当前位置: 仪器信息网 > 行业主题 > >

模拟模型地震构造

仪器信息网模拟模型地震构造专题为您整合模拟模型地震构造相关的最新文章,在模拟模型地震构造专题,您不仅可以免费浏览模拟模型地震构造的资讯, 同时您还可以浏览模拟模型地震构造的相关资料、解决方案,参与社区模拟模型地震构造话题讨论。

模拟模型地震构造相关的资讯

  • 地震模拟试验技术与装备
    地震模拟试验技术是集机、电、液与计算机控制等多学科知识为一体的综合性技术,是土木工程、岩土工程、结构工程中大型结构试件抗震减灾、性能验证和破坏机理研究的核心技术手段。该技术以电液伺服控制技术、自动控制理论、模拟电子技术和信号处理等课程为技术基础。8月16日,由仪器信息网、中国仪器仪表行业协会试验仪器分会联合主办的第二届试验机与试验技术网络研讨会将召开。届时,哈尔滨工业大学副教授杨志东将在线分享报告,介绍国内外地震工程与工程振动领域的地震模拟试验技术研究成果与相关技术。欢迎业内人士报名听会,在线交流。附:第二届试验机与试验技术网络研讨会 参会指南为帮助业内人士了解试验技术发展现状、掌握前沿动态、学习相关应用知识,仪器信息网携手中国仪器仪表行业协会试验仪器分会于2023年8月16日组织召开第二届“试验机与试验技术”网络研讨会,搭建产、学、研、用沟通平台,邀请领域内科研与应用专家围绕试验机行业发展、试验技术研究、试验技术应用等分享报告,欢迎大家参会。1、进入会议官方页面(https://www.instrument.com.cn/webinar/meetings/testingmachine2023/)进行报名。2、报名开放时间为即日起至2023年8月15日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)6、赞助联系人:周老师(微信号:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
  • 7亿元两套振动台,MTS中标5亿:世界最大地震模拟设施!
    p style="text-indent: 2em "提及天价设备,我们容易想到光刻机行业霸主ASML生产的世界上最顶尖的EUV光刻机,单台售价超1亿美元,2018年,中芯国际首次向ASML订购EUV光刻机,采购价格高达1.2亿美元,大概相当于七亿人民币。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 241px " src="https://img1.17img.cn/17img/images/202003/uepic/4add9eea-8f18-4022-9ae6-102ca95d41d3.jpg" title="1.jpg" alt="1.jpg" width="450" height="241" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-indent: 2em "其实,在科学仪器领域,也不乏这样的过亿天价设备,比如大阪大学两台价值约约合人民币2.72亿元的高端电镜(日立高新H3000与日本电子物质及生命科学超高压电子显微镜)、去年8月MTS系统公司2.14亿元中标的世界单套最大规模重载车辆道路模拟系统、以及span style="text-indent: 2em color: rgb(0, 32, 96) "strong近日采购预算超7亿元的天津大学大型地震工程模拟研究设施地震模拟振动台采购项目。/strong/span/span/pp style="text-indent: 2em "strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "7亿元采购两套振动台系统,MTS独中5亿元/span/strong/pp style="text-indent: 2em "2019年11月28日,天津大学委托北京泛华国金工程咨询有限公司发布“天津大学大型地震工程模拟研究设施地震模拟振动台采购项目”,预算金额为7.156亿元。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 175px " src="https://img1.17img.cn/17img/images/202003/uepic/4e270f62-2db7-4f85-9a34-eb4b5495787f.jpg" title="2.png" alt="2.png" width="500" height="175" border="0" vspace="0"//pp style="text-indent: 2em "span style="text-indent: 2em "2020年1月21日,MTS系统公司与天津市天锻压力机有限公司共同中标,其中MTS系统中标金额超5亿元,天津市天锻压力机有限公司中标2.15亿元。/span/pp style="text-indent: 2em "strong此次中标项目的“天价”主要体现在以下几方面:/strong/pp style="text-indent: 2em "strong1)/strong此次采购项目背后是天津大学牵头建设的世界上最大的地震工程模拟研究设施,总投资预计超过15亿元人民币。被称作继贵州“中国天眼”、广东散裂中子源、上海光源等之后的又一国家大科学装置,也是地震工程领域的唯一一个。/pp style="text-indent: 2em "strong2)/strong此次中标,创下MTS系统公司有史以来单一合同订单最高金额纪录,合同总计金额超过7148万美元(根据当前汇率折算人民币超5亿元)/pp style="text-indent: 2em "strong3)/strong由于此次采购项目金额巨大、技术要求比较高,单靠一个投标人的力量不能顺利完成的,所以采取了联合体投标形式,即MTS系统公司与天津市天锻压力机有限公司集中各自优势,以一个投标人的身份获得中标。/pp style="text-indent: 2em "strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "采购项目背景/span/strong/pp style="text-indent: 2em "2018年8月2日,国家发改委批复立项:依托天津大学高水平创新主体,建设开放共享、揭示复杂岩土介质与水动力环境中重大工程动力损伤机理的国家重大科技基础设施—“大型地震工程模拟研究设施”。总投资预计超过15亿元人民币。/pp style="text-indent: 2em "设施总体目标为:面向地震工程领域需求,结合国内外优势力量,集中建设国际一流、规模最大、装备最先进、综合程度高、高度智能化、开放共享的大科学装置。设施可为解决地震工程研究中关键科学问题提供大尺寸大载重地震模拟、多点多维地震差动激励及地震-波流耦合激励等高水平试验手段,大幅提升我国防灾减灾原始创新能力和全社会减轻自然灾害风险的能力,加快地震工程领域人才培养,为提高我国地震灾害的防范水平提供重要支撑。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 236px " src="https://img1.17img.cn/17img/images/202003/uepic/8cef066b-b568-4966-a779-f1d45dfde727.jpg" title="3.png" alt="3.png" width="450" height="236" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "大跨桥梁水下振动台台阵波流耦合试验现场效果图/span/pp style="text-indent: 2em "项目首席科学家、天津大学校长钟登华院士说,该设施建设周期为5年,主要包括地震工程模拟试验系统、高性能计算与智能仿真系统、试验配套与共享系统等3大系统。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 269px " src="https://img1.17img.cn/17img/images/202003/uepic/5ad5b226-e052-4356-9baa-0388cd49c915.jpg" title="4.png" alt="4.png" width="450" height="269" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "大型水坝-库水-岩体大型振动台试验效果图/span/pp style="text-indent: 2em "在崭新的天津大学北洋园校区内将建设大型的“地震模拟振动台”,总建筑面积7.7万平方米。地震模拟振动台是开展抗震模拟研究的有效试验平台。目前国内外已有的地震模拟振动台或规模较小,或实验功能单一——不能同时模拟地震与其它多种灾害荷载的作用,已经不能满足一旦地震时确保工程安全和正常服役的需要。天津大学将建设尺寸荷载重量更大的地震模拟振动台,以及能同时模拟地震与水下波流耦合作用的振动台台阵试验装置。该设施建成后,可大幅提升我国工程技术领域的创新能力和水平。/pp style="text-indent: 2em "strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "关于中标的两套振动台系统/span/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 323px " src="https://img1.17img.cn/17img/images/202003/uepic/e2e24e48-cebc-4281-af7a-cf9a9a0816a1.jpg" title="5.png" alt="5.png" width="600" height="323" border="0" vspace="0"//pp style="text-indent: 2em "据悉,该地震工程模拟试验系统包含两套独立的试验设施,建成之后,均为最大规格的地震工程模拟试验设备。其中一套系统为六自由度(6DoF)振动台,有效工作尺寸为16mx20m,有效负载为1350吨,可以开展足尺建筑或者低缩比模型的抗震性能评估。/pp style="text-indent: 2em "另外一套系统是由两个6mx6m的六自由度(6DoF)振动台组成,每个振动台的有效负载均为150吨。两个振动台既可以独立工作,也能够联合起来组成台阵系统,并且该台振系统可以在3m深的水下工作,其中的一个振动台还能够在长度为57m的槽道中移动位置以满足不同跨度样件的抗震试验,例如各种类型的水利枢纽、桥梁、隧道、管路结构等等。水下台振系统周围将布置造浪模拟设备来模拟不同的海洋工况,可以将地震与波流组合起来实现多灾害现象的模拟。/pp style="text-indent: 2em "MTS系统公司首席执行官Dr. Jeff Grave表示,“ MTS系统公司在中国以及全世界的抗震工程以及多灾害试验模拟领域具有技术领先地位,拥有无与伦比的技术能力与专家团队。作为该行业的领军者,MTS系统公司是少数能够提供如此超大规模地震工程模拟设备的工程公司。这个项目包含了诸多挑战,复杂的系统集成、超大载荷与位移的控制、先进的地震仿真和模拟软件,并且将地震与波流结合起来开展试验应用。MTS能够赢得天津大学的项目,对此我们深表自豪,MTS将与天津大学共同努力创造更好的地震模拟试验技术,为中国以及全世界基础建设,包括大型水利枢纽、建筑、桥梁、可再生能源设施等,做出贡献,一同创造一个更加安全、美好、可持续发展的世界!”/pp style="text-indent: 2em "天津大学副校长,项目执行总指挥张凤宝教授表示,“我们非常期待与MTS系统公司一同建设这套世界最大规模、最先进的地震模拟系统,这套系统是我们大型地震工程模拟研究设施的基础系统之一,也是迄今为止在天津建设的首个国家重大科技基础设施的一部分。当整个项目完成之后,所有的科研成果将与全世界的同行共享,我们的目标是重大工程和基础设施建设更加安全、可持续。天津大学欢迎全球的科学家和工程专家来参观、指导未来的地震工程模拟试验研究。“/pp style="text-indent: 2em "strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "那些“高”价的仪器设备/span/strong/pp style="text-indent: 2em "strong1)一套仪器设备订单成交,2.14亿元,3年分批交付/strong【a href="https://www.instrument.com.cn/news/20190812/490962.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "详情/span/strong/a】/pp style="text-indent: 2em "2019年7月29日,MTS系统公司宣布获得世界单套最大规模重载车辆道路模拟系统订单,订单总额3040万美元(约2.14亿元人民币),将为美国陆军设计、生产、制造与集成世界上最大的主轴耦合道路模拟器。该合同为长期持续投入合同,系统部件将在后续2020、2021、2022财年三个财年之中分批交付使用。/pp style="text-indent: 2em "该道路模拟器将安装在美国陆军位于马里兰州的军阿伯丁测试中心。用于加速军用车辆耐久性测试,一旦投入使用,所需的测试时间将缩短75%至80%。通过在实验室中模拟真实路面环境条件,帮助陆军快速评估和改进车辆的可靠性和耐久性,以避免潜在的、耗时的现场故障。/pp style="text-indent: 2em "除了道路模拟器,解决方案还包括MTS SWIFT EVO 50车轮力传感器,用于收集这些车辆在各种试验场地形上的实时数据。同时系统也采用了MTS最大液压动力系统,将可以提供每分钟达数千加仑的连续液压动力。该道路模拟器将能够用于测量最多五轴的载重车辆,对应车辆重量达100,000磅(约45.3吨)。/pp style="text-indent: 2em "“此套道路模拟器离不开MTS系统公司过去五十余年在重载车辆测试技术方面的开发能力与经验积累”,MTS系统公司总裁兼首席执行官Jeffrey Grave博士表示,“MTS公司很高兴能够应用商用车辆建模和仿真的知识,为陆军创建整车测试解决方案。这个新系统将有助于提高军用车辆的可靠性,并为陆军更佳性能量身定制车辆设计提供理论支持。”/pp style="text-indent: 2em "strong2)大阪地震,日立高新与日本电子这两台近3亿元高端电镜受损/strong【a href="https://www.instrument.com.cn/news/20180624/466369.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "详情/span/strong/a】/pp style="text-indent: 2em "2018年6月18日,日本大阪府发生里氏6.1级地震,位于大阪府茨木市的大阪大学超高压电子显微镜中心也遭遇强烈晃动,每台价值约23亿日元(约合人民币1.36亿元)的电子显微镜有两台受损,修复需要花费1年以上。受地震影响,一些世界顶级科研项目或出现停滞。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 418px " src="https://img1.17img.cn/17img/images/202003/uepic/2ae993eb-c06b-4ca5-bfe2-047f5fd579d9.jpg" title="6.jpg" alt="6.jpg" width="500" height="418" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "H3000 UHVEM(日立高新)/span/pp style="text-indent: 2em "该中心这两台高端显微镜,一台正是日立高新生产的H3000 UHVEM(3 MV ultra-high voltage electron microscope,300万伏超高压电子显微镜),其高度为17米,使用世界最高电压对于较厚样品也能进行观察;另一台则是日本电子生产的Materials- and Bio-Science UHVEM(物质及生命科学超高压电子显微镜),其高度为12米,能在一秒钟内对每一个原子的运动进行1600次拍摄。这两台电子显微镜可以观察到从物质及生物的微细结构到物质受到放射线损伤的情况,能观察到纳米级的微小结构。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 283px " src="https://img1.17img.cn/17img/images/202003/uepic/4b2cb873-b969-4437-a040-682fd076074b.jpg" title="7.jpg" alt="7.jpg" width="500" height="283" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "Materials- and Bio-Science UHVEM(日本电子)/span/pp style="text-indent: 2em "此次地震致使产生高压的零部件脱落,对精密度有严格要求的电子加速器严重变形等,两台显微镜都遭受致命性打击。该中心主任保田英洋无奈地表示,已经完全不能使用,将与厂家等商谈进行修理,完全修复需要花费1年以上。/pp style="text-indent: 2em "strong3)南方科技大学2.8亿冷冻电镜二期采购:赛默飞中标其中2.6亿/strong【a href="https://www.instrument.com.cn/news/20181225/477695.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "strong详情/strongstrong/strong/span/a】/pp style="text-indent: 2em "2018年12月24日,南方科技大学 “冷冻电镜项目二期采购”项目中标结果揭晓,中标金额2.82亿元。中标的生产供应商中,赛默飞成最大赢家,其中4套高端冷冻电镜Krios G3i中标金额为2.18亿元。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/d3dcbe57-ba9c-4c12-ad5f-93a6bc7dc12a.jpg" title="8.jpg" alt="8.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-indent: 0em "Krios™ G3i 冷冻透射电子显微镜/span/pp style="text-indent: 2em "strong4)西湖大学冷冻电镜采购项目揭晓:赛默飞1.53亿元中标/strong【a href="https://www.instrument.com.cn/news/20181231/478034.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "详情/span/strong/a】/pp style="text-indent: 2em "2018年12月27日,西湖大学“科研仪器设备(第四十一批)”采购项目结果公布,赛默飞Krios G3i等冷冻电镜系统以2225.7255万美元(根据当前汇率,约合1.53亿元人民币)中标。/pp style="text-indent: 2em "strong5)上海交大冷冻电镜采购揭晓:赛默飞1.05亿元中标/strong【a href="https://www.instrument.com.cn/news/20181231/478035.shtml" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "strong详情/strongstrong/strong/span/a】/pp style="text-indent: 2em "2018年12月26日,“上海交通大学冷冻电镜系统”采购项目结果公布,赛默飞Krios G3i和Talos F200i分别以1094.8万美元(根据当前汇率,约合7527.3万元人民币)、438.5万美元(根据当前汇率,约合3014.9万元人民币)中标,总中标金额为1.05亿元。/pp style="text-indent: 2em "strong....../strongbr//p
  • 天津大学牵头建设世界最大地震工程模拟研究设施
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/3b43fd2d-1e29-415a-897c-2f97db925cbf.jpg" title="1.jpg"/ /pp style="text-align: justify " 近日,我国地震工程领域首个国家重大科技基础设施——大型地震工程模拟研究设施由国家发改委批复立项。该大科学装置建成后,将成为目前世界最大、功能最强的重大工程抗震模拟研究设施,这对于保障土木、水利、海洋、交通等重大工程的安全具有重要意义。有利于从减少地震灾害损失向减轻地震灾害风险转变,全面提升抵御自然灾害的综合防范能力。该设施由天津大学牵头在天津建设,总投资预计超过15亿元人民币,也是迄今为止在天津建设的首个国家重大科技基础设施。/pp style="text-align: justify " 大型地震工程模拟研究设施的建设可望对我国工程科技进步做出重要贡献,为确保重大工程安全发挥重要作用。伴随着人类科技进步和日益增长的社会需求,高层建筑、跨海大桥、大型水利水电工程、超长隧道、海底管线、海上风电、海上平台、大型核电等重大工程越来越多。这些重大工程的抗震安全对大型地震工程模拟研究设施提出了迫切需求。中国工程院院士、中国地震局工程力学研究所名誉所长谢礼立研究员指出,工程结构的失效和倒塌是造成地震中人员伤亡、财产损失和发展受阻的最重要的原因,搞清工程结构的抗震薄弱环节,提升其抵御地震破坏的能力是最根本措施。/pp/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/f9c1fea7-d5a8-4482-bf5e-f93e36ef6799.jpg" title="2.png"//pp style="text-align: center "大跨桥梁水下振动台台阵波流耦合试验现场效果图/pp style="text-align: justify " 地震模拟振动台是开展抗震模拟研究的有效试验平台。目前国内外已有的地震模拟振动台由于规模较小或实验功能单一(不能同时模拟地震与其它多种灾害荷载的作用),已经不能满足一旦地震时确保工程安全和正常服役的需要。天津大学牵头建设的大型地震工程模拟研究设施将建设尺寸和载重量更大的地震模拟振动台、能同时模拟地震与水下波流耦合作用的振动台台阵试验装置。该设施建成后,可大幅提升我国工程技术领域的创新能力和水平。/pp style="text-align: justify " 该装置将建设在崭新的天津大学北洋园校区内,总建筑面积7.7万平方米,建设周期为5年。据项目首席科学家、天津大学校长钟登华院士介绍,该设施建设内容主要包括三大系统:地震工程模拟试验系统、高性能计算与智能仿真系统、试验配套与共享系统;该系统的建设涉及众多领域和多学科交叉,如:水利工程、土木工程、船舶与海洋工程、力学、控制科学与工程、机械工程、精密仪器科学、计算机科学、材料科学与工程、防灾安全等多个学科领域。天津大学具有悠久的办学历史和深厚的学术底蕴,学科门类齐全,科研实力雄厚,拥有4个国家重点实验室,具有丰富的科研设施建设管理经验,可为大型地震工程模拟研究设施建设与运行管理提供有力保障。/pp/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/2974ac49-8534-4365-b78b-33cbd7da5860.jpg" title="3.png"//pp style="text-align: center "大型水坝-库水-岩体大型振动台试验效果图/pp style="text-align: justify " 大科学装置从一个侧面折射出一个国家的创新潜力。大型地震工程模拟研究设施是党的十八大以来,继贵州天眼(FAST)、广东散裂中子源、上海光源线站等之后的又一“国之重器”,建成后将对全世界开放,实行设施、数据、成果共享,可以吸引世界上更多的科学家和工程技术专家来这里共同工作,为科学技术发展做出贡献。/ppbr//p
  • 中国科大在微波精密测量、海洋地震勘探和大气数值模拟方面取得新进展!
    近日,中国科学技术大学研究团队在微波精密测量、海洋地震勘探和大气数值模拟方面取得多项科技研发成果。基于里德堡原子的微波测量实现精密探测!中国科大郭光灿院士团队史保森、丁冬生课题组利用人工智能的方法,聚焦量子模拟和量子精密测量科学研究,实现了基于里德堡原子多频率微波的精密探测,相关成果日前发表于《自然-通讯》。具有较大电偶极矩的里德堡原子作为微波测量体系具有广泛应用前景,但多频率微波在原子中会引起复杂干涉模式,从而严重干扰信号接收与识别,这是基于里德堡原子的微波测量领域的诸多难题之一。因此,该成果对原子分子光物理学领域的研究具有重大意义,且该成果提出的是在不求解主方程的情况下有效探测多频率微波电场的方案,且在硬件上没有太高要求即可实现较高精度,为精密测量领域与神经网络交叉结合提供了重要参考,在通信、雷达探测等领域具有重要应用前景。高精度深水油气地震勘探数据采集装备成功应用于我国海洋地震勘探数据采集,打破了国际技术封锁和价格垄断!中国科学技术大学核探测与核电子学国家重点实验室曹平副教授团队,把在先进加速器、对撞机等大科学装置研究和建设上积累的先进的电子学测量技术和方法,应用于海洋石油勘探的重大国民经济领域,并与中海油田服务股份有限公司联合研发了高精度深水油气地震勘探数据采集装备。油气勘探是整个石油工业的基础和先导,关系着国民经济的发展和国家的战略安全。然而我国油气勘探,尤其是海洋油气勘探,所用的几乎全是进口装备,进口装备贵且在重要技术上对我国进行了限制,严重阻碍了我国勘探技术的发展。研究团队攻克了超长距离一体化精密采集传输、大覆盖范围多缆全局精确同步、可扩展的海量数据实时读出、水下电缆高可靠作业支撑等一系列关键核心技术难题,这套装备具备高密度采集、宽覆盖超长缆作业和可靠的海上作业等特点,可分辨相差1600万倍的信号,总探测覆盖面积达十几平方公里,精密采集通道规模达数万道,与国际水平相比,该装备的同步技术指标要高20倍,传输能力高1倍,下潜深度也突破了国外的沉放深度限制。新研发填补了国内外大气数值模拟的空白!中国科学技术大学科研团队基于新一代国产神威超算平台,研发了包含大气成分演变过程的全球高分辨率非静力平衡大气数值模式iAMAS,在大规模数据读写速度、并行计算效率、规模可扩展性、运行时效性等多个方面填补了国内外大气数值模拟的空白。
  • 7900万!西南交通大学拟单一来源采购MTS可移动地震模拟振动台试验系统
    近日,中国政府采购网发布一则“教育部西南交通大学单一来源采购可移动地震模拟振动台试验系统征求意见公示”。根据公示内容,西南交通大学可移动地震模拟振动台试验系统采购项目采用单一来源方式采购,预算金额为7900万元(人民币),拟由供应商MTS Systems Corporation(地址:14000 Technology Drive Eden Prairie, MN 55344 USA)提供(或承担)。三位专业人员已针对该项目单一来源采购方式进行论证:
  • MTS 发布新模拟器——地下设施和管道的守护者
    p style="text-align: justify text-indent: 2em "全球知名高性能试验机和传感器供应商MTS系统公司于9月25日宣布,已开发出一种独特的土壤-结构相互作用模拟器,该模拟器可在地下基础设施的保护工作中发挥重要作用。/pp style="text-align: justify text-indent: 2em "这一全新的系统将首先亮相于于英国伯明翰大学的新国家地下基础设施(NBIF)中,用以研究土壤位移和地面移动对地下设施、管道以及地下结构的影响。沉降和变形常使土壤发生位移,形成地下空洞和不稳定断裂区域,由此而产生的压力对埋在地下的管道施加了巨大的作用力,造成地下管道失效、泄漏和破裂的潜在风险,如果破裂的管道是天然气管道或石油管道,那很有可能将对人类、野生动物和财产带来极其严重的危害。运用MTS的这一新模拟系统,伯明翰大学大学将能够更好地研究复杂的土体变形过程及其对地下结构的影响。/pp style="text-align: justify text-indent: 2em "这个巨大的模拟系统有一个5× 10米的可移动地板,可以埋在地下5米深的设计复杂的坑内。可移动地板的运动依靠50个MTS DuraGlide制动器提供动力,额外的地面制动器将可以控制土壤的运动,并在尺度模型和全尺度试验中模拟灰岩坑等地面位移。据悉,伯明翰大学计划在未来利用这一革命性的新系统来改进管道检测和评估的地球物理遥感技术。/pp style="text-align: justify text-indent: 2em "MTS总裁兼CEO Jeffrey Graves博士接受采访时表示:“基础设施老化是一个全球性的问题,用MTS这一新模拟系统来开发的土壤稳定解决方案将对保护看不见的地下基础设施大有裨益,让建筑物和整个人类赖以生存的环境更加安全。”他告诉记者,这一模拟系统是MTS在众多应用领域成功经验的高度结晶。融合了汽车设计和构造、地震研究、航空航天多通道控制等各个维度的先进技术手段。伯明翰大学土木工程系主任 Nigel Cassidy教授补充说:“MTS在液压试验机等领域积累了大量专业知识和经验,我们很高兴能与他们合作,共建这一创新性的新设施。”/p
  • 恭喜重庆地质仪器厂选用爱佩品牌模拟运输振动台
    恭喜重庆地质仪器厂选用爱佩品牌模拟运输振动台壹台,型号:AP-ZD-300,签定日期2015年12月03日,送货地址位于:重庆市沙坪坝区先锋街2号。业务负责人:李冬梅;电话:86-0769-81015055 手机:13316686114;全国服务热线:400-6727-800。重庆地质仪器厂是1969年为响应党中央关于加强三线建设的号召,由北京地质仪器厂、上海地质仪器厂与原重庆地校留守处的部分职工内迁组成的一个企业,工厂原属地矿部(国土资源部)现属为国机集团下的中国地质装备总公司领导,生产地球物理勘探仪器的专业生产企业,性质为全民所有制。重庆地质仪器厂主要从事地质勘探仪器的生产、开发、经营,兼营数字仪表、环保仪器、汽车电器及电子仪器产品和社会有关机械电子一体化产品。面向全国找矿、工程勘探、环境监测,地震预报,寻找地下水源等方面的产品和服务,属于高科技产品生产企业。2001年通过ISO9001质量体系认证,2010年7月获重庆市高新技术企业认定,重庆市沙坪坝区“企业研发中心认定。企业位于重庆市沙坪坝区先锋街2号,是重庆市园林式企业,工厂全厂占地面积18.3万平米,其中生产用地约4.5万平米。企业在2010年被评为重庆市精神文明单位。重庆地质仪器厂主要专业产品有六大系列:1、地震仪器系列产品:DZQ48/24/12等各种型号的地震仪器,高分辨率地震仪,数字深层地震仪等。主要用于:水、工、环的,地质基础调查及找矿。2、测井仪器系列主要产品有:综合数字测井系统、系统轻便工程测井,绞车控制器等各种测井产品、各种用途探管,测斜仪系列产品。主要用于:煤田数字测井,水文工程数字测井,固体金属矿测井,工程测井等。3、电法仪器系列:其中又分为直流电法和交流电法,二大系列产品。主要产品有DZD6—6A多功能直流电法仪,DUK-2A高密度电法测量系统,工程瞬变电磁测量系统等各种型号产品,用于寻找地下水及水、工、环地质勘察,矿产资源勘察等。4、放射性仪器系列有FD-803A,NP-4 γ射线能谱仪等多种系列产品,用于找矿及环境监测等。5、地震传感器系列主要产品有低频系列检波器,大振级检波器,井中三分量检波器和各种中高频检波器等。主要用于深部的地质勘探、人工地震监测、各种工程振动监测和道路、建筑等安评检测等。6、社会产品:汽车、摩托车电喇叭,以及承揽表面加工业务。爱佩品牌模拟运输振动台符合美国及欧洲运输标准及 EN、ANSI、UL、ASTM、ISTA国际运输标准。试品装夹采用导轨式,操作方便、安全、 数字仪表显示振动频率、 同步静噪皮带传动,噪声极低、机台底座采用重型槽钢配减振胶垫,安装方便,运行平稳,无需安装地脚螺丝。重庆地质仪器厂选用的模拟运输振动试验台更多优势特点参数价格请联系爱佩公司客服人员.
  • 惊叹!地震竟已可精确预测,用的竟是扫描电镜?
    地幔岩石中的晶体缺陷对地震活动至关重要,电子背散射衍射图可提供了下一次地震何时何地发生的线索。英国和美国的研究人员已经表明,来自地球表面深处的岩石晶体中的微观缺陷在大地震后地面如何缓慢移动和重置方面起着决定性的作用。来自洛斯阿拉莫斯国家实验室的 Ricardo Lebensohn 及其同事使用电子背散射衍射 (EBSD) 绘制了受到极端类似地幔的压力和温度的岩石晶体中的缺陷和周围应力的图谱。结果表明,地球表面在地震后沉降以及在重复事件之前储存应力的方式最终可以追溯到这些晶体缺陷。“晶体缺陷和应力非常小,我们只能用最新的显微镜技术观察它们,”Lebensohn 的同事,来自剑桥大学地球科学的 David Wallis 博士说。“但很明显,它们可以显著影响岩石移动的深度,甚至决定下一次地震发生的时间和地点。”通过了解这些晶体缺陷如何影响地球上地幔中的岩石,研究人员可以更好地解释地震后地面运动的测量结果,这些测量结果提供了压力在哪里积聚的信息,以及未来可能发生地震的位置。 缺陷和地震为了研究岩石晶体应力,Lebensohn 及其同事将橄榄石晶体(上地幔最常见的成分)置于一系列压力和温度下,以复制地球表面以下100公里的条件。研究人员使用配备牛津仪器 AZtec 采集软件和 NordlysNano 探测器的两台场发射扫描电镜对岩石晶体进行了研究,并使用高角分辨率 ESD 绘制了位错缺陷和晶内应力图。根据研究人员的说法,这些结果揭示了上地幔中的热岩石如何神秘地从地震后几乎像糖浆一样流动,随着时间的推移变得又厚又迟钝。粘度的这种变化将应力传递回上方地壳中寒冷而脆性的岩石——这种应力会累积到下一次地震。几何必要位错的密度和应力异质性 a 根据 HR-EBSD 测量的晶格旋转估计的几何必要位错密度b 通过减去每个晶粒内的平均值而归一化的 σ12 样品 MN1 和 San382t 是单晶,而所有其他样品都是聚集体“我们早就知道微尺度过程是控制地震的关键因素,但很难足够详细地观察这些微小的特征,”沃利斯说。 “多亏了最先进的显微镜,我们已经能够观察到炽热深岩的晶体框架,并追踪这些微小缺陷的真正重要性。”结果还表明,位错会产生应力,随着时间的推移,这些应力会在位错中累积,导致岩石变得更加粘稠。直到现在,人们一直认为这种粘度的增加是由于晶体相互竞争的推拉,而不是由晶体内的微观缺陷和相关的应力场引起的。研究人员希望将他们的工作应用于改进地震危险地图,这些地图通常用于南加州等构造活跃地区,以估计下一次地震发生的地点。目前的模型只考虑了断层带上更直接的变化,没有考虑在地球深处流动的岩石中的逐渐应力变化。Wallis 还计划与乌得勒支大学的同事合作,将他们新的实验室限制应用于 2004 年印度尼西亚发生危险地震和 2011 年日本地震后的地面运动模型。每一次都引发了海啸并导致数万人丧生。“如果你能了解这些深层岩石的流动速度有多快,以及在断层带不同区域之间传递应力需要多长时间,那么我们可能能够更好地预测下一次地震将在何时何地发生,”沃利斯说。文章源自 Nature Communications.(编译:符斌 北京中实国金国际实验室能力验证研究中心研究员)
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环境下实验得到的电池系统燃烧行为往往更加复杂,包含多个加速失重和喷射火焰的阶段。通过以上测试可以在实用层面评价大型电池组的安全性和失控风险,为安全性改良、预警、消防和灾害处置提供重要信息。3.2 灾害气体研究和预警方案设计电池实际使用和安全失效的过程中,气体的成分与生成规律是重要的研究课题,与电池热失控早期预警、爆炸、火灾蔓延等表现密切相关。从材料本质上看,电池中的有机电解液在高温下气化、活性组分高温副反应均会释放气体,加热条件下产生的混合气体可以通过气相色谱-质谱联用技术、傅里叶变换红外光谱等手段分析成分。目前这些气体检测技术已较为成熟,但在安全性研究过程中,气体的收集和定量仍需要特制的容器或取样器辅助实现。一般来说,电池热失效气体组分中除了惰性的CO2外还包括大量未完全反应的电解液溶剂、CO、H2和有机小分子,兼具可燃性和生物毒性,Ahmed等发现可燃气体的释放是加剧锂电池系统热失控扩散、诱发大规模火灾事故的重要原因。由于气体的扩散速度快,检测手段较成熟,气体监测有望成为电池系统安全预警的关键手段,Cui等利用同位素标记-质谱技术发现充电态电池在加热失控的早期负极的SEI分解会产生H2,促进电池的热失控。Jin等发展了一种通过小型MS监测H2实现模组过充热失控早期预警的手段,在8.8 kWh的磷酸铁锂-石墨电池包中进行了实验验证,发现可以在产生烟雾的10分钟之前发出安全预警。3.3 系统安全性模拟仿真相对于实验研究,模拟仿真消耗的实物资源少,在系统安全性研究中更具优势。系统热安全模拟一般建立在完备准确的电芯热失控数值模型的基础上,在由多个电芯单体构成的复杂电池系统中,每个单体内部温度均独立地遵循前文所述的电芯热失控模型,电芯之间交换热量通过热传导、对流和辐射形式进行,可以分别通过相应的公式进行描述,电芯热失控产热方程和传热方程共同构成了描述整个系统空间的温度场的数学模型。通过求解建立的数学模型,研究人员和工程师可以研究系统大小、空间布局、热管理模式等对电池系统稳定性、安全极限温度、热失控扩散表现等的影响。由于电池系统的结构往往较复杂,系统热安全模型往往需要在成熟的商业模拟仿真软件中进行,常用的软件平台有Comsol Multiphysics、ANSYS、Siemens Star-ccm+等。Feng等利用Comsol Multiphysics构建了由6个标准方形电芯组成的小型模组的热失控规律,研究了不同参数对热失控扩展的影响,提出了4 种抑制热失控扩展的方案,并对增加隔热层的方案进行了实验验证。Zhai等提出了18650锂离子电池模组热失控传播的多米诺预测模型,在Matlab中构建了较为简化的二维模型,预测模组中热失控传播的路径和概率,解释了模组中不同热失控初始位置对热失控传播行为的影响。目前学术界关于大型电池系统热安全性的研究仍然较少,作为一个工业界和学术界共同关心的问题,系统层级的安全性研究需要产学研的深入合作。4 下一代锂电池的安全性研究电池安全的预防、预警、预测依赖对从系统到电芯再到材料热失控构效关系的深刻理解。纵观近年来引起广泛关注的锂电池起火事件,大部分发生在新技术和新材料的初步应用阶段,如近几年多起采用高镍三元电池的电动汽车起火事件,而当大量事故引起广泛关注后,关于该电池体系的安全性研究才随之增多,电池安全研究于电池电化学性能研究的滞后性是电池安全研究中的一个鲜明特点。为了满足电动化浪潮带来的高安全、高能量密度要求,人们期望在锂离子电池中采用不可燃电解质或固态电解质,以彻底解决电池的安全性问题同时达到高能量密度。然而,电池安全性不仅与电池内部材料本身的热稳定性相关,还与材料之间的相互作用、电池内部的复杂环境息息相关。近期中国科学院物理研究所Chen等的工作显示,即使是采用了具有高热稳定性的固态电解质,在与金属锂接触的情况下,高温依然会发生热失控,且金属锂会受到温度的驱动,向固态电解质内部生长,进一步降低热失控的临界温度。清华大学Hou等报道了采用不可燃新型电解液的电池,由于锂盐和嵌锂态负极的剧烈反应,电池在高温下依然会发生热失控。这些结果说明,单维度提升锂电池安全性的设想往往是片面的,新体系的引入很有可能导致电池热失控反应链条的重构,从而使原本的安全预防预警措施不再生效,也很可能是新型锂电池体系容易出现安全事故的深层次原因之一。综上所述,为了在发展高能量密度电池的同时保证电池的安全性,研究者们需要在优化电芯电化学性能的同时,尽快同步地开展前瞻性电池安全性验证和研究。只有清晰全面地认识电池热失效机制和各个维度安全性的影响因素,才能在应用阶段做好电池的有效安全预防。图8给出了电池领域新材料和新技术从基础研究到规模量产的技术成熟周期。可以看出,一个新型技术的大规模应用需要投入巨额的人力物力,花费数十年的时间,才能真正实现量产。然而,电池的安全性验证却往往在电池接近量产的阶段才展开,且往往以通过电池安全测试标准为目的,无法系统深入地了解电池在全生命周期、实际复杂工况下的安全行为和内在机理,为日后的安全事故埋下隐患。对于早期的电池体系,由于能量密度不高,安全性问题并不突出,而最新的锂离子电池电芯能量密度已经可以达到300 Wh/kg以上,产学界广泛关注的锂电池新技术和新体系能量密度更高。这些具有高能量密度特性的新技术和新体系面临着更为严峻的安全性挑战,因此,将电池的安全性研究和验证步骤尽可能提前,在基本确定电芯结构后尽可能早地开展电池安全测试与机理研究工作,才有望在真实量产阶段前期就做好准备,摸清其安全性特征与行为,设计好对应的防护、预警措施。图8 电池领域新技术的成熟周期与高能量密度新体系的安全性研究目前,下一代化学储能电池的材料体系尚未有定论,可能用于新一代锂离子电池的新材料包括富锂材料、无锂高容量正极材料、硅基负极材料、锂金属负极材料、固态电解质等,如果考虑使用锂金属负极,锂电池概念的外延还可进一步扩展。然而从学术报道来看,与新材料热行为和新体系实用安全性相关的内容却鲜有报道,目前对绝大部分新型锂电池体系的安全性认知尚处于未知或初期阶段。本文所综述的研究方法既可以用于研究现有商业化锂离子电池的安全性,也可以从材料层级提前理解新型锂电池材料体系的热稳定性,并基于模拟仿真方法预测其电芯和系统的安全性,这对选定下一代锂电池的技术路线,保障高能量密度锂电池新技术平稳落地,具有重要指导意义。
  • 投资上亿元 上海将建国内最大地震实验台
    今年,上海将开建国内最大的地震实验台,整个实验室预计在2010年竣工。届时,桥梁等大型建筑的模型都可放置在实验台上,接受模拟地震波的检验。这是记者前天从第36期院士沙龙上获知的消息。同济大学土木工程防灾专家范立础院士透露,该实验室将落户嘉定,总投资为1亿元左右,它对本市和我国强震区建筑抗震能力的提高具有重要意义。  据介绍,地震试验台也叫地震模拟振动台,实验台的四周装有多个油泵,只要让油泵振动,台面就会晃动起来,让台上的建筑模型受到“地震”的考验。科研人员输入地震波数据后,油泵的振动会根据各个数据在不同方向,以各种频率振动,从而使“地震”与输入的地震波吻合。范立础院士告诉记者,同济大学现拥有地震实验台,但规模还不够大,此次开建的国内最大地震实验台是教育部 “985”二期平台项目,计划投资5000万元建设实验台,整个实验室的投资在1亿元左右。科研人员可以在台上放置跨度很大的桥梁模型,把两个按比例缩小的主桥墩和两个辅桥墩分别设置在4个振动台上,随后制造各种破坏程度的“地震”,检测这座桥的抗震能力。  专家表示,通过地震实验台的模拟地震,可以找出大型建筑的设计弱点,让设计师强化相应结构,为本市和国内的大型工程加一道“抗震险”。
  • 云南研制天文地动仪 望破解地震预测难题
    中国科学院云南天文台正在秘密研究“天文地动仪”,这种仪器有望破解千年地震难题——提前预测地震的到来……  多功能经纬仪原理  (1)本项目研制的多功能天文经纬仪,是一种用于观测恒星位置的望远镜,恒星离地球非常遥远,它们在天空中的位置固定不变。   处于地面某一位置的望远镜,在正常情况下,地球引力g是垂直向下的,望远镜中有个水银盘,水银面的垂直方向与引力平行指向天顶,望远镜在固定时刻观测到某一恒星在天顶位置A出现。   当地下地震孕育区M受到周围应力作用,导致物质密度反常,引力方向偏移到f方向,使望远镜中的水银面指向天顶的方向发生偏移,望远镜在固定时刻观测到某一恒星在天顶的位置偏移到B,我们就可以获得偏转角θ。     在一定区域内设置多个望远镜,在地下某一区域M的物质密度发生改变时,它会导致多个望远镜的水银面方向产生偏移,通过观测某一恒星在固定时刻的位置,可以测量引力的偏转角α和β,从而可算出密度异常区的位置。地震孕育区通常存在物质密度异常,引起地面的重力异常,该仪器能够探测产生一定程度重力异常的区域,为地震专家和政府决策提供重要信息。  (2)该仪器还能测定瞬时天文大气折射,建立多方位大气折射实测模型。由于以记录电磁波传播时间为基本数据的空间大地测量技术,包括卫星激光测距、全球定位系统GPS和甚长基线射电干涉测量VLBI,都受到大气折射延迟的影响,目前仅能用理论模型或经验模型作修正,导致测量距离的误差比较大。利用多功能天文经纬仪,建立天文大气折射实测模型,转换建立起大气折射延迟实测模型,它将能使距离的测量精度接近于理论精度水平。另外,研制的仪器在航天发射和国防上也有应用价值,用该仪器和相应的测量方法可以为卫星发射和导弹基地建立本地大气折射实测模型,提高卫星发射和导弹制导系统的时间、方向和定位精度。  去年以来,王建成就一直带着一个科研小组加班加点、夜以继日地投入到一项秘密研究课题中。  王建成是中国科学院云南天文台副台长。与此前的一些研究目的不同,这次虽然同样是“看天”,但最终却是为了“探地”。  当发现甘肃舟曲1000多人死于泥石流灾害的主要原因之一是汶川“512”地震震松了舟曲山体时,王建成心中又增添了些许沉重:“我们现在希望少受外界干扰,静心和高效地研制仪器,使仪器尽快应用和推广。”王建成所说的仪器,正是他们一年多来潜心研究、能通过寻找和监测地下物质密度的异常变化,为预测地震提供有效信息的“多功能经纬仪”。张衡发明的“地动仪”在1700年前神秘失踪,今天,云南天文专家正尝试利用一种叫做“多功能经纬仪”的仪器,用天文观测的方法对地震进行精确预报。  可以想见,这种“天文地动仪”一旦研制成功,将会是人类对抗自然灾害的历史上最大的一次“地震”!  现实  上天容易入地难  众所周知,地震预测是全世界公认的难题,预测地震的仪器都具有“不可入性”,由于地震专家不能直接观测地球内部,以致对地震的孕育过程和影响这一过程的种种因素缺乏观测数据。  市防震减灾局副局长靳树才介绍,一般而言,地震的震源都在地下十多公里以下,有的深达几百公里,依托现有的技术水平,要打钻下去,直接观测,基本不可能。现阶段,地震预测主要依靠电磁波、磁辐射、地下水化学分析、放射性元素、大地倾斜、重力变化等,通过综合分析各种数据来作预报。但这些数据与地震的关系都是间接的,同时受干扰因素较多。如对地下水的观察,不仅要了解地下水变化的原因,还要了解地下水所处的构造部位、水的补给源、正常动态、可能引起水位变化的降雨及工业用水、农田灌水、气候变化、季节变化、补给源变化等干扰因素,以至引起地震发生的变化量非常小,不具有独特性,很容易淹没在其它干扰因素中,要将它们有效甄别提取出来,难度很大。  有人说汶川地震前青蛙曾有异常行为。靳树才说,动物的异常行为和地震有关联,但没有直接的、必然的联系。青蛙行为异常完全有可能是由其他原因引起的。更何况,青蛙不会告诉你将会在哪里、什么时间、发生几级地震。  “我们需的是准确、科学的预报。”靳树才说。  启发  东汉“地动仪”带来灵感  1800多年前,在张衡所处的东汉时代,地震比较频繁。经过长年研究,张衡发明了一个测报地震的仪器,叫做“地动仪”。  据史书记载,地动仪是用青铜制造的,形状有点像一个酒坛,四围刻铸着八条龙,龙头向八个方向伸着。每条龙的嘴里含了一颗小铜球:龙头下面,蹲了一个铜制的蛤蟆,对准龙嘴张着嘴。哪个方向发生了地震,朝着那个方向的龙嘴就会自动张开来,把铜球吐出。铜球掉在蛤蟆的嘴里,发出响亮的声音,就给人发出地震的警报。  汉顺帝阳嘉三年十一月壬寅(公元134年12月13日),地动仪的一个龙机突然发动,吐出了铜球,掉进了那个蟾蜍的嘴里。当时在京师(洛阳)的人们却丝毫没有感觉到地震的迹象,于是有人开始议论纷纷,责怪地动仪不灵验。没过几天,陇西(今甘肃省天水地区)有人飞马来报,证实那里前几天确实发生了地震,于是人们开始对张衡的高超技术极为信服。陇西距洛阳有一千多里,地动仪标示无误,说明它的测震灵敏度是比较高的。  遗憾的是,凝聚中华民族智慧的地动仪没有保存下来,1700多年前,地动仪神秘消失。  “应该可以用天文观测的技术和仪器来提高地震预测的准确度。”祖先的智慧、先进的科技启发和驱动着云南天文学家投入到了看似不可能的“天文地动仪”研制中。  原理  精准把脉重力变化  据了解,虽然地震孕律具有很大的复杂性,但通过研究,世界各国专家普遍认为地震孕育区受多种应力的作用,积累大量能量,引起周围重力变化。监测到重力变化,就能发现地下能量的异常聚集,地震部门现在已经能用重力仪测出重力变化大小,但却测不出重力方向。  王建成介绍,“多功能经纬仪”这一项目是通过云南天文台独创的低纬子午环的观测原理和仪器误差测量方法,研制出一架达到高精度要求的小型、轻便、全自动的“多功能天文经纬仪”样机。这种“多功能经纬仪”本来是天文上用于精确观测恒星位置变化的望远镜,而恒星位置变化是重力变化的一面“镜子”,如果同时启动多台“多功能经纬仪”监测,就能测量出重力方向,由此寻找和监测到引起重力变化的源头,为地震专家预测地震提供可靠信息。  2009年1月24日和2010年2月4日,省委常委、市委书记仇和等领导在连续两次专程登门拜访中国科学院、中国工程院在昆的院士时,都对我国恒星物理研究专家、云南天文台黄润乾院士以及云南天文台副台长、项目组长王建成介绍的多功能经纬仪项目研究情况给予了高度评价和极大地支持。  王建成表示,项目已开始总体方案设计和研讨,今年10月底完成总体设计和论证,项目研究组正排除一切干扰,不舍昼夜、严谨高效地加紧研制,计划2011年底验收,力争早日投入应用和推广。他透露,明年底样机研制成功后,即可建立多台测量仪组成的监测网,布置到我省地震断裂带周围,寻找和监测地下物质密度的异常变化区域,通过监测地下物质密度的异常变化,为预测地震提供新的有效信息。  希望  能像预测台风一样预测地震  靳树才表示,感谢其他行业专家对地震预测的关注,为地震预报献计献策,身体力行地做研制工作。  他认为“多功能经纬仪”项目是符合科学规律的,但同时,他对引起地下重力变化的力量是否就足够使地表发生形变表示不确定。因为使地表发生形变的因素也很多,比如说重型货车经过时,在路边就能感到颠簸,这就是一种形变,重型货车对路面产生的压力都远远大于重力变化的力量。所以,这对地震观测条件提出了高要求,要尽量避开环境和人为干扰,而选择环境比较安静、工农业生产干扰小、无环境污染的地区。仪器具体安装位置要选择地质条件较好的岩石,而不是松软的土层,尽量减少干扰因素。  对未来能够准确预报地震,靳树才充满了信心,他说, 地震预测具有时代性。虽然很难,但随着人类科技进步,终有一天能解决。“退回200年前,台风的预测也只能凭经验,而现在什么时候登陆,在哪里登陆,都已在人类的严密监控下,因为我们有了卫星。”他说。  至于“多功能经纬仪”,靳树才也充满期待:“仪器究竟能发挥多大作用?现在尚不能确定。待仪器研制成功后,我们将成立专门研究小组,总结规律性东西,认真观测,积累经验,在实践中提出改进建议。”
  • 中国首个燃烧模拟环境实验室建成
    高仿真模拟火场高危环境的燃烧模拟环境实验室,近日在上海东华大学建成。东华大学5日披露,该实验室拥有一个模拟中国人体型构造、可在不同活动姿势下精准感知高温热流、精确预报身体皮肤烧伤程度的燃烧假人。这对研发热防护新型服装材料,科学合理设计热防护装备,有效遏制火灾、战场和热辐射等危险环境对人体造成的热伤害,具有重大科学价值。  前身为中国纺织大学的上海东华大学,一直致力于推动中国功能防护服装的创新和评价研究,东华“火人”是其服装生物假人家族30年来的最新成员,它的“兄长”“神五假人”、“神七假人”曾在模拟环境气候条件下试穿宇航服,为神舟系列载人航天工程中宇航员在舱内外安全行走提供了科学保障。  “火人”设计项目负责人、东华大学服装设计与工程系主任李俊介绍,燃烧假人系统依据中国成年男性的体型度身定制的,身体表面均匀分布135个高温传感器,各部位关节都可活动,能模拟人体的多种着装姿态。  据介绍,如何准确评价消防服、阻燃耐高温作业服等特种服装的防护性能,是个困扰业界的难题。普遍使用的面料燃烧实验,无法反映其对人体作用的实际效果,容易在使用中造成防护不足。有了“火人”,它就可以穿着成衣在“火海”中走一遭,其拥有的精密仪器可对人体的实际防护效果作出准确评估。  据悉,该实验室是中国内地第一个燃烧假人实验室,综合运用了生物传热分析技术、材料改性技术、人机工程制造技术、传感器技术、燃烧工程和自动控制技术等,达到了国际领先水平。
  • 中国科大量子模拟取得新进展
    中国科学技术大学潘建伟、苑震生等与清华大学翟荟、兰州大学么志远等合作,使用自主开发的超冷原子量子模拟器,研究了格点规范场理论中的非平衡态热化过程与量子临界性之间的关系,揭示了具备规范对称性的多体系统处于量子相变临界区域时易于热化到平衡态的规律。这项研究成果近日以“编辑推荐”的形式发表于《物理评论快报》。规范理论和统计力学是物理学的两大重要基础理论。从经典电动力学的麦克斯韦方程组到描述基本粒子相互作用的量子电动力学、标准模型等,都是满足特定群对称性的规范理论。统计力学,则是基于玻尔兹曼等提出的最大熵原理,将大量微观粒子(原子、分子等)组成的系综的微观状态与其宏观统计规律连接起来的学科,如微观粒子的能量分布是如何影响其压力、体积或者温度等宏观量的。那么,由规范理论描述的、远离平衡态的量子多体系统会热化到热力学平衡态吗?回答这一问题将推动人们对规范理论、统计力学及两者关系的理解。虽然理论物理学家们提出了各种模型来分析这一问题,但是在实验上难于构建一个既由规范理论描述、又可人工操控并观测其热化过程的物理体系。近年来,超冷原子量子模拟器的出现为同时研究规范理论和统计物理提供了理想的实验平台。2020年,中国科大的研究团队开发了71个格点的超冷原子光晶格量子模拟器,首次对U(1)格点规范理论--施温格模型的量子相变过程进行了实验模拟;2022年,他们对格点规范场理论中非平衡态过渡到平衡态的热化动力学进行了模拟,首次在实验上证实了规范对称性约束下量子多体热化导致的初态信息“丢失”。近期,此次工作的合作者翟荟和么志远等通过理论研究指出,在此类格点规范模型中,量子热化和量子相变之间存在关联,并从反铁磁Neel态出发,预言系统只有在量子相变点附近才能达到完全的热化 。进一步观测格点规范理论的量子热化和量子相变之间的关系,对之前的实验能力提出了新的挑战:如何在单格点精度原位地、可区分原子数地操控和探测多体量子态。潘建伟、苑震生团队在他们已有的超冷原子量子模拟器基础上,将量子气体显微镜、自旋依赖超晶格和可编程光学势阱等技术相结合,开发了单格点精度、粒子数可分辨的原子操作和检测技术。基于此,他们得以制备和探测任意原子构型的多原子量子态,并在满足规范对称性约束下,追踪多体量子态的动力学演化过程。在该工作中,他们在实验中制备了特殊原子构型的初态,利用绝热演化的方法研究了满足规范对称性约束的量子相变过程,通过有限尺寸标度理论首次在实验中精确地确定了相变点。同时,他们研究了同一构型初态在远离平衡条件时的退火动力学过程,揭示了具备规范对称性的多体系统处于量子相变临界点附近时易于热化到平衡态的规律。
  • 阿泰可发布阿泰可 四立柱轮胎耦合道路模拟环境舱(带阳光模拟)新品
    ATEC阿泰可四立柱轮胎耦合道路模拟环境舱(带阳光模拟)该套整车试验舱为四通道轮胎耦合道路模拟系统,主要由气候模拟试验室主体、升降温装置、新风换气系统、电气控制系统构成。该系统对用于乘用车结构耐久性、驾驶平顺性测试,以及早期模型评估、车身疲劳、异响BSR、噪声振动NVH、乘坐舒适性等测试。可实施整车高低温静态存放试验、如整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。车辆轮距及轴距调整范围大,且采用自动调节,方便快捷,提高设备运行效率盖板采用隔热材料,隔热效果更好,盖板移动采用自动装置,更加便捷 主要技术指标1 温度指标1. 温度范围:-40℃~+80℃;2. 温度均匀度:≤±2℃(空载);3. 温度偏差:≤±2℃(空载);4. 温度控制精度:≤±0.5℃(无热负荷,稳态)≤±2℃(有热负荷,稳态)5. 升温速度:≥1℃/min(全程平均,带车辆,无热负载,出风口测量);6. 降温速度:≥0.7℃/min(全程平均,带车辆,无热负载,出风口测量);7. 湿度范围:10 %R.H.~95%R.H.8. 阳光模拟:红外线光谱辐射灯9. 辐射强度:600~1200W/㎡(可调节)10. 辐射区域(长×宽)6000×2500mm11. 垂直移动距离:辐射灯下距离舱底表面2.5~4.2m可调依据标准GB/T 2423.1-2008 试验A:低温试验方法GB/T 2423.2-2008 试验B:高温试验方法GB/T 2423.3-2006 试验Ca:恒定湿热试验GB/T 2423.4-2008 试验Db:交变湿热试验方法1,2QC/T 413-2002、ISO 16750-4《道路车辆电气及电子设备的环境条件和试验》QC/T 413-2002中关于3.11产品耐温度/湿度循环变化性能的要求ISO 16750-4《道路车辆电气及电子设备的环境条件和试验 第4部分:气候负荷》中5.2温度梯度、5.3.1规定变化率的温度循环、5.6湿热循环、5.7稳态湿热对测试的要求GB /T 2423.24-1995太阳辐射试验IEC60068-2-1:2007 低温试验方法AbIEC60068-2-2:2007 高温试验方法BbIEC60068-2-30:2005 交变湿热试验方法DbIEC60068-2-78:2007 恒定湿热试验方法CabGJB 150.3A-2009 高温试验GJB 150.4A-2009 低温试验GJB 150.9A-2009 湿热试验的试验标准要求 创新点:该套整车试验舱为四通道轮胎耦合道路模拟系统,主要由气候模拟试验室主体、升降温装置、新风换气系统、电气控制系统构成。该系统对用于乘用车结构耐久性、驾驶平顺性测试,以及早期模型评估、车身疲劳、异响BSR、噪声振动NVH、乘坐舒适性等测试。可实施整车高低温静态存放试验、如整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。车辆轮距及轴距调整范围大,且采用自动调节,方便快捷,提高设备运行效率盖板采用隔热材料,隔热效果更好,盖板移动采用自动装置,更加便捷
  • Science | 超冷原子量子模拟研究取得重要进展
    中国科学技术大学潘建伟、苑震生等与德国海德堡大学、奥地利因斯布鲁克大学、意大利特伦托大学的研究人员合作,在超冷原子量子模拟研究中取得进展。科研人员使用超冷原子量子模拟器,对格点规范场理论中非平衡态过渡到平衡态的热化动力学进行了模拟,首次在实验上证实了规范对称性约束下量子多体热化导致的初态信息“丢失”,取得了利用量子模拟方法求解复杂物理问题的重要进展。相关研究成果发表在《科学》上。规范场理论是现代物理学的基础,如描述基本粒子相互作用的量子电动力学、标准模型等是满足特定群对称性的规范场理论,在粒子物理学、宇宙学以及凝聚态物理学等领域得到广泛应用。由于其求解复杂度高,规范场理论体系中仍有许多开放问题。其中,规范场理论描述的物理系统是否可以从远离平衡态经过演化达到热平衡备受关注。该问题的解决,有助于理解高能物理中重核碰撞的问题,也将为现代宇宙学中大爆炸早期物质的形成提供了物理解释。但是,使用经典计算机求解复杂的规范场理论是公认难题,量子模拟器为解决该问题提供了新路径。近年来,科学家尝试用离子阱、超冷原子气体、Rydberg原子阵列和超导量子比特等体系对格点规范场理论开展量子模拟研究。然而,由于格点规范理论中相互作用形式复杂,并要求物理系统始终处在局域规范对称性约束条件下,对格点规范场理论热化动力学的实验模拟造成了困难,因而还未在实验上实现。为解决量子模拟器中相干调控的粒子数太少和无法保证规范对称性约束的两个主要问题,中国科大科研人员开发了独特的自旋依赖超晶格、显微镜吸收成像、粒子数分辨探测等量子调控和测量技术,在超冷原子量子模拟器中提出并实现了光晶格中原子的深度制冷,解决了量子模拟器温度过高、缺陷过多的问题,实验制备了近百个原子级别的规模化量子模拟器【Science 369, 550 (2020)】;首次实现了利用大规模量子模拟器对格点规范场理论量子相变过程的实验模拟,验证了过程中的规范不变性【Nature 587, 392 (2020)】。在上述研究基础上,通过实验和理论结合,该团队将系统制备到远离平衡的初态,首次实验研究了规范对称性约束对量子多体系统热化动力学的影响,并观测到具有相同守恒量的不同初态热化到同一个平衡态的过程,验证了热化过程造成的量子多体系统初态信息的“丢失”,建立了规范场理论早期非平衡动力学与最终热平衡态之间的联系,在使用规模化的量子模拟器求解复杂物理问题的道路上取得了重要进展。未来,该团队将进一步使用量子模拟方法研究具有其他群对称性的、更高空间维度的规范场理论模型,以及真空衰变、动态拓扑量子相变等物理难题。《科学》杂志审稿人对此给予高度评价,认为该研究为超冷原子模拟格点规范场理论这一领域的发展做出了重要贡献,代表了量子模拟研究领域的前沿。研究工作得到科技部、国家自然科学基金委、中科院、教育部和安徽省等的支持。论文链接
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 中国科大在拓扑相变量子模拟上取得重要进展
    中国科学技术大学中科院微观磁共振重点实验室杜江峰、林毅恒等人与中科院量子信息重点实验室罗希望等合作,在拓扑相变量子模拟方面取得重要进展。通过发展高自旋离子阱体系的调控技术,实现了对三重简并拓扑单极子的量子模拟,观测到具有不同拓扑荷的单极子之间的相变,并展示了自旋张量在其中的重要作用。该研究结果于2022年12月14日以“Observation of Spin-Tensor Induced Topological Phase Transitions of Triply Degenerate Points with a Trapped Ion”为题,发表在《物理评论快报》上[Phys. Rev. Lett. 129, 250501 (2022)] 。   拓扑物态是当前物理研究的前沿和主流领域之一,为新材料、新器件的设计带来了新的思路,乃至对我们深入理解宇宙基本粒子的性质都具有重要的意义。2016年,诺贝尔物理学奖便授予了在拓扑物理学方面做出开创性贡献的三位科学家。拓扑源自于数学,指在局部的连续变化下保持不变的整体性质。比如面包圈和茶杯拓扑等价,这是由于他们都有一个穿透的洞,而洞的个数是一个拓扑性质,对应拓扑荷。科学家发现,拓扑在凝聚物质的一些物理特性上也起到关键作用,这些物理特性不依赖样品的细节,完全由系统状态的整体拓扑性质确定。而拓扑相变——具有不同拓扑性质的状态之间的转变——一定是不连续的跃变。例如在一些半金属材料中,能带简并点形成的类似单极子的拓扑结构可以具有不同的拓扑荷,探索他们之间的拓扑相变是目前的前沿研究方向之一。同时,简并点附近的准粒子激发表现出类似基本粒子的行为,探索其拓扑相变对于探索新型粒子也具有重要意义。   此项研究针对拓扑相变中的一类重要的费米子——三重简并费米子模型进行实验模拟。该模型对应自旋为1的拓扑单极子,在近期的研究中受到广泛关注。然而,在固体材料体系中,直接观测这种三重简并点的拓扑相变需要复杂的调控,目前难以实现。因此,高度可控的量子模拟器为研究拓扑现象提供了新的途径。这项研究中,通过使用在超高真空环境束缚的铍离子,结合微波、射频等的精准调控,构建多能级的量子体系,可以有效的观测自旋为1的拓扑单极子的行为。通过调控实验参数,研究人员清晰的观测到量子态的拓扑相变,并且提取出高阶自旋张量在其中的贡献(图1所示)。该工作发展出的高度可调控的多能级束缚离子系统,为研究高自旋物理提供了良好的平台,并为进一步研究新奇高阶拓扑简并态以及其他拓扑单极子现象铺平了道路。图1. 自旋为1的拓扑量子模拟实验结果。左图:实验观测到的拓扑相变行为,其中 β-2 对应拓扑荷为2, β-2 对应拓扑荷为0;不同颜色的数据代表拓扑相变中各种分量的贡献,其中黄色数据代表张量部分的贡献,实线为对应的理论预测结果。右图:实验观测张量椭球在拓扑相变点 β≈-2 附近的几何环绕行为。自旋张量椭球在参数空间中特定回路的演化,可以清晰的反应张量对拓扑荷的贡献。研究中使用的离子阱实验系统属于近几年迅速发展起来的高自旋量子模拟器。中科院微观磁共振重点实验室杜江峰院士、林毅恒教授带领团队从无到有搭建了实验平台,并成功发展了一系列新型的高自旋操控技术,包括使用动力学去耦将三能级状态相干时间提高一个数量级[Phys. Rev. A. 106, 022412 (2022)];通过解析模型辅助的形状脉冲,以实现四能级系统的两个近邻跃迁之间的快速普适调控[Phys. Rev. Applied. 18, 034047 (2022)]。上述工作为本文的研究奠定了核心实验基础。中科院量子信息重点实验室罗希望教授、美国德克萨斯大学达拉斯分校张传伟教授为本文的工作提供核心理论支持。   审稿人高度评价该工作,指出“...importantly, the spin-tensor-momentum-coupling could be generated for spin-1 systems and induce intriguing quantum phenomena different from spin-1/2 ones. This work is of interest and importance.”(“……重要的是,自旋-张量-动量的耦合可以通过自旋为1的系统生成,导致与自旋1/2不同的有趣的量子现象。这个工作是有意思的和重要的。”)   中科院微观磁共振重点实验室博士研究生张梦翔、李岳以及袁新星博士为该论文共同第一作者,杜江峰院士、林毅恒教授和罗希望教授为共同通讯作者。该研究得到国家自然科学基金、中科院、科技部、安徽省的资助。
  • 世界最先进大气环境模拟平台开工
    8月26日,“大气霾化学”基础科学中心启动会暨“大气环境模拟系统”开工仪式在山东大厦举行。“大气霾化学”基础科学中心、“大气霾化学”基础科学中心—清华大学分中心、“大气霾化学”基础科学中心—中国科学院化学研究所分中心同时揭牌,“大气环境模拟系统”同日正式开工。“大气霾化学”基础科学中心是目前我国环境领域唯一的基础科学中心,拟开展大气霾化学基础研究,聚焦环境化学领域的国际前沿,围绕细颗粒物和臭氧协同控制的迫切科技需求,建立霾化学理论。中心将通过大气科学、环境化学等相关领域高端创新资源的聚集,建设成为国际一流的科研平台,同时也将形成高水平人才技术交流和协同创新创业平台。“大气环境模拟系统”是目前世界上最先进、功能最全的大气环境模拟平台。系统将通过外场观测获得大气污染状况和气象参数,通过实验研究我国典型区域大气污染化学机制、健康影响和气候效应及其关键参数,结合大气化学模拟和地球数值模拟装置等宏观模型,为我国大气污染预测、诊断、控制决策及防治提供科技支撑。
  • 超导量子芯片模拟多种陈绝缘体研究取得进展
    量子霍尔效应是凝聚态物理学中的基本现象。科学家发展了拓扑能带理论来研究此类拓扑物态,发现了量子霍尔系统的能带结构和系统的边界态密切相关即存在体相与边缘的对应,并利用陈数(Chern number)来区分不同的拓扑结构,以陈绝缘体来描述相关拓扑物态。陈绝缘体材料可通过第一性原理计算预测以及实验合成并检测,过去几年出现了系列创新性成果,有望发展出具有实用价值的器件。随着量子系统调控技术的发展,研究利用各种人工可控量子系统来模拟陈绝缘体并揭示其性质。超导量子计算系统具有运行稳定、通用性强的优势,将是模拟陈绝缘体的理想平台。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心,与北京量子信息科学研究院、南开大学、华南理工大学、日本理化学研究所等合作,利用集成有30个量子比特的梯子型量子芯片,实现了具有不同陈数的多种陈绝缘体的模拟,并展示了理论预测的体边对应关系。该团队制备了高质量的具有30比特的量子芯片,在实验中精确控制其量子比特之间的耦合强度,并降低比特间串扰,(图1、2),实现了一维和梯子型比特间耦合的构型。 该团队设计模拟方案,将二维陈绝缘体格点模型的一个维度利用傅里叶变换映射为人工控制相位,从而用一维链状量子比特来实现其模拟(图3)。 基于同样的思想,双层二维陈绝缘体则可以利用两个一维链状平行耦合,形成梯子型比特间耦合的量子芯片实现,而人工维度相位控制还可实现双层陈绝缘体不同的耦合方式。这样便实现了不同陈数的陈绝缘体。该工作通过激发特定量子比特、测量不同本征态能量的方案,直接测量拓扑能带结构(图4)并观测系统拓扑边界态的边界局域的动力学特征,在超导量子模拟平台证实了拓扑能带理论中的体边对应关系(Bulk-edge correspondence)(图5)。此外,利用全部30个量子比特,在超导量子模拟平台上通过模拟双层结构陈绝缘体,实验上首次观察到具有零霍尔电导(零陈数)的特殊拓扑非平庸边缘态(图6)。此外,实验上探测到具有更高陈数的陈绝缘体。该研究通过精确控制超导量子比特系统及读出的技术方案,实现对量子多体系统拓扑物态性质的复现与观测,并表明30比特梯子型耦合超导量子芯片的精确可控性。相关研究成果以Simulating Chern insulators on a superconducting quantum processor为题,发表在《自然-通讯》【Nature Communications 14,5433 (2023)】上。研究工作得到国家自然科学基金委员会、科学技术部、北京市自然科学基金和中国科学院战略性先导科技专项等的支持。图1. 30比特梯子型量子芯片耦合强度信息。(a)15比特实验中测量到的量子比特间(最近邻和次近邻)的耦合强度信息。(b)30比特实验中测量到的量子比特间(最近邻、次近邻和对角近邻)的耦合强度信息。图2. Z串扰矩阵。Z串扰系数矩阵,每个元素代表着当给横轴比特施加1 arb.units幅度的 Z方波时,纵轴比特感受到的方波幅度,后续将根据该系数矩阵进行Z方波矫正。图3. 30比特梯子型量子芯片以及映射AAH模型的实验波形序列。(a)超导量子处理器示意图,其中30个量子比特构成了梯子型结构。(b)通过在y轴进行傅里叶变换,将二维霍夫施塔特(Hofstadter)模型映射为一系列一维不同配置的 Aubry-André-Harper (AAH) 模型的集合。(c)通过改变合成维度准动量Φ用以合成一系列AAH模型的量子比特频率排布,其中b=1/3。(d、e)用以测量动力学能谱(d)和单粒子量子行走(e)的波形序列。图4. 动力学光谱法测量具有合成维度的二维陈绝缘体的能谱。(a)对应于Q8的随时间演化的数据,其中b=1/3,Δ/2π=12MHz,Φ=2π/3。(b)利用15个量子比特响应函数得到的傅里叶变换振幅的平方。(c)沿着比特维度将傅里叶变换振幅的平方求和。(b)利用15个量子比特参数数值计算求解的二维陈绝缘体的能带结构,其中,b=1/3,Δ/2π=12MHz。(e、f)对于不同的Φ,实验(e)和数值模拟(f)得到的能谱对比。图5. 拓扑边界态的动力学特征以及拓扑电荷泵浦。(a1-3)分别激发Q1(a1)、Q8(a2)、Q15(a3)测量到的激发态概率的时间演化,其中,b=1/3,Δ/2π=12 MHz,Φ=2π/3。(b1-3)分别利用Q1(b1)、Q8(b2)、Q15(b3)作为目标比特测量得到的能谱部分信息。(c1-c3)激发中间比特Q8,测量得到的对应于向前泵浦(c1),不泵浦(c2)和向后泵浦(c3)的激发态概率演化,其中,Δ/2π=36MHz,初始Φ0= 5π/3。(d)根据图(c1-c3)计算得到的质心随着泵浦周期T的变化。图6. 利用全部30个量子比特模拟双层陈绝缘体。(a、b)实验测量的对应于相同Δ↑(↓)/2π=12 MHz(a)和相反 Δ↑/2π=-Δ↓/2π=12 MHz(b)周期性调制的两条AAH一维链的构成的双层陈绝缘体的能谱,黑色虚线为对应的理论预测值,其中,b=1/3。霍尔电导定义为对所有被占据能带的陈数Cn的求和:σ= ∑nCn ,其中定义e2/h=1。(c、d)选择Q1,↑和Q1,↓为目标比特测量到的对应于Δ↑(↓)/2π=12 MHz(c)和相反Δ↑/2π=-Δ↓/2π=12 MHz。(d)周期性调制系统的能谱的部分信息。(e-g)当激发边界比特(Q1,↑ 或 Q1,↓),测量到的对应于Δ↑(↓)/2π=0 MHz(e),Δ↑(↓)/2π=12 MHz(f)和 Δ↑/2π=-Δ↓/2π=12 MHz(g)的占据概率时间演化。
  • 我国首个渔业大模型“范蠡大模型1.0”发布
    6月15日,我国首个渔业大模型“范蠡大模型1.0”在中国农业大学发布,据悉,该模型可以实现渔业多模态数据采集、清洗、萃取和整合等,将为渔业养殖工人、管理经营者和政府决策部门提供全面、精准的智能化支持。“范蠡大模型1.0”发布现场(中国农业大学供图)渔业大国,面临转型的需求我国是水产养殖大国,数据显示,2023年,我国水产养殖产量达5812万吨,约占世界水产养殖总产量的60%以上,为城乡居民提供了1/3优质动物蛋白。但同时,我国不是养殖强国,水产养殖资源利用率、劳动生产率低,水产养殖产业发展面临多种转型需求。范蠡大模型设计者、发起者、国家数字渔业创新中心主任、中国农业大学信息与电气工程学院教授李道亮介绍,“我国水产养殖品种繁多,包括鱼、虾、蟹、贝、参、藻等,养殖模式多样,建立完整养殖品种的生产模型是极其困难的;同时,劳动力出现了普遍老龄化现象,有调查数据显示,我国水产养殖中,劳动力成本占70%左右,劳动者平均年龄达到55岁。新一代缺乏养殖经验,也不愿意从事传统的养殖生产,需要人工智能技术的支持。”范蠡大模型设计者、发起者、国家数字渔业创新中心主任、中国农业大学信息与电气工程学院教授李道亮(中国农业大学供图)随着现代技术的发展,水产养殖已经从1.0时代发展到4.0时代。李道亮介绍,“渔业1.0时代主要以小农生产为主,特征是依靠人力、手工工具、经验等养殖。2.0时代,水产养殖逐渐实现机械化、装备化,主要依靠机械动力和电力进行生产。3.0时代,自动化和计算机技术成为核心,生产装备出现数字化、网络化、自动化特征。到4.0时代,物联网、大数据、人工智能、机器人等技术普遍应用在生产中,无人化生产逐渐实现。”随着人工智能、机器人学习等技术的逐渐出现和成熟,越来越多的农业场景开始应用这些技术,但作为水产养殖大国,我国当前的水产养殖中,相关技术的应用还较为缺乏。渔业模型,从小到大的升级如何在水产养殖中应用现代技术,甚至打造未来的无人渔场?李道亮介绍,我国水产养殖品种繁多,养殖环境差异较大,而机理模型的构建,需考虑鱼类品种、饵料、病害、环境变化等一系列因素,面对众多的品种和养殖模式以及地区气候差异,逐个养殖品种建立像发达国家的养殖机理模型是不现实的。所谓大模型,是指具有大规模参数和复杂计算结构的机器学习模型,参数数量动辄数十亿甚至数千亿。在渔业中,大模型可以利用深度学习和数据驱动的方法,能够分析海量的养殖数据,揭示其中的规律和关联性。“它们不仅能够模拟和预测水质、饵料、疾病等因素对养殖效果的影响,还能够优化养殖方案,提高生产效率和经济效益。”李道亮说。智能池塘养鱼场景(中国农业大学供图)随着社会发展和水产养殖业转型,渔业大模型越来越成为产业发展的重要助力,为此,李道亮带领团队联合中国联通、中国电信、中国移动三家运营商、全国主要水产院校和科研机构,以鱼、虾、蟹、贝等27种我国主养品种水产文本语料为主,辅以文本、图像、视频、音频等多模态数据,形成大规模渔业专业知识语料库,通过深度学习架构,通过预训练和微调、参数共享与注意力机制、提示工程等技术,实现渔业多模态数据采集、清洗、萃取和整合等。“这一模型,不仅实现了丰富的渔业养殖知识生成,还包括水、饵、病、管等多方面多元化的预测、分析和决策。”李道亮说。范蠡为名,改变未来的渔业大模型构建成功后,命名为“范蠡大模型1.0”。李道亮介绍,范蠡是春秋末期越国大夫,众所周知的是,他是著名的政治家、军事家,也是商家鼻祖,但他同时也是我国最早的水产养殖专家,早在2500年前的春秋时期,他就写了一部《养鱼经》,并流传至今,“所以我们以范蠡为名,希望它能够在新时代中,为我国水产养殖带来的新的气象。”据介绍,范蠡大模型1.0分为请问我、请听我、请看我、请决策四个模块,分别代表文本、语音、视频、物联网决策四大场景,用户可以查询渔业的不同应用。而针对准确监测和评估鱼类的健康状况和体重异常耗时费力,且可能对鱼类造成伤害的问题,国家数字渔业创新中心开发了基于计算机视觉技术的鱼类体重估计模型,基于机器视觉实时捕捉水下鱼类图像和优化构建的深度神经网络算法,自动完成图像中鱼类目标的检测和定位,通过提取形状、颜色、纹理等多维度特征,以非接触方式实现对鱼类体重的实时、准确估算,同步完成生长及健康状态监测和计算,为投饵决策、水环境、能耗优化控制提供数据支撑。范蠡大模型利用了多种现代技术,以此实现水产养殖的数字化、无人化。图为鱼的种类识别模型(中国农业大学供图)“当前,范蠡大模型还是1.0,未来还会不断进化,人工智能在智慧渔业中的应用,是多元化且深远的、长期的,不可能一蹴而就。未来,范蠡大模型还有很长的路要走,必须充分发挥通信、科研、水产养殖企业、养殖户等各种不同领域的优势力量,以产学研用协同推进大模型的开发与应用,人工智能才能真正落地。”李道亮说。
  • 美国研发高精度气候模型精确预测气候状况
    GEOS-5气候模型所形成的模拟图片,模型精确地预测了主体云层系统的位置与形状     地球同步轨道环境卫星所拍摄的卫星图片  北京时间6月16日消息,据美国宇航局官网报道,美国宇航局地球系统科学家近期研制了迄今精度最高的地球气候模型GEOS-5气候模型,并通过该模型绘制了全球气候模拟图片。模拟图片与卫星图片对比显示,GEOS-5气候模型可以精确地预测气候状况。  科学是一个过程。科学家首先需要实地观测,然后提出假设用于解释观测数据,最后再通过系统验证和推理,找到支持或辩驳其假设的证据,从而得出一个科学的结论。许多人或许认为,科学家们在进行假设和验证的过程,所有工作都是在实验室中进行的。但是,对于研究地球如何运行的地球系统科学家来说,他们的实验室就是整个星球。面对庞大的星球,科学家们很难将全球各地不同的气温或云雨真正地集中到狭小的实验室中系统地研究。相反,他们只有将实地观测数据结合起来,形成复杂的电脑模型进行模拟研究。通过这类模型,科学家们可以对不同的假设进行测试和验证,并利用真实的观测数据进行检测,从而科学家们可以真正地理解地球大气、陆地和海洋等各个方面是如何协同工作的。  本文中的两幅图片分别为地球气候模型模拟图片(上图)和地球同步轨道环境卫星图片,上图显示的是分别通过两种方式所获得的同一时刻地球气候状况。该地球气候模型被称为“戈达德地球观测系统模型-第五版”(GEOS-5),也是迄今精度最高的地球气候模型。下图则是由美国宇航局和美国国家海洋和大气局的地球同步轨道环境卫星所拍摄的卫星图片。通过图片对比发现,GEOS-5模型精确地预测了2010年2月6日时的云层特点。当天,一股强烈的寒流为华盛顿特区带来了一场数英尺厚的暴雪。  2010年2月6日,GEOS-5模型和地球同步轨道环境卫星传感器分别对地球上空的云层进行了红外测量。两幅图片显示,陆地上空覆盖着厚厚的云层,模拟图片与卫星图片所描绘的情况极其吻合。模型精确地预测了主体云层系统的位置与形状,如北大西洋东部上空的卷曲云带以及美国海岸附近的强烈冬季风暴。高精度的GEOS-5气候模型甚至还可以详细预测云层形状的细节。在2月6日的模拟图片中,气候模型预测了一些小型云层的边线、云街现象以及冬季风暴的东部细节。在一幅全球模拟图片中,气候模型还精确地预测了热带地区的大量雷暴现象。  GEOS-5气候模型的精度通常为每像素5公里,尽管它的精度最高可达每像素3.5公里,因此它也是目前世界上最精确的全球气候模型。普通气候模型在模拟云层情况时,精度大约为每像素28公里。这就意味着,由普通气候模型所产生的全球平面地图包含了77.7万个网格单元(像素),而5公里精度的GEOS-5气候模型所产生的地图(上图)则包含了2400万个网格单元。因此,科学家可以根据GEOS-5气候模型获得关于地球的更详细的信息。  和所有的气候模型一样,GEOS-5气候模型也是利用数学方程式来计算气候变化情况。地球气候的一些物理属性,如温度和能量等,则需要实地测量。实时数据被输入模型,从而保证模型与真实世界尽可能一致。当然,在建造模型过程中,数百万次的计算则需要数千台计算机处理器。GEOS-5气候模型运行于美国宇航局戈达德太空飞行中心新成立的气候模拟中心的“发现”超级计算机之上。“发现”超级计算机拥有近1.5万个处理器。  气候科学家将利用GEOS-5气候模型预测未来数十年的气候变化情况。2010年6月2日,美国宇航局气候模拟中心以新名称开始运作。
  • 器官芯片模型在神经免疫系统研究中的新进展
    帕金森病(PD)和阿尔茨海默病(AD)是由基因、环境和家族因素相互作用引起的神经退行性疾病。值得注意的是免疫系统对疾病发展的影响,脑部驻留的小胶质细胞的功能障碍,会导致神经元的丧失和症状加剧。研究人员通过神经免疫系统模型来更深入地了解这些神经退行性疾病的生理和生物学方面以及它们的发展过程。不列颠哥伦比亚大学的Stephanie M. Willerth教授团队和英国诺丁汉特伦特大学的Yvonne Reinwald教授团队于2024 年 1 月 23 日在《Journal of Neuroinflammation》(影响因子:9.3)杂志上发表了题为“Modeling the neuroimmune system in Alzheimer’s and Parkinson’s diseases”的综述,介绍了神经免疫系统在三维模型和器官芯片系统方面取得的进展,以及模型在准确模拟复杂的体内环境方面的巨大潜力。 研究背景阿尔茨海默病(AD)是老年人中最常见的痴呆类型,与淀粉样斑块和磷酸化Tau蛋白的异常积累有关,虽具体原因尚不完全清楚,但与遗传和环境因素相关,诊断及早干预至关重要。帕金森病(PD)是一种神经系统疾病,主要表现为运动障碍,与聚集的α-突触核蛋白(α-syn)沉积物Lewy小体有关,相关基因变体也与其发病风险增加有关。尽管PD的确切原因尚不清楚,但其发病机制可能涉及多巴胺能神经元功能障碍以及氧化应激、线粒体功能受损、蛋白质代谢异常和神经炎症等多种因素。图1:阿尔茨海默病和帕金森病的病理生理学。 中枢神经系统(CNS)过度炎症的特征包括多种因素共同促进疾病进展,其中包括各种抗炎与促炎细胞因子的失调、CNS内小胶质细胞等免疫细胞的表型转化,以及外周细胞的巨噬细胞和淋巴细胞的招募,这些因素均导致突触丧失,成为随后认知功能障碍的最常见病理相关因素。图2:健康与病理神经免疫系统的比较:在健康的神经免疫系统中(1)小胶质细胞处于稳态和监视状态,(2)外周免疫细胞向中枢神经系统的浸润有限。在病理性神经免疫系统中:(3)小胶质细胞反应性增强,形态改变,(4)吞噬作用增加,(5)炎症标志物增加,(6)外周免疫细胞浸润增加。 研究进展1、目前阿尔茨海默病和帕金森病的治疗和临床试验针对AD,乙酰胆碱酯酶是一个常见的药物靶点,近期研究专注于开发单克隆抗体等药物以减少Aβ负荷,如lecanemab和aducanumab。此外,针对AD的临床试验正在进行中,旨在测试药物、设备和行为以改善患者认知和减缓疾病进展,而对于PD,则主要以药物和深部脑刺激为主要治疗手段,同时也在研究新的免疫调节治疗方法。 2、阿尔茨海默病、帕金森病和免疫系统的体外免疫系统模型癌症免疫系统的研究已经取得了许多成果,其中包括对3D模型的发展,这对于疾病建模和药物筛选至关重要,尤其是针对新的化疗药物和人工组织的开发。一种体外建模方案是使用细胞系,最常用的是SH-SY5Y人类神经母细胞瘤细胞系,模拟未成熟的儿茶酚胺能神经元,并可通过暴露于神经毒素或基因修饰来模拟AD或PD。然而,SH-SY5Y存在缺乏确立的培养维持程序、实验结果不一致和细胞生长的可变性等缺点,且不表现出成熟神经元的电生理和电化学特征。利用诱导多能干细胞(iPSC)创建基因准确的AD和PD模型,成为一个快速发展的研究领域,这些模型可以通过体细胞来源的iPSC诱导后,生成神经元与免疫细胞,用来构建AD和PD模型。图3:神经免疫系统的体内和体外模型的优缺点。 3、器官芯片模型在神经免疫系统研究中的新进展器官芯片平台的出现为建立体外模型提供了增强的设计和控制能力,能够模拟生物、生化、生理和机械现象,在活体器官系统中的发生。从血液-脑脊液屏障微流控模型到脑芯片模型,研究者们不断探索着复杂的生理学建模,为深入分析神经免疫相互作用提供了新的可能。这些模型不仅揭示了神经炎症在神经退行性疾病中的重要性,还为治疗干预提供了潜在途径,为了解AD和PD的潜在机制提供了宝贵的见解。同时,脑芯片模型被广泛应用于研究神经血管相互作用和神经退行性的不同方面。通过模拟神经-胶质-血管相互作用,研究人员发现了柴油排放颗粒等外源因素对AD类疾病病理特征的影响。这些研究不仅强调了神经免疫特异性行为的重要性,还突显了人类细胞模型在理解神经退行性疾病方面的关键作用。然而,尽管研究对细胞间相互作用和人类细胞模型的依赖日益增加,但对于AD和PD潜在机制的理解仍然相对有限。图4:芯片上器官的发展:示意图显示了开发和制造微流控芯片所需的步骤 先进的免疫细胞相互作用在AD和PD病理中至关重要,调节其功能可能为更有效的治疗提供希望;器官芯片模型具有模拟复杂细胞相互作用的优势,有助于深入了解AD和PD疾病机制并发现新的治疗策略。 文献索引:Balestri W, Sharma R, da Silva VA, Bobotis BC, Curle AJ, Kothakota V, Kalantarnia F, Hangad MV, Hoorfar M, Jones JL, Tremblay MÈ , El-Jawhari JJ, Willerth SM, Reinwald Y. Modeling the neuroimmune system in Alzheimer's and Parkinson's diseases. J Neuroinflammation. 2024 Jan 23 21(1):32. doi: 10.1186/s12974-024-03024-8. PMID: 38263227 PMCID: PMC10807115. 关于艾玮得生物作为一家专注于人体器官芯片及生命科学设备研发与生产的创新科技公司,艾玮得器官芯片应用全场景解决方案已能够全面覆盖新药研发评价、临床药敏检测、基础科学研究等应用领域,为科研、临床、药企等客户提供一站式解决方案。
  • 干细胞模型再现人类胚胎早期发育
    据英国《自然》杂志2日发表的一项研究,科学家用人多能干细胞建立了一个模型,可用来研究人类胚胎植入子宫的过程。人胚状体(blastoid)是模拟早期人类胚胎的结构,在研究中能准确再现人类胚胎早期发育的关键阶段,包括黏附在体外子宫细胞上。该模型或有助于推进我们对人类发育早期阶段的认识,以及开发不孕不育的治疗方法或避孕药。  在受精后的一周内,人类胚胎会形成名为胚泡的细胞团,胚泡会植入子宫壁。准确模拟这一发育阶段的模型能支持对胚胎植入和早期发育的研究。利用干细胞构建胚泡的类似物是一种很有前景的方法,但此前的尝试遇到了瓶颈,比如会形成与胚泡不匹配的细胞。  此次,奥地利科学院分子生物技术研究所研究人员尼古拉斯利弗隆及其同事,利用人多能干细胞构建了人胚泡样结构(胚状体)。研究团队鉴定出3个信号通路,抑制它们就能得到有效模拟正常胚泡发育(成功率70%)和能形成正确细胞(成功率97%)的胚状体。  研究报告称,这种人胚状体能在体外特异性地黏附受激素刺激的子宫内膜细胞,让团队能重现直到第13天的围植入期发育过程。  由于该模型效率高、可扩展潜力大。研究人员认为,这种方法能为人类胚胎植入和发育研究提供重要帮助。  干细胞可揭示器官的形成机理,但此前这方面的研究,一直难以帮助我们更深入理解发育胚胎。通常来说,科学家试图培养本身没有干细胞的类器官时,都会用到多能干细胞这种更基本的干细胞类型。科学家既可以从人体胚胎中获得多能干细胞,也可将皮肤细胞或血细胞进行重编程进而培养出干细胞,然后诱导它们模仿特定器官的形成。  不过,这些结构或者说微型器官,通常只复制了真实器官的某些结构和功能而非全部。
  • 应用案例I热带水产养殖中模拟和实测的水流与氧气
    在热带鱼养殖场中,尖吻鲈鱼受到越来越多人的欢迎。该鱼类能够在温水环境和含氧量相对较低的环境中存活,但当氧含量降至约3毫克/升以下时,它们的生长速度会减缓,如果氧含量迅速下降,有可能会导致鱼类死亡。本研究的目的是为了更好地了解对于养鱼场的日常操作和环境影响最重要的现场海洋条件。另一个方面是将来自预测模型的模拟水流与实测水流进行对比。围栏里面的氧气含量取决于水流循环和鱼类的本地氧气消耗,以及鱼类食物和排泄物(粪便颗粒)残留物对有机物质的降解。将两个安得拉海洋卫士II(Aanderaa SeaGuardII)多参数系统部署在围栏的外围和内部。在上游部署中,第一个系统放置在系泊中,向上并靠近底部。在下游的部署中,系统颠倒放置,靠近水面(图[1])。测量的参数是水柱中的水流(1米层)、波浪、氧气、盐度、温度和浊度。此外,在其中一个围栏内还安装了测量氧气、温度和盐度的链系统,测量深度分别为水面以下5米和9米。【1】在位置A、B和C安装和部署的安得拉海洋卫士II(Aanderaa SeaGuardII)DCP。A和B用于评估鱼笼对水流速度的影响。第二个系统放置在一个围栏里面, 位置C(红色),用于监测2个不同深度处的氧气盐度和温度。结果表明:在这一位置,水流由潮汐驱动以0至100cm/s的速度运动,在整个水柱的东南方向有一个相当均匀的主水体运移,在有鱼笼的情况下,围栏下游的位置B水流速度出现了很大程度的减缓。【2】位置A和B中预测水流速度(红色)和实际现场测量的水流速度(蓝色)之间的对比。在此位置,渔场运营团队从模型公众号中接收整个水柱的平均水流速度信息。为便于比较,对所有在1m测量单元处测量的水流速度进行了平均,并与模拟结果进行了对比(图[2])。渔场上游的模拟和实测速度对比结果较好,但是当水流速度较大时,模型低估了水流的速度。因为没有考虑到渔场,因此,下游的模型完全高估了下游的水流速度。在此位置,整个水柱在一个主方向上运移,建模相对容易。如果某个位置的水流在不同的深度朝着不同的方向流动,那么此位置的建模将会变得比较困难。在两个不同深度处对溶解氧(DO)进行了测量。在两周的部署期间中,溶解氧主要随潮在60%至100%的空气饱和度之间变化。与9米的深度相比,5米深度处的溶解氧含量有较低的趋势,这可能是由于鱼类喜欢在较浅的深度处聚集。8月12日测得的氧气含量最低,在水深5米和水深9米深度处测得的浓度分别为3.88毫克/升和5.64毫克/升。在同一时期,温度读数和盐度读数没有出现任何的异常[图[3]),这意味着溶解氧水平的下降可能是由于鱼笼内外溶解氧交换不良所致。这种较大的差异表明了连续监测相对于点测量的重要性。在这种研究,溶解氧没有下降到临界水平以下,但监测时间较短。【3】安得拉(Aanderaa)链系统在水面下5米深度处和9米深度处监测到的氧气、温度和盐度
  • 生成式AI与模拟工具:正掀起科学仪器研发变革
    在科技飞速发展的时代,仪器研发正经历深刻变革。传统研发过程耗费大量时间、人力和资源,而生成式AI和模拟工具的引入,正在改变这一局面。生成式AI通过学习大量设计数据,迅速生成多种创新设计选项,不仅节省设计时间,还能在早期发现潜在问题,减少后期修改。无论是外观设计、功能布局还是材料选择,生成式AI都以超高速度和精度完成任务。确定设计方案后,模拟工具可以快速将其转化为可行产品。研发人员在虚拟环境中测试设计的可行性,从物理特性到操作性能,再到耐用性和安全性,模拟工具可以在制造前完成所有验证,降低研发成本,加快产品上市速度。当生成式AI与模拟工具结合,研发效率大幅提升。生成式AI提供多样设计选择,模拟工具帮助筛选最优方案。两者协同工作,使从创意到产品的全过程更加流畅,缩短研发周期,提升创新频率。生成式AI和模拟工具的结合,正改变仪器研发的规则,为企业带来前所未有的竞争优势。未来,随着技术进步,仪器研发将更加智能化和自动化,推动行业迈向新高峰。  在创新型仪器的研发过程中,涉及多个关键阶段,如设计与优化、原型制造以及设计验证测试(DVT)。每个阶段都至关重要,帮助研发团队从概念到产品的完整开发流程得以实现。分析维度内容 设计思路 以用户需求和市场需求为导向,结合前沿技术,提出创新型设计理念。 概念设计 通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观、材料等初步设计方案。 详细设计 使用CAD软件(如SolidWorks、AutoCAD)进行详细的结构设计、组件选型和系统布局。 性能优化 通过仿真与模拟(如热力学、流体力学、结构力学分析)优化设计,提高仪器性能和可靠性。 可制造性优化 考虑生产过程中的制造成本、装配便捷性、可维护性,优化设计以提高生产效率并降低成本。  在设计与优化阶段,研发人员基于用户需求和市场需求,结合前沿技术,提出了创新型设计理念。首先,研发团队通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观和材料的初步设计方案。接着,他们使用CAD软件(如SolidWorks和AutoCAD)进行详细的结构设计,定义零部件的精确尺寸和位置,确保所有组件的装配和互操作性。通过有限元分析(FEA)进行结构强度与应力分析,确保设计的安全性与可靠性。此外,团队还使用仿真工具进行热管理与散热设计,模拟设备内部的热流和温度分布,优化散热结构,以确保设备在安全的温度范围内运行。分析维度内容 原型开发 基于详细设计图纸,制造功能样机,通常使用3D打印、CNC加工或快速原型制造技术。 材料选择 选择适合的材料(如塑料、金属、复合材料)以平衡成本、重量、耐用性和功能需求。 部件制造与装配 制造和装配各个部件,构建完整的原型仪器,测试各个组件的互操作性。 功能测试 对原型进行初步的功能测试,确保仪器的基本功能符合设计预期,如电气测试、机械测试等。  原型制造阶段开始时,研发团队基于详细的设计图纸制造功能样机,这通常采用3D打印、CNC加工或其他快速原型制造技术。在这一过程中,他们仔细选择适合的材料,以平衡成本、重量、耐用性和功能需求。随后,团队制造和装配各个部件,构建完整的原型仪器,并对其进行初步的功能测试,以确保仪器的基本功能符合设计预期,包括电气和机械测试。分析维度内容 测试规划 制定详细的测试计划,包括测试目的、测试标准、测试方法和测试工具的选择。 环境测试 在极端环境条件下(如温度、湿度、震动)测试仪器的稳定性和耐用性,验证其是否能在实际工作环境中可靠运行。 性能测试 测试仪器的关键性能指标(如精度、速度、灵敏度),确保其达到或超出设计要求。 安全测试 进行电气安全、机械安全、软件安全等方面的测试,确保仪器在操作中不会对用户和环境造成危害。 合规测试 确保仪器符合相关行业标准和法规(如ISO、CE、FDA等),获取必要的认证和许可。 测试结果分析 收集和分析测试数据,评估仪器的性能和质量,识别并解决设计中的潜在问题。 设计迭代与优化 根据DVT测试结果进行设计优化,修正问题,进行设计迭代,并在必要时制造新的原型进行重新测试。  设计验证测试(DVT)阶段是确保产品质量的关键。首先,团队制定详细的测试计划,明确测试目的、标准、方法和工具选择。在极端环境条件下(如温度、湿度、震动),对仪器进行环境测试,以验证其稳定性和耐用性。此外,团队还会进行性能测试,确保仪器的关键性能指标(如精度、速度、灵敏度)达到或超出设计要求。为了保证安全,团队还进行电气、机械和软件安全测试,确保仪器在操作中不会对用户和环境造成危害。最后,合规测试确保仪器符合相关行业标准和法规,获取必要的认证和许可。测试结果分析后,团队会根据DVT测试结果进行设计优化,修正问题,并在必要时制造新的原型进行重新测试。分析维度内容 定型设计 经过多次迭代和优化,最终确定设计方案,为批量生产做准备。 生产工艺确定 确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。 生产验证 通过试生产验证生产线的可靠性,确保产品质量满足量产要求。 市场反馈收集 初期产品投放市场后,收集用户反馈,进行必要的产品改进和升级。  在最终定型与量产准备阶段,经过多次迭代和优化后,研发团队最终确定设计方案,为批量生产做准备。这包括确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。在试生产阶段,团队验证生产线的可靠性,以确保产品质量满足量产要求。最后,在产品投放市场后,团队还会收集用户反馈,进行必要的产品改进和升级。设计步骤关键任务详细内容1. 结构设计 概念建模 创建初步的3D模型 根据设计需求,建立设备的初步3D模型,定义整体外观和结构。 详细结构设计 完成详细的几何建模 设计内部结构,包含零部件的精确尺寸和位置,确保所有组件的装配和互操作性。 强度分析 结构强度与应力分析 通过有限元分析(FEA)评估结构的应力分布,确保结构的安全性与可靠性。 热管理设计 热管理与散热设计 模拟设备内部的热流和散热情况,优化散热孔布局和冷却系统。2. 组件选型 电子元件选型 电子元器件选择 选择符合设计需求的电源模块、处理器、传感器、连接器等电子元件,并在设计中标注其位置。 机械部件选型 标准机械件选型 选择标准机械部件,如螺钉、螺母、轴承、齿轮等,并集成到设计中。 材料选型 材料选择与应用 根据力学、热学及其他性能要求,选择合适的材料(如铝合金、塑料、复合材料等)。 采购件选型 外购件选型 选择市场上可采购的标准件或外购件(如显示屏、接口模块等),并与制造商对接,确保供应链的可行性。3. 系统布局设计 内部布局设计 内部元件布局优化 根据功能需求和物理空间,优化内部元件的排列,确保结构紧凑、操作便捷及热管理合理。 电气系统布局 电路和布线设计 设计内部电路布局,包括信号线、供电线和地线的位置,确保电气系统的安全和高效运行。 接口与连接设计 接口模块与外部连接设计 设计设备的输入输出接口布局,包括电源接口、数据接口、冷却系统接口等,并确保连接方便、牢固。 人机交互布局 控制面板与用户界面设计 设计用户界面布局,如控制按钮、显示屏的位置,确保用户操作的便捷性和界面的直观性。4. 装配与制造准备 装配设计 装配顺序与工艺流程设计 确定各组件的装配顺序,优化装配流程,减少制造时间和成本,确保装配的可靠性。 制造工艺设计 制造工艺与加工方案 制定加工方案,选择合适的制造工艺(如CNC加工、3D打印),并在设计中考虑制造公差和装配间隙。 设计验证 仿真验证与优化 通过仿真工具验证整个系统的设计,包括结构强度、热管理、振动和冲击测试等,确保设计满足所有技术要求。5. 技术文档与图纸输出 工程图纸生成 工程图纸与BOM表输出 输出详细的2D工程图纸,包括各零部件的尺寸标注、装配关系图、材料清单(BOM)等,供生产和采购使用。 技术文档编制 制造与装配说明文档 编制详细的制造与装配说明文档,包括每个工艺步骤的描述、注意事项、质量控制要求等。 版本管理与修订 设计版本管理与修订 通过PDM系统管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。  为了实现这些步骤,研发团队使用多种软件工具支持设计过程。首先,在结构设计中,SolidWorks和AutoCAD被用于初步的3D建模和详细的几何建模,确保设备的整体外观和内部结构合理。随后,通过SolidWorks Simulation进行结构强度与应力分析,确保设计的安全性。此外,团队使用SolidWorks Flow Simulation进行热管理设计,模拟热流和散热情况,以优化散热系统。接下来,组件选型阶段涉及选择电子元件、机械部件和材料,这些选择影响到最终产品的性能和制造成本。团队还会利用AutoCAD Electrical进行电气系统布局设计,确保信号线、供电线和地线的布线合理且高效。在系统布局设计阶段,研发人员优化内部元件的排列,设计设备的接口模块与外部连接,并确保人机交互界面的设计便捷直观。最后,装配与制造准备阶段中,团队通过SolidWorks进行装配设计,确定组件的装配顺序和工艺流程,并通过仿真工具验证整个系统的设计,确保结构强度、热管理、振动和冲击测试结果达到所有技术要求。在工程图纸生成和技术文档编制方面,研发团队使用SolidWorks和AutoCAD输出详细的工程图纸和材料清单(BOM),并编制制造与装配说明文档,确保生产过程的顺利进行。  整个设计与研发过程不仅依赖于软件工具的支持,还通过多学科优化工具(如ModeFrontier)进行综合性能优化,结合热力学、流体力学和结构力学的仿真结果,确保每次设计迭代都能提升设备的整体性能和可靠性。通过这些详细的步骤和方法,创新型仪器的研发得以高效进行,并最终实现从概念到产品的完整转化。在这一复杂的研发过程中,每个阶段都扮演着至关重要的角色,从设计概念的初步构思到最终的产品定型和量产准备。每一个环节都要求精细的操作和严密的协同,以确保研发过程的顺利推进。在设计与优化阶段,概念建模是研发工作的开端。使用SolidWorks等CAD软件,团队根据设计需求建立初步的3D模型。这一步骤的目标是定义设备的整体外观和结构,以便在后续阶段进行更详细的设计工作。接着,详细结构设计进一步精细化设备内部结构,确保所有零部件的尺寸和位置精确无误,并且组件之间能够顺利装配和互操作。这些工作需要SolidWorks和AutoCAD等软件的支持,以保证设计的准确性和可行性。  在这个阶段,强度分析也是不可或缺的一部分。通过有限元分析(FEA),研发团队能够评估设计中可能存在的应力分布问题,确保设备的结构在各种工作条件下都能保持安全和稳定。与此同时,热管理设计通过SolidWorks Flow Simulation进行,研发人员模拟设备内部的热流和温度分布,优化散热系统,确保设备在运行过程中能够有效地控制温度。组件选型是研发中的另一关键步骤。团队需要根据设计需求选择适当的电子元件和机械部件,如电源模块、传感器、螺钉、轴承等。这些部件不仅影响到设备的性能,还对生产成本和制造难度产生重要影响。在材料选型过程中,团队必须权衡力学、热学等多方面性能要求,选择最适合的材料,如铝合金、塑料或复合材料。这一过程还涉及外购件的选择,团队需要确保这些外购件与整体设计的兼容性,并与供应商对接,确保供应链的顺畅运作。系统布局设计阶段,研发团队进一步优化设备内部的元件布局,确保结构紧凑、操作便捷,尤其是在涉及热管理的情况下,布局优化显得尤为重要。电气系统布局设计需要特别考虑信号线、供电线和地线的布线位置,以保证电气系统的安全和高效运行。接口与连接设计则专注于设备的输入输出接口布局,确保连接方便、牢固,并满足使用环境的需求。人机交互布局设计通过控制面板和用户界面的合理安排,提升设备的操作便捷性和用户体验。在装配与制造准备阶段,研发团队必须制定装配顺序和工艺流程,确保每个组件能够顺利装配,减少制造时间和成本。通过仿真工具验证整个系统的设计,确保设计满足所有技术要求,如结构强度、热管理、振动和冲击测试等。工程图纸生成是这一阶段的重要任务,团队需要输出详细的2D工程图纸,包括零部件的尺寸标注和装配关系图,这些图纸是生产和采购的基础。技术文档编制也是装配与制造准备阶段的核心工作之一。团队需要编制详细的制造与装配说明文档,描述每个工艺步骤的具体操作、注意事项和质量控制要求。通过版本管理与修订工具,如PDM系统(如SolidWorks PDM),团队可以管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。仿真与模拟类型关键任务详细内容热力学分析(SolidWorks Flow Simulation, ANSYS) 热源识别与建模 识别并建模关键热源 确定设备内部发热元件(如处理器、激光器)的热源位置,建立热源模型,分析热量产生与传递路径。 散热设计与优化 散热系统设计与仿真 设计散热方案,如散热片、风扇、液冷系统,模拟热流和温度分布,优化散热结构,确保设备运行温度在安全范围内。 热管理策略优化 热管理系统优化 通过仿真分析设备在不同工作条件下的温度变化,优化热管理策略,如主动冷却、被动散热等,提升设备的可靠性。流体力学分析(ANSYS Fluent, SolidWorks Flow Simulation) 空气流动分析 内部空气流动模拟与优化 模拟设备内部空气流动情况,评估空气流动对散热效果的影响,优化风道设计,确保空气流动的均匀性和效率。 冷却液流动分析 液冷系统流动分析 模拟液冷系统中冷却液的流动情况,分析冷却液在热源处的流动速度和散热效率,优化管路布局和泵的选择。 密封与防护设计 防水防尘设计与验证 模拟设备在湿度、粉尘等恶劣环境下的密封性能,确保设备能够防水防尘,避免外界环境对内部元件的损害。结构力学分析(ANSYS Mechanical, SolidWorks Simulation) 应力应变分析 结构强度与应力分布分析 通过有限元分析(FEA),模拟设备在外力作用下的应力和应变分布,优化结构设计,避免应力集中和结构失效。 振动与冲击分析 振动与冲击响应分析 模拟设备在运输和操作过程中的振动和冲击,优化支撑结构和缓冲材料,确保设备的抗振性和抗冲击性。 疲劳分析与寿命预测 结构疲劳寿命预测 通过疲劳分析,预测设备在长期使用中的疲劳寿命,优化关键部件的设计,延长设备使用寿命,减少故障率。综合优化与迭代(Multidisciplinary Optimization Tools (MDO)) 多学科优化 综合性能优化 结合热力学、流体力学和结构力学分析结果,通过多学科优化工具(MDO)进行综合性能优化,提升设备整体性能。 设计迭代与验证 基于仿真结果的设计迭代 根据仿真结果进行设计修改和迭代,重新验证修改后的设计性能,确保每次迭代都能够提升设备的可靠性和性能。  在整个研发过程中,仿真与模拟技术为设计优化提供了重要支持。例如,热力学分析通过识别和建模设备内部的关键热源,帮助团队优化散热设计。流体力学分析则用于模拟设备内部空气和冷却液的流动情况,确保散热系统的高效性和设备的密封性能。结构力学分析通过应力应变分析、振动与冲击分析、疲劳分析等手段,评估设备在不同条件下的结构强度和使用寿命,帮助研发团队在设计过程中避免潜在的结构失效。通过多学科优化工具(如ModeFrontier),团队能够将热力学、流体力学和结构力学的仿真结果综合起来,进行全方位的性能优化。这样的多学科优化不仅提高了设备的整体性能,还减少了设计迭代的次数,加快了研发进程。设计迭代是研发过程中的常规步骤。基于仿真和测试结果,团队不断调整设计,修正问题,并通过制造新的原型进行重新测试。这一过程确保了最终产品在各个方面都达到了设计要求和质量标准。最终,在经过多轮设计迭代和验证后,团队最终确定产品设计,进入量产准备阶段。这包括确定生产工艺、设备和流程,以保证产品在批量生产中的一致性和质量稳定性。在试生产阶段,团队会验证生产线的可靠性,确保产品质量符合量产标准。产品投入市场后,团队还会持续收集用户反馈,并根据需要进行产品改进和升级。  通过这些系统的步骤,创新型仪器的研发得以高效、精准地进行,从而实现从概念到产品的顺利转化。这一过程不仅推动了技术的进步,还为企业带来了显著的竞争优势,帮助其在快速变化的市场中保持领先地位。未来,随着技术的进一步发展,仪器研发将朝着更加智能化和自动化的方向发展,继续推动整个行业迈向新的高峰。  拓展阅读:  三代测序技术相关仪器工艺创新概述  2024站在巨人肩上的仪器研发(附资料)  2024年基于人工智能的仪器研发思路  2024年科学仪器供应链及核心零部件分析
  • 清华大学团队模拟日本核污水排海:240天到达我国沿海
    2023年8月22日,日本首相岸田文雄宣布,将从24日开始向海洋排放福岛第一核电站核污染水。东京电力公司已公布了向海洋排放的详细步骤。按计划,排放前在处理过的水中加入大量海水,如果确认浓度降低到预想的水平,将在17天内排放第一批共7800吨核污染水。2023年度预计排放约3.12万吨,氚总量为5兆贝克勒尔,约为东电年计划排放量上限(22兆贝克勒尔)的两成。今天上午,一则“有研究模拟日本核污水排海扩散过程:240天到达中国沿海,1200天后覆盖北太平洋”的消息,引发网友热议。据了解,该研究来自清华大学的团队。2021年,清华大学就污水排放做了核废水在太平洋扩散机理的实验。清华大学深圳国际研究生院海洋工程研究院张建民院士、胡振中副教授团队从宏观和微观两种不同的角度分别建立了海洋尺度下放射性物质的扩散模型,并实现了福岛核废水排放计划的长期模拟。氚的宏观扩散模拟结果宏观模拟结果表明,核废水在排放后240天就会到达我国沿岸海域,1200天后将到达北美沿岸并覆盖几乎整个北太平洋。随后,污染物一边在赤道洋流的作用下沿着美洲海岸向南太平洋快速扩散,另一边通过澳大利亚北部海域向印度洋转移。值得注意的是,尽管污染物的排放位置是在福岛附近,但随着时间的推移,污染物高浓度区域将沿着35°N线附近向东延伸,从开始的东亚附近海域扩散到北美附近海域。在第2400天时,中国东南沿岸海域主要呈现浓度较低的浅粉色,而北美西侧海域已经基本被浓度较高的红色覆盖。三个沿海城市及它们附近的污染物浓度变化研究人员进一步选取了日本宫崎、中国上海和美国圣迭戈这三个沿海城市进行对比,从污染物浓度变化曲线图中可以发现,在第4000天时圣迭戈附近的污染物浓度大约为0.01个单位,这一数值已经是宫崎的三倍左右、上海的40倍左右。出现这一现象的原因主要是日本附近强烈的洋流作用,福岛处于日本暖流(向北)和千岛寒流(向南)交汇的地方,所以大部分污染物不会沿着陆地边缘向南北方向迁移,而是随着北太平洋暖流向东扩散。这一结果也意味着,在核废水排放的早期,应主要考虑它对亚洲沿岸的影响。但在后期,由于北美沿岸海域的污染物浓度将持续高于大部分东亚沿岸海域,需要重点关注北美沿岸海域的受影响情况。氚的微观扩散模拟结果除宏观扩散外,研究人员还从微观角度进行了氚的扩散模拟。与宏观扩散分析注重污染物的整体分布不同,微观扩散分析更加关注污染物个体的行为,也因此它能够支持污染物的扩散路径分析。例如,对模拟结果中到达沿岸海域的某三个污染物微粒,以400天为取样间隔,得到它们的运动轨迹。基于这些运动轨迹,可以知道美洲沿岸海域的污染物主要通过横跨太平洋到达。部分污染微粒的运动轨迹值得注意的是,根据日本的排放计划,一单位氚污染物的浓度大约对应每立方米0.29贝可,相比于氚在海洋中的背景浓度来说不算大。然而,这项研究对于污染物长期扩散的预测、核废水排放计划的合理应对以及后续放射性物质浓度的监测仍具有重要意义。在该研究的基础上,还需要通过进一步试验来探究生态环境对于放射性物质的敏感性,确定放射性物质浓度增加对于海洋生态环境和人类生活环境的影响程度,从而最终判断排放核废水这一行为对于整个海洋和人类的影响。相关成果以《福岛核事故处理水的排放——宏观与微观模拟》(Discharge of treated Fukushima nuclear accident contaminated water: macroscopic and microscopic simulations)为题发表在《国家科学评论》(National Science Review)期刊上。
  • 胡伟教授团队在分子光谱的人工智能模拟方面取得研究进展
    齐鲁工业大学(山东省科学院)化学与制药学部胡伟教授团队,在分子光谱的人工智能模拟方面取得研究进展。研究成果以“A Deep Learning Model for Predicting Selected Organic Molecular Spectra”为题,在Nature子刊 《自然-计算科学》(Nature Computational Science)杂志上在线发表。论文第一单位为齐鲁工业大学(山东省科学院),化学与制药学部2019级本科生邹子涵为第一作者,化学与制药学部胡伟教授、光电科学与技术学部张玉瑾副教授、中国科学技术大学罗毅教授和江俊教授为本文的共同通讯作者。分子光谱作为“分子指纹”,被广泛地应用于物理、化学、生物、材料、医学、食品、环境、化工等领域。传统的分子光谱模拟采用量子化学方法,涉及昂贵的电子结构计算和复杂的光谱模拟,导致效率低下。针对该难题,胡伟教授团队结合E(3)-等变几何组、自注意机制,开发了一套深度学习模型:DetaNet,从而建立了更高效、更准确、更快速的分子性质和分子光谱的人工智能模拟方法。研究团队首先建立了包含 13万余种分子的红外、拉曼、紫外-可见吸收、核磁共振光谱数据库:QM9S 数据集;其次,通过传递高阶几何张量信息,使得DetaNet 能够预测各种分子的标量(能量、原子电荷等)、矢量(电偶极矩、原子力等)以及高阶张量(Hessian矩阵、电四极矩、极化率、电八极矩、第一超极化率等)性质。在此基础上,开发了通用模块用来预测四种重要的分子光谱,即红外光谱、拉曼光谱、紫外可见吸收光谱、核磁共振光谱。通过测试,研究团队发现DetaNet的计算效率比量子化学快3-5个数量级。本研究成果提供了原创的深度学习模型:DetaNet,在世界上首次提出直接预测分子张量性质的机器学习算法,开发了多种分子光谱的人工智能模拟算法,对分子高通量筛选、光谱辅助结构鉴定等重要的领域提供了坚实的理论基础和高效的软件工具。本课题受到国家自然科学基金、山东省泰山学者计划、济南市高校20条等项目支持。
  • IVIS视角 | 活体成像助力隐孢子虫感染可视化模型构建
    随着生活水平和医疗卫生状况的不断提升,寄生虫感染在我们日常生活中似乎已日渐陌生。但在一些欠发达地区,由于贫困和不良的卫生习惯造成的寄生虫感染仍然威胁着无数生命。隐孢子虫作为一种常见的人畜共患寄生虫感染性疾病,是导致腹泻病的主要原因。由于其经由粪便传播,所以常经由水体污染而在卫生条件较差的地区发生群体性感染。感染通常是自限性的,健康的成年人在发生第一阶段的较严重的腹泻之后便可恢复,但粪便仍可能具有传染性。新生儿或免疫力低下的如艾滋病患者或经免疫抑制治疗的病人在感染后病情较严重,是儿童早期死亡、营养不良和生长迟缓的重要原因,也是艾滋病人并发腹泻死亡的主要原因。现今发现的隐孢子虫共有15个亚种,分别感染人、家禽、宠物、牲畜以及一些野生动物。由于不了解其致病机制,目前的治疗方案往往是对症用药而非对因用药。由于不同物种间感染模式差异,在实验动物(主要为牛等家畜)上应对隐孢子虫感染的有效疫苗往往对预防人的感染收效甚微。针对以上问题,来自美国宾大兽医学院的研究人员发现了一种可用在小鼠模型中模拟与人患隐孢子虫病相似病症的隐孢子虫(Cryptosporidium tyzzeri), 同时利用IVIS小动物活体成像系统帮助他们在体研究隐孢子虫的感染以及宿主经寄生虫或疫苗免疫激活后的抗感染现象。该研究于近期发表在Cell子刊Cell Host & Microbe上。要在小鼠体内模拟人患隐孢子虫病的合理模型,首先就需要找到相应的隐孢子虫。作者在农场收集了大量小家鼠粪便,经由测序,鉴定出一株与感染人的两种隐孢子虫(C. parvum和C. hominis)最接近的一种鼠隐孢子虫(C. tyzzeri)。同时为了后续在体观察其感染模式以及宿主抗感染效果,作者通过CRISPR-Cas9技术将Luciferase基因和mCherry荧光蛋白导入到隐孢子虫的基因组中,构建了一株可以进行活体以及显微观察的隐孢子虫。图一C. tyzzeri的鉴定以及基因编辑 (上:隐孢子虫种间基因组相似性比较,AB为常见感染人的两种隐孢子虫,C为常见感染鼠的隐孢子虫)构建好的隐孢子虫就可以进行活体观察了,由于有活力的隐孢子虫可以表达Luciferase,在底物荧光素的作用下便可自发荧光,通过IVIS活体成像系统来实时监测体内隐孢子虫的繁殖情况。作者将这一光学观察方式与传统的粪便qPCR检测结果进行验证,二者具有很好的一致性。作者除了观察到这一新鉴定的隐孢子虫感染和人患隐孢子虫病的感染部位以及病理表征一致之外,还观察到了具有免疫缺陷的鼠(IFN-γ、Rag基因的敲除鼠 )也更易受到隐孢子虫的危害,这一点与临床上免疫缺陷病人的高发病致死率也刚好吻合。图二 C. tyzzeri感染模式观察有了这一能够很好模拟人隐孢子虫感染的实验动物模型之后,便可以利用这一模型进行隐孢子虫的治疗以及疫苗的开发。由于临床上隐孢子虫高发地区人们在感染痊愈后再度感染的概率大大降低,因此作者首先检验了虫体是否可以直接作为疫苗来进行感染的预防。利用未经Luciferase标记的C. tyzzeri进行第一次感染,同时实验组使用灭活的虫体作为疫苗进行第一次免疫,在感染后用广谱抗虫药巴龙霉素杀灭后用Luc标记C. tyzzeri进行二次感染,能够观察到接触活虫的小鼠几乎不会发生二次感染,而使用灭活虫体作为疫苗无法激活体内免疫系统进行后续的抗感染作用。图三 使用灭活的C. tyzzeri无法预防感染因此作者想到可以使用减毒的活虫对宿主进行第一次免疫。通过射线进行寄生虫减毒处理,可以降低其感染力至无害水平。在减毒活虫感染后30天,在使用Luc标记的C. tyzzeri进行感染,能够观察到该方法与野生型活虫二次感染模型有着相同的抗感染作用,说明减毒的疫苗是一种行之有效的预防隐孢子虫感染的方式。但是由于要调动自身免疫系统,这一方法在免疫缺陷的小鼠身上仍不奏效。图四 使用减毒疫苗可以有效对隐孢子虫进行预防虽然这篇文章也并未真正解决隐孢子虫的抗感染问题,但是构建出针对这一寄生虫病的实验小鼠模型已经为后续的科研工作者尝试更多治疗方案和预防措施提供了可操作可监控的实验工具。参考文献1. A Genetically Tractable, Natural Mouse Model of Cryptosporidiosis Offers Insights into Host Protective Immunity. Adam Sateriale et al., 2019, Cell Host & Microbe 26, 1–12https://doi.org/10.1016/j.chom.2019.05.00关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 浅谈国际模拟环境试验设备发展趋势
    p style="text-align: justify text-indent: 2em "span style="font-size: 16px "环境试验设备经历了由单一环境因素模拟向多环境因素模拟,从静态模拟到动态模拟,由简单控制到微机全自动控制的发展过程。目前的发展方向是“更快、更好、更省”,并呈现以下特点:/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(1)试件尺寸:从小尺寸向大尺寸、全尺寸方向发展,试样从材料向构件、整机发展;/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(2)提高环境因素模拟精度:如目前模拟太阳辐射的光源主要是氙灯,尽管氙灯的光谱与太阳光谱接近,但光谱上某些点段相差较大。实践表明这些差别对有些材料样品的试验结果有影响,国外一些厂家在积极寻找新的光源。另外对氙灯光强的控制正在由点段控制向全光谱段控制方向发展。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(3)自然环境试验从典型环境向严酷与极端环境发展,向自然环境加速试验发展,向实验室模拟自然环境加速试验发展,并开始应用计算机数字仿真技术。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(4)采用新的控制技术:大量采用计算机领域内的新技术,如显示触摸屏技术、span style="font-size: 16px font-family: " times="" new=""PLC/span技术、现场总线技术等。试验过程的检监测技术已向现场连续观察与检测方向发展,并对观察与检测结果实现远程传输。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(5)更接近于实际环境的综合箱:如振动试验箱已经发展成为三综合(温度、湿度、振动)、四综合(温度、湿度、低气压、振动)试验箱,并且出现了多维振动试验箱;腐蚀试验箱由单一腐蚀试验向循环腐蚀试验(腐蚀-湿热-干燥-腐蚀)箱方向发展。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(6)大型综合专用设备:为适应各行各业的需要,研发制作大型综合专用的环境试验设施,如美国陆军阿伯丁靶场的兵器环境试验设备能让车辆在行驶道路条件下,模拟低温、高温、湿热、低气压等多参数组合环境。该设备有span style="font-size: 16px font-family: " times new roman" "1000msup3/sup/span、span style="font-size: 16px font-family: " times new roman" "145msup3/sup/span和span style="font-size: 16px font-family: " times new roman" "45msup3/sup/span三个环境试验室,采用一套空气制冷系统和各自独立的电加热设备。在大型环模设备中首次成功采用了空气制冷。该设备最大试验室空间尺寸为span style="font-size: 16px font-family: " times new roman" "16m× 8m× 8m/span(长× 宽× 高),温度范围为常温span style="font-size: 16px font-family: " times new roman" "~50℃/span,相对湿度可到span style="font-size: 16px font-family: " times new roman" "85× (1± 0.05)%RH(≤40℃)/span,模拟的最大太阳辐射强度为span style="font-size: 16px font-family: " times new roman" "1kW/msup2/sup/span,模拟的最大风速为span style="font-size: 16px font-family: " times new roman" "35m/s/span。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(7)重视各种试验数据的管理和应用:发达国家以数据库、数据手册、标准规范等集成性成果作为其共享与保护的手段,同时为研究、设计和技术改进提供了科学依据,避免了设计的盲目性。美军在自然环境试验中,经过长期系统的环境试验数据积累,出版了腐蚀手册,开发了新的耐候材料和产品,并制定了大量的材料生产、产品设计、工程设计等一系列标准和规范。美国制定的各类环境试验方法标准,为世界各国普遍采用,其中不少已成为国际标准。如美国著名的《尤利格腐蚀手册》、《军工材料与构件环境适应性数据汇编》等集成性成果已在全世界推广应用,形成了一种独立的知识产权,实现了材料与产品环境试验数据面向全社会的共享与服务。日本也十分重视自然环境适应性数据共享与保护。他们大约有span style="font-size: 16px font-family: " times new roman" "40/span个大气环境试验站,并形成网络体系,通过对原始数据的分析处理,建立共享服务数据库,面向社会为国家重点工程、项目研究、材料生产与应用部门提供数据服务。英国共有各类大气暴露场span style="font-size: 16px font-family: " times new roman" "40/span个左右,仅钢铁研究协会就有span style="font-size: 16px font-family: " times new roman" "8/span个,其中最大的是卡林顿暴露场。对于各试验站产生的环境试验数据,他们通过环境数据采集自动化、测试数据数字化和数据汇交格式标准化,建立完善的国家试验站网计算机网络。以关键材料、通用零部件、核心元器件等基础产品为对象,系统积累它们在各类环境中的环境因素及环境适应性数据,研究其与这些环境相互作用、性能演变及失效机理。为环境严酷度评估、装备产品环境适应性评价、实验室加速试验方法研究、环境试验标准制定、数据共享等提供技术支撑和服务。如英国皇家化学会数据库span style="font-size: 16px font-family: " times new roman" "(RCS)/span等,都通过大型数据库实现数据资源的有偿使用,有力促进了数据资源的推广与应用。/span/pp style="text-align: center text-indent: 0em "span style="font-size: 16px "img style="max-width: 100% max-height: 100% width: 280px height: 250px " src="https://img1.17img.cn/17img/images/201908/uepic/07635131-5027-48ed-a1c9-48fd8d31b2ed.jpg" title="试验箱.jpg" alt="试验箱.jpg" width="280" height="250" border="0" vspace="0"//span/pp style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em " /spanspan style="text-indent: 2em "环境试验设备发展趋势/span/strong/pp style="text-align: justify text-indent: 2em "1. 提高加速性和相关性/pp style="text-align: justify text-indent: 2em "加速性和相关性本身是相互矛盾的,提高加速性一般会牺牲相关性。从试验技术的角度来看,提高加速性并不难,难就难在同时提高加速性和相关性。不管从客户要求或技术发展方面看,提高加速性和相关性是气候环境试验技术的重要发展方向。/pp style="text-align: justify text-indent: 2em "2. 开发多因素综合试验/pp style="text-align: justify text-indent: 2em "由于材料在自然环境中受到多种复杂因素的综合作用,因而要更真实地再现材料在自然环境中的腐蚀和老化,必须尽可能综合考虑多种自然环境因素。近几年,模拟海洋性气候环境的加速试验方法向多因素试验方向发展。多因素模拟加速试验方法分为多因素组合循环模拟加速试验方法和多因素模拟加速试验方法。多因素模拟加速试验方法由于考虑两个或两个以上主要环境因素的同时作用,能更真实地模拟多种环境因素的协同效应。/pp style="text-align: justify text-indent: 2em "3. 开发环境适应性仿真/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "1992/span年span style="font-family: " times new roman" "7/span月,美国国防部研究与工程署在《美国国防部核心技术计划》中,将“环境影响”列为112项核心技术之一,span style="font-family: " times new roman" "2005/span年的技术目标是对大气、海洋、地球和空间环境在自然和人工平台(如飞机、导弹、舰船等)两方面的影响进行研究、建模和仿真。在建模和仿真的研究方面,美国陆军在阿伯丁试验场、红石试验中心、达格威试验场和尤马试验场,开展自然环境和诱发环境对装备及其材料性能影响的虚拟试验场研究。在环境适应性规律分析和建立数学模型方面,我国学者创造了灰色理论,并在环境影响规律方面得到成功的应用;神经网络仿真模型理论被成功地应用于环境行为规律的建模和仿真。在积累大量可靠基础数据的基础上,实现对装备环境适应性进行仿真是装备环境工程的发展方向和目标。/ppbr//p
  • 2016年分子模拟学习体验日(免费)
    尊敬的老师和同学,您好! 近20年来,诺贝尔化学奖已两次授予计算化学学科(1998年度和2013年度),这充分说明了理论计算和模拟在科学研究中的重要性,不仅在化学和生命科学领域,科学计算和模拟结合高性能计算机,已经成为认识和解决所有复杂的科学和工程问题的重要方法。Discovery Studio(简称DS),作为面向生命科学领域的综合性分子模拟平台,通过高质量的图形界面、经多年验证的科学算法以及集成的环境,为科研工作者提供了易用高效的药物设计与大分子模拟技术和工具,从而得到了广大用户的认可与青睐。 2015年创腾科技有限公司在北京成功举办了Discovery Studio4.5体验日,共吸引超过120多位相关领域的科研工作者。为满足更广大客户的学习需求,我们计划于2016年在全国(暂定五大区:成都、沈阳、武汉、西安、南京)继续举办该学习体验活动,为更多科研人员提供一个免费交流学习Discovery Studio软件在药物设计和生物大分子模拟领域应用的机会与平台,帮助更多的科研人员了解Discovery Studio软件的应用并学以致用。 随着Discovery Studio2016版本的正式发布,本年度活动将以Discovery Studio2016软件为依托,介绍Discovery Studio2016新功能,并围绕经典的模拟技术手段进行介绍和案例分享,内容涵盖:基本界面和入门操作、分子对接、药效团模型、蛋白质理性设计等,从而帮助大家系统了解该模拟技术并应用于蛋白(核酸)-小分子相互作用机理解释、化合物的虚拟筛选、化合物构效关系的分析、反向找靶、抗体设计和酶设计等方面。活动具体信息如下: 一、活动城市和时间:二、活动日程安排: 详情见创腾科技网站活动页面(www.neotrident.com)三、参加对象: 对分子模拟感兴趣、希望了解分子模拟并将模拟技术应用于药物研发、蛋白结构功能研究、抗体研究或酶研究领域的高校或企业科研人员;对Discovery Studio软件感兴趣、希望了解Discovery Studio软件的高校或企业科研人员。 四、活动费用:免费活动(食宿交通等费用自理) 五、学习电脑: 学习体验日现场涉及上机操作,需自带电脑(具体会有后续通知)。请在活动开始前自行下载并安装DS软件。学员可根据自己手提电脑配置自行下载所对应的版本: Windows 32bit下载 链接: http://pan.baidu.com/s/1i4ho54x 密码: 4n4u Windows 64bit 下载 链接: http://pan.baidu.com/s/1qXtR8SG 密码: qh5m Linux 64bit下载 链接: http://pan.baidu.com/s/1qXiwsby 密码: bixs 六、报名方式:请填报名回执并发送到market@neotrident.com信箱,提交回执后3个工作日内会收到一封确认邮件,敬请留意!注:1)自通知发布后接受报名,以报名先后顺序安排座位,因场地名额限制,额满为止! 2)若临时取消报名,务必提前通知工作人员;活动当日请提早报到,若活动开前5分钟仍不到现场,为您预留的座位将由旁听席学员顶替。 报名邮箱:market@neotrident.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制