5、噪声、视频、温度、湿度、风速风向等近地面数据;  颗粒物扫描激光雷达  颗粒物扫描激光雷达不断扫描,通过监测区域内的消光系数,退偏振度、边界层高度、能见度等信息,获得区域立体空间内扬尘分布,沉降情况,还可以识别粗细粒子,判断是二次源还是一次源,了解区域间扬尘的输送,从而实现对整个城市区域内扬尘来源、现状、发展变化趋势的掌握。  应用“地空一体化”扬尘在线监测系统,微观上可进行浓度数据和视频实时查看、报警抓拍;宏观上可实现对城市区域空间内的扬尘污染作全天候监控,为巡查人员监控取证、行政干预、应急响应、纠纷处置,为管理部门确定扬尘来源、了解扬尘减排治理措施的效果,为政府制定政策规划、空气质量改善行动计划,为各部门信息联网共享、协同管理提供了技术支撑和依据。 “地空一体化”扬尘在线监控系统 “地空一体化”扬尘在线监控系统平台  “地空一体化”扬尘在线监控系统平台包括实时监测、工地管理、设备管理、历史查询、统计分析、视频观看、报警处理、评价方法等多项功能,同时,系统平台将颗粒物扫描激光雷达的垂直监测、垂直扫描、水平扫描、一定仰角(如45°)探测、走航观测等探测模式进行高度集成,实现了区域内扬尘分布、来源、变化趋势的全方位立体化监测。高效、精细的实时监控,为政府监察部门的多维取证、依法追责提供有效数据支撑。登录页面实时监测——近地面数据实时监测——水平遥感污染源监测实时监测——走航道路交通监测历史查询设备管理“地空一体化”扬尘在线监控系统系统优势  基于物联网思维的智能联动技术,云台摄像机除了预置位抓拍之外,还可以根据颗粒物和噪声报警信息,风速风向信息、智能判断方向进行抓拍,更加准确获取污染源头的位置信息,满足实时性与精细化监管的需求。  近地面监测和立体监测的集成创新。多要素多手段综合监测,不仅有量化数据,视频图像取证,还有区域立体空间的颗粒物分布现状、发展变化趋势分析,微观和宏观结合,证据丰富有力,结论一目了然,突破无组织排放监控的技术难题。  基于大数据挖掘、分析的环保云应用平台。可以实现海量扬尘监测数据、环境空气监测站数据的多角度统计分析和比较,满足大数据的价值挖掘和应用,实现监测系统的云端运营、大数据的云端分析,为政府、企业提供环境治理的技术咨询,同时手机app的应用能让公众随时掌握所在地的颗粒物、噪声等环境指标。  核心设备采用行业标杆公司顶级产品,成熟稳定可靠,使用寿命长。该产品内置了加热器控制湿度水平,不仅保护电子和光学系统,还可以排除湿度对测量结果的影响,测量更加准确;  海量数据的高速存储,本地数据存储容量大于等于1t,通讯接口具备可扩展。  停电后可长期保存系统设置参数,电源恢复后可自动启动,进入工作状态。  “地空一体化”扬尘在线监控系统实现了建筑工地扬尘污染在线监测、管理一体化,提升了科学管理的效率和能力。该系统对掌握建筑工地扬尘污染现状的真实状况,以及采取控尘措施的效果具有权威性。该系统可用定量化、可视化的数据反映扬尘污染治理的水平,是建设智慧环保的有效手段。
  • 发布3D扫描颗粒物激光雷达(3D10K)新品
    X 产品简介3D扫描颗粒物激光雷达(3D10K)由旗云中天和浙江大学团队针对大气环保领域联合研发,系统结构紧凑,采用一体化无人值守设计,可实现大气颗粒物定点、扫描、走航、组网等观测,是高精度偏振技术与扫描技术在商业颗粒物激光雷达方面应用的先行者。激光雷达主要由四部分组成,分别为发射系统、接收系统、数据处理系统以及控制系统。发射系统包括激光光源和起偏模块;接收系统包括望远镜与接收光路;数据处理系统包括数据储存、反演、分析以及显示模块;控制系统包括电源管理模块与远程监控模块。 图1 3D扫描颗粒物激光雷达可对大气颗粒物污染实现高精度立体式探测与快速溯源(左图)。X 产品主要功能可输出产品包括:原始信号、距离校正信号、消光系数、后向散射系数、边界层高度、退偏比、AOD、云高云厚、水平/垂直能见度、污染气溶胶分类、云分类、PM浓度等。? 探测大气气溶胶(颗粒物、飘尘)垂直分布及时空演变;? 探测污染边界层的高度、垂直结构与时空演变;? 探测气溶胶水平分布及时空演变,实现大气能见度测量;? 实现颗粒物类型识别(城市、沙尘、烟尘、扬尘等)及污染快速溯源;? 实现雾/霾的识别及探测其时空演变;? 实现城市颗粒物通量的监测;? 评估污染长距离传输潜力。X 产品应用n 应用领域:环保、航空、应急等应用和科研领域。X 主要技术指标激光器波长532nm脉冲能量5mJ重复频率10Hz发散角200mm接收视场角0.5~3mrad (可自行调节)干涉滤光片1nm探测通道偏振双通道采集方式模拟采集*探测范围80m~10km时/空分辨率7.5m/15s*观测方式定点、扫描、走航*工作方式无人值守数据产品原始信号、距离校正信号、消光系数、后向散射系数、边界层高度、退偏比、AOD、云高云厚、水平/垂直能见度、气溶胶分类、云分类、PM浓度等。*工作温度/湿度-5℃~40℃/ 0~90%RH(其他情况可定制)通讯方式RS232、RS485总线供电/功率220V/0.6kW(最大功率)重量及尺寸100kg,0.4m×0.7m×1.3m 创新点: 3D扫描颗粒物激光雷达(3D10K)由旗云中天和浙江大学团队针对大气环保领域联合研发,系统结构紧凑,采用一体化无人值守设计,可实现大气颗粒物定点、扫描、走航、组网等观测,是高精度偏振技术与扫描技术在商业颗粒物激光雷达方面应用的先行者。 3D扫描颗粒物激光雷达(3D10K)
  • Spex 应用分享 | 高能球磨法制备纳米晶氧化陶瓷
    SPEX MIXER/MILL® 8000系列高能球磨仪可将坚硬或易碎样品粉碎至可分析细度,部分样品研磨精度可达纳米级别。采用独家专利的∞式三维立体运动模式研磨,360°立体无死角,非正反转方式,可以在最短的时间内向样品输送最高的机械能量,为目前世界上所有球磨仪中能量最高、速度最快的球磨机。SPEX以其在球磨机研发和生产超过60年的经验以及在球磨机创新领域所做出的突出贡献,成为美国球磨机行业标准的制定者。SPEX高能球磨仪可用于岩石、矿物、金属合金、陶瓷、催化剂、玻璃、沙子、水泥、炉渣、医药、植物和动物组织、谷物、种子、油漆和油墨、电子、RoHS样品等分析用样品研磨。 下文将介绍SPEX高能球磨仪用于分析纳米晶体材料中的颗粒尺寸效应。该应用源自: S. Indris, D. Bork, P. Heitjans, J. Mater. Synth. Process 8, 245 (2000),经汉诺威大学物理化学和电化学研究所P.Heitjans教授同意。原文献阅读请联系科尔帕默公司。✦ ++高能球磨法制备纳米晶氧化陶瓷SPEX 高能球磨仪分析纳米晶体材料中的颗粒尺寸效应需要一种可以调节颗粒尺寸的技术。在本研究中,使用球磨机(8000M Mixer/Mill® , SPEX SamplePrep;配备有氧化铝和氧化锆小瓶)。球磨特别适合这项任务,因为它易于使用,并允许研磨相对大量的材料以及各种不同的材料。分析介质为:Li2O、LiNbO3、LiBO2、B2O3、TiO2和Li2O:B2O3混合物。通过研磨时间测定平均粒径,随后通过X射线衍射(XRD)和透射电子显微镜(TEM)进行分析。选择含锂材料是因为它们作为固体电解质的潜在用途。TiO2在用作光催化剂方面是令人感兴趣的。对于吸湿性材料,在氩气气氛中填充氧化铝研磨瓶并将其放入密封的不锈钢容器中。► 颗粒大小不同的氧化物表现出不同的研磨特性,但最小粒径约为在研磨8至10小时后获得20nm.通过XRD分析和TEM数据确定颗粒尺寸。差示扫描量热法(DSC)表明,纳米晶样品是亚稳态的,加热导致颗粒生长。在烧结过程中,当要生产固体致密陶瓷时,要考虑到这一点。其他研究小组先前的研究表明,两步烧结特别适合在第二步中使用较低的温度。通过两种方法分析,TiO2在研磨过程中发生了部分相变。当进行球磨时,包含另外杂质的金红石以较小粒径的纯金红石(不含杂质)形式获得。► 化学反应陶瓷组分的混合和随后的压制产生具有多个不同边界层的材料。这种不同界面的晶格可以通过改变颗粒尺寸来改变。在分析Li2O∶B2O3的50∶50混合物的过程中,检测到由于该化学-机械过程引起的化学变化。在短时间后,用XRD分析仅检测到原始化合物的谱线,而在4小时后出现新的谱线。新形成的产物是Li2B4O7。这表明反应的最终产物并不取决于混合物的组成,而是取决于边界层的条件。► 结论高能球磨特别适用于颗粒尺寸的减小以及后续化学和物理变化的研究。颗粒尺寸减小和随后生长的特征与所有分析的氧化物相似。开始时微晶材料没有发生化学反应,经过研磨后:一些材料表现出相变;另一些材料则表现出化学反应。更多推荐:SPEX8200高能行星式球磨机Spex 8200行星球磨机通过机械运动研磨样品,沿一个方向旋转震击器,而平台(太阳轮)沿相反方向旋转。机械磨具以2:1的比例进行,使容器相对于太阳轮的每一次旋转旋转两次。当容器移动时,相对离心力被传递到磨球上,使磨球以圆周运动的方式相互移动,并抵靠容器壁,从而研磨样品。
  • 聚焦分子光谱现场快检技术——BCEIA 2013光谱仪器评议
    仪器信息网讯 2013年10月23-26日,由科技部批准、中国分析测试协会主办的&ldquo 第十五届北京分析测试学术报告会及展览会(BCEIA 2013)&rdquo 在北京展览馆隆重举行。自1985年创办以来,BCEIA融合分析、生命科学等仪器设备展览,国际性学术报告会,厂商技术交流以及分析测试科技发展的高层论坛等各项活动于一体,成为仪器行业两年一次的盛会。   以实时跟进国际分析技术最新动态、促进我国分析仪器自主研发为宗旨,在科技部倡导下,由中国分析测试协会主办,协同仪器技术评议网,本届BCEIA继续举办&ldquo 分析测试仪器与技术评议&mdash 从BCEIA仪器展看分析技术的进展&rdquo 活动。此活动包含分析测试仪器与技术专家质询、分析测试仪器与技术现场测评和科学仪器与生产企业数据库信息录入三个部分。评议结束后还将所评议的仪器汇总为相关专辑。   2013年10月24日,在北京展览馆2号会议室,中国分析测试协会分析测试仪器与技术评议光谱专业组对分子光谱仪器进行了现场评议。BCEIA 2013光谱仪器技术评议活动由清华大学分析中心的孙素琴老师主持,参加评议的专家有清华大学邓勃、中实国金国际实验室能力验证研究中心郑国经、清华大学分析中心周群、北京大学化学与分子工程学院李娜、国家生物医学分析中心宋占军等。 BCEIA 2013光谱仪器评议现场   为了应对食品安全,药品检测等领域日渐凸显的现场检测要求,此评议的中心议题围绕便携式现场检测分子光谱技术。来自ThermoFisher、Agilent、Bruker、PerkinElmer、Horiba、Foss、EnWave Optronics、Ocean Optics、聚光科技等光谱仪器厂家的产品负责人向评议专家介绍了各自最新推出的便携式拉曼、红外光谱、近红外光谱仪器,并在当天下午仪器现场评测时段现场演示了相关检测仪器的应用。   Horiba介绍其高灵敏度便携式拉曼光谱仪在现场检测,如考古壁画、地质、刑侦等领域的应用。针对拉曼信号弱的特征,Horiba通过降低暗电流等方式提升灵敏度,并以较低的激光功率实现文物等的无损检测。另附的光纤探头也可完成爆炸物等危险样品的现场、远程检测。Horiba另一款拉曼光谱仪与AFM联用,实现同区域拉曼成像,并能够进行车载现场分析。   EnWave Optronics恩威推介其稳频激光拉曼光谱仪(S Laser Raman Analyzer)作为现场快筛快检的工具。作为美国国家航空航天局(National Aeronautics and Space Administration,NASA)以及美国食品药品管理局(Food and Drug Administration,FDA)选定的仪器,恩威突出介绍其简洁的光学系统、-85° C强制冷CCD检测器及 X和Y轴的双重校正技术。另外,恩威为提供快速检测的整体解决方案,向用户提供3万张谱库供检索。在评议过程中,恩威还向评议组汇报了该仪器在高荧光背景样品、生物组织和生物活性样品、气体检测中的应用实例。   Thermo fisher赛默飞世尔介绍了其全系列的便携光谱仪器,包括手持式拉曼、手持式中红外、近红外,以及手持式X射线荧光光谱仪。自2005年Thermo第一代手持式拉曼光谱仪问世以来,设计不断更新,现已发展为专用于制药领域原辅料分析的TruScan手持式拉曼光谱仪和毒品分析专用TruNarc手持式拉曼光谱仪,重量不足1kg。该系列仪器通过了美国军标的测试,能够适应各种严苛的现场测试环境 提供近12,000种拉曼谱库,自带的解谱功能增强了仪器的易用性 其中,TruNarc获得2013年R&D 100 大奖以及Edison Awards创新奖。   Agilent安捷伦科技向与会专家介绍其移动测试部的手持红外光谱4100 Handheld 与4200 Flexscan。立体式的干涉仪确保其在移动的状态下仍能保持稳定的测试性能,全套采样附件ATR、掠角反射及漫反射适应现场各种类型的样品分析 4100 Handheld 与4200 Flexscan的应用领域涉及民航飞行器碳纤维材料的剖析以跟踪材料的老化程度、评估航空安全性能、燕窝中掺杂的检测等方面。   Bruker布鲁克光谱部门介绍其Tango系列近红外分析仪。2011年面市的Tango-R近红外漫反射积分球已广泛应用于饲料、食品、化工等固体样品的检测。最新推出的Tango-T透射模式近红外分析仪适用于液体样品,拥有RockSolid干涉仪并配置立体角镜 针对工业现场分析过程,它具有自动升温功能,达到即插即用 在石化(汽油酸值,辛烷值等测试及油品鉴定)、食品(食用油成份、品质鉴定)具有广泛应用。   PerkinElmer珀金埃尔默针对食品行业分析的便携式Dairy Guard可进行成分鉴定、添加物筛查等。Dairy Guard使用&ldquo 半无目标添加筛查&rdquo 的新算法,结合谱库检索 在改进灵敏度和对潜在污染物建立定量方法之间建立平衡,并对非法添加的种类给予建议 触屏Touch软件使添加物的筛查更容易,简化奶粉的检测。便携式的Spectrum 2则使用低于30W全新低功耗电源管理系统,配备无线路由系统,能够在潮湿环境的满足测试要求。   Foss福斯华ProFoss的在线近红外分析仪,着眼于满足企业生产的最高环境等级要求 经过严格的防尘、防水、防爆评测以及食品生产方面3A 认证 可安装在物料输送的管路中,自动断流检测避免了对生产控制的误判 基于在线检测的特点,仪器配置备用光源以及光纤采集信号方式,令其在食品包括饲料生产,流质测量(黄油,奶酪)等领域均已得到应用。   Ocean Optics海洋光学展示了微型手持式拉曼光谱仪ID Raman Mini。作为目前最小的手持式光谱仪,ID Raman Mini仅有330克,大小类似于一个手机 采用ROS取样方式用高度聚焦的激光束对多个拉曼活性靶点采样,对样品在较大面积范围内进行扫描 对化学品和爆炸品可进行快速准确的测试,适用于安检,刑侦、材料等现场分析。   聚光科技承担科技部863计划以及浙江省重大科技专项,自主研发近红外分析系统。聚光科技向专家评议组介绍了近红外光谱仪系列,及其在土壤、肥料、烟草、粮食种子、油料等领域的定量分析应用。 BCEIA 2013光谱仪器评议部分人员合影
  • Optika立体显微镜新年大促销
    Optika立体显微镜新年大促销 OPtika显微镜由意大利M.A.D公司生产,该公司是研究和制造显微镜的专业生产厂家,拥有接近40年的科学仪器生产历史。其生产的显微镜种类丰富,配件齐全,广泛应用于教学、科研及工业领域,满足各类用户要求。 为了答谢这一年来广大客户对Optika产品的支持和厚爱,德祥科技特推出Optika新年答谢新老顾客大促销活动。希望Optika卓越的性能以及德祥*的服务能为您新的一年里给您带来更便捷更*的产品。 促销型号:SZM-1、SZM-2 促销价:SZM-1:4500RMB SZM-2:5400RMB 截止日期:售完为止。数量有限,欲购从速!!! 技术参数: 品牌 意大利Optika 意大利Optika 型号 SZM-1 SZM-2 放大倍数 7x-45x 7x-45x 瞳孔间距 51-75mm,带屈光补偿 51-75mm,带屈光补偿 变倍比 6.428:1 6.428:1 工作距离 100mm 100mm 观察筒 双目,可360° 旋转,带45° 倾角 三目,可360° 旋转,带45° 倾角 视场数 20 20 目镜 广角10x, 高眼点 广角10x, 高眼点调焦系统 同轴粗调和精调, 左/右单轴水平旋钮 同轴粗调和精调, 左/右单轴水平旋钮 照明系统 反射和透射光源, 12V/15W卤素灯, 带亮度调节 反射和透射光源, 12V/15W卤素灯, 带亮度调节 联系人:江小姐 电话: 020-22273835 传真: 020-22273368 E-mail: Meara_Jiang@tegent.com.cn 欢迎访问德祥: www.tegent.com.cn 更多产品详情和咨询,欢迎垂询: 德祥热线:4008 822 822 德祥官网:www.tegent.com.cn 邮箱:info@tegent.com.cn
  • 瑞沃德发布RWD71000全自动脑立体定位仪-大小鼠新品
    71000全自动脑立体定位仪是一款应用于小型啮齿动物的自动化、智能化脑立体定位仪,通过电脑软件精确控制操作臂移动(精度1um),软件内置大小鼠脑图谱能更方便、更直观的进行脑立体定位,三大自动化程序(自动开颅、组织移除和多位点注射程序)可减少人为操作带来的误差,节省手动操作时间。精确:高精度步进电机,位移分辨率1μm高效:内置自动化程序,减少人工误差简单:软件内置脑图谱,简化手术操作三大自动化程序,实验更高效自动开颅程序:设置参数,颅钻自动按照运行轨迹进行开颅,节省人为操作时间组织移除程序:减少损伤,保证创口端面平整性,提高神经元存活率,提高实验重复性组织移除程序:减少损伤,保证创口端面平整性,提高神经元存活率,提高实验重复性1、操作臂上下、左右、前后移动范围80mm,搭配高精度丝杆,运行精度1μm;2、一键校准功能,当长时间使用,电脑显示位置参数和定位仪读数出现偏差时,用户可以通过一键自行校准;3、定位仪移动控制功能, 4种控制方式:a、PC端软件界面箭头控制;b、PC端输入目标坐标位置后自动移动到目标坐标;c、微操平台能精密控制定位仪运动,按钮可控制持续移动,微操旋钮每旋转18°执行1μm位移;d,键盘按键控制定位仪移动。4、定位仪移动速度调节功能,a、在PC端软件界面三个轴对应位置可分别输入移动速度进行调节,其中AP轴和ML轴4种移动速度可选: 2.00 mm/s、1.00 mm/s、0.50 mm/s、0.20 mm/s;DV轴7种移动速度可选2.00 mm/s 、1.00 mm/s、0.50 mm/s、0.20 mm/s 、0.01 mm/s、0.005 mm/s、0.001 mm/s;b、在微操端可通过按键对三个轴移动速度以一定步进量进行统一调节;5、 一键设置Bregma/Lambda位点,当用户使用定位仪到达Bregma/Lambda位点时可以标记,一键设定Bregma/Lambda位点;6、定位仪坐标与脑图谱集成,脑图版本为小鼠第二版大鼠第六版,用户可选脑图版本,选定版本后显示脑图版本信息;7、探针位置与脑图显示,当用户找到并设置Bregma/Lambda点后电脑界面能够显示脑图及探针所在位置,能够实时显示移动过程;8、自动开颅程序,2种形状选择:方形或圆形,长宽或半径参数(输入范围:0~10mm)及深度(输入范围:0~20mm),AP轴和ML轴4种移动速度可选,DV轴7种移动速度可选;9、多位点程序设定,用户可手动输入或脑图谱上选择至多10个坐标,可以选择自动运行或者信号触发后启动运行,用户可以设定定位仪到达目标点位后是否输出TTL信号,用户可以设定在每个位点停留时间(输入范围:00:00:00 23:59:59);10、组织移除程序,2种形状选择:方形或圆形,长宽或半径参数(输入范围:0~10mm)及深度(输入范围:0~20mm),支持2种针头规格27G、30G,6个梯度的密度系数设置1-6,AP轴和ML轴4种移动速度可选,DV轴7种移动速度可选;11、位置坐标存储功能,用户可手动输入或脑图谱上选择至多个坐标并命名,最多可存储10个位点;12. Z轴回缩功能,当用户定义Bregma/Lambda点之后,定位仪在执行X、Y方向的移动时,无论探针位于Z轴的任意位置,需要使探针先回缩至高于动物头骨表面5mm的位置,保证电机的水平方向移动不会触碰到动物的头骨;13、消隙功能选择,可尽量消除电机反向运动时,电机齿轮间缝隙引起的误差,用户可选择开启或关闭;14、错误日志自动保存功能,方便对产品进行维护;15、软件要求适配win7、win10中英文操作系统;16、报警功能,实时检测,遇到故障时停止所有部件运动,PC端弹框提示;17、能够接收或输出TTL信号,例如接收TTL信号触发全自动脑立体定位仪按设定程序自动移动,或者到达特定位置时输出TTL信号;18、微操控制,能够实现手柄按键对全自动脑立体定位仪上下左右前后六向控制持即续按键持续移动,能调节电机移动速度,有急停按钮;19、控制盒有2种电源指示灯,通电正常状态为绿灯,异常状态为红灯;控制盒有12V电源接口,USB方口与电脑通信,3个电机接口,有丝印标识区分,BNC接口处理TTL信号。创新点:简介:71000是一款自动化、智能化的脑立体定位仪,通过电脑软件精确控制步进电机,进而驱动定位仪操作臂移动。软件内置大小鼠脑图谱和三大自动化程序,可自动化运行,减少人为操作带来的误差,能更方便、更直观的进行脑立体定位。同时配备了微操,满足更灵活的操作需求。 创新点: 1、精度更高:传统机械型脑立体定位仪精度100um,数显型脑立体定位仪精度为10um,而全自动脑立体定位仪精度达到1um,满足更高实验需求; 2、内置脑图谱:用户可直接在软件上翻阅脑图谱,探针实时显示与脑图谱的相对位置,更加直观便捷; 3、三大自动化程序:自动开颅程序可预设开颅的尺寸、深度等参数,颅钻自动按照预设轨迹运行,可减少手动操作带来的损伤;组织移除程序可预设移除组织的尺寸、深度等参数,保证创口端面平整,减少神经元死亡;多位点注射程序可设置十个位点的注射,软件控制运行轨迹,精准并减少人工操作的繁琐步骤。 RWD71000全自动脑立体定位仪-大小鼠
  • 卫星干涉成像光谱仪和CCD立体相机通过鉴定
    由中国科学院西安光学精密机械研究所承担研制,曾为我国首次探月工程做出突出贡献的嫦娥一号卫星干涉成像光谱仪和CCD立体相机,于5月25日在西安通过了中国科学院西安分院组织的成果鉴定。   以中科院国家天文台李春来研究员为组长的专家鉴定委员会认为,嫦娥一号探月卫星干涉成像光谱仪采用干涉光谱成像技术,在国际上首次对月球成功实施了可见-近红外宽谱段连续光谱及光谱图像探测,是国内首台成功应用的星载干涉成像光谱仪 该仪器具有很高的信噪比(S/N)与调制传递函数(MTF),是一台集光、机、电、算为一体的高端光学遥感设备 该项目在“行平场”、“不同光谱仪的对比方法”、“干涉仪胶合时剪切量的精密控制”以及“具有特色的付氏光学系统设计”方面形成一批自主知识产权,申请发明专利四项,已授权三项 该仪器成功应用于嫦娥一号探月卫星,获取了全月面79%区域清晰的多光谱图像,是国际上第一次获取480nm-960nm范围的32谱段的连续光谱和图像,为月球科学家研究月表物质成份提供了具有自主知识产权的原生信息源,并产生了大量的应用成果。   以杨元喜院士为组长的专家鉴定委员会认为,嫦娥一号卫星CCD立体相机优化集成了光、机、电等高新技术,确保了月面高精度成像和摄影测量,获得了与国外现有月球图像相比更为清晰、层次更加丰富的全月面图像 该相机采用广角、远心、消畸变光学系统及带有掩模板的面阵CCD立体成像等技术,有效减小了附加曝光影响、系统体积及定标压力 相机的立体成像系统具有高的信噪比(S/N)与调制传递函数(MTF) CCD立体相机已经成功应用于嫦娥一号探月卫星工程,申请发明专利2项(公开中),授权实用新型1项,为月球科学家研究月球的地形地貌与地质学构造提供了具有自主知识产权的原生信息源,产生了大量的应用成果。   鉴定委员会认为,嫦娥一号探月卫星干涉成像光谱仪和CCD立体相机总体水平为国际先进,并建议这些技术在国防、民用及深空探测等领域进一步推广应用。
  • 刑侦新产品:立体足迹激光扫描采集分析仪
    在近日召开的陕西省刑事新技术培训班上,一款名为“立体足迹激光扫描采集分析仪”的刑事技术新产品在会上进行了功能展示,引起在座基层刑事技术民警的浓厚兴趣,大家在展台亲手操作使用设备,他们认为,推广此项技术对提高办案质量和办案速度势必起到积极作用。此前,该仪器在全国第六届好痕迹检验技术研讨会上得到足迹专家的一致好评,目前已获我国独立知识产权最高级别的发明专利。   以往,在国际上,提取立体足迹通常采用是高灌注法,不但效率低,而且需要操作者具有一定的提取经验,尤其是在针对雪地、灰尘等软基客体的足迹时,难度更大,一单提取失败无法挽救,是现场的重要物证遭受损失。立体足迹激光 扫描采集分析仪的问世,掀开了刑事技术研究崭新的一页,该设备的非接触提取和数字化处理取代了百年来一直靠手工制模提取和经验型检验的模式,为刑侦专家快速有效处置案件事故提供先进实用的科技手段。该分析仪的主要技术特点是:   实现数字化无损提取现场立体足迹   该仪器能够快速、准确、无损地提取现场立体足迹。利用现代激光扫描三位测量和计算机技术,实现了对现场立体足迹原物大、原始形态的数字化采集、存储和传输,直接记录并显示足迹各部位的三维数据,如足迹重压点位置及深度、鞋底磨损形态及范围等。亦可用于提取轮胎等其他立体痕迹。采集设备与足迹不直接接触,从根本上解决了外界对足迹的干扰破坏,真正实现了原始无损提取,避免了“实物填充法”带来的人为破坏和变形,以及后期材料干缩、裂纹等问题,为综合利用提供了条件,为准确 检验鉴定奠定了基础。   多功能数字化辅助检验工具   利用软件模拟比较显微镜原理,研究出立体足迹辅助检验专家传统,设计出双视窗检验、三维重建显示、重压点检验自动搜索、磨损面检验、坐标网络、深度伪彩三维贴图、标注方式长度角度面积的双视窗数据同步对比测量等 一系列专业化设计的辅助检验工具。首次实现了对现场足迹的重压点和磨损变形的辅助检验。使经验专家型进入了数字化定量检验。坐标检验和网络格检验工具,给各类足迹特征检验提供了一个快捷有效的检验手段,尤其是游动式坐标检验工具,可把0点定在任一特征位置,依此扩展进行定量化检验,使检验更加灵活、方便和实用。   机械化还原现场立体足迹   系统根据三维测量数据,直接计算出雕刻机加工代码,利用三维雕刻机,直接对高密度板等板材加工雕刻,实现对立体足迹的加工还原。既可还原造型客体(鞋底)模型,也可还原承受客体(凹痕)模型,还原足迹具有高精度、不变形、易保存,经久、耐磨、抗摔,便于携带等优点。   今年6月,应湖北省公安刑警总队痕迹室之约,研制单位技术人员携带该设备赶到武汉,会同五位全国著名足迹专家,利用该仪器对震惊全国的“12.7”案件的现场证据进行检验分析,因嫌疑人在逃,嫌疑人家里遗留的鞋子与现场遗留的足迹缺乏行走的样本比较,五位足迹专家意见不一致。之前,因该案件现场能提取的足迹痕迹和其他有价值的痕迹、线索有限,使安检一度进展不顺利。技术人员使用该仪器吧现场提取的足迹痕迹检材和嫌疑人家里提取的鞋子进行扫描分析,并把结果送给专家进行研判,使专家意见得到统一,锁定了犯罪嫌疑人。
  • 高能扫描颗粒物激光雷达告诉你:你离污染有多远?
    近年来灰霾现象频发,颗粒物区域污染现象受到社会及政府部门的高度重视。针对区域性大气污染问题,作为一种成熟的主动遥感手段,颗粒物激光雷达为掌握区域大气污染分布和输送规律,解析颗粒物污染特征、污染来源、污染变化趋势,提供了有力支撑。颗粒物激光雷达按工作方式可分为:垂直探测激光雷达和扫描探测激光雷达。其中扫描探测激光雷达是对固定站点监测空白区域、天气突发区域监测的有力补充,对重点污染区域中污染物进行3D扫描和移动观测,可获取区域污染物的空间立体分布、变化规律和排放特征,摸清局地污染物对污染形成的贡献,为环境规划与管理、环境监督与执法及政府宏观决策提供科学依据;并可对污染气团进行走航追踪观测,为短时间空气质量预测提供了及时、有效、准确的数据支撑。 大气颗粒物监测激光雷达大气环境监测激光雷达检测车  中科光电大气颗粒物监测激光雷达(高能扫描系列),采用波长532 nm线偏振激光对大气颗粒物进行遥感探测。雷达通过对532 nm垂直和水平偏振信号的探测,解析大气消光系数、退偏振比廓线、边界层高度、光学厚度等参数,进而可获取大气颗粒物时空分布特征、污染层时空变化、颗粒物输送和沉降等信息。产品特点  采用振镜扫描,避免雷达主体光机及探测器电子学系统振动;  扫描振镜具备自动除尘、除湿、除雪功能,可适用于各种天气状况;  采用单脉冲能量毫焦级固体激光器,重度污染条件下,具有较好的探测能力;  系统拥有GIS地理信息系统,可图形化显示扫描区域颗粒物分布情况,排查污染排放源;  系统具有停电自动关机,来电自动开机功能;  激光器使用寿命长,可达16000小时。产品软件  中科光电扫描激光雷达数据采集分析软件具有固定垂直探测、固定斜程探测、车载垂直探测、车载斜程探测、垂直扫描探测、水平扫描探测六种工作模式。软件通过对激光雷达原始数据进行深数据处理,可得到包括消光系数、退偏振比、光学厚度、能见度、边界层、污染物判别、PM10质量浓度时空分布等基本环境监测数据。 流程图采控软件分析软件产品应用  垂直扫描监测  激光雷达发射脉冲处于天顶方向,望远镜垂直接收来自天顶方向的后向散射信号。能够反演距地面10km以内气溶胶颗粒物的空间分布信息以及时空演变特征。可应用于雾霾判识、污染过程捕获分析、高空大气光化学过程探测、大气边界层结构特征分析、沙尘暴预警、局地污染预警等环境监测。 垂直扫描监测  区域点源排放监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达对烟囱、锅炉、化工厂、电厂、水泥厂等重要的点源实现定点定位扫描,监测污染源烟羽排放的轮廓及强度分布,实时把握污染超标动态,结合当地实际情况建立报警体系,有效实现污染源排查、偷排漏排违法取证工作。 区域点源排放监测  区域线源扫描监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达进行定点定位扫描,结合GIS地理信息,图形化展示交通主干道上空颗粒物的空间分布特征,有效监测区域内若干条交道主干道的排放强度。区域无组织排放扫描监测  设置激光雷达工作的方位角和仰角,使置于某固定点位的激光雷达对建筑工地、餐饮服务区、汽车修理厂、畜禽养殖场等区域,进行实时在线扫描监测,描绘污染物的水平分布规律,确定污染物的空间分布规律。 区域无组织排放扫描监测  区域污染物分布扫描监测  区域污染物分布扫描监测可手动设置水平扫描(针对区域内)、垂直断面扫描(针对区域边界)等不同扫描方式,实现对工业园区、居民生活区、厂区等敏感地带进行定量评估。结合GIS地理信息,图形化显示区域内污染物时空分布及演变特征。 区域污染物分布扫描监测  走航扫描监测  走航扫描监测,是通过在移动平台上搭载激光雷达系统,采用“驻车扫描”或“边走边测”的工作方式,对区域上空污染团的输入、过境、沉降过程进行实时、在线、连续扫描监测,分析污染物的类型、强度以及演变过程。走航扫描监测结合GIS地理信息,可绘制污染团的运动轨迹,追踪污染团动向,结合大气混合层及气象条件,提供典型污染过程的预警建议。走航扫描监测走航扫描监测  高能扫描颗粒物监测激光雷达系统轻便、易于移动,可实现多种扫描方式,方位角与仰角的扫描角度和探测时间都可自行设置,可实现大范围不同方位的连续自动观测,能够探测到同一仰角不同方位角处及同一方位角不同仰角处的颗粒物的变化,对实时环境监测具有较好的帮助。
  • 大气颗粒物激光雷达成为雾霾和沙尘天气监测多面手
    针对各地环境空气质量评估考核过程中均未将沙尘天气过程期间数据剔除,环境保护部于2017年1月4日印发《受沙尘天气过程影响城市空气质量评价补充规定》(以下简称《规定》)。依据《规定》,全国地级及以上城市环境空气质量评估、考核和排名过程中剔除沙尘天气过程的影响。规定中提出“各地环保部门如遇沙尘天气过程,当天将沙尘天气过程影响时段、影响范围和其他佐证材料报送中国环境监测总站。这些数据也将作为评价、考核和排名的重要依据。”《规定》中的佐证材料包括卫星环境应用中心遥感监测结果、全国沙尘暴监测网监测数据以及气象部门发布的沙尘信息等。在沙尘天气的扣除条件和筛选方法上,中国环境监测总站工程师王帅说:“当沙尘天气过程中沙尘源区城市PM10小时浓度持续两个小时超600μg/m3,或持续1个小时超过1000μg/m3,可以剔除沙尘天气过程影响区域范围内源区城市及下游城市颗粒物监测数据。”近年来,地基遥感的主动探测手段,如激光雷达不仅能够有效判识雾霾的空间分布,对沙尘天气发生的过程、时间、沙团输入的高度、强度等特征,都可以进行有效监测。1、什么是大气颗粒物激光雷达呢?大气颗粒物激光雷达像“探针”一样,通过不断地向大气中发射激光束,扫描大气中的信息,通过与颗粒物和气态分子相互作用后产生散射光来获取不同高度处污染物的浓度分布信息,类似医学上的“CT”技术,不同的是,激光雷达获取的是污染物的空间垂直分布。 2、激光雷达提供什么数据呢?① 消光系数:反映污染程度,消光系数值越高,代表球形粒子污染程度越严重。② 退偏振度:反映沙尘的不规则程度,沙尘的退偏振度约0.2-0.4。③ 颗粒物质量浓度空间分布:给出不同高度处PM10和PM2.5质量浓度。④ 能见度:给出垂直、水平能见度视程。⑤ 外源性污染物强度:外源传输的输送通量和局地污染的占比。3、如何从激光雷达结果上读取沙尘信息呢?我们来分析三个案例。案例分析一:L地经历的一次严重的沙尘过程(数据来源:L地站点)① 沙尘爆发前:雷达图像监测显示,9日白天污染程度较轻,近地面有一定的尘漂浮。② 沙尘爆发期:夜间22时,近地面的退偏振度突然增大,消光系数也有伴随增大的现象,L地区的粗颗粒程度明显增加,近地面的PM10由250μg/m3升至1500μg/m3,沙尘天气加剧。③ 沙尘消散:沙尘天气持续至10日夜间22时,沙团中的粗颗粒明显沉降,退偏振度和消光系数明显减弱,污染物浓度下降,特别是PM10浓度,回落到750μg/m3,经历11日的持续沉降和过境,沙尘天气的影响基本消除,PM10浓度回落到250μg/m3。 案例分析二:过境沙团和沉降沙团的过程监控(数据来源:W地站点)颗粒物激光雷达在判识外源性沙尘的另一个重要依据,是其出现的高度与近地面的污染物分布无明显的重合。下图是激光雷达捕获到的一次多层沙团过境和与地面复合的结果。近地面的结果发现,PM浓度高值与沙团2沉降融合有密切关系。沙尘输入过程的激光雷达监测结果(W地)① 沙团1: 出现在6日16时,高度4.2km处,沉降过程中沙团的下沿距地面约2.1km,尚未进入大气边界层内,属于过境沙团,对近地面的影响较小。② 沙团2:出现在7日20时前后,高度5km处,沙团强度大,沉降速率大,沙团在8日7时沉降至大气边界层内,与近地面污染物复合,属于沉降沙团。③ 沙团3:在沙团2未沉降结束时,高空3km处发生第3次的污染团的输送。此沙团向地面迁移过程中,在1.2km处与地面污染物有明显分界,未发生融合,属过境沙团。④ 沙团4:出现在8日20时高空3.6~4.5km范围内出现第4次的沙团输入。此沙团下沿最低高度至3km,既未与第3次的沙团混合,也没有能进入边界层内与近地面的污染物混合,推测第3次和第4次输送的污染团与第1次的污染团类似,属于过境沙团,对近地面的影响较小。详细可参阅【伍德侠, 宫正宇, 潘本锋,等. 颗粒物激光雷达在大气复合污染立体监测中的应用[J]. 中国环境监测, 2015(5).】案例分析三:沙尘传输的激光雷达组网观测基于单站点的雷达可以实现对沙团的时间、高度和强度特征进行分析,基于多台雷达组成的雷达网络,可以对沙团的传输路径、时间相位以及沉降的特征进行监控,并及时预警。2016年3~5日中央气象台的沙尘落区预报如下图所示。为有效捕获此次沙尘污染传输,我司利用激光雷达组网平台,对布设在北京、无锡、上海、福州、武汉和郑州等地的大气颗粒物监测激光雷达数据进行快速解析,实时结果如下图所示,沙尘到达北京、郑州和武汉等地的时间、高度、强度和沙尘团轮廓的演化有很大的不同和较强的关联性。 中央气象台的沙尘落区预报激光雷达组网点位布设沙尘传输的激光雷达组网观测结果致谢:衷心感谢中国环境监测总站、河南省环境监测中心、上海市环境监测中心、福建省环境监测中心站、兰州市环境监测站、武汉市环境监测中心、福州市环境监测中心站、无锡新吴区环境监测站的大力支持。
  • 大气颗粒物激光雷达成为雾霾和沙尘天气监测多面手
    针对各地环境空气质量评估考核过程中均未将沙尘天气过程期间数据剔除,环境保护部于2017年1月4日印发《受沙尘天气过程影响城市空气质量评价补充规定》(以下简称《规定》)。依据《规定》,全国地级及以上城市环境空气质量评估、考核和排名过程中剔除沙尘天气过程的影响。规定中提出“各地环保部门如遇沙尘天气过程,当天将沙尘天气过程影响时段、影响范围和其他佐证材料报送中国环境监测总站。这些数据也将作为评价、考核和排名的重要依据。”《规定》中的佐证材料包括卫星环境应用中心遥感监测结果、全国沙尘暴监测网监测数据以及气象部门发布的沙尘信息等。在沙尘天气的扣除条件和筛选方法上,中国环境监测总站工程师王帅说:  “当沙尘天气过程中沙尘源区城市PM10小时浓度持续两个小时超过600μg/m3,或持续1个小时超过1000μg/m3,可以剔除沙尘天气过程影响区域范围内源区城市及下游城市颗粒物监测数据。近年来,地基遥感的主动探测手段,如激光雷达不仅能够有效判识雾霾的空间分布,对沙尘天气发生的过程、时间、沙团输入的高度、强度等特征,都可以进行有效监测。  1、什么是大气颗粒物激光雷达呢?  大气颗粒物激光雷达像“探针”一样,通过不断地向大气中发射激光束,扫描大气中的信息,通过与颗粒物和气态分子相互作用后产生散射光来获取不同高度处污染物的浓度分布信息,类似医学上的“CT”技术,不同的是,激光雷达获取的是污染物的空间垂直分布。 双波长三通道雷达 扫描雷达  2、激光雷达提供什么数据呢?  消光系数:反映污染程度,消光系数值越高,代表球形粒子污染程度越严重。  退偏振度:反映沙尘的不规则程度,沙尘的退偏振度约0.2-0.4。  颗粒物质量浓度空间分布:给出不同高度处PM10和PM2.5质量浓度。  能见度:给出垂直、水平能见度视程。  外源性污染物强度:外源传输的输送通量和局地污染的占比。  3、如何从激光雷达结果上读取沙尘信息呢?我们来分析两个案例。  案例分析一:过境沙团和沉降沙团的过程监控(数据来源:中科光电无锡站点)  颗粒物激光雷达在判识外源性沙尘的另一个重要依据,是其出现的高度与近地面的污染物分布无明显的重合。下图是激光雷达捕获到的一次多层沙团过境和与地面复合的结果。近地面的结果发现,PM浓度高值与沙团2沉降融合有密切关系。 图 沙尘输入过程的激光雷达监测结果(无锡)  沙团1: 出现在6日16时,高度4.2km处,沉降过程中沙团的下沿距地面约2.1km,尚未进入大气边界层内,属于过境沙团,对近地面的影响较小。  沙团2:出现在7日20时前后,高度5km处,沙团强度大,沉降速率大,沙团在8日7时沉降至大气边界层内,与近地面污染物复合,属于沉降沙团。  沙团3:在沙团2未沉降结束时,高空3km处发生第3次的污染团的输送。此沙团向地面迁移过程中,在1.2km处与地面污染物有明显分界,未发生融合,属过境沙团。  沙团4:出现在8日20时高空3.6~4.5km范围内出现第4次的沙团输入。此沙团下沿最低高度至3km,既未与第3次的沙团混合,也没有能进入边界层内与近地面的污染物混合,推测第3次和第4次输送的污染团与第1次的污染团类似,属于过境沙团,对近地面的影响较小。  详细可参阅【伍德侠, 宫正宇, 潘本锋,等. 颗粒物激光雷达在大气复合污染立体监测中的应用[J]. 中国环境监测, 2015(5).】  案例分析二:沙尘传输的激光雷达组网观测  基于单站点的雷达可以实现对沙团的时间、高度和强度特征进行分析,基于多台雷达组成的雷达网络,可以对沙团的传输路径、时间相位以及沉降的特征进行监控,并及时预警。为有效捕获此次沙尘污染传输,中科光电利用激光雷达组网平台,对布设在北京、无锡、上海、福州、武汉和郑州等地的大气颗粒物监测激光雷达数据进行快速解析。 激光雷达组网点位布设 沙尘传输的激光雷达组网观测结果  致谢:衷心感谢中国环境监测总站、河南省环境监测中心、上海市环境监测中心、福建省环境监测中心站、兰州市环境监测站、武汉市环境监测中心、福州市环境监测中心站、无锡新吴区环境监测站的大力支持。
  • 中科光电斩获千万大单,喜迎羊年开门红!
    2月10日,在福建省环境监测中心站环境大气超级站(一期)仪器设备及集成项目的采购过程中,无锡中科光电凭借领先的理念与先进的技术赢得专家组青睐,最终以1446万元的价格获得标的。   该集成项目包括近地面常规监测地基遥感监测仪器,通过项目的运行,可以实现PM10、PM2.5、PM1、SO2、NO-NO2-NOx-NH3、CO、O3、能见度、实水溶性离子(Cl-、NO3-、SO42-、NH4+、Na+、K+、Ca2+、Mg2+)以及HCl、HNO3、HNO2、SO2、NH3组分、大气单颗粒物信息(大气颗粒物的粒径、化学成分、数浓度)、大气颗粒物的消光系数和退偏振比、大气颗粒物质量浓度廓线、通量计算、三维风场信息(风向、风速)及气象参数(气压、温度、湿度、风向、风速、降水)等40余要素的同时观测。通过集成化运行,可以初步构建地空天一体化立体监测体系,不仅有利于福建省环境监测中心说清楚本地的复合污染现状,而且还能够对污染物的时空演变特征进行精细化诊断,进而说清楚区域污染的影响过程。   构建地空天立体监测体系,说清区域大气污染过程、污染特征、污染变化趋势,是中科光电立体监测业务核心理念。无锡中科光电技术有限公司是由聚光科技(杭州)股份有限公司、中国科学院安徽光学精密机械研究所、江苏中科物联网科技发展有限公司共同投资建立。公司自成立以来,围绕立体监测核心装备、系统集成、业务化应用三个层次,逐步发展了先进的技术能力并形成优势竞争力。在核心装备层,公司形成了大气边界层理化特性地基遥测系列产品,产业化并发展了安光所双波长三通道气溶胶激光雷达、臭氧激光雷达,引进了风廓线雷达、温湿度廓线雷达。通过获取气溶胶、臭氧时空分布及演变数据、垂直扩散条件数据、水平扩散条件数据,结合近地面常规观测数据及卫星遥感数据,形成地空天立体监测数据中心,应用不同的数据关联分析模型,可以对区域污染过程污染特征进行具体分析,并能够结合模式系统,更准确预报预测未来污染或清洁发展趋势。
  • 中科光电斩获千万大单,喜迎羊年开门红!
    2月10日,在福建省环境监测中心站环境大气超级站(一期)仪器设备及集成项目的采购过程中,无锡中科光电凭借领先的理念与先进的技术赢得专家组青睐,最终以1446万元的价格获得标的。该集成项目包括近地面常规监测地基遥感监测仪器,通过项目的运行,可以实现PM10、PM2.5、PM1、SO2、NO-NO2-NOx-NH3、CO、O3、能见度、实水溶性离子(Cl-、NO3-、SO42-、NH4+、Na+、K+、Ca2+、Mg2+)以及HCl、HNO3、HNO2、SO2、NH3组分、大气单颗粒物信息(大气颗粒物的粒径、化学成分、数浓度)、大气颗粒物的消光系数和退偏振比、大气颗粒物质量浓度廓线、通量计算、三维风场信息(风向、风速)及气象参数(气压、温度、湿度、风向、风速、降水)等40余要素的同时观测。通过集成化运行,可以初步构建地空天一体化立体监测体系,不仅有利于福建省环境监测中心说清楚本地的复合污染现状,而且还能够对污染物的时空演变特征进行精细化诊断,进而说清楚区域污染的影响过程。构建地空天立体监测体系,说清区域大气污染过程、污染特征、污染变化趋势,是中科光电立体监测业务核心理念。无锡中科光电技术有限公司是由聚光科技(杭州)股份有限公司、中国科学院安徽光学精密机械研究所、江苏中科物联网科技发展有限公司共同投资建立。公司自成立以来,围绕立体监测核心装备、系统集成、业务化应用三个层次,逐步发展了先进的技术能力并形成优势竞争力。在核心装备层,公司形成了大气边界层理化特性地基遥测系列产品,产业化并发展了安光所双波长三通道气溶胶激光雷达、臭氧激光雷达,引进了风廓线雷达、温湿度廓线雷达。通过获取气溶胶、臭氧时空分布及演变数据、垂直扩散条件数据、水平扩散条件数据,结合近地面常规观测数据及卫星遥感数据,形成地空天立体监测数据中心,应用不同的数据关联分析模型,可以对区域污染过程污染特征进行具体分析,并能够结合模式系统,更准确预报预测未来污染或清洁发展趋势。
  • 基于投影微立体光刻的3D打印技术及其应用
    作者:葛锜、李志琴、王兆龙、Kavin Kowsari、张旺、何向楠、周建林、Nicholas X Fang单位:1 Southern University of Science and Technology, China2 BMF Material Technology Inc., Shenzhen, China3 Hunan University, China4 Massachusetts Institute of Technology, USA5 Singapore University of Technology and Design, Singapore1文章导读投影微立体光刻(Projection Micro Stereolithography – PμSL)是一种基于面投影光固化原理的高精度(最高可达0.6微米)增材制造(3D打印)技术。该技术可以用于制造具有跨尺度与多材料特性的高精度复杂三维结构,在力学超材料、光学器件、4D打印、仿生材料及生物医学等领域具有广阔的应用前景。南方科技大学、深圳摩方材科技有限公司、湖南大学、麻省理工学院等单位的葛锜、李志琴、王兆龙、周建林、Nicholas X Fang等作者在《极端制造》期刊(International Journal of Extreme Manufacturing, IJEM)上发表《基于投影微立体光刻的3D打印技术及其应用》综述,系统介绍了投影微立体光刻3D打印技术的研究背景、最新进展及未来展望。2研究背景增材制造,又称3D打印,是一种以数字模型文件为基础,将部件离散成二维图形或者路径,通过逐层叠加的方式构造三维物体的快速成型技术。对比于传统制造方法,3D打印因具有制造高精度复杂三维结构、节省材料、方便快捷等优点,已被应用到航空航天、生物医疗、电子、汽车等国民经济领域。自被发明以来,3D打印发展出了各种不同的技术,包括熔融沉积成型(FDM)、墨水直写(DIW)、喷墨(Inkjet)、立体光刻(SLA)、选区激光烧结/熔融(SLS/SLM)、双光子(TPP),以及基于数字光处理(DLP)的连续液体界面制造(CLIP)、大面积快速打印(HARP)、投影微立体光刻技术(PμSL)等。对比于其他3D打印技术,投影微立体光刻技术因其可同时实现高分辨率与大幅面3D打印(图1),被应用于前沿领域的复杂三维结构制造,并产生了一系列具有影响力的科研成果。南方科技大学葛锜副教授、湖南大学王兆龙助理教授与麻省理工学院Fang教授团队联合深圳摩方材科技有限公司针对投影微立体光刻3D打印技术在最近所做的相关代表性工作逐一地进行了详细介绍。图1 不同3D打印技术的打印精度与幅面范围3最新进展投影微立体光刻是一种通过将构成三维模型的二维离散图案投影到光敏树脂表面,激发局部光固化反应的方式,逐层叠加成型三维结构的3D打印技术。通过对光路系统、光源以及打印工艺的优化,最高打印精度可达到0.6微米。面投影微立体光刻因其能够快速一体化成型高精度、跨尺度、多材料复杂三维结构,在力学超材料、光学器件、4D打印、仿生材料以及生物医药方面应用广泛。深圳摩方科技有限公司将原有投影微立体光刻3D打印技术进行发展与升级(图2a),并成功地将其转化为工业级3D打印装备,实现了稳定的超高精度-大幅面3D打印(精度:2微米,幅面:50毫米×50毫米;精度:10微米精度,幅面:94毫米×52毫米幅面),用于力学超材料、生物医疗器件、微力学器件及精密结构件等工业应用(图2b-j)。图2 投影微立体光刻3D技术及其相关工业级应用。(a)高精度-大幅面投影微立体光刻3D打印技术原理;(b)-(j)工业级应用典型案例。在实现跨尺度、多材料3D打印方面,采用面投影与图形扫描技术相结合的方法实现了跨尺度3D打印(图3a),采用吹气辅助投影微立体光刻法(图3b)与流体控制法(图3c)实现了多材料三维结构的快速打印。图3 跨尺度、多材料3D打印。(a)面投影与图形扫描结合实现跨尺度3D打印;(b)吹气辅助多材料3D打印;(c)流体控制辅助多材料3D打印。在实现力学超材料方面,通过投影微立体光刻3D打印技术一次成型以拉压变形占主导的八隅体桁架结构超轻-超硬力学超材料(图4a),通过多材料投影微立体光刻3D打印技术一次成型由两种不同刚度和热膨胀系数材料构成的负热膨胀系数超材料(图4b)。图4 力学超材料。(a)超轻-超硬力学超材料;(b)负热膨胀系数超材料。在光学器件打印方面,采用面投影立体光刻灰度曝光与表面浸润相结合的方法,实现光学镜头的3D打印(图5a),以及振动辅助与灰度曝光相结合的方法,实现表面纳米级光滑度的微透镜阵列3D打印(图5b)。图5 光学器件。(a)灰度曝光与表面浸润相结合实现光学镜头3D打印;(b)振动辅助与灰度曝光结合实现微透镜阵列3D打印。在4D打印方面,通过开发形状记忆光敏树脂,实现了大变形4D打印(图6a)、多材料4D打印(图6b)、自修4D打印(图6c),4D打印超材料结构(图6d)与4D打印吸能结构(图6e)等案例。图6 4D打印。(a)大变形4D打印;(b)多材料4D打印;(c)自修4D打印 (d)4D打印超材料结构;(e)4D打印吸能结构。4未来展望尽管面投影微立体光刻3D打印技术在近年来取得了快速的发展,但仍面临着如海量的图片数据传输与存储、多材料体素打印精确控制、高精度陶瓷打印等问题,亟待解决。5作者简介葛锜博士葛锜博士,南方科技大学机械与能源工程系长聘副教授。长期从事面投影微立体光刻3D打印技术研究,主要研究领域为4D打印、多功能3D打印、软物质力学、软体机器人、柔性电子等。王兆龙博士王兆龙博士,湖南大学机械与运载工程学院助理教授,长期从事微立体光刻3D打印,光学超材料及微流与热控理论及技术研究,先后参与包括重点国际(地区)合作研究项目及国家重点研发计划在内的多项国家自然科学基金和科技部重点研发项目。目前承担湖南省优秀青年基金及广东省重点领域研发计划等多项科研项目。Nicholas X. Fang博士Nicholas X. Fang博士,麻省理工学院机械系教授,长期从事包括微立体光刻3D打印技术在内的微纳技术研究,研究领域包括纳米光学、声学超材料、微纳制造、软物质等。本篇文章来自专辑:《极端制造》2020年第2期文章
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制