当前位置: 仪器信息网 > 行业主题 > >

纳米静电纺丝

仪器信息网纳米静电纺丝专题为您整合纳米静电纺丝相关的最新文章,在纳米静电纺丝专题,您不仅可以免费浏览纳米静电纺丝的资讯, 同时您还可以浏览纳米静电纺丝的相关资料、解决方案,参与社区纳米静电纺丝话题讨论。

纳米静电纺丝相关的论坛

  • 【原创大赛】用静电纺丝仪电纺纤维膜

    【原创大赛】用静电纺丝仪电纺纤维膜

    [align=center][font='宋体'][size=21px]用静电纺丝仪[/size][/font][font='宋体'][size=21px]电纺纤维膜[/size][/font][/align][align=center][/align][align=center][font='宋体'][size=18px]许亦舟 功材1902 2019020111[/size][/font][/align][align=center][font='calibri'][size=13px]第1章 [/size][/font][font='calibri'][size=13px]静电纺丝及其基本原理[/size][/font][/align][font='宋体'][size=16px]由带电溶液通过电场力驱动,并收集在接收装置,通常高浓度溶液的分子链段缠结度高,容易形成纤维,该过程称为静电纺丝。静电纺丝的过程是将带电聚合物溶液或熔体,通过施加高压静电场作用,射流拉伸成纳米纤维。高电压条件下,注射器内的聚合物溶液带电,并且在推进器的推动下从纺丝喷头处射出。施加高压后,带电的聚合物溶液在纺丝喷头尖端出形成锥形液滴,称为泰勒锥。随着电场强度升高,达到临界值时,聚合物溶液通过电场力作用克服表面张力,在泰勒锥尖端喷射并伸长,移动到低电势的收集器上。收集器上会凝固连续的聚合物纳米纤维。[/size][/font]如图1.1,[font='宋体'][size=16px]电纺丝设备主要由注射[/size][/font][font='宋体'][size=16px]器[/size][/font][font='宋体'][size=16px]、喷头[/size][/font][font='宋体'][size=16px](喷嘴)[/size][/font][font='宋体'][size=16px]、高压电源及接[/size][/font][font='宋体'][size=16px]收[/size][/font][font='宋体'][size=16px]装置组成。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301039447789_8969_5413603_3.png[/img][align=center][font='calibri'][size=13px]图 [/size][/font][font='calibri'][size=13px]1[/size][/font][font='calibri'][size=13px].1[/size][/font][font='calibri'][size=13px] 静电纺丝仪的基本组成[/size][/font][/align] [img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301039450751_676_5413603_3.png[/img][align=center][font='calibri'][size=13px]第2章 [/size][/font][font='calibri'][size=13px]静电纺丝纺丝纤维膜具体操作(以聚己内酯为例)[/size][/font][/align][font='times new roman'][size=16px]12% [/size][/font][font='宋体'][size=16px]聚己内酯([/size][/font][font='times new roman'][size=16px]PCL[/size][/font][font='宋体'][size=16px])溶液的配制:称量一定的PCL于锥形瓶中,加入二氯甲烷和[/size][/font][font='times new roman'][size=16px]N, N[/size][/font][font='宋体'][size=16px]-二甲基甲酰胺[/size][/font][font='times new roman'][size=16px](m/m)=4:1[/size][/font][font='宋体'][size=16px],搅拌过夜;待溶液变澄清后,液体加入20 mL注射器中[/size][/font][font='宋体'][size=16px]。[/size][/font][font='宋体'][size=16px]在静电纺丝仪器的卷筒上贴紧锡箔纸,在贴紧的过程中一定要确保锡箔纸的表面光滑而平整,之后打开仪器,进入仪器的参数设置面板(如图[/size][/font][font='times new roman'][size=16px]2.1[/size][/font][font='宋体'][size=16px]),特别注意注射器量程的选择,推进速率的选择。之后调整电压在[/size][/font][font='times new roman'][size=16px]-1.0kv[/size][/font][font='宋体'][size=16px]与[/size][/font][font='times new roman'][size=16px]12.0kv[/size][/font][font='宋体'][size=16px]后进行试喷,观察锡箔纸是否可以牢固的贴附在卷筒上。针管中的液体是否可以射流成纳米纤维,同时喷射在锡箔纸的中央,若并未出现问题则可立刻停止。若静电纺丝喷出丝线的位置偏离中心很远,则需要重新调整针头的位置,若静电纺丝无法出丝,则应考虑重新配置不同浓度的电纺丝液体或更换电纺丝液体的种类。同时,在静电纺丝的操作者一定不能开电源伸手直接触摸滚筒或其它设备,一定要断电进行操作。如果静电纺丝以后急需进行调整也必须先关电源。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301039452057_3550_5413603_3.jpeg[/img][align=center][font='calibri'][size=13px]图 [/size][/font][font='calibri'][size=13px]2[/size][/font][font='calibri'][size=13px].1 仪器参数设置页面[/size][/font][/align][font='宋体'][size=16px]之后重新用一张全新的锡箔纸用相同的方法固定在卷筒上,如果试喷后未更换针管内溶液则需清除管口残留的液体,继续完成参数设置,根据经验转筒转速设置为[/size][/font][font='宋体'][size=16px]置[/size][/font][font='times new roman'][size=16px]1050 rpm[/size][/font][font='宋体'][size=16px]可以得到[/size][/font][font='times new roman'][size=16px]12%[/size][/font][font='宋体'][size=16px] 聚己内酯[/size][/font][font='宋体'][size=16px]纺织的取向程度较好的纤维膜。之后按下启动按钮让仪器开始工作,可观察丝线喷射情况,根据微调正负电压调整其喷射的位置。当看到如图[/size][/font][font='times new roman'][size=16px]2.2[/size][/font][font='宋体'][size=16px]所示滚筒锡箔纸中间出现白色区域即可等待电纺丝完成。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301039453687_9082_5413603_3.png[/img][align=center][font='calibri'][size=13px]图 [/size][/font][font='calibri'][size=13px]2.2 正在静电纺丝的仪器状态[/size][/font][/align][align=center][font='calibri'][size=13px]第3章 [/size][/font][font='calibri'][size=13px]纤维膜的性质检验[/size][/font][/align][font='宋体'][size=20px] [/size][/font][font='宋体'][size=16px]如图[/size][/font][font='times new roman'][size=16px]3.1[/size][/font][font='宋体'][size=16px]为静电纺丝得到的聚己内酯纤维膜。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301039455379_8519_5413603_3.jpeg[/img][align=center][font='calibri'][size=13px]图 [/size][/font][font='calibri'][size=13px]3[/size][/font][font='calibri'][size=13px].1 聚己内酯纤维膜[/size][/font][/align][font='宋体'][size=16px]如图[/size][/font][font='times new roman'][size=16px]3.2[/size][/font][font='宋体'][size=16px]为[/size][/font][font='times new roman'][size=16px]SEM[/size][/font][font='宋体'][size=16px]下聚己内酯纤维膜的形貌。[/size][/font][img]" style="max-width: 100% max-height: 100% [/img][align=center][font='calibri'][size=13px]图 [/size][/font][font='calibri'][size=13px]4[/size][/font][font='calibri'][size=13px].2 电镜下的聚己内酯纤维膜[/size][/font][/align][font='宋体'][size=16px] [/size][/font][font='times new roman'][size=16px]通过[/size][/font][font='times new roman'][size=16px]Image J[/size][/font][font='宋体'][size=16px]统计[/size][/font][font='times new roman'][size=16px]100[/size][/font][font='宋体'][size=16px]根纤维角度,所电喷胶原的聚己内酯纤维膜具有明显的取向结构。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111301039457213_9799_5413603_3.png[/img][align=center][font='calibri'][size=13px]图 [/size][/font][font='calibri'][size=13px]3.3 取向情况统计图[/size][/font][/align]

  • 求纺丝油剂动静摩擦及抗静电测试

    求纺丝油剂动静摩擦及抗静电测试 有测试条件的留个联系方式http://simg.instrument.com.cn/bbs/images/default/em09502.gif山石: 论坛中不允许留联系方法, 否则会被官人当成广告, 喀嚓! 有这方面资源或者信息的版友, 请私信联系楼主。 此贴暂时锁定!

  • 多组分膜智能精喷

    智能精控多源纳米薄膜仪是一种高性能工业级精密喷涂技术,采用中央程控,关键参数独立控制的多源纳米喷涂技术,旨在解决多种材料、复杂结构、高均匀性亚微米及纳米级薄膜的制备问题,易于研发更复杂、更优异性能的纳米薄膜。智能精控多源纳米薄膜仪是开放式设备,可以和现有设备组合使用,还可以实现边喷边吹膜的功能,为制备具有流体薄膜的吹膜制备,调控能力强,组合方便的特点。智能精控多源纳米薄膜仪可组合静电纺丝电源,实现多组分,多层纺丝膜的快速自动制备,及周期性纺丝膜的制备。

  • 【求助】北京哪里的TEM能观察高分子材料纺丝纳米纤维的内部结构啊?急。。。请各位高手指点下哈!

    各位大侠,请问北京哪里的TEM能观察高分子材料纺丝纳米纤维啊?而且要求能看见纤维里面的结构。。。。因为纤维里面有酶。今天打电话问了几处,说高分辨的加速电压太高(200KV),这种高分子聚合物材料经受不起,只需要用100KV的看就够了。所以请做过或者知道相关研究的大侠帮帮忙,能不能给个联系方式之类的。PS:由于本人刚接触这方面的知识,很多太专业的术语都不太懂,所以劳烦大家多指点,在此先谢过大家啦!

  • 新型纳米药物设计有望突破经典

    新型纳米药物设计有望突破经典新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供有更为广阔的结合区域。这大大拓展了设计新型药物的可能性。中科院纳米生物效应与安全性重点实验室(国家纳米科学中心和中国科学院高能物理研究所共建)的赵宇亮、陈春英等科研人员的实验研究工作与IBM周如鸿研究员的理论模拟相结合,在肿瘤高效低毒纳米药物的研究方面,取得重要的进展(PNAS,109,15431,2012)。这是继2010年和2011年后,该研究组在《美国国家科学院院刊》发表的又一研究成果。 该研究组在2004年发现,原来设计为新一代MRI医学造影剂的含Gd金属富勒烯具有高效抑制肿瘤生长的功能。通过表面化学修饰,研究人员得到了几乎没有毒副作用的Gd@C82(OH)22。它不杀死肿瘤细胞,而是通过调节肿瘤细胞周围的微环境(改善肿瘤细胞生长的“土壤”),把肿瘤细胞“监禁”起来。通过近9年的动物实验和细胞实验研究发现,这种新的方法,不仅抑制肿瘤生长,也高效抑制肿瘤转移。 进一步的动物实验和分子动力学模拟研究发现,Gd@C82(OH)22纳米药物与靶分子的相互作用过程与药物设计的经典理论不同,Gd@C82(OH)22纳米颗粒并不作用于靶分子基质金属蛋白酶(MMP)的活性位点。Gd@C82(OH)22分子首先自身通过氢键相互作用形成棒状排列的纳米颗粒,然后通过纳米颗粒扩散运动接近靶分子的疏水区域,产生非特异性的疏水相互作用,而这只是一个过渡态。最终纳米颗粒和靶分子MMP之间通过氢键作用和疏水作用形成特异性结合。这种特异性结合区域在MMP的疏水区域,而不是传统的活性位点。 该研究结果第一次提出的新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供更为广阔的结合区域。这大大拓展了设计新型药物的可能性。 目前全世界在纳米药物领域的研究主要用纳米颗粒作为载体载带现有的药物,而把Gd@C82(OH)22纳米颗粒直接作为肿瘤治疗药物(不需要载带传统药物),到目前为止还是第一次。该实验室通过近9年的系统研究,已经完成8个肿瘤模型的动物实验。除了深入开展该研究中的抑制肿瘤新机制外,2012年高能所已建成一条中试生产线,并正在推进临床前研究的相关工作。

  • 国家纳米中心等提出的新型纳米药物设计有望突破经典理论

    中科院纳米生物效应与安全性重点实验室(国家纳米科学中心和中国科学院高能物理研究所共建)的赵宇亮、陈春英等科研人员的实验研究工作与IBM周如鸿研究员的理论模拟相结合,在肿瘤高效低毒纳米药物的研究方面,取得重要的进展(PNAS, 109, 15431, 2012)。这是继2010年和2011年后,该研究组在《美国国家科学院院刊》发表的又一研究成果。 该研究组在2004年发现,原来设计为新一代MRI医学造影剂的含Gd金属富勒烯具有高效抑制肿瘤生长的功能。通过表面化学修饰,研究人员得到了几乎没有毒副作用的Gd@C82(OH)22。它不杀死肿瘤细胞,而是通过调节肿瘤细胞周围的微环境(改善肿瘤细胞生长的“土壤”),把肿瘤细胞“监禁”起来。通过近9年的动物实验和细胞实验研究发现,这种新的方法,不仅抑制肿瘤生长,也高效抑制肿瘤转移。 进一步的动物实验和分子动力学模拟研究发现,Gd@C82(OH)22纳米药物与靶分子的相互作用过程与药物设计的经典理论不同,Gd@C82(OH)22纳米颗粒并不作用于靶分子基质金属蛋白酶(MMP)的活性位点。Gd@C82(OH)22分子首先自身通过氢键相互作用形成棒状排列的纳米颗粒,然后通过纳米颗粒扩散运动接近靶分子的疏水区域,产生非特异性的疏水相互作用,而这只是一个过渡态。最终纳米颗粒和靶分子MMP之间通过氢键作用和疏水作用形成特异性结合。这种特异性结合区域在MMP的疏水区域,而不是传统的活性位点。 该研究结果第一次提出的新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供更为广阔的结合区域。这大大拓展了设计新型药物的可能性。 目前全世界在纳米药物领域的研究主要用纳米颗粒作为载体载带现有的药物,而把Gd@C82(OH)22纳米颗粒直接作为肿瘤治疗药物(不需要载带传统药物),到目前为止还是第一次。该实验室通过近9年的系统研究,已经完成8个肿瘤模型的动物实验。除了深入开展该研究中的抑制肿瘤新机制外,2012年高能所已建成一条中试生产线,并正在推进临床前研究的相关工作。http://www.cas.cn/ky/kyjz/201211/W020121123539967315650.jpg 图:新型纳米药物的设计有可能超越经典的理论和传统的思路:在传统的“锁眼”以外,靶分子可以为纳米颗粒(而非传统的“分子”)药物提供有更为广阔的结合区域。这大大拓展了设计新型药物的可能性。

  • 【技术@创新】世界上最小的“纳米光源”诞生

    美国Cornell大学的科学家们制造出了只有病毒或最小的细菌大小的世界上最小的“纳米光源”。他们的结果发表在《纳米快报》(Nano Letter)上。 在这个小组中的有机材料专家和纳米制造专家们通力协作,制造出了这个目前世界上最小的有机发光装置。这个装置只有200纳米宽,由许多人造纤维构成。这个由金属钌构成的纤维是如此的小,甚至还没有它发出光的波长大。这样小的光源将能够应用在目前制作得越来越小的电子设备中,从传感器到显微镜到平板显示器。 Cornell的科学家们使用一种叫做电纺丝(electrospinning)的技术把钌金属化合物和聚环氧乙烷聚合物的混合物纺成丝。他们发现,这些纤维通过微电极受到低电压的激励时,会像电灯泡一样发出橙色的光。 有机材料专家George Malliaras说:“这就好比你有了一个非常小的电灯泡,这样你就可以为许多从前不能照明的东西照明。” 这项研究还证明了这种微型光源能够很容易地制造。它所使用的电纺丝技术与传统的高精度平版印刷制造技术相比,要简单得多,几乎不需要再加工。 目前这种有机电子设备的耐久力仍在研究中。 这个小组的成员Harold Craighead说:“目前我们的兴趣是这种材料和什么一起制造成光发射纤维。我认为它最终的用途将取决于它能够承受怎样的加工过程和使用。中电网

  • SIMION-静电透镜分析软件

    SIMION-静电透镜分析软件谁有可否提供一下。SIMION简介:SIMION是一款静电透镜分析模拟软件,能在给定透镜电压及粒子初始条件的情况下,计算静电场及场中带电离子的运动轨迹。广泛用于2D/3D静态低频射频场中,从简单的离子飞行、静电/磁透镜、粒子枪,到高度复杂的仪器,如飞行时间质谱、离子阱质谱、四极杆质谱、ICR池及其它质谱,离子源及检测器部件。其官方网站上有Simion 8.0说明书manual的电子版,虽然只有前2章Chapter One - SIMION Overview,Chapter Two - SIMION Basics http://www.simion.com/manual/官方网站:http://simion.com/

  • 【分享】疏水性荧光体掺杂微/纳米荧光探针的合成

    荧光体掺杂SiO2 微/纳米颗粒以其荧光强度高、光稳定性好、表面易修饰、生物毒性小等优点,为生物分析领域提供了新的荧光探针。迄今为止,用于掺杂的荧光体主要有荧光素衍生物、罗丹明衍生物、联吡啶钌等亲水性荧光体,通过StÖ ber 法和微乳液法[1]以共价或静电作用方式包埋于SiO2 微/纳米颗粒中。而对于许多光稳定性好、量子产率相对较高的荧光体,如芘(pyrene)、1,2,3,4,5-五苯基-1,3-环戊二烯(PPCP)、红荧烯(rubrene)等,由于疏水性强,不易衍生化,无法利用上述方法制备微/纳米荧光探针,限制了其在生物分析中的应用。

  • 【原创大赛】扫描电镜下的碳纳米管纳米铜等修饰的铂丝电极

    【原创大赛】扫描电镜下的碳纳米管纳米铜等修饰的铂丝电极

    http://ng1.17img.cn/bbsfiles/images/2012/01/201201010057_343495_1705310_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2012010100001162_01_0_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/12/201112312356_343459_1705310_3.jpg拍摄时间:2011年12月样品名称:扫描电镜下的碳纳米管纳米铜等修饰的铂丝电极所使用的显微镜:扫描电镜以及数码相机的生产厂家和型号:日立S4800物镜及目镜放大倍数:如图中所示照明方式:明场

  • 【转帖】未来纳米材料的发展方向

    5.纳米科学与技术 (1)研究方向:研究物质在纳米尺度上表现出的物理、化学和生物特性,单分子的特性和相互作用,为以原子、分子为起点,设计和构筑新的纳米结构、材料和器件,提供科学基础和理论准备。加强对纳米结构新的测试和表征方法的研究和探索,加深对纳米科技理论和方法的理解。 (2)应用方向,纳米技术的发展有5个主要方向:   以纳米材料(颗粒、C60、碳纳米管)为代表的方向;以从微电子向纳电子转化为代表的方向;以微光、机、电集成系统向纳光、机、电集成系统为代表的方向(MEMS――NEMS);以纳米生物学、系统为代表的方向;以纳米物理化学性质、制备、表征等为代表的方向。 (3)纳米技术在纺织领域的应用:   目前,纳米技术在纺织方面的应用主要表现在纳米复合纤维及纳米技术在纺织后整理等方面。   ①纳米复合纤维:化学纤维中加入纳米级添加剂,可以制造出新一代功能性更强的、不同用途的优良复合化学纤维。这种方法的技术难度比直接制造纳米纤维的难度要低,是近期内纳米技术在纺织领域中应用的主导方向。结合当前的实际情况,应考虑发展以下几类纤维:   ●抗紫外纤维   纳米TiO2和纳米ZnO等陶瓷粉,由于小尺寸效应,对光的吸收性很强。以它们为无机紫外线屏蔽剂制成的抗紫外线型纤维或织物,不仅可全面抵御UV-A、UV-B对人体皮肤的伤害,而且还能反射可见光和红外线,具有遮热功能,以此类纤维制成的织物,便于印染整理,手感柔软,透气凉爽,服用性好。目前从国内外研制生产的品种来看,涉及到涤纶、维纶、腈纶、锦纶、丙纶和粘胶纤维等。   ●抗菌、抑菌和除臭纤维   纳米级TiO2和ZnO等光催化无机抗菌剂可应用于超细纤维等特殊场合,是前景广阔的新型抗菌材料。它们可作为添加剂加到涤纶、丙纶、锦纶、腈纶、粘胶等化纤中,赋予各类纤维及其织物抗菌、抑菌、除臭功能,从而起到保健和美学作用,所制成的纤维不仅具有疏水导湿性、快干性、抗污性、密度小和手感柔软等特点,且抗菌性能持久。   ●导电纤维   将二氧化锡和氧化锌等白色纳米粉体与纤维高聚物混合纺丝或通过吸附法及浸渍化学反应使其覆盖于纤维表面上,制成白色导电纤维,可用来制作防护服、工作服和装饰性导电材料。   ●远红外纤维   此类纤维可以吸收太阳光和人体辐射的远红外线,也可以发射出波长和功率与其温度相适应的远红外线,因而使织物具有更好的保暖效果;它还能吸引人体自身向外散发的热量,并再向人体反射易吸收的远红外线。同时,由于特殊的物理效能刺激人体生理发生变化,还能达到保健和抑菌的作用。远红外纤维除了具有反射功能外,还兼有抗可见光、近红外线和抗紫外线的功能,可用来制作夏日服装、野外工作服、遮阳伞及装饰用布等,孕育着十分广阔的市场。   ●空气负离子纤维   奇冰石纳米复合粉是将多种天然矿石进行深度加工,并添加纳米TiO2等纳米粉体制成的性能奇特的超细粉体。添加了奇冰石的丙纶、涤纶纤维,可以产生空气负离子,发射远红外电磁波,还可以释放人体需要的微量元素,因此可制作保健服、内衣、室内装饰布、窗帘、家用纺织品、汽车装饰布等。它还可以为人体随时补充所需要的微量元素,实现了医药工程和纺织工程的完美结合,易被广大消费者接受,具有较大的市场潜力。   ●高强高模量纤维   纳米碳管的强度极高,弹性模量也很高,甚至可以弯曲后再弹回,可用于制备高强高弹性纤维。另外,粘土与聚合物的复合能够大大提高材料的强度和模量,北京服装学院利用纳米粘土的这种功能,与聚酰胺插层聚合开发尼龙纳米功能纤维,使纤维的强度和模量有很大的提高,尤其是模量,可以提高2倍,但纤维的纺丝性能没有明显的改变。   除了上述功能纤维以外,采用纳米粉体对纤维进行改性,还可以开发多种功能纤维,如变色纤维、耐热纤维、芳香纤维、磁性纤维、储能纤维、发光纤维、阻燃纤维、吸水吸湿纤维、防水拒油纤维等。   ②纳米技术在织物后整理中的应用   ●直接涂层法获得功能性涂层   先将纳米微粒直接加入到织物整理剂中,使其均匀分散,然后使织物通过包含纳米微粒的整理液,在粘合剂作用下直接涂覆在织物表面,形成功能性涂层。   ●接枝技术法获得功能性涂层   对于某些涂层牢度不够、功能性不持久的情况,可采用接枝技术。具体可采用两条技术路线:一是将对纳米材料有很强的配位能力的有机化合物接枝到棉纤维上,制成简单的有机分子模板,再将纳米团簇组装到纤维上;二是在制备纳米微粒时,用可接枝到纤维上的化合物作为捕获剂,使纳米微粒通过捕获剂进行表面修饰形成"团簇",再把"团簇"接枝到纤维上。   (4)纳米改性涂料   实验研究表明,在各类涂料中添加纳米材料,如纳米TiO2,可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,广泛应用于医院和家庭内墙涂饰;防紫外线涂料,用于生产防紫外线阳伞;吸波隐身涂料,用于隐形飞机、隐形军舰等国防工业领域及其他需要电磁波屏蔽场所的涂敷。在涂料中添加纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍提高,涂料的质量和档次大大升级。纳米二氧化钛超亲水性和超亲油性的开发应用将为涂层材料带来革命,使表面具有自清洁功效,防污、防雾、易洗、易干。纳米材料改性外墙涂料的耐洗刷性可由原来的1000多次提高到1万多次,老化时间延长2倍多,利用纳米材料的光学性能改性后的颜料色彩艳丽、保持持久且极易分散。   (5)纳米稀土   纳米稀土是目前国内纳米材料发展的热点之一。目前正在重点开发纺织纤维用纳米稀土材料、PDP\\LED用稀土发光材料、稀土荧光粉和高性能稀土合金。   纳米稀土的主要应用方向为汽车尾气催化剂(如纳米CeO2)、纺织纤维添加剂、高性能稀土发光材料、陶瓷及涂层等。   (6)纳米陶瓷   氧化钇锆是一种应用广泛的陶瓷材料,用纳米氧化钇和氧化锆能在较低温度下烧结成氧化锆陶瓷,具有很高的强度和韧性,可用作刀具和耐磨零件,也可制成陶瓷发动机部件。此外,稀土氧化物等纳米材料可以掺入普通陶瓷粉,喷涂在陶瓷基体上形成无机陶瓷腊(膜),代替聚四氟乙烯有机膜,做成耐热、无铅、不粘的日用陶瓷炊具。

  • 纳米技术及应用

    信息产业科技、生物科技和纳米技术是现在世界上前沿科学领域的三大主要方向。 纳米是一个长度计量单位,它是一米的十亿分之一。纳米材料就是在纳米量级范围内调控物质结构研制而成的新材料。纳米技术就是 指在纳米尺度范围内,通过操纵原子、分子、原子团和分子团,使 其重新排列组合成新物质的技术。其最终目标是直接以原子、分子的变化,使物质在纳米尺度上表现出新颖的物理、化学和生物学特性,制造出具有特定功能的产品。因为纳米材料的粒度非常微小,一般的显微镜是不能观察到的,所以纳米技术是在扫描隧道显微镜发明之后,才出现以0.1至100纳米尺度为研究对象的前沿科学。这可能改变几乎所有产品的设计和制造方式,实现生产方式的飞跃, 是新工业革命的核心。纳米技术也是信息和生命科学技术能够进一步发展的共同基础,将对人类产生深远的影响,甚至改变人们的思维方式和生活方式。有人曾经预言说,七十年代搞微米技术的国 家,现在已成为发达国家;现在从事纳米技术研究的国家,将是二 十一世纪的先进国家。 纳米材料粒度非常微小,具有良好的表面效应,一克纳米材料的表 面积达到几百平方米,因此用纳米材料制成的产品,其强度、柔韧 度、延展性都十分优越,就象一种有成千上万对脚的毛毛虫,当它 吸附在光滑的玻璃面上时,由于接触面积大,12级台风也吹不掉 它。因此,在化纤中加入少量的金属纳米颗粒,就可摆脱磨擦引起的静电现象;在食品中采用纳米技术,可提高肠胃的吸收功能;在 涂料中运用纳米技术,可使外墙涂料的耐洗刷性从一千多次提高到一万多次,老化时间延长两倍多;许多化妆品因为加入纳米微粒, 而具备防紫外线功能;利用纳米技术可生产出色彩鲜艳、抗折性极 高的彩色轮胎;利用纳米粉末,可使废水变清。另外,纳米在医药 保健、计算机、化学和航天等领域都会引起新的、技术性革命。 作为纳米技术重要方面的碳纳米管,是1991年被人类发现的。它是由石墨碳原子层卷曲而成的碳管,管的直径一般为几个纳米到几十纳米,管壁厚度仅几个纳米,象铁丝网卷成的空心圆柱状的“笼形 管”。5万个“笼形管”排列起来,才有人的一根头发丝那么宽,长度和直径比非常高的纤维小。作为石墨、金刚石等碳晶体家族的新成员,碳纳米管的韧性很高,导电性极强,场发射性能优良,兼具 金属性和半导体性。其强度比钢高100倍,比重只有钢的1/6,称之 为未来的超级纤维,成为国际研究的热点。碳纳米管的用途十分诱 人。它可制成极好的微细探针和导线、加强材料及储氢材料。它使壁挂电视成为可能,并在将来可替代硅芯片。纳米芯片体积更小、 容量更大、重量更轻,将在纳米电子学中扮演极重要角色,并引发计算机行业的革命。不久前我国研制出的碳纳米管显示器样本,不但体积小,重量轻,而且显示质量好,从-45℃~80℃皆能正常工 作,而耗电只有现在的显示器的1%。 另外,作为纳米技术的应用之一,在我国西安已研制出的“纳米服 装”,不仅能阻隔95%以上的紫外线,还能阻隔同量的电磁波,且无毒、无刺激,不受洗涤、着色、磨损的影响,能有效地保护人体皮 肤不受辐射的影响。还有小鸭集团研制出的纳米洗衣机,就是利用 纳米抗菌材料研制出的自我清洁的洗衣机。它能够有效地抑制细菌 滋生,无论使用多长时间,都能够保持“净水洗涤”的状态。 目前,纳米技术在电线电缆中的应用已在开始。有人曾设想,能否运用纳米技术来提高绝缘材料的性能,从而提高电缆的绝缘、耐热 和抗老化等性能,减少电缆的外径,减轻电缆的重量。另外能否利 用碳纳米管的韧性高、导电性强的特点,制成超细电磁线,使微型 电机的体积象米粒那样大,甚至更小。 现在“纳米热”已遍及全球,从大西洋到太平洋,从日本到欧洲,各国都把它作为重要的未来发展战略。美国总统克林顿曾经发表过 一篇关于前沿科学技术的前瞻性的讲话,提出了美国今后要大力发 展纳米技术。美国已于2000年10月1日启动“国家纳米计划”,投资1997年的1.16亿美元增加到4.97亿美元。目前全球纳米技术的年 产值已达到500亿美元,预计到2010年,市场容量将达到14400亿美 元。我国已建立了10多条纳米材料和技术的生产线,以此为基础的企业已达100多家。预计在今后二、三十年内,它将远远超过计算机工业,并成为未来信息时代的核心。纳米技术导致的微形化趋势从根本上改变人类的处境,从而引起二十一世纪的又一次产业革命。

  • 神奇的微生物纳米线

    神奇的微生物纳米线

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501091358_531780_2972800_3.jpg 科学界关于“微生物纳米线”的争论已经存在了十年,近日,美国麻州大学阿默斯特分校的德里克•洛弗利研究小组利用新的成像技术——静电力显微镜(EFM)从物理学上证明了地杆菌微生物体内“微生物纳米线”的存在,这是一项极具环境和现实意义的发现,微生物纳米线是潜在的“绿色”的电子元件,可再生、无毒、可基因操控,未来将广泛用于工程微生物传感器和生物计算设备等领域。 “微生物纳米线”是一种线状纤维蛋白,它们就像安在微生物身体上的微小电线一样,可以传输电荷。“图像显示电流沿着微生物纳米线流动,眼见为实,能在分子水平上将纳米线传输电荷的机制可视化是非常令人振奋的。”洛弗利激动地说。纳米线证明了地杆菌以土壤中的铁和其他金属为生,这将使其在改变土壤化学状况以及环境净化中发挥重要作用。 这一发现不仅在生物学上,也在材料学上提出了一项重要的新原理:当设置正确时,天然氨基酸可像碳纳米管等分子导体一样传输电荷。它为蛋白质纳米电子学开辟了前所未有的前景。目前正在开发应用程序有两个:一是把地杆菌集成到电子传感器中来监测环境污染物,二是基于地杆菌的微生物计算机。“我期望这项技术未来可以应用于更多物理学和生物学交叉的领域。”洛弗利说。

  • 神奇的微生物纳米线

    神奇的微生物纳米线

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501091400_531781_2972800_3.jpg 益择网讯(慕雪/编译)科学界关于“微生物纳米线”的争论已经存在了十年,近日,美国麻州大学阿默斯特分校的德里克•洛弗利研究小组利用新的成像技术——静电力显微镜(EFM)从物理学上证明了地杆菌微生物体内“微生物纳米线”的存在,这是一项极具环境和现实意义的发现,微生物纳米线是潜在的“绿色”的电子元件,可再生、无毒、可基因操控,未来将广泛用于工程微生物传感器和生物计算设备等领域。 “微生物纳米线”是一种线状纤维蛋白,它们就像安在微生物身体上的微小电线一样,可以传输电荷。“图像显示电流沿着微生物纳米线流动,眼见为实,能在分子水平上将纳米线传输电荷的机制可视化是非常令人振奋的。”洛弗利激动地说。纳米线证明了地杆菌以土壤中的铁和其他金属为生,这将使其在改变土壤化学状况以及环境净化中发挥重要作用。 这一发现不仅在生物学上,也在材料学上提出了一项重要的新原理:当设置正确时,天然氨基酸可像碳纳米管等分子导体一样传输电荷。它为蛋白质纳米电子学开辟了前所未有的前景。目前正在开发应用程序有两个:一是把地杆菌集成到电子传感器中来监测环境污染物,二是基于地杆菌的微生物计算机。“我期望这项技术未来可以应用于更多物理学和生物学交叉的领域。”洛弗利说。

  • 【转帖】纳米材料几个热点领域的新进展

    纳米材料几个热点领域的新进展  一、纳米组装体系的设计和研究  目前的研究对象主要集中在纳米阵列体系;纳米嵌镶体系;介孔与纳米颗粒复合体系和纳米颗粒膜。目的是根据需要设计新的材料体系,探索或改善材料的性能,目标是为纳米器件的制作进行前期准备,如高亮度固体电子显示屏,纳米晶二极管,真空紫外到近红外特别是蓝、绿、红光控制的光致发电和电子发光管等都可以用纳米晶作为主要的材料,国际上把这种材料称为“量子”纳米晶,目前在实验室中已设计出的纳米器件有Si-SiO2的发光二极管,Si掺Ni的纳米颗粒发光二极管,用不同纳米尺度的CdSe做成红、绿、蓝光可调谐的二极管等。介孔与纳米组装体系和颗粒膜也是当前纳米组装体系重要研究对象,主要设计思想是利用小颗粒的量子尺寸效应和渗流效应,根据需要对材料整体性能进行剪裁、调整和控制达到常规不具备的奇特性质,这方面的研究将成为世纪之交乃至下一个世纪引人注目的前沿领域。纳米阵列体系的研究目前主要集中在金属纳米颗粒或半导体纳米颗粒在一个绝缘的衬底上整齐排列的二维体系。   纳米颗粒与介孔固体组装体系近年来出现了新的研究热潮。人们设计了多种介孔复合体系,不断探索其光、电及敏感活性等重要性质。这种体系一个重要特点是既有纳米小颗粒本身的性质,同时通过纳米颗粒与基体的界面隅合,又会产生一些新的效应。整个体系的特性与基体的孔洞尺寸,比表面以及小颗粒的体积百分比数有密切的关系。可以通过基体的孔洞将小颗粒相互隔离,使整个体系表现为纳米颗粒的特性;也可以通过空隙的连通,利用渗流效应使体系的整体性质表现为三维块体的性质。这样可以根据人们的需要组装多种多样的介孔复合体。目前,这种体系按支撑体的种类可划分为:无机介孔和高分子介孔复合体两大类。小颗粒可以是:金属、半导体、氧化物、氮化物、碳化物。按支撑体的状态也可分为有序和无序介孔复合体。  二、高性能纳米结构材料的合成  对纳米结构的金属和合金重点放在大幅度提高材料的强度和硬度,利用纳米颗粒小尺寸效应所造成的无位错或低位错密度区域使其达到高硬度、高强度。纳米结构铜或银的块体材料的硬度比常规材料高50倍,屈服强度高12倍;对纳米陶瓷材料,着重提高断裂韧性,降低脆性,纳米结构碳化硅的断裂韧性比常规材料提高100倍,n-ZrO2+Al2O3、n-SiO2+Al2O3的复合材料,断裂韧性比常规材料提高4-5倍,原因是这类纳米陶瓷庞大体积百分数的界面提供了高扩散的通道,扩散蠕变大大改善了界面的脆性。  三、纳米添加使传统材料改性  在这一方面出现了很有应用前景的新苗头,高居里点、低电阻的PTC陶瓷材料,添加少量纳米二氧化铣可以降低烧结温度,致密速度快,减少Pb的挥发量,大大改善了PTC陶瓷的性能,尺度为60nm的氧化锌压敏电阻、非线性阀值电压为100V/cm,而4mm的氧化锌,阀值电压为4kV/cm,如果添加少量的纳米材料,可以将阀值电压进行调制,其范围在100V~30kV之间,可以根据需要设计具有不同阀值电压的新型纳米氧化锌压敏电阻,三氧化二铝陶瓷基板材料加入3%--5%的27nm纳米三氧化二铝,热稳定性提高了2——3倍,热导系数提高10%——15%。纳米材料添加到塑料中使其抗老化能力增强,寿命提高。添加到橡胶可以提高介电和耐磨特性。纳米材料添加到其他材料中都可以根据需要,选择适当的材料和添加量达到材料改性的目的,应用前景广阔。  四、纳米涂层材料的设计与合成   这是近1—2年来纳米材料科学国际上研究的热点之一,主要的研究聚集在功能涂层上,包括传统材料表面的涂层、纤维涂层和颗粒涂层,在这一方面美国进展很快,80nm的二氧化锡及40nm的二氧化钦、20nm的三氧化二铬与树脂复合可以作为静电屏蔽的涂层,80nm的BaTiO3可以作为高介电绝缘涂层,40nm的Fe3O4可以作为磁性涂层,80nm的Y2O3可以作为红外屏蔽涂层,反射热的效率很高,用于红外窗口材料。近年来人们根据纳米颗粒的特性又设计了紫外反射涂层,各种屏蔽的红外吸收涂层、红外涂层及红外微波隐身涂层,在这个方面的研究逐有上升的趋势,目前除了设计所需要的涂层性能外,主要的研究集中在喷涂的方法,大部分研究尚停留在实验室阶段,日本和美国在静电屏蔽涂层、绝缘涂层工艺上有所突破,正在进入工业化生产的阶段。  五、纳米颗粒表面修饰和包覆的研究   这种研究主要是针对纳米合成防止颗粒长大和解决团聚问题进行的,有明确的应用背景。美国已成功地在ZrO2纳米颗粒表面包覆了Al2O3在纳米Al2O3表面包覆了ZrO2,SiO2表面的有机包覆,TiO2表面的有机和无机包覆都已在实验室完成。包覆的小颗粒不但消除了颗粒表面的带电效应,防止团聚,同时,形成了一个势垒,使它们在合成烧结过程中(指无机包覆)颗粒不易长大。有机包覆使无机小颗粒能与有机物和有机试剂达到浸润状态。这为无机颗粒掺入高分子塑料中奠定了良好的基础。这些基础研究工作,推动了纳米复合材料的发展。美国在实验室中已成功的把纳米氧化物表面包覆有机物的小颗粒添加到塑料中,提高了材料的强度和熔点。同时防水能力增强,光透射率有所改善。若添加高介电纳米颗粒,还可增强系统的绝缘性。在封装材料上有很好的应用前景。

  • 浅谈拒水拒油纳米技术处理服装的功能检测

    浅谈拒水拒油纳米技术处理服装的功能检测Discussion on the Testing of Water-repellent and Oil-repellent Nano-functionalApparel 杨志敏,何玉兰,叶毓辉,董晶泊(深圳市计量质量检测研究院,广东 深圳 518139)摘要:简要介绍拒水拒油纳米处理服装,及通过接触角、沾水等级、拒油等级对其性能的检测。关键词:纳米;拒水;拒油;接触角Abstract:This paper briefly introduces the nano-functional apparel ,and the test method of the water-repellent and oil-repellent.Key words: nano;water-repellent;oil-repellent;contact angle拒油原理和拒水原理极为相似,都是改变纤维表面性能,使其临界表面张力降低,水和油与其产生较大的接触角,达到拒水拒油的目的,而又不影响织物的透气性。拒水拒油纳米服装就是利用纳米技术处理过的面料制成的功能性服装。目前常用有两种方法:一种是利用涂层或浸渍,对纤维或面料进行表面处理,最终在织物表面形成一种功能性的涂层;另一类是利用化纤改性技术,将纳米材料作为添加剂加入到纺丝液中,复合纺丝,制备功能面料。目前市场上纳米服装局面混乱,鱼目混珠的“纳米”产品一哄而上,有些只是不透气涂层织物,引来众多的非议。如何鉴定纳米结构,评估和检测服装的拒水拒油功能,从而判定是否为拒水拒油纳米处理服装是目前面临的问题。本实验通过扫描电镜(SEM)鉴定织物表面的纳米结构,并通过测量液体在织物表面的接触角,沾水等级,拒油等级来检测纳米处理服装的拒水拒油性能,简要介绍拒水拒油纳米处理服装的检测。1纳米结构的鉴定确定是否具有纳米结构单元是判断该服装是否为纳米技术处理服装的前提。目前纳米结构的表征方法有很多,如扫描电镜(SEM)、透射电镜(TEM)、扫描隧道电镜(STM)、原子力显微镜(AFM)、X射线小角散射法(SAXS)等等,但涉及到服装一类最终产品上,取样、制样方法一直是难题。结合试验条件,本试验采用扫描电子显微镜测定织物表面纳米结构单元。仪器:扫描电子显微镜(分辨率2 nm),哈氏切片器,镀膜仪(金属膜)。在服装上的有效部位随机剪取5块5 mm×5 mm的试样,用镊子夹取试样固定在贴有导电胶布样品台上,将载有样品的试样台移至镀膜仪,镀膜为金属导电膜,膜的厚度宜在5~20 nm的范围内。然后送入扫描电镜样品室,抽真空直至可以进行电镜测试。在使用扫描电镜测试时,每个试样随机选择四个区域进行观测,放大倍数以有利于观测纳米结构为宜。结构单元的短径≤100 nm则为纳米结构单元,结构的短径>100 nm则为非纳米结构单元。测试所有试样,并计算纳米结构单元总数和非纳米结构单元总数(如图1所示)。图1 纤维表面形貌从图1中可以看出,纤维表面附有较多纳米颗粒。部分纳米颗粒因发生团聚,颗粒直径明显大于100 nm。整个区域以直径≤100nm的纳米颗粒为主,完全符合纳米技术处理服装的要求。2表面接触角测定当一滴液体滴在织物表面上时,有可能完全润湿织物,在表面形成一层水膜,有可能形成水滴状,液滴边缘与固体表面形成一个夹角θ,这个角就称为接触角。当0°<θ<90°时,液体部分润湿织物,并在极短的时间内,液滴向四周扩散并渗入织物中,90°<θ<180°时,液体不能润湿织物表面而形成液珠,倾斜时液滴滚落。如图2所示。 图2 接触角θ要达到拒水的目的,就要使接触角θ越大越好。根据著名的Young方程:γS=γSL +γLcosθ,液体在固体表面形成的接触角和界面张力之间的关系可知,由于液体表面张力不变,要达到拒水的目的,就必须减小固体表面张力或使固液表面张力变大。由于在纳米尺寸低凹的表面可以吸附气体分子,并且使其稳定附着存在,所以在宏观织物表面上形成了一层稳定的气体薄膜,使得油或水无法与织物的表面直接接触,纤维表面张力减小,水滴或油滴与界面的接触角趋于最大值,实现纤维织物拒水拒油功能。 水的表面张力为72.6 mJ/m2,而一般油类的表面张力为20~40 mJ/m2,润湿能力远大于水,所以拒油的物质一定拒水,故这里只测量油滴的接触角。取5个样品,在同一个样品上不同位置测量5次,取平均值。然后使用标准洗涤剂按5A程序洗涤5个循环,再测试洗后织物表面接触角。仪器:JC2000C1静滴接触角/界面张力测量仪,微量注射器,玻璃载片,A形全自动洗衣机。试剂:食用油,标准洗涤剂WOB。 图3 油滴在织物表面形态 调整好仪器之后,通过垂直固定的微量注射器往织物表面上滴2~3 μL食用油,油滴未渗入织物中,在织物表面形成近似圆形液滴,见图3。冻结图像之后,计算每个油滴的接触角,结果见表1。表1 油滴表面接触角试样编号接触角/o洗前洗后1#144.8138.22#141.6145.13#149.7142.24#153.4137.45#145.2148.8平均值146.9142.3从表1可以看出,洗前油滴在织物表面的平均接触角为146.9 o,远大于90 o;洗后油滴在织物表面的平均接触角为142.3 o,不仅说明该服装洗后仍使油滴在其表面有较大的接触角,具有良好的拒油效果,亦说明该服装具有一定的耐洗性能。3拒水级别测试在日常检测中,对织物的拒水级别测试,一般用淋水性能测试方法。按照GB/T4745—1997《纺织织物表面抗湿性测定沾水压试验》中要求的取样、操作程序、评定进行,织物的经向与水流方向平行,分别测试洗前、洗后试样的拒水级别,结果见表2。表2 拒水等级试样编号沾水等级/级洗前洗后1#552#553#55[/tr

  • 【求助】扫描电镜 检测样品问题?

    如题,用聚乳酸羟基乙酸通过静电纺丝制成的膜状材料,想用扫描电镜观察材料的表面性状,我的制备程序是:1 戊二醛锇酸固定;2 乙醇梯度脱水;3 乙酸异戊酯置换…… 重点是,第三步100%乙酸异戊酯置换后可以用空气干燥法吗?(注:没有临界干燥法的仪器,且材料是由纤维组成的,电镜主要看纤维的排列) 请各位高手指点

  • 硕士论文求助(腈纶纺丝原液精密过滤技术的研究(请修改为悬赏贴)

    腈纶纺丝原液精密过滤技术的研究刘强 【摘要】:碳纤维是现代国防飞机、航空航天、新型建材和高档体育用等工业所需的重要高科技术新材料,腈纶是生产碳纤维的原丝。国外碳纤维能够生产T700,国内碳纤维只能生产T300,远远落后国外水平,其主要原因是腈纶生产中的过滤环节,腈纶纺丝原液中含有的杂质特别是凝胶粒子严重影响碳纤维品质。国内现有腈纶纺丝原液过滤设备主要是板框压滤机,存在污染严重等问题且最高过滤精度为10μm,国外腈纶纺丝原液过滤采用新的过滤方式,过滤精度能达到5μm以下,因此腈纶纺丝原液过滤问题已成为亟待研究的重要问题,课题重点研究腈纶生产过程中纺丝原液凝胶粒子的精密过滤技术。 本文分析了凝胶粒子过滤机理,包括凝胶粒子性质、产生原因、主要停留位置以及影响其过滤的因素等,综合上述分析,提出一种采用深层过滤方法,使用烧结金属纤维毡的过滤介质,以及增加反冲洗模式的过滤方式。新的过滤方式既能弥补板框压滤机的缺点,又能对凝胶粒子起到很好的过滤效果。 基于新的过滤方式,并根据过滤粘胶纤维的兰精公司KKF18的工作原理图,本文设计了一种新的过滤结构,建立了Pro/ENGINEER整体模型。基于Polyflow研究了新过滤器在过滤腈纶纺丝原液的过滤机理,结果表明只要增大电动机的转矩,此过滤器能过滤腈纶纺丝原液。 压差对于凝胶粒子溶液的过滤机理具有重要影响。本文对新设计过滤器的流道和KKF 18的流道进行压差的比较,分别建立腈纶纺丝原液在圆柱孔(新过滤器)和锥形孔(KKF18)流动的数学模型,建立了圆柱孔和锥形孔的Pro/ENGINEER三维实体模型,用Polyflow软件研究了溶液通过两种模型的过滤效果,结果表明达到同一过滤效果的情况下,锥形孔支撑筒要建立的压差为1.548MPa,而圆柱孔支撑筒需建立的压差为0.35MPa,从而说明圆柱孔更适合腈纶纺丝原液的过滤。 为了分析凝胶粒子在新的过滤方式中过滤机理,本文建立了凝胶粒子在腈纶纺丝原液流动以及在过滤网被截留时的数学模型,分析表明凝胶粒子在腈纶纺丝原液中的速度、加速度与原液的速度、加速度,并且同时与凝胶粒子的粒径相关,原液的速度与加速度越大,凝胶粒子的速度也越大;凝胶粒子的粒径越大,其流动速度也越大。建立了滤网流道Gambit模型,然后用Fluent软件模拟含有凝胶粒子以及腈纶纺丝原液的两相流通过不同过滤精度的烧结金属纤维网的情况,结果验证了数学模型的正确性,表明过滤网孔径的减小即过滤精度的提高对凝胶粒子的过滤起到重要的作用。 通过对课题的研究,设计了腈纶纺丝原液过滤器,模拟了腈纶纺丝原液和凝胶粒子在过滤器中流动过程,具有工程指导价值,对碳纤维的生产有重要的意义。【关键词】:腈纶纺丝原液 凝胶粒子 精密过滤 Polyflow Fluent 【学位授予单位】:东华大学【学位级别】:硕士【学位授予年份】:2011【分类号】:TQ342.31【目录】: 摘要5-7ABSTRACT7-11第一章 绪论11-171.1 研究背景与意义11-121.2 研究现状12-141.2.1 腈纶生产中过滤技术现状12-131.2.2 过滤对象的研究现状13-141.3 研究内容、研究方法和创新点14-171.3.1 研究内容14-151.3.2 研究方法15-161.3.3 创新点16-17第二章 凝胶粒子过滤机理研究17-272.1 凝胶粒子主要特征、产生原因与主要停留位置17-202.1.1 凝胶粒子主要特征17-192.1.2 凝胶粒子产生原因192.1.3 凝胶粒子主要停留位置19-202.2 过滤方式与过滤介质选择2

  • 【求助】碳纳米管 纯化

    准备做碳纳米管修饰电极,求关于碳纳米管纯化的经典文章!看到很多人引用Tsang S. C. 在 Nature上发的文章,好像不止一篇。可惜我找不到原文,各位大侠能否帮忙找到原文?不胜感激!

  • 【特稿】浅谈纳米材料的应用

    有人曾经预测在21世纪纳米技术将成为超过网络技术和基因技术的“决定性技术”,由此纳米材料将成为最有前途的材料。世界各国相继投入巨资进行研究,美国从2000年启动了国家纳米计划,国际纳米结构材料会议自1992年以来每两年召开一次,与纳米技术有关的国际期刊也很多。纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。  1 力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。

  • 【求助】扫描电镜观察材料的表面性状问题?

    如题,用聚乳酸羟基乙酸通过静电纺丝制成的膜状材料,想用扫描电镜观察材料的表面性状,我的制备程序是:1 戊二醛锇酸固定;2 乙醇梯度脱水;3 乙酸异戊酯置换…… 重点是,第三步100%乙酸异戊酯置换后可以用空气干燥法吗?(注:没有临界干燥法的仪器,且材料是由纤维组成的,电镜主要看纤维的排列) 请各位高手指点

  • 关于纳米晶体的XRD和SAED

    想到一个问题,从Scherrer公式来讲,纳米晶在XRD的峰宽化是因为粒子小于几个纳米造成的,但SAED应该不受这个限制,因为波长要小多了,那么即使小于3 nm的纳米晶在XRD中有宽化的现象,在SAED中如果选取很多颗粒是否一样很锐利,甚至选取一个2nm单晶也应该有比较好的衍射点?不知道是不是能这样理解,还是Scherrer公式仅仅用于XRD测试?

  • 发现利用碳纳米管新发电现象

    美国麻省理工学院(MIT)宣布,发现了利用碳纳米管的新发电现象——“热力波”(Thermopower Wave)(英文发布资料)。麻省理工学院在《自然—材料学》([i]Nature Materials[/i])上发表了有关详细内容。发现这一现象的麻省理工学院化学工程副教授Michael Strano称,热力波是一种当热波在碳纳米管上高速传播时,会同时搬运电子或空穴(Hole)的现象。比如用环三次甲基三硝铵(RDX,塑料炸弹的主要材料)对多层碳纳米管(MWCNT)进行涂层,并在其一端通过激光器半导体点“火”。热波就会像导火线似的在多层碳纳米管上高速移动。其移动速度在2860K温度下超过2m/s,“是普通化学反应速度的1万倍”(麻省理工学院)。Strano等人发现,在这种波传递的同时能够形成非常大的电力。论文中的输出密度为7kW/kg。麻省理工学院表示,“论文发表之后开发工作仍在继续,现在已经实现了相当于锂离子充电电池100倍的输出密度”。Strano称,这种现象无法通过在热电转换元件中广为人知的“塞贝克效应”(Seebeck Effect)进行合理解释。“虽然被称作‘燃烧波’(Combustion Wave)的现象从100多年前就已经能够从理论上加以解释,但在碳纳米管上产生燃烧波、而且燃烧波还会产生电流,却是此前一直不为人知的现象”(Strano)。虽然利用这种现象的具体应用实例尚未出现,不过Strano表示“有望用于米粒大小的超小型传感器和可嵌入体内的电子产品等,或是散布在空气中使用的环境传感器”。上述现象为不可逆反应,因此无法用于充电电池,不过Strano表示“能够制造出不漏电不放电、可半永久性保存的(一次)电池”。资料来源:[url]http://paper.sciencenet.cn//htmlpaper/20104231042214218903.shtm[/url]

  • 纳米颗粒的粒径问题

    一直在做Au的纳米颗粒方面的东西,有个问题一直比较困扰。我的颗粒理论是0.8-1 nm的,粒径分布比较均匀,但是观察时有这么一个问题:如果简单分散到碳膜上(普通碳膜,非超薄),那么颗粒在1.0 -1.1nm左右,但如果分散到纳米线上,悬空观察,则是0.9 nm左右。后者应该比较可信,因为纳米线有特征晶格条纹做内标。前者应该也可以,是用金标样做过校正的。那么是不是碳膜的厚度影响了纳米颗粒的粒径测量?还是说在分散到纳米线上和分散到碳膜上,颗粒发生了一定的形变?多谢!

  • 【资料】纳米新技术(共3讲)

    [B][center]什么是纳米技术 [/center][/B] 纳米是长度单位,原称"毫微米",就是10-9(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。  从具体的物质说来,人们往往用"细如发丝"来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。  纳米技术包含下列四个主要方面:   第一方面是纳米材料,包括制备和表征。在纳米尺度下,物质中电子的放性(量子力学学性质)和原子的相互作用将受到尺度大小的影响,如能得到纳米尺度的结构,就可能控制材料的基本性质如熔点、磁性、电容甚至颜色。而不改变物质的化学成份。用超微粒子烧成的陶瓷硬度可以更高,但不舱裂:无机的超微粒子灰分在加入橡胶后,将粘在聚合物分子的端点上,所做成的轮胎将大大减小磨损和处长寿命。   第二方面是纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。MEMS用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。   第三方面是纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定 DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。   第四方面是纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷。"更小"是指响应速度要快。"更冷"是指单个器件的功耗要小。但是"更小"并非没有限度。  纳米技术是建设者的最后疆界,它的影响将是巨大的  在1998年的四月,总统科学技术顾问,Neal Lane 博士评论到,如果有人问我哪个科学和工程领域将会对未来产生突破性的影响,我会说该个启动计划建立一个名为纳米科技。"大挑战"机构,资助进行跨学科研究和教育的队伍,包括为长远目标而建立的中心和网络。一些潜在的可能实现的突破包括:   把整个美国国会图书馆的资料压缩到一块像方糖一样大小的设备中,这通过提高单位表面储存能力1000倍使大存储电子设备储存能力扩大到几兆兆字节的水平来实现。  由自小到大的方法制造材料和产品,即从一个原子、一个分子开始制造它们。这种方法将节约原材料和降低污染。  生产出比钢强度大10倍,而重量只有其几分之一的材料来制造各种更轻便,更省燃料的陆上、水上和航空用的交通工具。  通过极小的晶体管和记忆芯片几百万倍的提高电脑速度和效率,使今天的奔腾Ⅲ 处理器已经显得十分慢了。   运用基因和药物传送纳米级的MRI对照剂来发现癌细胞或定位人体组织器官   去除在水和空气中最细微的污染物,得到更清洁的环境和可以饮用的水。  提高太阳能电池能量效率两倍。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制