当前位置: 仪器信息网 > 行业主题 > >

母丁香

仪器信息网母丁香专题为您整合母丁香相关的最新文章,在母丁香专题,您不仅可以免费浏览母丁香的资讯, 同时您还可以浏览母丁香的相关资料、解决方案,参与社区母丁香话题讨论。

母丁香相关的资讯

  • 丁香园“天价鞋垫”下线?曾回应1980元鞋垫是矫形器具
    p style=" text-indent: 2em " span style=" color: rgb(51, 51, 51) font-family: arial text-align: justify background-color: rgb(255, 255, 255) " 1月14日,近日有消息曝光丁香园旗下丁香诊所在线售卖单价1980元的天价鞋垫,比权健鞋垫的价格还要高出近一倍。同时,该文中称,丁香园攻击权健,系为自家产品获得更大市场。 /span /p p style=" text-indent: 2em " 对该文中所述,丁香园分别进行了回应,丁香园表示“不少权健的经销商和权健球队的球迷这两天在各种渠道大量转发丁香园诊所的矫形鞋垫,意思大家都懂的。” /p p style=" text-indent: 2em " 同时,对1980元的鞋垫,丁香园称“这种鞋垫是矫形器具,用来处理扁平足,拇外翻、足跟痛等问题。 /p div class=" img-container" style=" margin-top: 30px font-family: arial font-size: 12px white-space: normal background-color: rgb(255, 255, 255) " img class=" large" data-loadfunc=" 0" src=" https://ss1.baidu.com/6ONXsjip0QIZ8tyhnq/it/u=2189453185,3103976537& fm=173& app=49& f=JPEG?w=547& h=371& s=DC0A743BB7937DC812F814D7010080B2" data-loaded=" 0" style=" border: 0px width: 537px display: block " / /div div class=" img-container" style=" margin-top: 30px font-family: arial font-size: 12px white-space: normal background-color: rgb(255, 255, 255) " img class=" normal" width=" 277px" data-loadfunc=" 0" src=" https://ss1.baidu.com/6ONXsjip0QIZ8tyhnq/it/u=3137544073,383149788& fm=173& app=49& f=JPEG?w=277& h=547& s=C992E117E4E0F7190157F5DC030080A0" data-loaded=" 0" style=" border: 0px display: block margin: 0px auto " / /div p style=" text-indent: 2em " 此外,据新京报记者从丁香园公关部工作人员获得的回应称,丁香园“矫形鞋垫”并非鞋垫,是国家一类医疗器械,相关资质齐全,产品在2018年上半年就已经推出。“矫形鞋垫”价格中包含产品后续的服务费。 /p div class=" img-container" style=" margin-top: 30px font-family: arial font-size: 12px white-space: normal background-color: rgb(255, 255, 255) " img class=" normal" width=" 293px" data-loadfunc=" 0" src=" https://ss1.baidu.com/6ONXsjip0QIZ8tyhnq/it/u=3608894911,2907068736& fm=173& app=49& f=JPEG?w=293& h=484& s=7AA834620B6255205EF5D0CA0000C0B1" data-loaded=" 0" style=" border: 0px display: block margin: 0px auto " / /div p style=" text-indent: 2em " 目前,TechWeb在丁香诊所平台及丁香园网站上均已搜索不到该1980元的矫形鞋垫,疑似已经下线该产品。 /p p style=" text-indent: 2em " 资料显示,丁香园创建于2000年7月,2018年4月丁香园完成D轮超1亿美元融资,融资完成后,丁香园估值达到10亿美元。截至2018年4月,丁香园拥有550万专业用户,包含200万医生用户,业务分为医生端、大众/患者端、医疗机构端与商业服务端四个板块。 /p p style=" text-indent: 2em " 2018年12月25日,丁香园自媒体公号丁香医生发布《百亿保健帝国权健,和它阴影下的中国家庭》一文,质疑权健及其所销售的产品,引发舆论关注。其中就涉及到丁香园指权健产品“骨正基”鞋垫价格是天价。 /p p style=" text-indent: 2em " 今天,央视新闻报道,1月13日天津市武清区人民检察院对公安机关提请批准逮捕的权健自然医学科技发展有限公司束某某等16名犯罪嫌疑人,经审查证据材料,告知犯罪嫌疑人诉讼权利并讯问犯罪嫌疑人后,以涉嫌组织、领导传销活动等罪依法作出批准逮捕决定。 /p
  • 对不起|关于我洗稿"丁香园"10w+爆款文章的致歉
    “又不是你家'牛马',凭什么给你面子?” ——作者:有趣的胖子万里挑一是我利用穿越技能,提前12天“洗稿”了「丁香园」的爆款文章。对不起!为了进一步体现诚意,现坦白相关“不检点”事宜如下: 01 我在2024年7月19日13:07分发了一篇“自认为是原创”的小故事,是对美国一起医疗腐败案件的二次创作,链接如下:医疗反腐实录:一位医生和他的百万美元宝贝 02 非常巧合,公众号「丁香园」于2024年7月31日20:18分也发表了一篇“自认为是原创”的小故事,链接如下:一位肿瘤医生和他的销冠女儿:销量暴涨 600% 后,药企自首了 03 鉴于两篇均为基于“原材料”再加工、创作的“故事”,却很“巧合”的在故事结构、叙事逻辑、行文风格、核心内容这四条上高度相似,以我朴素的认知,一定有一方洗稿了,只是不确定谁洗的谁。 04 为了沟通,在「丁香园」王辉先生的牵线下,我和「丁香园」负责该篇文章的闻雨女士进行了直接的交流。——虽然我也不知道为什么明明只有一个人说话,对方却拉了四个人进群,古惑仔看多了吗?闻女士表示,她100%纯原创: 05 既然「丁香园」如此笃定,那真相只有一个了:一定是我在7月19日洗稿了「丁香园」7月31日的文章作为一名公众号作者,我一向无保留的支持原创保护,不论是抄袭还是洗稿,都是无耻、下流、没底线的行为。对于此次提前12天洗稿「丁香园」事件,我方深表歉意——抱歉,我会时间穿越的事实瞒不住了。希望给我个机会,我一定总结教训,下次穿越回去洗稿的时候更加仔细、保证不被看出来。(—以上为致歉,以下为瞎聊—)这一次要跳出来,主要是因为:这篇文章昨天出现在了我文章下面的「推荐」里伙子们,这是被人骑脸开大啊,士可杀不可辱!那为什么不跟「丁香园」王先生、闻女士及其团伙掰扯到底?有两个原因: 原因① 「丁香园」从制度上就很难“承认洗稿”在联系上王辉先生的时候,他在群里和私聊都说了一句话:“洗稿是我们的 红线 ”我当时就感觉:不妙,轻罪上重罚,这事儿完了。看似很重视,实则没卵用。当一件简单的事情被列为红线,会导致一个结果——因为承认就会死,代价过大,所以选择抵赖的收益无限大。“轻罪上重罚”起不到震慑、预防、打击的效果,只会让团伙想尽办法抵赖。其实我的诉求很“小”,「丁香园」大可不必这么“重视”: 原因② 「洗稿」确实很容易抵赖“结构、逻辑、文风、内容”是否相似,都是阅读者的感受——你说它“很客观”也行,说它“很主观”也对。我在写文章的时候也会受到其他作者的熏陶(比如九哥、海王、熊老师、叨哥、九爷等等等等.......),常见的做法是:大段使用,明牌“转载”;小段借鉴,一定“引用”;潜移默化,也要“提及”但这都靠“自觉”,只是松散的道德约束。每个人的道德标准不同,很多公众号作者都被所谓的「大V公众号」偷过家。我不是第一个,也不会是最后一个。大家通常会选择“忍”,因为较真很不划算,而且毫无胜算——那可是知名大号啊“洗你稿说明觉得你写得好,是肯定你”“你别惹他们,他们有成熟的应对机制”“粉丝差着数量级,小破号拿什么抗衡”也是,同样的内容,我发了12天阅读量不到3万,「丁香园」一天就过10w+。所以,我该自认倒霉?或者舔着脸倍感荣幸?我的确没什么好办法,除了发篇吐槽。但道理是不会被歪曲的:我写的再烂、小破号粉丝再少,也不代表你丁香园可以直接偷。别忘了,虽然我们写公众号是业余爱好,但你丁香园是要靠它挣钱的。长辈没教过你吗:“夜路走多了,总会碰到鬼”
  • 仪器信息网|23年10月解决方案排行榜
    仪器信息网|2023年10月解决方案排行榜导读:2023年10月解决方案排行榜新鲜出炉,掌握市场热点,行业应用趋势,解决仪器实验中遇到的实际问题,就来行业应用~解决方案,释义是针对某些已经出现的,或可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方法。仪器信息网【行业应用】栏目收录了各大仪器厂商发布的解决方案,可为用户在实际应用过程中提供一定参考。解决方案是用户了解厂商仪器功能及使用方法的重要途径,也是厂商强大技术储备的重要依据。为了解厂商解决方案发布动向,掌握市场热点,应用趋势,特整理2023年9月厂商解决方案发布排行榜及 热点应用领域。一、2023年10月解决方案发布排行榜: 2023年10月解决方案TOP综合榜单(点击可查看公司详细信息)排名厂商名称Top1岛津企业管理(中国)有限公司Top2济南兰光机电技术有限公司Top3中国格哈特Top4上海荣计达仪器科技有限公司Top5德祥科技有限公司Top6海能未来技术集团股份有限公司Top7深圳市奥斯恩净化技术有限公司Top8高铁检测仪器(东莞)有限公司Top9北京盈盛恒泰科技有限责任公司Top10上海依阳实业有限公司注:根据2023年10月,各仪器厂商在行业应用栏目发布且被收录的解决方案篇数及解决方案质量、受欢迎程度等综合评出。 本次发布的综合评估榜单中,排名前三的分别是岛津企业管理(中国)有限公司、济南兰光机电技术有限公司、中国格哈特,凭借着完整和明确的内容吸引了更多用户的关注带来更多的潜在用户资源。岛津公司自1875年创业以来,始终继承创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,并以此为公司宗旨,不断钻研领先时代、满足社会需求的科学技术,为社会开发生产具有高附加值的产品。在分析测试仪器、医疗仪器、航空产业机械等领域,以光技术、X射线技术、图像处理技术这三大核心技术为基础不断推陈出新,满足更加广泛的市场需求。方案涉及到主推的仪器类型有:岛津三重四 极杆液 质谱联用仪LCMS-8 0 50 、液相色谱-质谱联用仪LCMS-2020等多台仪器。岛津三重四 极杆液 质谱联用仪LCMS-8050 液相色谱-质谱联用仪LCMS-2020 济南兰光机电技术有限公司是包装检测仪器与解决方案供应商,兰光聚焦包装检测领域,不断探索技术创新,拥有200余项专利技术,取得了“自主核心传感器技术”重大突破,形成以C系列为核心的产品群,覆盖包装及相关材料透氧、透气、透湿、力学、热封、热粘、热缩、摩擦系数、测厚、冲击、密封泄漏、顶空气体分析、粘性、揉搓等性能测试。方案涉及到主推的仪器类型有:包装薄膜剥离测定仪、电解法透湿性检测仪等多台仪器。包装薄膜剥离测定仪 电解法透湿性检测仪 中国格哈特 ,专业的德国实验室仪器公司,170多年致力于给高端分析实验室提供专业可靠的仪器设备,电加热、振荡、干燥技术的实验室应用先驱。方案涉及到主推的仪器类型有:全自动型纤维分析仪FT12、带自动进样器全自动 凯氏定氮仪 VAP500C等多台仪器。全自动型纤维分析仪FT12 带自动进样器全自动 凯氏定氮仪 VAP500C二、2023年10月用户关注的热点领域排行榜:2023年10月用户关注的热点领域排名行业Top1环保Top2食品/农产品Top3石油/化工Top4制药/生物制药Top5医疗/卫生Top6能源/新能源Top7电子/电气Top8生物产业Top9农/林/牧/渔Top10钢铁/金属备注:根据2023年10月,用户所浏览解决方案所属的一级领域的访客数量由高到低排名,整理得出。由上表可以看出,环保、食品/农产品、石油/化工、制药/生物制药是10月份解决方案关注较多的四大领域。各位厂商可多多产出自家产品在各行业中的优质解决方案,给到用户更好的选型指导和推荐。三、2023年10月热门解决方案速览:1、LC-MS/MS检测水产品中的地西泮残留2、生活饮用水中三卤甲烷的测定 3、关于轮胎滚动阻力的探讨4、半导体生产中的气体流量测量5、光声成像应用的激光器选择6、叶绿素荧光成像技术应用于园艺科学研究—花卉与观赏植物7、迪马科技 应对85项食品安全国家标准,提供专业的检测方案 !8、头孢克洛有关物质的测定高效液相色谱法 9、母丁香中丁香 酚 和母丁香 酚的测定10、HJ 759-2023应用《环境空气65种挥发性有机物的测定 罐采样气相色谱-质谱法》 【行业应用】栏目不仅提供上述众多领域的应用方案,还将定期根据时事热点,制作热点专题,并定向向用户推送相关仪器及解决方案。在此,诚邀各大厂商积极上传解决方案,参与共建热点专题。近期热点专题参考:══════════▼▼▼══════════行业应用栏目简介:(http://www.instrument.com.cn/application/)【行业应用】是仪器信息网专业的行业导购平台。汇聚了行业内国内外主流厂商的优质解决方案及相应的仪器设备。建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、石化等二十余个使用仪器相对集中的行业领域。并以样品和标准为主线,为用户查找仪器提供一个独特的维度,也为仪器产品提供一个全新的展示渠道。
  • 固相微萃取-高效液相色谱测定水产中丁香酚类麻醉剂
    丁香酚作为一种渔用麻醉剂,在水产品长途运输中,可降低呼吸和代谢强度,减少碰撞,降低其死亡率而被广泛使用。但有研究表明,高剂量的丁香酚会引起心律失常、肾脏损伤、消化系统等问题,对人类健康造成潜在危害,因此日本食品安全法规定丁香酚在水产品体内的最大残留量为50 μg/kg,但我国还未对其使用和残留量制定相关法规,针对其在水产品中的痕量残留检测的文献报道较少。  目前,丁香酚类麻醉剂常用的检测方法有气相色谱-质谱(GC-MS)、高效液相色谱-质谱(HPLC-MS)、高效液相色谱-紫外(HPLC-UV)和电化学(EC)等,但水产品中丁香酚类麻醉剂含量少,基质复杂,对其进行准确检测存在一定困难。  高效的样品前处理方法是获得准确结果的有效方法,现有液液萃取(LLE)、固相萃取(SPE)、分散固相萃取(DSPE)和固相微萃取(SPME)等方法应用在水产品前处理中,其中LLE方法操作简单,但很难消除水产品中色素、脂肪和蛋白质等杂质对测定的干扰,DSPE方法在处理过程中容易造成目标物损失导致回收率偏低,所以SPE和SPME技术在水产品前处理中更为常用,特别是针对水产品中一些挥发性和痕量物质检测时,SPME技术因其高效低耗、绿色环保显示出更大的优势而被广泛使用。  SPME涂层是决定方法选择性、灵敏度、寿命、重现性和应用价值的关键。SPME涂层的种类有限,其萃取容量或选择性难以满足不同性质复杂样品的痕量分析要求,亟待发展新型SPME涂层。氟化共价有机聚合物(fluorinated covalent organic polymer, F-COP)是一类具有拓扑结构的新型多孔聚合材料,主要由轻质原子通过较强的共价键相互连接而成,具有物理化学性质稳定、吸附容量高、孔结构和尺寸可控等特点,而且F-COP结构中含有氟官能团,可以与酚羟基之间形成氢键相互作用,从而实现对目标物的特异性识别与吸附,因此F-COP吸附剂在丁香酚类化合物的富集与分析中有很大的应用潜力。  本文以三氟甲磺酸钪为催化剂,在室温下合成一种F-COP材料,并采用黏合法在石英棒表面制备SPME涂层,结合HPLC-UV建立了测定丁香酚、乙酸丁香酚酯和甲基丁香酚的分析方法,并将该方法成功应用到罗非鱼和基围虾的分析中,为水产品中丁香酚类麻醉剂的残留检测提供技术支持。  01色谱条件  色谱柱:Diamonsil Plus C18-B(250 mm×4.6 mm, 5 μm);紫外检测波长:280 nm;流动相:甲醇-水(60:40, v/v);流速:0.800 mL/min;进样量:20.0 μL;柱温:30 ℃。  02标准溶液的配制  准确称取10.0 mg(精确至0.2 mg)丁香酚、乙酸丁香酚酯和甲基丁香酚标准品,用色谱纯甲醇配制成400 mg/L的混合标准储备液,于4 ℃下冷藏保存备用。实验所需不同浓度溶液均用超纯水进行稀释。  03F-COP-SPME石英棒的制备  F-COP材料的制备  根据文献报道的合成方法并进行适当修改,制备F-COP材料。具体合成方法如下:称取TAPB (36 mg)和TFA (31 mg),加入4 mL的1,4-二氧六环-1,3,5-三甲苯(4:1, v/v)混合溶液,超声至完全溶解。在超声条件下缓慢加入2 mg Sc(OTf)3催化剂,室温下密封静置反应10 min,得到黄色固体物质,分别用1,4-二氧六环和甲醇超声洗涤3次(3×10 mL),然后离心分离,获得的材料在60 ℃真空条件下干燥12 h备用。  F-COP-SPME石英棒的制备  截取5 cm石英棒,依次用1 mol/L氢氧化钠和1 mol/L盐酸溶液各浸泡5 h,再用超纯水超声清洗后于100 ℃下烘干备用。采用黏合法制备F-COP-SPME石英棒,具体过程如下: (a)分别称取90 mg F-COP粉末和90 mg PAN粉末于3 mL玻璃小瓶中,加入1.5 mL DMF,放入小磁子搅拌,超声分散形成均匀浆液;(b)将石英棒插入浆液中,再从浆液中缓慢拉出,置于空气中晾干1 min,再放入80 ℃烘箱中加热30 min,重复此操作2次;(c)将涂覆后的石英棒放入150 ℃烘箱中老化2 h; (d)老化后的石英棒涂层分别用10 mL丙酮、甲醇和超纯水各超声清洗10 min; (e)用刀片小心刮去多余涂层,保留涂层的长度为2.0 cm,最终得到SPME石英棒。F-COP-SPME石英棒每次使用前用10 mL甲醇和10 mL超纯水各清洗10 min后再进行萃取。  04样品前处理  鲜活罗非鱼和基围虾购于广州当地水产品市场,将其洗净去除鱼鳞、虾皮和内脏,然后用组织匀浆机绞碎样品,放入-20 ℃下保存待分析。称取2.00 g样品放入50 mL离心管中,加入5 mL乙腈和5.00 g硫酸钠后,依次涡旋振荡和超声各10 min,再以5000 r/min速度离心10 min,移取上层清液至另一支离心管中,残渣按上述步骤重复提取一次,合并两次上清液,加入5 mL正己烷脱脂,涡旋振荡10 min,静置10 min,去除上层正己烷相,将剩余溶液在室温下氮气吹干,加3.00 mL超纯水重溶,得到样品溶液。  05F-COP-SPME萃取过程  将3.00 mL样品溶液置于4 mL带密封垫的样品瓶中,插入制备的F-COP-SPME石英棒,涂层需全部侵入样品溶液中,室温下搅拌萃取(700 r/min) 30 min。然后将石英棒立即放入加有500 μL乙腈解吸液的小瓶中,超声解吸10 min,解吸液经0.45 μm滤膜过滤后待HPLC-UV分析。F-COP-SPME石英棒每次使用后,用10 mL甲醇和10 mL超纯水各清洗3次后待下次使用。  06模拟计算  通过Gaussian 09和Discovery Studio软件,在密度泛函理论方法优化结构的基础上,计算丁香酚、乙酸丁香酚酯和甲基丁香酚与所制备F-COP材料间的吸附能和电子云分布情况。
  • 腾讯7000万美元投资丁香园:进军医疗健康领域
    9月2日消息,医疗健康互联网公司丁香园今日宣布获得腾讯战略投资,投资规模为7000万美元,这也是国内目前该领域最大的一笔融资。此举也意味着腾讯公司正式布局医疗健康领域。   据悉,投资完成后,丁香园将会和腾讯各个平台展开一系列合作,其中包括对微信系统的探索和对接。腾讯公司有关负责人表示,&ldquo 丁香园拥有独特的医生和医疗资源,整个团队对医疗行业的理解务实而深刻,将这样的资源和团队与微信和手Q的资源对接,无疑会为这个行业提供独特的价值。&rdquo   丁香园负责人称,获得投资后,将持续投入资金与资源研发面向医生、企业和大众的医疗健康类产品。首先为中国医生提供更好的产品和内容,并将医生资源与制药(医疗器械)企业进行对接,帮助企业与医生之间建立更为合规有效的多渠道学术互动平台。凭借大数据资源优势,丁香园也将为企业与医疗机构提供更为精准与高价值的行业型人力资源解决方案。   资料显示,丁香园创建于2000年,目前是中国最大的面向医生、医疗机构、医药从业者以及生命科学领域人士的专业性社交网站,拥有超过400万专业会员。其网络平台覆盖几乎所有的医学专业领域,致力于全面推动专业人士在临床医学、基础医学研究,生命科学及药学研发等多领域内的学术沟通、信息共享和医疗专业人员的合作。   从服务医生和企业切入大众健康领域的是丁香园此次融资的主要目的之一,这也是丁香园在已经规模性持续盈利的情况下进行融资的原因。最近一年来,丁香园也已在大众健康领域进行持续的投入与探索,家庭用药App与丁香医生等产品在未投入任何市场费用的情况下已经积累了数百万用户。计划中的产品主要分为三个大方向:依托于微信公众平台的相关产品、移动App以及Web产品,进一步为大众群体提供可信赖的医疗健康信息与相关服务。   丁香园还将计划开展医疗健康的线上线下闭环服务尝试,为中国医生提供自由执业的平台和资源,实现医生的真正价值,也为有需求的患者带来体验更好的线上和线下医疗服务。   对于丁香园为什么选择与腾讯战略合作。丁香园创始人、董事长李天天称,&ldquo 医疗健康是一个发展相对较慢的行业,其商业价值必须依赖于深度专业耕耘而不仅仅是资本运作,丁香园和腾讯都非常看重医疗健康行业的社会价值与社会责任,更令人欣慰的是腾讯与丁香园对彼此的价值观的欣赏与认同。此外,双方在资源上有很强的互补效应,尤其是对丁香园来说,能够有机会与微信和手Q平台进行深入的合作,发展空间非常大。&rdquo   "腾讯是一家有社会责任的互联网公司,腾讯对医疗健康行业关注已久,丁香园拥有中国200余万的专业医生资源,占据行业第一位置。而腾讯能够将这些医学专业人群和数据最大程度地与千万用户连接在一起,两者结合会大大降低用户获取医学信息及获得指导的难度,为医生及大众提供更具价值的优质服务,这是腾讯社会价值的体现。"腾讯公司总裁刘炽平如是说。   丁香园此前已经引入DCM和顺为基金为投资者,完成此次融资后,丁香园创始人管理团队仍然保持控股及董事会多数席位,而丁香园副总裁冯大辉与腾讯集团副总裁彭志坚将共同出任丁香园董事。
  • 现货!维生素B12、胆碱、丁香酚、叶酸等36项食品安全国标新发布,阿尔塔标品同步更新!
    ‍近日,国家卫生健康委、市场监管总局根据《中华人民共和国食品安全法》的规定,发布了《食品安全国家标准 食品添加剂 丁香酚》(GB1886.129-2022)等36项食品安全国家标准和3项修改单,以贯彻落实食品安全“最严谨的标准”要求。新标准将于2023年6月30日起正式实施。此次制定、修订既充分考虑了群众健康权益,也兼顾了食品产业发展需求。‍主要内容■《食品添加剂 丁香酚》(GB1886.129-2022)等11项食品添加剂质量规格标准■《食品营养强化剂 L-抗坏血酸钾》(GB1903.55-2022)等9项食品营养强化剂质量规格标准■《食品中污染物限量》(GB2762-2022)1项污染物标准■《食品中叶酸的测定》(GB5009.211-2022)等9项检验方法标准作为国内一家标准物质专业研发企业,新标准出台后,阿尔塔科技研究团队迅速响应,更新了相应的标准品及解决方案以匹配最新食品安全标准,现向广大实验室提供以下标准物质解决方案,为食品检测实验室工作顺利开展保驾护航。部分标准品信息参见表格,全部现货供应!更多产品信息请致电垂询!标准配套部分混标:
  • 香港大学、香港理工大学和山东大学联合研究团队《Science》:仿若绿植物的选择性定向液体传输
    液体在固体表面的定向传输对许多应用都至关重要,例如生物医学检测、水收集、海水淡化、传热传质等。自然界中的定向传输现象为液体在表界面传输提供了丰富的解决方案。例如,仙人掌将收集的雾汽从刺尖输送到根部;蜘蛛丝将捕获的雾汽从周期性纺锤结输送到关节;蜥蜴通过相互连接的毛细通道将水输送到鼻子;翼状猪笼草利用多尺度结构从唇内边缘向外边缘定向输送花蜜;南洋杉叶利用毛细锯齿效应沿固定方向输送特定液体。然而,科学家们在这些生物体系中发现,液体传输都具有相同的模式,即一种液体只能沿着固定的方向定向传输。这不禁令我们好奇,自然界是否还存在其他的液体输运模式?探索新颖的液体传输机制,将为定向液体传输的设计提供新的启发和灵感。近日,香港大学、香港理工大学和山东大学联合研究团队在多肉植物若绿(Crassula muscosa)身上取得了重要发现——液体可以在其茎上沿正反两个方向中任一方向实现定向流动。该研究成果以“Selective directional liquid transport on shoot surfaces of Crassula muscosa”为题,发表在顶级科学期刊《Science》上。香港大学博士生杨玲、博士后李威为论文的共同第一作者,香港理工大学王立秋讲席教授、香港大学尹晓波教授和山东大学李加乾研究员为论文的通讯作者。若绿(Crassula muscosa)原产于干旱但多雾的南非和纳米比亚地区,它的茎叶很容易被雾汽润湿并捕获雾滴,进而为其生长提供充足的水分。若绿外形美观,清新奇特。抵不住对若绿的喜爱之情,研究人员也亲自养了一盆。在给若绿浇水时,他们发现液体在水平放置的不同若绿茎上,竟然可以选择朝着茎尖或根部这两个截然相反的方向自发地单向运动,这与传统认知中一种液体只能沿固定方向流动的观点大相径庭。图1 若绿图片。研究团队首次报道了这一自然界的选择性定向液体传输现象。通过进一步观察,他们发现这一神奇的现象得益于若绿叶片独特的不对称折返结构——叶片两端具有不同的折返角,包括朝向茎尖的上折返角(ω1)和朝向根部的下折返角(ω2),从而导致液体弯液面在两个相反方向存在差异,使得液体能够选择性地沿不同方向运动。这一研究成果不仅揭示了大自然中鲜为人知的独特液体传输机制,也为工程应用中设计更加灵活高效的液体输运系统提供了新的启发和可能。图2 若绿茎表面的选择性定向液体传输。为了进一步探索这一选择性定向液体传输现象,研究团队利用3D打印技术制造了一种模仿若绿叶片结构的阵列(Crassula muscosa-inspired arrays , CMIAs)。在具有不同折返角的CMIA I 和CMIA II上,他们观测到滴加的液体分别沿着正负两个相反的方向流动。通过高速相机观察液体流动规律,研究人员提出了一种各向异性弯液面理论模型来解释这一现象。结合实验观测结果,他们利用这一理论揭示了通过调节CMIAs的两个折返角和间距可以精准控制液体的流动方向。受此规律的启发,研究团队进而制作了可通过磁场和机械拉伸精准调控液体流动方向的磁控及柔性CMIAs。这些创新性的CMIAs结构不仅验证了理论模型,也展示了利用结构化表面实现灵活可控液体输运的新途径。图3 人造CMIAs上的选择性定向液体传输。图4 理论计算与实验结果解释流向调控规律。图5 磁场控制和拉伸控制的选择性定向液体传输。图6 图案化液体定向流动,三通阀控制的液体分配和混合。总的来说,研究团队成功揭示了若绿植物叶片表面独特的选择性定向液体传输现象。其关键在于叶片两端存在不对称的折返角度,从而产生异质的液体弯月面轮廓,最终导致液体能够自发选择性地沿正负两个相反方向进行定向传输。这一令人瞩目的发现,激发了研究人员设计可实时切换液体传输方向的新结构。这些创新成果不仅展示了可重构的液体传输、智能的传输方向调节, 还实现了自发和长距离的定向液体传输。这些突破性技术在生物医学检测、化学反应分析等领域都具有广阔的应用前景。
  • 安东帕全球首发定向多模腔微波消解仪-Multiwave Go
    依托世界领先的研发实力和在样品制备领域40多年的丰富经验,奥地利安东帕公司全新推出世界上第一台定向多模腔(DMC)微波消解仪——Multiwave GO。 Multiwave GO微波消解仪全新设计和革命性的定向多模腔,在单模和多模微波方面都提供了最佳性能。在单模系统中,微波定向到样品,提供高效率加热。在多模系统中时,可同时消解多个不同样品。 Multiwave GO微波消解仪采用涡轮加热及冷却技术,作为史上最便捷的微波消解系统,可将满载 12 位转子的冷却时间降低至短短 8 分钟。其采用独特的智能控压技术(SMART VENT),能可靠且安全地消解多种样品,并实现不同样品不同取样量的同时消解。新型三组件的耐氢氟酸反应管-操作简单、灵活性更高。 Multiwave GO微波消解仪部分优势:l 小体积消解系统中,DMC 定向多模腔的加热时间最短l 涡轮加热和冷却实现了最短的总处理时间l 单反应管消解模式适用于各种低通量应用l 高强防腐合金转子:DMC优化的必备部分-不变形、耐腐蚀、稳定性好 更多信息,请访问安东帕网站:www.anton-paar.com
  • 登上Nature!清华大学丁胜团队首次化学定向诱导干细胞
    丁胜教授,担任清华大学首任药学院院长、拜耳特聘教授。于1999年在加州理工学院获得化学学士学位,并于2003年在斯克里普斯研究所获得化学博士学位。长期专注于干细胞领域,是开发和应用全新化学手段研究干细胞和再生医学的引领者,一直致力于发现和鉴定可以调控细胞命运和功能(例如,不同发育阶段及不同组织中干细胞的维持、激活、分化和重编程)的小分子化合物。他在数个角色之间切换:1. 参与筹建清华大学药学院并从2016年起担任创始院长之职;2. 同时任职美国加州大学旧金山分校药物化学系,格拉德斯通研究所冠名资深研究员及教授;3. 全球健康药物研发中心(Global Health Drug Discovery Institute)主任,该机构由清华大学校长邱勇与盖茨基金会联席主席比尔盖茨在瑞士达沃斯世界经济论坛期间正式签署共同建立,是国内首个由外资参与设立的民办非企业性质科研机构;4. 参与创立了Retro Biosciences、 Tenaya Therapeutics和Fate Therapeutics等 7家生物技术公司,其中Retro Biosciences于今年初获得了1.8亿美元的启动资金。最新成果登上Nature清华大学药学院丁胜教授及其团队首次以化学小分子组合体外定向诱导小鼠全能干细胞并稳定培养,相关成果以“Induction of mouse totipotent stem cells by a defined chemical cocktail”为题于北京时间2022年6月21日以加速预览(accelerated article preview)的形式在线发表于国际顶级学术期刊Nature。清华大学药学院丁胜教授、刘康助理研究员、马天骅副研究员为该论文共同通讯作者,清华大学胡妍妍、杨媛媛、谭彭丞为该论文的共同第一作者。化学定向诱导2012年,诺贝尔生理学或医学奖授予了日本科学家Shinya Yamanaka和英国发育生物学家John Gurdon,因其通过重编程将细胞恢复到胚胎期状态、重新拥有分化成各类成熟细胞潜能的研究的杰出贡献。恢复细胞多能性甚至全能性是很多科学家的追求,无需利用生殖细胞或人体胚胎细胞,而时通过其他途径诱导出全能干细胞,用于再生医学例如替换受损或病变组织,甚至是创造或者复原生命。该研究通过筛选了数千个化学小分子组合,发现并确定了其中一种组合TAW——三种小分子 TTNPB、1-Azakenpaullon 和 WS6。通过转录组相关和差异表达基因(DEGs)分析发现,这一组合可以将小鼠多能干细胞诱导成最接近小鼠2C胚胎期的细胞,即具有全能特性的干细胞,并稳定培养。图一、筛选能够诱导全能性标志物MERVL-tdTomato的小分子过程示意图。化学诱导干细胞全能性发育胚胎和胚胎外组织被认为是细胞全能性最严格的标准之一,为进一步证明化学诱导的干细胞ciTotiSCs具有真正的全能性,该研究将其注射到小鼠早期胚胎中以观察其体内的分化潜力,并分析了着床前和着床后胚胎发育不同时间点的谱系贡献。研究发现,该诱导细胞表现出双向发育潜力,在培养皿和体内都能产生胚胎和胚胎外细胞,具备普通全能干细胞的典型特征。 图二、ciTotiSCs(化学诱导的全能干细胞)对胚胎发育阶段支持小结:该研究以化学方法定向诱导并稳定培养全能干细胞,为从非生殖细胞中控制和理解全能性提供了一种新的体外定向诱导的方法,这将成为再生医学的极大助力,对于实现人体器官的体外再生以及创造或复原生命有着重大的意义。
  • 新型高效液相色谱手性固定相可高效分离手性分子
    p style=" line-height: 1.5em " & nbsp & nbsp  化学界中,有一大类分子存在手性异构体,它们就像左右手,虽然看上去一模一样,但完全不能重叠,这类分子被称为“手性分子”。 /p p style=" line-height: 1.5em "   一些药物中的手性分子在生物活性、代谢过程和毒性等方面存在显著差别,有的差异甚至如“治病”和“致病”这样,是天壤之别。因此,如何更为经济、高效、便捷地将手性分子的“左右手”分开,获取其中有益部分,成为化学界竞相攻关的课题。 /p p style=" text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201812/uepic/e33f45e4-27e0-4e3c-ae08-784ed71a581e.jpg" title=" 20181119203959326.jpg" alt=" 20181119203959326.jpg" / /p p style=" text-align: center line-height: 1.5em " 生物分子COF 1作为手性固定相用于手性拆分(南开大学供图) /p p style=" line-height: 1.5em "   南开大学药学院研究员陈瑶课题组与该校化学学院教授张振杰、美国南佛罗利达大学教授马胜前合作,利用生物分子诱导的策略设计合成了一类手性共价有机框架材料,并将其成功应用于多种药物、氨基酸等小分子的手性分离。该材料具有造价低、效率高、普适性强等特点,具有完全自主知识产权,作为新型“分手”利器,它将大幅降低手性药物的生产成本。相关研究结果日前在线发表于《德国应用化学》。 /p p style=" line-height: 1.5em "   液相色谱技术是获取手性分子单一构型对映体的重要手段之一,具有高手性分离性能的手性固定相是这一技术的关键。含有手性分子的混合物流经分离柱时,由于作用力大小不同,不同的异构体分别在不同的时间流出,进而实现手性分离的目标。 /p p style=" line-height: 1.5em "   “简单来说,液相色谱仪中的分离柱就像一个隧道。外观、型号看起来完全一样的汽车一起驶入,交警允许有牌照的汽车可以顺利地快速通过,没有牌照的就会因为被交警调查而落后通过。这样,隧道出口先出现的都是有牌照的汽车,后出现的都是没有牌照的汽车。”陈瑶说,这其中最关键的部分就是“交警”,也就是“手性固定相”,需要识别能力强、稳定且高效。 /p p style=" line-height: 1.5em "   为创造高效的新型手性固定相,陈瑶课题组将一系列生物分子(溶菌酶、三肽、氨基酸)引入到共价有机框架材料(COFs)材料中,非手性COFs通过继承生物分子的手性特征从而变成手性COFs,进而可应用于手性分子的拆分。 /p p style=" line-height: 1.5em "   陈瑶表示,研究结果发现,通过新策略得到的BiomoleculeÌ COF 1手性固定相性能明显优于传统吸附法固定生物分子得到的手性固定相性能。“隧道中,高效、敬业的‘交警’—— 一种新型的高效液相色谱手性固定相被我们合成出来了。” /p p style=" line-height: 1.5em "   进一步研究发现,COF1材料作为手性固定相具有优异的手性分离效果,可用于正相和反相等多种分离模式,分离度Rs均达到1.3以上。连续使用2个月,反复进样120余次后,该材料仍具有和初始状态一样的分离效果。 /p p style=" line-height: 1.5em "   “这一研究为发展高效、耐用型的手性固定相,及拓宽共价有机框架材料在手性分离、手性催化方面的应用提供了巨大的潜力。”陈瑶介绍,新材料具有完全自主知识产权,它的应用可大幅降低分离柱的造价,打破进口依赖,也将大大降低手性药物的生产成本。 /p p style=" line-height: 1.5em "   论文链接:https://doi.org/10.1002/anie.201810571 /p p br/ /p
  • 专家教您如何选择液相色谱固定相
    p span style=" FONT-FAMILY: times new roman"   反相液相色谱可供选择的固定相种类繁多令人眼花缭乱,即使是某一种固定相(例如C sub 18 /sub )的可选择种类也是很多的。 /span /p p span style=" FONT-FAMILY: times new roman"   老实说,我们的很多方法开发都是在尝试和错误中进行,这些都是基于我们喜爱的供应商提供的成熟的或者新兴的固定相。即使是先进的含有仔细考量的正交化及电脑优先洗脱设计的“筛选”平台,有时也不得不采取“色谱的本能”。 /span /p p span style=" FONT-FAMILY: times new roman"   反相色谱中的保留是基于被分析物、流动相、键合相以及键合了配体的硅胶表面的活性和其可接触性之间的平衡。 想要搞清楚影响分离效果的保留机理,就要考虑并明确化学键合相、活性硅胶表面的处理、硅胶表面的可接触性等因素,这些都将影响色谱柱的原始选择性及方法开发的优化。 /span /p p span style=" FONT-FAMILY: times new roman"   在大多数反相分离中色散作用是起主要作用的,尤其是那些使用未改性的烷基配体(C sub 18 /sub 、C sub 8 /sub 、C sub 4 /sub ),其保留能力是与被分析物的疏水性成正比的。含有芳香基团或不饱和基团的固定相或被分析物进行分析时,电荷转移(或& amp #960 -& amp #960 )作用是起主要作用的。偶极-氢键相互作用对于极性化合物的保留是很重要的,含有“氰基”的固定相会增强对极性化合物的保留。被分析物的电离部分与硅胶表面之间存在静电作用力,这是由于硅胶表面有残留的可离子化的硅醇基。 /span /p p span style=" FONT-FAMILY: times new roman"   当前有许多色谱柱分类系统存在,这些系统都是基于对已知化学探针物质的检测,从而 /span span style=" FONT-FAMILY: times new roman" 来描述固定相的独特特性。一个非常有用的例子就是美国药典(USP)网站中的产品质量研究数据库(也就是PQRI系统),网址是:http://www.usp.org/app/USPNF/columnsDB.html。该数据库采用保留(1,2)的疏水减法模型来描述固定相的疏水性(H),判断疏水性类似而有不同形状或流体力学体积的被分析物的空间结构选择性参数(S),在pH值为7.0和2.8时的氢键(作为路易斯酸或路易斯碱)和静电作用参数(C)。pH值为7.0时硅醇基活性很强,pH为2.8时具有酸性的硅醇基将会与极性或可离子化的被分析物发生作用产生拖尾。独特的或正交的固定相一般会有较大的S、B和C(7.0)值。这些大型的数据库对于比较固定相的特点是很有用的,“雷达图”也是另一种比较固定相特点的有用方式。 /span /p p span style=" FONT-FAMILY: times new roman"   表一总结了一些当前常用固定相的分类及其相关应用领域。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 14px" strong span style=" FONT-FAMILY: times new roman COLOR: #002060" 表一:一些主要固定相分类及其主要应用 /span /strong /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" 表1.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/540303f9-dcc8-49c2-b339-34be938e95ae.jpg" / & nbsp /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" & nbsp img title=" 43d7b645-f3ad-4b00-aae0-cb2a4184812a_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/e6eb5d10-9666-4d69-9589-97922871dea7.jpg" / /span /p p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 14px" strong span style=" FONT-FAMILY: times new roman COLOR: #002060 FONT-SIZE: 14px" 图一:一些常用的反相键合相的保留机理以及键合在硅胶表面的键合相的结构示意图 /span /strong /span /p p span style=" FONT-SIZE: 14px" strong span style=" FONT-FAMILY: times new roman COLOR: #002060 FONT-SIZE: 14px"    /span /strong /span p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 14px" strong span style=" FONT-FAMILY: times new roman COLOR: #002060 FONT-SIZE: 14px" & nbsp img title=" b4ba0ffd-2ab4-4076-b350-4d81d805f81b_副本.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/79bc34f2-1396-4cd7-81c9-f95ab840db8e.jpg" / /span /strong /span /p p style=" TEXT-ALIGN: center" span style=" FONT-SIZE: 14px" strong span style=" FONT-FAMILY: times new roman COLOR: #002060 FONT-SIZE: 14px"   图二:左图是根据PQRI数据库中相似固定相制得的雷达图,右图是根据PQRI数据库中正交固定相制得的雷达图,也就是根据固定相的疏水性来预测其选择性的相似区域。 /span /strong /span /p p span style=" FONT-FAMILY: times new roman" strong 参考文献 /strong /span /p p span style=" FONT-FAMILY: times new roman"   (1) L.R. Snyder, J.W. Dolan, and P.W. Carr, J. Chromatogr. A 1060, 77–116 (2004). /span /p p span style=" FONT-FAMILY: times new roman"   (2) L.R. Snyder, J.W. Dolan, and P.W. Carr, Anal. Chem. 79, 3255–3261 (2007). /span /p p & nbsp & nbsp /p p style=" TEXT-ALIGN: right" strong 原文作者:Tony Taylor& nbsp /strong /p p style=" TEXT-ALIGN: right" strong 翻译 /strong strong 稿件来源:LCGC战略合作伙伴——月旭科技 /strong /p p & nbsp /p p & nbsp /p p & nbsp /p p & nbsp /p p /p /p
  • 《Nature Methods》年度技术盘点——定向蛋白质组学技术
    仪器信息网讯 每年年底,《自然-方法》(Nature Methods)都会对过去一年中推动生物学发展的技术方法做出回顾与总结,由此评选出当年最受瞩目、影响力最大的技术。2012年,定向蛋白质组学技术(targeted proteomics)荣膺《自然-方法》年度生命科学技术。   定向蛋白质组学是基于质谱技术快速检测目标蛋白的技术,该技术具有灵敏度高、重复性好的特点。基于质谱的鸟枪蛋白质组学研究是将蛋白质酶解,片段化成肽片段进行质谱分析。   在典型的蛋白质分析中,蛋白混合物消化成肽段,并在质谱上进行分析,可以检测到样品中所有蛋白,这种分析工作量极大,而且需要大量资源。对于大多数研究人员来说,他们不需要获得所有蛋白的数据,只是想对少数特定蛋白进行定性定量。   定向蛋白质组学方法的建立为广大的研究人员带来了福音,它提供了更高的灵敏度和分析速度,可以在质谱分析中准确鉴定并定量某种蛋白。   定向蛋白质组学分析技术并不是非常新的尖端技术,它其实可以追溯到上个世纪60年代出现的放射免疫分析技术。这种技术依赖于抗体试剂和Western blot实验,但定向蛋白组学在最近几年获得了高速发展,在《Nature Methods》整理的2009年最值得关注的技术中,定向蛋白质组学就是其中之一。而在Ruedi Aebersold, Paola Picotti 和 Bernd Bodenmiller 发表的“Proteomics meets the scientific method”文章中,让我们看到了易于操作的定向质谱实验替代繁重的Western blot实验的可能性。   在荧光显微镜,流式细胞仪,蛋白质芯片等现代技术中,抗体检测法仍然是非常重要的,但依赖于抗体的蛋白质检测存在着很多缺陷,最大的缺陷就是抗体的可用性和质量差别很大。而进行蛋白质组学研究的另外一种技术便是依赖于质谱,该方法可以特异分析感兴趣的目标蛋白。   在最成熟的定向分析技术,即选择反应监控技术(selected reaction monitoring,SRM)中,三重四极杆质谱仪(triple quadrupole)技术能够检测到特定肽段,帮助研究人员高灵敏度,可重复的定量监测这些蛋白。   质谱方法比起依赖于抗体检测的优势在于开发出一个新的定向分析方法要比生产一个新的抗体要快得多,并减少了检测特异性的问题。虽然抗体在低丰度蛋白检测的灵敏性方面具有一定优势,但是质谱技术的一个明显优势就是能在一次实验中准确地检测多种蛋白。   以质谱为基础的定向蛋白质组学研究已经开展了相当长的时间,在上世纪70年代,三重四极杆质谱仪就已经出现,并在上世纪80年代发表的文章中首次论证了它可以用来检测肽段。在过去的几年间,定向质谱技术的应用范围迅速扩大,质谱为基础的蛋白质组学一直被认为应用过于复杂,但定向质谱实验易于操作,一旦建立了可靠的蛋白分析方法,数据分析就简单的多。   尽管Nature Methods主要关注基础生物学的研究方法,但也不能忽视定向质谱方法在临床蛋白质组学研究中的重要性,未来,这种技术必然会在疾病候选生物标记物验证等临床研究方面有更广泛的应用。 撰稿:裴熙详
  • 关于气相色谱柱的固定相,你真正了解吗?
    嗨,大家好,小编又和大家见面了。在前期的内容中,小编为大家分享了气相色谱柱的一些基本小知识,主要包括毛细管柱的分类,固定相的种类,色谱柱的柱长、内径、液膜厚度参数,以及色谱柱的使用温度限。今天呢,我们就针对其固定相,来一探究竟!不管是气相色谱,还是液相色谱,待测样品组分的吸附保留主要取决于固定相。其基本分离原理主要是通过样品分子与固定相之间作用力类型以及作用强度的不同,进而实现组分的分离。不同的结构的固定相,其极性和与分子间的作用力也不相同。关于气相色谱,目前使用最多的是气-液分配模式,气-液色谱固定相在常规分析温度下也呈现液态,所以常被称为固定液,常见的固定液主要有以下几种:01甲基聚硅氧烷类固定液甲基聚硅氧烷固定液的结构图如下:从其结构图可以看出,是由多个硅氧烷聚合而成,骨架上的每个硅原子可以与两个官能团相连接。当其官能团均为甲基时,即是我们所说的百分之一百二甲基聚硅氧烷;“二”代表着硅原子上连接两个特定取代基团,当取代基团完全相同时,也可以省略这种叫法,即百分之一百二甲基聚硅氧烷也称为百分之一百甲基聚硅氧烷。在结构图中,聚合度n值的不同,所形成的固定液在形态上也会有所区别。当聚合度n值较小,固定液分子量较小时,称之为二甲基硅油,呈黏稠状的液态,如美国OhioValley(OV公司)研制的OV-101固定相;分子量比较大时,可以称为二甲基硅脂及橡胶,如美国GeneralElectric(通用电气)生产的SE-30。甲基聚硅氧烷类固定液属于非极性固定相,具有很宽的沸点范围,适用于分析烃类以及含有其他官能团的化合物,非常适合对于未知样品的分析。02其他不同基团取代的聚硅氧烷类固定液硅氧烷骨架硅原子上取代基团的数量和种类不同,影响着固定相的极性和热稳定性。一般而言,极性取代基团的含量越高,固定液极性越强,所耐受的温度限也越低。常见的取代基团如下图:关于取代基团含量的描述通常是以百分含量表示,下图为5%二苯基95%二甲基聚硅氧烷和50%三氟丙基50%甲基聚硅氧烷(或称之为百分之一百三氟丙基甲基聚硅氧烷)的结构图。对于不同基团取代的百分含量表述,在这以14%氰丙基苯基86%二甲基聚硅氧烷为例,代表着其含有7%的氰丙基、7%的苯基、86%的甲基,因为硅原子上同时连接氰丙基和苯基,14%是一种加和的表示方法(如下图)。不同取代基团的作用:● 在甲基聚硅氧烷中引入苯基,由于结构相似性,可以增强对芳香烃类化合物的吸附保留。● 氰基的引入可使固定液具有中等极性或强极性,此类固定相对含芳基、烯基的化合物具有较强的保留作用,适用于分离不饱和烃、芳烃,以及不饱和脂肪酸。● 三氟丙基具有较强的给质子能力,适合吸附保留羰基化合物。● 在聚硅氧烷骨架中引入亚芳基,可以增强固定相的热稳定性,降低柱流失。03聚乙二醇类固定液这是一种强极性的固定相,主要是以形成氢键为主,对醇、酸、酚、伯/仲胺等有较强的保留。在使用这类固定液的色谱柱时,需要注意分析温度、载气纯度等相关问题,因为聚乙二醇极性较强,所能承受的温度限较低,高温条件下载气中的氧、水等都会引起固定相的分解。常规聚乙二醇类固定液结构如下图:聚乙二醇简称PEG,聚合度n值不同,其分子量也不相同;目前使用最多的是分子量20000左右的聚乙二醇,常见的名称为PEG-20M、INOWAX等。为了分析不同类型的化合物,可以通过对色谱柱表层和固定液进行改性来实现不同性质化合物的分离。主要包括以下几种:● 碱改性聚乙二醇固定液:在制药行业中,药物分析通常以偏碱性为主,在分析这些物质时,经常出现馒头峰或者峰拖尾等现象。为了改善对这类化合物的峰形问题,可以采用KOH将色谱柱表层处理成碱性表面,然后再涂渍聚乙二醇类固定液,来实现对偏碱性化合物的分析。● 酸改性聚乙二醇固定液:是由聚乙二醇与不同酸反应而成的酯类固定液,使用最多的是FFAP(硝基对苯二甲酸改性的聚乙二醇),主要用于分析小分子的有机酸、挥发性脂肪酸和酚类化合物等。
  • 液相色谱柱:除了固定相,你还会分A和B吗?
    昨天在公司群,新来的美眉同事抛出一个问题:“亲们,谁知道什么是A类硅胶色谱柱呀?”全公司的单身狗男蠢!蠢!欲动,奈何却哪记得什么A、B。。。估计此刻老板正思考着,以后试用期转正要加上“脱单”一条考核!!!说到液相色谱柱,相信大部分童鞋都知道按C18、C8等不同固定相进行区分,而C18、C8这些固定相通过作用力键合的硅胶颗粒,也是具有种类区分的。色谱柱填料中的硅胶,按其作为色谱柱担体分离碱或酸性化合物的理想程度,评定分级成两类:B类硅胶,是按90年代以后制造硅胶方式,以单晶硅粉为硅源通过有机合成为单晶硅聚合的硅胶。这种方式生产的硅胶纯度是可以达到99.995%的,我们平常也会把B类硅胶称作高纯度硅胶A类硅胶,是通过最早期以传统方式制造硅胶色谱填料的方式,起始原料为矿物硅酸盐(如泡花碱)。这种传统方式制造的硅胶颗粒含有金属杂质。金属杂质含量高的硅胶,其中的金属杂质会与鳌合溶质络合,从而引起不对称峰和拖尾峰,甚至化合物完全被保留,不能洗脱出。硅胶中金属杂质含量对螯合性化合物Hinokitiol峰形的影响①流动相:20mMPhosphateBufferpH3.6(含0.05%EDTA):Acetonitrile(50:50)某些金属杂质还能使表面硅羟基活性增强,酸性增强,在测定碱性样品时其保留值会增加,峰变宽、拖尾!金属杂质的存在可使得硅醇基过度活化,以至某些碱性化合物在酸性条件下仍呈现拖尾峰②很明显,B类硅胶是比A类硅胶有优势的。目前市场上,A类硅胶因以上弊端逐渐被淘汰,大多都是B类硅胶的色谱柱。只是由于历史原因,一些实验方法或标准是在早期建立的,A类硅胶为担体的色谱柱也一直在使用。常见的B类硅胶做担体的热门色谱柱系列最后,小编除了看着这群萌蠢的男旺摇头,唯一能做的就是立志为大家提供更多的色谱知识,让大家成为色谱达人,2018年,甜甜蜜蜜,成功脱单!!!
  • 应用 | 定向有机玻璃表面能与黏结强度研究
    摘要酸处理和等离子处理后定向有机玻璃表面粗糙度和表面极性增加,同时表面润湿性能得到改善,使黏结强度分别上升了14%和22%;而过渡层预处理提高了基材表面能,处理后定向有机玻璃表面极性与TPU相近,降低了界面张力,明显改善界面黏结性能,黏结强度由4.44kN/m上升至23.61kN/m。研究背景轻度交联和定向研磨赋予了定向有机玻璃(stretched acrylicsheet)更为优异的力学性能、抗裂纹扩展性能和光学性能,使其强度高、韧性优良,具有良好的耐热性和耐久性,因此成为航空透明件的主要材料。定向有机玻璃与热塑性聚氨酯(TPU)中间层作为航空有机层合结构透明件的关键材料,二者间界面的黏结强度是影响有机层合透明件在工程应用中可靠性的重要因素。实验部分接触角测试:采用德国KRÜ SS接触角测量仪测量液体在固体表面上的接触角。每次滴液2μL,在样品表面稳定30s后读取结果。取10个接触角平均值作为此液体在该表面的接触角。所有测量均在室温(25 ℃)下进行。测试液体使用去离子水、二碘甲烷和乙二醇,测试液体表面能参数如表1所示。 表面能计算:根据Van Oss理论,对表面能有贡献的除了色散力外还有极性作用力,并将极性部分视为电子给体与电子受体之间的相互作用。因此表面能分为Lifshitz-vander Waals分量γLW和Lewis酸碱分量γAB(分为Lewis酸分量γ+和Lewis碱分量γ-)。固体的表面能γS和液体的表面能 γL可分别表示为: 固液之间界面张力γSL与固体的表面能和液体的表面能的关系为: 根据杨氏方程,可得: 表面能作为衡量润湿性能的重要参数,固体表面能可以通过测量一系列测试液体在固体表面上的接触角,通过上述方程就可以计算。结果与讨论由于界面的形成、结构和稳定会受到多种物理、化学因素的影响,目前没有单一黏结理论可以解释所有的黏结现象。但不论是何种黏结机理,都要求黏结的二者具有良好的润湿性能。将结合在一起的两相分开所需力做的功称之为Wa,为: 式中:γ1, γ2分别为两相表面能;γ12为两相间界面张力。从粘附功公式可知,增大两相表面能或者降低两相之间界面张力都可以提高黏结强度。不同预处理方法处理的定向有机玻璃基材和TPU胶片表面接触角测试结果如表2所示。由红外结果可知,酸处理和等离子处理后与水接触角定向有机玻璃表面C=O极性基团含量增加,亲水性增加,酸处理和等离子处理后水接触角减小;且酸处理和等离子处理后表面粗糙度增加,有利于接触角的降低。而过渡层处理后,样品表面疏水基团-(CH₂ )-含量增加,表面粗糙度下降,故水接触角增加。 根据表2的接触角结果计算得到的各材料表面能,结果见表3。TPU表面能较处理前后定向有机玻璃都低,说明TPU作为中间层材料可以在定向有机玻璃表面铺展,且处理后样品表面能增加,更有利于TPU在表面的铺展和吸附。由表3中参数可知定向有机玻璃和TPU都属于极性聚合物,且呈现出明显的Lewis碱特性。定向有机玻璃的极性源于侧链上的酯基;而TPU的极性来自于主链上的氨基甲酸酯基、醚键等基团。材料γAB大小差异与极性基团在分子结构中所处位置有关。高聚物的极性大小可通过偶极矩来判断,极性基团活动性越好,高聚物极性越大。TPU的线性主链上氨基甲酸酯基和醚键酯键能形成分子内氢键,使得极性下降。由红外结果可知,经酸处理和等离子处理后,定向有机玻璃表面含氧基团数量增加,故表面能极性分量γAB增大。而过渡层界面相较于定向有机玻璃表面具有更多的-(CH₂ )-基团,柔性优于定向有机玻璃,有利于降低界面张力;同时过渡层界面的表面自由能极性分量与TPU胶片相近,由润湿理论所述当黏结剂与被黏体的极性相匹配时,界面张力最小;且处理后表面能增加,由粘附功公式可知,过渡层处理同时增加了表面能并降低了界面张力,有利于提高TPU与定向有机玻璃之间的黏附功。小结(1)酸处理和等离子处理在提高定向有机玻璃表面粗糙度的同时增大了基材的表面张力,增加了表面极性,提高了黏结界面处分子间相互作用力,从而改善了TPU在基材表面的黏结性能。但界面处物理吸附力对提高黏结强度效果有限,经酸处理和等离子处理后定向有机玻璃与TPU黏结强度分别提高了14%和22%。(2)过渡层处理大幅度改善了定向有机玻璃与TPU的黏结性能。这是由于形成了与定向有机玻璃和TPU具有一定化学相容性的柔性界面,同时与TPU极性匹配,增大表面能并降低了界面张力。过渡层处理后黏结强度由4.44 kN/m上升至23.61 kN/m。(3)比较三种预处理方法对定向有机玻璃表面性能的影响以及与TPU间黏结强度差异,相较于增加表面粗糙度和物理吸附作用,改善界面的极性匹配性和化学相容性对提高TPU与定向有机玻璃间的黏结性能更具优势。本文有删减,详细信息请参考原文。
  • 中科院深圳先进院司同课题组开发无标记质谱筛选,赋能新酶活定向进化
    近日,中国科学院深圳先进技术研究院司同课题组联合中国医学科学院杨兆勇课题组,在国际学术期刊 Chemical Science 在线发表了题为:Directed evolution of a cyclodipeptide synthase with new activities via label-free mass spectrometric screening 的研究论文。该研究依托深圳合成生物研究重大科技基础设施(简称为“合成生物大设施”),开发了无标记质谱筛选技术,应用于环二肽合酶的定向进化改造,快速得到了 F186L 突变体催化合成野生型天然酶无法产生的新二酮哌嗪分子。定向进化是酶工程的重要方法,需要开展反复多轮的突变文库构建和筛选。现有面向酶定向进化的高通量筛选方法,通常利用偶联反应、生物传感器等手段,将底物或产物浓度信息转化成光学、电化学等信号。开发筛选方法的过程不但费事费力,且通常需要使用衍生化、特殊标记底物等方法,不利于发现新的催化活性。另一方面,质谱分析基于离子的质荷比(m/z)对反应物进行定性与定量测定,具有更好的普适性。更为重要的是,基于无标记(label-free)原理,可以通过非靶向质谱方法识别新的酶促产物,从而发现对应的新催化活性。但质谱筛选的这一能力在酶定向进化中的应用还非常有限,主要限制因素是检测样品进入质谱仪之前通常需要经过耗时的样品制备和色谱分离步骤,限制了质谱筛选的通量该研究依托深圳合成生物大设施的机器人平台,针对酶突变文库构建和筛选过程中的不同环节,如分子克隆、微生物培养、产物乙酸乙酯萃取、MALDI-TOF 质谱分析、数据处理等,开发了对应的自动化流程和方法,实现了微生物发酵产物的无标记质谱筛选,通量为每样品5秒钟(图1)。图1:高通量、无标记质谱筛选用于酶新催化活性的定向进化研究文章以环二肽合酶(cyclodipeptide synthases, CDPSs)为研究对象,验证无标记质谱筛选在酶定向进化中的应用。环二肽合酶利用氨酰-tRNA底物可以合成二酮哌嗪(diketopiperazines, DKPs)骨架;含有这类骨架的天然产物可以通过肠屏障、血脑屏障,是重要的药物先导化合物。然而,基于蛋白质工程改造环二肽合酶的成功案例非常有限,部分原因在于缺乏高通量的产物分析方法,相关研究仅限于少数理性设计突变。研究团队以链霉菌(Streptomyces noursei)来源的 AlbC 作为研究模型,使用大肠杆菌底盘进行文库构建与筛选。重组表达野生型 AlbC 的大肠杆菌的主要环二肽产物为 cFL。作者首先利用半理性设计,选取底物结合口袋附近的10个位点及口袋外与 tRNA 密切作用的4个位点,构建和筛选了定点饱和突变(site-saturation mutagenesis,SSM),快速发现了多个产物谱发生明显变化的突变体。其中,有文献报道的8个突变体数据与本文实验结果相符,验证了方法的可行性与准确性;在此基础上,结合新的质谱筛选方法,本文首次对选取的14个位点的266个可能突变体中的238个进行了系统性表征,大大拓展了环二肽酶关键位点的突变效应数据。遗憾的是,从半理性设计文库中并未发现可以合成新产物的 AlbC 突变体。研究团队进一步利用易错 PCR 技术构建了 AlbC 随机突变文库,对4500个随机挑选的克隆开展无标记质谱分析,最终筛选得到3个突变体。与野生型相比,这3个突变体质谱谱图中出现了新的质荷比为247的离子峰,经高分辨质谱和二级质谱分析,新的产物鉴定为cFV,在表达野生型AlbC的菌株中未被检测到。并且,这3个突变体经 DNA 测序分析发现均只含有F186L单一突变(图2)。文章最后,作者利用分子动力模拟技术,对 F186L 突变效应的分子机制进行了推测。图2:无标记质谱方法筛选得到AlbC突变体生产新的环二肽产物cFV总的来说,该研究依托深圳合成生物大设施的机器人平台,开发了面向酶定向进化的无标记质谱筛选技术,在新催化活性发现这一工程目标方面进行了概念性验证。未来发展方向包括进一步提高筛选通量、扩大适用分子范围、对接不同类型质谱仪等。论文链接:https://doi.org/10.1039/D2SC01637K
  • 中科院深圳先进院司同团队等开发无标记质谱筛选,赋能新酶活定向进化
    近日,中国科学院深圳先进技术研究院司同课题组联合中国医学科学院杨兆勇课题组,在国际学术期刊 Chemical Science 在线发表了题为:Directed evolution of a cyclodipeptide synthase with new activities via label-free mass spectrometric screening 的研究论文。该研究依托深圳合成生物研究重大科技基础设施(简称为“合成生物大设施”),开发了无标记质谱筛选技术,应用于环二肽合酶的定向进化改造,快速得到了 F186L 突变体催化合成野生型天然酶无法产生的新二酮哌嗪分子。定向进化是酶工程的重要方法,需要开展反复多轮的突变文库构建和筛选。现有面向酶定向进化的高通量筛选方法,通常利用偶联反应、生物传感器等手段,将底物或产物浓度信息转化成光学、电化学等信号。开发筛选方法的过程不但费事费力,且通常需要使用衍生化、特殊标记底物等方法,不利于发现新的催化活性。另一方面,质谱分析基于离子的质荷比(m/z)对反应物进行定性与定量测定,具有更好的普适性。更为重要的是,基于无标记(label-free)原理,可以通过非靶向质谱方法识别新的酶促产物,从而发现对应的新催化活性。但质谱筛选的这一能力在酶定向进化中的应用还非常有限,主要限制因素是检测样品进入质谱仪之前通常需要经过耗时的样品制备和色谱分离步骤,限制了质谱筛选的通量。该研究依托深圳合成生物大设施的机器人平台,针对酶突变文库构建和筛选过程中的不同环节,如分子克隆、微生物培养、产物乙酸乙酯萃取、MALDI-TOF 质谱分析、数据处理等,开发了对应的自动化流程和方法,实现了微生物发酵产物的无标记质谱筛选,通量为每样品5秒钟(图1)。图1:高通量、无标记质谱筛选用于酶新催化活性的定向进化研究文章以环二肽合酶(cyclodipeptide synthases, CDPSs)为研究对象,验证无标记质谱筛选在酶定向进化中的应用。环二肽合酶利用氨酰-tRNA底物可以合成二酮哌嗪(diketopiperazines, DKPs)骨架;含有这类骨架的天然产物可以通过肠屏障、血脑屏障,是重要的药物先导化合物。然而,基于蛋白质工程改造环二肽合酶的成功案例非常有限,部分原因在于缺乏高通量的产物分析方法,相关研究仅限于少数理性设计突变。研究团队以链霉菌(Streptomyces noursei)来源的 AlbC 作为研究模型,使用大肠杆菌底盘进行文库构建与筛选。重组表达野生型 AlbC 的大肠杆菌的主要环二肽产物为 cFL。作者首先利用半理性设计,选取底物结合口袋附近的10个位点及口袋外与 tRNA 密切作用的4个位点,构建和筛选了定点饱和突变(site-saturation mutagenesis,SSM),快速发现了多个产物谱发生明显变化的突变体。其中,有文献报道的8个突变体数据与本文实验结果相符,验证了方法的可行性与准确性;在此基础上,结合新的质谱筛选方法,本文首次对选取的14个位点的266个可能突变体中的238个进行了系统性表征,大大拓展了环二肽酶关键位点的突变效应数据。遗憾的是,从半理性设计文库中并未发现可以合成新产物的 AlbC 突变体。研究团队进一步利用易错 PCR 技术构建了 AlbC 随机突变文库,对4500个随机挑选的克隆开展无标记质谱分析,最终筛选得到3个突变体。与野生型相比,这3个突变体质谱谱图中出现了新的质荷比为247的离子峰,经高分辨质谱和二级质谱分析,新的产物鉴定为cFV,在表达野生型AlbC的菌株中未被检测到。并且,这3个突变体经 DNA 测序分析发现均只含有F186L单一突变(图2)。文章最后,作者利用分子动力模拟技术,对 F186L 突变效应的分子机制进行了推测。图2:无标记质谱方法筛选得到AlbC突变体生产新的环二肽产物cFV总的来说,该研究依托深圳合成生物大设施的机器人平台,开发了面向酶定向进化的无标记质谱筛选技术,在新催化活性发现这一工程目标方面进行了概念性验证。未来发展方向包括进一步提高筛选通量、扩大适用分子范围、对接不同类型质谱仪等。
  • 聚焦色谱分离“心脏” iCC2022色谱填料及固定相研究新进展会场抢先看
    2022年,第七届网络色谱会议(iCC 2022)将于8月16-19日召开。本次iCC 2022由中国化学会色谱专委会指导,仪器信息网联合北美华人色谱学会、中国科学院兰州化学物理研究所、上海分析仪器产业技术创新战略联盟共同举办。点击图片报名参会会议共进行四天,将分设色谱研究新进展、色谱新技术、新方法(北美华人色谱专场)、色谱填料及固定相研究新进展、色谱在食品领域的应用新进展、色谱在制药领域的应用新进展、色谱在环境领域的应用新进展、色谱在能源领域的应用新进展、色谱实操、使用与经验分享专场等8个专场。将聚焦色谱技术最新成果,以及在制药、食品、环境、石化等最新研究进展,邀请业内知名专家学者做精彩报告,会议将在线上进行,免费向听众开放报名,欢迎报名参会!指导单位:中国化学会色谱专业委员会主办单位:仪器信息网北美华人色谱学会(CACA)中国科学院兰州化学物理研究所上海分析仪器产业技术创新战略联盟参会方式:网络在线报告 免费报名参会会议网址 :https://www.instrument.com.cn/webinar/meetings/icc2022/ 8月17日上午,将进行填料及固定相研究新进展相关讨论,本会场将由中国科学院兰州化学物理研究所邱洪灯研究员担任主持,江南大学严秀平教授、云南师范大学谢生明教授、河北大学乔晓强教授、中国科学院兰州化学物理研究所梁晓静研究员以及西南医科大学王路军副教授、珀金埃尔默高级应用技术工程师袁斌等6位专家带来精彩报告分享。会议日程如下:分会场三:色谱填料及固定相研究新进展主持人:中国科学院兰州化学物理研究所 邱洪灯9:00-9:30严秀平江南大学金属-有机骨架色谱固定相9:30-10:00谢生明云南师范大学手性核壳复合材料用于高效液相色谱拆分外消旋化合物10:00-10:30乔强河北大学磷脂色谱分离材料设计、制备及分离应用10:30-11:00袁斌珀金埃尔默苯基固定相的选择性特征及应用11:00-11:30梁晓静中科院兰州化物所MOF/水凝胶修饰硅胶新型混合模式色谱固定相研究11:30-12:00王路军西南医科大学手性色谱固定相研究及手性识别嘉宾简介及报告摘要中国科学院兰州化学物理研究所研究员 邱洪灯主持人个人简介:  邱洪灯,博士,研究员,博士生导师,《液相色谱实战宝典》特邀顾问。中科院“百人计划”(A类),国家优青,甘肃省杰青,甘肃省领军人才(第二层次),兰州化学物理研究所研究员,中科院西北特色植物资源化学重点实验室副主任,手性分离与微纳分析课题组组长。2003年南昌大学化学系本科,2008年兰州化学物理研究所博士,任助理研究员,2009年-2012年日本国立熊本大学博士后(JSPS Fellow)。2012年回国工作,研究方向为离子液体、碳纳米材料、骨架材料等新材料在药物分离、稀土分离及环境分析中的应用。正在主持或已完成的项目包括国家基金委优秀青年项目、面上项目和国际(地区)合作与交流项目,国家重点研发计划课题,中科院“十三五”重点培育、“十四五”重点部署项目、“百人计划”项目(A类)、西部之光交叉团队项目,甘肃省杰出青年基金和创新群体项目等。获甘肃省自然科学奖二等奖(排名1)、兰化所青年创新奖特别奖、兰州分院“优秀青年人才奖”、CCL优秀青年学者。发表论文190余篇,申请专利30多件,论著三章。现任《Chinese Chemical Letters》主编,《Chromatographia》、《Separation Science Plus》、《色谱》、《分析试验室》和《分析测试技术与仪器》编委,《化学进展》青年编委,中国化学会高级会员,中国分析测试协会青年学术委员会委员,甘肃省化学会色谱专委会秘书长,中国化工学会离子液体专委会委员。江南大学教授 严秀平《金属-有机骨架色谱固定相》个人简介:江南大学食品学院教授。从事环境和生物分析和食品安全研究。在原子吸收光谱原子化机理,毛细管电泳与原子光谱联用技术,基于多孔骨架材料的分离分析和长寿命发光纳米材料的免激发传感/成像及其在环境、生命和食品安全应用等领域取得了创新和系统的研究成果。两次应邀在Accounts of Chemical Research上发表系统研究工作。获授权发明专利28件,在Chem.、 Nat. Commun.、Acc. Chem. Res.、JACS、Angew. Chem.、Adv. Mater.、Anal. Chem.和ES&T等杂志上发表SCI论文310余篇,SCI他引12600余次,H指数81。2014-2019年连续6年入选Elsevier化学领域中国高被引学者,2020年入选Elsevier食品科学领域中国高被引学者。2000年获国家杰出青年科学基金资助,2002年入选国务院政府特殊津贴专家,2006年入选长江学者特聘教授、新世纪百千万人才工程国家级人选和首届天津市德业双馨十佳教师。2003年获国家自然科学奖二等奖(排名二),2006年获中国化学会梁树权分析化学基础研究奖,2007年获天津市自然科学一等奖,2008年获宝钢优秀教师奖特等奖提名奖,2013年获教育部自然科学奖一等奖,2015年入选英国皇家化学会会士(FRSC),2019年获中国分析测试协会科学技术奖特等奖,2020年获教育部自然科学奖二等奖。培养博士研究生60余名,其中2名博士生的论文分别获得2009年全国百篇优秀博士学位论文和2013年全国百篇优秀博士学位论文提名论文。曾任Analytical Methods副主编(2009-2018);现任中国化学会分析化学学科委员会副主任,Analytica Chimica Acta编辑、Talanta、Cancer Nanotechnology、Electrophoresis、Analytical Methods等国际期刊的编委。报告摘要:金属-有机骨架材料(Metal-Organic Frameworks,MOFs)MOFs是一类以金属离子或金属簇为配位中心,与含氧或氮的有机配体通过配位作用形成的多孔配位聚合物,具有比表面积大,种类和性质多样,孔和晶体尺寸可调和热稳定性好等优点。MOFs独特的结构特征和优异的性能,已在分析化学中显示出良好的应用潜力。本报告将介绍我们在MOFs多孔骨架材料应用于色谱固定相方面的研究工作。云南师范大学教授 谢生明《手性核壳复合材料用于高效液相色谱拆分外消旋化合物》个人简介谢生明,博士(华东师范大学)、教授、硕士生导师。现任云南师范大学化学化工学院副院长。2019年破格正教授,2017年入选云南省中青年学术和技术带头人后备人才,2018年入选云南省“万人计划”青年拔尖人才专项,云南省教育厅科技创新团队带头人。研究领域:新型手性功能材料的设计与合成、新型手性色谱柱(高效液相色谱手性柱、毛细管气相色谱手性柱、毛细管电色谱柱)的制备及其手性拆分性能的研究等。主持国家自然科学基金项目3项、云南省科技计划面上项目2项、云南师范大学“联大青年学者”项目;以第一作者或通讯作者在国际顶级或一流化学期刊发表包括J. Am. Chem. Soc.、Anal. Chem.、J. Membr. Sci.、ACS Appl. Mater. Interfaces、Anal. Chim. Acta、J. Chromatogr. A等在内的SCI源期刊论文50余篇,授权发明专利3项。报告摘要 主要介绍新型手性多孔材料,包括手性金属-有机骨架材料和手性共价有机骨架材料核壳复合材料的制备、表征及其在高效液相色谱手性拆分性能的研究。河北大学教授 乔晓强《磷脂色谱分离材料设计、制备及分离应用》个人简介博士/教授,博士生导师,现任河北大学药学院副院长,是河北省杰出青年基金获得者,河北省青年拔尖人才,河北省高校百名优秀创新人才,入选河北省三三三人才工程。2011年3月于中科院大连化学物理研究所获博士学位。2011年6月进入河北大学药学院工作。2016-2018年先后在美国德州大学阿灵顿分校和密西根州立大学进行博士后研究。迄今为止,在Analytical Chemistry、ACS Applied Materials & Interfaces、TrAC-Trends in Analytical Chemistry等权威期刊发表SCI论文50余篇,授权发明专利3项,在科学出版社出版《药学文献检索》1部。报告摘要定义和定量细胞膜上具有成千上万种独特结构的脂质分子对色谱技术的分离分辨能力提出了更高的要求。近年来,苯乙烯-马来酸(SMA)共聚物在细胞膜研究领域引起了广泛关注。SMA共聚物被证明是一种高效且温和的膜增溶试剂,对各种结构的磷脂分子具有很好的增溶作用,可开发为新型色谱固定相材料,提高复杂膜脂的分离分析能力。本文利用巯基-烯点击反应和酸酐-醇/胺之间的亲核开环反应制备了SiO2-SMA-十二醇色谱柱和SiO2-SMA-氨基酸色谱柱。采用傅里叶变换红外光谱仪和热重分析仪表征证明两种固定相材料均已成功制备。对保留机制、色谱分离性能进行考察,两种填充色谱柱均具有反相/亲水混合模式保留机制,可实现烷基苯类、多环芳烃类、苯酚类、苯胺类和酰胺类等多种物质的良好分离分析。将SiO2-SMA-十二醇色谱柱和SiO2-SMA-氨基酸色谱柱用于磷脂标准品的分离分析。SiO2-SMA-氨基酸色谱柱对磷脂分子类别和种类均显示了良好的分离效果,优于SiO2-SMA-十二醇色谱柱的分离效果。进一步将SiO2-SMA-氨基酸色谱柱用于胃癌细胞膜脂提取物的分离分析,SiO2-SMA-氨基酸色谱柱可在正相色谱和反相色谱模式下实现磷脂类别和磷脂酰胆碱分子种类的有效分离分析,显示了良好的应用潜能。中国科学院兰州化学物理研究所研究员 梁晓静《MOF/水凝胶修饰硅胶新型混合模式色谱固定相研究》个人简介梁晓静,研究员,博士生导师。2010年于中国科学院兰州化学物理研究所获分析化学博士学位,同年留所工作至今。2015年入选中科院青年创新促进会,2017年-2018年澳大利亚南澳大学访问学者,2020年入选“西部之光”A类学者。主要从事复杂体系色谱分析新材料新方法技术及应用研究。作为项目负责人先后承担了国家自然科学基金2项、中科院“西部之光”项目1项、大型企业委托项目10余项,作为主研人员参加了“十二五”、“十三五”国家科技重大专项子课题、研究所一三五培育项目等多项研究课题。研究成果获甘肃省自然科学二等奖1项,甘肃省科技成果转化奖1项,在Anal. Chim., TRAC-Trend. Anal. Chem, Anal. Chim. Acta, Talanta, Microchim. Acta, J. Chromatogr. A等分析化学重要期刊发表SCI论文70余篇,编写中文著作一章,获授权20余项。报告摘要在MOF修饰硅胶新型混合模式色谱固定相方面,选择了高耐热性的金属有机骨架(MOF-235),通过溶剂热法和高温程序煅烧法将其分别和亲水性聚合物聚乙二醇(PEG)、聚乙烯吡络烷酮(PVP)共同修饰于硅胶表面,合成了两种具有亲/疏水性的混合模式色谱固定相,对多种亲/疏水化合物表现出良好的分离效果。在此基础上,进一步通过选择MOF和聚合物的种类,采用不同的方法制备了多种MOF/聚合物共修饰硅胶混合模式色谱固定相,对生物碱、核苷、抗生素、烷基苯等亲/疏水化合物均有较高的分离选择性。 在水凝胶修饰硅胶新型混合模式色谱固定相方面,采用两步交联聚合策略,将一种具有温度响应性的疏水缔合水凝胶修饰到硅胶表面,制备了一种亲/疏水混合模式色谱固定相,丰富了色谱分离模式,大幅提升了分离速度和分离效率。为进一步提升固定相的分离多样性,通过在水凝胶网络结构中引入一定比例的亲水和疏水单体,并将其协同键合到硅胶表面,制备了一种双亲性非共轭柔性三维网络结构水凝胶修饰硅胶混合模式色谱固定相,实现了多种不同极性分析物的高效分离。随后,在水凝胶柔性网络中引入具有刚性结构的多孔MOF纳米材料作为辅助添加剂,有效抑制了水凝胶修饰层的过渡溶胀,增加了分离过程的作用位点和通道,使得固定相的分离选择性得到近一步提升。西南医科大学副教授 王路军《手性色谱固定相研究及手性识别》个人简介捷克中欧技术院博士后,西南医科大学药学院副教授,硕士生导师,四川省科技青年联合会理事,西南医科大学青年科技人才特别支持计划项目获得者,中国分析测试协会青年委员会员,中国化学会会员,是Analytica Chimica Acta (SCI, IF=5.123)、Talanta (SCI, IF=2.073)、Journal of chromatography A (SCI, IF=3.716)等杂志的特约审稿专家,目前主要从事新型分离材料、手性药物分析以及智能响应材料等方面的科研工作,主持国家自然科学基金、四川省教育厅重点项目以及泸州市科技厅等项目多项,项目经费100余万元,在Trends in analytical chemistry 、Nanoscale、Analytica Chimica Acta、Journal of chromatography A等高水平杂志上发表SCI论文30余篇,授权和申请国家发明专利6项,获得全国药物分析优秀论文三等奖1项,泸州市药学会优秀论文二等奖多项。报告摘要1. 手性液相色谱柱的种类介绍 2. 智能响应手性色谱柱的研发及其应用 3. 混合模式手性色谱柱的研发及其应用 4. 3D打印电化学手性传感珀金埃尔默企业管理(上海)有限公司高级应用工程师 袁斌《苯基固定相的选择性特征及应用》个人简介从事液相色谱分析近20年,熟悉色谱理论和数学分析理论,有丰富的液相色谱方法开发和实验设计项目经验。就职于珀金埃尔默企业管理(上海)有限公司,担任色谱技术应用工程师,负责液相色谱产品技术支持和方法开发。报告摘要十八烷基固定相(ODS/C18)由于其应用广泛性,故在反相色谱法中为实验人员的首选工具。然而面对不同结构的化合物,实验人员需要在分离过程中寻求不同的分离选择性从而提高色谱分离的效率和准确度。苯基取代化学固定相中苯环的特殊理化性质给予了其在分离过程中可提供与C18不同的选择性从而提升色谱分离品质。因此了解苯基取代化学固定相的性质有助于在方法开发中基于特定的化学结构快速准确地筛选色谱柱。
  • 仅两项!“纳米科技”重点专项2020拟立项定向项目公示
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp 12月17日,科学技术部发布了关于国家重点研发计划“纳米科技”重点专项2020年度项目安排公示的通知。 /p p style=" text-indent: 28px margin-top: 10px " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发 span [2014]11 /span 号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发 span [2014]64 /span 号)、《科技部、财政部关于印发 span & lt /span 国家重点研发计划管理暂行办法 span & gt /span 的通知》(国科发资 span [2017]152 /span 号)等文件要求,现对“纳米科技”重点专项 span 2020 /span 年度拟立项定向项目信息进行公示。 /span /p p style=" text-indent: 28px margin-top: 10px " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 公示时间为 span 2020 /span 年 span 12 /span 月 span 17 /span 日至 span 2020 /span 年 span 12 /span 月 span 21 /span 日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,逾期不予受理。个人提交的材料请署明真实姓名和联系方式,单位提交的材料请加盖所在单位公章。联系人和联系方式如下: /span /p p style=" text-indent:28px" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " & nbsp & nbsp /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 联系人:童杨 /span /p p style=" text-indent:28px" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " & nbsp & nbsp /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 联系电话: span 010-68104484 /span /span /p p style=" text-indent:28px" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " & nbsp & nbsp /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 传真: span 010-68339521 /span /span /p p style=" text-indent:28px" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " & nbsp & nbsp /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 电子邮件: span tongy@htrdc.com /span /span /p p style=" text-indent:28px" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span br/ /span /span /p p style=" text-indent: 28px text-align: right " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 科技部高技术研究发展中心 /span /p p style=" text-indent: 28px text-align: right " span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 2020 /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 年 span 12 /span 月 span 17 /span 日 span & nbsp & nbsp /span /span /p p br/ /p p style=" text-indent: 28px text-align: center margin-bottom: 15px " strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 国家重点研发计划“纳米科技”重点专项 span 2020 /span 年度定向项目拟立项公示清单 /span /strong span style=" font-family: 微软雅黑, sans-serif " & nbsp /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 640" style=" border-collapse: collapse border: none " tbody tr class=" firstRow" td width=" 73" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 序号 /span /strong /p /td td width=" 132" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 项目编号 /span /strong /p /td td width=" 143" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 项目名称 /span /strong /p /td td width=" 150" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 项目牵头单位 /span /strong /p /td td width=" 142" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 项目实施周期(年) /span /strong /p /td /tr tr td width=" 73" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 1 /span /p /td td width=" 132" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 2020YFA0211300 /span /p /td td width=" 143" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 超快电子束脉冲激发金属 span / /span 介质纳米复合结构的光谱学表征 /span /p /td td width=" 150" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 北京大学 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 5 /span /p /td /tr tr td width=" 73" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 2 /span /p /td td width=" 132" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 2020YFA0211400 /span /p /td td width=" 143" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 高频超声系统新型纳米结构材料及器件 /span /p /td td width=" 150" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 华中科技大学 /span /p /td td width=" 142" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 5 /span /p /td /tr /tbody /table p br/ /p
  • 仿松针多级非对称结构超疏水表面多尺度液滴定向输运
    液滴的自发定向输运在芯片实验室、能源电力系统、油气输运、水收集和除湿等领域具有广泛的应用前景,其主要取决于表面形貌结构和化学组成的非对称性,具体表现为浸润性梯度、各向异性结构和曲率梯度等。液滴输运的速度和距离是判定输运效率的有效指标。合理的设计并制备表面结构是实现快速、长程的液滴自发定向输运的有效方法。然而,传统的加工技术加工精度较低、加工结构单一,很难满足结构性能要求。近日,大连理工大学冯诗乐副教授,受松针表面多级非对称结构启发,使用深圳摩方材料科技有限公司PμSL 3D打印技术(nanoArch® S140),制备了仿松针多级非对称结构表面,实现了快速、长程的液滴自发定向输运。该研究以“Tip-inducedflipping of droplets on Janus pillars: from local reconfiguration to globaltransport”为题发表在国际顶级期刊《ScienceAdvances》上,为液滴的定向输运领域的发展提供了新的思路。论文第一作者为大连理工大学冯诗乐副教授,通讯作者为香港城市大学王钻开教授和巴黎高等物理化工学院David Quéré教授。图1 松针和仿松针多级非对称结构表面的形貌结构特征图2 仿松针多级非对称结构表面的形貌结构参数调控要点:研究者借鉴松针表面结构特征,设计并制备包括第一级的倾斜阵列结构、第二级的高度梯度结构和第三级的平面/曲面组合的半锥形结构的仿松针多级非对称结构表面。上述表面(图1)由nanoArch S140微尺度3D打印设备加工,使用材料为HTL耐高温树脂,打印层厚为10微米。阵列间距为300微米,尖锥倾斜角度β为70°,高度梯度α为20°,尖锥顶端大小为10-20微米。在打印过程中,通过精密刮刀刮除细小的气泡,来保障加工质量。同时,研究者还设计了仅包含倾斜阵列结构和半锥形结构的对照样品,与仅包含倾斜阵列结构和高度梯度结构的对照样品。通过nanoArch S140微尺度3D打印技术,实现了包括倾斜、高度梯度及平/曲面组合的复杂三维结构表面参数的精确调控及大规模制备(图2)。图3 仿松针多级非对称结构表面微液滴自发定向输运图4 仿松针多级非对称结构尖端效应要点:在凝结过程中,液滴先随机在表面凝结,然后向尖端汇聚,然后尖端液滴会在合并过程中重新配置,并从半锥形结构的平面旋转到曲面位置,随后合并的液滴会沿着高度增加的方向运动,进而实现从微观到宏观的多尺度液滴的定向输运,其液滴定向输运的速度可以达到10 cm/s。研究者发现液滴在合并过程中重新配置是非对称结构诱导的尖端效应导致的,并通过建立能量变化模型证明,当液滴尺寸大于结构尺寸时,液滴坐落于平面的系统能量大于坐落于曲面上的系统能量,从而揭示了液滴从平面向曲面运动的机理。研究者发现毫米级的液滴在合并过程中依然会从平面运动到弧面上,证明非对称结构诱导的尖端效应普遍适用于各种尺度的液滴。论文链接: https://advances.sciencemag.org/content/6/28/eabb4540/官网:https://www.bmftec.cn/links/10
  • 仿松针多级非对称结构超疏水表面多尺度液滴定向输运
    液滴的自发定向输运在芯片实验室、能源电力系统、油气输运、水收集和除湿等领域具有广泛的应用前景,其主要取决于表面形貌结构和化学组成的非对称性,具体表现为浸润性梯度、各向异性结构和曲率梯度等。液滴输运的速度和距离是判定输运效率的有效指标。合理的设计并制备表面结构是实现快速、长程的液滴自发定向输运的有效方法。然而,传统的加工技术加工精度较低、加工结构单一,很难满足结构性能要求。近日,大连理工大学冯诗乐副教授,受松针表面多级非对称结构启发,使用深圳摩方材料科技有限公司PμSL 3D打印技术(nanoArch® S140),制备了仿松针多级非对称结构表面,实现了快速、长程的液滴自发定向输运。该研究以“Tip-inducedflipping of droplets on Janus pillars: from local reconfiguration to globaltransport”为题发表在国际顶级期刊《ScienceAdvances》上,为液滴的定向输运领域的发展提供了新的思路。论文第一作者为大连理工大学冯诗乐副教授,通讯作者为香港城市大学王钻开教授和巴黎高等物理化工学院David Quéré教授。图1 松针和仿松针多级非对称结构表面的形貌结构特征图2 仿松针多级非对称结构表面的形貌结构参数调控要点:研究者借鉴松针表面结构特征,设计并制备包括第一级的倾斜阵列结构、第二级的高度梯度结构和第三级的平面/曲面组合的半锥形结构的仿松针多级非对称结构表面。上述表面(图1)由nanoArch S140微尺度3D打印设备加工,使用材料为HTL耐高温树脂,打印层厚为10微米。阵列间距为300微米,尖锥倾斜角度β为70°,高度梯度α为20°,尖锥顶端大小为10-20微米。在打印过程中,通过精密刮刀刮除细小的气泡,来保障加工质量。同时,研究者还设计了仅包含倾斜阵列结构和半锥形结构的对照样品,与仅包含倾斜阵列结构和高度梯度结构的对照样品。通过nanoArch S140微尺度3D打印技术,实现了包括倾斜、高度梯度及平/曲面组合的复杂三维结构表面参数的精确调控及大规模制备(图2)。图3 仿松针多级非对称结构表面微液滴自发定向输运图4 仿松针多级非对称结构尖端效应要点:在凝结过程中,液滴先随机在表面凝结,然后向尖端汇聚,然后尖端液滴会在合并过程中重新配置,并从半锥形结构的平面旋转到曲面位置,随后合并的液滴会沿着高度增加的方向运动,进而实现从微观到宏观的多尺度液滴的定向输运,其液滴定向输运的速度可以达到10 cm/s。研究者发现液滴在合并过程中重新配置是非对称结构诱导的尖端效应导致的,并通过建立能量变化模型证明,当液滴尺寸大于结构尺寸时,液滴坐落于平面的系统能量大于坐落于曲面上的系统能量,从而揭示了液滴从平面向曲面运动的机理。研究者发现毫米级的液滴在合并过程中依然会从平面运动到弧面上,证明非对称结构诱导的尖端效应普遍适用于各种尺度的液滴。论文链接: https://advances.sciencemag.org/content/6/28/eabb4540/ 官网:http://www.bmftec.cn/smart
  • 东南大学崔铁军院士团队Nature子刊,基于二维可编程超表面的定向信息调制技术
    【科学背景】随着无线通信技术的不断发展,对更高数据速率、更低延迟和更少错误率的需求不断增长,推动了下一代无线通信系统朝着更高的载波频率和超大规模天线阵列的方向发展。然而,这一进程也带来了对通信网络安全性和抗干扰能力的重大挑战。传统的加密方法通常在网络层实施,增加了消息代码的长度和传输开销,并需要密钥交换,这使得满足高带宽和超低延迟通信系统的要求变得困难。为应对这些挑战,近年来多种物理层安全方法得到了开发,其中包括相控阵波束成形技术和人工噪声干扰技术。这些方法的目标是通过增加信号到合法接收者和窃听者之间的信道容量差异来提升通信的安全性。然而,传统的波束成形技术存在体积庞大、能耗高等问题,同时发射机无差别地向所有方向辐射未失真的信号,理论上允许配备灵敏接收器的窃听者截获信息。这些安全隐患促使了对定向通信技术的探索。定向信息调制(DIM)作为一种有前景的物理层安全技术,利用多天线的波束成形能力,在期望方向传输正确的星座符号,同时在其他非法方向将其失真为噪声,从而确保了信息的安全。然而,现有的DIM方案存在一些问题,例如体积庞大、能耗高、成本高以及无法支持二维(2D)和高阶调制等。当前的主流DIM实现大多依赖于相控阵和时间调制阵列(TMA),这些方案虽然能够生成任意幅度和相位的响应,但由于硬件昂贵、能耗高,且只能支持一维传输,限制了其应用范围。为了解决这些问题,近年来可编程超表面(PM)被引入DIM研究。PM具有灵活的电磁波实时调控能力,可以作为一个高度集成的通信系统,具有更简单的架构、更低的成本和更少的能耗。已有研究尝试使用PM实现定向通信,包括近场幅度移位键控(ASK)调制、远场正交相位移键控(QPSK)调制等。然而,这些方案通常只利用电磁波的相位或幅度特征,缺乏高阶调制和正交幅度调制(QAM)方案,并且需要外部射频源,限制了其应用于空间受限的环境。有鉴于此,东南大学崔铁军院士团队在“Nature Communications”期刊上发表了题为“Two-dimensional and high-order directional information modulations for secure communications based on programmable metasurface”的最新论文。本研究提出并实验演示了一种基于二维(2D)PM的DIM方案,旨在克服现有DIM方案中的缺陷。该方案集成了可控组件,能够在期望方向生成正确的星座符号,并形成一个可重构的低剖面调制器,提供发射机与多个接收机之间的独立通信链路。通过使用交替方向乘子法(ADMM)框架中的快速高效算法优化编码序列,该方案实现了在谐波下的定向安全性,并在多通道模式下验证了8PSK、16QAM和64QAM的星座图。【科学亮点】(1)本文首次提出了一种基于2位可编程超表面(PM)的二维及高阶DIM方案,并成功实现了这一方案。该方案利用PM的可调控组件和快速高效的离散优化算法,克服了传统DIM方案存在的体积庞大、能耗高、成本高以及无法支持二维(2D)和高阶调制的缺陷。实验中,PM方案能够生成正确的星座符号,并在多方向波束中传输,显示了其在定向信息调制(DIM)方面的潜力。(2)通过在多通道模式下进行的验证实验,本文展示了该DIM方案的有效性。具体而言,三组星座图(8相位移键控(PSK)、16正交幅度调制(QAM)、64QAM)在多通道模式下得到了验证,测量结果表明,接收到的信号在期望方向上保持了与预设星座图一致的结构,而在其他方向上则出现了失真。这表明该系统不仅能够进行数字信息的直接传输,还能实现信息的定向安全,即只有期望方向的用户能够接收到正确的符号,而其他方向的用户将接收到失真的符号,从而确保了信息的安全性。【科学图文】图1:基于PM的DIM方案的示意图。图2:PM-based DIM方案中使用的元件的详细信息。图3:单通道模式的选定测量结果。图4:单通道模式下测得的EVM值。图5:双通道16QAM方案中的选定测量结果。图6:评估双通道16QAM中的串扰的结果。7:双通道16QAM实验中测得的EVM值。图8:验证所提出DIM方案的安全区域特性和宽带性能的测量信号结构,其中红色圆形标记表示参考星座符号。【科学启迪】本文提出的基于二维可编程超表面(PM)的定向信息调制(DIM)方案在物理层安全领域开创了新的方向。传统的无线通信系统面临着信息安全的重大挑战,尤其是当发射信号无差别地传播到所有方向时,窃听者有可能截获到未加密的信息。传统的加密方法虽然能够在网络层提供安全性,但它们往往增加了通信延迟和复杂性,并无法有效解决对高带宽和低延迟通信系统的需求。本研究首次利用二维PM结合快速高效的离散优化算法,提出了一种在多方向上生成和传输正确星座符号的DIM方案。这种方案不仅克服了现有DIM技术中的体积庞大和高能耗等问题,还支持了二维及高阶调制,为未来的无线通信系统提供了更为灵活的解决方案。特别是通过在期望方向传输清晰的信号,并在其他方向进行信号失真,这种定向传输模式大大提高了信息的安全性,防止了非目标方向用户的潜在窃听。此外,实验验证了该方案在8PSK、16QAM和64QAM等多种星座图下的有效性,展示了其在多通道模式下的优异性能。这不仅表明该技术在实际应用中具有高度的可靠性,也为未来高吞吐量、低延迟的无线通信系统的发展奠定了坚实的基础。文献详情:Xu, H., Wu, J.W., Wang, Z.X. et al. Two-dimensional and high-order directional information modulations for secure communications based on programmable metasurface. Nat Commun 15, 6140 (2024). https://doi.org/10.1038/s41467-024-50482-y
  • 海能仪器定向增发290万元获证监会批准
    海能仪器近日发布公告称,公司定向增发方案获证监会批准,方案显示,此次定向增发数量为1100000股,增发价格为2.64元,募资规模290.40万元,折溢价率为-76.72。 根据其公开资料显示,海能仪器主营业务为食品药品领域的分析仪器及其应用软件的研发、生产和销售。该公司所属行业为仪器仪表制造业,总股本为4453.38万股,每股收益为-0.08元。
  • 月旭科技-专家讲座系列之色谱固定相的形貌与特征
    本期“月旭科技-专家讲座”的嘉宾是华东理工大学特聘教授,也是我们月旭科技分离纯化技术中心总工——张维冰教授。本周六上午,张维冰教授将与大家分享讨论“色谱固定相的形貌与特征”的相关内容。我们的讲座分为两大部分,zui后有互动答疑环节,来跟大家交流相关主题的内容,解决大家的实际问题,敬请关注!一、主讲人简介现为华东理工大学特聘教授,南昌大学、齐齐哈尔大学讲座教授。月旭科技分离纯化技术中心总工。主要从事包括色谱、毛细管电泳的理论与实践研究工作。张维冰教授师承张玉奎院士,于1999年在中国科学院大连化学物理研究所获理学博士学位,并在台湾中兴大学进行博士后研究工作,后赴德国Max Planck Institute for Dynamics of Complex Technical Systems作访问学者。已发表学术论文600余篇,著作七部,申请及授权专利百余项。负责或参加完成国家自然科学基金 、“973”、“863”及国家“攻关”、“支撑计划”等项目多项。二、讲座主题《色谱固定相的形貌与特征》内容摘要1、对色谱分离介质的基本要求;2、固定相的制备;3、月旭固定相基质的特征;4、创新固定相修饰技术;5、特殊固定相的应用。三、讲座时间2021年12月18日(周六) 10:00-11:00《色谱固定相的形貌与特征》主题讲座 11:00-12:00 专家互动答疑环节四、参与方式关注月旭科技视频号,点击卡片“预约”,届时进入月旭科技视频号直播间观看即可。
  • 3D打印多仿生槽锥刺结构实现跨气-液界面微油滴高效定向操控
    复杂环境下的低表面能液滴操控对于混合液相分离、化学微反应废物处理等能源、环境与健康领域的应用发展具有重要指导意义。具有液体靶向运输控制功能的仿生结构表面为微滴操控提供了一种能耗更低、制备工艺更简单的解决策略。目前实现基底表面液滴智能运输主要依赖于材料润湿性梯度和结构的不对称性,且相关研究均集中于水处理。油等低表面能液滴的低接触角滞后和接触线滑移使其相比水运动路径更难控制,尽管具有亲油表面的传统圆锥形结构可以实现微油滴的自运输,但复杂环境下的实用性、大容量自发连续低表面张力微液滴输送系统是亟待解决的行业难题与挑战。如何突破现有微滴操控不对称性结构的功能局限实现微油滴气-液界面跨相传输提取更是鲜有研究。近日,西南科技大学微纳仿生系统与智能化研究团队李国强教授与海河实验室曹墨源研究员合作,受鱼刺微油滴操控功能、水稻叶表面各向异性液滴滑动现象启发,利用PμSL高精密3D打印(摩方精密,nanoArch S140,P150)技术制备了一种多仿生槽锥刺结构(BGCS)实现水下油滴的逆重力高效运输与收集。在非对称拉普拉斯压力和表面毛细力的协同作用下,所设计的2-BGCS结构具备在水下、空气以及跨气-液两相界面超快、连续传输油滴的功能,运输速度最高可达70.2 mm/s。与传统圆锥形结构相比,倾斜角20°时,2-BGCS结构的输送速度提高9倍。在逆重力传输油滴时,2-BGCS结构能够提升超过22 μL的重油滴,通量提升5倍,极大的改善了圆锥结构的功能与性能,且具有输运大体积油滴的潜力。仿生槽锥刺集油阵列装置表现出在水环境下连续、自发地收集油滴的性能。该研究为复杂环境下的油滴从输送到收集提供了一种集成、通用的新策略,在水下微油滴收集系统、生物分析及污染治理等领域具有广阔的应用前景。评审人对该工作给予高度评价:基于锥形结构和沟槽结构的巧妙结合和功能设计为微流控等领域提供新的仿生策略。该工作以“Directional and Adaptive Oil Self-transport on a Multi-bioinspired Grooved Conical Spine”为题发表在国际著名期刊《Advanced Functional Materials》上。西南科技大学机械工程2019级硕士生李耀霞和中国科学技术大学仪器科学与技术2021级博士生崔泽航为共同一作,通讯作者为李国强教授和曹墨源研究员。图1 仿生槽锥刺结构的设计与性能对比。受鱼刺和水稻叶启发,利用精密3D打印制备了不同槽个数的仿生锥形结构。梯度槽和锥形结构的结合,使仿生结构具备水下超快逆重力定向传输功能,对比不同槽数的仿生结构以及传统锥形结构,2-BGCS结构的运输效果最佳。图2 不同结构连续输送油滴及理论机制的比较。对仿生槽锥形结构、传统锥形结构以及对称圆柱结构在水下进行连续逆重力输送实验对比,微油滴在不同结构上连续运输的高度对比说明仿生槽锥形结构上的微油滴能够不断连续输送,且不影响下一次循环。基于不同结构对比实验,对油滴沿结构运输的模型进行机理分析。图3 仿生槽锥刺结构在不同环境下油滴运输的应用。基于仿生槽锥形结构水下逆重力油滴运输的优异性能,进一步探讨了在多环境下的油滴运输功能,不仅能够实现微油滴在空气中的超快输送,还可以实现气-液界面跨相油滴传输,集成收集装置能够实现水下油滴的大通量收集。小结综上所述,受鱼刺空中油滴定向输送以及水稻叶各向异性槽的启发,作者借助精密3D打印制备新型仿生功能结构,由锥形结构产生的非对称拉普拉斯压力和凹槽结构产生的表面毛细力的共同作用下,提高了油滴在水下传输能力,极大的改善了传统圆锥结构的功能与性能。同时,利用不对称结构实现油滴跨气-液两相界面的精准高效传输,仿生槽锥刺集油阵列装置实现在水环境下超快、连续收集油滴,为复杂环境下的油滴从输送到收集提供了新的方法。微纳仿生系统与智能化团队一直致力于超快激光微纳精密制造和超精密3D/4D打印制造的基础研究与应用研究,以开发微纳功能结构、芯片、器件及集成系统为目标,服务于能源、环境、健康等重点领域。近年来,该团队报道了一系列高水平研究成果,包括水平振动模式高性能微滴定向驱动(Adv. Mater., 2020, 2005039),飞秒激光诱导自生长蘑菇头凹角结构微柱(Nano Lett., 2021, 21, 9301−9309 ACS Nano2022, 16, 2730-2740),激光3D打印和飞秒激光直写构筑仿鱼骨微液滴多相分流器、仿荻草叶保水功能“即插即用”式高效集水灌溉装置(J. Mater. Chem. A, 2021, 9, 9719 J. Mater.Chem. A, 2021, 9, 5630 Nano-Micro Lett., 2022,14:97),精密3D打印构建仿生麦芒分级系统用于高效雾水收集、受蚊眼启发的激光织构化仿生多功用玻璃(Chem. Eng. J, 2020.125139 Chem. Eng. J,2021.129113),一种用于微样分析的仿生微滴操控器(ACS Appl. Mater. Interfaces 2021, 13, 14741−14751)等40余篇。这些重要成果体现了机械工程学科在科学研究和人才培养方面的新成就。该研究受到国防科工局十四五基础科研计划项目、装备预研领域基金项目、国家自然科学基金项目、四川省科技创新基金等项目的支持。
  • 磁场驱动微板阵列表面实现定向输运
    设计并驱动微纳米结构表面实现物体的定向输运在微电子、生物医药及防污自清洁等领域具有广泛的应用前景。在这些应用领域中,提高定向输运的速度能进一步提高输运效率。此外,通过对微结构和驱动方式的创新性设计,实现对多种不同形状的物体在不同环境中的定向输运也具有重要意义。近日,北京理工大学先进结构技术研究院陈少华教授课题组提出了一种通过磁场控制微结构表面快速输运固体物块的方法。该方法能够对厘米级的固体物块进行快速定向输运,其输运速率相对于已有文献中的输运速率有大幅度的提升。微结构表面主要由磁响应微板阵列结构和纯PDMS基底组成,单个微板高度为950微米,厚度为150微米。该研究结合微尺度3D打印技术制备实验样件,所使用的3D打印设备(nanoArch S140,摩方精密)的光学精度为10μm,能实现94×52×45mm大小的三维加工尺寸。基于该设备加工了板状微结构阵列,并通过倒模制备出含有磁颗粒的PDMS微结构试样,然后通过磁场控制微结构的变形储能以及能量的快速释放,实现定向输运的功能。该成果以“Directional Transportation on Microplate-Arrayed Surfaces Driven via a Magnetic Field”为题发表于国际期刊ACS Applied Materials & Interfaces上。该工作由北京理工大学先进结构技术研究院李程浩博士作为第一作者完成。图1.微结构制备及实验装置示意图图2.固体物块定向输运及驱动过程分析图3.通过磁场控制微结构表面实现不同形状物体的定向输运,及不同重量物体的筛选分离(空气环境和水下) 该研究提出了一种通过磁场控制微结构表面快速输运固体物块的方法,并揭示了输运机理:通过磁场控制微结构变形储存弹性能,然后通过控制微结构逐个回弹,使得储存在微结构中的弹性能依次快速释放,并驱动物体连续向前运动,以此实现固体物块的快速定向输运。此方法具有广泛的适用性,能够在空气和水环境中同时输运不同形状的物块,且能够较好控制输运速度,对于更加智能甚至编程化的定向输运技术具有重要意义。官网:https://www.bmftec.cn/links/10
  • 磁场驱动微板阵列表面实现定向输运
    设计并驱动微纳米结构表面实现物体的定向输运在微电子、生物医药及防污自清洁等领域具有广泛的应用前景。在这些应用领域中,提高定向输运的速度能进一步提高输运效率。此外,通过对微结构和驱动方式的创新性设计,实现对多种不同形状的物体在不同环境中的定向输运也具有重要意义。 近日,北京理工大学先进结构技术研究院陈少华教授课题组提出了一种通过磁场控制微结构表面快速输运固体物块的方法。该方法能够对厘米级的固体物块进行快速定向输运,其输运速率相对于已有文献中的输运速率有大幅度的提升。微结构表面主要由磁响应微板阵列结构和纯PDMS基底组成,单个微板高度为950微米,厚度为150微米。该研究结合微尺度3D打印技术制备实验样件,所使用的3D打印设备(nanoArch S140,摩方精密)的光学精度为10μm,能实现94×52×45mm大小的三维加工尺寸。基于该设备加工了板状微结构阵列,并通过倒模制备出含有磁颗粒的PDMS微结构试样,然后通过磁场控制微结构的变形储能以及能量的快速释放,实现定向输运的功能。该成果以“Directional Transportation on Microplate-Arrayed Surfaces Driven via a Magnetic Field”为题发表于国际期刊ACS Applied Materials & Interfaces上。该工作由北京理工大学先进结构技术研究院李程浩博士作为第一作者完成。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c09648图1.微结构制备及实验装置示意图图2.固体物块定向输运及驱动过程分析图3.通过磁场控制微结构表面实现不同形状物体的定向输运,及不同重量物体的筛选分离(空气环境和水下) 该研究提出了一种通过磁场控制微结构表面快速输运固体物块的方法,并揭示了输运机理:通过磁场控制微结构变形储存弹性能,然后通过控制微结构逐个回弹,使得储存在微结构中的弹性能依次快速释放,并驱动物体连续向前运动,以此实现固体物块的快速定向输运。此方法具有广泛的适用性,能够在空气和水环境中同时输运不同形状的物块,且能够较好控制输运速度,对于更加智能甚至编程化的定向输运技术具有重要意义。
  • 实验室里的那些事儿,大环糖肽类手性固定相(一)
    小时候,实验室一直是一个带有神秘色彩的地方,就像宇航员穷其一生追求浩瀚的宇宙,科学家们总是和实验室断不开联系,穿着白大褂,在房间里研究着一些令人惊奇的事情。后来,我们走进大学的校园,实验室也不那么神秘,成为了我们经常出入的场所,每天都有着有趣的故事在上演。 2021年开年,默克分析化学给大家汇总了2020年的百余篇干货满满的微信小文章。希望有陪伴到您在实验室里的美好时光,感兴趣的同学们可以戳链接,回看全年的精彩哦。 在方法开发部分里,我们给大家简单介绍了手性开发的一些要点和概念。 关于手性Chirality,小朋友你是否有很多问号?走进环糊精和气相手性柱的精彩世界 2021年,默克分析化学的干货也不会少的!接下来我们将带大家深入了解大环糖肽类手性固定相,拿出您聪明的小脑瓜,让我们开始吧! 图1 大环糖肽型万古霉素手性固定相大环抗生素其分子量一般在500-3000之间,分子中具有众多官能基团和不对称中心,其中糖肽型化合物还具有空穴结构。因此该类化合物可以与手性分子发生多种相互作用如:范德华力疏水作用离子作用氢键作用偶极-偶极作用π-π 电荷转移作用 离子相互作用存在离子相互作用是大环糖肽型手性固定相与市场上众多产品的真正差异化所在。 大环糖肽类抗生素是目前较为成功的大环抗生素类手性选择剂,包括瑞斯托菌素A (Ristocetin A)、替考拉宁(Teicoplanin)、万古霉素(Vancomycin)(如图1所示)及其衍生物。 优点:ü 耐用和LC-MS兼容可用于含水和非水流动相,多种分离模式可选(正相、反相、极性有机、极性离子等)ü 对溶剂或添加剂无记忆效应,适用于中性、极性和可电离化合物的分离ü 吸附解吸速度快,有利于提高制备的速度和效率 我们以大环糖肽型万古霉素手性固定相为例:CHIROBIOTIC V and V2 为大环糖肽型万古霉素手性固定相,两者的不同主要体现在键合化学特性且填料颗粒的孔径,因而各自具有不同的选择性和制备能力: • 键合相:万古霉素 • 工作pH范围: 3.5 - 7.0 • 粒径:5μm 或 10μm • 孔径:100 Å (CHIROBIOTIC V)或200 Å (CHIROBIOTIC V2) 应用举例:氟西汀Fluoxetine在Astec CHIROBIOTIC V2上极性离子模式下手性拆分:华法令Warfarin在Astec CHIROBIOTIC V上反相模式下手性拆分:沙利度胺Thalidomide在Astec CHIROBIOTIC V2上极性有机模式下手性拆分:美芬妥因Mephenytoin在Astec CHIROBIOTIC V上正相模式下手性拆分: 未完待续默克分析化学会持续和您分享实验室里的那些事儿,分享实验室里的小技巧,关于大环糖肽类手性固定相,还有更多精彩干货,记得关注我们哦。
  • 欧盟将对定向性家用灯泡及LED灯泡提高能效要求
    近期,欧盟委员会的生态设计指令法规委员会对定向灯(家用及专用定向灯)和所有LED灯以及相关设备的条例草案展开讨论,其中灯和灯具的强制性CE认证又更新了相关ErP指令:包括1194/2012/EC指令(定向性灯泡,LED灯泡和其它相关设备)和874/2012/EC指令(欧盟生态设计针对灯泡和灯具能效标签的指令)。适用的产品范围将包括:(1)定向紧凑型荧光节能灯(CFL) (2)其它定向灯(除了LED灯、CFL灯和高压气体放电灯) (3)无方向灯泡和定向LED灯泡 (4)安装在光源和主供电之间的灯具控制器设备(不含镇流器、荧光灯具和高压气体放电灯具)。具体要求的实施时间分为三个阶段:第一阶段开始于2013年9月1日 第二阶段开始于2014年9月1日 第三阶段开始于2016年9月1日。此举将对进入欧洲市场的照明产品提出更加严格的能效要求。   宁波是灯具产品出口集聚地,据统计,2012年,宁波地区共出口欧盟上述产品9760批,金额2.54亿美元,同比分别增长32.2%和32.9%,其中LED灯7884批,金额1.88亿美元,同比分别增长 32.7%和29.7%。在外贸不景气的大环境下,出口仍然保持着强劲增长,实属不易。为此,检验检疫提醒广大生产企业:首先应对欧盟相关新规进行深入学习,通过检验检疫的官方网站、检企平台等渠道了解最新的法规和指令,避免出口受阻。其次,企业对LED产品的研发和设计应以节能环保为主要方向,逐步将新型高效的产品作为企业新的利润增长点,以便于在后金融危机时代里站稳脚跟。同时,有能力的企业应抓住契机做大做强高端产品,使之达到国际领先水平,才能在相关标准的制定中发出自己的声音。
  • 科学家定向开发新的基因递送载体用于基因治疗
    近日,发表在《Cell》上的一项题为“Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species”的研究中,来自美国布罗德研究所和哈佛大学等研究机构的研究人员开发出一个新的腺相关病毒(AAV)家族作为基因递送载体用于基因治疗。  重组腺相关病毒(rAAV)是最常用于体内基因替代治疗和基因编辑的载体,但全身递送后特定组织的选择性转导仍然是一个挑战。遗传性肌肉疾病会导致进行性肌肉萎缩,治疗选择很少且无法治愈。基因疗法已在临床试验中显示出治疗肌肉萎缩症的希望,但需要高剂量的携带基因的病毒才能到达全身肌肉,而这些试验中使用的病毒通常更多地进入肝脏而不是肌肉,进而导致一系列严重的问题。  研究人员建立了一种体内策略来进化和严格选择AAV的衣壳变体,这些变体能够有效地递送到所需的组织。使用这种方法,研究人员确定了一类含有RGD基序的衣壳,在小鼠和灵长类动物体内定向进化出一种工程化改造的AAV载体—MyoAAV,研究显示这种载体能够高效靶向肌肉组织,递送到肌肉组织的效率是传统病毒载体的10倍以上。同时,与传统递送载体相比,该载体在遗传性肌肉疾病中的治疗剂量降低大约100到250倍,这一研究成果极大地减少了肝脏损伤和其他严重副作用的风险。   论文链接:  https://www.cell.com/cell/fulltext/S0092-8674(21)01002-3
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制