当前位置: 仪器信息网 > 行业主题 > >

目标化合物

仪器信息网目标化合物专题为您整合目标化合物相关的最新文章,在目标化合物专题,您不仅可以免费浏览目标化合物的资讯, 同时您还可以浏览目标化合物的相关资料、解决方案,参与社区目标化合物话题讨论。

目标化合物相关的资讯

  • 安捷伦科技MassHunter软件集成先进的目标化合物解卷积功能
    安捷伦科技MassHunter软件集成先进的目标化合物解卷积功能 从复杂样品中轻松获取稳定可靠的定量/定性数据 2014年7月11日,北京——安捷伦科技公司(纽约证交所:A)近日宣布将在其强大的MassHunter工作站软件中增加已优化的目标物解卷积功能。MassHunter目标物解卷积定量分析软件具备目标化合物解卷积功能,能够让用户有效地移除背景中基质离子的数据,并轻松获取复杂样品中目标物质的定量和定性结果。Mass Hunter定量分析软件B 06.00及以上版本包含此项新功能。 目标物解卷积是一种强大的分析方法,可对复杂样品中的小分子目标物质进行鉴定及定量分析。这种分析方法通常用于食品的农药残留分析、生物样品中管制物质的分析以及复杂的土壤或废水样品中环境污染物的分析。 安捷伦GC/MS市场部经理Terry Sheehan博士表示:“随着样品中的基质越来越复杂,扫描模式的气质联用系统在环境、食品安全、材料分析、代谢组学等领域的应用也面临着严峻的挑战。MassHunter 新的目标物解卷积功能极大地提高了从这些复杂的分离组分中提取质谱信息的可能性。” 相比安捷伦的ChemStation解卷积报告软件,MassHunter目标物解卷积软件使用更简单、更灵敏,可为每一个被识别组分的峰选择最佳设置并提供出色的目标匹配。 该软件只报告与目标参比图谱最匹配的组分图谱,提供交互式的数据审查和超范围标示功能,并且能够对保留时间 锁定目标进行 质谱谱库比对,以及对单个或整批样品快速生成 PDF格式报告。 Agilent LC/MS、GC/MS和ICP-MS仪器均使用MassHunter软件。它拥有直观的仪器控制、先进的数据采集、处理和报告能力,让用户最大限度扩展思路并找出目标结果。 现已签订软件维护合同的 MassHunter 用户可免费进行升级。 了解Mass Hunter定量分析软件的更多信息,请访问安捷伦MassHunter工作站与MSD ChemStation DA网站。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有20,600名员工,遍及全球100多个国家,为客户提供卓越服务。在2013财年,安捷伦的净收入达到68亿美元。了解关于安捷伦的详细信息,请访问www.agilent.com.cn。 安捷伦于2013年9月19日正式宣布拆分为两家上市公司,并通过免税剥离方式拆分出电子测量公司。新的电子测量公司名称为Keysight Technologies(是德科技)。预计整个拆分将于2014年11月初完成。
  • 参考指南 | 胺类化合物全流程分析方案
    胺类化合物 众所周知,胺类化合物是医药、环境、食品以及化工等领域极其常见的目标分析物。这类碱性物质的高活性也常常使气相分析面临重重困难,并夹杂着如拖尾,吸附,响应低等一系列问题。为此,安捷伦技术团队针对以上问题痛点研究出一整套消耗品方案,能有效解决或改善以上问题,从而帮助您更好地应对胺类分析挑战。 这本快速参考指南将帮助您,选择适用的应用色谱柱及工作流中所涉及的相关耗材。 应对胺类分析的安捷伦 J&W 气相色谱柱组合用于胺类分析的 Agilent J&W 气相色谱柱经过开发和测试,4 款色谱柱组合提供了从非极性到极性的宽固定相极性选择范围,满足不同样品的分离优化。无论是简单样品还是复杂样品,我们全面的创新型色谱柱系列产品都可助您实现快速、准确且可重现的分离。 胺类化合物方法开发色谱柱优选组合如果您的实验室工作涉及胺类化合物的方法开发,您可选择以上推荐的四款不同极性色谱柱的组合。这四款气相色谱柱的固定相皆有所不同,可提供不同的分离选择性,且都具有低流失和稳定耐用的特点,是理想的胺类化合物分析的色谱柱优选组合。 选择合适您样品的色谱柱对于胺分析检测,除气相色谱柱需要惰性处理外,如果整个流路不具备适当的惰性,使用气相色谱分析胺类化合物依然具有一定难度。在对活性化合物进行分析时,重要的是所选的所有部件能够在流路中提供尽可能高的惰性,以确保峰形尖锐、对称,并保持高灵敏度。 使用安捷伦惰性流路备件分析胺类化合物本订购指南提供了该分析所需产品的指导。单击“我的列表”标题将打开安捷伦在线商城* 中可编辑的预填充购物车,以便您轻松挑选所需的产品。 用于小分子挥发性胺类化合物的进样口衬管 用于分子量较大的胺类化合物,盐酸盐形式或中和后的碱性物质 安捷伦超高惰性进样口备件 安捷伦气体管理 安捷伦高品质样品瓶及瓶盖 来源:安捷伦视界
  • 【瑞士步琦】不同类型化合物应用的最佳条件
    不同类型化合物应用的最佳条件现如今,Flash 及 Prep HPLC 色谱已经成为许多分离应用的首选方式。就像我这种“厨房小白”,黑暗料理界殿堂级人物,在做饭时,如果盐放多了都会不禁在想:是不是可以通过色谱分离的方式去除多余的盐?然而,尽管这些分离技术是化学的基础,但它们仍然难以捉摸,因为没有通用的一种方法可以适用于所有的样品。不同行业研究或感兴趣的化合物是多样性的,这些化合物理化性质差异性很大。幸运的是,前人们已经通过多年的经验总结出了对不同分子类型化合物最有效的纯化条件。所以,如果您在进行样品分离时,对流动相或固定相以及检测器的选择感到迷茫时。或许本篇文章会对您有些许的启发。第一阶段是流动相:样品一定要可溶于待选溶剂;其次是固定相:对您的样品要有保留。有两种色谱类型适用于这里:正相(NP)色谱和反相(RP)色谱。这两大色谱类型也是很多小伙伴在日常科研当中用到最广泛的。接下来是需要确定样品溶解度,判断是否可以液体进样?如果不可以,可以考虑固体上样的方式(Flash色谱)。最后一步是检测,包括需要了解样品是否具有紫外吸收,这将决定哪种检测方法对特定化合物最有效,之前“小步”同学也有给大家分享过关于检测器的选择,没有看过的同学可以点击这里,为了帮助快速进行 Flash 和 Prep HPLC 应用的开发,“小步”同学给出一些化合物类型适用的最佳条件。蛋白质和多肽蛋白质由氨基酸组成,在溶液中形成与它们的生物功能密切相关的高度有组织三维结构。多肽则是蛋白质的小版本,通常由含有 2-50 个氨基酸组成。就流动相而言,它们大多溶于水。反相(RP)色谱法适用于多肽或更小、更稳定的蛋白质,它们在纯化后会重新折叠。这需要含有较少极性溶剂的水混合物,如乙腈、异丙醇或乙醇。乙腈是最受欢迎的溶剂,因为它易挥发,很容易从收集的馏分中去除,除此之外,它还具有低粘度和低紫外线吸收等特点。对于多肽的分离,传统的三氟乙酸(TFA)被添加到流动相来进行pH控制(缓冲)和离子配对(与相反带电的离子团形成复合物以增强保留)。固定相是根据样品的分子量和极性进行选择。Prep HPLC 色谱法由于其可以搭配更小粒径尺寸色谱柱(柱效更高),所以成为分离极性相近或相似或化合物的首选纯化方法。对于 Prep HPLC 来讲,样品进样方式必须为液体进样。所以对于疏水性样品,使用低级性溶剂(乙腈),亲水性样品使用乙醇或丙醇最佳。对于高度亲水的样品,可以适当的加入微量二甲基亚砜(DMSO)或二甲基甲酰胺(DMF)提高整体溶解能力,这使得样品可在最小溶剂体积内溶解,最大化减小溶剂扩散现象。如果需要使用固体上样,则更适用于 Flash 色谱。紫外检测器通常作为检测蛋白质或多肽最常用的方式,检测波长一般设为 280nm。这一波长已被证明特别有用,因为可以直接从蛋白质序列当中预测 280nm 处的摩尔吸收系数(消光系数),当然,这只适用于含有色氨酸或酪氨酸残基的蛋白质。如果芳香族氨基酸含量低或没有芳香族氨基酸,则推荐使用 205nm 作为检测波长。天然产物/提取物活的有机体,如植物、微生物或动物,通过初级或次级代谢途径产生这些代谢产物。初级代谢产物是生物体生长所必需的,次级代谢产物是初级代谢产物的最终产物。流动相的选择基于提取时所使用的溶剂类型,如果采用正相色谱(NP)纯化,则使用正己烷,石油醚,二氯甲烷(DCM),乙酸乙酯(EtAc),或其他与水不互溶的溶剂;反相色谱(RP)则采用乙醇和水进行提取,分离纯化流动相一般为甲醇/水或乙腈/水。对于固定相来说,所有的 NP(硅胶,二醇基,氨基等)和 RP(C18 等)均可被使用。天然产物的样品成分通常非常复杂,所以往往需要采用组合分离技术:通过 Flash 色谱进行前期预处理粗分,再经过 Prep 色谱对样品进行单体化合物分离。样品的载样量取决于天然产物提取物的体积,通常来讲提取物量都比较大。样品可以通过注射器或注射泵的方式注入到 Flash 色谱柱中,如果样品体积过大,则建议采取固体上样的方式,因为如果溶剂体积过大会导致色谱峰谱带变宽,进而影响分辨率。Flash 色谱预分离的样品后续可以在 Prep 上进一步纯化。天然产物样品的多样性和未知性决定了其被检测的方法。通常来讲,蒸发光散射检测器(ELSD)与紫外检测器(UV)的组合可以最大化保证样品检测的全面性。对于 NP 色谱,建议使用二极管阵列检测器(DAD)来对样品进行检测。碳水化合物碳水化合物可分为低分子量(单糖和双糖)和更复杂的重碳水化合物(寡糖和多糖)。单糖(葡萄糖)二糖(蔗糖)多糖(直链淀粉)碳水化合物都是亲水性的,流动相一般选择水/甲醇或水/乙腈进行搭配作为洗脱剂。在 RP 条件下,使用 C18 填料作为固定相可以降低高极性碳水化合物的保留。相反,氨基柱已经被证明是最适合作为分离碳水化合物的固定相。因为它不像 C18 那么非极性。上样方式方面,碳水化合物在 RP 条件下通常是可溶的,所以一般采用液体进样的方式进行上样。碳水化合物和脂类一样,缺乏发色团 目前,ELSD 是主要的检测方法。传统上使用示差折光检测器(RI),低波长 UV (190-205 nm),并通过薄层色谱进行纯化后分析。小分子药物这些化合物被定义为有机化合物,通常通过有机合成的方式获得。具有基本化学结构的小分子,分子量一般在 0.1-1kDA 之间。Flash 和 Prep HPLC 通常都可以在 NP 和 RP 条件下条件。小分子药物的目标通常是使用 RP,因为对它们来说水溶性是至关重要的。NP 只能在 RP 不可能的情况下使用或后续通过结构修饰等方式使其能具有更高的成药性。下表为正相色谱(NP)与反相色谱(RP)的对比:_优点缺点正相色谱(NP)__流动相有机试剂溶剂挥发试剂昂贵,安全与环保问题固定相二氧化硅填料便宜填料仅适合一次性使用最佳反相色谱(RP)__流动相水/醇混合物较便宜浓缩较慢(水沸点较高)固定相C18 填料可重复使用C18 填料较昂贵上样方式由样品的极性和纯化方式有关,高压不锈钢柱和 Flash 色谱柱可以液体和固体上样(只能 Flash 色谱使用)。液体注射进样是首选的方式,但是如果样品在方法的起始流动相梯度时溶解性不好,则需要采取固体上样。检测器方面,紫外检测器依然是首选,因为大多数的小分子药物都具有紫外吸收。然而,在某些情况下,如果化合物紫外吸收较弱,那么 NP 色谱所使用的有机溶剂会给其吸收带来干扰,进而影响实验人员对样品分离效果的判断。其他样品可能会是半挥发性的。基于此,在室温条件下使用 ELSD 检测器是最适的,因为高温条件下有机试剂的挥发顺带将化合物带走的情况时有发生,这会导致样品检测灵敏度降低。维生素/脂质由于维生素/脂质的性质多样性,以及篇幅原因。我们后续会专门出一期关于它们的文章,有相关研究的小伙伴可以持续关注哦。好了,现在您应该知道了不同类型化合物需要使用哪些色谱类型应用方法了吧。希望这篇文章能对您接下来的实验有所帮助!我是“小步”同学,我们下期再见!
  • 日本团队合成较高性能质子导电性化合物
    据九州大学官网报道,该校山崎仁丈教授等开发出了能预测质子传导性电解质材料的人工智能(AI)模型,然后仅通过一次实验就发现了较高性能的新型质子导电性电解质。这是将实验研究和数据科学相互融合基础上获得的一项成果。  该团队一直致力于固体氧化物燃料电池(SOFC)的电解质材料研究,并将目标聚焦于在350—450℃下工作的质子导电性钙钛矿氧化物。以往他们已了解到要使金属氧化物表达出质子导电性,必须将该构成物质的一部分元素置换为受主元素,以形成δ氧气缺陷,从而引发质子导入反应。此次研究中,研究小组以置换受主元素的钙钛矿氧化物为对象,合成22种钙钛矿氧化物并收集了高精度的质子浓度数据,结合从其他论文中收集的数据,形成了65种钙钛矿氧化物的761个数据,并交给AI进行学习。然后通过变换化合物成分组合,预测了8613种材料的特性,形成材料特性“地图”,根据“地图”指引即通过实验一次合成质子导电性能较高的锶、锡、氧化钪化合物SrSn0.8Sc0.2O3-δ。相关论文在线发表于美国化学会杂志《ACS Energy Letters》。
  • GB/T 20385.1-2021 纺织品 有机锡化合物的测定 标准解读
    随着社会的不断发展,各行业标准体系日趋完善,限量标准、方法标准既要与国际接轨又要符合国情。我国作为纺织品的生产和销售大国,纺织品的标准体系也在逐步更新。今年5月GB/T 18885-2020《生态纺织品技术要求》开始实施。10月份,GB/T 20385.1-2021《纺织品 有机锡化合物的测定 第一部分:衍生化气相色谱-质谱法》 开始实施。 有机锡在纺织品中具有PVC的热稳定剂作用、具有催化剂作用以及抗菌杀虫作用。但研究表明,有机锡具有较高的毒性,会影响生物的发育、生长或生育,必须限制其用量。 GB/T 20385.1-2021《纺织品 有机锡化合物的测定》更新情况: 1、采用ISO 22744-1:2020《纺织品 有机锡化合物的测定 第1部分:衍生化气相色谱法》,根据我国实际情况,进行了技术调整;将名称中的“气相色谱法”改为“气相色谱-质谱法”。 2、与GB/T 20385-2006《纺织品 有机锡化合物的测定》相比,定量方法由外标法改为内标定量;增加了被测有机锡目标化合物的种类;增加了环庚三烯酚酮溶液作为络合剂;删除GC-FPD方法。 目标化合物及其内标物定性和定量特征离子表 标准应对GCMS-QP2020 NX 岛津GCMS-QP2020 NX气相色谱质谱联用仪适用于纺织品中有机锡化合物分析检测。GCMS-QP2020 NX特点:1. 超强抗污染性能,降低维护频率※可旋转的预四极,减少主四极污染。 ※超高效大容量真空系统,有效降低离子源污染 2. 操作简单,易于维护※Easy sTop功能,在维护进样口时无需关闭真空泵,大大减少仪器待机时间。※创新ClickTek技术,实现徒手维护,全面提升用户分析体验。3. 集成高灵敏度和低实验成本※先进技术提高离子化效率,降低基质干扰和背景噪音,实现高信噪比。※超快速扫描,有效降低高质量端歧视。※“Ecology Mode”生态模式,节省仪器的耗电量及载气消耗量。 岛津GCMS-QP2020 NX具有灵敏度高,抗污染性能好,运行维护成本低等特点,可满足各行业气相色谱质谱方法检测要求。 本文内容非商业广告,仅供专业人士参考。
  • 环境LCMSMS新标准|水中氯酚类化合物分析
    广东省分析测试协会发布了T/GAIA 005-2020《水中 2,4-二氯酚、2,4,6-三氯酚和五氯酚的测定 高效液相色谱-串联质谱法》团体标准,标准规定了水体中3种氯酚类化合物的前处理及仪器分析方法,为水体中氯酚类化合物的检测提供了重要的技术支持和法规依据。 氯酚类化合物危害氯酚类化合物(CPs)是一类广泛存在于水环境中的有机污染物。这类物质曾长期在世界范围内被作为杀虫剂、除草剂、防腐剂、消毒剂广泛使用,性质比较稳定,能够在环境中相对持久地存在,会对人类和野生动物的健康造成不利影响,包括慢性毒性、致癌性、致突变性等。美国国家环保局(U.S. EPA) 和中国国家环保部均已将多种氯酚类化合物列入优先控制的毒性污染物名单。 目前,研究中普遍关注的CPs化合物主要包括2,4-二氯酚(2,4-dichlorophenol, 2,4-DCP)、2,4,6-三氯酚(2,4,6-trichlorophenol, 2,4,6-TCP)和五氯酚(pentachlorophenol, PCP)。新标准来袭,岛津助您从容应对与现有标准的气相色谱法相比,液相色谱质谱法灵敏度更好,且无需衍生化等复杂的前处理步骤,可直接用于水样的分析,操作简便快捷。 1 分析条件分析仪器:岛津超高效液相色谱-质谱联用仪MRM参数*定量离子对 2分析结果MRM色谱图3种目标物可得到良好的色谱峰形和质谱响应。标准溶液的MRM色谱图见图1。图1. 标准溶液MRM色谱图 方法检出限与测定下限按照《环境监测分析方法标准值修订技术导则》(HJ168-2010)中空白实验中未检出目标物质的检出限测定方法。以高纯水为空白基质,配制低浓度(2, 4-二氯酚和2, 4, 6-三氯酚4 μg/L,五氯酚0.25 μg/L)加标样品,进行7次重复检测,计算其实测浓度的标准偏差(SD),其方法检出限(MDL)=3.143*SD,测定下限为4倍的MDL。 表1. 方法检出限、测定下限计算结果(μg/L) 标准曲线根据测定下限以及实际测定需要,配制三种化合物的混标,标准浓度如表2所示。标准曲线分别如图2所示。 表2. 氯酚标准曲线浓度 (μg/L)图2. 三种氯酚的标准曲线 方法精密度分别以表2中STD 3、STD 5和STD 7为低、中、高浓度进行加标,重复6次测定,计算相对标准偏差(RSD)。结果显示,三种化合物、三个浓度水平RSD均小于11%。 表3. 不同浓度空白加标精密度结果(n=6) 方法准确度选取生活饮用水、地表水、地下水样品,0.22 μm滤膜过滤后上机分析,三种氯酚浓度均低于方法检出限。分别以表2中STD 3、STD 5和STD 7浓度为低、中、高浓度进行加标,平行配制6份分别进行测定,分别计算加标回收率,如表4所示。 表4. 不同水体加标回收结果(μg/L)结语使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8045联用系统可轻松测定水体样品中3种氯酚类化合物,轻松应对《水中 2,4-二氯酚、2,4,6-三氯酚和五氯酚的测定 高效液相色谱-串联质谱法》(T/GAIA 005—2020)新标准的要求。环境水体安全监测刻不容缓,岛津方案助您从容应对。
  • 极端条件下的流动化学:合成具有麝香气味的大环化合物 个
    康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度背景介绍目前,连续流技术已经成为药物研发和连续化生产的热门技术之一,香水行业的发展也可以受益于该技术。具有麝香气味的(R)-麝香酮( 化合物1,见图1)在香水中占据特殊地位,这类化合物是从麝的腺体分泌出来的,经常被用作香水基调。图 1. 具有麝香气味的大环分子 1-5 示例(带圆圈的数字是指环的大小)麝香香氛还包括图1中来自麝香籽油的植物性麝香香料(化合物3)、兰花香味中花香的成分大环内酯(化合物4 )和来自当归根油的大环内酯(化合物5)。传统釜式工艺合成香料工业相关的中型环和大环,使用高浓度的过氧化氢,并且中间体三过氧化物(化合物7)需要高温热裂解(方案1)。反应风险等级高,工业化生产存在较高风险。图2. 方案 1 Story法:釜式条件下从环己酮(化合物6)两步合成 1,16-十六烷内酯(化合物4)和环十五烷(化合物8)本文是Leibniz University Hannover(汉诺威莱布尼茨大学)有机化学研究所Alexandra Seemann等人的研究工作,该研究成果2021年5月发表在了JOC上。。我们来看看作者如何在极端条件下,用连续流的方法来合成具有麝香气味的大环化合物。同时,如何通过分离来解决多步反应和操作的连续化。图3.连续流工艺合成中环和大环化合物研究过程:一、改变溶剂,打通连续流工艺研究者优化了连续流条件下环己酮三过氧化物(化合物7)的氧化过程。将三种反应组分(环己酮、98%甲酸,以及30%过氧化氢与65%硝酸混合液)单独储存并使用三台进料泵分别输送。出于生产安全和成本考虑,溶剂使用甲酸代替釜式工艺用的较危险的高氯酸。图4.环己酮(6)氧化成环己酮三过氧化物(7)的连续流工艺流程图三台泵在室温下将反应物送至PTFE材质的反应器中反应。当使用小内径管道反应器或使用有静态混合器的反应器时,两相系统的均匀性达到最佳。环己酮三过氧化物(7)的产率为48%。二、巧妙使用膜分离器连接热解反应为了实现多步连续生产具有商业价值的化合物4和8,需要增加单独的分离步骤,用以分离过量的H2O2,以避免过量的H2O2高温分解引发危险。作者采用了由两块不锈钢板和分离膜组成的膜分离器,研究了配备不同孔径的疏水PTFE膜的分离效果,使用1.2μm的分离膜,效果最好。将分离器出口流出的有机相收集在烧瓶中,并通过一台HPLC泵直接泵送至不锈钢环形反应器,高频电磁感应加热至270℃进行热裂解反应。三、氧化-分离-热解连续合成作者通过使用感应加热技术对三过氧化物7进行热解,从而形成具有重要生产意义的大环产物。图5.多步(氧化-分离-热解)连续合成工艺流程(泵流量设置及反应参数)综上多步连续合成工艺中,第一步的初始氧化在PTFE反应器中进行(V=113 mL,⌀ = 2.4mm),温度为室温,停留时间为93分钟;第二步反应停在不锈钢环流反应器中,反应温度270℃,停留时间为12分钟。通过GC分析,两步的总收率:化合物4为10%,化合物8为25%,与釜式条件下获得的收率相似(化合物 4为14%,化合物8为23%)。最后,作者对脂肪族和乳糖大环进行GC-O(gas chromatography-olfactometry,气相色谱嗅觉测定法)气味分析。结果表明,以下3种大环内酯显示出强烈的麝香酮气味。研究结果:作者提出了一个多步连续合成工艺(氧化、分离和热解),从环酮开始生产大环十六烷内酯和环十五烷等化合物,且该方法具有一定的普适性;连续合成所得的部分化合物有经过气相色谱嗅觉测定法表征,具有麝香酮气味;连续流工艺成功地进行了危险化学品如65%浓度的硝酸,30%浓度的双氧水,以及不稳定的过氧化物中间体等的处理,可以大大提升生产的安全性;香水行业可以从先进的连续流技术中受益。参考文献:DOI 10.1021/acs.joc.1c00663编后语康宁微通道反应器可用于中间体不稳定、强放热等危化反应。康宁反应器可以与Zaiput液液分离器、在线核磁等PAT技术联用,实现目标产物的连续合成、分离或提纯。康宁微通道反应器在香精香料行业也有很多成功的应用案例,在解决安全问题的同时,反应效率和收率都得到了提高。欢迎您拨打400-812-1766 联系康宁反应器技术了解详情。
  • 让您的科学亮点更加闪耀 “花式”解读有机化合物(下篇)
    话接上回,小编给大家介绍了面对复杂样品,如何用液相色谱的黑科技做“花式”分离。有了前端的“花式”分离,更要有“花式”检测,话说什么变形金刚呀,什么恐龙战队呀,都是花式+组合以后变得更强。所以这期呢,小编跟大家谈谈“花式”分离的组合“花式检测”——多重质谱技术如何对化合物进行“花式”剖析。作为有着50年质谱技术的积淀,赛默飞的质谱从有机质谱到无机质谱,从液质到气质,从单四极杆到串联四极杆,从离子阱、高分辨磁质谱再到高分辨Orbitrap;从单四极杆ICP-MS到串联四极杆ICP-MS,从高分辨ICP-MS再到特色的无机同位素系列质谱。众多的质谱技术以及获得的专利满满的挂了好几面墙,若是一一道来,怕是小编几天几夜也合不了眼了。在这里,针对“花式”解读有机化合物,小编先给大家介绍一下有机质谱中“航母”级别的神器——Orbitrap Fusion。Orbitrap Fusion™ Lumos™ Tribrid™ 三合一质谱仪作为神器,Orbitrap Fusion系列质谱搭载了满满的黑科技,仅质量分析器就搭载了3种:Orbitrap静电场轨道阱、双压线性离子阱和双曲面四极杆。Orbitrap静电场轨道阱高分辨质谱技术兼具超高分辨率、高质量精度、高灵敏度等优点,目前已经可以达到1百万的超高分辨率。这么高的分辨率有什么用呢?小编举个例子,用一般分辨率的质谱和超高分辨率质谱做实验,就好像在污染严重的雾霾天里和阳光普照空气清洁的环境里走路一样(如果你生活在空气良好的地区,请想象眼镜充满雾气和镜片干净时看东西的区别,如果你也不近视,小编只能请你自行发挥一下想象力?)。↑一般分辨率的质谱↑超高分辨率的质谱超高分辨率可以帮助我们更清晰的看到复杂样品里面的信息,即使色谱水平上没有分离的成分也能让他们“无所遁形”。再举个例子(如下图),在复杂基质中,12万的分辨率,我们发现了噻吗洛尔的信息,但是当分辨率升高到50万以上时,我们发现原本认为的一个成分中,还包含了另一个成分乙基苯酰芽子碱。所以高分辨率能帮助我们更真实地发现更多的科学。再来说说双压线性离子阱。离子阱的优势在于可以做多级质谱,得到更精细的化合物结构信息,所以当我们遇到复杂结构的成分时,就可以用离子阱技术对化合物结构进行全面剖析。赛默飞在离子阱技术上也是real“资深”。双压线性离子阱由高压阱和低压阱组成,高压阱中的高氦气压力能更好的进行离子的捕获、冷却和碎裂,低压阱中的低氦气压力对质量扫描有更好的分辨率或更快速度,双离子阱每个阱可设置最佳的氦气压力得到最优的捕获、隔离、碎裂和扫描效果。为了得到更多的化合物结构信息,Orbitrap Fusion上不仅有双压线性离子阱这种“高x格”的离子阱技术,也具有多种碎裂方式,如CID、HCD、ETD、UVPD等等。不同的碎裂方式可以提供化合物不同的结构碎片信息,这些碎裂方式还可以在做多级质谱时灵活组合,对化合物“花式”锻打,不愁化合物不显露“真相”。最后我们说说双曲面四极杆。双曲面四极杆比圆柱形四极杆加工难度要大,可以做到更高的分辨率,对离子的选择能力会更好,尤其在做复杂样品分析时会有更明显的优势。这项技术同样也被用于赛默飞的三重四极杆质谱中,使得三重四极杆质谱也可以实现高分辨的SRM(H-SRM)模式,对复杂基质样品中目标化合物的定量具有更好的灵敏度。 在Orbitrap Fusion上,不同的质量分析器、不同的碎裂方式可以灵活“花式”组合,协同运作,实现突破想象力的更多工作方式,为科研用户前沿研究实现更多可能性。下面就以其中的一种简单的工作模式为例,来感受一下离子在Orbitrap Fusion的“花式”运动吧。“黑科技”实在太多,小编今天暂时先说到这里了。想要了解更多神秘技术,还请关注“赛默飞色谱与质谱中国”微信公众号,移步到我们的高校科研全国巡演的现场聆听和感受。小编在这里再爆个料,我们每场高校科研巡演都会邀请知名学者大咖前来助阵,想要赢得与学界大咖近距离接触的机会,还请关注我们的微信。到底是哪位大咖呢?小编一期一期给你们爆料! 点击查看往期秘籍让您的科学亮点更加闪耀 教你如何“佛系”小白飞升“魔系”战神让您的科学亮点更闪耀 “花式”解读有机化合物(上篇)
  • 让您的科学亮点更加闪耀 “花式”解读有机化合物(下篇)
    话接上回,小编给大家介绍了面对复杂样品,如何用液相色谱的黑科技做“花式”分离。有了前端的“花式”分离,更要有“花式”检测,话说什么变形金刚呀,什么恐龙战队呀,都是花式+组合以后变得更强大̷ 所以这期呢,小编跟大家谈谈“花式”分离的组合“花式检测”——多重质谱技术如何对化合物进行“花式”剖析。 作为有着50年质谱技术的积淀,赛默飞的质谱从有机质谱到无机质谱,从液质到气质,从单四极杆到串联四极杆,从离子阱、高分辨磁质谱再到高分辨Orbitrap;从单四极杆ICP-MS到串联四极杆ICP-MS,从高分辨ICP-MS再到特色的无机同位素系列质谱。众多的质谱技术以及获得的专利满满的挂了好几面墙,若是一一道来,怕是小编几天几夜也合不了眼了。在这里,针对“花式”解读有机化合物,小编先给大家介绍一下有机质谱中“航母”级别的神器——Orbitrap Fusion。Orbitrap Fusion™ Lumos™ Tribrid™ 三合一质谱仪 作为神器,Orbitrap Fusion系列质谱搭载了满满的黑科技,仅质量分析器就搭载了3种:Orbitrap静电场轨道阱、双压线性离子阱和双曲面四极杆。Orbitrap静电场轨道阱高分辨质谱技术兼具超高分辨率、高质量精度、高灵敏度等优点,目前已经可以达到1百万的超高分辨率。这么高的分辨率有什么用呢?小编举个例子,用一般分辨率的质谱和超高分辨率质谱做实验,就好像在污染严重的雾霾天里和阳光普照空气清洁的环境里走路一样(如果你生活在空气良好的地区,请想象眼镜充满雾气和镜片干净时看东西的区别,如果你也不近视,小编只能请你自行发挥一下想象力̷)。↑一般分辨率的质谱↑超高分辨率的质谱 超高分辨率可以帮助我们更清晰的看到复杂样品里面的信息,即使色谱水平上没有分离的成分也能让他们“无所遁形”。再举个例子(如下图),在复杂基质中,12万的分辨率,我们发现了噻吗洛尔的信息,但是当分辨率升高到50万以上时,我们发现原本认为的一个成分中,还包含了另一个成分乙基苯酰芽子碱。所以高分辨率能帮助我们更真实地发现更多的科学。再来说说双压线性离子阱。离子阱的优势在于可以做多级质谱,得到更精细的化合物结构信息,所以当我们遇到复杂结构的成分时,就可以用离子阱技术对化合物结构进行全面剖析。赛默飞在离子阱技术上也是real“资深”。双压线性离子阱由高压阱和低压阱组成,高压阱中的高氦气压力能更好的进行离子的捕获、冷却和碎裂,低压阱中的低氦气压力对质量扫描有更好的分辨率或更快速度,双离子阱每个阱可设置最佳的氦气压力得到最优的捕获、隔离、碎裂和扫描效果。为了得到更多的化合物结构信息,Orbitrap Fusion上不仅有双压线性离子阱这种“高x格”的离子阱技术,也具有多种碎裂方式,如CID、HCD、ETD、UVPD等等。不同的碎裂方式可以提供化合物不同的结构碎片信息,这些碎裂方式还可以在做多级质谱时灵活组合,对化合物“花式”锻打,不愁化合物不显露“真相”。 最后我们说说双曲面四极杆。双曲面四极杆比圆柱形四极杆加工难度要大,可以做到更高的分辨率,对离子的选择能力会更好,尤其在做复杂样品分析时会有更明显的优势。这项技术同样也被用于赛默飞的三重四极杆质谱中,使得三重四极杆质谱也可以实现高分辨的SRM(H-SRM)模式,对复杂基质样品中目标化合物的定量具有更好的灵敏度。 在Orbitrap Fusion上,不同的质量分析器、不同的碎裂方式可以灵活“花式”组合,协同运作,实现突破想象力的更多工作方式,为科研用户前沿研究实现更多可能性。下面就以其中的一种简单的工作模式为例,来感受一下离子在Orbitrap Fusion的“花式”运动吧。“黑科技”实在太多,小编今天暂时先说到这里了。想要了解更多神秘技术,还请关注“赛默飞色谱与质谱中国”微信公众号,移步到我们的高校科研全国巡演的现场聆听和感受。 小编在这里再爆个料,我们每场高校科研巡演都会邀请知名学者大咖前来助阵,想要赢得与学界大咖近距离接触的机会,还请关注我们的微信。到底是哪位大咖呢?小编一期一期给你们爆料! 点击查看往期秘籍让您的科学亮点更加闪耀 教你如何“佛系”小白飞升“魔系”战神让您的科学亮点更闪耀 “花式”解读有机化合物(上篇)
  • 水质49种全氟和多氟化合物,一针进样全搞定
    导读全氟和多氟烷基化合物(per-and polyfluoroalkyl substances, PFAS)是一类新型持久性有机污染物(POPs),广泛应用于日常生活和工业用品中。研究表明这些化合物易于生物累积,且可能导致肝毒性、致癌性、生殖毒性以及干扰内分泌等特性。如今,天然环境中化学抗性PFAS的排放量不断增加,同时这些人为污染物在天然和处理水域、人类和动物生物体中的存在都构成了巨大的环境挑战。 全氟辛酸小档案中文名:全氟辛酸英文名:Perfluorooctanoic AcidCAS号:335-67-1分子式:C8HF15O2分子量:414.07 PFAS法规要求及分析特点PFAS含有几乎无法被破坏的C-F键,被称为“永生的分子”,由于其没有显示出任何被生物降解的迹象,因此也被称为“永久性化学品”。 斯德哥尔摩公约于2009年通过了全氟辛烷磺酸及其盐类和全氟辛烷磺酰氟成为持久性有机污染物(POPs)的一个重要检测项目。2010年3月17日,欧盟委员会发布2010/161/EU号议案,建议对食品中全氟烷基化合物进行监控。 PFAS的检测面临诸多挑战,一是来源于玻璃器皿和实验器材的本底污染,这对前处理耗材、检测仪器纯净的要求极高,简单的前处理步骤也更有利于降低干扰;二是浓度低,美国EPA于2016年发布的水质安全建议中,要求水质中PFOA和PFOS的限量是70 ppt,因此要求仪器具备较高灵敏度。 岛津解决方案岛津超高效液相色谱-质谱联用仪LCMS-8050 参考美国ASTM D7979标准水质PFAS的分析方法,采用岛津超高速LC-MS/MS(UFMSTM)技术,建立了快速、稳定、高灵敏度的49种PFAS(30种目标物和19种内标)分析方法,为客户提供环境中PFAS痕量分析的全方位解决方案。 表 1 PFAS检测标准比较 样品前处理分析条件 表2 梯度条件干扰的消除PFAS可能存在于溶剂、玻璃器皿、移液管、导管、脱气机和LC-MS/MS仪器的其它部件中。为了避免来自系统的干扰,在溶剂和样品阀之间放置一个延迟柱,延迟来自系统的PFAS出峰时间,从而消除系统的干扰。图1 PFOA色谱图:(a)无延迟柱(b)使用延迟柱 绘制9点校准曲线对PFAS目标物进行校准,线性范围5 ppt-200 ppt,所有化合物线性回归系数R20.99。各标准品校准误差均在±30%以内。 图2 49种混标溶液(100 ppt)TIC图(黑色)和MRM图(其它颜色) 表3 保留时间、检出限、线性范围、准确度、精密度*FHEA, FOEA ,FDEA使用400 ng/L计算准确度和精密度 结语 随着PFAS的不断向全球扩散,或许我们已经找不到一片极净之境。在你所不知道的隐秘角落,这种 “永生的分子”正在威胁着人类赖以生存的水源安全。淘汰有害PFAS制品的活动正在一步一步推进,在这个过程中,岛津公司愿与所有致力于地球和人类健康的人们一道,利用科学、高效、灵敏的分析手段共同守护我们的生命之泉。 *数据来源于岛津科学仪器-美国 参考资料: 1.U.S. Environmental Protection Agency, "US EPA Method 537: Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography / Tandem Mass Spectrometry (LC/MS/MS)," Washington D.C., 2009.2.ASTM International, "ASTM D7979-17: Standard Test Method for Determination of Perfluorinated Compounds in Water, Sludge, Influent, Effluent and Wastewater by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)," West Conshohocken, 2017.3.ASTM International, "ASTM D7968-17a: Standard Test Method for Determination of Perfluorinated Compounds in Soil by LIquid Chromatography Tandem Mass Spectrometry (LC/MS/MS)," West Conshohocken, 2017.United States Environmental Protection Agency, "US EPA - PFAS Research and Development," 14 August 2018.
  • 前方高能!岛津全氟化合物多重解决方案强势来袭
    全氟化合物是当前环境中备受关注的新污染物之一,包括全氟辛基磺酸(PFOS)和全氟辛烷磺酸盐(PFOA)等。全氟化合物极难降解,容易在环境中长期存在,对人类健康和生态环境均造成潜在的风险。HJ 1333-2023《水质 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》、HJ 1334-2023《土壤和沉积物 全氟辛基磺酸和全氟辛酸及其盐类的测定 同位素稀释/液相色谱-三重四极杆质谱法》两项标准均为首次发布,并将在今年7月份正式实施。标准填补了水、土壤和沉积物中相关分析方法标准的空白,支撑新污染物治理工作及《关于持久性有机污染物的斯德哥尔摩公约》履约监测。岛津提供离线固相萃取、在线固相萃取、直接进样串联三重四极杆液质联用仪等一系列全氟化合物特色解决方案,以满足客户在新污染物领域研究中的各种应用场景需求。【离线固相萃取+LCMS/MS】方案推荐配置:Nexera LC-40(延迟柱)+LCMS-8045/8050/8060NX Nexera LC-40+LCMS-8060NX2021年,岛津中国创新中心与中科院生态中心共同建立56种PFAS的LCMS/MS检测方法,包括8种传统PFASs,8种长碳链PFCAs,40种新型PFASs,针对氟化工生产企业环境样本(灰尘、废水)中的新污染物赋存水平开展研究。▷ 相关研究论文发表2024年,岛津中国创新中心与中科院生态中心又共同开发PFAS MRM database数据库,帮助用户快速完成PFAS的筛查和分析方法建立工作。【在线固相萃取+LCMS/MS】方案大体积进样系统特点:1. 在线固相萃取与LCMS/MS品牌统一,无通讯问题2. Online SPE与UHPLC自由切换,系统耐压18000 psi3. 灵敏度可提升1~2个数量级4. 全中文质谱软件LabSolutions控制5. 样品无需浓缩前处理,直接进样分析6. 进样体积灵活设定,无论进样量小还是大,可轻松应对,且最大进样量可达25mL。推荐配置①:LC-40在线萃取+LCMS-8050/8060NX★ 15min完成 水质中43种PFAS目标物及9种内标物质的同时分析★ 无需浓缩,直接上样1 ml,线性低点为0.2/0.5 ng/L,相关系数0.99以上。★ 涵盖了GB/T 5750.8-2023《生活饮用水标准检验方法 》中的11种全氟化合物推荐配置②:LC-16P在线萃取+LCMS-8050/8060NX★ 自动化前处理,1小时内完成水质快速筛查★ 16 min完成水质中15种PFAS物质的分析★ 直接上样3 ml,线性低点为★ 无需浓缩,可以对 1 ng/L PFOA 和 PFOS 的样品进行分析。★ 20min 内分析含 PFOA、PFOS 及其同源体的 40种全氟类化合物。★ 可省略 EPA METHOD 537.1 中所述的固相萃取和浓缩工序,即可测定主要的 PFAS。推荐配置②:直接进样+Nexera MX(延迟柱)+LCMS-8060NX★ 前端MX-DST采用特殊的结构和软件控制,双流路无缝切换,进一步提高检测通量;★ 无需浓缩,5.5min 内高速分析含 PFOA、PFOS 及其同源体的 29 个全氟类化合物。结束语岛津不仅提供检测种类更多、分析速度更快、灵敏度更高等一系列全氟化合物特色解决方案,也展现了其对环境安全和公共健康的深刻承诺。随着新标准的实施,岛津将继续致力于为客户提供更加高效、精准的检测服务,共同推动新污染物研究的深入发展,保护我们共同的地球家园。*文中所需分析时间为实验室测试数据,仅供参考。本文内容非商业广告,仅供专业人士参考。
  • 岛津Crude2Pure系统在有机合成化合物纯化中的应用
    制备液相分离技术广泛应用于合成化合物分离纯化,天然产物制备,代谢产物研究和生物制品纯化等领域。目前一般的操作流程是待分离的样品溶液经过高效液相制备系统,以紫外吸收特性或者质谱响应作为触发信号,在信号超过设定参数时引起馏分收集器收集,得到含有目标产物的溶液,后续通过旋转蒸发或者冷冻干燥等手段使得含有目标化合物的溶液浓缩、干燥,最终得到目标产物的固体状态。这种传统的工作流程在相关领域得到广泛使用。 然而,相对于前期的制备纯化工作,目标馏分的后处理经常是费时又费力的过程。含有大量水的样品往往需要12-24小时甚至更长的时间进行处理。流动相中加入的甲酸、三氟乙酸、氨水、乙酸铵等添加剂会与化合物上的官能团成盐或者以游离态存在而不能完全去除进而影响目标产物的纯度和后续生物活性实验的结果。并且更为严重的是,由于化合物的结构特性和制备色谱柱的柱效影响,在制备纯化过程中往往需要在流动相中添加易挥发的酸或者碱来调节流动相的pH 值以改善色谱峰峰形进而提高分离效率。但在分离完成后对馏分进行旋转蒸发或者冷冻干燥的过程中,随着溶剂的逐渐去除,剩余溶液中的酸或碱的浓度相对提高,当pH 变化到超过目标化合物能够稳定存在的条件时,化合物结构发生变化,造成目标产物损失,使得前期的分离工作功亏一篑。 岛津公司的全自动纯化系统Crude2Pure系统(以下简称C2P 系统)提供了一种全新的制备分离所得馏分后处理模式,可在短暂的时间内完成从馏分溶液到目标物固体粉末的获得。并且在这一过程中,有效地除去了流动相中加入的添加剂,即便是已经和化合物结合成盐的,也可以通过置换的手段得到满足后续实验要求的盐的形态,有效降低了目标化合物分解的危险。由于可以直接生成固体粉末,免去了转移等操作,极大程度的降低了由于多步骤操作而引入杂质或损失产物的风险。 C2P 系统由捕集系统和回收系统组成(图1)。捕集系统根据化合物的极性和疏水特性通过一定比例和组成的流动相将馏分溶液输送通过C2P 捕集柱,目标化合物将被保留在捕集柱中。将该捕集柱转移至回收系统,选择需要的化合物形态(盐,游离碱等)后,回收系统通过冲洗C2P 捕集柱去除多余的流动相添加剂,转化成盐形态,除水等步骤后,以二氯甲烷-甲醇溶剂洗脱目标化合物,同时辅以加热和氮气干燥,进而在3小时内得到目标化合物的固体粉末。 图1 C2P 系统的捕集系统(左)和回收系统(右) 岛津Crude2Pure 系统提供了一种快速、安全、有效的全新分离制备后处理方法。使用Crude2Pure 系统,可以在3 小时内快速完成目标化合物馏分的自动粉末化操作,同传统的样品分离纯化后处理方法相比,节省处理时间3倍以上;该系统对样品的处理过程不受样品结构特点和性质的影响,实验证明可以适合大多数化合物的处理;样品回收过程是针对每个样品的独立过程,减少转移操作,避免了相互污染的产生;待制备样品被捕集的同时,馏分溶液中的流动相添加剂在回收过程中被有效的去除,不仅可以消除阻碍粉末化的因素并且可以根据样品最终回收形态的需要选择前处理溶剂,最终得到高纯度的化合物粉末,平均回收率在90%以上。基于以上特点,C2P 系统在天然产物提取分离纯化和合成有机化合物的研究中有广泛的应用前景。 了解详情,请点击《Crude2Pure 系统在有机合成化合物纯化中的应用》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 《土壤和沉积物 9种酯类化合物的测定》6项团标征求意见
    按照青海省标准化协会团体标准工作程序,标准起草单位已完成《土壤和沉积物 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》、《水质 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》、《土壤和沉积物 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》、《水质 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》、《水质 22种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》、《土壤和沉积物 13种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》等6项团体标准征求意见稿的编制工作,现公开征求意见。《土壤和沉积物 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中9种酯类化合物的吹扫捕集/气相色谱-质谱法。方法原理:试样经前处理后有电感耦合等离子体全谱直读光谱仪测定。将待测溶液引入高温等离子炬中,待测元素被激发成离子及原子,在特定的波长处测量各元素离子及原子的发射光谱强度,特征光谱的强度与试样中待测元素的浓度在一定范围内呈线性关系而进行定量关系。仪器和设备:1.样品瓶:具聚四氟乙烯-硅胶衬垫螺旋盖的60mL棕色广口玻璃瓶(或大于60mL其他规格的玻璃瓶)、40mL棕色玻璃瓶和无色玻璃瓶。2.采样器:一次性聚四氟注射器或不锈钢专用采样器。3.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。4.质谱仪:电子轰击(EI)电离源,1s内能从35u扫描至270u;具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。5.吹扫捕集装置:吹扫装置能够加热样品至40℃,捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂。若使用无自动进样器的吹扫捕集装置,其配备的吹扫管应至少能够盛放5g样品和10mL的水。6.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。7.天平:精度为0.01g。8.气密性注射器:5mL。9.微量注射器:10μL、25μL、100μL、250μL和500μL。10.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。11.其他:一次性巴斯德玻璃吸液管、铁铲、药勺(聚四氟乙烯或不锈钢材质)及一般实验室常用仪器和设备。本标准适用于土壤和沉积物中9种酯类化合物(乙酸乙酯、丙烯酸甲酯、乙酸异丙烯酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基异丁基酮、乙酸丁酯、丙烯酸丁酯、丙烯酸异辛酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5g,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.2 μg/kg-1.5μg/kg,测定下限为4.8μg/kg -6μg/kg ,见附录A。《水质 9种酯类化合物的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定水质样品中9种酯类化合物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标化合物保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。仪器和设备:1.样品瓶:40 ml 棕色玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。2.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。3.质谱仪:具70eV的电子轰击(EI)电离源,每个色谱峰至少有6次扫描,推荐为7-10次扫描;产生的4-溴氟苯的质谱图必须满足表 1 的要求。具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。4.吹扫捕集装置:吹扫装置能直接连接到色谱部分,并能自动启动色谱,应带有5ml的吹扫管。捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂,但必须满足相关的质量控制要求。5.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。6.气密性注射器:5mL。7.微量注射器:10μL、25μL、100μL、250μL和500μL。8.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。9.其它:一般实验室常用仪器和设备。本标准适用于地下水、地表水、生活污水和工业废水中9种酯类化合物(乙酸乙酯、丙烯酸甲酯、乙酸异丙烯酯、丙烯酸乙酯、甲基丙烯酸甲酯、甲基异丁基酮、乙酸丁酯、丙烯酸丁酯、丙烯酸异辛酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5ml,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.2g/L -1.5g/L,测定下限为4.8g/L -6.0g/L ,见附录A。《土壤和沉积物 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》本标准规定了测定土壤和沉积物中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的高效液相色谱法。方法原理:土壤和沉积物样品用20mL甲醇(1:1甲醇和水溶液)振荡提取,经离心提取上清液后,用高效液相色谱分离,紫外DAD检测器检测,根据保留时间定性,外标法定量。仪器和设备:1.高效液相色谱仪:具紫外检测器或二极管阵列检测器。2.色谱柱:十八烷基硅烷键合硅胶柱(C18),填料粒径5.0μm,柱长250 mm,内径4.6mm,或其他等效色谱柱。3.样品瓶:不小于 60 ml 具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。4.振荡器:水平振荡器或翻转振荡器。5.恒温振荡器:温度精度为±2℃。6.天平:感量为 0.01 g。7.提取瓶:不小于40ml,具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。8.平底烧瓶:1000 ml,具塞平底玻璃烧瓶。9.离心机:转速≥3500r/min。本标准适用于土壤和沉积物中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定。若通过验证本文件也可适用于其他吡啶、酰胺类物质的测定。当样品量为10g,定容体积为20mL时,目标物的方法检出限为、测定下限见附录A。《水质 吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定 高效液相色谱法》本标准规定了测定饮用水、地下水、地表水、工业废水及生活污水中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的高效液相色谱法。方法原理:土壤和沉积物样品用20mL空白试剂水振荡提取,经离心提取上清液后,用高效液相色谱分离,紫外DAD检测器检测,根据保留时间定性,外标法定量。仪器和设备:1.高效液相色谱仪:具紫外检测器或二极管阵列检测器。2.色谱柱:十八烷基硅烷键合硅胶柱(C18),填料粒径5.0μm,柱长250 mm,内径4.6mm,或其他等效色谱柱。3.样品瓶:500mL具聚四氟乙烯-硅胶衬垫螺旋盖的棕色广口玻璃瓶。4.天平:精度为0.01g。5.平底烧瓶:1000 mL,具塞平底玻璃烧瓶。本标准适用于饮用水、地下水、地表水、工业废水及生活污水中吡啶、2-氯吡啶、丙烯酰胺、N,N二甲基甲酰胺的测定。若通过验证本文件也可适用于其他吡啶、酰胺类物质的测定。直接进样法,目标物的方法检出限为0.01mg/L,测定下限为0.04mg/L,见附录A 。《水质 22种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中水质中22种挥发性有机物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标化合物保留时间和标准质谱图或特征离子相比较进行定性,内标法定量。仪器和设备:1.样品瓶:40 mL棕色玻璃瓶,具硅橡胶-聚四氟乙烯衬垫螺旋盖。2.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。3.质谱仪:具70eV的电子轰击(EI)电离源,每个色谱峰至少有6次扫描,推荐为7-10次扫描;产生的4-溴氟苯的质谱图必须满足表 1 的要求。具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。4.吹扫捕集装置:吹扫装置能直接连接到色谱部分,并能自动启动色谱,应带有5mL的吹扫管。捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂,但必须满足相关的质量控制要求。5.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。6.气密性注射器:5mL。7.微量注射器:10μL、25μL、100μL、250μL和500μL。8.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。9.其它:一般实验室常用仪器和设备。本标准适用于地下水、地表水、生活污水和工业废水中22种挥发性有机物(二氯二氟甲烷、氯甲烷、氯乙烯、溴甲烷、氯乙烷、三氯氟甲烷、碘甲烷、二硫化碳、乙酸甲酯、甲基叔丁基醚、乙酸乙烯酯、2-丁酮、四氢呋喃、环己烷、乙酸异丙酯、乙酸丙酯、甲基异丁基酮、乙酸异丁酯、2-己酮、1,1,2-三氯丙烷、甲基丙烯酸丁酯、乙酸戊酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5mL,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.5-5.0g/L,测定下限为6.0g/L -20.0g/L,见附录A。《土壤和沉积物 13种挥发性有机物(VOCs)的测定 吹扫捕集/气相色谱-质谱法》本标准规定了测定土壤和沉积物中13种挥发性有机物的吹扫捕集/气相色谱-质谱法。方法原理:样品中的挥发性有机物经高纯氦气(或氮气)吹扫富集于捕集管中,将捕集管加热并以高纯氦气反吹,被热脱附出来的组分进入气相色谱并分离后,用质谱仪进行检测。通过与待测目标物标准质谱图相比较和保留时间进行定性,内标法定量。仪器和设备:1.样品瓶:具聚四氟乙烯-硅胶衬垫螺旋盖的60mL棕色广口玻璃瓶(或大于60mL其他规格的玻璃瓶)、40mL棕色玻璃瓶和无色玻璃瓶。2.采样器:一次性聚四氟注射器或不锈钢专用采样器。3.气相色谱仪:具分流/不分流进样口,能对载气进行电子压力控制,可程序升温。4.质谱仪:电子轰击(EI)电离源,1s内能从35u扫描至270u;具NIST质谱图库、手动/自动调谐、数据采集、定量分析及谱库检索等功能。5.吹扫捕集装置:吹扫装置能够加热样品至40℃,捕集管使用1/3Tenax、1/3硅胶、1/3活性炭混合吸附剂或其他等效吸附剂。若使用无自动进样器的吹扫捕集装置,其配备的吹扫管应至少能够盛放5g样品和10mL的水。6.毛细管柱:30m×0.25mm,1.4μm膜厚(6%腈丙苯基、94%二甲基聚硅氧烷固定液);或使用其他等效性能的毛细管柱。7.天平:精度为0.01g。8.气密性注射器:5mL。9.微量注射器:10、25、100、250和500μL。10.棕色玻璃瓶:2mL,具聚四氟乙烯-硅胶衬垫和实芯螺旋盖。11.其他:一次性巴斯德玻璃吸液管、铁铲、药勺(聚四氟乙烯或不锈钢材质)及一般实验室常用仪器和设备。本标准适用于土壤和沉积物中13种挥发性有机物(乙酸甲酯、甲基叔丁基醚、乙酸乙烯酯、氯丁二烯、四氢呋喃、环己烷、乙酸异丙酯、乙酸丙酯、顺-1,3-二氯丙烯、乙酸异丁酯、反-1,3-二氯丙烯、乙酸戊酯、甲基丙烯酸丁酯)的测定。若通过验证本标准也可适用于其他挥发性有机物的测定。当样品量为5g,用标准四极杆质谱进行全扫描分析时,目标物的方法检出限为1.6 μg/kg -2.2μg/kg,测定下限为6.4 μg/kg -8.8μg/kg,见附录A。
  • 基于岛津C2P系统的甾体化合物纯化馏分自动粉末化处理
    制备液相色谱所收集馏分的后处理方式一般常用的有减压旋转蒸发和低温冷冻干燥,两种方法各有特点,但都需要消耗大量的时间和人力,另外还具有样品污染、样品损耗等风险,在处理大规模样品数量时将尤为明显。 岛津的全自动纯化系统,即Crude2Pure 系统(以下简称C2P 系统)提供了一种全新的制备分离所得馏分后处理模式,可在短暂的时间内完成从馏分溶液到目标物固体粉末的获得。并且在这一过程中,有效地除去了流动相中加入的添加剂,即便是已经和化合物结合成盐的,也可以通过置换的手段得到满足后续实验要求的盐的形态,有效降低了目标化合物分解的危险。由于可以直接生成固体粉末,免去了转移等操作,极大程度的降低了由于多步骤操作而引入杂质或损失产物的风险。 本实验使用提供了快速、安全、有效的全新分离制备后处理方法的岛津Crude2Pure 系统,对某甾体化合物进行了溶剂回收及固体粉末化处理,实验可在3小时内快速完成,同传统的样品分离纯化后处理方法相比,节省处理时间3倍以上;粉末直接生成于标准的样品瓶中,减少转移操作,避免了相互污染的产生,最终得到高纯度的化合物粉末,为合成产物的制备纯化后处理操作提供一种简便、实用和可靠的方式。本实验中所涉及的甾体化合物是含有环戊烷骈多氢菲母核的一类中等极性化合物,多数会含有多个羟基,从极性和疏水性考虑,在上样和补偿液均含有一定比例的有机相以增大溶解性防止捕集过程中析出损失;由于分离纯化过程中往往在流动相中加入了甲酸等挥发性酸来改善峰形和分离度,在溶剂回收和粉末化时以纯水洗除流动相中的添加剂,获得高纯度目标样品。 有关详情,请点击《应用C2P 系统对某甾体化合物纯化馏分的自动粉末化处理》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 月旭UHPLC色谱柱再添两员!极性化合物快速分析不是梦想
    在科技高速发展的今天,无论工作和生活都不断追求着更快速、更高效。我们分析测试领域中,对实验的时间要求也越来越短,来达到更快的研发速度、更高的按时交付率、更高的人均产出等目标。特别是走在科技发展前沿的一些新药研发单位、高校,以及对交付率要求极高的第三方检测单位等,会优先选用超高压液相进行测试,比普通液相检测要快3~4倍。然而,这么昂贵的UHPLC色谱仪已经买来了,却发现可选择的UHPLC色谱柱的种类很少,那怎么行呢?柱子问题,月旭解决!welch月旭科技在已成功推出10种UHPLC键合相后(*详见文末注释),随着工艺技术更加成熟,现新推出Amide(聚丙烯酰胺)和HILIC Amphion Ⅱ(两性离子)两款键合相。这两款新键合相将为您解决以下问题:● 在HILIC模式下,对糖类、多肽、以及低分子量的极性药物进行快速而有效的分离!● 在HILIC模式下,不需要使用离子对试剂,即可对大多数极性化合物进行快速分离! Ultimate® UHPLC Amide 色谱柱简介“产品特点1)采用键合了聚丙烯酰胺官能团的硅胶填料作为固定相,特别适合亲水性化合物的分离;2)对中小分子的极性化合物有很好的保留;3)具有优异的化学稳定性;4)适合针对水溶性极性化合物进行LC/MS的分析。“色谱柱性能参数色谱柱:Ultimate® UHPLC Amide。键合相:聚丙烯酰胺;粒径:1.8μm;pH范围:2.0-8.0;载碳量:6%;孔径:120&angst ;比表面积:320㎡/g;最高耐受温度:60℃;最高耐受压力:60MPa。“应用案例检测项目:蛋氨酸色谱条件色谱柱:Ultimate® UHPLC Amide,1.8μm,2.1×100mm。流动相:乙腈/25mM磷酸二氢氨,pH=4.87(75/25);检测波长:210nm;柱温:35℃;流速:0.2mL/min;进样量:1.0μL;样品配置:2mg/mL,流动相溶解。Ultimate® UHPLC HILIC Amphion Ⅱ色谱柱简介Ultimate® UHPLC HILIC Amphion Ⅱ是月旭科技开发的一种新型的两性离子键合硅胶HILIC色谱产品。它适合于大多数极性化合物的分离,一般用乙睛和水作为流动相,不需要使用离子对试剂。Ultimate® UHPLC HILIC Amphion Ⅱ填料结构中同时含有阴阳离子,同时存在正电荷中心和负电荷中心,因而也可通过离子交换机制极大增强对酸碱化合物的保留。该色谱填料具有很好的亲水性,能以HILIC模式分离极性、亲水性的小分子目标物以及碱性化合物。与传统的硅胶和氨基等HILIC填料相比,该填料可提供更好的重现性和更为稳定的HILIC模式分离能力。“产品特点1)采用两性离子键合硅胶固定相;2)增强亲水性相互作用,对极性和亲水性化合物的保留能力强;3)填料同时含有阴阳离子,提供了离子交换机制,因此与普通HILIC填料相比具有不同选择性;4)不需要使用离子对试剂,采用简单的流动相(一般用乙腈和水)就能实现对极性目标物的分离。“色谱柱性能参数色谱柱:Ultimate® UHPLC HILIC Amphion Ⅱ。键合相:两性离子;粒径:1.8μm;pH范围:2.0-8.0;载碳量:5%;孔径:120&angst ;比表面积:320㎡/g;最高耐受温度:60℃;最高耐受压力:60MPa。“应用案例检测项目:咖啡因色谱条件色谱柱:Ultimate® UHPLC HILIC Amphion Ⅱ,1.8μm,2.1×100mm。流动相:乙腈/水 = 90/10;检测波长:254nm;柱温:30℃;流速:0.2mL/min;进样量:2.0μL;样品配置:0.5mg/mL,流动相溶解。 订货信息月旭科技已推出的10种超高压键合相概月旭超高压液相柱的键合相种类多样化,满足不同检测项目的结果和分离度要求时,检测时间能更快。
  • 5根Ascentis色谱柱,帮你搞定极性化合物从保留到样品制备
    我是一个从事液相色谱分析的实验猿,近期在我升职加薪的路上遇到了一些困难,使我夜不能寐… 一直以来,我对色谱柱的要求简简单单:保留目标化合物 满足分离度宽pH耐受 完美峰形高柱效 长寿命 但是近期我发现:放眼望去,实验室都是C18,换了一根又一根的C18,分不开还是分不开;遇到极性化合物,C18上难保留;碱性化合物,峰拖尾;色谱柱过载峰平头… … 在宝贵的人生旅程中,为了这些问题夜不能寐也太得不偿失了(保护好我方发量)。其实解决极性化合物从保留和样品制备并不难!我们可以针对化合物种类和所面对的不同分离目标和挑战,选择合适固定相的Ascentis系列色谱柱即可!瞧,这里就有5种供您选择:固定相化学美国药典USP代号主要竞争特征方式主要应用Ascentis C18L1高表面积惰性表面反相小分子和多肽Ascentis RP-Amide(反相-酰胺)L60化学相稳定,低固定相流失反相在常规反相方法开发中是C18柱的优选替代柱,用于极性分子,特别是酚类和其它氢键给予体,酸类,碱类(不带电荷),苯胺Ascentis Phenyl(苯基)L11化学相稳定,低固定相流失反相,HILIC环状化合物和强偶极子,π-酸类,π-电子接受体,芳杂环,硝基芳烃类Ascentis Silica(硅胶)L3高的装载容量,可控和一致的表面活性正相(非水),HILIC非极性化合物(在正相方式下)高极性化合物(在HILIC方式下),核苷类,氨基酸类Ascentis C8L7高表面积,惰性表面反相小分子和多肽Ascentis系列的HPLC色谱柱一般特征:1、高纯,B型硅胶,具有高惰性,重复性和稳定性 2、现代键合反应过程优化了键合相的覆盖率和稳定性,同时也减少了键合相的流失和降低了不需要的二级相互作用 3、多种键合相化学柱和硅胶柱提供了较宽的选择性 4、具有增强极性化合物保留的键合相化学 5、适用于LC-MS等当今所用的高灵敏仪器和方法 6、可选择从分析柱到制备柱的不同柱类型 7、高表面积硅胶拥有高的柱载量,有利于制备色谱Ascentis提供从分析柱到制备柱的放大分离硅胶基质的高比表面积可以提高色谱柱的载样量,用于样品的纯化制备,并且硅胶和键合相在不同粒径上完全一致。这样就使得分析柱上开发的方法可以放大到制备柱上进行分离;同样,制备柱上开发的方法也可以转移到分析柱上进行快速分析。 Ascentis系列色谱柱兼容通用型检测器(比如质谱检测器或CAD检测器)在使用通用型检测器时,固定相和键合相流失都会带来很大的背景干扰,引起检测灵敏度的下降,也会增加仪器维护成本。Ascentis系列色谱柱通过采用硅胶处理工艺和现代键合方法,降低了固定相的流失,能够很好得兼容通用型检测器。 不知道这一期Ascentis系列色谱柱有没有打动您呢?下一期我们将为您分别介绍每一个系列的应用和选择性,尽请期待哦。 如果您对Ascentis系列色谱柱有需求,扫描下方二维码简单登记,我们将尽快与您联系。感谢您对默克分析化学的支持!
  • 安捷伦高分辨气相色谱-质谱分析方案 | 针对持久性全氟化合物(PFAS)的分析
    什么是 PFAS?它具有哪些功能?又存在哪些危害?1PFAS 即全氟/多氟烷基类物质,是一系列人工合成的有机化合物,主要由碳原子和氟原子构成。2凭借其优异的高热稳定性和化学稳定性,PFAS 在纺织、表面活性剂、食品包装、不粘涂层、防水涂层和灭火泡沫等领域广泛使用。3“成也萧何,败也萧何”,PFAS 进入环境之后,由于极其稳定,几乎不被生物降解,它可在环境中持久存在。而作为一种典型的内分泌干扰物,极微量的 PFAS 暴露就可能带来健康风险;同时考虑到不同人的体质,其安全水平难以预测。已经成为重点关注的环境新污染物之一。PFAS 监测的难点是什么?1目标化合物的数量庞大,已经报告的超过 6000 多个;且标准品不易获得;2涵盖不同的挥发性、极性和官能团。无法使用一种设备或者一个方法分析所有化合物;3浓度低(通常为低 ppt 和亚 ppt 级),要求设备有较高检测灵敏度;虽然高倍富集可以提高检测灵敏度,但同样会带来严重干扰;4实际环境中存在的 PFAS 化合物的种类和含量尚不清楚。安捷伦 7250 气相色谱-高分辨质谱联用仪具有灵敏度高、扫描速率快,高分辨抗干扰,精确质量数采集定性准确的特点,非常适合环境样品当中挥发性和部分半挥发性 PFAS 化合物的检测。因此安捷伦公司与美国加州大学戴维斯分校用户合作建立了包含上百种不同类型的 PFAS 化合物的气质高分辨谱库,包含全氟烷基碘化物(PFAIs)、氟聚物碘化物(FTIs)、氟聚物醇(FTOHs)、含氟聚物烯烃(FTO)、含氟聚物丙烯酸酯(FTAC)、含氟聚物甲基丙烯酸酯(FTMAC)和全氟烷基羧酸(PFCAs)等(图 1)。除了化合物高分辨质谱图、每个碎片的精确质量数及对应化学组成,谱库当中还包括了每个化合物的分子式、结构式、特定分析条件下的保留时间等信息(图 2)。图 1. 不同类型 PFAS 化合物的高分辨质谱图 图 2. 谱库当中 PFAS 化合物的高分辨质谱图、分子式、结构式、保留时间等信息基于 PFAS 气质高分辨质谱库、7250 SureMass 算法和安捷伦未知物分析软件,对饮用水和土壤样品当中的 PFAS 化合物进行了检测。图 3 显示的是样品高分辨质谱图经解卷积后通过与高分辨质谱库比对和保留时间辅助确认,对样品当中包含的 PFAS 化合物进行准确定性的结果(分别以一个化合物示例)。图 3. A:土壤当中检测到乙基全氟丁基醚;B:饮用水当中检测到甲基全氟辛酸数据结果表明:7250 高分辨气质和 PFAS 化合物高分辨质谱库的配合使用相得益彰,能够显著降低对 PFAS 这类复杂化合物的分析难度,提高定性准确性,加快分析速度。结 语 在上述实验过程中,7250 工作的扫描范围是 50-1200m/z,在这样宽广的范围内采集的质谱数据的分辨率和准确性不会受到影响,方便对环境当中各种类型的污染物进行大范围的筛查检测。利用 7250 这一优势,除了 PFAS 化合物,上述水样当中还检测到了包括消毒副产品、个人护理产品中的化学品、药物、杀虫剂等环境污染物,真正体现了 7250 高分辨质谱“一网打尽”的强大能力。
  • 超高效液相色谱串联质谱法测试20种全氟烷基类化合物测定
    全氟烷基类化合物(PFAS)是一类人造化学物质,是指有机物分子中碳链上连接的氢原子被氟原子全部或部分取代后形成的含有C-F键的化合物。PFAS因其独特的情性、疏水疏油性、及良好的滑动性、拒污性等,自1940年以来被广泛应用于化工、纺织品、纸张和包装、涂料、建筑产品和医疗保健产品等工业和消费品领域。PFAS能够经受很强的热、光照、化学、微生物作用和高等脊椎动物的代谢而不降解,可以随食物链的传递在生物机体内富集和放大至相当高的浓度, PFAS具有诱发肝中毒、发育毒性、免疫毒性、内分泌干扰以及潜在致癌性等毒理效应。HPLC-MS/MS技术具有高的灵敏度选择性和重现性,是目前分析PFAS常用的方法。✓色谱条件色谱柱:Ultimate® UHPLC XB-C18(2.1×150mm,1.8μm)。流动相:A相:5mmol/L乙酸铵水溶液;B相:5mmol/L乙酸铵甲醇溶液;柱温:40℃;流速:0.3mL/min;进样体积:1μL;梯度洗脱程序见下表:✓质谱条件电离模式:ESI-;毛细管电压:1KV;脱溶剂气温度:350℃;脱溶剂气流速:900L/H;锥孔气流速:100L/H;离子源温度:100℃。✓谱图和数据(1)20种混标中各目标物定量离子图(2)20种混标中各目标物色谱结果叠加图全氟烷基化合物主要质谱参数:
  • 拟投资不低于100亿元,这家化合物半导体厂商推动新项目落地
    9月17日,成都海威华芯科技有限公司(以下简称海威华芯)发布了《关于成都海威华芯科技有限公司开启跨越式发展计划投资遴选之公告》。公告信息显示,海威华芯决定启动跨越式发展新项目落地工作,整合符合国家及产业政策的区域的上下游产业链,包括但不限于:遴选与公司跨越式发展战略相匹配的区域区位、比选各地各区政府的土地、基建、设备、资金、补贴、信贷和人才等相关条件及配套政策;公司遴选增量投资项目落地的范围包括但不限于:川渝经济圈、环渤海区、大湾区、长三角等符合国家及产业政策的区域。据了解,该项目拟投资不低于人民币100亿元。主要面向新能源汽车领域的车规碳化硅SIC SBD&MOSFET芯片、光电类VECSEL芯片、氮化镓 GaN 快充与氮化镓GaN节能芯片、氮化镓 GaN基站射频类芯片等现在和未来应用周期长、应用市场广泛的重要领域。海威华芯成立于2010年,占地225亩,总投资已超过25亿,2021年融资后,公司为无实际控制人结构企业,是中国建成第一条6吋砷化镓、氮化镓化合物半导体生产线的国家高新技术企业、国家集成电路重大项目企业和国家集成电路生产企业。在GaAs(砷化镓)、InP(磷化铟)、GaN(硅基氮化镓、碳化硅基氮化镓)、SiC(碳化硅)等四大化合物材料领域,海威华芯已形成自主可控、门类齐全、制程完备的第二、三代化合物半导体芯片研发、设计与制造技术。面向射频、功率、光电三大科技创新应用领域,各项产品性能参数达到国内领先、国际先进的水平,产品主要应用于国家重点项目、5G通信、雷达、基站、光通讯、卫星通信、物联网、新能源等领域。海威华芯每年承担多项重要科研项目和装备型号研制任务,是防务领域自主可控能力建设的重要组成部分,同时承担了太赫兹领域射频器件研发任务。在民用领域承担了国家和四川省5G 砷化镓、氮化镓射频芯片研制重大专项,掌握了5G宏基站射频功放芯片的制造技术,是5G射频芯片国产化替代的主要能力。同时,海威华芯研制的具有世界先进水平的激光芯片、高功率能源转换芯片、3D感知芯片,已经规模化生产。海威华芯开启本次跨越式发展计划投资主要为充分把握好国家给予芯片产业的好政策和市场对化合物半导体芯片需求日益增长的两个时代机遇,早日完成国家期望的自主创新、自主可控的目标,也为实现公司更快做大做强,实现跨越式发展等目标。公告信息还特别提醒,鉴于当前国内化合物半导体投资环境火热,信息鱼龙混杂,除海威华芯授权代表外,从未授权任何代表开展项目洽谈。海威华芯项目接洽的唯一授权代表为公司董事长、法定代表人魏彦廷先生。魏彦廷先生授权欧先生负责联络、沟通与对接,联系方式为电话:13308209920,电子邮箱ouz@hiwafer.com。
  • 贝克曼库尔特赋能化合物管理-Evotec 如何管理高通量化合物库
    化合物库是开展高通量筛选的重要物质基础,通过高通量药物筛选发现先导化合物(leading compounds),再到候选药物是新药开发的过程。其中的化合物库是新药开发中的必备工具,通过从化合物库中找到有效的化合物,来实现新药开发。因此化合物库的管理就成为如何成功搭建高通量筛选实验的重要部分。 Evotec作为化合物库管理的著名公司,每年处理交付超过4500万种化合物。让我们一起了解一下Evotec如何管理这些化合物的管理。 Access 双机器人系统 (DRS) 是一种模块化和可配置的针对样品管理工作流程优化的自动化平台与新的 Echo® 655 纳升移液进行整合,具备以下特点: 为实现化合物管理的最佳通量 紧凑且符合人体工程学的设计,带有对接模块、转盘、可伸缩搁板和抽屉 可选功能可以包括环境管理减小环境湿度,避免化合物吸水 Echo 655T 纳升移液支持样品直接从存储管转移,以实现从样品中完全非接触式液体处理工作从存储到assay ready plate。 来自 Echo® 合格微孔板和试管的非接触式转移 用于“基因组学和筛选”应用的液体转移 以低至 2.5 纳升的体积准确准确地转移样品 避免化合物损失、残留和污染的风险 与控制湿度系统配合,最大限度地减少化合物吸水 Evotec利用Biomek自动化移液工作站的灵活移液的能力进行大体积分液,并利用Echo的非接触式移液的高精准性和快速,结合Access的自动化高通量的能力,配合Mosaic化合物管理实现了高通量、快速、准确的化合物管理全过程。
  • 泉州市传感智能制造和化合物半导体产业专利导航成果发布
    为贯彻落实《知识产权强国建设纲要(2021—2035年)》和《“十四五”国家知识产权保护和运用规划》,更好地推广专利导航服务,宣传知识产权科普知识,推动创新主体有效利用知识产权信息培育竞争优势,6月21日,泉州市知识产权保护中心组织开展传感智能制造和化合物半导体产业专利导航成果发布推介系列活动,成果发布会设立泉州主会场和晋江、南安、安溪分会场,来自泉州市各县市区的企业、高校、科研院所和有关行业协会代表共800余人参会。  活动介绍了泉州市重点产业专利导航数据库及可视化监测系统,邀请了2位资深中级知识产权师,进行泉州市传感智能制造产业和泉州市化合物半导体产业专利导航成果发布,对传感智能制造和化合物半导体产业专利导航报告、《专利导航指南》系列国家标准进行解读,并进行问卷调查及现场交流,积极对接企业需求,为参会人员进行专业辅导和耐心答疑,帮助强化提升专利质量意识和能力,进一步掌握了重点产业发展现状,明晰了产业专利导航研究目标,梳理了产业创新发展面临的问题,论证了重点企业专利导航技术分解需求和专利导航成果应用需求,为推动专利导航项目顺利实施,发挥项目示范带动作用打下良好基础。  下一步,保护中心将继续完善专利导航项目,提供更加精准和实用的专利信息,进一步支持创新创业者,提供全方位的知识产权保护和支持,推动创新成果的转化和价值的最大化,促进科技进步和经济繁荣。
  • POPs2016上的“明星”—全氟化合物
    仪器信息网讯 谈起POPs,人们首先想到的就是垃圾焚烧厂排放的二噁英,然而最近在西安举办的第十一届持久性有机污染物国际学术研讨会上,全氟化合物(PFASs)受到了与会专家的诸多关注,成为报告者讨论最多的化合物。会议现场  全氟化合物是碳氢化合物(及其衍生物)中的氢原子全部被氟原子取代后所形成的一类化合物,具有持久稳定性、生物累积性等特点。2009年5月,斯德哥尔摩公约第四次缔约方大会决定将全氟辛烷磺酸及其盐类(PFOS)与全氟辛烷磺酰氟(PFOSF)列入公约附件B(限制类),并于2013年8月在我国得到全国人大常委会批准。2015年,斯德哥尔摩缔约方大会通过了全氟辛酸(PFOA)及其盐类和相关化合物的附件D审查(POPs特性筛选),认为PFOA符合附件D筛选标准,决定在其附件E审查时应纳入可降解为PFOA的盐类和相关化合物。为适应新的履约需求,在我国近期更新的中国履行《斯德哥尔摩公约》国家实施计划中,也将PFOS纳入了计划中,并将动用2400万美金来实现其在重点行业的淘汰和替代。这也许就是全氟化合物受到大家广泛关注的原因。  除了大会报告和各分会场中有多个涉及全氟化合物的报告外,为了集中讨论全氟化合物的问题,本次研讨会特设了“PFOS履约与安全替代”专场,邀请国内外专家共同探讨全氟化合物的危害和替代品。“PFOS履约与安全替代”专场  各位专家主要围绕全氟化合物的分布、危害和替代品三方面进行了报告。  POPs Environmental Consulting 的Roland Weber博士讲解了PFOS引起的水污染问题以及针对此问题的管理策略和成本。中科院生态环境研究中心王亚韡研究员以我国最大的全氟磺酸盐生产工厂为例,研究了周边地下水、表层土壤、职业工人、周边居民和周边母鸡中全氟化合物的分布、迁移、暴露以及消除规律,并根据研究成果提出了相应的安全防护措施。南开大学祝凌燕教授介绍了其团队在环境中全氟化合物的研究,主要结论包括河流输入是太湖水体中PFAFs的主要来源 直接排放是城市大气中PFOS和PFOA的主要来源 PFASs可以通过与气溶胶或颗粒物结合的形式在大气中传输 我国人体血清中以PFOS为主,短链化合物如PFHxS等有升高的趋势。  农业部环境保护科研监测所耿岳博士以“母亲全血中全氟化合物水平同胎儿先心病发生的相关性”为题,讲解了其在母亲全血中检出的全氟化合物浓度及种类,频率最高的是PFOS和PFOA,并且病例组和对照组之间没有显著性的差异。  中国民用航空飞行学院贾旭宏博士的团队成员为大家讲解了其团队开发的一种PFOS替代品——以短氟碳链(≤ C4)为基础的阴阳碳氟-碳氟表面活性剂复配体系, 并详细介绍了其在水成膜泡沫灭火剂中替代C8基氟表面活性剂的潜力。科慕化学(上海)有限公司Kai-Volker Schuber 博士介绍了其公司产品短链Capstone 含氟表面活性剂作为灭火剂原材料的风险,分别从原材料、产品以及降解产品三个方面,进行了环境、毒理、生态等方面的评估,论证了此种产品的环境友好性。中科院动物研究所戴家银研究员从分布特征和迁移转化规律、内分泌干扰与生殖毒性、复合毒性效应的表征、毒性效应的分子机制等四方面对全氟化合物进行研究,此次报告主要讲解了F-53B的研究成果,认为其各种效应仅次于PFOS和PFOA,不能作为PFASs的替代品。  在会议的茶歇期间,“PFOS履约与安全替代”专场主持人清华大学黄俊副教授接受了仪器信息网的采访,为我们系统介绍了全氟化合物的使用和研究情况。  仪器信息网:我国PFOS的应用情况如何?  黄俊:根据公约和我国的批准,总体来说,用于电镀、农药等特定豁免用途的PFOS将在五年之后全部淘汰,用于消防和全封闭体系电镀等可接受用途的PFOS将可继续使用。与无意产生的二噁英不同,PFOS是一种化工品。在消防领域,PFOS被认为是一种很好的灭火剂生产原料,由于我国石化基地比较多,可以说火灾防不胜防,如果不能找到效果良好的替代品,将对我国消防安全产生较大的影响。”  仪器信息网:PFOS是斯德哥尔摩公约新增列物质,这是否意味着PFOS的毒性小于二噁英等第一批列入公约的物质?  黄俊:这不一定,是否列入公约主要取决于科学认知和国家提名。一种物质如果产量较小,没有引起关注,但因为偶然原因发生危害并被证明毒性较大,可能就会被马上列入公约。再有一个是国家提名,不管一种物质的危害性如何,如果没有任何国家提名的话,也是不会列入公约的。  目前全氟化合物的很多毒理学性质还不清楚,虽然目前公约主要考虑PFOS和PFOA,但是研究者普遍认为应该有更多种类的全氟化合物属于POPs。现在的问题在于,研究众多,但是还没有一个公认的结论。就像阻燃剂一样,刚开始的时候,五溴二苯醚和八溴二苯醚被列入公约,对于十溴二苯醚大家经过了很长时间的争论,最终也列入了公约,这是一个科学证据完善的过程。  仪器信息网:全氟化合物的分析技术是否成熟?  黄俊:全氟化合物是表面活性剂,有阴离子型和阳离子型两种,种类非常复杂,且带有电性,有疏水性的,也有亲水性的,并且物质性质比较特别,所以在用液质联用同时分析多种全氟化合物时,就需要找到一个兼顾所有分析需求的方法。总之,多种全氟化合物的同时分析并不容易。  另外一个就是排除干扰。仪器中的很多密封件是采样特氟龙材质,这种材质会溶出全氟化合物从而形成干扰,目前的解决方法包括更换材质、增加预柱消除干扰、采用同位素稀释方法消除干扰。还有就是实验室的本底控制也很重要,像冲锋衣、地毯、涂料之类的,都会释放出干扰物质。编辑:李学雷
  • 输欧消费品禁含特定有机锡化合物
    自今年7月起,欧盟执行2009/425/EC指令,从而正式开始限制对消费产品中特定有机锡化合物的使用。指令2009/425/EC中规定:自2010年7月1日起,欧盟在所有消费品中限制使用三丁基锡和三苯基锡化合物,其限量要求为商品中锡含量的质量百分比浓度小于0.1%,如若检出超标,则该批消费品将遭到退货乃至严厉的召回处罚。   本项指令中关注的有机锡化合物包括三丁基锡、三苯基锡化合物及二丁基锡、二辛基锡化合物,其中前两者的正式开始限制时间为2010年7月1日,而后两者的时间则为2012年1月1日。以上四种有机锡化合物被广泛地应用于消费品中,例如鞋的内底,袜子和运动衣的抗菌整理,聚氨酯泡沫生产过程中的添加剂,PVC生产过程中的稳定剂或硅橡胶生产过程中的催化剂等。据统计,在现实生产过程中,全世界的锡产量中的10%~20%是用于合成有机锡化合物的,由此可见该物质应用的广泛程度。并且有机锡化合物对生物体的危害严重,会引起糖尿病和高血脂病等。   据统计,2010年上半年,宁波口岸出口至欧盟的商品共计62413批次,合15.72亿美元,相比2009年同期,分别提高了27.0%和26.6%,呈现出良好的上升态势,其中主打的拳头产品包括纺织品、玩具产品、食品接触类材料等,这些物品在生产加工过程中都有可能会添加有机锡化合物,如果这些潜在含有有机锡化合物的产品未通过检测贸然输往欧盟,可能会导致大规模的退货乃至召回的后果,这将会严重影响“中国制造”在欧盟的声誉,最终会对正处在逐渐回暖过程中的中欧贸易造成不可预计的恶性后果。   为此,检验检疫部门提醒:第一,输欧消费类产品的生产企业要加强原辅材料和生产过程的管理,要求原辅材料供应商提供不含有机锡化合物的检测报告,同时积极改进加工工艺,确保整个生产过程不添加有机锡化合物 第二,相关企业应积极通过与政府职能部门的配合,获取更多的有毒有害物质检测技术和检测标准知识,稳固企业技术储备工作 第三,检验检疫部门应加大对相关商品的有机锡化合物的抽样检测工作力度,以保证起到切实有效的监管作用 此外,检验检疫部门还可以考虑在国际层面上加强与欧盟在有毒有害物质管理方面的信息交换和有效配合,掌握国外有毒有害物质最新标准的发展趋势,以利于企业进行各项技术创新和管理变革。
  • 输欧消费品禁含特定有机锡化合物
    自今年7月起,欧盟执行2009/425/EC指令,从而正式开始限制对消费产品中特定有机锡化合物的使用。指令2009/425/EC中规定:自2010年7月1日起,欧盟在所有消费品中限制使用三丁基锡和三苯基锡化合物,其限量要求为商品中锡含量的质量百分比浓度小于0.1%,如若检出超标,则该批消费品将遭到退货乃至严厉的召回处罚。   本项指令中关注的有机锡化合物包括三丁基锡、三苯基锡化合物及二丁基锡、二辛基锡化合物,其中前两者的正式开始限制时间为2010年7月1日,而后两者的时间则为2012年1月1日。以上四种有机锡化合物被广泛地应用于消费品中,例如鞋的内底,袜子和运动衣的抗菌整理,聚氨酯泡沫生产过程中的添加剂,PVC生产过程中的稳定剂或硅橡胶生产过程中的催化剂等。据统计,在现实生产过程中,全世界的锡产量中的10%~20%是用于合成有机锡化合物的,由此可见该物质应用的广泛程度。并且有机锡化合物对生物体的危害严重,会引起糖尿病和高血脂病等。   据统计,2010年上半年,宁波口岸出口至欧盟的商品共计62413批次,合15.72亿美元,相比2009年同期,分别提高了27.0%和26.6%,呈现出良好的上升态势,其中主打的拳头产品包括纺织品、玩具产品、食品接触类材料等,这些物品在生产加工过程中都有可能会添加有机锡化合物,如果这些潜在含有有机锡化合物的产品未通过检测贸然输往欧盟,可能会导致大规模的退货乃至召回的后果,这将会严重影响“中国制造”在欧盟的声誉,最终会对正处在逐渐回暖过程中的中欧贸易造成不可预计的恶性后果。   为此,检验检疫部门提醒:第一,输欧消费类产品的生产企业要加强原辅材料和生产过程的管理,要求原辅材料供应商提供不含有机锡化合物的检测报告,同时积极改进加工工艺,确保整个生产过程不添加有机锡化合物 第二,相关企业应积极通过与政府职能部门的配合,获取更多的有毒有害物质检测技术和检测标准知识,稳固企业技术储备工作 第三,检验检疫部门应加大对相关商品的有机锡化合物的抽样检测工作力度,以保证起到切实有效的监管作用 此外,检验检疫部门还可以考虑在国际层面上加强与欧盟在有毒有害物质管理方面的信息交换和有效配合,掌握国外有毒有害物质最新标准的发展趋势,以利于企业进行各项技术创新和管理变革。
  • 光致变色化合物——执光为笔,存储记忆
    Light way- 点亮未来 - 光为人类带来无限可能,畅想未来与光相关的黑科技,光擦写技术无疑是具有无限升值空间的潜力股之一。例如光打印技术,无需油墨,重复擦写近100次,绿色环保,可节省纸张;又如新型记忆存储材料,超大密度海量信息记录,并可快速写入及擦除。 光擦写技术涉及到一种特殊的物质,即光致变色化合物,指某些化合物在一定的波长及强度的光作用下分子结构会发生改变,从而导致其对光的吸收峰值即颜色发生相应改变,且这种改变一般是可逆的,意味着这是反复可循环的过程。 光致变色化合物 利用光致变色化合物上述的特点,可将其制成计算机的记忆存储元件,实现信息的记忆与擦除,具有惊人的信息记录密度及良好的抗疲劳性能,能快速进行写入和擦除。这是新型记忆存储材料的一个新的发展方向。 光敏氯合物就属于一种光致变色化合物。从热稳定性的观点来看,光敏氯化合物可分为P型和T型。P型化合物通过光照生成的化合物是热稳定的,可逆变化需要再次光照。而T型化合物通过光照生成的化合物发生热可逆变化。 图1. a:P型光敏氯化物原始样品;b:365nm光照20min后;c:365nm先光照20min ,再使用550nm光照20min 图2. 样品在365nm光照下随时间变化的吸光度曲线 图3. 样品先经365nm光照后,在550nm光照下随时间变化的吸光度曲线 图4. a:T型光敏氯化物原始样品;b:365nm光照20min后;c:365nm先光照20min ,室温放置2h后 图5 样品在365nm光照下随时间变化的吸光度曲线 图6. 样品先经365nm光照后,室温下随时间变化的吸光度曲线 上述P型及T型光敏氯化物的光致变色反应使用岛津新推出的Lightway PQY-01光反应评价系统进行测试,PQY-01配置了快速光电二极管阵列检测器,可以对光致变色过程中的光谱变化进行快速追踪。
  • 沃特世科技举办极性化合物分析网络讲座
    色谱条件优化之极性化合物分析挑战--沃特世全面解决方案     仪器信息网讯 随着液相色谱技术的发展,色谱柱技术也得到了迅速发展。针对常规色谱柱无法检测的极性化合物,waters 的宋兰坤博士利用仪器信息网的网络讲堂在12月23日为大家带来了一场非常精彩的在线讲座,她详细讲解了极性化合物分析带来的挑战和解决方案。本次讲座吸引了来自科研院所、检测机构及医药领域的专家学者等共计79人参加。   宋兰坤博士在讲座中首先介绍了反相色谱分析极性化合物时容易遇到的疏水塌陷问题。她指出疏水塌陷是和色谱柱固定相的设计有关,Waters的Atlantis T3亲水性化合物保留专用柱是采用三官能键合和封端技术,在增强极性化合物保留能力的同时,维持了对中等和强疏水化合物的适度保留能力。   Atlantis T3色谱柱分析极性化合物的机理为疏水作用力,可以采用纯水为流动相,最大程度的增加样品保留 其次通过减少填料上C18的覆盖率,使得样品更容易与残留硅羟基相互作用,也起到增加样品保留的效果。 图 使用Atlantis T3 柱检测尿嘧啶   随后,宋兰坤博士指出如果反相色谱条件下仍没有好的保留或者MS响应很低,可以尝试选用HILIC柱。HILIC也叫亲水作用色谱,是正相色谱的一个“变种”,它避免了使用与水不相容的有机溶剂,流动相中含有水,又称“水相正相色谱”。   HILIC模式的三大优势在于:1、与反相色谱互补,可以检测在反相色谱柱中没有保留的强极性化合物 2、高比例的有机相可以增加ESI-MS响应,增强质谱的灵敏度 3、增加样品的高通量,通过PPT,LLE和SPE净化提取后为高比例有机相,HILIC模式不需要挥干和复溶,可以采用直接进样。   HILIC模式的保留机理,是极性待分析物在HILIC填料表面的水层和乙腈/水流动相之间进行分配,带电荷的极性分析物同带电荷的硅羟基发生阳离子交换作用,在带正电的分析物和带负电的硅胶表面存在氢键作用力。同时介绍了分析极性化合物时不同流动相的溶剂选择性和洗脱强度,并总结到随着溶剂极性的减弱,化合物的保留是在增加的。 图 HILIC模式的保留机理   同时宋兰坤博士为大家对比了杂化颗粒和硅胶基质的HILIC色谱柱,在PH为5.5的条件下,进样2000针后,Xbridge HILIC 色谱性能仍然完好,硅胶基质HILIC色谱性能则有相当大的退化。 图 杂化颗粒VS.硅胶基质HILIC的色谱柱化学稳定性   在将近1个小时的讲座之后,仪器信息网的网络讲堂进入在线提问环节,与会者踊跃提出问题,宋兰坤博士一一为大家做了详细解答。
  • 中国碳水化合物动物营养研究中心成立
    7月2日,中科院大连化学物理研究所与四川农业大学动物营养研究所、中泰和(北京)科技发展有限公司在四川农业大学成都校区签署三方协议,共同成立“中国碳水化合物动物营养研究中心”。   合作中,中科院大连化物所将承担碳水化合物分离、分析、检测和规模化制备等相关研究工作,四川农业大学动物营养所将负责对结构明确的碳水化合物进行动物营养学评价,以求筛选出优质的可应用于畜牧饲养的碳水化合物,中泰和(北京)科技发展有限公司除负责新产品的设计和市场推广外,还将为该中心提供必要的科研经费支持。   四川农业大学动物营养研究所1986年成立,主要从事猪、禽、反刍动物和水生动物的营养物质代谢、营养需要、营养调控、饲料营养价值等评定。先后承担完成了国家973、国家自然科学基金等部省级科研项目近三百项,获得国家科技进步二等奖3项、四川省科技进步一等奖3项、以及其它省部级奖励共计二十余项。已出版教材及专著40余部,每年发表论文130余篇。   中泰和(北京)科技发展有限公司是专注于糖工程技术在畜牧业应用研发、推广的专业服务商,以“前沿智慧,成就客户”的核心价值观,为商业饲料企业和饲料养殖一条龙企业提供动物营养/健康的解决方案。
  • 岛津应用:使用在线SFE-SFC分析不稳定化合物
    超临界流体是粘度小、扩散系数高、溶解性强的流体,兼有气体和液体的双重性质和优点。因为二氧化碳的临界点低(31.1 ?C,7.38 MPa),操作条件温和,且无色、无毒、无味、不易燃、化学惰性,作为介质被广泛用于各种领域。在超临界流体萃取(Supercritical Fluid Extraction: SFE)和超临界流体色谱(Supercritical Fluid Chromatography: SFC)中通常将其作为萃取剂。一直以来我们是在离线模式下进行SFE和SFC分析。并且SFE和SFC分别作为预处理方法和分析方法,被归属于完全不同的工作流程。 而在岛津Nexera UC中,将SFE和SFC在线连接,对预处理到分析的工作流程进行了整合。 图1为在线SFE-SFC分析的流路图。由图可知,该分析系统是对当超临界流体通过萃取容器进行萃取后,将得到的样品在线导入SFC 用分析柱中,然后直接进行分离并检测的方法。如图1所示,在萃取至分析的一系列操作中,均通过SFE单元内置阀进行流路切换。萃取处理有两种方式,即将超临界流体导入萃取容器后以静置状态进行萃取的静态萃取(Static extraction)和向萃取容器中注入流体后带出萃取物的动态萃取(Dynamic extraction)。对于在线SFE-SFC,将样品导入分析柱的操作属于动态萃取。因为在线SFE-SFC 分析无需进行复杂的预处理,即可完成从萃取至分离检测的流程,并且实现了自动化,从而大幅度减少了操作步骤。另外,由于能够在避光、无氧、无水的环境下进行分析,所以对于易光解、易氧化以及易水解等不稳定化合物的分析非常有效。如果使用离线SFE,无需使用溶液制备样品,因此目标成分不会发生稀释,从而可以实现高灵敏度分析。 本文向您你介绍使用“Nexera UC”的在线SFE-SFC进行分析的示例。 了解详情,敬请点击《使用在线SFE-SFC 分析不稳定化合物》。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 综述l芳香化合物连续硝化应用进展(二)
    综述l芳香化合物连续硝化应用进展(二)康宁反应器技术收录于话题#危化反应-硝化18个康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度编前语上文我们通过多个案例,介绍了应用微通道反应器实现一取代和二取代苯型芳香烃为底物的硝化反应的研究进展。在进入本文正文(即本篇综述第二部分内容)前,小编需要补充的是:在硝化等危化工艺连续化研究成果越来越多的现阶段,如何将研究成果应用于实际,实现硝化工艺的工业化放大生产更是行业关注的焦点。康宁反应器技术经过13年的工业化应用研究与推广,在微通道反应器工业化生产领域的应用实现了突破性进展,在全球已经拥有上百家工业化用户,累计安装的年通量已超过80万吨。康宁AFR多套工业化硝化装置始终保持24/7连续稳定安全运行。江苏中丹化工成功采用康宁反应器连续硝化,显著提升了关键中间体生产的本质安全水平,装置稳定运行一年多,得到了客户和地方政府的高度认可。康宁反应器技术和益丰生化环保股份有限公司合作,打造了年通量万吨级全自动全连续微反应硝化生产装置。与传统工厂相比,其亩均产出提升了10倍,运行费用减低20%以上。… … 还有更多硝化、重氮化、氧化、加氢等工业化项目成功实现并稳定运行,帮助客户实现了巨大的经济效益和社会效益。如果您想要了解更多,欢迎您直接留言或电话联系我们!电话:021-22152888-1469您也可以扫描右二维码了解更多康宁AFR应用案例。接下来让我们进入正文——以多取代苯型芳香烃及其它苯型芳香烃为底物的硝化反应二硝基萘的连续化合成倪伟等[9]以萘和95%硝酸为原料,在微通道反应器中研究了二硝基萘的连续化合成工艺(图9),考察了硝酸浓度、反应温度、反应物料比对反应的影响并进一步优化了反应条件。结果:在最佳条件下单硝化产物n(对硝基氯苯)∶n(邻硝基氯苯)=1:0.56,与釜式反应器相比,副产物明显减少,转化率明显提高,生产能力提高了4个数量级,并且可以实现工艺的连续化操作。1-甲基-4,5-二硝基咪唑硝化合成1-甲基-4,5-二硝基咪唑(4,5-MDN1)是一种性能良好的高能钝感炸药和极具应用价值的熔铸炸药载体。在传统釜式反应器中进行N-甲基咪唑硝化反应时剧烈放热,为控制反应温度需缓慢逐滴加料,反应时间长,产物收率低。刘阳艺红等[10]在微通道反应器为核心的反应体系中进行了4,5-MDN1的合成研究(图12),利用微通道反应器的高传热特性快速提高4,5-MDN1的收率。工业生产中,可通过增加微通道反应器数量来热量,维持恒定的反应温度,在减少混合酸用量的同时,显著提高了提高产量,具有广阔的发展前景。1-甲基-3-丙基-1H-吡唑-5-羧酸硝化反应Panke等[11]采用微通道反应器对1-甲基-3-丙基-1H-吡唑-5-羧酸进行了硝化反应研究(图13)。微通道反应器优秀的传热性能性使反应温度稳定在90℃,避免了100℃脱羧副反应的发生,硝化产物是合成西地那非的重要中间体。结语微通道反应器在芳香化合物的硝化反应中表现出了极大的优势:选择性高、安全性高、转化率高、反应时间短、数增放大、可建立动力学模型等,使得芳香化合物的硝化由传统的间歇式生产转为连续化生产成为可能。尽管微通道反应器还存在一定的局限性,但随着微化工技术的发展,微通道反应器会更加安全化、智能化和连续化,其在芳香化合物的硝化反应中的应用会越来越广泛,硝化反应这类具有污染大、放热强、选择性差的反应也将随之得到优化。参考文献:[1] 化学与生物工程. 2021,38(02).[9] 南京工业大学学报 (自 然 科 学 版),2016,38(3):120-125[10] 现代化工,2018,38(6):140-143.[11] Synthesis, 2003(18): 2827-2830.
  • 基于国产液相色谱技术的有机化合物监测技术获技术进步奖二等奖
    在20位院士、30多家提名机构和100余位提名和评审专家的大力支持下,2022年“环境技术进步奖”圆满完成,27个项目获得一等奖和二等奖。   据不完全统计,2022年的获奖成果包括国际专利21项、发明专利530项、实用新型专利等其他知识产权538项;2019-2021年,相关产值高达642亿元,实现利润126亿元,充分体现了我国环境技术创新实力。   中国环保产业协会将陆续发布获奖项目简介,供社会各界人士参考。   (注:所有发布材料均由获奖单位提供。)   项目名称:基于国产液相色谱技术的有机化合物监测技术体系的建立   项目编号:HJJS-2022-2-16   获奖等级:二等奖   完成单位:辽宁省生态环境监测中心、中国环境监测总站、辽宁省沈阳生态环境监测中心、华谱科仪(大连)科技有限公司、山东悟空仪器有限公司、丹东瑞特科技有限公司   完成人:刘枢、杨婧、卢迎红、袁俊斌、彭跃、赵丽娟、王锷一、曲健、魏杰 项目团队照片   项目简介:   该项目构建了水、气等多环境介质、多目标化合物、质控指标全面的有机化合物液相色谱法监测技术体系,并针对国产液相色谱仪在环境介质中多目标化合物的检测分析技术落后的情况,开展对国产液相色谱仪关键技术研究,进一步发展色谱分离技术和完善应用软件,打破了液相色谱长期被国外品牌高度垄断的局面。主要创新性成果如下:   1.国产液相色谱关键技术研究   研发具有自主知识产权的高效液相色谱仪,推动监测装备的发展和国产化。开发2种国产液相色谱柱材料及固定相制备技术,解决了色谱分离度差,方法灵敏度低等关键技术瓶颈,提出2种实用的聚合反应釜技术方案解决生产实际问题,解决泵材料、耐磨性、密封性,保证输液的精度和稳定性。进行了色谱柱材料及固定相制备技术的攻关,解决了色谱分离度差,方法灵敏度低等关键技术瓶颈。采用低残留的法兰针头与阀上进样设计、帕尔贴柱温箱温控技术、机械镌刻光栅紫外检测器提高分析的精密度、灵敏度。   2.开展气态样品采集、水质样品富集和复杂样品净化等关键技术研究,构建多环境介质、多目标化合物、质控指标全面的有机化合物监测技术体系,制订发布5项国家环境保护标准分析方法,有力支撑监测技术规范化、业务化。具体包括:   (1)研发了一系列采样设备关键技术   开发了废气排放管道中半挥发性有机物采样、高负载气体颗粒物及有害气体采样等关键技术,建立多环境介质中有机化合物的采集、提取、净化和分析测试的先进技术。   (2)样品前处理技术研究   重点突破分析测试回收率低、重复性差、萃取溶剂毒性大且用量多、操作繁琐等关键技术。该技术分别从不同类型水体、空气和废气等不同类型环境介质方面进行深入研究。   (3)建立了一套有机污染物分析测定质量保证和质量控制技术   质量控制内容涵盖从样品采集、运输保存、前处理过程、样品净化、仪器分析及结果处理全程序质量相关每一个节点。通过空白测定、平行样分析、样品加标、基体加标、替代物加标等具体控制参数,对人员、环境、仪器、试剂及操作方法程序进行监控,以保证获得高精密度、准确度、灵敏度分析测试结果为核心,研究了构建科学、完善、高效的质量保证和质量控制指标体系。   (4)构建了一套完整的不同类型环境介质中多环芳烃、醛酮类化合物、酰胺类化合物、奥昔嘌醇监测技术体系,并采用国产液相色谱技术进行了方法的建立和验证。   通过创新、集成并对接目前国内外对多环芳烃、醛酮类化合物、酰胺类化合物、奥昔嘌醇的质量标准和排放标准等技术需求,优选了色谱柱、优化了分离条件;对空气和水质开展了实验室内和实验室间的检出限、精密度和准确度验证、并建立了科学完善质量控制的指标体系,在使用国产液相色谱的用户中得到广泛应用。   项目成果获得发明专利4项、实用新型专利14项,软件著作权1项,发表SCI论文4篇,国内核心期刊发表论文16篇,形成国家环境保护标准6项(有1项在研)、地方标准5项。该项目在近百家环境监测机构和商业实验室获得推广应用,液相色谱及依据该项目专利生产的采样器经济效益可观。该技术为全国监管新有机污染物、打赢污染防治攻坚战提供了关键技术支撑,社会效益显著。 仪器研制技术路线图   获奖感言:刘枢 辽宁省生态环境监测中心 中心副主任   “十四五”期间要求大力支持绿色技术创新,全面提升生态环境科技创新能力。营造良好创新生态,激发创新主体活力,推进技术创新成果应用是我们科研人员不懈努力的方向。本项目针对国产液相色谱仪在环境介质中多目标化合物的检测分析技术落后的情况,重点研发具有先发优势的关键技术和引领未来发展的基础前沿技术,打破了液相色谱长期被国外品牌高度垄断的局面。路虽远,行则将至;事虽难,做则必成。我们将继续围绕深入打好污染防治攻坚战,为建设天蓝地绿水清的美丽中国不懈奋斗。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制