当前位置: 仪器信息网 > 行业主题 > >

平行催化氢波法

仪器信息网平行催化氢波法专题为您整合平行催化氢波法相关的最新文章,在平行催化氢波法专题,您不仅可以免费浏览平行催化氢波法的资讯, 同时您还可以浏览平行催化氢波法的相关资料、解决方案,参与社区平行催化氢波法话题讨论。

平行催化氢波法相关的论坛

  • 催化氢化装置的优点

    [font=&]催化氢化是有机化学实验中的一项重要内容之一。[/font][font=&]这一反应的具体内容是气态氢在催化剂存在下,与有机化合物进行加成或还原反应,从而生成新的有机化合物。[/font][font=&]它的优点是:[/font][font=&](1)有些反应,如碳碳不饱和键的加氢,应用其他方法比较复杂和困难,而应用催化氢化反应,则可以方便的达到目的。[/font][font=&](2)它对醛酮,硝基及亚硝基化合物都能起还原作用,生成相应的醇和胺,不需要任何还原剂和特殊溶剂。氢气本身极其便宜,因而成本低操作方便。[/font][font=&](3)反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,后处理方便,产品纯度、收率都比较满意。[/font][font=&]根据氢化时选用的压力不同,可将催化氢化分为常压氢化,低压氢化(4-5atm)及高压氢化(>6atm)。图2.9是在常压及低压下进行催化氢化的装置图。而高压氢化则需要非常特殊的装置,(由于有较高压力),这些已超出本书的范围,但不论是在任何压力进行氢化,都不得使用明火,包括电火花。[/font][font=&]催化氢化装置:主要包括氢化用的圆底烧瓶,气压计,量(贮)气管和平衡瓶。贮气管的体积一般在100mL到2L之间,可根据反应的规模大小选择合适的贮气量;在平衡瓶里所装的液体通常是水或汞。在反映过程中,氢气的压力大小可以通过平衡瓶的高度来调节。反应结束后,再通过平衡瓶来测量参加反应的氢气的体积。气压计可以保证在反应前后,氢气都在相同的压力下(一般为1atm)进行体积测量。[/font]

  • 【原创大赛】电加热板消解车用陶瓷催化转化器

    【原创大赛】电加热板消解车用陶瓷催化转化器

    引言 电加热板湿法消解是元素分析的最直接、最有效、最经济的一种样品前处理手段,因此在车用陶瓷载体催化器贵金属分析中经常被使用。影响催化器中贵金属溶出率的湿法消解的关键因素一般为所选用的溶剂的配比、加热板消解的温度和时间、消解重复的次数等。开发湿法消解前处理条件需要对上述几个参数进行试验对比,通过试验结果分析验证确定合适的湿法消解方法。1 电加热板消解所用的仪器及试剂 表1给出了车用催化器贵金属电加热板消解前处理使用的主要仪器设备莱伯泰科EH-35A plus型电加热板和梅特勒AL204型电子天平的主要参数。试验过程使用的浓硝酸、浓盐酸、氢氟酸、过氧化氢为天津科密欧化学试剂公司生产的优级纯试剂,稀释所用的水是由实验室采用密里博超纯水机制备的超纯水(电阻率18.2MΩ.cm)。http://ng1.17img.cn/bbsfiles/images/2014/11/201411211640_523938_2770543_3.jpg2 贵金属含量测试所用的设备及方法 电感耦合等离子体质谱法(ICP-MS)是近年发展起来的先进检测分析技术,该技术可以在元素分析过程中能够一次性同时检测几十种金属盒非金属元素,不仅检测范围广,且方法灵敏度高、精度高、速度快、效率高、重复性好,尤其在痕量元素的定量检测分析中具有其他设备无法比拟的优越性。ICP-MS分析技术几乎可以取代传统的无机分析技术,如电感耦合等离子体光谱技术(ICPAES)、石墨炉原子吸收(GFAAS)和汞冷原子吸收技术(CVAAS)。http://ng1.17img.cn/bbsfiles/images/2014/11/201411181655_523525_2770543_3.jpg 由于ICP-MS具有其他无机分析技术无法比拟的优越性,现被汽车检测行业定为进行车用催化器贵金属分析的必备设备。因此本文的催化器贵金属分析研究均采用电感耦合等离子体质谱法,使用的ICP-MS设备为美国安捷伦生产的ICP-MS 7500a,表2给出了ICP-MS 7500a在分析催化器粉末经前处理方法处理后,用纯水稀释后的样品测定的仪器设备方法条件。铂、钯、铑贵金属标准储备液浓度为1000μg/ml,由国家钢铁材料测试中心钢铁研究总院生产,标准溶液系列由标准储备液稀释逐级配制。http://ng1.17img.cn/bbsfiles/images/2014/11/201411181655_523524_2770543_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411211641_523940_2770543_3.jpg3 实验结果与讨论3.1 消解溶液对电加热板消解的影响 将多个催化器单元按标准HJ509-2009的要求进行研磨,并通过多家实验室共同定量分析,选择多个试验室的定量结果偏差较小的一个催化器单元的粉末(样品记为S1)作为加热板消解的对比样品,多个试验室测试结果的均值作为该催化器单元的贵金属含量的真值。首先是高大上的研磨仪和研磨后的样品http://ng1.17img.cn/bbsfiles/images/2014/11/201411181655_523520_2770543_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/11/201411181655_523521_2770543_3.jpg 为了比较加热板消解前处理方法中使用不同的溶剂作为消解液对车用催化器贵金属分析结果的影响,选择了19种消解溶剂。表3给出了这19中溶剂的配比情况。每一种消解溶剂中使用的催化器粉末样品均为同一的催化器单元的粉末样品。通用的前处理过程为:称取一定量的催化剂粉末样品于100ml的聚四氟乙烯坩埚,加0.2ml超纯水润湿样品,加入不同的消解液中,同时做平行样和过程空白,在电加热板上加热(170℃)2小时,然后升温赶酸,赶酸至近干时,加入王水10ml[fo

  • 【资料】硫化氢治理

    应用吸收﹑吸附和催化氧化等方法对工业生产过程排放的硫化氢(HS)进行回收﹑利用或无害化处理。 概述 硫化氢产生于天然气净化﹑石油炼制﹐以及制煤气﹑制革﹑制药﹑造纸﹑合成化学纤维等生产过程。硫化氢是无色气体﹐有刺激性恶臭﹐易挥发﹐燃烧时呈蓝色火焰。硫化氢是大气的主要污染物之一﹐不仅危害人体健康﹐还会严重腐蚀设备等。 硫化氢治理开始较早。1809年英国克莱格使用石灰乳净化器脱硫﹐1849年英国兰宁和希尔斯获得干式氧化铁法专利﹐1870年美国发展了氧化铁制备方法﹐这种干式氧化铁法在脱硫领域沿用 100年之久。20世纪30~40年代出现溶液法﹐将氢氧化铁悬浮在碱液中进行脱硫。50年代起﹐西欧普遍采用氨水法。60年代出现砷碱法﹐用砷化物作催化剂。因砷化物有剧毒﹐逐渐为无毒催化剂所取代。如对苯二酚法﹑A.D.A.法﹑富玛克斯法﹑达克哈克斯法等都使用无毒催化剂。这些方法都是近年发展较快的技术。另一方面溶液法的吸收废液处理技术也不断发展﹐形成了不同的脱硫工艺。 脱硫方法 基本上分干法和湿法两类﹕ 干法 包括氢氧化铁法﹑活性炭法﹑克劳斯法和氧化锌法等。 氢氧化铁法﹕将铁屑和湿木屑充分混合﹐加0.5%氧化钙﹐制成脱硫剂﹐湿度为30~40%。硫化氢同脱硫剂反应而被脱除﹐再生的氢氧化铁可继续使用。其反应如下﹕ 2Fe(OH)+3HS─→FeS+6HO 2FeS+6HO+3O─→4Fe(OH)+6S 此法脱硫效率高﹐适于净化硫化氢含量低的气体﹐但设备占地面积大﹐脱硫剂必须定期再生和更换﹐操作条件差﹐因而已逐渐为湿法取代﹐或同湿法联合用于深度脱硫。 活性炭法﹕用活性炭吸附硫化氢﹐通氧气转换成单体硫和水﹐用硫化胺洗去硫磺﹐活性炭可继续使用。此法不宜用于含焦油的气体。 克劳斯法﹕先把1/3硫化氢氧化成二氧化硫﹐再使它在转化炉内同剩余硫化氢反应﹐可直接从[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]制取高质量熔融硫。 氧化锌法﹕粒状的氧化锌和硫化氢反应生成硫酸锌和水。主要用于净化硫化氢含量低的废气。此法效率较高﹐但不经济。 湿法 包括溶剂法﹑中和法和氧化法。 溶剂法﹕常用15~20%二乙醇胺水溶液吸收硫化氢﹐形成“复合物”﹐把富液加热到100~130℃﹐硫化氢被解析出来﹐经冷凝可得到高浓度硫化氢﹐再制成硫磺。溶液再生后经换热器冷却继续使用﹐这种工艺叫胺洗。 此法特点是溶剂容易生产﹐价格低廉﹐工艺成熟﹐脱硫效率高﹐降解和蒸发损失小。广泛应用于石油炼制的脱硫。此法还可采用环丁﹑氨基异丙醇﹑聚乙醇醚﹑磷酸酯﹑碳酸丙烯酯﹑冷甲醇等作为溶剂。但某些溶剂不适于重烃﹑芳烃含量高的气体脱硫。 中和法﹕硫化氢是酸性物质﹐可用碱性吸收液去除。富液可经过加热减压处理﹐使硫化氢脱吸﹐吸收液可循环使用。应用的碱性吸收液主要有碳酸钠﹑磷酸钾﹑氢氧化钙的溶液和氨水等﹐其中氨水应用较广。氨水法可利用煤气中的氨作碱性吸收液去除硫化氢﹐既不用外来碱源﹐也不产生废液。其反应如下﹕ 中和法操作简单﹐费用低﹐废液少﹐但碱耗高﹐吸收液再生较困难﹐脱硫效率一般比较低。 氧化法﹕硫化氢用碱性吸收液吸收后﹐在催化剂作用下氧化成硫磺。催化剂可用空气再生﹐继续使用。常用催化剂有镍盐﹑铁氰化物﹑氧化铁﹑对苯二酚﹑氢氧化铁﹑硫化砷酸的碱金属盐类﹑二磺酸盐﹑苦味酸﹑二磺酸盐等。常用吸收液有碳酸钠溶液﹑氨水等。氧化法因催化剂和吸收液的不同而异﹐举例如下﹕ 对苯二酚法﹕以碳酸钠溶液或氨水作吸收液﹐以对苯二酚作催化剂。对苯二酚是一种有机载氧体﹐脱硫效率高﹐催化剂再生所需空气少。 砷碱法﹕以氨水或碳酸钠溶液作吸收液﹐以硫代砷酸的碱金属盐类作催化剂﹐其反应如下﹕ 吸收 NaAsSO+HS─→NaAsS+HO 再生 2NaAsS+O─→2NaAsSO+2S 砷碱法为焦化厂广泛使用﹐但因催化剂污染水体﹐所以应用受到限制。 A.D.A.法﹕是以3~5%碳酸钠溶液作吸收液﹐以二磺酸钠和偏钒酸钠作催化剂﹐并加入少量酒石酸钠﹐防止有钒存在时出现沉淀物﹐硫化氢被吸收并被氧化为单体硫而加以回收。此法脱硫效率高﹐获得的硫纯度也高﹐但有副反应﹐碱耗大。 富玛克斯法﹕以2~3%碳酸钠溶液作吸收液﹐加入0.1%苦味酸作催化剂﹐吸收硫化氢。吸收硫化氢后的溶液输送到再生塔用空气再生﹐反应如下﹕ HS吸收 NaCO+HS─→NaHS+NaHCO HS氧化 NaHS+*RNO+HO─→NaOH+S+*RNHOH NaHCO+NaOH─→NaCO+HO 苦味酸再生 *R表示芳基。此法催化剂易得﹐操作温度范围较宽﹑效率高。 达克哈克斯法﹕又名法﹐以二磺酸钠为催化剂﹐以碳酸钠溶液或氨水为吸收液﹐吸收塔采用高效的泰勒填料﹐可同时脱硫脱氰。此法因碱源和废液处理方法不同可组成三种全流程﹕氨型达克哈克斯湿式氧化法﹐可得到硫酸和硫酸铵。氨型达克哈克斯燃烧法﹐产生单体硫﹑二氧化硫和氮气﹐二氧化硫可制硫酸。钠型达克哈克斯还原热解法﹐产生单体

  • 【转贴】微波技术在催化领域中的应用

    微波技术在催化领域中的应用微波技术是近代科学技术发展的重大成就之一,发展极为迅速。20世纪80年代微波开始在化学领域中得到广泛研究,并取得了积极效果,如在有机合成方面,合成某些放射性药剂及干燥等方面[1]。最近,微波在催化领域中的研究也越来越活跃,这里介绍近年来微波技术在催化领域中所取得的进展,如微波用于诱导催化反应,用于催化剂的制备以及载体的改性方面。微波技术用于诱导催化反应一、 微波诱导催化反应原理 微波是一种电磁波,电磁波包括电场和磁场,电场使带电粒子开始运动而具有一种力,由于带电粒子的运动从而使极化粒子进一步极化,微波的电和磁部分的相关的力方向快速变化,从而产生摩擦使其自身温度升高。这就是微波加热的基本原理[2]。 许多有机反应物不能直接明显地吸收微波,但将高强度短脉冲微波辐射聚焦到含有某种“物质”(如铁磁性金属)的固体催化剂床表面上,由于表面金属点位与微波能的强烈作用,微波能将被转变热,从而使某些表面点位选择性地被很快加热至很高温度。尽管反应器中的物料不会被微波直接加热,但当它们与受激发的表面点位接触时可发生反应。这就是微波诱导催化反应的基本原理[3]。 二、微波诱导催化反应的催化剂和载体 微波诱导催化反应实质上是微波首先作用于催化剂或其载体,使其迅速升温而产生活性点位,当反应物或载化都可以用于微波诱导催化反应的,只有那些可能被微波激活的催化剂和载体才能用于微波诱导催化反应。对于金属催化剂,能与微波发生强相互作用的主要是那些铁磁性金属,如镍、钴、铁等。对于金属氧化物,则视组分和结构不同而有很大差别;对于S区金属氧化物,不存在变价情况,则对微波是透明的。对于P区金属氧化物和过渡金属氧化物,存在变价现象,则它们对微波是不透明的,即吸收微波的能力随组分和结构而不同[4]。有人曾对过渡金属和P区金属的氧化物与微波之间的相互作用作过较深的研究[5]。把金属氧化物分成3类:第1类是高损耗物质,它们是一些含有变价元素的金属氧化物,如NI2O3,MNO2,Co3O4等,在微波场中有很高的活性。第2类是在微波场中辐射一段时间后才开始急剧升温,如Fe2O3,CdO,V2O5等。第3类低损耗物质,如AL2O3,TiO2,ZnO,PbO,La2O3,Y2O3,ZrO2,Nb2O5等。显然,第1类金属氧化物最适宜作微波诱导催化反应的催化剂,第3类金属氧化物宜作载体。 三、微波诱导催化反应的应用 (1) 甲烷分解 四烷分解制成乙烯有着十分重要的经济和学术意义。研究证明[6],在微波辐射下,许多催化剂可使甲烷快速分解,通过适当控制条件,可选择地获得较低或较高烃类。当在400 W 微波炉中用Ni-1404片或Ni粉作催化剂时,其转化产物主要为乙烯、乙烷和乙炔。 (2) 烃类氧化 脂肪烃和芳香烃直接氧化有着重要的经济意义,已被广泛地研究了几十年,但是迄今未能找到转化率高、选择性好的直接氧化方法(尤其是对于甲烷的氧化。)最近研究证明:在微波辐射下,甲烷、丙烷、再烯、乙烷、甲苯都可与水发生催化氧化,形成相应的醇、酮、醚等。 微波场中甲烷部分氧化剂制合成气的研究较为活跃,因为在微波场中进行的甲烷部分氧化(POM)反应与常规加热条件下相比较前者具有反应速率快,催化床层温度低,反应物的转化率和产物的选择性均得到改善等优点[7]。对微波场中甲烷部分氧化合成气所用催化剂的考察,研究人员做了很多工作[8],通过对Ni/La2O3,Ni/ZrO2,Co/La2O3,和Co/ZrO2的催化性能的考察,发现以ZrO2为载体的镍基催化剂的活性和稳定性明显优于钴基催化剂,活性顺序为:Ni/ZrO2>Ni/La2O3>Co/ZrO2>Co/La2O3。 甲苯选择氧化制苯甲酸的多相工业化生产由于甲苯的转化率和苯甲酸的选择性较低而无法实现。研究表明[9],在微波场下,V2O5/TiO2在较低的温度下选择氧化甲苯,可得到苯甲酸和苯甲醛的收率分别为41%和14%。与传统加热催化过程相比,苯甲酸的收率有较大的提高。 (3) SO2和NO的还原 以往的除去SO2的方法大都是将其氧化后中和除去,但基氧化物腐蚀性强,处理费用高。把含有SO2的空气在微波场下通过Ni-1404催化剂,则SO2可分解而释放出氧和硫;同样把含NO的空气在微波场下通过Ni-1404催化剂,则NO被分解成为O2、N2及少量N2O。微波技术用于催化剂的制备及载体的改性 一、分子筛的合成 利用微波的介电加热作用进行分子筛合成,是一种新型合成方法。据报道。用微波技术合成的分子筛有A型,X型,Y型,ZXM-5型,CoAPO-44型,CoAPO-5型,AlPO4-5型以及中孔MCM-41型分子筛,还有NaX及NaA分子筛。与传统的水热合成方法相比,微波合成法能同时大量成核且能大幅度缩短晶化时间,获得均匀细小的晶粒,比表面积增大。 二、活性组分在分子筛上的负载 活性组分负载在载体上是一个复杂的过程,其分散度影响催化剂的活性、选择性及寿命等各个方面。最近不少学者采用微波技术使一些无机盐很好地负载在分子筛等载体上。据研究,微波固相法制备的ZnCl2/NaY催化剂与普通法制备的ZnCl2/NaY催化剂相比,在Diels-Alder反应中表现出较高的环加成选择性和区哉选择性。利用微波法制备的ZnCl2-HY分子筛催化苯甲醚与乙酰氯的酰化反应,发现这种催化剂具有良好的初活性。利用微波功率的增大,苯甲醚的转化率和甲氧基苯乙酮的选择性也增加。这可能是由于微波功率增大,促进了ZnCl2在HY分子筛中的分散及与HY分子筛的交换的缘故。 用微波法负载活性分于分子筛上,与传统法相比,具有以下优点:分散度高;处理时间短,效率高;处理样品简单,避免了溶液的混合烘干及培烧;无机盐很容易分散到多孔分子筛上。 三、载体的改性及新型材料的合成 Al2O3是多相催化中广泛应用的载休,利用微波辐射制备结晶γ-Al2O3,与传统的深浅法所获得的γ-Al2O3相比,具有规整、清晰的晶貌特征。这是由于在微波下,水分子被子激活形成活性水分子,加速了铝溶胶的溶解从而促进了体系中结晶Al(OH)3xH2O的生成所致其制备方法是:将铝溶胶置于微波炉中,利用策波辐射加热,保持沸腾3h后,冷却,静置,将所得白色沉淀洗涤,分离,在120℃烘干,在马福炉中按规250℃ 1h,350℃ 1h,450℃ 1h,550℃ 3h顺序焙烧,得到白色粉末,即可得到边界清晰、结构规整的结晶γ-Al2O3。 Al2O3作为一种载体,由于它的比表面积较小,所以某些活性成分在其上面的负载将受到限制。若将 Al2O3分散于比表面积较大的沸石上,则可制得一种具有Al2O3表面性质又保持沸石高比表面积的新型复合材料。据研究,用化学镀饰法化学浸渍法和高温热处理法所制的Al2O3/NaY新型催化材料的分散度均不高,而采用微波辐射固相法制得的Al2O3/NaY新型催化剂材料具有较高的分散度。Al2O3在NaY沸石上的理论分散值为0.62,实验测得用微波辐射得到的分散值为0.45,其他方法得到的分散值均小于0.3。 四、 结 语 微波技术应用于化学研究有着相当大的优势和无限的魅力。微波技术发展的特点之一,是它与更多的学科相结合。这会大大地突破传统内容,建立一系列新的生长点。而研究用的微波炉也易于获得,使该方法的研究更具有普遍意义。但微波技术应用于催化领域也存在一些复杂性。有关微波诱导催化反应的机理以及微波参催化剂作用的机理的研究毕竟还很不深入,主要原因是微波场中温度无法准确测量。所以进一步改进实验测量技术(特别是微波场中的温度测量技术)具有十分重要的意义。只有将微波的作用机理进行深入研究才能使微波在催化剂领域中得到进一步发展。

  • 【资料】环境保护催化剂简介!

    催化剂工业中的一类产品,用于借助催化作用来消除环境污染的工艺。自20世纪70年代汽车排气催化净化技术商业化以后,此类催化剂与石油炼制催化剂、化工催化剂(包括石油化工催化剂和无机化工催化剂并列为催化剂工业中的三大类产品。环境保护用催化剂通常有较高的催化活性,能将浓度本来很低的污染物经催化转化为无毒物;能承受较高的作业负荷,以节约催化剂用量和治理污染的设备投资;能在室温或不太高的温度下作业,以减少治理污染所需的能耗。被处理的气体,通常含有粉尘、重金属、含硫化合物、含氯化合物、酸雾等,因此要求催化剂的抗毒能力较强,化学稳定性好,具有足够的催化剂寿命。有时,要求有良好的催化剂选择性不致因副反应所生成的产物造成二次污染。在环境治理工程中,由于被污染物的组成、浓度、温度等常有变化,故要求催化剂能在较宽的反应条件下保持其效率,这与典型的化工生产中所用的催化剂是有所不同的。   燃烧催化剂  用完全催化氧化的方法使可燃性污染物质转化为二氧化碳和水的催化剂。广泛用于治理工厂的排气污染,主要是一氧化碳、烃类及其含氧衍生物,如醇、醛、酮、酯等引起的污染。第一次世界大战时曾用CuO和MnOx为催化剂,置于防毒面具中以净化毒气(一氧化碳等),在室温下即有效。催化燃烧技术现在广泛地用于排放有机溶剂废气的行业和排放可燃尾气的化工厂。将直接燃烧和催化燃烧法比较,依据不同的污染物,起燃温度(为保持反应正常进行所需的最低温度)分别为600~800℃和室温至400℃,即用催化法治理污染的起燃温度低,可节约能源。最常用的催化剂是以铂、钯、氧化铜、氧化锰、氧化钴、氧化镍、氧化钒等为活性组分,以氧化铝为载体。含贵金属的催化剂极为活泼,在催化剂中的含量通常为0.3%~0.1%,它们甚至在低于100℃时可使烃类完全转化,铂转化一氧化碳效率优于钯,而对烃类的燃烧活性则反之。以甲烷为例,催化燃烧活性顺序为Pd>Pt>Co3O4>PdO>Cr2O3>Mn2O3>CuO>CeO2>Fe2O3>V2O5>NiO>MoO3>TiO2。非贵金属氧化物催化剂价廉,但起燃温度较高。近年来,在处理大气量的催化燃烧炉中,多采用蜂窝状造型的催化剂,后者为柱状制件,沿柱体的轴向开有许多平行的孔道,形似蜂窝。这种造型的催化剂对气流的阻力比球状催化剂小得多。

  • 【资源整理】空气中氯化氢的分析测定等资料汇总贴

    本贴为空气中氯化氢的分析、测定等问题以及相关资料汇总贴,请勿灌水!氯化氢相关资料:氯化氢是无色而有刺激性气味的气体。纯盐酸为无色液体,在空气中冒雾(由于盐酸有强挥发性),有刺鼻酸味。粗盐酸因含杂质氯化铁而带黄色。它易溶于水,在0℃时,1体积的水大约能溶解500体积的氯化氢。氯化氢的水溶液呈酸性,叫做氯化酸,习惯上叫盐酸。主要用于制做染料、香料、药物、各种氯化物及腐蚀抑制剂。盐酸为氯化氢的水溶液,是无色或微黄色的液体。中文名:氯化氢,水溶液为盐酸。用途:配制标准溶液滴定碱性物质。调节溶液的酸碱度。水解淀粉和蛋白质等。制备氯化物、胶、药品和染料。有机合成催化剂。溶剂。腐蚀剂。氯化氢气体的用途主要为制染料、香料、药物、各种氯化物及腐蚀抑制剂安全措施:泄漏:迅速撤离泄漏污染区人员至安全区并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防酸碱工作服。不要直接接触泄漏物。尽可能切断泄漏源,防止进入下水道、排洪沟等限制性空间。小量泄露:用砂土、干燥石灰或苏打灰混合。也可用大量水冲洗,洗水稀释后放入废水系统。大量泄露:构筑围堤或挖坑收容;用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。健康危害:本品对眼和呼吸道粘膜有强烈的刺激作用。环境危害:对环境有危害,对水体可造成污染。遇水有强腐蚀性。原创类:【原创】硫氰酸汞分光光度法测氯化氢分析方法的验证报告求助类:【求助】硫氰酸汞分光光度法测定氯化氢的问题【求助】废气氯化氢测定【求助】硫氰酸汞分光光度法分析氯化氢【求助】请教,为什么氯化氢的现场空白测定值比样品值还要高【求助】求抑雾率(氯化氢)测定的方法【求助】为什么做空气氯化氢时我的做的平行样不一样而且相差很大【求助】大气中氯化氢采样检测如何避免污染【求助】尾气中氯气、氯化氢检测问题!【求助】哪位有铬酸雾、硫酸雾、氯化氢的原始记录表格啊【求助】空气中氯化氢校准曲线问题【求助】废气污染源中氯化氢的测定方法【求助】请问环境空气监测氯化氢时采集空气样品时用的滤膜夹是啥样的?【求助】求测定氯化氢方法的问题【求助】请问一下做氯化氢的朋友【求助】空气中氯化氢的检测【求助】求废气中氯化氢的测定方法【求助】求教氯化氢温度及操作问题【求助】求空气中氟化氢、氯化氢含量测定方法(应急处理时使用)【求助】问一下离子色谱法测定环境空气中氯化氢的问题 大气中的氯化氢为什么会出现倒置 烟气中的氯化氢 氯化氢测定的问题 硫氰酸汞分光光度法分析氯化氢

  • 【求助】为什么做空气氯化氢时我的做的平行样不一样而且相差很大

    [em0910]我按照国标做的为什么氯化氢的测得的结果相差很大。同一时间同一点做的平行 ,做的曲线R值也只有0.998 , 做了好几次都达不到3个9 。那位大侠帮我解决一下?小弟刚刚做这个实验,我用的是硫氰酸汞分光光度法 。请问下还有没有别的方法可以做空气氯化氢含量的方法?谢谢!

  • 微波消解催化油浆问题求助!

    第一次用微波消解仪,处理的是应该催化油浆,取样量分别是0.1/0.2/0.3克,加8毫升硝酸~2毫升双氧水~2毫升氢氟酸,185℃1小时,消解后颜色是黄棕色的,正常吗?赶酸后用水冲洗就如图片中的样子。微波消解处理试样处理的很理想的应该是什么样的呀?求哪位大神能指导指导[img]http://ng1.17img.cn/bbsfiles/images/2018/03/201803091135009210_2633_3045958_3.jpeg[/img]

  • 【分享】多功能生物催化剂--卤醇脱卤酶的研究进展

    多功能生物催化剂―――卤醇脱卤酶的研究进展 郑楷 汤丽霞 (电子科技大学生命科学与技术学院,四川成都610054) 摘要:光学纯的环氧化物及β-取代醇是一类高价值中间体,在手性药物及精细化工合成领域具有十分重要的应 用前景。卤醇脱卤酶是一类通过分子内亲核取代机制催化邻卤醇转化为环氧化物的脱卤酶,可以高效高选择地 催化环氧化物和邻卤醇之间的转化,因而可以用来合成具有光学纯的环氧化物及β-取代醇等化合物。本文着重 介绍了卤醇脱卤酶的催化机理及其应用研究进展,并对研究的发展方向提出了一些设想。 关键词:卤醇脱卤酶 生物催化 亲核试剂 光学纯环氧化物与β-取代醇 中图分类号:Q814?9 文献标识码:A文章编号:0438-1157(2008)12-2971-07 1 卤醇脱卤酶研究概述 有机卤化合物已成为当今重要环境污染物之一,主要是由于工业排废以及人工合成卤化物在化 工合成以及农业上的广泛应用造成的。在自然界 中,大部分异生质卤化物自降解能力很差,同时许多化合物被疑是致癌或高诱变物质。因此,应用微 生物降解有机卤化物已引起人们广泛的关注。从 1968年Castro等[1]首次发现以2,3-二溴丙醇作为 唯一碳源而生存的黄杆菌(Flavobateriumsp?) 菌株至今,人们相继筛选到多种可以降解邻卤醇的 微生物[2-8]。其中包括从淡水沉淀物中分离的放射 形土壤杆菌(Agrobacteriumradiobacter)菌株 AD1和节杆菌(Arthrobactersp?)菌株AD2以及 从土壤中获得的棒状杆菌(Corynebacteriumsp?) 菌株N-1074等。它们降解有机卤化物的途径虽然 存在明显差异,但是卤醇脱卤酶作为关键酶之一, 催化碳卤键的断裂存在于所有的代谢途径中。 卤醇脱卤酶也叫卤醇-卤化氢裂解酶,通过分 子内亲核取代机制催化邻卤醇转化为环氧化物和卤 化氢,是微生物降解此类化合物的关键酶之一。大 部分已知的卤醇脱卤酶都已经被克隆并在大肠杆菌 中进行重组表达,并根据其序列同源性分为 HheA、HheB、HheC3类。相关的研究表明,卤 醇脱卤酶与依赖NAD(P)H的短链脱氢酶/还原 酶家族(SDR)具有一定的序列相似性,同时蛋白 质三级结构的研究进一步揭示卤醇脱卤酶与SDR 家族成员有一定的进化相关性[9]。SDR是一类依 赖于NAD(H)或NADP(H)并在功能上具有 多样性的一组酶类,主要催化醇、糖类、类固醇和 一些异生质的氧化还原反应[10-11]。由于辅酶结合 位点在卤醇脱卤酶中被卤离子结合位点取代,因而 卤醇脱卤酶是一类不需要辅酶参与的脱卤酶。同 SDR家族一样,在卤醇脱卤酶中严格保守的丝氨 酸、酪氨酸和精氨酸在催化过程中起着关键作用。 其催化机制(图1)为:保守的丝氨酸通过与底物 羟基氧原子之间形成氢键,稳定了底物的结合 精 氨酸可用以降低酪氨酸的pKa值 酪氨酸从底物 的羟基中夺取一个质子,然后以底物上的氧原子作 为亲核试剂,进攻邻位卤素取代的碳原子,进而释 放卤离子,形成环氧化物[9,12]。 卤醇脱卤酶备受关注的另一个原因是其在生物 催化领域的应用,可以用来合成具有光学纯的高价 值中间体。这些化合物在手性药物、手性农药以及 各类手性合成的合成领域中具有传统化学合成法所 无法比拟的优越性。其中光学纯的环氧化物以及用 来合成该类化合物的前体邻卤醇在有机合成中具有 特别重要的应用价值。因为环氧化物环具有非常活 泼的化学特性,易与亲核试剂发生反应生成一类重要的手性合成单元―――不对称醇类。因此,多种合 成光学纯环氧化物的生物学方法已被广泛研究,其 中包括人们熟知的脂肪酶、环氧化物水解酶等。卤 醇脱卤酶催化邻卤醇生成环氧化物将成为高效合成 光学纯的环氧化物的主要方法之一。本文将重点介 绍卤醇脱卤酶在催化合成环氧化物、短链β-取代 醇以及叔醇类化合物方面的研究进展。

  • 光催化都用什么光源?分享给大家

    光催化氙灯光源 光化学 模拟日光光源HSX系列氙灯光源,光源内部安装美国进口氙灯灯泡,在高频高压激发下形成弧光放电,点燃时辐射出强而稳定的、从紫外到近红外强烈连续光谱,可见区光色极近似于日光,能量密度高,输出稳定。电源和灯箱分体设计,提高了氙灯光源的便携性。独特的电源电路设计,实现氙灯功率可调;灯箱主体采用国际先进的散热结构,散热效果极佳;光路转向头采用了多次滤光结构,滤除了大量红外光,最大程度地降低红外线在实验中对溶液或样品影响(加热和挥发);滤光转向头兼容多种规格滤光片、透镜;滤光转向头可360°旋转,实现任何方向的光照;智能化的面板设计,操作简单方便。主要特点◣采用美国进口的氙灯灯泡,光能量输出集中,高能量密度,提高了实验效率。◣采用国际先进的散热结构,延长灯泡使用寿命,最高达3000小时。◣高效的电光转换效率,输出高能量平行光,总光功率达50W。◣简易的光学结构,可以提供不同波段、指定波长的光谱,满足多样化使用需求。◣模块化的设计极大提高了产品的安全性和稳定性,可实现长时间的连续照射。◣出光口兼容多种规格、品牌的国内外滤光片和透镜(如:25.4mm,50.8mm,,M52,M62等)。主要应用此系列氙灯光源广泛应用于光解水产氢、光化学催化、二氧化碳制甲醇、光化学合成、光降解污染物、水污染处理、生物光照,光学检测、各类模拟日光可见光加速实验、紫外波段加速实验等研究领域。光谱曲线技术参数主要参数HSX-F300 HSX-UV300输入功率Power(Watts)300W(180W~320W)300W(180W~320W)工作电流Current (Amps DC)21A(10A~22A[/colo

  • 光催化产氢出现的色谱峰

    光催化产氢出现的色谱峰

    大家好 我做光催化产氢 加的水和甲醇 没有加催化剂 但还是出现了两个峰 请问是什么原因呢?能否确定是哪种物质?色谱型号是福立GC9720 检测器是TCD 用了空气发生器 载气是氩气[img=,690,545]https://ng1.17img.cn/bbsfiles/images/2022/10/202210081809066610_9574_5577143_3.png!w690x545.jpg[/img]

  • 【原创大赛】【开学季】微波消解新型耐强酸陶瓷催化转化器

    汽车催化转化器是降低汽车尾气污染物排放的有效装置,电控燃油喷射技术加三元催化转化器已成为现代汽油车的一种标准配置。三元催化转化器通常以铂、钯、铑等贵金属元素作为其活性成分,其中铂、钯主要对CO、HC起催化氧化作用,铑主要对NOx起催化还原作用。轻型车国5排放标准要求进行耐久试验车辆均要求按HJ509-2009 标准进行催化转化器的贵金属含量测试,测试标准要求将陶瓷载体中的贵金属先进行消解前处理,表1给出的常用化学试剂对贵金属腐蚀作用对比结果显示,三种贵金属元素中以铑元素的溶出最为困难,常态下即使王水也不能溶解铑元素,只有在高温或高压条件下,铑元素可部分溶解于王水。常见的催化剂消解方法主要有:加热板消解法和微波消解法。微波消解技术迅速提高反应物温度并使被加热物质从里到外同时加热,比经典的电加热板和烘箱加热法要快4-100倍,并且无污染、无损失,操作简便。消解后常用的分析方法主要是火焰原子吸收光谱法、电感耦合等离子体发射光谱法(ICP-OES)和电感耦合等离子体质谱法(ICP-MS),相对于光谱等分析方法,质谱更加准确,检出限更低。表1常用化学试剂对贵金属的腐蚀作用比较 试剂及条件PtPdRhHCl 36% 室温无作用无作用无作用HCl 36% 煮沸作用弱作用弱无作用HNO3 70% 室温无作用溶解无作用HNO3 70% 煮沸无作用溶解无作用王水室温溶解溶解无作用王水煮沸溶解溶解无作用汽车催化转化器采用实验室早期开发的微波消解方法可使铑溶出率达到95%以上,但对于本文所研究的新型耐强酸汽车催化转化器中铑的溶出率则低于70%,本文通过对前处理微波消解方法中的加酸量、消解温度和消解时间进行试验研究,用ICP-MS作为最后分析测定,建立该耐酸性催化器中铑的微波消解方法。1 实验部分1.1 仪器设备试验过程使用的主要仪器设备有美国安捷伦科技有限公司生产的7500a型ICP-MS、美国CEM公司MARS(Xpress)型微波消解仪、美国CEM公司MARS5(Easyprep)型微波消解仪、莱伯泰科EH45A plus型电加热板、日本AND GR-200型电子分析天平、美国密理博公司Milli-Q Academic型超纯水系统等。1.2 试剂材料使用国家有色金属及电子材料分析测试中心生产的Pt、Pd、Rh、In、Re单元素标准储备溶液,浓度为1000 mg/L。使用体积分数1% HCl和5% HNO3逐级稀释单元素标准储备液配置成混合标准系列溶液,使用1 mg/L[f

  • 【分享】一种以铁为主的新制药催化剂问世

    加拿大一研究小组找到了一种以铁为基础原料制造催化剂的新方法。这种新型催化剂与目前通常使用的铂等金属催化剂相比,毒性小且成本低,有望作为制药和芳香剂生产工艺中的催化剂。   药物合成中通常都需要催化剂,这对药物成本的影响很大。而且,如使用毒性大的钌、铑、钯等铂系金属作为催化剂,最后的合成产品就需要先经过昂贵的净化技术来消除毒素。   多伦多大学化学系罗伯特-莫里斯教授相信,使用他们研制的新型催化剂,不仅价廉而且毒性低,可以免除铂系金属催化剂带来的上述两种缺陷。   莫里斯教授在新一期《化学》杂志上发表论文说,铁一般被认为是催化活性很低的“贱金属”,使其能够成功用于替换通常使用的铂系金属作为催化剂,秘诀在于将铁的结构通过一定的手段转换成与铂系金属相似的结构。他们所研制的催化剂是一种包含碳、氢、磷及氮的有机分子,科学家们将各原子排列成一种独特的右旋结构,依附于铁上,使其处于一种亚铁状态。   化学催化剂的作用是加快化学反应过程,但同时,它们也会对反应过程中的化学物结构产生影响。用于药物合成过程中的催化剂,其最有价值之处在于它们可以将药物化学品的产品限定在一种特定的结构形式,而不会使其产生另一种镜像结构形式。   目前,多伦多大学研究人员已通过使用少量的这种催化剂,并运用对称转移氢化法工艺,成功将价廉的酮转化成了结构为左旋形式的酒精。

  • 【国产好仪器讨论】之北京祥鹄科技发展有限公司的电脑微波催化合成/萃取仪(XH-100A)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C44721%2Ejpg&iwidth=200&iHeight=200 北京祥鹄科技发展有限公司 的 电脑微波催化合成/萃取仪(XH-100A)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 仪器简介:XH-100A型祥鹄电脑微波催化合成/萃取仪获得国家发明专利号:200820079378.5,是应用先进的微波技术作为物理催化手段的新型化学反应装置。主要由微波催化仪主机、微电脑智能控制系统、高精度温度传感器、回流冷凝系统等组成。仪器使用先进的温度传感器,对反应温度进行实时精确监测;采用独创的电脑自学习技术,自动调节微波功率,智能控温保温,控温精度达±1℃。大容量不锈钢腔体,耐腐蚀,耐高温,微波泄漏符合国家标准。仪器操作简单,界面友好,您可轻松制订各种实验方案,并对实验过程进行全程监控。XH-100A的优越性能,使您的实验过程更简单,实验结果更加理想,让您真正体验到化学实验的新感觉。 该仪器能催化加成、取代、酯化、水解、烷(酰)基化、聚合、缩合、环合和氧化等许多类型的有机、药物和生物化学反应及食品、天然产物和矿物的溶剂萃取等物理过程。 适用于有机合成化学、药物化学、食品科学、检疫防疫、军事化学、分子生物学、分析化学、无机化学、石油化工、材料科学、生物医学等相关领域。该仪器在上述领域中具有重要的应用价值,通过焓效应和熵效应诱导或加速化学反应和物理过程,使反应速度比常规方法加快数百倍甚至数千倍,同时提高反应选择性和收率,使过去许多难以发生或速度很慢的化学反应或物理过程变得容易实现和高速完成。技术参数:1.功率:100~1000W 10档自动可调 2.测温和控温范围:0~300℃ 3.测温精度:≤±0.2℃ 控温精度:≤±1℃ 4.大容量不锈钢腔体耐腐蚀、耐高温,外观美观大方 5.反应容积:10~1500mL 6.液晶显示反应条件、温度曲线 7.可储存10个反应条件,可随时进行打印 8.提供不同速度磁力搅拌,使反应更加充分,温度更加均匀 9.友好的人机界面和简便的键盘操作:通过简明的屏幕提示,轻易完成操作过程 10.高精度接触式镀铂金防腐温度传感器,实时监测反应温度,准确控制反应进程 11.先进的电脑温控自学习功能,全自动智能调节保温功率 12.开放式反应体系,可安装滴液漏斗和冷凝管等进行回流反应,微波泄漏符合国家标准,安全可靠。主要特点:祥鹄XH-100A电脑微波催化合成/萃取仪,是专门为催化合成萃取开发研制的产品,具有以下优势和特点: 1. 功率100-1000W,可根据实验的要求和反应容积进行调整。 2....【了解更多此仪器设备的信息】

  • 光催化产氢光强校准

    [color=#444444]请问一下,做光催化产氢性能实验之前,是不是要校准氙灯(300W)的光强?用什么仪器校准?在什么位置处校准?校准到什么程度才算是校准成功?请各位前辈帮忙解答一下,谢谢![/color]

  • 苯甲醛催化加氢反应

    有人用过水做溶剂催化苯甲醛加氢成苯甲醇吗?反应液是用什么方法检测转化率的,我用乙酸乙酯萃取打[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]找不到产物峰?是因为不溶于水而不反应吗?还是什么问题。。求救啊!!

  • 硫化氢的用途

    硫化氢主要用于合成荧光粉,电放光、光导体、光电曝光计等的制造,有机合成还原剂,用于金属精制、农药、医药、催化剂再生、通用试剂、制取各种硫化物。也用于制造无机硫化物,还用于化学分析如鉴定金属离子。硫化氢标准状况下是一种易燃的酸性气体,无色,低浓度时有臭鸡蛋气味,浓度极低时便有硫磺味,有剧毒(LC50=444ppm500ppm)。其水溶液为氢硫酸,酸性较弱,比碳酸弱,但比硼酸强。能溶于水,易溶于醇类、石油溶剂和原油。

  • 色谱仪催化剂中毒,经常老化柱子

    国产[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]。配有FID1-FID2-TCD-甲烷转化炉等。检测气体成分:二氯甲烷,氯化氢、二氧化碳,一氧化碳等,载气为氮气,氩气,氢气。。目前的问题:一是一氧花碳出峰时间由11min逐步前移到6min,老化5 A柱后使用一个月就又这样了,怀疑是载气带水导致的。二是使用同一瓶2000ppm二氧化碳标气标定,峰面积发生了变化,前后相差300ppm,怀疑甲烷转化炉部分催化剂已中毒。请问各位前辈,这个设备仪需要怎么改才能解决呢[img]https://ng1.17img.cn/bbsfiles/images/2022/06/202206301950432870_868_5527689_3.png[/img]

  • 催化反应的应用领域

    工业的应用现代化学工业的巨大成就与催化剂的使用是分不开的。约90%以上的化学工业产品是借助于催化过程来生产的。例如,从煤炭和石油资源出发合成了甲醇、乙醇、丙酮、丁醇等基本有机原料,改变了过去用粮食生产的途径;合成纤维的生产减轻了人类对棉花的依赖;塑料的发展减轻了人类对木材的依赖。合成橡胶、化肥、医药、合成食品、调味品的生产都与催化剂的使用分不开。例如,硫酸的生产,相比于二氧化氮作催化剂的铅室法,产品浓度低、杂质多、产量小;用铂作催化剂可使硫酸产品浓度达98%以上,可制得发烟硫酸;用钒作催化剂后,产品质量大大提高,成本大幅度下降。又如炼油工业中的催化裂化,用分子筛催化剂代替无定形硅铝胶催化剂后,由于分子筛的择形作用,改变了裂化产物的分布,得到了高质量产品。生态上的应用处理各类废弃物。二氧化碳 + 废塑料轮胎→汽柴油+可燃气+炭黑,既解决了空中环境堵塞,又将地面废弃物转化为能源;煤+地面农、林、牧、城市生活废弃物、城市工业废弃物→汽柴油+可燃气+炭黑,既解决了地面的污染问题,地面生态通道的堵塞,和煤排出的CO2问题,又将煤、地面废弃物转化为急需的汽、柴油基础油,它产生的可燃气体和天然气的低碳排放是一个水平:排出的可燃气体,碳排放量为16%,天然气的碳排放量12%。优化化石能源的产业结构。用先进的催化技术和仿生能源的工艺方法,将炼油工业转化为资源节约型的工业结构。石油→汽柴油+可燃气+炭黑,以高科技手段,打破垄断,形成资源节约型产业,把地下化石能源成本降下来。 相比于传统炼油,设备成本为(1/5) 生产成本为(1/2),且更多的产出来源于石油中的生物质。

  • 【求助】关于催化极谱法的相关问题

    刚刚开始接触电化学,对很多东西都不太了解,希望各位大虾多多指点.我现在的问题是:催化极谱法跟微分脉冲极谱法的底液应该不能互通的吧?我现在用催化极谱法测硒,不知道有没有大虾做过呀?[em0808]

  • 【分享】对负载金属催化剂的考察

    1,Pt-Sn催化剂的TPD谱与催化活性对不同活性程度的Pt-Sn样品进行了氢气的TPD试验。具有相近初活性的工业样品和实验室样品,再其新鲜状态时,有着相当符合的TPD谱图,证明制备技术是良好重复的。但在100毫升反应装置上使用之后,活性有明显下降的样品,其脱附谱图也产生很大变化。除总脱附氢量明显下降外,总的趋势是最大值向高温方向移动。样品活性最低,其脱附谱图特征变化也更大一些,甚至低于450摄氏度的峰型全消失了。由以上三类催化剂的比较看出,在活性评价和TPD试验结果之间,存在着相当平行的关系。2.试验条件对Pt-Sn催化剂TPD谱的影响(1)催化剂预处理条件的影响 为了排除在轻度还原中表面上不稳定的活性中心,及在高温氢气气氛中所可能形成的活性吸附,已获得清晰的脱附谱图,试验条件改变为:室温氢气(76毫升/分)吹扫至水分低于200ppm后,以2.10C/min升温至2500C,停留1小时,在升温至5000C,保持1小时。之后,以Ar气(40ml/min)吹扫40分钟,并在Ar气氛中降温至零度。氢气吸附1小时,Ar气吹扫3.5小时,取下冰瓶15分钟后,开始进行TPD试验。由于延长还原周期,并增加高温下的Ar吹扫,因而得到较好分散的脱附谱峰,使得对每个谱峰下面积的定量工作容易进行。实际上,这一试验的结果,主要反映了表面钝化和吸附温度的影响。(2)吸附后,Ar气吹扫时间的影响为了排除物理吸附和体相氢,在00c吸附后,进行改变Ar吹扫时间的试验,当吹扫时间超过3小时后,个峰值和所占的份数,以及总脱附氢量均大体不变,可以认为,系统内的气相氢和表面物理吸附氢已基本脱除干净,在脱附谱图上所得的峰型,是化学吸附氢的表现。(3)脱附时,载气流速的影响 Tm值与载气流苏的关系是检查再吸附是否发生的实验标识。当载气流速超过40毫升/分以后,Tm值的变化在实验误差以内,因而可以认为,基本上抑制了在吸附现象。对总脱附量来说,由于吸附条件相同,其值也应一致。但在该实验中发现,随着载气流速的减小,托福粮油增加的趋势。估计可能是热导池鉴定器的灵敏度所限,当流速较快时,应答跟不上,因而造成记录的峰的面积减小。此外,脱附最终温度对高温峰的Tm值是有影响的。当最终温度提高时,Tm值也增加了。这可能是在较低的温度下,高温中心不能干净地脱附造成的。(4)程序升温速度的影响 随着表面覆盖度增大,峰形变得尖锐了。在小于350C/分下,峰高随覆盖度直线的增加。气候,则变得缓慢了。这意味着脱附速度手表面覆盖的减小的影响,因而说明,表面至少存在这部分布均匀性,动力学参数不能按简单的方法求出。3.在Pt/Al2O3中加入其它金属对TPD谱的影响为考察各种负载金属催化剂活性中心的特征,判断TPD法的分辨能力,对一组实验室制备的样品:Pt/Al2O3,Pt-Au/Al2O3,Pt-Re/Al2O3,Pt-Re-Au/Al2O3和两种工业催化剂:Pt-Sn/Al2O3和Pt-Ir-Al-Ge/Al2O3进行了氢气的TPD试验。可以看出,对于Pt/Al2O3,峰最大出现在84-C,2290C,和4500C以及在3700C附近有一个小的肩状峰。Pt-Au/Al2O3脱附曲线的特征类似于Pt/Al2O3.但最大特征峰(4180C)更趋于低温,并且总脱附量也有所减少。这说明,具有较强正电性的金,不仅参加了与Pt的合金化作用,二爷也抑制了Pt对氢气的吸附性能。因此,它在重整催化剂中,可能起着活性抑制剂的作用。Re的引入,是Pt的2290C峰消失,并且最大特征峰向高温移动4800C,出现一个宽的谱带。同时,总脱附氢量增加,显示出更为良好地金属分散性。这与Pt-Re催化剂在重整反应中具有高活性,高稳定性的行为是一致的。Pt-Re-Au催化剂,除了基本上保持这Pt在低温和高温下的特征峰外,在404度和505度下有两个明显的肩状峰出现,它实际上是Pt-Au和Pt-Re 最大特征峰的变异。这说明,在Pt,Re,Au三个元素之间必然发生相互作用,但又不是完全融为一体,从而在氧化铝载体上形成了特殊的能态分布。由于Au 的引入,并不改变Pt-Re催化剂对氢的吸附能力,即不改变金属的分散程度,但却改变了活性中心的结构,因此,可以预期,元素Au有可能作为改进Pt-Re催化剂选择性的一种助剂而被采用。Pt-Sn催化剂有着与Pt-Re类似的谱图特征,而总脱附氢量却与Pt/Al2O3相同。说明,带有较强负电性的Sn,并未改变金属的分散程度,但却增加了化学吸附强度,使活性中心的分布和结构特征产生变化,因而在重整过程总显示出较好的稳定性和选择性。Pt-Ir系催化剂有着特别大的低温特征峰和较宽的高温特征峰,并且,在180-4300C之间有一个连续的表面不均匀的能带。拉塞尔认为,在Pt/Al2O3中引入Ir,使氢的解离活化吸附增加,它在表面反应中与碳氢化合物的C-C键 具有较强的反应能力,从而抑制了表面积炭,是稳定性改善。如果按阿本等人的观点,认为结构不敏感的加氢(脱氢)、氢解等反应主要与低温峰有关,那么,对Pt-Ir系催化剂来说,它不仅大大增加了总的活性中心数目,而且,特别是增加了低能中心的数目。所以,这类催化剂除了显示出高的重整催化活性和抗结焦能力外,还有极强的氢解能力。由于低碳氢分子较易生成,它可能对液体收率和选择性带来不利的影响。从对上述六种类型催化剂的观察得出,他们保持这与Pt/Al2O3相同的低温特征峰(78-840C。这说明,这一活性中心可能是Pt的某种结构所特有的。除了与Pt同族的Ir可以使这个中心的数目增加之外,第二或第三金属组员的引入,则主要是改变了高能中心的结构特征。从而使之在重整反应中表现出不同的活性、稳定性和选择性。同时,由以上的讨论,我们不妨做这样的推测,即催化剂的活性与总的活性中心数目有关,选择性与各个中心的相对分布有关;而稳定性主要与高温峰的位置有关。有各种催化剂总脱附氢量的比较看出,它和我们以前关于金属分散性的测定结果,咋趋势上是一致的。这说明,用TPD法不仅能从数量上考察各种催化剂活性中心的情况,而且也可以从结构特征上看出各类金属的相互作用。如果对这些谱图进一步解析,并与每种中心的反应性能相关联,则可能得到有关催化剂制备的鞥有指导意义的知识

  • 紫外拉曼光谱仪研制和在催化研究中的应用

    紫外拉曼光谱仪研制和在催化研究中的应用“UV Raman Spectrograph and Its Applications in Catalysis 拉曼光谱是鉴定物质分子结构的有力工具,它已应用于化学、物理、生物和材料科学等领域。传统的拉曼光谱在可见区极易产生荧光,而荧光的强度往往是拉曼强度的几万倍乃至百万倍,因此常规拉曼光谱受到荧光的严重干扰,常常得不到拉曼光谱。这一难题成为拉曼光谱应用的主要制约因素。传统拉曼光谱的另一个弱点是其本征灵敏度很低,这也限制了它的广泛应用。 上述两个难题在催化研究中尤其突出,因为催化剂表面极易产生荧光,特别是有碳氢物种存在时,表面荧光往往非常强,而绝大部分石油化工过程的催化剂在工作状态下不可避免地生成各种表面碳氢物种。所以,消除或避开表面荧光的干扰和提高灵敏度是拉曼光谱成功应用于原位催化研究的关键所在。 针对荧光干扰和灵敏度低这两个难题,提出研制采用连续波紫外激光作为激发光源的紫外拉曼光谱仪的想法,克服一系列实验上的困难,于1997年建成我国第一台紫外拉曼光谱仪并将其应用于催化研究。 经过大量的实验和理论分析,发现催化剂表面的荧光主要出现在可见区,即300-700nm。因此将激发波长从可见区移开,则有可能避开荧光干扰。我们提出将激发波长从传统拉曼光谱的可见或近红外向紫外和深紫外波段位移以避开催化剂表面荧光干扰的想法,即研制采用紫外激光作为光源的紫外拉曼光谱仪。从理论上分析紫外拉曼光谱有以下几个优势:①由于荧光主要出现在可见区,将激发波长向紫外波段移可以有效地避开荧光;②由于光散射强度与波长的四次方成反比,将激发波长向紫外区移可以提高灵敏度;③很多化合物的电子吸收带在紫外区,因此可以进行紫外共振拉曼光谱,使仪器灵敏度提高几个数量级。 在上述想法的基础上,结合催化原位研究,采用紫外激光光源、三光栅和紫外区灵敏的CCD探测器研制了收集紫外拉曼散射光的椭圆内反射镜、外光路系统和催化研究的高温高压装置、用于催化反应研究的特殊拉曼光谱池以及适用于动态和原位紫外拉曼研究的吸附和原位反应装置。最后,研制成功用于催化原位研究的紫外拉曼光谱仪。

  • 催化转化器

    转化器是什么呢?它是汽车上面的一个小东西。可是汽车少了它那是万万不行的。其实这个东西我还真没有见过,它的外观还是黑色的,远处看好象是塑料做成的。其实它是钢做成的。外型也挺可爱的,那我们一起来研究一下,们来看看催化转化器综述:随着环境保护要求的日益苛刻,越来越多的汽车安装了废气催化转化器以及氧传感器装置。它安装在发动机排气管中,通过氧化还原反应,将发动机排放的三种废气有害物CO、HC和NOx转化为无害的水、二氧化碳和氮气,故又称之为三元(效)催化转化器,其催化剂大都含有铂、锗等贵金属或稀土元素,价格昂贵,在正常情况下,它的寿命为八万公里左右。由于三效催化转化器的工作要求比较严格,如果使用不当,会造成催化器失效层损坏。在高温度过高 常温下三元催化转化器不具备催化能力,其催化剂必须加热到一定温度才具有氧化或还原的能力,通常催化转化器的起燃温度在250—350℃之间。催化转化器工作时会产生大量的自量越高,氧化的温度也愈高,这都会使未燃烧的混合气进入催化反应器,造成排气温度过高,影响催化转化器的效能。硫和铅来自于汽油,磷和锌来自于润滑油,这四种物质及它们在发动机中燃烧后形成氧化物颗粒易被吸附在催化剂的表面,使催化剂无法与废气接触,从而失去了催化作用中毒现象还是比较高的,在三元催化器无法启动,发动机排出的炭烟会附着在催化剂的表面。这样长期下来便使载体的孔隙堵塞,影响其转化效能。催化转化器对污染物的转化能力有一定的限度,因此必须通过机内净化技术将原始排气降到最低。如果排放的废气污染物各成分的浓度、总量过大,比如混合气偏浓等,就会影响催化器的催化转化能力,降低其转化效。在排气状况就发生变化,安装三元催化器的位置就不同,这都会影响三元催化转化器的催化转化效果。因此,不同的车辆,应使用不同的三元催化转化器。然在发动机排气管中安装氧传感器并实现闭环控制,其工作原理是氧传感器将测得废气中氧的浓度,转换成电信号后发送给ECU,使发动机的空燃比控制在一个狭小的。还有它的注意事项:1.安装有催化器的汽车绝对不允许使用有铅汽油。 2.要避免催化转化器发生磕碰。 3.汽车不要长时间怠速,以防催化转化器烧坏。 4.要避免突然加速,以防止催化转化器过热。   5.要保证发动机正常运转,以防止催化转化器排气净化率最佳。由于三效催化转化器发动机始终处于理论空燃比的情况下工作,这时排气净化率最高。发动机电控系统、点火系统和燃油系统的故障都会使发动机工作不正常,混合气浓度偏离理论空燃化,使排气净化率降低,三效催化转化器寿命缩短。你们看一个催化转化器都有这么多条件,还有这么多的知识值得我们去看,去读,去理解,你们懂了吗?

  • 【分享】稀土在催化中的应用

    稀土在催化中的应用[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=14975]稀土在催化中的应用[/url]作者:(苏)Х.М.米纳切夫(Х.М.Миначев)等著;刘恒潜译出版项:科学出版社 / 1987.9目录:第一章 稀土元素氧化物的主要性质和物理性质第二章 简单气体的催化转化第三章 烃中的氢-氘交换反应第四章 烃的脱氢、脱氢环化和加氧反应第五章 裂化、烷基化、异构化和聚合反应第六章 醇的脱氢和脱水反应第七章 伯醇、酸的酮化和酯的合成第八章 有机物的氧化与还原反应和以CO和H2为主体合成烃与醇的反应第九章 其他反应附录: 用稀土作催化剂的专利资料结束语近十年来稀土催化的进展

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制