当前位置: 仪器信息网 > 行业主题 > >

尼莫地平片

仪器信息网尼莫地平片专题为您整合尼莫地平片相关的最新文章,在尼莫地平片专题,您不仅可以免费浏览尼莫地平片的资讯, 同时您还可以浏览尼莫地平片的相关资料、解决方案,参与社区尼莫地平片话题讨论。

尼莫地平片相关的资讯

  • 《中国药典》2020年版开始征订,岛津带您了解化药及药用辅料通则第二篇
    药物的结晶基本上属于分子间力形成的分子晶体,药物分子在晶格(crystal lattice)内排列形式决定了药物晶型。 不同晶型的同一药物在溶解度、熔点、密度、稳定性等方面有显著的差异,从而不同程度地影响药物的稳定性、均一性、生物利用度、疗效和安全性。药物多晶型现象已日益成为药品生产质量控制和新药研究不可缺少的重要组成部分。1 标准公示稿解读 01增修订变化● 总论★ 增加文字描述:如适用,可采用其他方法★ 解读:《9015药品晶型研究及晶型质量控制指导原则》提到晶型控制也可使用红外光谱法和拉曼光谱法等● 第一法(偏光显微镜法)★ 增加文字描述:利用晶体对光的基本特性可实现固态物质的结晶性检查● 第二法(粉末X射线衍射法)★ 增加晶型种类鉴别:相同化合物的不同晶型固体物质存在衍生特征图谱(衍射峰位置、强度)差异● 增加了第三法“差示扫描量热法”★结晶性检查:结晶态,尖锐状吸热峰;非结晶态,弥散状(或无吸热峰)★晶型种类鉴别:相同化合物的不同晶型固体物质存在吸热峰位置差异 02结晶性检查项目在辅料指导原则中收载情况《预混与共处理药用辅料质量控制指导原则》公示稿在“检查”提到:应关注生产过程中可能发生的晶型变化。晶型变化包括结晶状态和晶型种类变化。“稳定性研究”部分提到:共处理辅料还需关注晶型(如有)与杂质等的变化情况。 《9601 药用辅料功能性相关指标指导原则》公示稿中结晶性研究项目在各类辅料功能性相关指标收载情况如下表: 03结晶性检查方法选择● 产品标准收载:甘氨双唑钠、头孢丙烯、头孢地尼等31个品种标准【检查】项下收载“结晶性”项目,要求按照0981通则执行,结果应符合规定。● 检查方法选择变化:除第一法和第二法外,可以采用差示扫描量热仪完成化学药品结晶性检查项目。解决方案01X射线衍射仪XRD-6100多功能X射线衍射仪XRD-7000多功能X射线衍射仪 02差示扫描量热仪DSC-60 Plus 差示扫描量热仪药品结晶性检查应用实例 01XRD法鉴别尼莫地平片多晶型尼莫地平(Nimodipine, NMD)有两种多晶型:NMD I和NMD II,前者在6.5°附近衍射强度最大,后者在15°附近衍射强度最大。02DSC法测定原料药粉末晶型根据晶型的稳定性差异,同种药物的各种晶型大致分为稳定型、亚稳定型、不稳定型和假晶型。同一药物不同晶型之间以及晶体与无定形体之间,在一定条件下可以相互转变。1粉末试样第一次测试结果表明:DSC曲线图有两个明显的尖锐状吸热峰,温度数据见下表,推测存在两种不同晶型。粉末试样第二次测试结果表明:粉末试样第一次加热后自然冷却,然后第二次加热只剩下一种晶型,起始温度176.8℃,峰值178.3℃。推测可能产生晶型的改变。 [1]张涛,赵先英.药物研究和生产过程中的多晶型现象[J].中国新药与临志,2003,22(10):615-620. DOI:10.3969/j.issn.1007-7669.2003.10.011.
  • 北京市职工职业技能大赛“伍丰杯”药物检验员决赛成功举办!
    仪器信息网讯 2023年4月15-16日,北京市职工职业技能大赛“伍丰杯”药物检验员决赛在北京电子科技职业学院圆满举行。大赛由北京市总工会、北京市人力资源和社会保障局主办,北京市职工技术协会、北京电子科技职业学院承办,上海伍丰科学仪器有限公司提供支持,来自全市多家企业总计30名技术达人参加该项目决赛的比拼。决赛选手检录现场本次竞赛分为理论知识考核和实操技能考核两部分,着重考察药物检验员对法规及检验操作规程等基础知识的掌握程度。为了让参赛者更好地了解决赛制度和相关技术操作,北京电子科技职业学院在7-8日举办了决赛赛前培训。大赛邀请了李曙光和袁騉两位技能大师作为指导专家,对学员进行了分批培训指导,内容涉及决赛流程、评分标准、技能要求和上机操作等方面,同时由上海伍丰科学仪器有限公司的高级工程师在仪器操作方面提供全程技术支持。赛前培训现场决赛现场参赛选手掠影比赛使用仪器-伍丰液相色谱质谱系统LC-100实操考试为液相色谱法测定尼莫地平片的含量,检验参赛人员实际的操作技能水平。企业参赛选手铆足精神大展身手,各个环节井然有序、条理清晰,操作节奏张弛有度、游刃有余,充分展现了个人素质和专业技能水平。本次职业技能竞赛的举办,为药物检验人才转型发展培育知识型、技术型、创新型高素质职工队伍奠定了基础。
  • 博纳艾杰尔开设2015版《中国药典》分析案例专题
    《中华人民共和国药典》,简称《中国药典》。是由国家药典委员会负责组织编纂,国家食品药品监督管理部门批准颁布实施。2015年6月,国家食品药品监督管理总局正式颁布了《中华人民共和国药典》2015版,并于12月1日起实施。《中国药典》2015年版加强了药物中的杂质分析,对色谱柱提出了更高的要求。博纳艾杰尔科技紧密贴合药典要求,及时推出一系列分析案例,并在不断更新中。以下应用均可在博纳艾杰尔科技官方网站(www.agela.com.cn)首页——医药分析分类中的“2015版药典”专题内浏览下载:1) 曲克芦丁分析 —— Venusil MP C182)《中国药典》2015 年版盐酸水苏碱采用的亲水色谱柱—— Venusil HILIC3) 阿奇霉素有关物质分析专用柱 —— Durashell C18-AM Plus4) 磷酸肌酸钠含量测定项的分析——Durashell C18-AM5) 头孢羟氨苄及其颗粒剂分析 —— Innoval AQ C186) 头孢泊污酯有关物质检测的分析 —— Venusil MP C187) 复方丹参片(胶囊、颗粒)中三七检测项的分析 —— Venusil XBP C18(L)&Venusil MP C18(2)8) 头孢羟氨苄分析 —— Innoval AQ C189) 头孢米诺钠分析 —— Innoval AQ C1810) 头孢他啶分析 —— Innoval AQ C1811) 注射用头孢拉定分析 —— Durashell C18-AM12) 头孢尼西钠分析 —— Durashell C18-AM13) 头孢美唑钠分析 —— Venusil XBP C18(L)14) 头孢噻肟钠分析 —— Venusil XBP C18(L)15) 甲钴胺分析 —— Durashell C18-AM16) 盐酸布桂嗪分析 —— Venusil XBP C18(L)17) 法莫替丁分析 —— Durashell C1818) 醋酸地塞米松分析 —— Innoval AQ C1819) 尼莫地平片分析 —— Venusil XBP C18(2)20) 冬凌草分析 —— Venusil XBP C18(2)21) 藿香正气水分析 —— Promosil C18
  • “双碳”战略!全国首个碳足迹管理平台建设冲出地平线
    近日,伴随着最后一泵混凝土的浇筑完成,规划高度达109.2米,由中建五局山东公司承建的青岛自贸试验区项目首个超高层D02-05#楼冲出地平线,项目最具代表性的单体工程“山东国际大宗交易大厦”正式迈入全新的主体结构施工阶段。中建五局项目负责人赵永争告诉记者,项目工期紧、任务重,面临施工现场淤泥深、桩基施工成孔坍塌风险大、回填土稳定性差等难题。自进场以来,项目部秉承“高起点谋划、高标准要求、高效率推进”的管理目标,积极对接设计院,采用外设钢板桩支护,内设混凝土胎模和石渣换填,确保施工进度和质量可控。通过“BIM+智慧工地”,三维可视化、动态模拟各层级进度计划、优化调整施工方案,更好地指导现场施工。与此同时,充分发挥党建引领作用,开展劳动竞赛、划分党员责任区、创建党员示范岗,聚势合力掀起施工大干热潮。30天,4500平方米,2672吨钢筋,9644立方米混凝土……首个超高层顺利冲出正负零,为后续工期按期推进奠定了坚实基础。据悉,该项目位于青岛西海岸新区,分为南北两个片区。其中,北片区即“海辰园”项目是国际资源配置的核心载体,总建筑面积300万平方米。建成后,可为我国低碳园区的发展探索更积极可行的技术路径,逐步向"碳达峰"和"碳中和“迈进,打造全国低碳智慧能源系统示范区、低碳发展示范园区、绿色建筑示范区、全国首个碳足迹管理平台,助力国家“双碳"建设。
  • 2012年湖南省“岛津杯”药物分析征文大赛圆满落幕
    日前,由湖南省药学会药物分析专业委员会,湖南省药用辅料产业技术创新战略联盟主办,岛津企业管理(中国)有限公司承办的湖南省&ldquo 岛津杯&rdquo 药物分析征文大赛决赛日前在美丽的星城-长沙拉开帷幕。经过三个多月的紧张筹备, 在湖南省药检院、省辅料中心、省包材中心、各地市药检所、各高校、辅料战略联盟单位(18家大药厂)的积极参与下, 本次征文大赛一共征集到69篇优秀论文,所有论文经过专家评委的匿名评审,最后优选出18篇论文进入决赛进行讲演答辩比赛。 岛津杯决赛开始后,首先由国家药典委员会专家汪文涛主任药师致辞,感谢岛津公司承办这样的活动,鼓励广大医药工作者积极参与到健康产品质量控制活动中,促进产、学、研、用的沟通与结合。之后,岛津企业管理(中国)有限公司小型分析仪器事业部崔宏伟经理致辞,充分肯定了参赛选手在此次大赛中展现出的科学严谨、开拓务实、锐意创新精神,并对辛勤工作的评委老师、踊跃投稿的参赛者们表示感谢。 国家药典委员会专家汪文涛主任药师致辞 十八位入围选手各自展示了的最新研究成果。本次大赛的论文主要围绕药品质量检测标准的研究,非法添加物的检测筛查,药物代谢等方面。经过十八位选手的激烈角逐,最终李帅老师的《尼莫地平口服固体制剂质量分析》获得一等奖。评委组老师对此次参赛论文的创新性,前沿性表示充分的肯定,并对岛津公司为广大医药工作者提供这样一个学以致用、产学研结合的平台表示了高度赞赏。 部分获奖人员与评委专家合影 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 2013仿制药质量一致性评价方法研究单位公布
    近日,国家食品药品监督管理总局在其网站上发布通知,公布了2013年度仿制药质量一致性评价方法研究任务承担单位及品种名单,详情如下:   国家食品药品监督管理总局办公厅关于2013年度仿制药质量一致性评价方法研究任务的通知   食药监办药化管[2013]38号   各省、自治区、直辖市食品药品监督管理局(药品监督管理局),中国食品药品检定研究院:   根据《国家食品药品监督管理局关于开展仿制药质量一致性评价工作的通知》(国食药监注〔2013〕34号)要求,现将2013年度仿制药质量一致性评价方法研究任务作出安排(见附件),并就有关要求通知如下:   一、各省级药品监督管理部门要加强宣传,广泛动员,引导有关各方积极参与到该项工作中。要加强领导,组织本辖区药品检验机构及相关药品生产企业学习有关文件,明确各方职责。及时将研究任务传达给本辖区相关药品检验机构,划拨专项经费,加强组织协调,做好各项保障,督促药品检验机构按时完成任务。   二、相关药品检验机构要确定机构负责人负责此项工作,安排业务能力强的骨干承担具体任务。遵从《仿制药质量一致性评价工作方案》确定的原则,参照相关技术指导原则,结合同品种的国家药品标准提高工作和国家药品评价性抽验工作,做好评价方法的研究。建立与国外被仿制药生产企业及国内药品生产企业的沟通渠道,收集市售样品,以达到或接近国际先进水平为目标,制定评价方法,按时报送中国食品药品检定研究院。   三、中国食品药品检定研究院要建立仿制药质量一致性评价工作信息专栏,建立沟通平台,发布有关信息,引导和规范药品生产企业开展研究,保证评价工作的公开、透明。加强对相关药品检验机构的组织协调和技术指导,完善相关技术指导原则,组织专家委员会对重大技术问题进行把关。建立药品生产企业参与方法学研究的机制,调动企业提升药品质量的积极性。   四、相关药品生产企业要充分认识该项工作的重要意义,增强主体意识和责任意识,主动与药品检验机构联系,积极参与方法研究并给予大力支持配合。   五、方法学研究工作任务量大,技术要求高,时间期限紧,相关部门要密切配合,抓紧推进。工作中遇到困难和问题要及时报告。   联系人:牛剑钊(中国食品药品检定研究院化学药品检定所,电话:010-67095681)、余欢(国家食品药品监督管理总局药品化妆品注册管理司,电话:010-88330755)。   附件:2013年度仿制药质量一致性评价品种名单和方法研究承担单位汇总表 序号 品种名单 方法研究承担单位 1 缬沙坦胶囊 中国食品药品检定研究院 2 艾司唑仑片 中国食品药品检定研究院 3 利巴韦林胶囊 中国食品药品检定研究院 4 多潘立酮片 中国食品药品检定研究院 5 普伐他汀钠片 中国食品药品检定研究院 6 头孢克肟胶囊 中国食品药品检定研究院 7 双氯芬酸钠肠溶片* 北京市药品检验所 8 左炔诺孕酮片 北京市药品检验所 9 氟哌啶醇片 北京市药品检验所 10 卡托普利片* 上海市食品药品检验所 11 盐酸氨溴索片* 上海市食品药品检验所 12 司他夫定胶囊 上海市食品药品检验所 13 拉米夫定片 上海市食品药品检验所 14 盐酸氯丙嗪片 天津市药品检验所 15 氢化可的松片 天津市药品检验所 16 盐酸胺碘酮片 重庆市药品检验所 17 奈韦拉平片* 安徽省食品药品检验所 18 喹硫平片 安徽省食品药品检验所19 阿卡波糖片 安徽省食品药品检验所 20 阿奇霉素片* 大连市食品药品检验所 21 格列吡嗪片* 大连市食品药品检验所 22 别嘌醇片 大连市食品药品检验所 23 地高辛片 福建省药品检验所 24 齐多夫定胶囊福建省药品检验所 25 异烟肼片 甘肃省食品药品检验所 26 头孢呋辛酯片* 广东省食品药品检验所 27 阿莫西林胶囊 广东省食品药品检验所 28 法莫替丁片 广东省食品药品检验所 29 硫酸茚地那韦胶囊 广西壮族自治区食品药品检验所 30 盐酸二甲双胍片 广州市药品检验所 31 阿立哌唑片 贵州省食品药品检验所 32 氨茶碱片 海南省药品检验所 33 马来酸依那普利片* 河北省食品药品检验院 34 盐酸克林霉素胶囊 河北省食品药品检验院 35 苯磺酸氨氯地平片 河北省食品药品检验院 36 白消安片 河南省食品药品检验所 37 盐酸维拉帕米片 黑龙江省食品药品检验检测所 38 地西泮片 湖北省食品药品监督检验研究院 39 尼莫地平片* 湖南省食品药品检验研究院 40 醋酸泼尼松片 湖南省食品药品检验研究院 41 吡嗪酰胺片 吉林省食品药品检验所 42 硝酸异山梨酯片 吉林省食品药品检验所 43 酒石酸美托洛尔* 江苏省食品药品检验所 44 利福平片 江苏省食品药品检验所 45 利福平胶囊 江苏省食品药品检验所 46 奥美拉唑肠溶胶囊 江苏省食品药品检验所 47 盐酸异丙嗪片 江西省食品药品检验所48 奋乃静片 江西省食品药品检验所 49 吲达帕胺片* 辽宁省食品药品检验所 50 氟康唑片 辽宁省食品药品检验所 51 地塞米松片 内蒙古自治区食品药品检验所 52 呋塞米片 内蒙古自治区食品药品检验所 53 阿苯达唑片 宁夏回族自治区药品检验所 54 乙酰唑胺片 青岛市药品检验所 55 氯雷他定片 厦门市药品检验所 56 阿司匹林肠溶片* 山东省食品药品检验所 57 卡马西平片 山东省食品药品检验所 58 辛伐他汀片* 四川省食品药品检验所 59 克拉霉素片 四川省食品药品检验所 60 盐酸环丙沙星片* 山西省食品药品检验所 61 醋酸甲羟孕酮片 山西省食品药品检验所 62 氢氯噻嗪片 山西省食品药品检验所 63 醋酸甲地孕酮片 山西省食品药品检验所 64 布洛芬片 陕西省食品药品检验所 65 利培酮片 陕西省食品药品检验所 66 盐酸贝那普利片 深圳市药品检验所 67 阿替洛尔片 武汉市食品药品监督检验所 68 利巴韦林片 新疆维吾尔自治区食品药品检验所 69 氨苯砜片 云南省食品药品检验所 70 盐酸特拉唑嗪片* 浙江省食品药品检验所 71 盐酸普罗帕酮片* 浙江省食品药品检验所 72 盐酸雷尼替丁胶囊 浙江省食品药品检验所 73 盐酸雷尼替丁片 浙江省食品药品检验所 74 氯吡格雷片 浙江省食品药品检验所 75 克林霉素磷酸酯胶囊 浙江省食品药品检验所 注:品种名单后标注*的为2012年试点品种,请于2013年7月31日前上报;其余品种请于2013年9月30日前上报。   国家食品药品监督管理总局办公厅   2013年7月11日
  • 欧盟公布“地平线2020”科研规划提案
    据新华社布鲁塞尔11月30日电 欧盟委员会11月30日公布了“地平线2020”科研规划提案,实施时间自2014年至2020年,预计耗资约800亿欧元,是第七个欧盟科研框架计划之后欧盟的主要科研规划。   “地平线2020”科研规划几乎囊括了欧盟所有科研项目,分基础研究、应用技术和应对人类面临的共同挑战三大部分,其主要目的是整合欧盟各国的科研资源,提高科研效率,促进科技创新,推动经济增长和增加就业。   该规划还将向“战略创新议程”项目投资28亿欧元,为中小企业创新投资25亿欧元。   按照欧盟有关程序,欧盟委员会提交这一提案后,欧洲议会和欧洲理事会将进行讨论修改。如果一切顺利,“地平线2020”科研规划将于2014年1月1日开始实施。
  • 欧洲批准"地平线2020 "科研计划 投资1000亿元
    欧洲议会于上周正式批准了&ldquo 地平线 2020 &rdquo 计划,这是欧盟为2014年至2020年的研究与创新实施的一项计划。欲用1000亿欧元推动未来7年欧洲研究与创新。   这使得该计划在正式上线之前只剩下了最后的一步要走。欧盟委员会在投票后发布的一份声明中表示,预计于 12 月 11 日正式对外发布&ldquo 地平线 2020&rdquo 计划,届时欧盟各成员国之间将就该计划达成正式协议。   投票于 11 月 21 日在法国斯特拉斯堡进行,出席会议的大部分成员都认可了&ldquo 地平线 2020 &rdquo 计划的具体细节。据悉,该计划由5个法律草案构成。此次表决确认了欧洲议会和部长会议的谈判者通过斡旋于今年早些时候初步达成的协议。   研究专员 Má ire Geoghegan-Quinn在这份声明中表示:&ldquo 这是对欧盟研究和创新资金投出的一张信任票。&rdquo Geoghegan-Quinn认为:&ldquo 欧洲议会的支持与投入对于&lsquo 地平线2 020&rsquo 计划而言是至关重要的。&rdquo   早在2011年,欧洲委员会便提出,&ldquo 地平线 2020 &rdquo 计划应当与过去告别,减少繁文缛节,更加注重于创新和&ldquo 贴近市场&rdquo 的研究工作,以及为欧洲研究理事会的基础科学资金而强化预算。   欧洲议会将支持&ldquo 地平线 2020 &rdquo 计划的实施,同时试图在欧洲委员会提议的800亿欧元的基础上,将其预算增加至1000亿欧元。但欧洲议会却面临着&ldquo 对经费敏感&rdquo 的各成员国的阻力&mdash &mdash 后者曾提议将&ldquo 地平线 2020 &rdquo 计划的预算缩减至约700亿欧元。各国认为,即使这样也比目前实施的第七个欧盟科研框架计划提供的550亿欧元的资金增加了约150亿欧元。于2007年开始的第七个欧盟科研框架计划将于今年结束。   来自欧盟各成员国的部长们预计将在未来几周内就&ldquo 地平线 2020 &rdquo (Horizon 2020)计划达成一个类似的协议,从而最终敲定该计划。   作为欧盟的执行机构,欧洲委员会一直在试图不让该地区的金融困境阻碍其对于科学和技术研究的承诺。   据了解,由欧盟27个成员国参与的&ldquo 地平线 2020 &rdquo 计划涵盖了从基础科学到准市场产品研发的诸多领域。Geoghegan-Quinn表示:&ldquo &lsquo 地平线 2020 &rsquo 计划第一次在整个欧洲的水平上,为从构思到市场、从完美创意到人们想买的商品的一系列层面,提供了一个无缝的连贯包装加以支持。&rdquo   根据欧洲委员会的计划,&ldquo 地平线 2020 &rdquo 计划的某些部分,包括欧洲研究理事会以及较具争议的欧洲创新和技术研究所将得到戏剧性的经费增加。   据悉,欧洲委员会已经为&ldquo 地平线 2020 &rdquo 计划设立了3个战略目标&mdash &mdash 卓越的科学、工业的领袖以及社会的挑战,并将按照这3条线路分配经费。   &ldquo 卓越的科学&rdquo 部分主要包含欧洲研究理事会,以及为新兴技术和&ldquo 居里夫人行动&rdquo 提供资金。   而第二个战略目标&ldquo 工业的领袖&rdquo 将包括欧盟的主要投资领域,例如信息通讯技术、纳米技术、生物技术和空间技术。欧盟还将提供种子基金以帮助公司吸引更多的私人投资者。   &ldquo 社会的挑战&rdquo 将在影响欧洲人生活的诸多领域展开研究,其中包括医疗健康、食物安全、清洁能源、绿色运输、气候变化等。   &ldquo 地平线 2020 &rdquo 计划是第七个欧盟科研框架计划之后欧盟的主要科研规划。&ldquo 欧盟科研框架计划&rdquo 始于1984年,以研究国际前沿和竞争性科技难点为主要内容,是欧盟成员国共同参与的中期重大科研计划。
  • 第五届科学仪器原创大赛12月获奖作品
    第五届科学仪器网络原创大赛(后简称:大赛,活动网址:http://2012yc.instrument.com.cn)自8月1日开赛以来,已经进行150天,来自全国各地的网友积极响应,征集到965篇参赛作品。大赛于2012年12月31日圆满落下征文的帷幕,与此同时年终评选的角逐也正是开始,预计将于2013年2月公布年终评选结果。大赛设有12个分赛区,分别为:色谱、质谱、光谱、X射线仪器、材料表征、食品检测、药品检测、环境监测、样品前处理、生命科学、实验室建设与采购、综合类;征文类型将涉及行业综述、分析方法开发与应用、新技术发展、仪器维护维修、仪器操作使用经验、实验室管理方法与建设、仪器选型、采购交流等多个方面。 为了鼓励更多一线用户分享工作心得、经验,大赛在原有奖励基础上对参赛作者给与积分奖励,参赛同时如果加入团队还可获得纪念品与额外奖励。大赛每月各个赛区会评选出月度获奖作品,大赛结束后将对所有参赛作品评选出年度优秀作品,并发放证书与礼品进行奖励。 12月参赛作品获奖名单: 色谱赛区 尼莫地平注射液含量方法学研究 jncxyy2012 一等奖 一个氘灯不能起辉的维修案例 anping 一等奖 检测池污染的纠结 houjjun 一等奖 菜鸟维修记 fjh26 二等奖 全程直播苏丹红的检测 jieqian1211 二等奖 但使龙城飞将在,不教胡马度阴山! dyann 二等奖 记一台Agilent7890A的安装过程 qqqid 二等奖 安捷伦1100光路的拆解(VWD) lii33 三等奖 荧光检测器流速和色谱峰特性的关系 byron1111 三等奖 等度梯度你会选择谁? houjjun 三等奖 氧弹燃烧-IC测试样品中Cl含量不确定度评定 yechen1984 三等奖 色谱柱接反后会怎样? zyl3367898 三等奖 菜鸟第一次对HPLC_ELSD进行的维修 michelle_jiang 三等奖 气相色谱法测定酮咯酸氨丁三醇中的乙醇和1,2-二氯乙烷 ltkp 三等奖 质谱赛区 浅谈LC-MSMS 之真空系统的维护(API 篇) kasparovfeng 一等奖 我与岛津GC-MS(QP-2010 Ultra)的故事 czcht 一等奖 ICP-MS的维护综述 jieqian1211 二等奖 香精样品中的反应物(续1)-酸和醇的酯化反应 jimzhu 二等奖 GC-MS测定食品中邻苯二甲酸酯的不确定度评定 myoak 三等奖   气相色谱质谱联用内标法测定白酒中塑化剂 jimzhu 三等奖 同位素内标使用中的一次教训 laohutushen 三等奖 质量分析器新理论初探 qqqid 三等奖 GCMS分析汽车燃油宝成分 jxyan 三等奖 再议ICP-MS点火失败问题的查找 envirend 三等奖 光谱赛区 火焰原子吸收三通进样器 shufengliu 一等奖 波长位移与波长电机的纠葛 anping 一等奖 原子吸收仪器用雾化器 allab 一等奖 燃烧头清洗过程的图解 anping 二等奖 对于铝合金成分均匀度的探索 lgt228 二等奖 苹果与荧光的故事 majing04 二等奖 晒晒注射式进样原子荧光光谱的注射进样全过程 lingyi509 三等奖 铁氰化钾代替氰化钾检测水中总氰化物 hbnjzx 三等奖 辉光放电光谱法测定低合金钢中痕量钙 denx5201314 三等奖 关于水浴法测定土壤砷的可行性再研究 fjh26 三等奖 仪器分析状态监控并判断 “Z 值” 的案例分析 denx5201314 三等奖 红外光谱仪液体测试全攻略 SH101430 三等奖 ARL直读光谱仪OXSAS软件安装详解 hsz123456 三等奖 置信度和置信空间 jack510070 三等奖 新到原子荧光光谱仪安装全过程。 lingyi509 三等奖 X射线衍射仪器赛区 实验室空调滤尘中铅的测定 albert800922 一等奖 药物分析赛区 药物中残留溶剂甲醇含量的不确定度评定报告 liling123436 一等奖 微流控芯片电泳-脉冲电流电化学方法快速分离和检测四种瘦肉精替代药物(β-兴奋剂) flysky97 二等奖 三磷酸腺苷二钠注射液含量方法学研究 jncxyy2012 三等奖 HPLC-ELSD法测定清开灵含片中猪去氧胆酸和胆酸的含量 tangtang 三等奖 食品检测赛区 毛细管胶束电泳-二极管阵列快速分离和检测五种瘦肉精类药物(β-兴奋剂)flysky97 一等奖 应用四种前处理方式检测乳制品之重金属铅 铬的方案 yqfxy 二等奖 食醋感官评定方法――模糊数学矩阵法 nphfm2009 三等奖 高效液相色谱法检测食品中的甲醛 abcdefghijkl123 三等奖 一波三折-咸菜中亚硝酸盐的测定 zyl3367898 三等奖 环境监测赛区 牙刷+醋+替代电池 修好Y09-301型激光尘埃粒子计数器 sc360xp 一等奖 苯胺紫外光度法测定大气和废气中光气不确定度分析 54943110 一等奖 氨氮废水物理化学 处理方法研究进展 jshbhh 二等奖 DR2800测试水中六价铬方法评述 54943110 二等奖 土壤环境质量例行监测工作方案编制示例(教程) jshbhh 三等奖 异烟酸—吡唑啉酮分光光度法测定气中氰化物不确定度分析 54943110 三等奖 考察水玻璃老化的简易方法 avachen 三等奖 用图讲解土壤中水解氮的检测——碱解扩散滴定法 subo01 三等奖 湿法消解测定沉积物中总铁方法研究 pan_yz 三等奖 如何判断ORP电极好坏 zsj201204 三等奖 材料表征赛区 氧化法做低合金钢奥氏体晶粒度的操作步骤~~ lylsg555 一等奖 场发射扫描电镜观测电池隔膜材料的参数设定 roadch 二等奖 扫描新手的入门照片--FEI QUANTA 450+QUORUM PP3000T kutoku 三等奖 生命科学赛区 过滤装置小改装——生物实验室 gl19860312 一等奖 ××水库伪鱼腥藻昼夜垂直变化初步研究 54943110 二等奖 浅谈发酵设备——从实验室走向工业化大生产 gl19860312 二等奖 我的基因定点突变方法总结与实验心得 nkwinter 三等奖 实验室小故事——凝胶成像 nkwinter 三等奖 微生物类投稿SCI详细过程 gl19860312 三等奖 高温热胁对Achnanthes sp.光合影响再探 54943110 三等奖 样品前处理赛区 一种固相萃取废液收集装置 icetrob 一等奖 瘦肉精前处理的优化之浅见&给力的IKA sukiliang 二等奖 婴幼儿乳品中微量元素测定的探讨 ljhciq 三等奖 一次失败前处理的感悟“不亲身经历失败怎能获得成功” denx5201314 三等奖 实验室建设与采购赛区 实验室“二胎”诞生日记 albert800922 一等奖 400天实验室成长记 xanaducpu 一等奖 硅铁中硅的CNAS比对的辛苦历程 denx5201314 一等奖 有机实验室建设历程 jxyan 一等奖 节能,其实很简单 qlmkk 二等奖 麻雀虽小但五脏俱全--农产品实验室&我的回亿 sukiliang 二等奖 心随我动-----记我的检验室建设过程 huaibeijiayuan 二等奖 2012最难忘的检测经历-换证评审篇 zyl3367898 二等奖 浅谈涂料检测实验室规划设计建设中应注意的问题 nerd 二等奖 重磅来袭 七年之痒----我的实验室成长经历 huojuncai 三等奖 危险的玻璃瓶——瓶子选择是关键,实验态度也很关键呐! fengmo4668 三等奖 CNAS实验室认可申请书附表和附件资料填写指南(2012) knight34 三等奖 杠杆千分尺表不能正常读数的修复 lgt228 三等奖 实验室建立之建立防水测试室经验分享 chengxiaojun 三等奖 晒一下我们实验室一年来新添的仪器设备——有种暴发户的感觉 qqqid 三等奖 鸟叔,看看这个实验室 liling123436 三等奖 检定和校准是有交集的两集合 pxsjlslyg 三等奖 发生在生物安全柜里的火灾 zjpkcyq 三等奖 针织物密度对比结果分析历程 baby073125 三等奖 能力验证对提高农产品实验室检测能力的影响 hbnjzx 三等奖 综合赛区 保健食品中四项大豆异黄酮的液相色谱测定体会 emoc98311 一等奖 “中国造”假药行销全球?看看网易的另一面! wangzijin 一等奖 ups慢游记 fjh26 一等奖 FP640火焰光度计的维修与保养(暂时想不出更能吸引眼球的名字了,先用这个吧~) dyann 一等奖 你伤害了我,我却未必知晓——回忆我的实验室受伤经历 土老冒豆豆 二等奖 技术与艺术的完美结合——纸芯片的制作原理及应用大揭密 flysky97 二等奖 记实验室的一次检测技能比赛 knight34 二等奖 图文再现经典方法中的经典“高氯酸脱水重量法测定硅铁中的硅” denx5201314 二等奖 重量法测硅含量 lilongfei14 三等奖 靠谱的非标方法-看我全程街拍 “中碳锰铁中全锰的测定” 仲裁分析 denx5201314 三等奖 数显仪里的数字总是跳跃不停怎么办? dyann 三等奖 国产定氮仪采购和使用过程中的问题 yuxiaofeng86 三等奖 1.5元修好纯水机 zyl3367898 三等奖 伍丰液相探秘 wsy18 三等奖 第一次成功投稿 li8888lili8888 三等奖 你身上有异味吗?我看有! wulin321 三等奖 仪器信息网第五届科学仪器网络原创文章大奖赛活动介绍:   为促进分析人员的技术交流,提高行业的仪器应用水平,自2008年仪器信息网开始举办“科学仪器网络原创文章大奖赛”,至今已成功举办四届。2012年8月1日,仪器信息网“第五届科学仪器网络原创作品大奖赛” 正式拉开帷幕,此次大赛将征集参赛作品4个月,年度评审2个月,设有12个分赛区,分别为:色谱、质谱、光谱、X射线仪器、材料表征、食品检测、药品检测、环境监测、生命科学、样品前处理、实验室建设及采购和综合类,征集作品将涉及分析方法开发与应用、新技术发展、仪器维护维修、实验室管理与建设、仪器选型等用户关注的多个方面。本次大赛礼品总价值超过100000元,是仪器信息网论坛2012年度最重要的网上活动!   活动网址:http://2012yc.instrument.com.cn   第五届科学仪器网络原创大赛大赛由以下公司赞助举办,特此感谢(排名不分先后):   色谱赛区、综合赛区由安捷伦科技有限公司独家赞助   光谱、生命科学赛区由赛默飞世尔科技(中国)有限公司独家赞助   质谱赛区由AB SCIEX公司独家赞助   X射线衍射仪器赛区由荷兰帕纳科公司独家赞助   样品前处理赛区由广州仪科实验室技术有限公司独家赞助   材料表征赛区由英国马尔文仪器有限公司独家赞助   海洋光学公司赞助“原创1+1”同期活动   大赛期间组建原创团队的公司有:
  • 地下车库除湿机下出风吹热风,做环氧地坪漆干得快不发白
    地下车库除湿机下出风吹热风,做环氧地坪漆干得快不发白【新闻导读】众所周知,当前全国各地地下车库的大力开发,缓解了城市停车难的难题,如今,地下车库几乎成了每个小区和大型商场的标配。进到夏季,全国性进到了大暴雨多发性时节,针对环氧地坪漆施工行业而言,也造成了十分大的危害。业界工程施工人员都清晰搞清楚环氧地坪漆工程施工通常是遭受气温溫度和相对湿度的危害。  梅雨潮湿天气之下,空气中含水量多,空气湿度大,水份非常容易在地坪漆喷涂表层凝固,产生水滴。地下车库工程环氧地坪漆施工时,当库内的空气湿度超出85%RH,就务必终止喷涂工作,不然地坪漆漆层会出現泛白、裂痕、脱落等状况。由于油溶性的地坪漆与水不混溶,因此当路面冷凝水情况比较严重时,地坪漆镀层乃至会没法粘附于环氧地坪基准面。  地下车库是湿气环绕,地下停车场地面很多存在潮湿的现象,而环氧地坪漆施工工艺要求地面含水率不能大于8%,环氧地坪面漆最佳施工环境是空气相对湿度小于75%RH,温度在10-35℃之间。而梅雨季节湿度已经到了100%RH。如果此时施工,将会严重影响地坪漆的性能。 至于影响的原因,是因为凝结水会破坏固化剂,从而引起分色、浮色、光泽度不好、硬度不好、流平性受影响、地坪漆起泡、起壳、脱层等问题。下雨天环氧地坪漆工程施工要搞好安全防护对策,必须提前准备好除湿机来进行除湿,使地面保持干燥,使环氧地坪漆干得更快。  除此之外,每年地下车库的返潮问题也给房地产、物业公司车库管理人员带来了烦恼。潮湿的地下车库不仅容易发生安全事故,而且对长时间停放在其中的汽车也会造成很大影响。在每年高温高湿天气的夏季,地下车库出现潮湿结露现象是非常严重的。车库中水汽弥漫,部分墙角处还有水渍,车库顶部密布的各种管道外壁甚至凝结出水滴,不时往下滴落,导致地面比较湿滑,四周的墙壁上也有一层水珠。  地下车库由于其特殊的地下结构,并且通风不畅,与室处空气难以形成有效对流 ,其湿负荷较地面同等空间高出很多。夏季地表和地下的温差过大,当外界热空气进入阴凉的地下车库内,由于地下车库比较低洼,封闭,潮湿气体容易聚集,不能散发很容易形成凝露现象。所以,地下车库的潮湿现象更多是发生在夏季。  有人会想,那地下车库应该使用防水材料,这样可以解决潮湿问题。然而,地下车库防潮要想靠建筑本身来解决,还是存在很大的难处。防水材料的使用时间一长,潮湿还是会不断出现。地下室的表面粉刷层如果不是防水砂浆,普通水泥砂浆里面存在大量碱性物质,非常容易吸潮,遇到气温升高,水泥砂浆里的水分就慢慢蒸发出来了,水气就充满整个地下室,就容易结露,使得整个地下室一直处在潮湿的空气中,发霉也就出现了。  虽然,地下车库都安装有一定数量的风机,但这个要求是为了消防而设计的,并非为了防潮。目前针对地下车库的潮湿问题,非常普遍也是非常有效的办法就是配置正岛ZD-8138C下出风吹热风地下车库除湿机及ZD系列全自动防潮除湿机。  正岛ZD-8138C下出风吹热风地下车库除湿机及ZD系列全自动防潮除湿机是严格采用专业的技术和精湛的工艺制造出高效、节能、环保的除湿机产品,具有智能湿度恒定控制系统,用户可根据生产的需要,自动控制除湿机的工作及停机,通过自动控制实现高效的除湿效果,降低整机运行成本。欢迎您查询地下车库除湿机下出风吹热风,做环氧地坪漆干得快不发白的详细信息!  正岛ZD-8138C下出风吹热风地下车库除湿机及ZD系列全自动防潮除湿机技术参数与选型参考:  产品型号---------除湿量-----适用面积------功率-------电源-------循环风量--净重  正岛ZD-890C---90(L/D)---90-120(㎡)---1700(W)---220V/50Hz---1125m3/h--50kg  正岛ZD-8138C--138(L/D)--130-180(㎡)--2000(W)--220V/50Hz--1725m3/h--55kg  正岛ZD-8168C--168(L/D)--180-230(㎡)--2800(W)--380V/50Hz--2100m3/h--120kg  正岛ZD-8240C--240(L/D)--240-350(㎡)--4900(W)--380V/50Hz--3000m3/h--160kg  正岛ZD-8360C--360(L/D)--360-450(㎡)--7000(W)--380V/50Hz--4500m3/h--200kg  正岛ZD-8480C--480(L/D)--500-700(㎡)--9900(W)--380V/50Hz--6000m3/h--230kg  【除湿机租赁业务要求】除湿机租赁起租条件为:租用数量≥5台,租期≥30天。  【除湿机租赁收费标准】80-150元/台/天(具体可根据租用机型、租用数量以及租用天数等来定价)。  ◎选型注意事项--除湿机的除湿量和型号的选择,主要根据使用环境空间的体积、新风量的大小、空间环境所需的湿度要求等具体数值来科学计算。另外需要注意的是环境的相对湿度与环境的温度有关,温度越高,湿度蒸发越快,反之效果越差,因此在配置除湿机时,需要在专业人员的指导下进行选型,这样才能选到适合你的除湿机!  核心提示:正岛ZD-8138C下出风吹热风地下车库除湿机及ZD系列全自动防潮除湿机通过大功率离心风机将潮湿空气吸入机器内部,利用压缩机制冷压缩,通过冷凝器和蒸发器的相互作用,可以将潮湿空气中的水分分离出来排出机外,干燥的空气重新送回室内进行空气循环完成干燥过程。除湿机能将地下车库内环境空气湿度始终控制60%以下,可有效解决凝露现象产生,保持地下车库内的干爽。不仅除湿效果好,自动控制的除湿机还不用人员操作,更适合地下车库使用。  解决地下车库的潮湿问题,采用具有吸湿性能强、干燥速度快且投资成本少,使用费用省、适用范围广、使用方便、操作简单的地下车库除湿机设备--正岛ZD-8138C下出风吹热风地下车库除湿机及ZD系列全自动防潮除湿机,才能真正的做到从根源上预防和解决地下车库的返潮问题。以上关于地下车库除湿机下出风吹热风,做环氧地坪漆干得快不发白的全部新闻资讯报道是正 岛 电 器提供的,仅供大家参考!
  • 默克全新专利技术平台-高浓度蛋白粘度降低平台(VRP),助力皮下注射制剂开发
    目前大多数治疗性抗体都是以静脉注射的方式进行给药,由于其伴随着病人顺应性差以及高昂的医疗成本等现实问题,使得皮下注射制剂逐渐成为行业关注的热点。相比于静脉注射,皮下注射具有提高病人的依从性,降低医疗成本等优点,而典型的皮下注射需要控制注射体积(一般为1-2ml),从而需要提高蛋白浓度,而高浓度蛋白伴随着蛋白粘度的急剧增加,是限制皮下注射制剂的重要原因。在现实工艺开发过程中往往面临着各种难点:高粘度蛋白溶液超过粘度注射限,带来可注射性挑战高浓度高粘度蛋白更容易发生聚集,引起蛋白稳定性挑战高粘度蛋白溶液引起TFF过滤步骤的通量、工艺效率、回收率降低等挑战默克高浓度蛋白粘度降低平台 通过发挥辅料组合协同效应,有效降低蛋白粘度,提高蛋白稳定性,实现高浓度制剂皮下注射。市售制剂配方粘度对蛋白浓度的依赖性图1. 市售制剂中抗体浓度与粘度的关系从图1可以看出,随着蛋白浓度的增加,蛋白可能发生分子间相互作用或者分子拥挤,从而引起蛋白粘度的急剧升高,一些蛋白产品在浓度刚刚达到100 mg/mL时,粘度已经很高,甚至超过了粘度注射限(一般皮下注射药液粘度不超过25mPas), 此时通过注射器给药变得十分困难。为了解决这一问题,我们研究了不同的辅料组合,通过加入这些辅料组合来有效降低蛋白粘度,以满足皮下注射的要求。材料与方法选择已经在FDA或EMA注册的单克隆抗体产品进行研究。在本研究中,我们选择pH7.2的抗TNF-α嵌合单克隆抗体(mAbC) 作为模型药物,考察不同的辅料及组合对其粘度的降低效果。其中所有辅料和缓冲试剂产品均购自德国默克公司。采用装有Ultracell-30k超滤膜的Amicon® Ultra-4超滤管进行缓冲液置换和蛋白浓缩。对于辅料研究,以2000 x g的离心力进行离心并置换了5个透析体积,同时用2000 x g离心力进行浓缩。根据Lambert-Beer定律并使用BioSpectrometer® Kinetic (Eppendorf, Hamburg, Germany) 在280 nm处测量来确定蛋白浓度。用相应的缓冲液配制稀释液,使用同样的方法再次验证上述测得结果。粘度测试:将蛋白样品在20°C平衡后,用m-VROC™ 粘度计在1000 - 3000s-1的剪切速率下测量蛋白粘度。将200 μL的蛋白样品装入500 μL气密注射器中(Hamilton, Reno, USA),重复测量3次。通过Dynapro PRIII (Wyatt Technology, Santa Barbara, USA)的动态光散射(DLS)测量粒子的扩散系数Dt,样品在25°C下采集10次,每次采集5秒。通过对mAb C在3 ~ 14 mg/mL的浓度范围内的扩散进行线性拟合,得到扩散方程Dt = D0 (1+ kD*C),并外推得到了无限稀释下的蛋白扩散系数D0。通过绘制Dt/D0的归一化图谱从而确定扩散相互作用指数kD。通过以下公式计算注射器的推注力:结果图2. 单一辅料与辅料组合对mAbC粘度的影响图2A(单一辅料): 加入75 mM的辅料后,可以观察到蛋白粘度有轻微的降低,但降粘效果不够明显,依然不能满足皮下给药的要求(25 mPas)。即使提高辅料浓度至原来的两倍,其粘度仍然过高。结果表明,单一辅料无法有效降低mAbC蛋白粘度。图2B(辅料组合):粉红柱和黄柱分别代表将阳离子辅料和阴离子辅料分别单独添加至蛋白制剂后测定的粘度。蓝柱代表加入辅料组合的理论粘度值。紫柱代表加入辅料组合后实际测试的粘度值。结果表明,通过辅料组合的协同效应能够有效降低mAbC蛋白粘度。调整辅料组合配比,提高降粘效果图3为mAbC归一化的扩散系数Dt/D0与蛋白浓度之间的关系图。斜率为0时表示蛋白没有相互作用,斜率的负值越小表明蛋白相互作用越弱。加入不同比例的E1和E5辅料组合后,斜率的负值明显减小,提示蛋白粘度降低。当两种辅料的比例为2:1时,降粘效果最为显著。图3. Dt/D0与蛋白浓度的关系辅料组合发挥降粘协同效应图4结果显示,将几种不同的辅料及其组合分别加入mAbD制剂中,可以观察到几种特定的辅料组合实际粘度值明显低于其理论累加值,说明辅料组合具有协同降粘作用。图4. 辅料组合对mAbD溶液粘度的影响粘度降低可显著提高注射性能图5. 粘度降低对注射力的影响mAbC:当使用27G针注射原始配方的150mg/mL mAbC制剂时,所需注射力为90N,约9公斤——即一个一岁小女孩的重量;添加行标BM和E3的辅料组合后,所需注射力降为35N,约3-4公斤——一只家猫的重量mAbD:当使用27G针注射原始配方的150mg/mL mAbD制剂时,所需注射力为140N,约14公斤——一只小袋鼠的重量。添加E1和E4的辅料组合后,所需注射力降为18N,约2公斤——一个蛋糕的重量辅料组合提高蛋白稳定性I: 强降解实验设计采用自身稳定性差的mAb C作为模型药物,进行强降解实验。将150 mM的单一辅料与包含75mM阳离子和75mM阴离子的辅料组合分别添加至80 mg/mL的mAbC制剂溶液中,置于40 °C,75%相对湿度的环境下,在第0天,第14天,第28天分别取样,通过SEC-HPLC测定单体含量。II: 强降解实验结果图6. 强降解实验后蛋白溶液外观(左图为添加单一辅料,右图为添加辅料组合)图6结果显示,在强降解条件下,使用辅料组合的蛋白溶液澄清度明显优于单一辅料,表明辅料组合应用能够有效提高蛋白稳定性。图7.SEC-HPLC检测强降解实验后的单体比例(左图为添加辅料组合,右图为添加单一辅料)图7左结果表明,经过28天的强降解实验后,使用了辅料组合的制剂与原始制剂配方有相似的单体含量,即降粘辅料组合对制剂的稳定性无负面影响。图7右结果表明,使用单一辅料E1对单抗mAb C的稳定性没有负面影响,但辅料E4和E5单独使用时,会降低抗体的稳定性,从而降低单体含量。默克高浓度蛋白粘度降低平台优势(VRP)助力皮下注射制剂开发,提高可注射性,病人顺应性IP专利保护技术平台Emprove® Expert 辅料支持高风险应用,Emprove® dossiers文档支持,快速响应法规要求强化下游工艺,提高过滤通量,过滤效率,回收率,从而提高整个过滤工艺经济性辅料组合发挥协同效应,显著提高粘度下降水平并且保持蛋白粘度与稳定性之间的平衡市面上实现高剂量皮下注射的不同策略综合对比1.默克VRP平台展现出制剂开发更简单,成本更低,上市速度更快等优势。2.默克VRP平台对比酶,辅助设备,可缩短1-3年开发时间,节省30-50%开发成本,加快药物商业化上市步伐。
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 欧洲议会议员通过立法推动欧盟芯片产业发展
    上周二,欧洲议会议员支持通过促进生产和创新以及制定应对短缺的紧急措施来确保欧盟芯片供应的计划。工业和能源委员会通过了两项法案草案:一项是关于“芯片法案”的法案,旨在加强欧盟芯片生态系统的技术能力和创新,另一项是关于芯片联合承诺,以增加对开发此类欧洲生态系统的投资。在对“芯片法案”的修正案中,欧洲议会议员更多地关注下一代半导体和量子芯片。将建立一个能力中心网络,以解决技能短缺问题,并吸引研究、设计和生产方面的新人才。该立法还将支持旨在通过吸引投资和建立生产能力来提高欧盟供应安全的项目。“欧洲芯片”倡议在另一次投票中,欧洲议会议员以68票赞成,0票反对和4票弃权通过了Chips联合承诺提案,实施了“欧洲芯片”倡议下预见的措施。该计划旨在通过投资欧盟范围内开放可访问的研究、开发和创新基础设施来支持大规模能力建设。它还将促进尖端和下一代半导体技术的发展。欧洲议会议员强调,为了促进创新,将需要新的资金,以及重新分配来自地平线欧洲的资金。《芯片法案》报告员Dan Nica(S&D,RO)表示:“我们希望《欧盟芯片法案》能够将欧洲确立为全球半导体领域的重要参与者。预算不仅需要与挑战相称,并通过新资金提供资金,而且我们希望确保欧盟在研究和创新方面处于领先地位,拥有友好的商业环境,快速的许可流程,并为半导体行业投资熟练的劳动力。我们的目标是确保欧洲的增长,为未来的挑战做好准备,并为未来的危机建立正确的机制。芯片联合事业报告员Eva Maydell(EPP,BG)表示:“微芯片是欧盟数字和绿色转型以及我们的地缘政治议程不可或缺的一部分。我们呼吁新的资金,以反映欧洲芯片行业的战略重要性。欧洲的合作伙伴和竞争对手也在大力投资他们的半导体设施、技能和创新。我们可能没有美国那样巨大的财政火力,但委员会和理事会提供的预算需要反映挑战的严重性。背景议会的一项研究强调,欧洲在全球半导体产能中的份额低于10%。立法提案旨在将其提高到20%。2022年议会分析强调,疫情揭示了全球供应链长期存在的脆弱性,前所未有的半导体短缺就是一个典型的例子。它显示了未来几年可能发生的事情。除其他问题外,这些短缺导致工业成本上升和消费者价格上涨,并减缓了欧洲的复苏步伐。
  • 超导量子芯片模拟多种陈绝缘体研究取得进展
    量子霍尔效应是凝聚态物理学中的基本现象。科学家发展了拓扑能带理论来研究此类拓扑物态,发现了量子霍尔系统的能带结构和系统的边界态密切相关即存在体相与边缘的对应,并利用陈数(Chern number)来区分不同的拓扑结构,以陈绝缘体来描述相关拓扑物态。陈绝缘体材料可通过第一性原理计算预测以及实验合成并检测,过去几年出现了系列创新性成果,有望发展出具有实用价值的器件。随着量子系统调控技术的发展,研究利用各种人工可控量子系统来模拟陈绝缘体并揭示其性质。超导量子计算系统具有运行稳定、通用性强的优势,将是模拟陈绝缘体的理想平台。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心,与北京量子信息科学研究院、南开大学、华南理工大学、日本理化学研究所等合作,利用集成有30个量子比特的梯子型量子芯片,实现了具有不同陈数的多种陈绝缘体的模拟,并展示了理论预测的体边对应关系。该团队制备了高质量的具有30比特的量子芯片,在实验中精确控制其量子比特之间的耦合强度,并降低比特间串扰,(图1、2),实现了一维和梯子型比特间耦合的构型。 该团队设计模拟方案,将二维陈绝缘体格点模型的一个维度利用傅里叶变换映射为人工控制相位,从而用一维链状量子比特来实现其模拟(图3)。 基于同样的思想,双层二维陈绝缘体则可以利用两个一维链状平行耦合,形成梯子型比特间耦合的量子芯片实现,而人工维度相位控制还可实现双层陈绝缘体不同的耦合方式。这样便实现了不同陈数的陈绝缘体。该工作通过激发特定量子比特、测量不同本征态能量的方案,直接测量拓扑能带结构(图4)并观测系统拓扑边界态的边界局域的动力学特征,在超导量子模拟平台证实了拓扑能带理论中的体边对应关系(Bulk-edge correspondence)(图5)。此外,利用全部30个量子比特,在超导量子模拟平台上通过模拟双层结构陈绝缘体,实验上首次观察到具有零霍尔电导(零陈数)的特殊拓扑非平庸边缘态(图6)。此外,实验上探测到具有更高陈数的陈绝缘体。该研究通过精确控制超导量子比特系统及读出的技术方案,实现对量子多体系统拓扑物态性质的复现与观测,并表明30比特梯子型耦合超导量子芯片的精确可控性。相关研究成果以Simulating Chern insulators on a superconducting quantum processor为题,发表在《自然-通讯》【Nature Communications 14,5433 (2023)】上。研究工作得到国家自然科学基金委员会、科学技术部、北京市自然科学基金和中国科学院战略性先导科技专项等的支持。图1. 30比特梯子型量子芯片耦合强度信息。(a)15比特实验中测量到的量子比特间(最近邻和次近邻)的耦合强度信息。(b)30比特实验中测量到的量子比特间(最近邻、次近邻和对角近邻)的耦合强度信息。图2. Z串扰矩阵。Z串扰系数矩阵,每个元素代表着当给横轴比特施加1 arb.units幅度的 Z方波时,纵轴比特感受到的方波幅度,后续将根据该系数矩阵进行Z方波矫正。图3. 30比特梯子型量子芯片以及映射AAH模型的实验波形序列。(a)超导量子处理器示意图,其中30个量子比特构成了梯子型结构。(b)通过在y轴进行傅里叶变换,将二维霍夫施塔特(Hofstadter)模型映射为一系列一维不同配置的 Aubry-André-Harper (AAH) 模型的集合。(c)通过改变合成维度准动量Φ用以合成一系列AAH模型的量子比特频率排布,其中b=1/3。(d、e)用以测量动力学能谱(d)和单粒子量子行走(e)的波形序列。图4. 动力学光谱法测量具有合成维度的二维陈绝缘体的能谱。(a)对应于Q8的随时间演化的数据,其中b=1/3,Δ/2π=12MHz,Φ=2π/3。(b)利用15个量子比特响应函数得到的傅里叶变换振幅的平方。(c)沿着比特维度将傅里叶变换振幅的平方求和。(b)利用15个量子比特参数数值计算求解的二维陈绝缘体的能带结构,其中,b=1/3,Δ/2π=12MHz。(e、f)对于不同的Φ,实验(e)和数值模拟(f)得到的能谱对比。图5. 拓扑边界态的动力学特征以及拓扑电荷泵浦。(a1-3)分别激发Q1(a1)、Q8(a2)、Q15(a3)测量到的激发态概率的时间演化,其中,b=1/3,Δ/2π=12 MHz,Φ=2π/3。(b1-3)分别利用Q1(b1)、Q8(b2)、Q15(b3)作为目标比特测量得到的能谱部分信息。(c1-c3)激发中间比特Q8,测量得到的对应于向前泵浦(c1),不泵浦(c2)和向后泵浦(c3)的激发态概率演化,其中,Δ/2π=36MHz,初始Φ0= 5π/3。(d)根据图(c1-c3)计算得到的质心随着泵浦周期T的变化。图6. 利用全部30个量子比特模拟双层陈绝缘体。(a、b)实验测量的对应于相同Δ↑(↓)/2π=12 MHz(a)和相反 Δ↑/2π=-Δ↓/2π=12MHz(b)周期性调制的两条AAH一维链的构成的双层陈绝缘体的能谱,黑色虚线为对应的理论预测值,其中,b=1/3。霍尔电导定义为对所有被占据能带的陈数Cn的求和:σ= ∑nCn ,其中定义e2/h=1。(c、d)选择Q1,↑和Q1,↓为目标比特测量到的对应于Δ↑(↓)/2π=12 MHz(c)和相反Δ↑/2π=-Δ↓/2π=12 MHz。(d)周期性调制系统的能谱的部分信息。(e-g)当激发边界比特(Q1,↑ 或 Q1,↓),测量到的对应于Δ↑(↓)/2π=0MHz(e),Δ↑(↓)/2π=12 MHz(f)和 Δ↑/2π=-Δ↓/2π=12 MHz(g)的占据概率时间演化。
  • 2012年生物药化学药项目拟支持单位公示
    2012年蛋白类生物药和疫苗、通用名化学药、生物育种项目拟支持单位公示   2012年蛋白类生物药、通用名化学药项目拟支持名单日前出炉,其中,涉及上市公司包括亚宝药业、美罗药业、上海医药、健康元等。   工业和信息化部消费品司医药处处长王学恭此前介绍表示,今年推出蛋白类生物药和疫苗发展专项、通用名化学药发展专项支持相关产业发展。其中蛋白类生物药和疫苗发展专项主要支持生物技术药物产品产业化和相关生产设备、耗材等配套产品产业化。   其中瞄准重大疾病、紧缺临床需求的一批新药产业化和疫苗国际化是专项主要支持重点。此次公布的名单来看,多家上市公司项目将获专项支持,其中华北制药更有抗体药物中试基地建设、重组人血蛋白无血清培养基添加物产业化两个项目入围。其他获支持生物药项目则包括天士力(生物一类新药注射用充足人尿激酶原产业化)、海正药业(年产320万抗体药物安百诺产业化)、联邦制药(重组人胰岛素高技术产业化示范工程)等。   现将2012年生物育种、蛋白类生物药和疫苗、通用名化学药项目拟支持单位名单予以公示,公示期为2012年8月3日—8月12日。如有意见,请将意见以书面(实名)形式,反馈财政部经济建设司经贸处。   联系电话:010—68552518   传  真:010—68552879 2012年蛋白类生物药和疫苗发展拟支持单位公示表 序号 承担单位 项目名称 1 北京昭衍新药研究中心有限公司 动物实验公共服务技术平台项目 2 北京中关村生命科学园发展有限责任公司 北京蛋白类生物药创新园区公共服务支撑能力建设项目 3 天津市国际生物医药联合研究院有限公司 天津生物技术药物研发开放实验室和GMP中试服务平台 4 天津药物研究院 天津生物技术药物综合服务平台建设 5 华北制药股份有限公司 抗体药物中试基地建设 6 华北制药股份有限公司 重组人血白蛋白作为化学成分确定的无血清培养基添加物的产业化 7 上海中信国健药业股份有限公司 新型抗体大规模制剂生产线 8 上海天士力药业有限公司 生物一类新药注射用重组人尿激酶原产业化 9 上海百迈博制药有限公司 用于类风湿性关节炎等重大疾病治疗的蛋白类生物药的产业化能力建设 10 上海抗体药物国家工程研究中心有限公司 新型抗体纯化介质和无血清培养基产业化 11 国家上海新药安全评价研究中心 药物非临床安全评价服务能力提升建设 12 上海药明康德新药开发有限公司 符合国际标准的从DNA到临床批件一站式蛋白抗体药开发平台建设 13 江苏华泰疫苗工程技术研究有限公司 疫苗研发公共服务平台 14 海正药业(杭州)有限公司 年产320万支抗体药物安佰诺产业化与国际化能力建设 15 杭州安普生物工程有限公司 用于动物细胞大规模培养的激流式生物反应器及其配套耗材产品的开发与产业化 16珠海联邦制药股份有限公司 重组人胰岛素高技术产业化示范工程 17 广州博济医药生物技术股份有限公司 广州生物医药研究开发公共服务平台 18 石药集团百克(烟台)生物制药有限公司 年产40万支聚乙二醇化重组人粒细胞刺激因子注射液产业化 19 山东福瑞达医药集团公司 山东省新药药理与安全评价公共服务平台 20 华兰生物工程股份有限公司 疫苗国际化认证建设 21 厦门万泰沧海生物技术有限公司 国家一类新药重组戊型肝炎疫苗技术改造及海外注册 22 南昌市浩然生物医药有限公司 蛋白类生物药新型高效分离纯化介质产业化 23 武汉光谷生物产业基地建设投资有限公司 武汉国家生物产业基地基因工程药物公共服务平台建设 24 西安交大保赛生物技术股份有限公司 生物药及疫苗用分离介质的自动化控制工业生产 25 昆明亚灵生物科技有限公司 昆明国家生物产业基地灵长类实验动物与临床前评价服务支撑能力建设 26 云南沃森生物技术股份有限公司 系列重大传染病预防用疫苗新产品产业化能力建设 27 成都生物制品研究所有限公司 乙脑减毒活疫苗的国际化能力建设 2012年通用名化学药发展项目拟支持单位公示表 序号 承担单位 项目名称 1 北京万生药业有限公司 复方α-酮酸片等通用名化学药产品群的产业化项目 2 北京亚宝生物药业有限公司 口服固体制剂ANDA申报及美国cGMP国际化认证项目 3 天津药业集团有限公司 依碳酸氯替泼诺及其滴眼液产业化 4 天津药物研究院 化学药产业支撑性物质库的建立及产业公共服务平台建设 5 石药集团欧意药业有限公司 盐酸头孢卡品酯新药产业化 6 河北华民药业有限公司 头孢制剂国际化能力建设 7 美药业股份有限公司 专利到期药物大品种研发与国际化体系建设 8 上海医药集团股份有限公司 新型抗感染药物的研发及产业化 9 上海迪赛诺药业有限公司 抗艾药物拉米夫定/齐多夫定/奈韦拉平三联片产业化开发 10 上海信谊药厂有限公司 口服避孕药国际化认证、研发与产业化 11 深圳致君制药有限公司 头孢固体制剂国际化发展 12 健康元药业集团股份有限公司 美罗培南国际化发展能力建设 13 深圳翰宇药业股份有限公司 大规模综合性药用化合物库建设 14 山东罗欣药业股份有限公司 注射用兰索拉唑冻干粉针剂产业化 15 寿光富康制药有限公司 曲司氯铵原料药及曲司氯铵胶囊产业化 16 迪沙药业集团有限公司 阿折地平原料及制剂等新产品产业化和格列吡嗪片等制剂国际化发展能力建设 17 山东绿叶制药有限公司 泮托拉唑肠溶片国际化发展能力建设 18 山东新时代药业有限公司 FDA标准制剂生产车间建设 19 辅仁药业集团有限公司 口服固体制剂国际化发展能力提升建设 20 江苏万邦生化医药股份有限公司 非布司他原料药及制剂产业化 21 江苏正大天晴药业股份有限公司 甲磺酸伊马替尼及其胶囊的研究开发 22 常州药业股份有限公司 专利到期药物替米沙坦氢氯噻嗪片项目研发及产业化 23 江苏恒瑞医药股份有限公司 抗肿瘤药物制剂国际化生产基地 24 江苏豪森药业股份有限公司 盐酸吉西他滨及注射剂质量控制技术体系升级 25 杭州中美华东制药有限公司 糖尿病用药系列新产品创制及产业化 26 浙江华海药业股份有限公司 制剂国际化发展能力建设 27 海正药业(杭州)有限公司 注射剂国际化发展能力建设 28 四川科伦药业股份有限公司 羟乙基淀粉200/0.5乳酸钠林格注射液产业化 29 四川海思科制药有限公司 马尼地平等通用名化学系列药物的产业化 30 武汉人福医药集团股份有限公司 人福医药全价值链国际化能力建设 31 湖南华纳大药厂有限公司 年产10亿片国家三类新药多库酯钠制剂及配套原料产业化 32 昆明制药集团股份有限公司 (蒿甲醚)制剂国际化发展能力建设项目 33 云南西力生物技术有限公司 大规模综合性化合物库建设 34 华润赛科药业有限公司 化学制剂国际化纵向一体化能力建设提升 2012年生物育种能力建设与产业化项目拟支持单位公示情况表 单位:万元 序号 项目承担单位 项目名称 1 北京金色农华种业科技有限公司 玉米工程化育种能力建设及重大新品种培育与开发 2 北京市中农良种有限责任公司 玉米高效生物育种创新能力建设与产业化 3 北京奥瑞金种业股份有限公司 玉米商业化育种能力建设及规模化繁育基地建设 4 天津天隆种业科技有限公司 杂交粳稻生物育种平台建设与良种产业化 5 河北众信种业科技有限公司 高白度、高抗白粉病、高产冬小麦邯麦11 6 山西屯玉种业科技股份有限公司 玉米新品种生物育种开发应用及产业化示范推广 7 内蒙古大民种业有限公司 玉米生物育种能力建设与产业化 8 吉林省吉东种业有限责任公司 生物育种能力建设与吉东系列玉米品种产业化 9 吉林吉农高新技术发展股份有限公司 玉米生物育种能力建设及产业化发展创新 10 辽宁丹玉种业科技股份有限公司 丹玉系列优质玉米育种创新能力建设与产业化 11 辽宁东亚种业有限公司 辽宁玉米生物育种能力建设与产业化 12 黑龙江省龙科种业集团有限公司 寒地粳稻新品种培育及产业化示范与推广 13 江苏省大华种业集团有限公司 超级粳稻育种能力提升与产业化 14 江苏明天种业科技有限公司 水稻、小麦生物育种能力建设与产业化 15 江苏神农大丰种业科技有限公司 超高产优质多抗粳稻新品种选育及产业化开发 16 江苏金土地种业有限公司 优质高产抗病扬麦系列新品种培育及扬麦18、扬辐麦4号产业化与推广应用 17 合肥丰乐种业股份有限公司 主要农作物生物育种能力提升与重大新品种产业化 18 安徽荃银高科种业股份有限公司 高产、优质杂交稻新品种新两优343产业化及水稻育种能力建设 19 安徽隆平高科种业有限公司 杂交玉米育繁推一体化体系建设 20 江西现代种业有限责任公司 高产高效优质多抗双季杂交水稻新品种的培育与产业化 21 山东天泰种业有限公司 天泰种业玉米生物育种能力建设与产业化 22 山东冠丰种业科技有限公司 玉米高效育种技术体系研究与新品种产业化开发利用 23 山东鲁研农业良种有限公司 黄淮北部小麦育种能力与种业体系建设 24 山东登海种业股份有限公司 高产玉米新品种培育与产业化开发 25 河南平安种业有限公司 高产抗逆小麦生物育种及产业化应用 26 河南天存种业科技有限公司 超高产、优质、多抗周麦系列新品种育、繁、推一体化 27 河南敦煌种业新科种子有限公司 优质强筋新麦系列小麦新品种选育及其产业化 28 河南秋乐种业科技股份有限公司 黄淮海优势粮食作物生物育种能力提升与育繁推一体化工程 29 湖北省种子集团有限公司 高产优质水稻新品种育繁推一体化能力建设与产业化 30 湖北荆楚种业股份有限公司 杂交水稻生物育种能力建设与新品种产业化 31 武汉武大天源生物科技股份有限公司 高产、优质、多抗杂交水稻新品种培育及产业化 32 袁隆平农业高科技股份有限公司 超级杂交稻育繁推一体化体系建设 33 湖南金健种业有限责任公司 广适性两系杂交水稻新品种繁育及产业化 34 广东省金稻种业有限公司 华南优质杂交水稻育种体系建设及其产业化 35 海南神农大丰种业科技股份有限公司 高产优质多抗杂交水稻育制种产业化 36四川国豪种业股份有限公司 杂交水稻、小麦突破性新品种选育及配套制种技术创新和产业化示范 37 四川农大高科农业有限责任公司 优质“抗逆型”杂交水稻新品种选育及其产业化示范工程 38 四川仲帮种业有限公司 年产3500万公斤人工合成优质基因源育成的突破性系列小麦新品种产业化 39 新疆新实良种股份有限公司 高产、优质、多抗玉米新品种培育及产业化 40 黑龙江垦丰种业有限公司 玉米生物育种能力建设与产业化建设 41 中国种子集团有限公司 水稻小麦生物育种能力建设与产业化   附件下载:   项目公示情况表(生物育种).xls   项目公示情况表(生物药).xls   项目公示情况表(化学药).xls
  • 理论物理所等在超导量子芯片上模拟黑洞的量子效应研究中获进展
    黑洞是爱因斯坦广义相对论预言的一类特殊天体。20世纪70年代初霍金、贝肯斯坦等的研究表明黑洞具有热力学性质:黑洞具有正比于其视界面积的熵;黑洞会以热辐射的形式向外辐射粒子,其辐射温度正比于其表面引力;黑洞的质量、熵和温度等满足热力学第一定律。黑洞的热力学揭示了引力的量子效应。因而普遍认为,黑洞是通向量子引力理论的窗口。   实验检验黑洞的量子效应是颇具挑战性的任务,这是由于这些效应非常微弱,且极难观测。比如一个太阳质量大小的黑洞,其对应的霍金温度只有10-8K ,远低于宇宙微波背景辐射的温度(≈3K)。缺少直接的实验检验也是”引力量子化“理论研究迟滞不前的原因之一。在这样的情形下,人们试图在实验室系统中创造出一个等效的“弯曲时空”并研究相关的效应。这一研究被称作“类比引力”(analogue gravity)。它是由Unruh效应(一个在平坦时空中作加速运动的观测者将看到他处于一个热浴中)的提出者William Unruh于1981年首先提出。近日,中国科学院理论物理研究所研究员蔡荣根和理论物理所博士毕业生、现天津大学理学院量子交叉中心副教授杨润秋,与物理所研究员范桁、副研究员许凯及博士研究生时运豪等合作,在”类比引力“的研究中取得重要进展。该工作在超导量子芯片上观察到“模拟黑洞”的霍金辐射并研究了弯曲时空对量子纠缠的影响。相关研究成果发表在《自然-通讯》【Nature Communications 14, 3263 (2023)】上。这一工作的理论基础是基于蔡荣根和杨润秋等在前期研究提出的模型,即在爱丁顿-芬克尔斯坦坐标下对空间坐标离散化,1+1维的无质量标量场和狄拉克场可以被量子化,并等价于耦合强度随格点位置变化的XY晶格模型;弯曲时空的度规信息则被编码在耦合强度的分布函数中。然而,如何在实验中实现这样一个耦合强度具有特定分布的XY晶格模型是颇有挑战性的问题。本研究利用一个具有10个量子比特与9个耦合器构成的一维阵列超导量子芯片,通过精确控制耦合器使比特之间的等效耦合强度按照从负到正分布实现了1+1维的弯曲时空背景,并观测了准粒子在弯曲时空背景下的传播行为。结果表明,在模拟黑洞的内部准粒子总是有一定概率通过视界辐射出去,其辐射概率满足霍金辐射谱。该团队利用量子态层析技术重构出黑洞外部所有比特的密度矩阵,计算了相应的辐射概率,证实了存在类比的霍金辐射。此外,该团队还在黑洞内部制备了一个Bell纠缠态并对比了平直和弯曲时空背景下的纠缠动力学。这一实验研究为在超导量子芯片中模拟弯曲时空和黑洞的量子效应开辟了新路径。该工作所使用的可调耦合器件由超导国家重点实验室SC5组研究员郑东宁和副主任工程师相忠诚提供。研究工作得到国家自然科学基金、科学技术部、北京市自然科学基金和中国科学院战略性先导科技专项等的支持。日本理化学研究所和北京量子信息科学研究院的科研人员参与研究。超导芯片上的黑洞、弯曲时空耦合强度分布以及部分实验脉冲序列
  • 2000亿贴息贷款采购指南:生命科学仪器优秀新品获奖篇
    近期,科学仪器行业迎来了前所未有的利好消息,国家为支持经济社会发展薄弱领域设备的更新改造,发布了设备更新改造贴息再贷款等政策,要求年底前完成相关申报工作。那么如何在有限的时间里,选择优秀的、创新的、经过评价的、或者用户验证过的科学仪器呢?仪器信息网特别汇总了近3年获得中国科学仪器行业”优秀新品奖”的生命科学仪器产品,为大家选购仪器提供参考。“科学仪器优秀新品”评选活动,由仪器信息网于2006年开始发起,其宗旨是将在中国市场上发布的,创新性比较突出的国内外仪器产品全面、公正、客观地展现给广大的国内用户;同时,鼓励各仪器厂商积极创新,推出满足中国用户需求的仪器新品。如今,“优秀新品”评选活动已经成功举办了16届。每年评选出的年度“优秀新品奖”受到越来越多的用户、国内外仪器厂商以及相关媒体的关注和重视。经过10余年的打造,该奖项已经成为国内外科学仪器行业最权威的奖项之一,获奖名单被多个政府部门采信。数字PCR仪伯乐生命医学产品(上海)有限公司QX ONE ddPCR系统荣获了2020年度仪器及检测3i奖-优秀新品奖。新品亮点:QX ONE ddPCR系统整合了微滴生成、热循环反应及微滴读取等步骤,最大程度减少人工操作,提高了实验通量。伯乐QX ONE ddPCR系统( 点击查看) 苏州锐讯生物科技有限公司液滴式数字PCR仪DropX-2000荣获了2019年度仪器及检测3i奖-优秀新品奖。新品亮点:DropX-2000由一体式芯片扩增仪和生物芯片阅读仪两部分组成。一体式芯片扩增仪集样本处理和PCR扩增于一体,省却了人工样本转移、人工密封孔板等繁琐操作,杜绝了人为因素造成样本损失的可能,真正意义上实现了一键式操作;生物芯片阅读仪实现了对样本的快速扫描、精确分析、软件模拟及完美再现。Rainsure液滴式数字PCR仪DropX-2000(点击查看 ) 单细胞分选仪大连华微生命科技有限公司单细胞分选分离系统暴风系列HW-STORM荣获了2019年度仪器及检测3i奖-优秀新品奖。新品亮点:该款仪器运用专用的筛选芯片分离样品,可较精确的分离荧光标记的液滴,通量高,且节省试剂。暴风 HW-STORM 单细胞分选分离系统(点击查看) 蛋白分析仪诺坦普科技(北京)有限公司PR Panta多功能蛋白稳定性分析仪荣获了2020年度仪器及检测3i奖-优秀新品奖。新品亮点:该款仪器结合微量差示扫描荧光nanoDSF技术、动态光散射DLS技术、静态光散射SLS技术以及背反射技术,首次实现了在整个热升温过程中,同时且实时地检测样品构象、粒径和聚集变化,实现对生物制剂高分辨率的、特有结构域的稳定性表征,监测整个生物制剂研发流程中的关键环节,加速生物药开发进程。NanoTemper PR Panta 多功能蛋白稳定性分析仪(点击查看) 生物显微镜牛津仪器科技(上海)有限公司ANDOR台式共聚焦显微镜BC43荣获了2021年度仪器及检测3i奖-优秀新品奖。新品亮点:BC43台式共聚焦显微镜,经济易用,小巧简约,能够帮助研究者轻松将3D图像纳入囊中同时节省时间和成本。自下而上的组件设计都恰到好处地平衡了高性能与易用性。牛津仪器ANDOR台式共聚焦显微镜BC43(点击查看) 微生物鉴定系统青岛星赛生物科技有限公司CAST-R 临床单细胞拉曼药敏性快检仪荣获了2021年度仪器及检测3i奖-优秀新品奖。新品亮点:该仪器是世界上首台基于拉曼光谱的药敏检测仪器,专门针对临床样品的病原鉴定、药敏性表型测量及耐药基因解析研发的一体化装备,基于重水饲喂单细胞拉曼光谱技术,不需分离培养而直接鉴定病原种类,并测量基于代谢活性抑制的药敏性表型组(及其在细胞之间的异质性),大大缩短临床致病菌感染的诊断时间,全流程可在3小时内完成,仅为目前检测时长的1/10。临床单细胞拉曼药敏性快检仪 CAST-R(点击查看)仪器选购,品质为先!  仪器信息网经过层层筛选与把关,特别优选出数百台科学仪器,帮助用户轻松快速买仪器。详情点击:  国产好仪器:https://www.instrument.com.cn/activity/goodcn/gchyq2022  品类先锋:https://www.instrument.com.cn/event/plxf
  • 你知道怎么更换溶氧仪电极膜片吗?
    在线溶解氧分析仪是应用嵌入式技术,集信号采集、信号处理、显示、数据传输一体、结合当今流行的图形液晶显示器技术、精心研制而成的用于测量各种水中溶解氧浓度的一种高精度、智能化、高性能的测量仪表,尤其适合发电厂给水、凝结水、除氧器出口、发电机内冷水等水质中微量溶解氧的在线监测。那么你们知道溶氧仪电极膜片怎么更换吗?下面就由我来教大家怎么更换溶氧仪电极膜片:  1、如果仪表处于运行状态,应先切断电源,八点几从测量池中取出。  2、从分析仪上拆下电极,电极结构如图所示。  3、垂直握紧电极,使电极朝上,旋下膜压帽,把旧膜从膜压帽中取出,并用纯净水冲洗膜压帽和新膜。将新膜黑点朝上放在膜压帽内。   4、电极朝下,旋开电极侧面的密封螺丝,使电解液流出,然后再拧紧螺丝。  5、用纯净水冲洗金阴极,然后用软纸巾轻轻吸去金阴极表面附着的水珠。  6、将电极朝上,垂直电极,用注射器通过电极上面的孔往电极内注入电解液,直到有电解液溢流。这样可确保电极内没有气泡存在。  7、将膜压帽旋在电极上,用装膜工具拧紧膜压帽,然后拧松一点,再拧紧。  8、用纯净水彻底冲洗电极,并用软纸巾轻轻吸干电极和膜表面的水珠。特别注意不要用力电极膜。  注意事项:  1、请勿用手触摸金阴极表面,受伤的油脂回影响电极特性。  2、电解液中含有低于1%的氢氧化钾,尽量避免与眼睛接触,,若不慎接触眼睛,应迅速用大量清水冲洗。  3、短时间与皮肤接触并无伤害,用水冲洗即可。
  • 华虹宏力“用于晶圆芯片并行测试的模拟量测试焊盘排布结构”专利获授权
    天眼查显示,上海华虹宏力半导体制造有限公司近日取得一项名为“用于晶圆芯片并行测试的模拟量测试焊盘排布结构”的专利,授权公告号为CN112147487B,授权公告日为2024年7月23日,申请日为2020年9月25日。背景技术在晶圆出厂前,需要对晶圆上的芯片进行测试,以判断芯片性能的好坏。在晶圆芯片测试中,目标晶圆被安装在测试机台上,其上目标芯片的测试焊盘(pad)通过探针卡与测试机台电性耦合,由测试机台通过执行测试指令,以完成对目标芯片的测试过程。测试完一个芯片,探针卡与下一目标芯片的测试焊盘电性耦合,以继续进行测试。为了提高测试效率,降低测试成本,在进行晶圆芯片测试时,通常需要对晶圆上的芯片进行并行测试,即同一时间内对目标晶圆的多个目标芯片进行测试,或,在单个目标芯片上同步或异步运行多个测试任务,以同时完成对目标芯片多项参数的测试。在进行晶圆芯片并行测试时,通常还需通过测量特定测试焊盘,以获取目标芯片的模拟电参数值,并对该目标芯片的模拟电参数进行调整。随着晶圆上芯片集成度的不断提高,目标芯片中需要调整的电参数的种类不断增多,因此所需的特定测试焊盘的数量也不断增加。然而,相关技术中用于获取目标芯片模拟电参数值的测试焊盘,与目标芯片上的功能焊盘无法复用,需要单独制作,因此过多的测试焊盘会占用芯片的较大面积,对芯片的性能产生不利影响。发明内容本申请涉及晶圆测试领域,具体涉及一种用于晶圆芯片并行测试的模拟量测试焊盘排布结构。所述晶圆包括若干个呈阵列式分布芯片,相邻芯片之间形成划片槽;相邻两列芯片之间形成纵向划片槽,相邻两排芯片之间形成横向划片槽;位于各个所述芯片周围的划片槽中,设有模拟量测试焊盘,所述模拟量测试焊盘与对应芯片电性耦合。本申请通过将模拟量测试焊盘设于对应芯片周围的划片槽中,在节省焊盘占用芯片面积的同时,通过保证在进行晶圆测试时所述模拟量测试焊盘与对应芯片电性耦合,即能够保证在晶圆芯片模拟参数并行测试的过程正常进行。
  • 苏州高新区再迎产业园项目主体封顶 太湖科学城功能片区引入高端仪器制造
    9月16日,位于苏州高新区太湖科学城功能片区的苏州中科科仪高端仪器装备产业化项目,正式完成主体全面封顶。标志着苏州高新区将再添一个具有行业领先水平的高端仪器制造项目。据了解,该项目旨在打造中国科学院控股企业中高端装备业务板块科技成果研制、转化和产业化落地平台。中科科仪高端仪器装备产业化项目由北京中科科仪股份有限公司与苏州高新区共同打造,中建二局江苏分公司承建。占地面积50亩,投产后将具备年产10000台磁悬浮分子泵、150台扫描电子显微镜、100台检漏工程装备及500台氦质谱检漏仪等系列产品能力。16日当天,苏州中科科仪技术发展有限公司、苏州城市建设项目管理有限公司、中建二局中科科仪项目三方代表共同举行了封顶仪式。苏州高新区近年来抢抓环太湖科创圈和沿沪宁产业创新带“一圈一带”加快建设的重大机遇,全力打造环太湖科创圈产业创新引领区。该项目建成后,将助力打造科学仪器、半导体设备、光电设备和真空设备等高端装备产业集群。助力国产科学仪器装备及前沿科学研究与战略新兴产业发展。
  • 中南大学陈翔/陈泽宇/赵爽《Small》:Transwell集成化类器官芯片用于模拟肿瘤转移
    肿瘤异质性一直被认为是阻碍个体化诊疗进步的一大障碍。其中,肿瘤转移性与肿瘤异质性密切相关,是恶性肿瘤的一种常见并严重的表现,对患者的生存率和生活质量有着极大的影响。肿瘤类器官是源自肿瘤组织中肿瘤特异性干细胞通过三维组织培养形成的细胞簇,它可模拟体内肿瘤特征及肿瘤细胞异质性,该技术的应用为肿瘤研究和治疗提供了可靠的模型,特别是为个性化肿瘤诊疗开辟了新的方案。目前,在体外利用肿瘤类器官技术评估肿瘤转移性的方法仍然十分缺乏。传统的评估细胞迁移能力的方法包括Transwell、细胞划痕等,这些方法无法模拟原发性肿瘤转移的过程,因此无法有效评估肿瘤的转移性。器官芯片技术能够模拟人体器官的功能,通过将微型芯片和生物材料组合,可以更加准确地研究和测试药物的效果、了解疾病的有关机制以及开发个性化诊疗方法等。但目前用于研究肿瘤转移的器官芯片大多仍采用传统的肿瘤细胞系构建模型,由于传统的肿瘤细胞系与患者来源的肿瘤细胞存在较大差异,因此难以重建真实的肿瘤转移过程,使得现有方法无法满足临床上的应用需求。近期,中南大学湘雅医院皮肤科、中南大学机电工程学院、重庆大学三峡医院等研究团队在《Small》(IF=13.3)期刊上在线发表题为“Mimicking Tumor Metastasis Using a Transwell-Integrated Organoids On-a-Chip Platform”的原创性论著。该研究提出了一种用于评估肿瘤转移性的肿瘤类器官芯片。该芯片可以模拟人体内肿瘤生长和转移的生理过程,能够有效评估患者肿瘤细胞的侵袭能力和生长能力,为研究肿瘤的转移性以及相应的肿瘤治疗和药物研究提供了重要的工具。据悉,这项研究的第一作者和第一通讯作者单位均为中南大学。21级硕士研究生陈迈科和20级博士研究生单晗为该论文共同第一作者;中南大学湘雅医院皮肤科陈翔教授、赵爽副研究员、中南大学机电工程学院陈泽宇教授、重庆大学三峡医院印明柱教授为该论文共同通讯作者。首先,作者阐述了肿瘤异质性的原理以及肿瘤转移的过程,并在传统评估细胞迁移能力方法的基础上,提出了Transwell集成的肿瘤类器官芯片精准评估肿瘤转移策略。 图1 Transwell集成的肿瘤类器官芯片用于评估肿瘤转移和药物筛选然后,作者使用高精度3D打印技术(摩方精密nanoArch® S140,精度:10μm)制作了芯片腔室的六边形支架,并使用激光切割技术制造了芯片主体,最终装配成了集成Transwell单元的仿生肿瘤类器官芯片。图2 仿生肿瘤类器官芯片制造作者进一步使用肿瘤类器官芯片评估了患者来源的粘膜黑色素瘤类器官和肢端黑色素瘤类器官的肿瘤转移能力。通过在类器官芯片内建立营养梯度,使外侧腔室中的营养物质浓度高于中心腔室,中心腔室的肿瘤类器官会逐渐转移到外侧的腔室中。观察发现,两种黑色素瘤类器官展现出了不同的肿瘤转移能力。图3 肿瘤类器官芯片评估肿瘤转移接着,作者分别从蛋白和基因层面研究了转移出的细胞团簇与中心腔室中未发生转移的肿瘤类器官团的差异性。结果表明,转移出的细胞团簇中与转移相关的蛋白和基因表达均显著高于未转移的类器官团。这有效说明肿瘤类器官芯片评估肿瘤转移的能力。图4 肿瘤类器官一致性评估和流式分析图5 肿瘤转移相比蛋白比较图6 肿瘤转移相比基因比较 最后,作者利用类器官芯片进行了药物筛选测试。通过在类器官芯片内添加不同浓度的抗肿瘤药物,发现肿瘤类器官的转移性有所区别。随着药物浓度的提高,肿瘤的转移得到了明显抑制。图7 肿瘤类器官芯片药物筛选与其他用于评估细胞迁移能力的方法相比,该工作提供的用于评估肿瘤转移性的肿瘤类器官芯片,集成了仿生的Transwell腔室,能够高效模拟肿瘤转移的过程。另外,所设计的用于评估肿瘤转移性的肿瘤类器官芯片,使用了患者来源的肿瘤类器官进行肿瘤转移性评估,能够真实地反映人体内肿瘤生长和转移的生理过程。该工作在肿瘤患者个体化诊疗、精准医学等临床研究中具有良好的应用前景。
  • 电化学储能市场增长 德州仪器专为储能推出BMS模拟芯片
    今年以来,宁德时代、晶科能源等原本优势业务为动力电池、光伏组件的厂商频频布局储能系统,随着储能市场活跃,第一财经记者了解到,产业链也感受到变化。芯片厂商德州仪器技术经理檀瑞安近日告诉第一财经记者,储能市场从去年至今需求上涨,公司储能系统方面的客户相比以往有所增多,其中一些厂商以往不直接做储能系统。  德州仪器是模拟芯片和嵌入式芯片厂商,为电化学储能系统提供BMS(电源管理系统)芯片,供给下游客户生产储能系统。檀瑞安感受到储能系统玩家增多,源于电化学储能需求迅猛增长下,电芯、光伏等厂商将业务延伸至储能系统。  国家能源局数据显示,截至今年上半年,国内可再生能源装机突破13亿千瓦,同比增长18.2%,历史性超过煤电。中国化学与物理电源行业协会储能应用分会数据则显示,今年上半年投运新型储能项目154个,其中电化学储能项目投运143个。随着电化学储能市场增长,储能系统安全性问题受到业内重视。储能市场活跃  德州仪器近期专门为储能领域推出一款BMS模拟芯片。檀瑞安告诉第一财经记者,电源管理芯片通常是汽车和储能共用的,但在汽车、储能场景需求都很大的情况下,德州仪器希望把AFE(模拟前端)分成储能、汽车两部分。  德州仪器对储能场景的重视具有代表性。集邦咨询数据显示,电源管理芯片海外IDM大厂以德州仪器、ADI、英飞凌、瑞萨、安森美、意法半导体、恩智浦为代表,IDM厂合计市占率63%,其中德州仪器市占率达22%。从集邦咨询的市场预估看,多类消费电子电源管理芯片需求不振,陷入降价,今年上半年仅少量工业与车用需求维持稳定,而工业和车用领域电源管理芯片有83%掌握在IDM大厂手上。  除上游芯片需求受行情催化外,中游的储能系统市场活跃度也较高。据梳理,今年以来完成新一轮融资的相关厂商包括上海电气储能、麦田能源、奇点能源、海辰储能、揽海能源等,多起融资金额过亿元,海博思创还在冲刺科创板上市。  不少储能系统厂商“跨界”而来。檀瑞安告诉第一财经记者,入局做储能系统的厂商可分为三类:储能品牌商、锂电池厂商和从风电、光伏跨界的厂商,市场此前以储能品牌商和锂电池厂商为主流,后来,随着市场盘子越来越大,做逆变器、光伏和风电的厂商也延伸至储能系统领域,以前这些逆变器、光伏厂商是给储能做配套的功率变换系统。  “以前做BMS的就做BMS,做Power(包括solar inverter和Power conversion system,光伏逆变器和储能逆变器)的就只做Power,现在大家都想扩展,市场越来越活跃。” 檀瑞安表示。  从市场格局看,据中关村储能产业技术联盟数据,去年中国储能系统集成商出货量排名前五是海博思创、中车株洲所、阳光电源、天合储能和远景能源,前十名的多家厂商出货量差距不大。TrendForce集邦咨询新能源总监王健告诉第一财经记者,储能系统集成格局较分散,竞争激烈,储能集成系统处于竞争初期,目前储能系统头部厂商排名变化较大,竞争格局处于演变重塑期。  王健表示,储能系统集成商向上游对接大量设备供应商,将各子系统集成为储能系统产品,向下游交付并提供后续质保服务,技术、渠道、资金构筑了行业壁垒,单个项目投资大、周期长,对资金实力要求高。预计技术领先、客户资源丰富、供应链整合能力强的企业市占率有望进一步提高。安全成为关键  从需求较大的储能场景看,檀瑞安告诉第一财经记者,欧洲家储(家庭储能)市场较成熟,国内以电网储能为主的大储(大功率储能)应用更多,电网储能增长形势较好。工商储(工商业储能)需求未来也可能爆发。  安全性则是储能行业发展的关键问题。在电芯厂商通过技术优化提高电芯安全性的同时,管理及维护电池单位、监管电池状态的电源管理BMS也是关键一环。  第一财经记者了解到,储能电池关注充放电次数,有使用寿命的要求,但瞬态充放电速度要求没有汽车那么高,系统方面,储能系统电池电压范围较宽。汽车和储能两个场景对BMS的要求有所不同。据檀瑞安介绍,针对储能系统,温度采样时公司会建议预留每颗电芯单独采样,而在汽车场景中一般不会。  檀瑞安表示,从家储到工商储、大储,电池容量从几千瓦时上升至几兆瓦时,随着容量增大,安全的重要性更加凸显。从保障电池安全性的角度,德州仪器的芯片会进行失效分析和寿命分析,以减少芯片失效风险,同时也在系统端助客户设计,通过合理失效分析避免单个器件失效影响整体系统安全性。  目前BMS已在汽车动力电池、储能电池中广泛应用。据国际能源网数据,电池占储能系统成本约60%,逆变器约占20%,BMS占5%。  檀瑞安表示,单纯从成本看,BMS占比不高,但没有BMS系统,储能系统就无法运转,一些储能站发生危险事故的案例,背后是因BMS没有做好。电化学储能最核心的问题是安全,大家现在关注储能电池能否安全运行10年、15年甚至20年。如果能长时间安全运行,且减少后期维护成本,成本实际上也会被摊薄。  国联证券研报指出,储能装置能量比动力电池系统高1~2个数量级,锂电池储能系统火灾的严重性远大于电动汽车电池火灾,今年7月,储能新国标开始实施,储能安全标准已趋严。储能电站系统由储能电池、储能逆变器、温控系统、消防系统、BMS和其他设备集成,系统集成商作为储能安全的第一责任人,对系统安全的重识或也将提高其竞争壁垒。
  • 默克CellASIC® ONIX微流控芯片,让细菌“无处可逃”
    本文在研究中采用了CellASIC® ONIX系列微流控芯片系统。细菌耐药性是什么?细菌耐药性在全球范围内的传播是公共卫生领域最为关注的问题之一,也是微生物学研究的重点。细菌耐药性(Resistance to Drug )又称抗药性,指细菌对于抗菌药物作用的耐受性,耐药性一旦产生,抗生素的作用就明显下降。对耐药共生菌、环境菌和致病菌的分析显示,对目前临床治疗中使用的大多数抗生素都有耐药性细菌。耐药性是如何获得的?耐药性根据其发生原因可分为获得耐药性和天然耐药性。自然界中的病原体,如细菌的某一株可存在天然耐药质粒。当长期应用抗生素时,占多数的敏感菌株不断被杀灭,耐药菌株就大量繁殖,代替敏感菌株,而使细菌对该种药物的耐药率不断升高。除此之外,耐药性还可以在细菌之间传递,这种是获得耐药性。Tatum和Lederberg发现了细菌间遗传物质交流的现象,耐药性的传播主要是通过水平转移具有耐药性的质粒获得。质粒是一类存在于细菌的遗传物质DNA之外,能自主复制的环状DNA分子。质粒的传递可以借助荧光成像的方法来进行观察。利用荧光成像观察细菌间质粒传递2019年法国里昂大学分子微生物学与结构生物化学中心发表Science文章,Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer,构建了细菌之间抗药质粒传递的模型,进行了相关研究。为了更清楚的观察到细菌间耐药质粒的传递,该文章构建了细菌间AcrAB-TolC抗四环素质粒传递的荧光模型:模型采用E.coli.细菌。 分别是表达红色荧光质粒的供体细菌和表达绿色荧光质粒的受体细菌。当发生耐药质粒转移时,在受体细菌中会产生红色和绿色荧光的puncta。通过计数puncta的数量就可以对耐药转移能力的大小进行量化。荧光细菌构建完毕后就可以上到显微镜上进行观察,细菌的观察和常规的贴壁细胞的观察有着很大的不同,细菌本身比细胞的体积小很多,必须上到高倍物镜,从而对观察板的介质的光透过率和平整度有很高的要求。此外,细菌本身在培养液中是悬浮生长,和悬浮细胞类似,会飘来飘去,想要固定观察某一个细菌是很困难的。因此,研究者需要一套特制的观察系统。本文在研究中采用了CellASIC® ONIX系列微流控芯片系统。这套系统的温度、气体控制帮助细菌的观察维持在37 °C ,持续4-6h;同时借助其梯度高度的微孔板,保证了细菌不会上下左右的飘动,使得追踪特定细菌的连续变化成为可能。 170um的高透底面也可以支持高倍物镜的放大,puncta清晰可见,经过分析后可以轻松获得基于时间轴的耐药性变化趋势: CellASIC® ONIX系列整套系统如下:CAX2-S0000 CellASIC ONIX2 Microfluidic System
  • 专家漫谈|热分析技术在药物质量控制以及药物研究中的一些应用
    p style=" text-align: left "    strong 本文 /strong strong 作者:江苏省食品药品监督检验研究院 李忠红 /strong /p p style=" text-align: left "   热分析法,顾名思义,是围绕物体热量发生了变化来进行的一系列分析测试的技术的总称,包括记录给予被测物热量后物质发生变化的过程以及物体发生变化过程中吸收或放出热量的测定。药典中收录的热分析法,广义的有转化点/熔点测定法、热重分析法、差热/差示扫描量热分析法、热载台显微镜分析法、微量热法(欧洲/英国药典)、溶液量热法(欧洲/英国药典)。中国药典2020年版四部通则0661热分析法中只收录了其中的三种。 /p p style=" text-align: left "   目前来说,在我们药品检验工作中采用热分析法对药物进行质量控制的应用主要有:原料药熔点的测定、化学对照品的纯度测定、药物水分的测定等,应用的项目与品种并不多。中国药典2015年版并未收录具体的需要用热分析仪来做质量控制的品种,2020年版是否有品种收录目前还未知晓。在国家药品监督管理局批准的各企业注册标准中,采用差示扫描量热分析法(DSC)测定熔点的品种有替格瑞洛、利培酮等,下图1是一张不同企业替格瑞洛原料药的热分析图,从图中可以看出不同企业产品的熔点存在着一定的差异,其中微小的差异可能来自于不同的纯度,而较大的差异应该是来自于不同的晶型。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 522px " src=" https://img1.17img.cn/17img/images/202006/uepic/c71b7d9d-0621-4e0b-b52c-b8be3c48db91.jpg" title=" 图1 替格瑞洛DSC分析图.jpg" alt=" 图1 替格瑞洛DSC分析图.jpg" width=" 500" height=" 522" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图1 替格瑞洛DSC分析图 /strong /p p   热分析法在药品质量控制中应用面较窄的这种情况的主要原因是因为热分析仪相对于一些传统的药品检验用仪器(例如熔点仪、烘箱、减压干燥箱等)价格要贵得多,客观上限制了在熔点测定与水分测定中的应用。而对于化学对照品的纯度测定,热分析法只是一个辅助测定的方法,或者说是一个验证用其他方法测定出的纯度值是否准确的方法,并不能用热分析法得到的纯度值去给对照品赋值。所以,热分析法对于化学对照品纯度的测定这一应用,只有在化学对照品发行单位得到较多的应用[1,2]。 /p p   当然,在药物的制造过程中,有不少企业已经采用快速水分测定仪(水分天平)来做中间体物料的水分监测。快速水分测定仪是利用热失重法测定样品的水分含量,由称量与加热装置(红外)组成。其原理与热重分析仪一样,也应该算是一种热分析的仪器。 /p p   尽管在药品终产品质量控制中的应用目前还不广泛,热分析技术作为一门成熟的分析技术,在药物研究过程中角色一直是不可或缺的。近5年来在药物研究过程中的应用主要有:药物多晶型的研究[3-6],药物共晶的研究[7],药物新剂型研究[8-18],生物相容性材料[19,20]的表征,药品包装材料(聚乙烯、聚丙烯等材质)与液体药物的相容性研究等。下面简要介绍一下其中的几个应用。 /p p    strong 一、药物多晶型的研究 /strong /p p   各国药典收载的多晶型药物有188种,水合物有307种,无定形(型)物有113种[21],这些药物的研究过程都或多或少地用到过热分析技术。 /p p   2015年研究者Akhtar Siddiqui等[3]发表的研究文章中用DSC结合化学计量学方法对尼莫地平两种晶型的定量测定进行了很好的研究,为质量控制提供了可能。 /p p   2016年研究者Yusuke Hattori等[4]发表的研究文章中用DSC研究了采用熔融-骤冷和研磨法获取加替沙星的无定形物。这两种方法制备的无定形物的X-射线粉末衍射图谱是无差别的,但是它们的DSC图谱存在着一定的差异。下图2就是两种无定形物的DSC图谱。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e018c82b-c99f-4dff-ae98-4fa8d738bd6f.jpg" title=" 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱.jpg" alt=" 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱.jpg" / /p p style=" text-align: center " strong 图2 加替沙星两种无定形物在不同升温速率下的DSC图谱 /strong /p p style=" text-align: center " (A)研磨法制备 (B)熔融-骤冷法制备 /p p   对于低温下药物的结晶过程、低温下药物晶核形成的机理研究,是近年来另一个研究的热点。2017年研究者Ioannis Nikolakakis等[5]发表的研究文章中采用熔融-骤冷法对扑热息痛(对乙酰氨基酚)的结晶动力学进行了研究,熔融的过程以及对骤冷后得到的玻璃体进行表征均使用了DSC仪。2018年研究者Yuan Su等[6]发表的研究文章中用类似的方法对灰黄霉素进行了研究,提出在超低温状态下(低于玻璃化转变温度),玻璃体发生断裂,在断裂面形成了晶核,因此不仅熔融-骤冷法不一定能得到无定形药物,而且对于无定形药物的保存也要注意贮藏条件可能产生的影响。 /p p    strong 二、药物共晶的研究 /strong /p p   共晶是提高药物溶解度的一个有效手段,而DSC是表征共晶形成成功与否的强有力技术。2018年研究者Patrycja Garbacz等[7]发表的研究文章中对吲哚美辛与糖精共晶、呋塞米与对氨基苯甲酸共晶进行了研究,典型的DSC图谱见图3。由图中可见,原料比例为1:2时吲哚美辛与糖精形成了共晶,即熔点只有一个。其他检测方法,例如红外光谱法、拉曼光谱法,都无法区分物理混合物与共晶。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 251px " src=" https://img1.17img.cn/17img/images/202006/uepic/bfbfeed1-7583-4e9d-bab7-1ff5558465af.jpg" title=" 图3 吲哚美辛与糖精共晶研究的DSC图谱.jpg" alt=" 图3 吲哚美辛与糖精共晶研究的DSC图谱.jpg" width=" 500" height=" 251" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图3 吲哚美辛与糖精共晶研究的DSC图谱 /strong /p p style=" text-align: center "   (a)吲哚美辛与糖精物理混合物(1:1) /p p style=" text-align: center "   (b)吲哚美辛与糖精物理混合物(2:1) /p p style=" text-align: center "   (c)吲哚美辛与糖精物理混合物(1:2) /p p style=" text-align: center "   (d)吲哚美辛与糖精共晶(原料比例1:1) /p p style=" text-align: center "   (e)吲哚美辛与糖精共晶(原料比例2:1) /p p style=" text-align: center "   (f)吲哚美辛与糖精共晶(原料比例1:2) /p p style=" text-align: center "   (g)吲哚美辛 /p p style=" text-align: center "   (h)糖精 /p p    strong 三、药物新剂型的研究 /strong /p p   纳米脂质体、介孔二氧化硅纳米粒、聚L-乳酸电纺纤维、温敏性水凝胶都是近年来发展起来的一些药物载体,也是药物新剂型。对于药物载体是否成功载药的研究,DSC是一个有效的表征手段,以2018年Li Pan等[18]对载虾青素的纳米脂质体研究为例,图4为采用DSC对原料药、辅料、原料药与辅料的物理混合物、载药纳米脂质体进行研究的图。载虾青素的纳米脂质体显示了与辅料大豆磷脂酰胆碱以及二者的物理混合物不同的DSC曲线。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 390px " src=" https://img1.17img.cn/17img/images/202006/uepic/fc4b38c6-cf08-49f0-b45d-11e2bd953a3e.jpg" title=" 图4 载虾青素的纳米脂质体研究的DSC图谱.jpg" alt=" 图4 载虾青素的纳米脂质体研究的DSC图谱.jpg" width=" 500" height=" 390" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图4 载虾青素的纳米脂质体研究的DSC图谱 /strong /p p style=" text-align: center " (a)虾青素 /p p style=" text-align: center " (b)载虾青素的纳米脂质体 /p p style=" text-align: center " (c)大豆磷脂酰胆碱 /p p style=" text-align: center " (d)虾青素与大豆磷脂酰胆碱的物理混合物 /p p   对于载虾青素的纳米脂质体研究,研究者不仅使用了DSC,还使用了TG,图谱见图5。TG曲线可被分为三段,分别代表了三步分解过程:失水(138℃之前)、大豆磷脂酰胆碱分解(138~315℃)、虾青素分解(315~500℃)。TG曲线可以从一个侧面反映药物的组成。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 500px height: 350px " src=" https://img1.17img.cn/17img/images/202006/uepic/cd90f3d6-0c0d-47b8-94ec-55fbf677c8b9.jpg" title=" 图5 载虾青素纳米脂质体的TG图谱.jpg" alt=" 图5 载虾青素纳米脂质体的TG图谱.jpg" width=" 500" height=" 350" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 图5 载虾青素纳米脂质体的TG图谱 /strong /p p   由以上这些应用来看,随着采用热分析法对于药物多晶型的研究工作日益的广泛,以及仿制药与原研药一致性评价工作的需求,采用热分析技术作为成品的质量控制手段的可能性也会大幅提升。因此,可以预见,热分析技术在药物质量控制领域会发挥越来越大的作用。 /p p br/ /p p    a href=" https://www.instrument.com.cn/zt/rfxjszywzlkzzdyy" target=" _self" strong 热分析技术在药物质量控制中的应用专题 /strong : /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/zt/rfxjszywzlkzzdyy" target=" _self" img style=" max-width: 100% max-height: 100% width: 600px height: 131px " src=" https://img1.17img.cn/17img/images/202006/uepic/275383cf-9219-4e35-ace8-f04a0943596e.jpg" title=" 192042020200616.jpg" alt=" 192042020200616.jpg" width=" 600" height=" 131" border=" 0" vspace=" 0" / /a /p p br/ /p p    strong 参考文献: /strong /p p   [1] 刘毅,吴建敏,严菁,等. 熔点对照品标化研究,中国新药杂志,2015,24(3):264-270 /p p   [2] 刘毅,吴建敏,吴涓,等. 差示扫描量热法在化学药品对照品纯度分析中的应用,中国新药杂志,2017,26(10):1115-1118 /p p   [3] Akhtar Siddiqui, Ziyaur Rahman, Mansoor A. Khan. Application of chemometric methods to differential scanning calorimeter (DSC) to estimate nimodipine polymorphs from cosolvent system. Drug Development and Industrial Pharmacy, 2015, 41(6):995-999 /p p   [4] Yusuke Hattori, Ayumi Suzuki, Makoto Otsuka. Characterization of melt-quenched and milled amorphous solids of gatifloxacin. Drug Development and Industrial Pharmacy, 2016, 42(11): 1851-1856 /p p   [5] Ioannis Nikolakakis, Kyriakos Kachrimanis. Crystallization kinetics of orthorhombic paracetamol from supercooled melts studied by non-isothermal DSC. Drug Development and Industrial Pharmacy, 2017, 42(2): 257-263 /p p   [6] Yuan Su, Lian Yu, Ting Cai. Enhanced crystal nucleation in glass-forming liquids by tensile fracture in the glassy state. Crystal growth & amp design, 2018, DOI: 10.1021/acs.cgd.8b01427 /p p   [7] Patrycja Garbacz, MarekWesolowski. DSC, FTIR and Raman Spectroscopy Coupled withMultivariate Analysis in a Study of Co-Crystals of Pharmaceutical Interest. Molecules, 2018, 23, 2136 doi:10.3390/molecules23092136 www.mdpi.com/journal/molecules /p p   [8] 冯巧,张亚轩,夏志伟,等. 温敏型水凝胶聚(N-异丙基丙烯酰-乙烯基吡咯烷酮)的前端聚合法制备及性能. 高分子材料科学与工程,2015,31(4):37-46 /p p   [9] 王浩,康卫民,张亚秋,等. 壬苯醇醚聚ε-己内酯电纺纤维膜的表征及释放. 沈阳药科大学学报,2015,32(4):249-255,270 /p p   [10] 王浩,郭衎,刘影,等. 十六烷基磷脂酰胆碱复合聚ε-己内酯电纺微球的制备及表征. 辽宁医学院学报,2015,36(2):1-5,附页1-2 /p p   [11] 吕洁琼,林君红,崔升淼. 介孔二氧化硅纳米粒对穿心莲内酯载药性能及药物释放的影响. 广东药学院学报,2016,32(5):555-558 /p p   [12] 吕志阳,杨雨微,陈璟,等. 热熔挤出技术制备银杏总内酯固体分散体的研究. 中药材,2016,39(7):1610-1613 /p p   [13] Li Pan, Hongyan Wang, Keren Gu. Nanoliposomes as Vehicles for Astaxanthin Characterization In Vitro Release Evaluation and Structure-PXRD DSC. Molecules, 2018, 23:2822 doi:10.3390/molecules23112822 www.mdpi.com/journal/molecules /p p   [14] 赵娜,史雨,王中彦. 和厚朴酚固体分散体的制备及表征. 沈阳药科大学学报,2019,36(6):469-473 /p p   [15] 管庆霞,张悦,邹淑君,等. 马钱子碱纳米结构脂质载体的表征及体外释放行为分析. 中国中医药信息杂志,2019,26(8):66-70 /p p   [16] 郭爱灵,姚涛,潘斯庆,等. 复方葛根素水飞蓟宾固体分散体的制备及表征. 中国中医药信息杂志,2020,27(2):59-63 /p p   [17] 黄佳娜,崔银,张天,等. 载塞克硝唑泊洛沙姆复合聚L-乳酸电纺纤维的表征和释放行为考察. 中国医药工业杂志,2020,51(5):605-612 /p p   [18] 盛晓丹,刘臻,罗砚曦,等. 聚多巴胺修饰的载榄香烯介孔二氧化硅纳米粒的制备及其靶向抗肿瘤活性研究. 中草药,2020,51(10):2745-2754 /p p   [19] 王秦峰. 聚乳酸的热性能研究. 上海化工,2019,44(2):14-16 /p p   [20] Carlos David Grande Tovar, Jorge Ivá n Castro, Carlos Humberto Valencia, et al. Nanocomposite Films of Chitosan-Grafted Carbon Nano-Onions for Biomedical Applications. Molecules, 2020, 25:1203 doi:10.3390/molecules25051203 www.mdpi.com/journal/molecules /p p   [21] 张建军,钱帅,高缘主编. 晶型药物研发理论与应用,化学工业出版社,2019.1 /p p br/ /p
  • 【药物一致性评价热潮】10种热门品种!
    参比制剂是指用于仿制药质量和疗效一致性评价的对照药品,通常为被仿制的对象,如原研药品或国际公认的同种药物。参比制剂应为处方工艺合理、质量稳定、疗效确切的药品。 随着药物一致性趋势不断的越演越烈,一些热门的药物也开始被各大医疗企业争相进行检测审核,cato归纳了近期一致性参比制剂备案前10品种的杂质列表 。 第一种:通用名:克拉霉素英文名:Clarithromycin主成分化学名:6-O-甲基红霉素主成分结构式:(CHP2015)主成分分子式:C38H69NO13主成分分子量:747.96主成分cas登记号:81103-11-9 品种简介:克拉霉素是红霉素的衍生物,为半合成抗生素。20世纪80年代初由日本大正公司开发成功,并以商品名Clarith注册。尔后,大正公司首先将其技术转让给美国雅培公司生产 1990年在爱尔兰、意大利上市。1991年在日本获批上市。1991年10月获FDA批准上市,商品名Biaxin,1993年以Klacid在中国香港上市,在欧洲和亚洲的商品名为克拉仙,已在全球50多个国家上市,市场用量稳步增长,并在临床中发挥了重要作用。克拉霉素剂型主要为片剂、颗粒剂或混悬剂,目前生产的剂型还有分散片、缓释片、注射剂和复方制剂。目前为WHO和多个国家的基本药物。第二种:通用名:阿莫西林英文名:amoxicillin主成分化学名:(2S,5R,6R)-3,3-二甲基-6-[(R)-(-)-2-氨基-2-(4-羟基苯基)乙酰氨基]-7-氧代-4-硫杂-1-氮杂双环[3. 2. 0]庚烷-2-甲酸三水合物 主成分分子式:C16H19N3O5S?3H2O主成分分子量:419.46主成分cas登记号:61336-70-7 品种简介:阿莫西林是青霉素类半合成抗生素,原研公司为葛兰素史克公司,最早于1972年上市,商品名为AMOXIL。 第三种:通用名:头孢拉定英文名:Cefradine主成分化学名:先锋瑞丁、头孢拉丁、头孢握定、头孢雷定、己环胺菌素、头孢环己烯、环己烯胺头孢菌素、环烯头孢菌素。主成分分子式:C16H19N3O4S主成分分子量:349.40主成分cas登记号:38821-53-3 品种简介:头孢拉定属于头孢菌素类抗菌药物,且为第一代头孢菌素,对不产青霉素酶和产青霉素酶金葡菌、凝固酶阴性葡萄球菌、A组溶血性链球菌、肺炎链球菌和草绿色链球菌等革兰阳性球菌的部分菌株具良好抗菌作用。厌氧革兰阳性菌对本品多敏感,脆弱拟杆菌对本品呈现耐药。耐甲氧西林葡萄球菌属、肠球菌属对本品耐药。本品对革兰阳性菌与革兰阴性菌的作用与头孢氨苄相似。本品对淋球菌有一定作用,对产酶淋球菌也具活性;对流感嗜血杆菌的活性较差。第四种:通用名:头孢氨苄英文名:Cephalexin主成分化学名:头孢菌素Ⅳ、先锋霉素Ⅳ、头孢力新、苯甘孢霉素、西保力、头孢立新主成分分子式:C16H17N3O4S主成分分子量:347.39主成分cas登记号:15686-71-2 品种简介:头孢氨苄,抗生素\β-内酰胺类\头孢菌素类。它能抑制细胞壁的合成,使细胞内容物膨胀至破裂溶解,杀死细菌。 第五种:通用名:氨氯地平英文名:Amlodipine主成分化学名:3-乙基-5-甲基-2-(2-氨乙氧甲基)-4-(2-氯苯基)-1,4-二氢-6-甲基-3,5-吡啶二羧酸酯苯磺酸盐主成分分子式:C20H25N2O5ClC6H6O3S主成分分子量:567.1主成分cas登记号:111470-99-6 品种简介:氨氯地平,钙离子拮抗药,可用于治疗各种类型高血压(单独或与其他药物合并使用)和心绞痛,尤其自发性心绞痛(单独或与其他药物合并使用)。氨氯地平的作用是通过松弛在动脉壁的平滑肌,降低总外周阻力从而降低血压;在心绞痛时,氨氯地平增加血液流向心肌。本品对肾脏有一定的保护作用。其制剂有苯磺酸氨氯地平片、甲磺酸氨氯地平片、马来酸左旋氨氯地平片等。 第六种:通用名:二甲双胍英文名:METFORMIN HYDROCHLORIDE TABLETS主成分分子式:C4H11N5?HCL主成分分子量:165.63主成分CAS号:1115-70-4 品种简介:二甲双胍为目前应用最广泛的糖尿病一线用药。该化合物最早于1922年开发,后期由Jean Sterne医师重新开发并于1957年在法国上市用于治疗2型糖尿病,1958年在英国上市,1972年在加拿大上市,并最终于1994年获得FDA批准,1995年上市。申请机构为施贵宝。二甲双胍口服制剂有速释片、缓释片、口服溶液,其中速释片有250mg、500mg、850mg、1g。缓释片规格为500mg、750mg、1g。我国国产上市的二甲双胍片以250mg为主。原研本地化的产品有中美上海施贵宝公司的格华止片,规格有500mg、850mg。国内有山德士(中国)制药有限公司的二甲双胍片上市,规格为250mg。进口二甲双胍片有 Alphapharm Pty Limited的迪化唐锭片上市,规格为250mg。 第七种:通用名:布洛芬英文名:Ibuprofen主成分化学名:2-(-4-异丁基苯基)丙酸;异丁苯丙酸,异丁洛芬,芬必得,α-甲基-4-(2-甲基丙基)苯乙酸主成分分子式:C13H18O2主成分cas登记号:15687-27-1 品种简介:布洛芬是世界卫生组织、美国FDA唯一共同推荐的儿童退烧药,是公认的儿童首选抗炎药。布洛芬具有抗炎、镇痛、解热作用。治疗风湿和类风湿关节炎的疗效稍逊于乙酰水杨酸和保泰松。适用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎、强直性脊椎炎和神经炎等。 第八种:通用名:奥美拉唑
  • 赛默飞创新技术应用系列之双三元液相色谱DGLC(二)——在线固相萃取技术
    样品前处理是HPLC分析中必不可少的一部分,常需手工且需多步操作才能完成,要比HPLC分离和数据处理等花费更多的时间。其作用是去除试样中的干扰物质,使痕量组分得到富集,便于检测和分离,且不损害色谱柱。因此,在分析方法的建立和常规分析中,方法的精密度和准确性很大程度上取决于样品的前处理操作。 近年来,随着液相色谱仪技术的迅速发展,HPLC自动化程度越来越高,加之色谱柱颗粒技术的发展,使得色谱分离的时间大大缩短。无疑,样品的前处理技术实现自动化,将会为实验室人员带来极大的益处。尤其是当面临大量样品且前处理过程繁琐时,自动化无疑是理想的选择,这也与HPLC技术发展相匹配。固相萃取是当前常用的样品前处理技术,分为在线和离线两种方式,用于样品的净化、除杂和富集。离线固相萃取具有试剂用量少、节省时间、易于SOP等优点。其缺点为SPE固相萃取柱仅能使用一次,成本较高。而在线固相萃取技术(online SPE)能把活化、平衡、除杂和洗脱等过程在封闭系统内自动化完成,减少人工操作带来的误差,提高方法的准确性和精密度,不仅能加快样品的前处理过程,而且SPE柱可重复使用,总的分析成本将大大降低;更为关键的是在线SPE柱(dp5~10&mu m)比离线SPE萃取管柱效更高,分离度更好,样品更干净,更易于最终的HPLC分离。 传统实现online SPE的过程如图1所示,常需另外添加一个输液泵,系统连接复杂,灵活性和自动化程度较差。赛默飞UltiMate 3000双三元液相色谱,采用独特的双泵设计,每个泵可作为一个单独的体系,有各自独立的比例阀和流动相体系,可同时单独控制三种不同的流动相,在Chromeleon变色龙软件的支持下,结合独特的阀切换技术,通过灵活的流路连接设计,一套系统即可以轻松实现online SPE以及HPLC分离过程。见图2. 图1 online SPE过程 图2 赛默飞UltiMate 3000双三元液相色谱online SPE 技术 在线固相萃取技术的痕量组分富集应用 饮用水中9种有机物(微囊藻毒素-LR、呋喃丹、甲萘威、百菌清、莠去津、溴氰菊酯、2,4,6-三氯酚、五氯酚和苯并芘)的分析比较复杂,对很多实验室的工作人员来说具有很大的挑战性。国标方法GB/T 5750需要复杂的样品前处理流程,如水体的富集,但使用赛默飞的双三元(DGLC)液相色谱,一套系统轻松搞定水体的富集、净化、分离与检测,不仅精简了饮用水的前处理操作,大大简化了国标方法的复杂性,而且很容易实现饮用水标准检验方法的检出限要求,使得在饮用水水质控制方面更加简单易行。同时在普及性极高的HPLC-UV-FLD仪器上实现了高灵敏度检测,可作为监测饮用水体检测上述有机物的常用方法。 图3 在线固相萃取-双三元液相色谱分析原理图 (A:上样,清洗,萃取;B:洗脱,分离,分析) 图4 9种有机物混合标准品紫外谱图 图5 9种有机物混合标准品荧光谱图 在线固相萃取技术的复杂样品净化应用 在线固相萃取技术的色谱柱切换法是分离和清除复杂多组分样品杂质的有效技术,可被用于去除强保留的、对色谱柱造成损坏的杂质,又可除去干扰色谱分离的物质。黄芪是常见的中药,也是中药方剂配伍及其制剂中使用频率较高的中药。其中黄芪甲苷是主要活性成分,药品标准中常将其作为质量评价指标成分。但黄芪甲苷含量较低,且黄芪基质复杂。2010版一部药典中,黄芪药材的前处理采用正丁醇萃取,经过D101大孔吸附树脂离线纯化后,再进样分析,步骤较多,回收率不高。利用赛默飞双三元液相色谱系统,采用在线固相萃取技术的柱切换净化方法结合电雾式检测器检测,对样品进行净化后再自动切换到分析柱上进行分析,取得了很好的结果。已成功应用于黄芪药材、归脾丸(浓缩丸),补肾固齿丸,益气养血口服液和颈复康颗粒等中药复方样品的分析中。系统连接方式见图5. 图6 仪器系统连接图 图7-1 黄芪甲苷对照品 图7-2黄芪药材 图7-3 归脾丸 图 7-4 益气养血口服液 图7-5 颈复康颗粒 图7-6补肾固齿丸 图7 黄芪及其复方分离谱图 结合限制性介质材料(RAM)柱和Turboflow技术,提高生物样品分析效率 限制性介质材料(RAM)柱同时具有对大分子的体积排阻作用和对小分子的吸附作用,通过控制吸附剂合适的孔径和对吸附剂的外表面进行适当的生物兼容性修饰,使得生物样品中的大分子基质成分不能进入吸附剂的内孔中去,且生物兼容性的外表面保证了生物大分子不会发生不可逆的变性和吸附,这样大分子物质在死体积或近于死体积的情况下被洗脱除去。而Turboflow技术是利用大粒径填料使流动相在高流速下产生涡流状态,在涡流状态下,溶质分子传质加快,传质阻力减小,虽然其流速很高,但分离效率并没有随之降低很多。在这种情况下,大分子的基质成分如蛋白质等,还未能扩散进入填料颗粒内部就已被洗出柱外,而小分子的待测物则可以保留下来,与基质分离。 在用大鼠进行抗高血压联合用药氢氯噻嗪和尼群地平的药代动力学实验中,每次取血量有限,且血药浓度较低,要求最好可同时测定氢氯噻嗪和尼群地平。此两种药物同时检测的分析方法报道很少,多数是对两药分别建立分析方法。原因有两个:一、尼群地平口服吸收存在首过效应,体内血药浓度值低,大约1-50 ng/mL,在这个检测浓度条件下,多采用液质联用技术进行分析,而此两种药物在质谱工作条件下一个是正离子模式,一个是负离子模式,同时检测不方便;二、尼群地平和氢氯噻嗪极性相差较大,同时提取和分析困难较大。 利用赛默飞双三元液相色谱系统(DGLC)的online SPE技术结合紫外检测器,采用限制性介质材料(RAM)柱CAPCELL MF C8作为在线固相萃取柱。血浆样品于4℃下,10000 r/min高速离心后,取上清液,用0.22 &mu m尼龙滤膜过滤,直接进样分析,可在线去除血浆中的蛋白,又可同时对尼群地平和氢氯噻嗪进行测定,避免了样品前处理手动操作带来的误差,且样品基质干扰少,适合对血浆样品定量分析。此分析方法不仅提高了生物样品的分析效率,而且可以为进一步的药代动力学-药效学联合模型的建立提供有力支持。 图8-1 氢氯噻嗪(3.3 ppm) 图8-2 尼群地平(3.3 ppm) 图9-1 大鼠血浆中氢氯噻嗪 图9-2大鼠血浆中尼群地平 上面这些应用实例展现了赛默飞UltiMate 3000双三元液相色谱在线固相萃取技术的多样化应用以及简便、实用、高效的特点。此外,基于灵活的阀切换技术,可以通过并联多柱模式实现高通量的online SPE过程,同时可以针对基质成分和目标物的理化性质,灵活选择多种不同的化学键合相的SPE柱,在Chromeleon变色龙软件支持下,解决实际工作中的分析难题。目前赛默飞UltiMate 3000双三元液相色谱在线固相萃取技术已广泛应用于环境化学、食品饮料、药物临床研究等领域。 参考文献 1、在线固相萃取技术- 高效液相色谱同时分析饮用水中的9种有机物及农残 2、在线固相萃取-高效液相色谱法测定橙汁中多菌灵残留量 3、在线固相萃取-高效液相色谱-荧光检测法测定食用油中多环芳烃 4、加速溶剂萃取-在线固相萃取-高效液相色谱-荧光检测法快速测定谷物或食品中的黄曲霉毒素 5、在线固相净化方法结合电雾式检测器测定黄芪及复方中黄芪甲苷的含量 6、在线固相萃取-高效液相色谱-紫外检测法测定鼠血浆中氢氯噻嗪和尼群地平 7、在线柱浓缩- 超快速液相色谱法测定水体中痕量甲萘威和呋喃丹 8、双三元液相色谱应用文集 赛默飞创新技术应用系列之双三元液相色谱DGLC集锦 (一)二维及全二维液相色谱分离技术应用 (二)在线固相萃取技术 (三)流动相在线除盐技术 (四)在线柱后衍生和反梯度补偿技术 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 国产示波器厂商面临芯片卡脖子,拟IPO融资2亿开展芯片研发
    近日,国产电子测试测量仪器厂商深圳市鼎阳科技股份有限公司发布IPO招股说明书,拟募资约3.4亿多元,其中2亿多元用于高端通用电子测试测量仪器 芯片及核心算法研发项目。针对高端电子测试测量设备可能发生的卡脖子问题,鼎阳科技本次募集用于高端通用电子测试测量仪器芯片及核心算法研发项目的资金投资情况如下,招股书显示,在高端通用电子测试测量仪器芯片及核心算法研发项目中,芯片研发主要集中于4GHz 数字示波器前端放大器芯片、高速ADC芯片、低相噪频率综合本振模块和40GHz宽带定向耦合器模块等部分的设计。这些芯片属于信息链芯片。据了解,信号链芯片主要包括放大器、数模转换类,其中转换器属于其中技术壁垒最高细分品类。转换器是由模拟电磁波转换成0101比特流最关键的环节,具体又可以分为ADC和DAC两类,ADC作用是对模拟信号进行高频采样,将其转换成数字信号;DAC的作用是将数字信号调制成模拟信号。其中ADC在总需求中占比接近80%。ADC/DAC是整个模拟芯片皇冠上的明珠,核心难度有两点:抽样频率和采样精度难以兼得(高速高精度ADC壁垒最高)以及需要整个制造和研发环节的精密配合。ADC关键指标包括“转换速率”和“转换精度”,其中高速高精度ADC壁垒最高。数据转换器主要看两个基本指标,转换速率和转换精度。转换速率通常用单位sps(Samples per Second)即每秒采样次数来表示,比如1Msps、1Gsps对应的数据转换器每秒采样次数分别是100万次、10亿次;转换精度通常用分辨率(位)表示,分辨率越高表明转换出来的数字/模拟信号与原来的信号之间的差距越小。高性能数据转换器需具备高速率或高精度的数据转换能力。鼎阳科技是一家专注于通用电子测试测量仪器的开发和技术创新的企业,目前已研发出具有自主核心技术的数字示波器、波形与信号发生器、频谱分析仪、矢量网络分析仪等产品,具备国内先进通用电子测试测量仪器研发、生产和销售能力。该公司依与示波器领域国际领导企业之一力科和全球电商平台亚马逊建立了稳定的业务合作关系。其自主品牌“SIGLENT”已经成为全球知名的通用电子测试测量仪器品牌,主要销售区域为北美、欧洲和亚洲电子相关产业 发达的地区。该公司先后承担国家部委、深圳市和宝安区研发及 产业化项目合计9项,现有专利167项(其中发明专利106项)和软件著作权30项,公司2017年、2018年连续两年被评为深圳市宝安区创新百强企业,2020年被广东知识产权保护协会评为广东省知识产权示范单位。招股书显示,鼎阳科技向境外采购的重要原材料包括 ADC、DAC、FPGA、处理器及放大器等 IC 芯片,该等芯片的供应商均为美国厂商。截至本招股说明书签署日,公司在产产品或在研产品所使用的芯片中,美国TI公司生产的四款 ADC 和一款 DAC 属于美国商业管制清单(CCL)中对中国进行出口管制的产品,需要取得美国商务部工业安全局的出口许可。公司已经取得这五款芯片的许可,其中四款芯片的有效期到 2023 年,其余一款芯片的有效期到2025年。报告期内,这五款芯片中仅两款用于具体产品,且实现销售。美国近期将 I/O≥700 个或 SerDes≥500G 的FPGA从《出口管制条例》中移出许可例外,国内厂商若购买相关FPGA则需要取得美国商务部工业安全局的出口许可。目前鼎阳科技研发、生产尚不需要该等 FPGA,但由于公司产品结构逐步向更高档次发展,对 ADC、DAC、FPGA、处理器及放大器等IC芯片的性能要求逐步提高,公司后续研发及生产所使用的IC芯片等原材料亦可能涉及美国商业管制清单中的产品。目前我国由于高端芯片,特别是模拟芯片等受制于人,使得电子测试测量仪器厂商在技术升级的过程中困难重重。高端电子测试测量仪器对模拟芯片的性能提出了更高的要求,目前国产芯片无法满足需求。而ADC芯片的产业链和半导体产业的一样,其产业链庞大而复杂,可以分为:上游支撑产业链,包括半导体设备、材料、生产环境;中游核心产业链,包括 IC 设计、 IC 制造、 IC 封装测试;下游需求产业链,覆盖工业、通信、消费电子、航空、国防及医疗等。聚焦ADC领域,全球主要供应商仍是TI、ADI为首的几家国际大厂,而高性能ADC在军用领域、高端医疗器械以及精密测量等领域起着至关重要的作用,因此ADC技术的国产替代对于我国各下游产业的发展意义重大。
  • 首个集成在铌酸锂芯片上的激光器面世
    美国哈佛大学科学家在最新一期《光学》杂志上撰文称,他们研制出了首个集成在铌酸锂芯片上的激光器,为高功率通信系统、全集成光谱仪、光学遥感,以及量子网络的高效变频等应用铺平了道路。研究人员解释称,长距离通信网络、数据中心光互连和微波光子系统都依赖激光来产生光载波以用于数据传输。但大多数情况下,激光器是独立设备,位于调制器外部,这会使整个系统更昂贵,且稳定性和可扩展性也较差。在最新研究中,哈佛大学工程与应用科学学院(SEAS)的研究人员与行业合作伙伴携手,在铌酸锂芯片上开发了第一台全集成高功率激光器。他们将小型但功能强大的分布式反馈激光器集成在芯片上。这些激光器位于蚀刻在铌酸锂芯片内的小井或沟槽中,且与铌酸锂内的50千兆赫兹电光调制器相结合,构建了一个高功率发射器。最新研究资深作者马科隆卡尔说:“集成铌酸锂是开发高性能芯片级光学系统的重要平台,但将激光器安装到铌酸锂芯片上已被证明是一个极大的挑战。在这项研究中,我们借助纳米制造技巧和技术,克服了这些挑战,实现了在薄膜铌酸锂平台上集成高功率激光器的目标。”最新研究第一作者、SEAS研究生阿米拉桑沙姆斯安萨里说:“集成高性能即插即用激光器将显著降低未来通信系统的成本、复杂性和功耗。我们最新研制出来的这款集成激光器可以集成到更大的光学系统中,用于传感、激光雷达和数据通信等一系列应用。”研究团队强调说,将薄膜铌酸锂器件与高功率激光器相结合,是朝着大规模、低成本、高性能发射阵列和光网络方向迈出的关键一步。他们计划继续提高激光器的功率和可扩展性,以使其能应用于更多领域。
  • 33项!江西省发布2022年度“揭榜挂帅”关键技术/企业需求拟立项清单
    9月14日,江西省科技厅发布2022年度“揭榜挂帅”关键技术类和企业需求类拟立项清单。经项目推荐、专家评审、对接确认等环节,共10项关键技术类和23项企业需求类项目入选。根据江西省科技厅网站信息,“揭榜挂帅”关键技术类项目立项后主要采取前资助的方式,原则上支持强度每项500-1000万元,实施周期一般不超过3年;“揭榜挂帅”企业重大技术需求类项目资金以企业自筹和吸引社会资本投入为主,原则上单个项目投入研发资金总额要求不得低于500万元,实施周期不超过3年。2022年度江西省“揭榜挂帅”关键技术类拟揭榜单位清单序号揭榜项目名称揭榜单位项目负责人1大型低成本固定翼氢能动力物流无人机关键技术研究江西航空研究院沈亮2海洋油气开采平台高压高可靠大容量光电滑环系统关键技术研究中船九江海洋装备(集团)有限公司陈建萍3高品质高功率白光LED用紫外/近紫外激发稀土发光材料和LED器件封装集成关键技术中山大学南昌研究院王静46英寸34%效率空间太阳电池关键技术研究南昌凯迅光电股份有限公司潘彬5氢基闪速炼铁关键技术研究浙江中科闪铁科技有限公司张文海6高效率GaN基红光MicroLED材料生长及器件制备技术研究南昌大学王立7基于九牛草的艾种质资源创新研究与综合利用中国中医科学院中医药健康产业研究所李慧8高性能半导体银基导电材料的关键技术研究江西佳银科技有限公司卢美军9超临界水蒸煤制氢耦合绿色短流程冶金技术及装备西安交通大学郭烈锦10古代经典名方关键技术研究与开发江西药都樟树制药有限公司张保献2022年度江西省“揭榜挂帅”企业需求类拟揭榜单位清单序号揭榜项目名称需求企业揭榜单位揭榜负责人1晶圆级光学组件纳米压印的设计与加工江西省欧迈斯微电子有限公司南昌大学章少华2汽车智能网联与控制印制电路关键技术研究赣州市深联电路有限公司电子科技大学周国云3基于光业务单元(OSU)的光传送网(OTN)设备关键技术研究江西山水光电科技股份有限公司南昌大学谢文军4采用可降解合成脂油的大容量水电解制氢整流变压器技术研究江西变压器科技股份有限公司南昌工程学院康兵5基于深度学习的果蔬多频段全景视觉识别分选技术研究及应用江西绿萌科技控股有限公司中国科学院微电子研究所李功燕6小口径、厚壁高强度精密焊管成型机组研制江西福事特液压股份有限公司江苏薪泽奇机械股份有限公司杨光耀7阳极泥中有价金属的绿色高效回收关键技术贵溪市鑫浩泰环保科技有限公司江西省科学院应用物理研究所刘觐8高精高效微晶磷铜球全自动产线关键技术研发与产业化江西保太有色金属集团有限公司广州长仁工业科技有限公司姚宇茏9基于再生铝的新能源汽车高强韧免热处理铸造铝合金及制备关键技术研究江西万泰铝业有限公司南昌大学郭洪民10堇青石耐热陶瓷关键技术研究及产业化示范江西帮企陶瓷股份有限公司景德镇陶瓷大学肖卓豪11面向双碳目标的源-网-荷-储协同规划关键技术及平台研发中国电建集团江西省电力设计院有限公司河海大学韩海腾12多源微电网的智能控制、高效热管理、降噪减振及红外隐身技术开发江西清华泰豪三波电机有限公司南昌大学刘建胜13直升机轻量化用纳米均匀弥散增强铝基复合材料关键技术研究北京通用航空江西直升机有限公司华东交通大学汤文亮14蔓三七降尿酸药食健康新产品研发与产业化江西蔓三七健康科技有限公司江西省科学院应用化学研究所李雄辉15植物甾(烷)醇酯高效制备及其应用关键技术宜春大海龟生命科学有限公司南昌大学殷军艺16带骨白羽鸡肉熟化前淤血防控技术攻关与产品研制江西圣农食品有限公司南昌大学陈军17罗城扎粉生产工艺的标准化及绿色安全装备改进江西锦江酒业有限责任公司南昌大学刘成梅183类新药厄贝沙坦氨氯地平片的Ⅲ期临床试验研究江西施美药业股份有限公司北京凯普顿医药科技开发有限公司廖亮19外科手术用光纤与接触式刀头中大功率激光传输特性与光热转化效应研究江西麦帝施科技有限公司泉州师范学院段亚凡20鲜竹沥传统炮炙工艺质量控制与生产装备关键技术研究江西仁安药业有限公司华东交通大学谭荣凯21“樟帮”特色中药饮片炮制规范标准研究江西樟树天齐堂中药饮片有限公司赣江中药创新中心金红利22波形钢骨组合剪力墙住宅智能建造成套技术中阳建设集团有限公司重庆大学刘界鹏23天然纤维面料改性及前处理多效复合酶制剂的创制及示范应用江西恩达麻世纪科技股份有限公司江西省科学院微生物研究所袁林
  • 默克等3家生物医药企业随行|德国总理朔尔茨访华
    德国总理朔尔茨11月4日开启其首次访华之旅,随行的德方经济代表团也成为国际关注的焦点。在中德经贸关系出现一些杂音的当下,此次访问无疑传达出德国工商业对中国市场的重视。《环球时报》记者根据德媒披露的消息梳理发现,此次随朔尔茨访华的商界领袖来自多个行业,他们代表的企业每年在华营收高达数百亿欧元。相关专家对《环球时报》记者表示,这些具有代表性的德国高管随朔尔茨访问中国,证明任何想让中德经贸关系疏远的“离心力”都比不上中国经济发展带来的巨大吸引力。  100多家公司申请,12家获批  “这些德国商界领袖与朔尔茨总理一起前往北京”,德国《商报》最近公布了此次跟随朔尔茨访华的来自12家德国知名企业的高级商业领袖代表团。这其中,2018年陪同德国前总理默克尔访问过中国的德国化工巨头巴斯夫首席执行官马丁布鲁德米勒此次也在随行名单上。巴斯夫也是最近投资中国最大的德国企业之一。该公司最近宣布,将在2030年前投资100亿欧元,在中国广东省湛江市建设新的“一体化基地”,这也是巴斯夫有史以来最大的单笔投资。12家访华德国企业  除了巴斯夫,多家德国企业在访华前宣布“加码”投资中国。此次访华团中,来自汽车企业的两位CEO备受关注——大众汽车首席执行官奥利弗布鲁姆和宝马集团董事长奥利弗齐普策。大众集团最近宣布,计划投资约24亿欧元,与中国智能芯片公司地平线成立合资企业。宝马也透露,将再投资100亿元人民币扩大在中国的电池项目投入。  除上述德企高管外,西门子、瓦克化学集团、阿迪达斯、婴儿食品制造商喜宝、制药公司拜耳以及加热技术公司Geo Clima Design的负责人也在名单之中。据德国《商报》此前报道,100多家公司申请政府专机上令人羡慕的座位,最终12家获准,因为中国的商业从未像今天这样重要。分析称,此次跟随朔尔茨访华的德国商界领袖虽然人数不多,但分量十足,既包括来自汽车、化工、制造业等德国传统优势产业的代表,也包括德国拜恩泰科(BioNTech)等新兴的生物科技公司,覆盖了中德经贸中的重点领域与潜力行业。  他们与中国市场关系多密切?  《环球时报》记者梳理上述12家企业的公开数据发现,有的企业2021年在中国或大中华区营收总额达数百亿欧元。化工巨头巴斯夫在华的销售额是最高的企业之一。根据巴斯夫发布的2021财年年报,该公司面向大中华区客户的销售额约为120亿欧元。目前,大中华区是巴斯夫全球第二大市场。  2021财年,总部位于慕尼黑的瓦克化学集团在中国的销售额创下新高,达到17.9亿欧元,相比2020年增幅高达75%。瓦克化学集团在其官方新闻稿中表示,业绩大幅增长主要归功于公司强大的产品组合完美契合中国加速向低碳发展趋势,以及多数产品售价的攀升。德国总理朔尔茨,资料图  此外,大众与宝马两家德国汽车集团及其合资企业2021年在华交付汽车超过400万辆。默克、拜耳、阿迪达斯等企业2021财年在中国或大中华区销售额也均高达数十亿欧元,分别达到28.87亿、38.56亿和46亿欧元。  在一些人鼓吹“中欧经贸脱钩论”之际,此次随朔尔茨访华的一些德企高管公开强调两国经贸关系重要性。巴斯夫首席执行官布鲁德米勒近日接受德媒采访时表示,“即将到来的访问是愿意与中国进行对话的良好信号”。  无可取代  俄乌冲突引发的能源危机,已经导致德国经济前景黯淡。德国主流经济研究机构发布的秋季经济预测联合报告预测,德国在2022年下半年和2023年年初将陷入衰退,2022年和2023年年度GDP增长率分别为1.4%、-0.4%。今年以来,部分德国媒体、机构等不断鼓噪对华“脱钩”。朔尔茨今年10月11日在出席柏林机械工程峰会时明确表态支持全球化,并强调“脱钩将是完全错误的道路”,必须与“包括中国在内的许多国家开展贸易”。数据显示,德企正在加速对华投资。美国咨询公司荣鼎集团9月发布的一份报告也显示,德国是在华欧洲企业投资最大来源国,2021年新增投资占比高达46%。  中国国际问题研究院欧洲所所长崔洪建对《环球时报》表示,此次朔尔茨访华的一个重点是需要和中方共同确认未来两国经贸合作的重点。汽车、制造业等领域是中德传统的经贸合作领域,相关德国企业也继续扩大在华投资,这需要中德双方提供相应的政策环境,以巩固这方面的合作。商务部研究院国际市场研究所副所长白明表示,任何鼓吹“中德经贸脱钩”的人都需要回答一个直接的问题:德国企业在中国失去的,在哪里能够弥补?
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制