当前位置: 仪器信息网 > 行业主题 > >

碰撞变形

仪器信息网碰撞变形专题为您整合碰撞变形相关的最新文章,在碰撞变形专题,您不仅可以免费浏览碰撞变形的资讯, 同时您还可以浏览碰撞变形的相关资料、解决方案,参与社区碰撞变形话题讨论。

碰撞变形相关的方案

  • 根据美国EPA方法200.8采用配有碰撞池的ICPMS-2040进行饮用水分析
    方法200.81是一种由美国环境保护局(EPA)开发用于分析地下水、地表水和饮用水中痕量元素的ICP-MS分析方法。EPA 200.8是一种基于无气体模式分析的方法。另一方面,ICP-MS通常配备碰撞/反应池技术,以消除多原子离子等干扰。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术 分析饮用水中微量元素
    通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 冲击激波碰撞影响下的横向喷射-腔体相互作用
    采用LaVision公司的粒子成像测速系统,对冲击激波碰撞影响下的横向喷射-腔体相互作用进行了研究。测试系统包括一台200毫焦的双脉冲激光器和IagerProX型CCD相机。
  • ICPMS-2030碰撞池技术快速测定血清中Ca的含量
    使用岛津公司新品ICPMS-2030电感耦合等离子体质谱仪并结合碰撞池技术,测定了人体血清中微量元素的含量。实验结果表明,质控样品测定值与标准值吻合,精密度均小于4%,样品平行性标准偏差小于1.4%。该方法具有灵敏度高,检出限低,精密度高,分析速度快,操作简单,准确度高等特点,可满足血清样品中微量元素分析的要求。
  • ICPMS-2030碰撞池技术快速测定血清中微量元素的含量
    使用岛津公司新品ICPMS-2030电感耦合等离子体质谱仪并结合碰撞池技术,测定了人体血清中微量元素的含量。实验结果表明,质控样品测定值与标准值吻合,精密度均小于4%,样品平行性标准偏差小于1.4%。该方法具有灵敏度高,检出限低,精密度高,分析速度快,操作简单,准确度高等特点,可满足血清样品中微量元素分析的要求。
  • 专利的iCRC碰撞反应池技术高效去除源于紫菜基体中的质谱干扰
    本文研究工作的重点为在Q-ICPMS中,借助新一代专利的碰撞反应池技术(iCRC技术),解决紫菜样品中双电荷离子干扰、同量异位素干扰、多原子离子干扰,最终获得满足国家标准GB5009.93-2017的要求并优于QQQ-ICPMS分析性能。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Ag元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中B 元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Ba元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Al元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Na元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Cr元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Hg元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Ag元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Ca元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中B元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Ni 元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Pb元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Al元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Ba元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中U元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Th元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Mo元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Tl 元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中K 元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Mg 元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Be元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • 利用NexION 1000 ICP-MS 的通用碰撞/ 反应池技术分析饮用水中Ca元素
    在过去三十多年里,电感耦合等离子体质谱(ICP-MS)因具有线性动态范围宽、同位素测定能力、分析速度快、检出限低等优点,作为饮用水痕量金属的分析手段已经获得业界普遍认可。但是,与所有其他分析技术一样,ICP-MS 亦无法完全摆脱干扰的影响。基于等离子体和基体的多原子干扰,例如ArAr+、ArO+、ArH+ 和ArCl+ 等,属于ICP-MS 的固有干扰,需要使用校正方程、碰撞或反应气体的方式校正干扰。当多原子干扰与待测元素信号的比值超过四个数量级时,反应气体对分析痕量的元素极有帮助。相比之下,当干扰不那么强烈时,可以使用惰性气体,通过动能甄别技术(KED)有效克服干扰。通常来说,ICP-MS 仪器需要使用两种或以上的气体,以便在单次样品分析中实现碰撞和反应模式。在本文中,我们在NexION® 1000 ICP-MS 上使用一路气体混合物,同时实现碰撞和反应模式。借助这一特殊方法,分析实验室能够提高检测效率,同时确保定量限低于上述法规要求的最低检出限。
  • ICPMS-2030碰撞池技术快速测定血清中Cu的含量
    使用岛津公司新品ICPMS-2030电感耦合等离子体质谱仪并结合碰撞池技术,测定了人体血清中微量元素的含量。实验结果表明,质控样品测定值与标准值吻合,精密度均小于4%,样品平行性标准偏差小于1.4%。该方法具有灵敏度高,检出限低,精密度高,分析速度快,操作简单,准确度高等特点,可满足血清样品中微量元素分析的要求。
  • ICPMS-2030碰撞池技术快速测定血清中Fe的含量
    使用岛津公司新品ICPMS-2030电感耦合等离子体质谱仪并结合碰撞池技术,测定了人体血清中微量元素的含量。实验结果表明,质控样品测定值与标准值吻合,精密度均小于4%,样品平行性标准偏差小于1.4%。该方法具有灵敏度高,检出限低,精密度高,分析速度快,操作简单,准确度高等特点,可满足血清样品中微量元素分析的要求。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制