当前位置: 仪器信息网 > 行业主题 > >

频域荧光

仪器信息网频域荧光专题为您整合频域荧光相关的最新文章,在频域荧光专题,您不仅可以免费浏览频域荧光的资讯, 同时您还可以浏览频域荧光的相关资料、解决方案,参与社区频域荧光话题讨论。

频域荧光相关的仪器

  • 荧光和荧光寿命分子包含多个单能态S0、S1、S2… 和三重态T1… ,每个能态都包含多个精细的能级。正常情况下,大部分电子处在*低能态即基态S0 的*低能级上,当分子被光束照射,会吸收光子能量,电子被激发到更高的能态S1 或S2 上,在S2 能态上的电子只能存在很短暂的时间,便会通过内转换过程跃迁到S1 上,而S1 能态上的电子亦会在极短时间内跃迁到S1 的*低能级上,而这些电子会存在一段时间后通过震荡弛豫辐射跃迁到基态,这个过程会释放一个光子,即荧光。此外,亦会有电子跃迁至三重态T1 上,再由T1 跃迁至基态,我们称之为磷光。荧光特性研究荧光特性时,主要在以下几方面进行分析:激发光谱,发射光谱、荧光强度、偏振荧光、荧光发光量子产率、荧光寿命等。其中荧光寿命(Fluorescence Lifetime)是指荧光分子在激发态上存在的平均时间(纳秒量级)。荧光寿命测试荧光寿命一般在几纳秒至几百纳秒之间,如今主要有两类测试方法:时域测量和频域测量时间稳定性实验测试曲线:1 时域测量由一束窄脉冲将荧光分子激发至较高能态S1,接着测量荧光的发射几率随时间的变化。其中目前广泛应用的是时间相关单光子计数,即TCSPC(Time Correlated Single Photon Counting)时间相关单光子计数(TCSPC) 实现了从百ps-ns-us 的瞬态测试,此方法对数据的获取完全依赖快速探测器和高速电路。用统计的方法计算样品受激后发出的第一个( 也是*一的一个) 光子与激发光之间的时间差,也就是下图的START( 激发时刻) 与STOP( 发光时刻) 的时间差。由于对于Stop 信号的要求,所以TCSPC 一般需要高重复频率的光源作为激发源,其重复至少要在100KHz 以上,多数的光源都会达到MHz 量级;同时,在一般情况下还要对Stop 信号做数量上的控制,做到尽量满足在一个激发周期内,样品产生且只产生一个光子的有效荧光信号,避免光子对的出现。2 频域测量对连续激发光进行振幅调制后,分子发出的荧光强度也会受到振幅调制,两个调制信号之间存在与荧光寿命相关的相位差,因此可以测量该相位差计算荧光寿命。 左图为正弦调制激发光(绿色)频域显示,发射光信号(红色)相应的相位变化频域显示。右图为对应不同寿命的调制和相位的频域显示。TM- 调制寿命,TP- 相位寿命。[1]显微荧光寿命成像技术(FLIM)显微荧光寿命成像技术(Fluorescence Lifetime ImagingMicroscopy,FLIM)是一种在显微尺度下展现荧光寿命空间分布的技术,由于其不受样品浓度影响,具有其他荧光成像技术无法代替的优异性能,目前在生物医学工程、光电半导体材料等领域是一种重要的表征测量手段。FLIM 一般分为宽场FLIM 和激光扫描FLIM。宽场FLIM(Wide Field FLIM,WFM)该技术是用平行光照明并由物镜聚焦样品获得荧光信号,再由一宽场相机采集荧光成像。宽场FLIM 常用于快速获取大面积样品成像。时域或是频域寿命采集都可以应用在宽场成像FLIM 上。宽场FLIM 有更高帧率和低损伤的优势。2 激光扫描FLIM(Laser Scanning FLIM,LSM)激光扫描FLIM 是针对选定区域内的样品逐点获取其荧光衰减曲线,再经过拟合最终合成荧光寿命图像。相比宽场FLIM,其在空间分辨率、信噪比方面有更大的优势。扫描方式有两种:一种是固定样品,移动激光进行扫描,一种是固定激光,电动位移台带动样品移动进行扫描。显微荧光寿命成像系统RTS2-FLIM应用材料科学领域宽禁带半导体如GaN、SiC 等体系的少子寿命mapping 测量量子点如CdSe@ZnS 等用作荧光寿命成像显微镜探针钙钛矿电池/LED 薄膜的组分分析、缺陷检测铜铟镓硒CIGS,铜锌锡硫CZTS 薄膜太阳能电池的组分、缺陷检测镧系上转换纳米颗粒GaAs 或GaAsP 量子阱的载流子扩散研究生命科学领域细胞体自身荧光寿命分析自身荧光相对荧光标记的有效区分活细胞内水介质的PH 值测量局部氧气浓度测量具有相同频谱性质的不同荧光标记的区分活细胞内钙浓度测量时间分辨共振能量转移(FRET):纳米级尺度上的远差测量,环境敏感的FRET 探针定量测量代谢成像:NAD(P)H 和FAD 胞质体的荧光寿命成像显微荧光寿命成像系统RTS2-FLIM应用案例1 用荧光分子对海拉细胞进行染色用荧光分子转子Bodipy-C12 对海拉细胞(宫颈癌细胞的一种) 进行染色。(a) 显微荧光寿命成像图,寿命范围1ns(蓝色)到2.5ns(红色);(b) 荧光寿命直方图,脂肪滴的短寿命约在1.6ns 附近,细胞中其他位置寿命较长,在1.8ns 附近。用荧光分子转子的时间分辨测量*大的好处在于荧光寿命具备足够清晰的标签特性,且与荧光团的浓度无关。[2]2 金属修饰荧光金属修饰荧光:(a) 荧光寿命是荧光团到金表面距离的函数;(b) 用绿色荧光蛋白(GFP)标记乳腺腺癌细胞的细胞膜的共聚焦xz 横截面,垂直比例尺:5m;(c) b 图的FLIM 图,金表面附近的GFP 荧光寿命缩短。[2]3 钙钛矿太阳能电池下图研究中,展示了一种动态热风(DHA)制备工艺来控制全无机PSC 的薄膜形态和稳定性,该工艺不含有常规的有害反溶剂,可以在大气环境中制备。同时,钙钛矿掺有钡(Ba2+) 碱金属离子(BaI2:CsPbI2Br)。这种DHA 方法有助于形成均匀的晶粒并控制结晶,从而形成稳定的全无机PSC。从而在环境条件下形成完整的黑色相。经过DHA处理的钙钛矿光伏器件,在0.09cm小面积下,效率为14.85%,在1x1cm的大面积下,具有13.78%的*高效率。DHA方法制备的器件在300h后仍然保持初始效率的92%。4 MQWs 多量子阱研究在(a) 蓝宝石和(b) GaN 上生长的MQWs 的共焦PL mapping 图像。具有较小尺寸的发光团的最高密度是观察到在GaN 上生长的MQWs。在(c) 蓝宝石和(d)GaN 上生长的MQWs 的共焦TRPL mapping 图。仅对于在GaN 上生长的MQWs,强的PL 强度区域与较长PL 衰减时间的区域很好地匹配。在(e) 蓝宝石和(f)GaN 上生长的MQWs 在A 点和B 点测量的局部PL 衰减曲线,均标记在图中。对于在GaN 上生长的MQWs,点A 和B 之间的PL 衰减时间差更高。显微荧光寿命成像系统FLIM参数配置北京卓立汉光仪器有限公司提供的显微荧光寿命成像系统是基于显微和时间相关单光子计数技术,配合高精度位移台得到微观样品表面各空间分布点的荧光衰减曲线,再经过用数据拟合,得到样品表面发光寿命表征的影像。是光电半导体材料、荧光标记常用荧光分子等类似荧光寿命大多分布在纳秒、几十、几百纳秒尺度的物质的选择。参数指标:系统性能指标光谱扫描范围200-900nm最小时间分辨率16ps荧光寿命测量范围500ps-1μs@ 皮秒脉冲激光器空间分辨率≤1μm@100X 物镜@405nm 皮秒脉冲激光器荧光寿命检测IRF≤2ns配置参数激发源及匹配光谱范围(光源参数基于50MHz 重复频率)375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW,荧光波段:400-850nm405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW,荧光波段:430-920nm450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW,荧光波段:485-950nm488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW,荧光波段:500-950nm510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW,荧光波段:535-950nm635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW,荧光波段:670-950nm660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW,荧光波段:690-950nm670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW,荧光波段:700-950nm科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),最小步进:50nm,重复定位精度:< 1μm光谱仪320mm 焦距影像校正单色仪,双入口、狭缝出口、CCD 出口,配置三块68×68mm 大面积光栅,波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD(可扩展PLmapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm, 探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,最高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps… … 33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFluo-FM 荧光寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等数据处理功能:自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统软件界面控制测试界面测试软件的界面遵循“All In One”的简洁设计思路,用户可在下图所示的控制界面中完成采集数据的所有步骤:包括控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等。数据处理界面功能丰富的荧光寿命数据处理软件,充分挖掘用户数据中的宝贵信息。可自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示。自主开发的一套时间相关单光子计数(TCSPC)荧光寿命的拟合算法,可对荧光衰减曲线中最多包含4 个时间组分的荧光过程进行拟合,获得每个组分的荧光寿命,光子数比例,计算评价函数和残差。TCSPC 荧光寿命通常并非简单的指数衰减过程,而是与光源及探测器相关的仪器响应函数(IRF)与荧光衰减过程相互卷积的结果,因此适当的拟合方法和参数选择对获得正确可靠的荧光寿命非常重要。该软件可导入实际测量的IRF 对衰减曲线进行卷积计算和拟合。但是大多数情况下, IRF 很难正确的从实验获得,针对这种情况,软件提供了两种无需实验获取IRF 的拟合方法:1.通过算法对数据上升沿进行拟合,获得时间响应函数IRF,然后对整条衰减曲线进行卷积计算和拟合得到荧光寿命。2.对于衰减时间远长于仪器响应时间的,可对衰减曲线下降沿进行直接的指数拟合。该软件经过大量测试,可以很好的满足各种场合的用户需求。MicroLED 微盘的荧光强度像(3D 显示):
    留言咨询
  • 荧光和荧光寿命分子包含多个单能态S0、S1、S2…和三重态T1…,每个能态都包含多个精细的能级。正常情况下,大部分电子处在*低能态即基态S0 的*低能级上,当分子被光束照射,会吸收光子能量,电子被激发到更高的能态S1 或S2 上,在S2 能态上的电子只能存在很短暂的时间,便会通过内转换过程跃迁到S1 上,而S1 能态上的电子亦会在极短时间内跃迁到S1 的*低能级上,而这些电子会存在一段时间后通过震荡弛豫辐射跃迁到基态,这个过程会释放一个光子,即荧光。此外,亦会有电子跃迁至三重态T1 上,再由T1 跃迁至基态,我们称之为磷光。荧光特性研究荧光特性时,主要在以下几方面进行分析:激发光谱,发射光谱、荧光强度、偏振荧光、荧光发光量子产率、荧光寿命等。其中荧光寿命(Fluorescence Lifetime)是指荧光分子在激发态上存在的平均时间(纳秒量级)。荧光寿命测试荧光寿命一般在几纳秒至几百纳秒之间,如今主要有两类测试方法:时域测量和频域测量时间稳定性实验测试曲线:1 时域测量由一束窄脉冲将荧光分子激发至较高能态S1,接着测量荧光的发射几率随时间的变化。其中目前广泛应用的是时间相关单光子计数,即TCSPC(Time Correlated Single Photon Counting)时间相关单光子计数(TCSPC) 实现了从百ps-ns-us 的瞬态测试,此方法对数据的获取完全依赖快速探测器和高速电路。用统计的方法计算样品受激后发出的*一个( 也是唯一的一个) 光子与激发光之间的时间差,也就是下图的START( 激发时刻) 与STOP( 发光时刻) 的时间差。由于对于Stop 信号的要求,所以TCSPC 一般需要高重复频率的光源作为激发源,其重复至少要在100KHz 以上,多数的光源都会达到MHz 量级;同时,在一般情况下还要对Stop 信号做数量上的控制,做到尽量满足在一个激发周期内,样品产生且只产生一个光子的有效荧光信号,避免光子对的出现。2 频域测量对连续激发光进行振幅调制后,分子发出的荧光强度也会受到振幅调制,两个调制信号之间存在与荧光寿命相关的相位差,因此可以测量该相位差计算荧光寿命。 左图为正弦调制激发光(绿色)频域显示,发射光信号(红色)相应的相位变化频域显示。右图为对应不同寿命的调制和相位的频域显示。TM- 调制寿命,TP- 相位寿命。[1]显微荧光寿命成像技术(FLIM)显微荧光寿命成像技术(Fluorescence Lifetime ImagingMicroscopy,FLIM)是一种在显微尺度下展现荧光寿命空间分布的技术,由于其不受样品浓度影响,具有其他荧光成像技术无法代替的优异性能,目前在生物医学工程、光电半导体材料等领域是一种重要的表征测量手段。FLIM 一般分为宽场FLIM 和激光扫描FLIM。宽场FLIM(Wide Field FLIM,WFM)该技术是用平行光照明并由物镜聚焦样品获得荧光信号,再由一宽场相机采集荧光成像。宽场FLIM 常用于快速获取大面积样品成像。时域或是频域寿命采集都可以应用在宽场成像FLIM 上。宽场FLIM 有更高帧率和低损伤的优势。2 激光扫描FLIM(Laser Scanning FLIM,LSM)激光扫描FLIM 是针对选定区域内的样品逐点获取其荧光衰减曲线,再经过拟合*终合成荧光寿命图像。相比宽场FLIM,其在空间分辨率、信噪比方面有更大的优势。扫描方式有两种:一种是固定样品,移动激光进行扫描,一种是固定激光,电动位移台带动样品移动进行扫描。FLIM 应用材料科学领域宽禁带半导体如GaN、SiC 等体系的少子寿命mapping 测量量子点如CdSe@ZnS 等用作荧光寿命成像显微镜探针钙钛矿电池/LED 薄膜的组分分析、缺陷检测铜铟镓硒CIGS,铜锌锡硫CZTS 薄膜太阳能电池的组分、缺陷检测镧系上转换纳米颗粒GaAs 或GaAsP 量子阱的载流子扩散研究生命科学领域细胞体自身荧光寿命分析自身荧光相对荧光标记的有效区分活细胞内水介质的PH 值测量局部氧气浓度测量具有相同频谱性质的不同荧光标记的区分活细胞内钙浓度测量时间分辨共振能量转移(FRET):纳米级尺度上的远差测量,环境敏感的FRET 探针定量测量代谢成像:NAD(P)H 和FAD 胞质体的荧光寿命成像OmniFluo-FLIM系列显微荧光寿命成像系统应用案例1 用荧光分子对海拉细胞进行染色用荧光分子转子Bodipy-C12 对海拉细胞(宫颈癌细胞的一种) 进行染色。(a) 显微荧光寿命成像图,寿命范围1ns(蓝色)到2.5ns(红色);(b) 荧光寿命直方图,脂肪滴的短寿命约在1.6ns 附近,细胞中其他位置寿命较长,在1.8ns 附近。用荧光分子转子的时间分辨测量*大的好处在于荧光寿命具备足够清晰的标签特性,且与荧光团的浓度无关。[2]2 金属修饰荧光金属修饰荧光:(a) 荧光寿命是荧光团到金表面距离的函数;(b) 用绿色荧光蛋白(GFP)标记乳腺腺癌细胞的细胞膜的共聚焦xz 横截面,垂直比例尺:5 m;(c) b 图的FLIM 图,金表面附近的GFP 荧光寿命缩短。[2]3 钙钛矿太阳能电池下图研究中,展示了一种动态热风(DHA)制备工艺来控制全无机PSC 的薄膜形态和稳定性,该工艺不含有常规的有害反溶剂,可以在大气环境中制备。同时,钙钛矿掺有钡(Ba2+) 碱金属离子(BaI2:CsPbI2Br)。这种DHA 方法有助于形成均匀的晶粒并控制结晶,从而形成稳定的全无机PSC。从而在环境条件下形成完整的黑色相。经过DHA处理的钙钛矿光伏器件,在0.09cm小面积下,效率为14.85%,在1x1cm的大面积下,具有13.78%的*高效率。DHA方法制备的器件在300h后仍然保持初始效率的92%。4 MQWs 多量子阱研究在(a) 蓝宝石和(b) GaN 上生长的MQWs 的共焦PL mapping 图像。具有较小尺寸的发光团的*高密度是观察到在GaN 上生长的MQWs。在(c) 蓝宝石和(d)GaN 上生长的MQWs 的共焦TRPL mapping 图。仅对于在GaN 上生长的MQWs,强的PL 强度区域与较长PL 衰减时间的区域很好地匹配。在(e) 蓝宝石和(f)GaN 上生长的MQWs 在A 点和B 点测量的局部PL 衰减曲线,均标记在图中。对于在GaN 上生长的MQWs,点A 和B 之间的PL 衰减时间差更高。OmniFluo-FLIM系列显微荧光寿命成像系统参数配置北京卓立汉光仪器有限公司提供的显微荧光寿命成像系统是基于显微和时间相关单光子计数技术,配合高精度位移台得到微观样品表面各空间分布点的荧光衰减曲线,再经过用数据拟合,得到样品表面发光寿命表征的影像。是光电半导体材料、荧光标记常用荧光分子等类似荧光寿命大多分布在纳秒、几十、几百纳秒尺度的物质的不二选择。参数指标:系统性能指标光谱扫描范围200-900nm*小时间分辨率16ps荧光寿命测量范围500ps-1μs@ 皮秒脉冲激光器空间分辨率≤1μm@100X 物镜@405nm 皮秒脉冲激光器荧光寿命检测IRF≤2ns配置参数激发源及匹配光谱范围(光源参数基于50MHz 重复频率)375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW,荧光波段:400-850nm405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW,荧光波段:430-920nm450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW,荧光波段:485-950nm488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW,荧光波段:500-950nm510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW,荧光波段:535-950nm635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW,荧光波段:670-950nm660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW,荧光波段:690-950nm670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW,荧光波段:700-950nm科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),*小步进:50nm,重复定位精度:< 1μm光谱仪320mm 焦距影像校正单色仪,双入口、狭缝出口、CCD 出口,配置三块68×68mm 大面积光栅,波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD(可扩展PLmapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm, 探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,*高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps……33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFluo-FM 荧光寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等数据处理功能:自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统 FLIM 软件界面控制测试界面测试软件的界面遵循“All In One”的简洁设计思路,用户可在下图所示的控制界面中完成采集数据的所有步骤:包括控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等。数据处理界面功能丰富的荧光寿命数据处理软件,充分挖掘用户数据中的宝贵信息。可自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示。自主开发的一套时间相关单光子计数(TCSPC)荧光寿命的拟合算法,可对荧光衰减曲线中*多包含4 个时间组分的荧光过程进行拟合,获得每个组分的荧光寿命,光子数比例,计算评价函数和残差。TCSPC 荧光寿命通常并非简单的指数衰减过程,而是与光源及探测器相关的仪器响应函数(IRF)与荧光衰减过程相互卷积的结果,因此适当的拟合方法和参数选择对获得正确可靠的荧光寿命非常重要。该软件可导入实际测量的IRF 对衰减曲线进行卷积计算和拟合。但是大多数情况下, IRF 很难正确的从实验获得,针对这种情况,软件提供了两种无需实验获取IRF 的拟合方法:NO.1 通过算法对数据上升沿进行拟合,获得时间响应函数IRF,然后对整条衰减曲线进行卷积计算和拟合得到荧光寿命。NO.2对于衰减时间远长于仪器响应时间的,可对衰减曲线下降沿进行直接的指数拟合。该软件经过大量测试,可以很好的满足各种场合的用户需求。MicroLED 微盘的荧光强度像(3D 显示):测试案例
    留言咨询
  • 荧光和荧光寿命分子包含多个单能态S0、S1、S2…和三重态T1…,每个能态都包含多个精细的能级。正常情况下,大部分电子处在*低能态即基态S0 的*低能级上,当分子被光束照射,会吸收光子能量,电子被激发到更高的能态S1 或S2 上,在S2 能态上的电子只能存在很短暂的时间,便会通过内转换过程跃迁到S1 上,而S1 能态上的电子亦会在极短时间内跃迁到S1 的*低能级上,而这些电子会存在一段时间后通过震荡弛豫辐射跃迁到基态,这个过程会释放一个光子,即荧光。此外,亦会有电子跃迁至三重态T1 上,再由T1 跃迁至基态,我们称之为磷光。荧光特性研究荧光特性时,主要在以下几方面进行分析:激发光谱,发射光谱、荧光强度、偏振荧光、荧光发光量子产率、荧光寿命等。其中荧光寿命(Fluorescence Lifetime)是指荧光分子在激发态上存在的平均时间(纳秒量级)。荧光寿命测试荧光寿命一般在几纳秒至几百纳秒之间,如今主要有两类测试方法:时域测量和频域测量时间稳定性实验测试曲线:1 时域测量由一束窄脉冲将荧光分子激发至较高能态S1,接着测量荧光的发射几率随时间的变化。其中目前广泛应用的是时间相关单光子计数,即TCSPC(Time Correlated Single Photon Counting)时间相关单光子计数(TCSPC) 实现了从百ps-ns-us 的瞬态测试,此方法对数据的获取完全依赖快速探测器和高速电路。用统计的方法计算样品受激后发出的*一个( 也是唯一的一个) 光子与激发光之间的时间差,也就是下图的START( 激发时刻) 与STOP( 发光时刻) 的时间差。由于对于Stop 信号的要求,所以TCSPC 一般需要高重复频率的光源作为激发源,其重复至少要在100KHz 以上,多数的光源都会达到MHz 量级;同时,在一般情况下还要对Stop 信号做数量上的控制,做到尽量满足在一个激发周期内,样品产生且只产生一个光子的有效荧光信号,避免光子对的出现。2 频域测量对连续激发光进行振幅调制后,分子发出的荧光强度也会受到振幅调制,两个调制信号之间存在与荧光寿命相关的相位差,因此可以测量该相位差计算荧光寿命。 左图为正弦调制激发光(绿色)频域显示,发射光信号(红色)相应的相位变化频域显示。右图为对应不同寿命的调制和相位的频域显示。TM- 调制寿命,TP- 相位寿命。[1]显微荧光寿命成像技术(FLIM)显微荧光寿命成像技术(Fluorescence Lifetime ImagingMicroscopy,FLIM)是一种在显微尺度下展现荧光寿命空间分布的技术,由于其不受样品浓度影响,具有其他荧光成像技术无法代替的优异性能,目前在生物医学工程、光电半导体材料等领域是一种重要的表征测量手段。FLIM 一般分为宽场FLIM 和激光扫描FLIM。宽场FLIM(Wide Field FLIM,WFM)该技术是用平行光照明并由物镜聚焦样品获得荧光信号,再由一宽场相机采集荧光成像。宽场FLIM 常用于快速获取大面积样品成像。时域或是频域寿命采集都可以应用在宽场成像FLIM 上。宽场FLIM 有更高帧率和低损伤的优势。2 激光扫描FLIM(Laser Scanning FLIM,LSM)激光扫描FLIM 是针对选定区域内的样品逐点获取其荧光衰减曲线,再经过拟合*终合成荧光寿命图像。相比宽场FLIM,其在空间分辨率、信噪比方面有更大的优势。扫描方式有两种:一种是固定样品,移动激光进行扫描,一种是固定激光,电动位移台带动样品移动进行扫描。FLIM 应用材料科学领域宽禁带半导体如GaN、SiC 等体系的少子寿命mapping 测量量子点如CdSe@ZnS 等用作荧光寿命成像显微镜探针钙钛矿电池/LED 薄膜的组分分析、缺陷检测铜铟镓硒CIGS,铜锌锡硫CZTS 薄膜太阳能电池的组分、缺陷检测镧系上转换纳米颗粒GaAs 或GaAsP 量子阱的载流子扩散研究生命科学领域细胞体自身荧光寿命分析自身荧光相对荧光标记的有效区分活细胞内水介质的PH 值测量局部氧气浓度测量具有相同频谱性质的不同荧光标记的区分活细胞内钙浓度测量时间分辨共振能量转移(FRET):纳米级尺度上的远差测量,环境敏感的FRET 探针定量测量代谢成像:NAD(P)H 和FAD 胞质体的荧光寿命成像OmniFluo-FLIM系列显微荧光寿命成像系统应用案例1 用荧光分子对海拉细胞进行染色用荧光分子转子Bodipy-C12 对海拉细胞(宫颈癌细胞的一种) 进行染色。(a) 显微荧光寿命成像图,寿命范围1ns(蓝色)到2.5ns(红色);(b) 荧光寿命直方图,脂肪滴的短寿命约在1.6ns 附近,细胞中其他位置寿命较长,在1.8ns 附近。用荧光分子转子的时间分辨测量*大的好处在于荧光寿命具备足够清晰的标签特性,且与荧光团的浓度无关。[2]2 金属修饰荧光金属修饰荧光:(a) 荧光寿命是荧光团到金表面距离的函数;(b) 用绿色荧光蛋白(GFP)标记乳腺腺癌细胞的细胞膜的共聚焦xz 横截面,垂直比例尺:5 m;(c) b 图的FLIM 图,金表面附近的GFP 荧光寿命缩短。[2]3 钙钛矿太阳能电池下图研究中,展示了一种动态热风(DHA)制备工艺来控制全无机PSC 的薄膜形态和稳定性,该工艺不含有常规的有害反溶剂,可以在大气环境中制备。同时,钙钛矿掺有钡(Ba2+) 碱金属离子(BaI2:CsPbI2Br)。这种DHA 方法有助于形成均匀的晶粒并控制结晶,从而形成稳定的全无机PSC。从而在环境条件下形成完整的黑色相。经过DHA处理的钙钛矿光伏器件,在0.09cm小面积下,效率为14.85%,在1x1cm的大面积下,具有13.78%的*高效率。DHA方法制备的器件在300h后仍然保持初始效率的92%。4 MQWs 多量子阱研究在(a) 蓝宝石和(b) GaN 上生长的MQWs 的共焦PL mapping 图像。具有较小尺寸的发光团的*高密度是观察到在GaN 上生长的MQWs。在(c) 蓝宝石和(d)GaN 上生长的MQWs 的共焦TRPL mapping 图。仅对于在GaN 上生长的MQWs,强的PL 强度区域与较长PL 衰减时间的区域很好地匹配。在(e) 蓝宝石和(f)GaN 上生长的MQWs 在A 点和B 点测量的局部PL 衰减曲线,均标记在图中。对于在GaN 上生长的MQWs,点A 和B 之间的PL 衰减时间差更高。OmniFluo-FLIM系列显微荧光寿命成像系统参数配置北京卓立汉光仪器有限公司提供的显微荧光寿命成像系统是基于显微和时间相关单光子计数技术,配合高精度位移台得到微观样品表面各空间分布点的荧光衰减曲线,再经过用数据拟合,得到样品表面发光寿命表征的影像。是光电半导体材料、荧光标记常用荧光分子等类似荧光寿命大多分布在纳秒、几十、几百纳秒尺度的物质的不二选择。参数指标:系统性能指标光谱扫描范围200-900nm*小时间分辨率16ps荧光寿命测量范围500ps-1μs@ 皮秒脉冲激光器空间分辨率≤1μm@100X 物镜@405nm 皮秒脉冲激光器荧光寿命检测IRF≤2ns配置参数激发源及匹配光谱范围(光源参数基于50MHz 重复频率)375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW,荧光波段:400-850nm405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW,荧光波段:430-920nm450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW,荧光波段:485-950nm488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW,荧光波段:500-950nm510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW,荧光波段:535-950nm635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW,荧光波段:670-950nm660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW,荧光波段:690-950nm670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW,荧光波段:700-950nm科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),*小步进:50nm,重复定位精度:< 1μm光谱仪320mm 焦距影像校正单色仪,双入口、狭缝出口、CCD 出口,配置三块68×68mm 大面积光栅,波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD(可扩展PLmapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm, 探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,*高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps……33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFluo-FM 荧光寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等数据处理功能:自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统 FLIM 软件界面控制测试界面测试软件的界面遵循“All In One”的简洁设计思路,用户可在下图所示的控制界面中完成采集数据的所有步骤:包括控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等。数据处理界面功能丰富的荧光寿命数据处理软件,充分挖掘用户数据中的宝贵信息。可自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示。自主开发的一套时间相关单光子计数(TCSPC)荧光寿命的拟合算法,可对荧光衰减曲线中*多包含4 个时间组分的荧光过程进行拟合,获得每个组分的荧光寿命,光子数比例,计算评价函数和残差。TCSPC 荧光寿命通常并非简单的指数衰减过程,而是与光源及探测器相关的仪器响应函数(IRF)与荧光衰减过程相互卷积的结果,因此适当的拟合方法和参数选择对获得正确可靠的荧光寿命非常重要。该软件可导入实际测量的IRF 对衰减曲线进行卷积计算和拟合。但是大多数情况下, IRF 很难正确的从实验获得,针对这种情况,软件提供了两种无需实验获取IRF 的拟合方法:NO.1 通过算法对数据上升沿进行拟合,获得时间响应函数IRF,然后对整条衰减曲线进行卷积计算和拟合得到荧光寿命。NO.2对于衰减时间远长于仪器响应时间的,可对衰减曲线下降沿进行直接的指数拟合。该软件经过大量测试,可以很好的满足各种场合的用户需求。MicroLED 微盘的荧光强度像(3D 显示):测试案例
    留言咨询
  • ZTJ-I型 频域可变电磁检测仪频域可变电磁检测仪是一种集导波检测、漏磁检测和电磁超声检测于一体的扫查式电磁检测仪器,可实现铁磁性构件缺陷的快速探测(导波检测)和精扫检测(漏磁检测和电磁超声检测)。仪器主要由仪器主机和搭载具有导波、漏磁和电磁超声复合检测功能的扫查探头、计算机等组成。ZTJ-I型频域可变电磁检测仪实物图主要技术参数:● 适用范围:可应用于储罐底板、储罐壁板、起重机横梁等,厚度3-20mm的板状铁磁性构件母材的腐蚀、裂缝和焊缝等缺陷的快速探测和精扫检测; ● 检测条件:检测表面简单清洁,防腐涂层厚度不大于3mm;● 检测方式:手持式检测;● 数据I/O:检测数据用数据线实时传输至计算机;● 漏磁检测灵敏度:对8mm厚度试板检出直径1.6mm通孔和直径10mm深1.6mm盲孔,检出率95%以上;● 电磁超声测厚精度:0.2mm;● 导波检测灵敏度:对于8mm厚度试件,1m范围内可检测直径10mm深3.2mm的盲孔;● 扫描速度:0~10m/min;● 连续工作时间:电池可连续工作5小时以上,工作环境温度0℃以下时为4小时以上,可进行快速充电;● 升级维护:检测软件可终身免费升级,质保期外,仪器终身有偿维修。
    留言咨询
  • TOPTICA可提供不同的组件,以帮助用户挑选最合适的组件去实现其频率/连续太赫兹实验。所有这些组件都是完全模块化的,并且可以根据实验要求组合或升级。产品特点:■ Standard Package包含两个分布反馈式(DFB)半导体激光器,光纤合束器,驱动电路,以及基于FPGA的用于电脑频率调谐的模块;■ High Power Extension 通过提高激光输出功率来使得太赫兹光谱的动态范围最大化;■ Phase Modulation Package 通过一个双光纤延伸器,来实现太赫兹相位的快速且准确的扫描;■ cw Terahertz Spectroscopy Kit 包含一对带SM/PM尾纤的光混频器;■ TeraScan 是一套完整的频率太赫兹系统Dynamic range of a TeraScan 1550 system.产品主要应用:塑料检测、油漆和涂料层检测、纸张质量控制、水合作用监控、通讯、超快动力学、气体检测、基础物理研究等。
    留言咨询
  • 次世代荧光寿命成像相机/FLIM相机Lambert Instrument推出的Toggel是一款次世代荧光寿命成像相机/FLIM相机,它结合卓越的光灵敏度和易于获取的图像和数据分析等优点,简化了研究人员和成像中心的功能成像。次世代荧光寿命成像相机应用:活细胞成像Live-cell imaging使用内置的延时功能跟踪示例中的生命周期如何随时间变化。只需设置两次测量之间的持续时间和时间,我们的软件就可以完成其余的工作。这个视频截图是HeLa细胞的延时拍摄。加入异丙肾上腺素150秒后,cAMP迅速增加,荧光寿命相应延长。随后cAMP分解,荧光寿命逐渐降低。FLIM数据由荷兰癌症研究所提供。单图像荧光寿命成像Single-image FLIM演示了Lambert仪器荧光寿命成像相机Toggel用于单图像FLIM (siFLIM)检测组胺诱导的Ca2+浓度变化。加入组胺后,Ca2+水平出现微小振荡(~2.5 s周期)。这种微小而快速的瞬变现象被传统的FLIM记录下来时是完全不被注意的。细菌研究GFP-tagRFP荧光团被连接的枯草芽孢杆菌细胞与GFP-tagRFP荧光团被分裂的枯草芽孢杆菌细胞以1:1的比例混合 导致两种细胞的混合,一种是由于tagRFP的猝灭而导致GFP荧光寿命较短,另一种是GFP荧光寿命较长。图片由格罗宁根大学提供高通量筛选阿姆斯特丹大学的研究人员开发了一种多位置荧光寿命成像(FLIM)筛查方法来筛查明亮的FPs。然而,该方法可以应用于任何荧光寿命是一个重要参数的实验。次世代荧光寿命成像相机Toggel图片库下面的图像是用Toggel记录的,并在Toggel附带的LIFA软件中处理的。在ImageJ中对寿命图像进行拼接。次世代荧光寿命成像相机配置方案宽场荧光显微Widefield在宽视场显微镜上,荧光寿命成像相机Toggel结合多通道LED光源提供了一个强大而紧凑的FLIM解决方案。Toggel兼容广域显微镜的相机端口,而多通道LED光源兼容广域显微镜的标准荧光端口。转盘共聚焦荧光显微Spinning-disk confocal作为一种基于相机的系统,Lambert仪器用于频域FLIM的LIFA系统与多光束共焦显微镜技术兼容,知名的横河CSU旋转圆盘系列(基于Nipkow圆盘扫描仪),以及Visitech International的VTInfinity系列。全内反射荧光显微Total Internal Reflection Fluorescence (TIRF)全内反射荧光(TIRF)显微镜便于极高对比度的可视化,因此在覆盖玻璃附近的荧光灵敏度很高。通常,靠近盖玻片的光学部分约为100纳米。TIRF和频域FLIM的独特组合使得测量寿命成为可能,例如,覆盖玻璃附近的小焦点粘连。次世代荧光寿命成像相机用户应用文献:Lability of Stationary and Time-Resolved Optical Properties of the Conformationally Locked CFP Chromophore Derivative(构象锁定CFP发色团衍生物的稳态和时间分辨光学性质的不稳定性)Advanced Imaging Techniques Enhance Fluorescence SensingsiFLIM: single-image frequency-domain FLIM provides fast and photon-efficient lifetime data(siFLIM:单图像频域FLIM提供快速和光子效率的寿命数据)Single Cell FRET Analysis for the Identification of Optimal FRET-Pairs in Bacillus subtilis Using a Prototype MEM-FLIM System(利用原型MEM-FLIM系统进行枯草芽孢杆菌中蕞优FRET对的单细胞FRET分析)荧光寿命成像相机TOGGEL规格指标:更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。您可以通过我们昊量光电的官方网站了解更多的产品信息,或直接来电咨询。
    留言咨询
  • 荧光和荧光寿命分子包含多个单能态S0、S1、S2…和三重态T1…,每个能态都包含多个精细的能级。正常情况下,大部分电子处在*低能态即基态S0 的*低能级上,当分子被光束照射,会吸收光子能量,电子被激发到更高的能态S1 或S2 上,在S2 能态上的电子只能存在很短暂的时间,便会通过内转换过程跃迁到S1 上,而S1 能态上的电子亦会在极短时间内跃迁到S1 的*低能级上,而这些电子会存在一段时间后通过震荡弛豫辐射跃迁到基态,这个过程会释放一个光子,即荧光。此外,亦会有电子跃迁至三重态T1 上,再由T1 跃迁至基态,我们称之为磷光。荧光特性研究荧光特性时,主要在以下几方面进行分析:激发光谱,发射光谱、荧光强度、偏振荧光、荧光发光量子产率、荧光寿命等。其中荧光寿命(Fluorescence Lifetime)是指荧光分子在激发态上存在的平均时间(纳秒量级)。荧光寿命测试荧光寿命一般在几纳秒至几百纳秒之间,如今主要有两类测试方法:时域测量和频域测量时间稳定性实验测试曲线:1 时域测量由一束窄脉冲将荧光分子激发至较高能态S1,接着测量荧光的发射几率随时间的变化。其中目前广泛应用的是时间相关单光子计数,即TCSPC(Time Correlated Single Photon Counting)时间相关单光子计数(TCSPC) 实现了从百ps-ns-us 的瞬态测试,此方法对数据的获取完全依赖快速探测器和高速电路。用统计的方法计算样品受激后发出的*一个( 也是唯一的一个) 光子与激发光之间的时间差,也就是下图的START( 激发时刻) 与STOP( 发光时刻) 的时间差。由于对于Stop 信号的要求,所以TCSPC 一般需要高重复频率的光源作为激发源,其重复至少要在100KHz 以上,多数的光源都会达到MHz 量级;同时,在一般情况下还要对Stop 信号做数量上的控制,做到尽量满足在一个激发周期内,样品产生且只产生一个光子的有效荧光信号,避免光子对的出现。2 频域测量对连续激发光进行振幅调制后,分子发出的荧光强度也会受到振幅调制,两个调制信号之间存在与荧光寿命相关的相位差,因此可以测量该相位差计算荧光寿命。 左图为正弦调制激发光(绿色)频域显示,发射光信号(红色)相应的相位变化频域显示。右图为对应不同寿命的调制和相位的频域显示。TM- 调制寿命,TP- 相位寿命。[1]显微荧光寿命成像技术(FLIM)显微荧光寿命成像技术(Fluorescence Lifetime ImagingMicroscopy,FLIM)是一种在显微尺度下展现荧光寿命空间分布的技术,由于其不受样品浓度影响,具有其他荧光成像技术无法代替的优异性能,目前在生物医学工程、光电半导体材料等领域是一种重要的表征测量手段。FLIM 一般分为宽场FLIM 和激光扫描FLIM。宽场FLIM(Wide Field FLIM,WFM)该技术是用平行光照明并由物镜聚焦样品获得荧光信号,再由一宽场相机采集荧光成像。宽场FLIM 常用于快速获取大面积样品成像。时域或是频域寿命采集都可以应用在宽场成像FLIM 上。宽场FLIM 有更高帧率和低损伤的优势。2 激光扫描FLIM(Laser Scanning FLIM,LSM)激光扫描FLIM 是针对选定区域内的样品逐点获取其荧光衰减曲线,再经过拟合*终合成荧光寿命图像。相比宽场FLIM,其在空间分辨率、信噪比方面有更大的优势。扫描方式有两种:一种是固定样品,移动激光进行扫描,一种是固定激光,电动位移台带动样品移动进行扫描。FLIM 应用材料科学领域宽禁带半导体如GaN、SiC 等体系的少子寿命mapping 测量量子点如CdSe@ZnS 等用作荧光寿命成像显微镜探针钙钛矿电池/LED 薄膜的组分分析、缺陷检测铜铟镓硒CIGS,铜锌锡硫CZTS 薄膜太阳能电池的组分、缺陷检测镧系上转换纳米颗粒GaAs 或GaAsP 量子阱的载流子扩散研究生命科学领域细胞体自身荧光寿命分析自身荧光相对荧光标记的有效区分活细胞内水介质的PH 值测量局部氧气浓度测量具有相同频谱性质的不同荧光标记的区分活细胞内钙浓度测量时间分辨共振能量转移(FRET):纳米级尺度上的远差测量,环境敏感的FRET 探针定量测量代谢成像:NAD(P)H 和FAD 胞质体的荧光寿命成像OmniFluo-FLIM系列显微荧光寿命成像系统应用案例1 用荧光分子对海拉细胞进行染色用荧光分子转子Bodipy-C12 对海拉细胞(宫颈癌细胞的一种) 进行染色。(a) 显微荧光寿命成像图,寿命范围1ns(蓝色)到2.5ns(红色);(b) 荧光寿命直方图,脂肪滴的短寿命约在1.6ns 附近,细胞中其他位置寿命较长,在1.8ns 附近。用荧光分子转子的时间分辨测量*大的好处在于荧光寿命具备足够清晰的标签特性,且与荧光团的浓度无关。[2]2 金属修饰荧光金属修饰荧光:(a) 荧光寿命是荧光团到金表面距离的函数;(b) 用绿色荧光蛋白(GFP)标记乳腺腺癌细胞的细胞膜的共聚焦xz 横截面,垂直比例尺:5 m;(c) b 图的FLIM 图,金表面附近的GFP 荧光寿命缩短。[2]3 钙钛矿太阳能电池下图研究中,展示了一种动态热风(DHA)制备工艺来控制全无机PSC 的薄膜形态和稳定性,该工艺不含有常规的有害反溶剂,可以在大气环境中制备。同时,钙钛矿掺有钡(Ba2+) 碱金属离子(BaI2:CsPbI2Br)。这种DHA 方法有助于形成均匀的晶粒并控制结晶,从而形成稳定的全无机PSC。从而在环境条件下形成完整的黑色相。经过DHA处理的钙钛矿光伏器件,在0.09cm小面积下,效率为14.85%,在1x1cm的大面积下,具有13.78%的*高效率。DHA方法制备的器件在300h后仍然保持初始效率的92%。4 MQWs 多量子阱研究在(a) 蓝宝石和(b) GaN 上生长的MQWs 的共焦PL mapping 图像。具有较小尺寸的发光团的*高密度是观察到在GaN 上生长的MQWs。在(c) 蓝宝石和(d)GaN 上生长的MQWs 的共焦TRPL mapping 图。仅对于在GaN 上生长的MQWs,强的PL 强度区域与较长PL 衰减时间的区域很好地匹配。在(e) 蓝宝石和(f)GaN 上生长的MQWs 在A 点和B 点测量的局部PL 衰减曲线,均标记在图中。对于在GaN 上生长的MQWs,点A 和B 之间的PL 衰减时间差更高。OmniFluo-FLIM系列显微荧光寿命成像系统参数配置北京卓立汉光仪器有限公司提供的显微荧光寿命成像系统是基于显微和时间相关单光子计数技术,配合高精度位移台得到微观样品表面各空间分布点的荧光衰减曲线,再经过用数据拟合,得到样品表面发光寿命表征的影像。是光电半导体材料、荧光标记常用荧光分子等类似荧光寿命大多分布在纳秒、几十、几百纳秒尺度的物质的不二选择。参数指标:系统性能指标光谱扫描范围200-900nm*小时间分辨率16ps荧光寿命测量范围500ps-1μs@ 皮秒脉冲激光器空间分辨率≤1μm@100X 物镜@405nm 皮秒脉冲激光器荧光寿命检测IRF≤2ns配置参数激发源及匹配光谱范围(光源参数基于50MHz 重复频率)375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW,荧光波段:400-850nm405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW,荧光波段:430-920nm450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW,荧光波段:485-950nm488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW,荧光波段:500-950nm510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW,荧光波段:535-950nm635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW,荧光波段:670-950nm660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW,荧光波段:690-950nm670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW,荧光波段:700-950nm科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),*小步进:50nm,重复定位精度:< 1μm光谱仪320mm 焦距影像校正单色仪,双入口、狭缝出口、CCD 出口,配置三块68×68mm 大面积光栅,波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD(可扩展PLmapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm, 探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,*高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps……33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFluo-FM 荧光寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等数据处理功能:自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统 FLIM 软件界面控制测试界面测试软件的界面遵循“All In One”的简洁设计思路,用户可在下图所示的控制界面中完成采集数据的所有步骤:包括控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等。数据处理界面功能丰富的荧光寿命数据处理软件,充分挖掘用户数据中的宝贵信息。可自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示。自主开发的一套时间相关单光子计数(TCSPC)荧光寿命的拟合算法,可对荧光衰减曲线中*多包含4 个时间组分的荧光过程进行拟合,获得每个组分的荧光寿命,光子数比例,计算评价函数和残差。TCSPC 荧光寿命通常并非简单的指数衰减过程,而是与光源及探测器相关的仪器响应函数(IRF)与荧光衰减过程相互卷积的结果,因此适当的拟合方法和参数选择对获得正确可靠的荧光寿命非常重要。该软件可导入实际测量的IRF 对衰减曲线进行卷积计算和拟合。但是大多数情况下, IRF 很难正确的从实验获得,针对这种情况,软件提供了两种无需实验获取IRF 的拟合方法:NO.1 通过算法对数据上升沿进行拟合,获得时间响应函数IRF,然后对整条衰减曲线进行卷积计算和拟合得到荧光寿命。NO.2对于衰减时间远长于仪器响应时间的,可对衰减曲线下降沿进行直接的指数拟合。该软件经过大量测试,可以很好的满足各种场合的用户需求。MicroLED 微盘的荧光强度像(3D 显示):测试案例
    留言咨询
  • X荧光光谱分析仪专用高频熔样机X荧光光谱分析仪制样用的自动成形高频感应加热,快速熔样机。高频熔样机是将盛放于铂—金合金坩埚中的岩石、土壤、矿物、矿石、煤灰、炉渣等物料与熔剂混合物进行自动升温预氧化—升温熔融–均匀混合—成形—冷却—剥离,最后制成适合于X荧光分析用的玻璃状圆片。熔样机,配套预氧化温度在600-800℃可调,后用铂金干锅熔融温度在1000-1300℃。鞍山新启源科技有限公司研发的高频熔样机能够高效快速完成制样工作,有手动、自动,单头和多头,满足用户需求。国际市场销售的高频感应型熔样机主要由日本、德国、荷兰生产。主要有浇铸型和自动成形两种。浇铸型高频感应熔样机存在降温快,熔融体不易完全倒出,同时易形成偏析、混合不均匀等现象,影响分析结果质量。自动成形高频感应熔样机一般不能设置预氧化过程,高温温度测定不准确、温度显示不直观等缺陷。同时,多年来国内X荧光分析所采用的熔样机均依赖进口,价格非常昂贵,维修和维护不及时,运行成本较高。鞍山新启源公司高频熔样机为克服现有高频感应型熔样机的诸多缺陷,为X荧光分析制样用的高频感应熔样机。该熔样机型号有XQ Toptech-OX2.2,XQ Toptech-OX2.3,XQ Toptech-OX3.0,XQ Toptech-OX3.1,XQ Toptech-OX4.1主要优点:◆高频加热、升温快。◆玻璃片一致性好,特殊样品可设置样品预氧化过程。◆可设定自动样品熔融温度和熔融时间。◆采用低电压加热方式,更加安全可靠。◆全自动微机控制,操作简便,安全,无需人员参与,自动翻倒浇铸成型。◆可设定、存储多种不同的熔融。◆可同时摇动熔融体形成涡流, 制样方式(最多可达4种)。◆与电阻加热熔样机相比较,启动快速,随用随开,节约电能,方便实用。
    留言咨询
  • X荧光光谱分析仪专用高频熔样机X荧光光谱分析仪制样用的自动成形高频感应加热,快速熔样机。高频熔样机是将盛放于铂—金合金坩埚中的岩石、土壤、矿物、矿石、煤灰、炉渣等物料与熔剂混合物进行自动升温预氧化—升温熔融–均匀混合—成形—冷却—剥离,最后制成适合于X荧光分析用的玻璃状圆片。熔样机,配套预氧化温度在600-800℃可调,后用铂金干锅熔融温度在1000-1300℃。鞍山新启源科技有限公司研发的高频熔样机能够高效快速完成制样工作,有手动、自动,单头和多头,满足用户需求。国际市场销售的高频感应型熔样机主要由日本、德国、荷兰生产。主要有浇铸型和自动成形两种。浇铸型高频感应熔样机存在降温快,熔融体不易完全倒出,同时易形成偏析、混合不均匀等现象,影响分析结果质量。自动成形高频感应熔样机一般不能设置预氧化过程,高温温度测定不准确、温度显示不直观等缺陷。同时,多年来国内X荧光分析所采用的熔样机均依赖进口,价格非常昂贵,维修和维护不及时,运行成本较高。鞍山新启源公司高频熔样机为克服现有高频感应型熔样机的诸多缺陷,为X荧光分析制样用的高频感应熔样机。该熔样机型号有XQ Toptech-OX2.2,XQ Toptech-OX2.3,XQ Toptech-OX3.0,XQ Toptech-OX3.1,XQ Toptech-OX4.1主要优点:◆高频加热、升温快。◆玻璃片一致性好,特殊样品可设置样品预氧化过程。◆可设定自动样品熔融温度和熔融时间。◆采用低电压加热方式,更加安全可靠。◆全自动微机控制,操作简便,安全,无需人员参与,自动翻倒浇铸成型。◆可设定、存储多种不同的熔融。◆可同时摇动熔融体形成涡流, 制样方式(最多可达4种)。◆与电阻加热熔样机相比较,启动快速,随用随开,节约电能,方便实用。
    留言咨询
  • X荧光光谱分析仪专用高频熔样机 X荧光光谱分析仪制样用的自动成形高频感应加热,快速熔样机。高频熔样机是将盛放于铂—金合金坩埚中的岩石、土壤、矿物、矿石、煤灰、炉渣等物料与熔剂混合物进行自动升温预氧化—升温熔融–均匀混合—成形—冷却—剥离,最后制成适合于X荧光分析用的玻璃状圆片。熔样机,配套预氧化温度在600-800℃可调,后用铂金干锅熔融温度在1000-1300℃。鞍山新启源科技有限公司研发的高频熔样机能够高效快速完成制样工作,有手动、自动,单头和多头,满足用户需求。熔样机型号:XQ Toptech-OX2.2主要优点:1、设备组件实现国产化,感应区装置采用陶瓷材质,国内首创,避免同类产品金属材质发热的弊端;2、设备采用PLC电气控制装置,使得设备运行稳定。3、设备采用模块化结构,结构简单,维护、操作方便;4、风冷水循环系统一体化,采用陶瓷装置,设备可以连续工作。5、与电阻加热熔样机相比较,启动快速,随用随开,节约电能,方便实用。
    留言咨询
  • 产品概述:CCT-1800太赫兹时域光谱仪是深圳市太赫兹研究院自主研发的紧凑型、实验室级太赫兹时域光谱仪。整机结构紧凑,可灵活搭配透射、反射、成像等模块,测试可获得物质的时域谱、频域谱、介电常数、折射率谱、相位谱、吸收谱、时域成像、频域成像、吸收谱成像等参数。产品性能稳定,重复性高,适用于生物、医学、化学、农业、制药、材料、食品、药品等领域的太赫兹研究和检测。产品特点:1、结构紧凑、体积小、可靠性高、维护简单2、二维扫描平移台可根据使用需要,控制居中或者收回,节省空间3、主机+功能模块的总体设计,光谱/成像功能灵活切换、可拓展性强4、多个可选配的功能模块:横式透射谱线模块、竖式透射谱线/成像模块、反射谱线/成像模块5、扫谱速度:30Hz,扫描成像范围:50mm*50mm6、测试控制软件+数据分析软件,使用简单7、智能云平台,共享太赫兹图谱库。
    留言咨询
  • 高速像增强型CMOS相机 400-860-5168转2831
    高速像增强型CMOS相机 高速高灵敏度,性价比高,可用于实时荧光显微成像、超分辨成像等领域!所属类别:相机 ? 科研级相机所属品牌:负责人姓名:王工(Karl)电话: 邮箱:TRiCAM是一款科研级像增强型CMOS相机,可用于弱光成像、通过快门选通的超短时间曝光或锁相方式的频域成像。TRiCAM中图像增强器采用光纤耦合到高速CMOS传感器,以实现最佳传输效率。该TRiCAM的高灵敏度,可低至单光子水平,且采样速率高达162fps。TRiCAM(时间分辨增强型相机)是时域和/或频率超快成像的最好选择。对于时域成像,ICMOS配备了集成定时脉冲发生器和门单元(TRiCAM G)。该TRiCAM G包含用于门宽度、门频率,延迟,增益和像素合并进行控制的LI-Capture软件。两个同步TTL输出信号(输出A和B)可用于驱动脉冲激光或LED。对于频域成像,ICMOS支持增益调制120 MHz(标准)和更高(外部信号发生器),型号TRiCAM M。单芯片数字合成器进行调制确保相位噪声非常低。 TRiCAM是Lambert仪器LIFA系统FLIM的关键部件。TRiCAM具有高度可定制性,可配备最适合您应用的图像增强器。相机型号覆盖不同光谱灵敏度范围、荧光粉、空间分辨率、增益、线性度、最小门宽度和门控频率等。优势高分辨率图像增强器图像增强器提供了世界上最高的分辨率和UV,可见或近红外的灵敏度超短门宽低至3ns(FWHM),抖动最小用于频域的单芯片数字合成器尽可能低的相位噪声,高动态范围荧光寿命成像紧凑的结构设计适合显微镜主体或成像光谱仪LI-Capture软件完整的摄像头控制;提供SDK便于第三方软件集成应用领域: 时间分辨成像和光谱、粒子速度成像(PIV)、激光诱导荧光(LIF)、时间分辨拉曼、荧光寿命成像显微镜(FLIM)、荧光共振能量转移(FRET)、单分子成像、生物或化学发光成像、等离子物理、X射线成像等
    留言咨询
  • X荧光光谱分析仪专用高频熔样机 X荧光光谱分析仪制样用的自动成形高频感应加热,快速熔样机。高频熔样机是将盛放于铂—金合金坩埚中的岩石、土壤、矿物、矿石、煤灰、炉渣等物料与熔剂混合物进行自动升温预氧化—升温熔融–均匀混合—成形—冷却—剥离,最后制成适合于X荧光分析用的玻璃状圆片。熔样机,配套预氧化温度在600-800℃可调,后用铂金干锅熔融温度在1000-1300℃。鞍山新启源科技有限公司研发的高频熔样机能够高效快速完成制样工作,有手动、自动,单头和多头,满足用户需求。熔样机型号:XQ Toptech-OX2.3主要优点:1、设备组件实现国产化,感应区装置采用陶瓷材质,国内首创,避免同类产品金属材质发热的弊端;2、设备采用PLC电气控制装置,使得设备运行稳定。3、设备采用模块化结构,结构简单,维护、操作方便;4、自带循环风冷系统,结构紧凑,加之采用陶瓷装置,降温效果明显,确保该设备可以连续工作。5、与电阻加热熔样机相比较,启动快速,随用随开,节约电能,方便实用。
    留言咨询
  • X荧光光谱分析仪专用高频熔样机X荧光光谱分析仪制样用的自动成形高频感应加热,快速熔样机。高频熔样机是将盛放于铂—金合金坩埚中的岩石、土壤、矿物、矿石、煤灰、炉渣等物料与熔剂混合物进行自动升温预氧化—升温熔融–均匀混合—成形—冷却—剥离,最后制成适合于X荧光分析用的玻璃状圆片。熔样机,配套预氧化温度在600-800℃可调,后用铂金干锅熔融温度在1000-1300℃。鞍山新启源科技有限公司研发的高频熔样机能够高效快速完成制样工作,有手动、自动,单头和多头,满足用户需求。国际市场销售的高频感应型熔样机主要由日本、德国、荷兰生产。主要有浇铸型和自动成形两种。浇铸型高频感应熔样机存在降温快,熔融体不易完全倒出,同时易形成偏析、混合不均匀等现象,影响分析结果质量。自动成形高频感应熔样机一般不能设置预氧化过程,高温温度测定不准确、温度显示不直观等缺陷。同时,多年来国内X荧光分析所采用的熔样机均依赖进口,价格非常昂贵,维修和维护不及时,运行成本较高。鞍山新启源公司高频熔样机为克服现有高频感应型熔样机的诸多缺陷,为X荧光分析制样用的高频感应熔样机。该熔样机型号有XQ Toptech-OX2.2,XQ Toptech-OX2.3,XQ Toptech-OX3.0,XQ Toptech-OX3.1主要优点:◆高频加热、升温快。◆玻璃片一致性好,特殊样品可设置样品预氧化过程。◆可设定自动样品熔融温度和熔融时间。◆采用低电压加热方式,更加安全可靠。◆全自动微机控制,操作简便,安全。◆可设定、存储多种不同的熔融。◆可同时摇动熔融体形成涡流, 制样方式(最多可达4种)。◆与电阻加热熔样机相比较,启动快速,随用随开,节约电能,方便实用。
    留言咨询
  • X荧光光谱分析仪专用高频熔样机X荧光光谱分析仪制样用的自动成形高频感应加热,快速熔样机。高频熔样机是将盛放于铂—金合金坩埚中的岩石、土壤、矿物、矿石、煤灰、炉渣等物料与熔剂混合物进行自动升温预氧化—升温熔融–均匀混合—成形—冷却—剥离,最后制成适合于X荧光分析用的玻璃状圆片。熔样机,配套预氧化温度在600-800℃可调,后用铂金干锅熔融温度在1000-1300℃。鞍山新启源科技有限公司研发的高频熔样机能够高效快速完成制样工作,有手动、自动,单头和多头,满足用户需求。国际市场销售的高频感应型熔样机主要由日本、德国、荷兰生产。主要有浇铸型和自动成形两种。浇铸型高频感应熔样机存在降温快,熔融体不易完全倒出,同时易形成偏析、混合不均匀等现象,影响分析结果质量。自动成形高频感应熔样机一般不能设置预氧化过程,高温温度测定不准确、温度显示不直观等缺陷。同时,多年来国内X荧光分析所采用的熔样机均依赖进口,价格非常昂贵,维修和维护不及时,运行成本较高。鞍山新启源公司高频熔样机为克服现有高频感应型熔样机的诸多缺陷,为X荧光分析制样用的高频感应熔样机。该熔样机型号有XQ Toptech-OX2.2,XQ Toptech-OX2.3,XQ Toptech-OX3.0,XQ Toptech-OX3.1主要优点:◆高频加热、升温快。◆玻璃片一致性好,特殊样品可设置样品预氧化过程。◆可设定自动样品熔融温度和熔融时间。◆采用低电压加热方式,更加安全可靠。◆全自动微机控制,操作简便,安全。◆可设定、存储多种不同的熔融。◆可同时摇动熔融体形成涡流, 制样方式(最多可达4种)。◆与电阻加热熔样机相比较,启动快速,随用随开,节约电能,方便实用。
    留言咨询
  • X荧光光谱分析仪专用高频熔样机X荧光光谱分析仪制样用的自动成形高频感应加热,快速熔样机。高频熔样机是将盛放于铂—金合金坩埚中的岩石、土壤、矿物、矿石、煤灰、炉渣等物料与熔剂混合物进行自动升温预氧化—升温熔融–均匀混合—成形—冷却—剥离,最后制成适合于X荧光分析用的玻璃状圆片。熔样机,配套预氧化温度在600-800℃可调,后用铂金干锅熔融温度在1000-1300℃。鞍山新启源科技有限公司研发的高频熔样机能够高效快速完成制样工作,有手动、自动,单头和多头,满足用户需求。国际市场销售的高频感应型熔样机主要由日本、德国、荷兰生产。主要有浇铸型和自动成形两种。浇铸型高频感应熔样机存在降温快,熔融体不易完全倒出,同时易形成偏析、混合不均匀等现象,影响分析结果质量。自动成形高频感应熔样机一般不能设置预氧化过程,高温温度测定不准确、温度显示不直观等缺陷。同时,多年来国内X荧光分析所采用的熔样机均依赖进口,价格非常昂贵,维修和维护不及时,运行成本较高。鞍山新启源公司高频熔样机为克服现有高频感应型熔样机的诸多缺陷,为X荧光分析制样用的高频感应熔样机。该熔样机型号有XQ Toptech-OX2.2, XQ Toptech-OX2.3,XQ Toptech-OX3.0,XQ Toptech-OX3.1, XQ Toptech-OX3.1 H主要优点:◆高频加热、升温快。◆玻璃片一致性好,特殊样品可设置样品预氧化过程。◆可设定自动样品熔融温度和熔融时间。◆采用低电压加热方式,更加安全可靠。◆全自动微机控制,操作简便,安全。◆可设定、存储多种不同的熔融。◆可同时摇动熔融体形成涡流, 制样方式(最多可达4种)。◆与电阻加热熔样机相比较,启动快速,随用随开,节约电能,方便实用。
    留言咨询
  • WaveCam-视频振动分析解决方案昊量光电全新推出的我们的振动分析解决方案WaveCam是时域和频域专家和初学者进行非接触式高分辨率振动测量的wan美工具。首先,您只需要一台相机和我们的软件来处理数据。节省处理大量电缆和传感器或连续设置和测量单个测量位置的时间。每个像素都将用作单独的传感器,让您可以同时测量数十万个位置。在时域和频域中分析您的振动数据。可视化肉眼不可见的不同频率的偏转形状。查看和导出图像中数千个点的时间波形和频谱。直观的处理和优化的用户体验。用户只需要很少的专业知识。额外的培训成本降低。该测试方法使用多种传统的数据采集方法进行了交叉验证,即加速度计、激光多普勒振动计 (LDV) 。WaveCam-非接触高精度测量的优势:从任何相机导入常见文件格式,从手机相机到高端高速相机使用改进的光流和人工智能 (AI) 算法从视频数据中全自动、独特地提取振动位移数据,通过 WaveCam 获得高质量的结果随着软件的不断发展,年度许可包括定期更新。软件维护不收取额外费用。可选配高速相机 Chronos 1.4,包括用于移动测量的可充电电池,设置为在坚固的手提箱中与 WaveCam 一起使用。我们建议根据频率范围和分辨率要求选择适合您需求的相机。WaveCam-视频振动分析软件解决方案特点:使用任何相机捕捉振动数据,包括手机节省设置、测量时间和设备成本快速学习、直观操作、易于配置直观的执行和测量分析在时域和频域中分析数据操作期间的振动测量,具有亚像素精度的测量分辨率无需准备被测表面导出视频中的偏转形状改进的光流和人工智能 (AI) 算法WaveCam-视频振动分析软件解决方案应用范围:工作变形形状 (ODS)固有频率检测质量保证研究和发展故障排除,根本原因分析预测性维护结构振动瞬态事件产品技术问答:为了正确的分析振动数据,我需要考虑什么?根据您的相机的帧速率,需要蕞小帧速率 FPS = 2 xf max才能捕获感兴趣的蕞高频率 f max。手机足以满足低频应用(当前蕞大 960 fps)。注意:手机可能会在慢动作录制的开始和结束时增加几秒钟的正常速度。高帧率导致低曝光时间 - 需要额外的无闪烁照明以 Gpx/s(例如 Chronos 1.4)为单位的高速相机性能权衡 - 帧速率与分辨率边缘和特征点有帮助,但不是本质使用未压缩的视频格式——在 WaveCam 中剪切视频使用角度,例如 45°,因为仅显示平面振动以与参考进行比较考虑 90° 旋转记录不同的角度测量时间受相机 RAM 限制(降低 fps 或增加分辨率)瓶颈是数据传输 RAM-SD 卡 + 处理时间2. WaveCam-振动分析软件解决方案与传统方法比较如何:使用加速度计和 LDV 交叉验证幅度和频率内容使用soundcam Mikado和近场声全息 (SONAH)交叉验证模式形状更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询
  • 主要测试功能:用于室内室外光源的光闪烁时域和频域分析图、 基准频率、闪烁百分比 (PF)、闪烁指数 (FI)、调制深度(MD、 调制百分比(符合CEC法规)、 PstLM (符合IEC标准) 、Mp(符合ASSIST推荐)、 SVM、 根据IEEE标准,对频闪危害进行分级。
    留言咨询
  • CCT-1800C小型太赫兹时域光谱仪是深圳市太赫兹研究院自主研发的紧凑型、实验室级时域光谱仪。整机结构紧凑、内嵌透射模块,采用工控屏显示。测试可获得物质的时域谱、频域谱、吸收谱、相位谱、折射率谱等参数,产品性能稳定,重复性高,适用于生物、医学、化学、农业、材料、食品、药品等领域的太赫兹研究和监测。产品特点:1、结构紧凑、体积小、可靠性高、维护简单2、搬运方便,操作方便,主机于显示一体化集成3、软件自主研发,可根据应用需求进行定制化设计4、实时采集数据显示、控制软件与分析软件集成一体。5、软件中集成算法,可以实时捕捉计算样品的特征峰位信息。6、对使用环境要求低,可以在室内生活环境下进行测量使用。
    留言咨询
  • 荧光和荧光寿命分子包含多个单能态S0、S1、S2…和三重态T1…,每个能态都包含多个精细的能级。正常情况下,大部分电子处在*低能态即基态S0 的*低能级上,当分子被光束照射,会吸收光子能量,电子被激发到更高的能态S1 或S2 上,在S2 能态上的电子只能存在很短暂的时间,便会通过内转换过程跃迁到S1 上,而S1 能态上的电子亦会在极短时间内跃迁到S1 的*低能级上,而这些电子会存在一段时间后通过震荡弛豫辐射跃迁到基态,这个过程会释放一个光子,即荧光。此外,亦会有电子跃迁至三重态T1 上,再由T1 跃迁至基态,我们称之为磷光。荧光特性研究荧光特性时,主要在以下几方面进行分析:激发光谱,发射光谱、荧光强度、偏振荧光、荧光发光量子产率、荧光寿命等。其中荧光寿命(Fluorescence Lifetime)是指荧光分子在激发态上存在的平均时间(纳秒量级)。荧光寿命测试荧光寿命一般在几纳秒至几百纳秒之间,如今主要有两类测试方法:时域测量和频域测量时间稳定性实验测试曲线:1 时域测量由一束窄脉冲将荧光分子激发至较高能态S1,接着测量荧光的发射几率随时间的变化。其中目前广泛应用的是时间相关单光子计数,即TCSPC(Time Correlated Single Photon Counting)时间相关单光子计数(TCSPC) 实现了从百ps-ns-us 的瞬态测试,此方法对数据的获取完全依赖快速探测器和高速电路。用统计的方法计算样品受激后发出的*一个( 也是唯一的一个) 光子与激发光之间的时间差,也就是下图的START( 激发时刻) 与STOP( 发光时刻) 的时间差。由于对于Stop 信号的要求,所以TCSPC 一般需要高重复频率的光源作为激发源,其重复至少要在100KHz 以上,多数的光源都会达到MHz 量级;同时,在一般情况下还要对Stop 信号做数量上的控制,做到尽量满足在一个激发周期内,样品产生且只产生一个光子的有效荧光信号,避免光子对的出现。2 频域测量对连续激发光进行振幅调制后,分子发出的荧光强度也会受到振幅调制,两个调制信号之间存在与荧光寿命相关的相位差,因此可以测量该相位差计算荧光寿命。 左图为正弦调制激发光(绿色)频域显示,发射光信号(红色)相应的相位变化频域显示。右图为对应不同寿命的调制和相位的频域显示。TM- 调制寿命,TP- 相位寿命。[1]显微荧光寿命成像技术(FLIM)显微荧光寿命成像技术(Fluorescence Lifetime ImagingMicroscopy,FLIM)是一种在显微尺度下展现荧光寿命空间分布的技术,由于其不受样品浓度影响,具有其他荧光成像技术无法代替的优异性能,目前在生物医学工程、光电半导体材料等领域是一种重要的表征测量手段。FLIM 一般分为宽场FLIM 和激光扫描FLIM。宽场FLIM(Wide Field FLIM,WFM)该技术是用平行光照明并由物镜聚焦样品获得荧光信号,再由一宽场相机采集荧光成像。宽场FLIM 常用于快速获取大面积样品成像。时域或是频域寿命采集都可以应用在宽场成像FLIM 上。宽场FLIM 有更高帧率和低损伤的优势。2 激光扫描FLIM(Laser Scanning FLIM,LSM)激光扫描FLIM 是针对选定区域内的样品逐点获取其荧光衰减曲线,再经过拟合*终合成荧光寿命图像。相比宽场FLIM,其在空间分辨率、信噪比方面有更大的优势。扫描方式有两种:一种是固定样品,移动激光进行扫描,一种是固定激光,电动位移台带动样品移动进行扫描。FLIM 应用材料科学领域宽禁带半导体如GaN、SiC 等体系的少子寿命mapping 测量量子点如CdSe@ZnS 等用作荧光寿命成像显微镜探针钙钛矿电池/LED 薄膜的组分分析、缺陷检测铜铟镓硒CIGS,铜锌锡硫CZTS 薄膜太阳能电池的组分、缺陷检测镧系上转换纳米颗粒GaAs 或GaAsP 量子阱的载流子扩散研究生命科学领域细胞体自身荧光寿命分析自身荧光相对荧光标记的有效区分活细胞内水介质的PH 值测量局部氧气浓度测量具有相同频谱性质的不同荧光标记的区分活细胞内钙浓度测量时间分辨共振能量转移(FRET):纳米级尺度上的远差测量,环境敏感的FRET 探针定量测量代谢成像:NAD(P)H 和FAD 胞质体的荧光寿命成像OmniFluo-FLIM系列显微荧光寿命成像系统应用案例1 用荧光分子对海拉细胞进行染色用荧光分子转子Bodipy-C12 对海拉细胞(宫颈癌细胞的一种) 进行染色。(a) 显微荧光寿命成像图,寿命范围1ns(蓝色)到2.5ns(红色);(b) 荧光寿命直方图,脂肪滴的短寿命约在1.6ns 附近,细胞中其他位置寿命较长,在1.8ns 附近。用荧光分子转子的时间分辨测量*大的好处在于荧光寿命具备足够清晰的标签特性,且与荧光团的浓度无关。[2]2 金属修饰荧光金属修饰荧光:(a) 荧光寿命是荧光团到金表面距离的函数;(b) 用绿色荧光蛋白(GFP)标记乳腺腺癌细胞的细胞膜的共聚焦xz 横截面,垂直比例尺:5 m;(c) b 图的FLIM 图,金表面附近的GFP 荧光寿命缩短。[2]3 钙钛矿太阳能电池下图研究中,展示了一种动态热风(DHA)制备工艺来控制全无机PSC 的薄膜形态和稳定性,该工艺不含有常规的有害反溶剂,可以在大气环境中制备。同时,钙钛矿掺有钡(Ba2+) 碱金属离子(BaI2:CsPbI2Br)。这种DHA 方法有助于形成均匀的晶粒并控制结晶,从而形成稳定的全无机PSC。从而在环境条件下形成完整的黑色相。经过DHA处理的钙钛矿光伏器件,在0.09cm小面积下,效率为14.85%,在1x1cm的大面积下,具有13.78%的*高效率。DHA方法制备的器件在300h后仍然保持初始效率的92%。4 MQWs 多量子阱研究在(a) 蓝宝石和(b) GaN 上生长的MQWs 的共焦PL mapping 图像。具有较小尺寸的发光团的*高密度是观察到在GaN 上生长的MQWs。在(c) 蓝宝石和(d)GaN 上生长的MQWs 的共焦TRPL mapping 图。仅对于在GaN 上生长的MQWs,强的PL 强度区域与较长PL 衰减时间的区域很好地匹配。在(e) 蓝宝石和(f)GaN 上生长的MQWs 在A 点和B 点测量的局部PL 衰减曲线,均标记在图中。对于在GaN 上生长的MQWs,点A 和B 之间的PL 衰减时间差更高。OmniFluo-FLIM系列显微荧光寿命成像系统参数配置北京卓立汉光仪器有限公司提供的显微荧光寿命成像系统是基于显微和时间相关单光子计数技术,配合高精度位移台得到微观样品表面各空间分布点的荧光衰减曲线,再经过用数据拟合,得到样品表面发光寿命表征的影像。是光电半导体材料、荧光标记常用荧光分子等类似荧光寿命大多分布在纳秒、几十、几百纳秒尺度的物质的不二选择。参数指标:系统性能指标光谱扫描范围200-900nm*小时间分辨率16ps荧光寿命测量范围500ps-1μs@ 皮秒脉冲激光器空间分辨率≤1μm@100X 物镜@405nm 皮秒脉冲激光器荧光寿命检测IRF≤2ns配置参数激发源及匹配光谱范围(光源参数基于50MHz 重复频率)375nm 皮秒脉冲激光器,脉宽:30ps,平均功率1.5mW,荧光波段:400-850nm405nm 皮秒脉冲激光器,脉宽:25ps,平均功率2.5mW,荧光波段:430-920nm450nm 皮秒脉冲激光器,脉宽:50ps,平均功率1.9mW,荧光波段:485-950nm488nm 皮秒脉冲激光器,脉宽:70ps,平均功率1.3mW,荧光波段:500-950nm510nm 皮秒脉冲激光器,脉宽:75ps,平均功率1.1mW,荧光波段:535-950nm635nm 皮秒脉冲激光器,脉宽:65ps,平均功率4.3mW,荧光波段:670-950nm660nm 皮秒脉冲激光器,脉宽:60ps,平均功率1.9mW,荧光波段:690-950nm670nm 皮秒脉冲激光器,脉宽:40ps,平均功率0.8mW,荧光波段:700-950nm科研级正置显微镜落射明暗场卤素灯照明,12V,100W5 孔物镜转盘,标配明场用物镜:10×,50×,100×监视CCD:高清彩色CMOS 摄像头,像元尺寸:3.6μm*3.6μm,有效像素:1280H*1024V,扫描方式:逐行,快门方式:电子快门电动位移台高精度电动XY 样品台,行程:75*50mm(120*80mm 可选),*小步进:50nm,重复定位精度:< 1μm光谱仪320mm 焦距影像校正单色仪,双入口、狭缝出口、CCD 出口,配置三块68×68mm 大面积光栅,波长准确度:±0.1nm,波长重复性:±0.01nm,扫描步距:0.0025nm,焦面尺寸:30mm(w)×14mm(h),狭缝缝宽:0.01-3mm 连续电动可调探测器:制冷型紫外可见光电倍增管,光谱范围:185-900nm(标配,可扩展)光谱CCD(可扩展PLmapping)低噪音科学级光谱CCD(LDC-DD),芯片格式:2000x256,像元尺寸:15μm*15μm, 探测面:30mm*3.8mm,背照式深耗尽芯片,低暗电流,*低制冷温度-60℃ @25℃环境温度,风冷,*高量子效率值95%时间相关单光子计数器(TCSPC)时间分辨率:16/32/64/128/256/512/1024ps……33.55μs,死时间< 10ns,*高65535 个直方图时间窗口,瞬时饱和计数率:100Mcps,支持稳态光谱测试;OmniFluo-FM 荧光寿命成像专用软件控制功能:控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等数据处理功能:自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示图像处理功能:直方图、色表、等高线、截线分析、3D 显示等操作电脑品牌操作电脑,Windows 10 操作系统 FLIM 软件界面控制测试界面测试软件的界面遵循“All In One”的简洁设计思路,用户可在下图所示的控制界面中完成采集数据的所有步骤:包括控制样品平移台移动,通过显微镜的明场光学像定位到合适区域,框选扫描区域进行扫描,逐点获得荧光衰减曲线,实时生成荧光图像等。数据处理界面功能丰富的荧光寿命数据处理软件,充分挖掘用户数据中的宝贵信息。可自动对扫描获得的FLIM 数据,逐点进行多组分荧光寿命拟合(组分数小于等于4),对逐点拟合获得的荧光强度、荧光寿命等信息生成伪彩色图像显示。自主开发的一套时间相关单光子计数(TCSPC)荧光寿命的拟合算法,可对荧光衰减曲线中*多包含4 个时间组分的荧光过程进行拟合,获得每个组分的荧光寿命,光子数比例,计算评价函数和残差。TCSPC 荧光寿命通常并非简单的指数衰减过程,而是与光源及探测器相关的仪器响应函数(IRF)与荧光衰减过程相互卷积的结果,因此适当的拟合方法和参数选择对获得正确可靠的荧光寿命非常重要。该软件可导入实际测量的IRF 对衰减曲线进行卷积计算和拟合。但是大多数情况下, IRF 很难正确的从实验获得,针对这种情况,软件提供了两种无需实验获取IRF 的拟合方法:NO.1 通过算法对数据上升沿进行拟合,获得时间响应函数IRF,然后对整条衰减曲线进行卷积计算和拟合得到荧光寿命。NO.2对于衰减时间远长于仪器响应时间的,可对衰减曲线下降沿进行直接的指数拟合。该软件经过大量测试,可以很好的满足各种场合的用户需求。MicroLED 微盘的荧光强度像(3D 显示):测试案例
    留言咨询
  • 创远仪器5G扫频仪广泛应用于网络勘察、规划、建设、优化等场所,是一款多功能性的扫频测试仪表。当今无线网络环境越来越复杂,扫频仪独特的公正、独立、不依赖网络的特性,取得了不可替代的作用,创远5G扫频仪作为接收机系列的一款,主要应用于网络规划、网络优化。典型的应用:模型校正、清频干扰测试及无线覆盖区域规划数据验证测试等。传播模型校正清频测试和干扰排查网络覆盖及干扰的优化分析网络结构质量评估无线覆盖区域规划数据验证测试5G扫频仪主要特点:● 支持频段3.3GHz-3.6GHz 4.8GHz-5GHz● 可以根据用户需求进行频段组合● 支持模型校正,清频测试,用于查找干扰● 内置GPS,支持室外导航测试,自动记录测试轨迹图1 创远5G清频测试系统软件功能:●软件支持路测轨迹图、频域、时域、报表显示●支持数据的导入导出,生成的数据可生成“.csv、.kml”格式,可导入GoogleEarth●支持数据的回放分析及参数展现,自定义测试报告,自动生成测试报告、报表、统计信息等5G清频测试解决方案:案例背景介绍:3.4GHz-3.6GHz、4.8GHz-5.0GHz频段作为国内5G实验网的使用频段,组建实验网前期需要对无线网络环境进行核查及干扰排查评估工作。2017年9月,创远携手上海电信进行了5G实验网3.5GHz、4.9GHz频段的频率核查及干扰评估工作,保障了上海市区3.4GHz-3.6GHz、4.8GHz-5.0GHz频段的正常使用。5G清频测试结果分析:通过本次的5G清频测试,可以从后台的软件回放中,分析3.4GHz-3.6GHz、4.8GHz-5.0GHz范围的频率使用情况,并对此网络下的无线环境进行干扰排查、评估分析等。(1)采样数据统计评估从统计表格1中可以直接统计出RSSI的不同区间的占比、最大值、最小值,平均值,直观反映评估出3.5G频段的占用情况。表格1 RSSI采样统计分析(2)干扰排查:结合RSSI频域分析、地图轨迹窗口可以排查出干扰信号落在哪个频点及此时的信号强度值,如图2所示;可将导出的“KML”文件导入GoogleEarth中,可在地图导航中确定干扰源的大致位置所在,根据此干扰信号的频点信息,后经上海电信了解说明了此干扰源为某研究院所发信号,导航图如图3所示:图2 干扰排查结果图3 GoogleEarth显示导航轨迹结论:经过本次5G清频测试,对数据回放统计分析,得出3.4GHz-3.6GHz、4.8GHz-5.0GHz的频率上基本很干净,只有个别频点出现了较强“干扰”信号,经过后期了解,得知此干扰信号为路测经过某研究院时,该研究院所发的信号。创远5G清频测试解决方案可以简便的对5G无线环境进行快速干扰排查、频率占用核查、评估分析工作,进而保障3.4GHz-3.6GHz、4.8GHz-5.0GHz的正常使用。传播模型校正测试方案:背景介绍:在5G网络建设初期,传播模型校正是网络规划的必需阶段,手机路测受到条件限制,不能起到应有的作用,所以我们需要使用扫频仪来完成任务,在测试过程中,创远仪器采用发射机来发射5G频段的信号,使用扫频仪来作为接收端,接收发射信号,采集的数据符合“李氏定理”,可直接用于规划软件做模型校正,来进行模型参数的调整,5G(3.4GHz-3.6GHz、4.8GHz-5.0GHz)频段做为国内 5G 实验网的使用频段,组建实验网前期需要进行无线环境进行核查及干扰评估工作。传播模型校正测试系统:随着5G网络的传播模型校正工作全面开展,创远仪器采用现有的发射机和5G扫频仪系统来进行模型校正测试,提供一套完整的模测解决方案,以发射机作为模测信源发射信号,以扫频仪作为接收,并以路测的方式进行收集带有地理位置信息的的信号强度数据,输出的数据导入规划软件进行模型参数的调整,此系统如下:图4 传播模型校正测试系统(左--发射机,右--扫频仪)发射机特点:● 支持 GSM、 TD-SCDMA、 CDMA2000、 WCDMA、LTE、NB-IoT 、RoLa、5G(3.3GHz-3.6GHz、 4.8GHz-5GHz);● 支持调制信号和连续波信号的输出;● CW 模式下频率、功率可调;● 调制模式下,除频率、功率可调外, GSM 可设置 BSIC 码, TDSCDMA 可设置 Midamble code; CDMA2000 可 设 置PN 码; WCDMA 可 设 置 扰 码 及 CPICH 的 功率;TE 可设置 Channle、 PCI 和带宽; NB-IoT 可设置PCI,配置Standalone、 In-band、 Guard-band 模 式;RoLa 可 配 置 PCI、 S7-S12 波形文件;5G NR 同步、导频信号输出。● 高功率调节范围,单机支持0-43dBm(20W);-10-33 dBm(2W)范围功率输出,调整步进 0.5dB;● 宽频设备,单机支持 700MHz-2700MHz 、3400MHz-3600MHz及4800MHz-5000MHz频率输出 , 满足全制式信号测试需求,调整步进10KHz;● APP 远程设置功率、频率等参数,操作简单,携带方便,有效操作距离 10m,避免大功率发射造成的人员辐射伤害;● 一体化设计, 体积小(200 x 60 x 230 mm)、重量轻(2kg)、配备外置电池可持续工作 5-8 小时,合适在室外复杂环境中使用;● 配置灵活,频段、功率、协议可根据用户需求量身定制。
    留言咨询
  • Geniitek-VB22H智能ZigBee温振复合传感器是一款小型的ZigBee无线传感器,具备振动检测和温度检测功能。内置3轴(中频)+1轴(高频)加速度传感器,高频加速度传感器采用高频采样电路,检测频率带宽高达10KHz;内置智能FFT频谱分析算法,既能采集加速度原始数据,又能计算出频率等频域参数;采用低功耗算法,高能量锂亚电池供电,可在采样间隔1小时的情况下连续工作长达2年以上;外壳采用高强度合金和工程塑料,适应高温强振的恶劣工业现场。本产品作为物联网传感器节点,主要用于工业设备的振动分析、网络化监控和诊断。本产品主要应用于大面积组网,实现长期在线监测。
    留言咨询
  • 上海雄图玉米赤霉烯酮荧光定量试纸条1同类产品全球线性范围zui宽,检测效率高,成本低;2灵敏度高,性能稳定,无需自配试剂,易学易用;3样品前处理简单,自带标准曲线,拿来即用;4配套视频操作指南,包教包会;5试纸条卡壳包装,有效防止毒素侵入人体;6产品通过多部门技术性能鉴定评价。产品特性快检试纸条是否进口否产地上海分类粮油米面饲料黄曲霉毒素B1检测品牌上海雄图用途范围粮油米面饲料黄曲霉毒素B1检测产品名称玉米赤霉烯酮荧光定量试纸条是否危险化学品否货号XT811102P级别其它含量100%产品规格40T特色服务包教包会
    留言咨询
  • 明美体视荧光视频显微镜鉴定朱墨时序朱墨时序检验项目是文书检验项目中比较疑难的项目之一,它的难点在于:在普通的显微镜下放大观察,很难区分出来印油和文字笔画的层次关系,两者互溶的情况经常发生,如何找到一种直观的观察和记录结果的方法,国内文检人士做过大量研究和探讨。今天给大家介绍一种比较实用的朱墨时序检验的方法:激发荧光和透射白光的视频显微镜检验法。这种方法对含有荧光物质的印油的朱墨时序检验来说,直观、简单、实用。特点用体视荧光视频显微镜后,现象有些比较明显,可以直接确定朱墨时序有些不明显,需要进行排除漏孔处荧光处理。先拍摄一张透光照片,并标记出漏孔位置,然后再拍摄荧光照片。分析朱墨时序时,需排除漏孔处的荧光、在非漏孔位置发现是否有荧光,来确定朱墨时序。
    留言咨询
  • 手持式频闪仪LabFlicker 400-860-5168转1980
    LabFlicker 直接连接到Light Inspector 软件,让您可以实时预览你的频闪信号。无论是否使用Viso 测角光度计,LabFlicker 仪器可以与任何PC 机一起使用。因此,LabFlicker 仪器和你电脑上的Viso 灯光检查软件构成了一个便携而精确的闪烁测量解决方案。所有相关的频闪图表和指数——包括SVM(频闪可视参数)和PstLM(短时间闪变值)——都会显示出来。原始的频闪数据可以下载下来进行更多深入性的研究。智能信号处理算法实时生成和计算闪烁数据。LabFlicker 可以作为一个独立的设备使用,但与任何Viso 产品一起使用时,它的功能会更加强大,因为所有的光度数据都可以无缝地导出到一个完整的报告中。这消除了将多个系统组合在一起以创建报告的复杂麻烦。LabFlicker 被设计成在实验室环境中使用,放置在靠近光源的位置。手持式频闪仪LabFlicker测试结果:时域和频域波形图形频闪百分比频闪指数Flicker 频率SVM 指数PstLM 指数JA8 第24 条导出样本数组到微软Excel 表格手持式频闪仪LabFlicker产品规格:运输尺寸(L x W x H:170 x 130 x 70 毫米运输重量:0.5 公斤维度(L x W x H):115 x 53 x 13 毫米重量:0.16 公斤保修期: 2 年
    留言咨询
  • THz时域光谱分析系统 400-860-5168转1545
    仪器简介:太赫兹时域光谱分析(THz&mdash TDS) 典型的THz时域光谱学系统如图1。用亚皮秒的太赫兹脉冲透过样品,再经一段对称的自由空间后由探测器接收,测量由此产生的电磁场强度随时间的变化(利用傅立叶变换获得频域上幅度和相位的变化量),进而得到样品的信息。这样的测量方法已经成功地用于气体和有机材料的测量。技术参数:技术指标 光谱范围:0.1-4.0THz 分辨率: 50GHz(傅立叶变换后) 动态范围:70dB(峰值处) 工作模式:透射或反射 测试距离:1-40cm Thz发射端:光电导天线 Thz接受端:ZnTe晶体 软件界面:Labview 通讯接口:USB2.0 & 蓝牙 尺寸: 10.5&rdquo × 6.25&rdquo × 2.75&rdquo 重量: 4.2ibs主要特点:特点 紧凑的Thz发射及接收设计 实时的光谱显示,探测范围4THz 快速扫描,达20Hz ;透射和发射工作模式 I/O端口,可外部控制 抗振动结构设计 集成化设计,使用简便 USB2.0及蓝牙连接 可通过网络远程通讯
    留言咨询
  • 微腔光学频率梳 400-860-5168转2831
    微腔光学频率梳昊量光电蕞新推出市场上地一款全商业化微腔光学频率梳,这款微腔光频梳系统产生的超低噪声光频梳具有宽间距20GHz—1000GHz,微腔光学频率梳生成的光学梳线具有高OSNR,并且可以使用板载后放大进一步放大。光频梳是一种等距分布的梳状光谱结构,作为光谱分析的天然刻度,其频域上覆盖百 THz带宽,同时兼具mHz量级频率精度,有效地提供了微波到光频的相干互联。早期的光频梳通常由锁模激光器产生,锁模激光器体积大、功耗大、且对实验环境要求较高。近年来,微纳光子学的飞速发展极大推动了光频梳 的小型化。 基于回音壁模式 (WGM)微腔产生的克尔光频梳的梳模间隔在GHz到THz量级,可通过色散工程实现倍频程光频梳的产生;此外,微腔的品质因子(Q)非常高,具有场增强效应,使得阈值功率大大降低;其有效模式体积微小,可克服传统光频梳的体积与功耗的矛盾,具有小型化优势,使单片集成光频梳发生器成为现实。微腔光学频率梳产品特点:ITU的网格间距为100、200、400、800 GHz3dB带宽50 nm OSNR 50 dB线宽 100 kHz可以提供C-band和O-bands定制更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。您可以通过我们昊量光电的官方网站www.auniontech.com了解更多的产品信息,或直接来电咨询4006-888-532。
    留言咨询
  • 浙江天创信测通信科技有限公司工频电磁辐射仪BC100选频电磁辐射分析仪是一款专业测量电磁环境中不同频段电磁场强度的高精度测量仪表,用于测量空间电磁场频谱及场强,能够对空间电磁环境进行频域测量与分析。仪器参数? 可设置测量 1s-24h 内的实时值、平均值和最大值。? 各种测量操作直接通过按键选择,快速设定参数。? 显示范围:显示平均噪声电平~ +20dBm。? 分辨率带宽(RBW:默认 200kHz)。? 测量结果:实时值、平均值、最大值、实时X值、实时Y值、实时Z值、总场强值。? 内置锂离子充电电池。机体采用人体工学设计、防尘防水,坚固耐用。浙江天创信测通信科技有限公司工频电磁辐射仪
    留言咨询
  • 智俊信测BC100选频电磁辐射检测仪BC100选频电磁辐射分析仪是一款专业测量电磁环境中不同频段电磁场强度的高精度测量仪表,用于测量空间电磁场频谱及场强,能够对空间电磁环境进行频域测量与分析。仪器参数? 可设置测量 1s-24h 内的实时值、平均值和最大值。? 各种测量操作直接通过按键选择,快速设定参数。? 显示范围:显示平均噪声电平~ +20dBm。? 分辨率带宽(RBW:默认 200kHz)。? 测量结果:实时值、平均值、最大值、实时X值、实时Y值、实时Z值、总场强值。? 内置锂离子充电电池。机体采用人体工学设计、防尘防水,坚固耐用。智俊信测BC100选频电磁辐射检测仪
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制