当前位置: 仪器信息网 > 行业主题 > >

霉酚酸酯降解产物

仪器信息网霉酚酸酯降解产物专题为您整合霉酚酸酯降解产物相关的最新文章,在霉酚酸酯降解产物专题,您不仅可以免费浏览霉酚酸酯降解产物的资讯, 同时您还可以浏览霉酚酸酯降解产物的相关资料、解决方案,参与社区霉酚酸酯降解产物话题讨论。

霉酚酸酯降解产物相关的资讯

  • 第二届含氟温室气体论坛 | 吴婧:氢氟碳化物(HFCs)网格化排放清单构建及降解产物研究
    “第二届含氟温室气体论坛——履行《基加利修正案》的科学与技术”在北京大学顺利召开。会上北京交通大学吴婧副教授作了题为“氢氟碳化物(HFCs)网格化排放清单构建及降解产物研究”的精彩报告。吴婧副教授在汇报中从基于物质流的网格化排放清单核算方法研究及模型构建、中国网格化排放清单建立及环境效应分析、降解产物三氟乙酸(TFA)大气监测及环境行为研究等三个方面作了详细报告。图1 吴婧副教授作报告吴婧副教授首先介绍了国家级、省级、网格化含氟温室气体排放清单核算方法以及多尺度高分辨率排放源空间分配模式的动态网格化排放清单模型。构建的排放清单方法学及清单结果已应用于国家温室气体清单编制相关工作。图2 动态网格化排放模型的总体架构图应用该模型,吴婧副教授课题组建立了中国8种HFCs 2005-2060 年长时间序列的动态网格化(1 度×1 度)排放清单并分析了其环境效应。同时,通过将NAME正向模型的模拟浓度与观测浓度进行比较,以验证了建立的网格排放量的准确性。根据清单和分析结果,行业、物质和空间的排放变化特征如下:(1)实物、GWP排放的关键物质均为HFC-134a、HFC-32、HFC-125。(2)制冷空调行业始终是HFCs排放的主要行业,消防行业排放也不容忽视。(3)整体空间规律表现为东部高于西部、南方高于北方的特征;热点网格主要集中在上海、广东和北京。在环境影响方面,中国HFCs温室气体排放对全球贡献逐年升高;减排HFCs会显著减少气候影响,但替代可能加速降解产物三氟乙酸(TFA)的累积。此外,吴婧副教授探讨了含氟温室气体降解产物三氟乙酸(TFA)大气污染特征、气粒分配机制及来源归趋。2021-2022研究期间TFA年均大气浓度为1081.5 ± 724.7 pg m-3 。年均颗粒相质量分数为10.8 ± 9.8% ,更易分配在气相。全年TFA沉降通量约为489.70 ± 64.26 μg m-2 yr-1 ,湿沉降占总沉降的74.6%。
  • 中国出入境检验检疫协会发布《茶叶中丁醚脲及其降解产物残留量的测定液相色谱-串联质谱法》等三项团体标准(征求意见稿)
    CIQA/TC12各成员单位及专家、各有关单位:根据《中国出入境检验检疫协会团体标准管理办法》及实施细则的规定,《茶叶中丁醚脲及其降解产物残留量的测定 液相色谱-串联质谱法》P/CIQA-142-2023、《鲜禽蛋中喹诺酮类和磺胺类药物残留量的测定 液相色谱-串联质谱法》P/CIQA 141-2023、《食用植物油中乙基麦芽酚的测定 液相色谱-串联质谱法》P/CIQA-140-2023等三项团体标准已由中国出入境检验检疫协会综合质量服务标准化技术委员会(CIQA/TC12)组织起草完毕,现进入征求意见阶段。请在30天内将意见和建议填写在《意见反馈表》中,于2024年7月12日前将书面意见以邮件形式反馈至CIQA/TC12秘书处。请务必留下您的姓名、单位名称及联系方式,便于联系。CIQA/TC12秘书处联系人:汪顿;010-84538815,15210031335邮箱:wangdun@ccic.com协会联系人:阳 焰;01062029721, 13901217549邮箱:yangyan@ciq.org.cn。附件:附件.zip1.《茶叶中丁醚脲及其降解产物残留量的测定 液相色谱-串联质谱法》团体标准征求意见稿2.《茶叶中丁醚脲及其降解产物残留量的测定 液相色谱-串联质谱法》(征求意见稿)编制说明3.《茶叶中丁醚脲及其降解产物残留量的测定 液相色谱-串联质谱法》反馈意见表4.《鲜禽蛋中喹诺酮类和磺胺类药物残留量的测定 液相色谱-串联质谱法》(征求意见稿)团体标准征求意见稿5.《鲜禽蛋中喹诺酮类和磺胺类药物残留量的测定 液相色谱-串联质谱法》(征求意见稿)编制说明6.《鲜禽蛋中喹诺酮类和磺胺类药物残留量的测定 液相色谱-串联质谱法》反馈意见表7.《食用植物油中乙基麦芽酚的测定 液相色谱-串联质谱法》团体标准征求意见稿8.《食用植物油中乙基麦芽酚的测定 液相色谱-串联质谱法》(征求意见稿)编制说明9.《食用植物油中乙基麦芽酚的测定 液相色谱–串联质谱法》反馈意见表中国出入境检验检疫协会2024年6月12日
  • 把一滴水做到极致:张新星团队揭示百草枯在小水滴中的自发超快降解
    夺命百草枯——好用的除草剂,危险的杀人药百草枯、敌草快等紫菁类农药由于其毒性高、无解药、难以降解(在水中半衰期23周,在土壤中半衰期6年)的特性,涉及到的自杀、误食、投毒事件数不胜数,近年来在媒体和社交网络上臭名昭著。从中毒机制来看,紫菁在人体内通过一系列电子传递反应生成大量具有高度氧化能力的活性氧物种,通过对人体脏器的快速氧化,导致服毒者在极大的痛苦中缓慢死亡。受害者遭遇惨痛,几乎无一幸免。有媒体将其形容为“给你后悔的时间,不给你活命的机会”(图1)。针对百草枯的极大危害,我国农业农村部已经停止了百草枯水剂在国内的销售和使用。然而,由于百草枯的除草效果极佳,很多不法商家将其经常冠以不同的商品名偷偷售卖,引发的案件造成了恶劣的社会影响。图1:左)曾经市面上常见的几种百草枯商品;右)2021年12月29日,央视网通报的又一起百草枯投毒案。鉴于此,近日,南开大学张新星研究员团队另辟蹊径,通过把紫菁化合物的水溶液喷雾成微米级大小的小水滴,并结合原位质谱检测手段,对紫菁降解产物进行了研究。实验中发现,在微液滴反应体系中,只需要几十微秒,就实现了紫菁降解的超快动力学,相关论文近期以“Spontaneous Reduction-Induced Degradation of Viologen Com-pounds in Water Microdroplets and its Inhibition by Host-Guest Complexation”为题发表在美国化学会会志JACS上。(论文链接:https://pubs.acs.org/doi/10.1021/jacs.1c12028)神奇的小水滴化学近几年来,以斯坦福大学的Richard Zare院士、普渡大学的Graham Cooks院士为代表的科学家,发现很多原本在液相中难以进行的化学反应,在通过载气喷雾或者超声雾化产生的微米级小液滴中(如图2中我们日常所用的加湿器产生的水雾)可以自发发生,甚至可以被加速到原本的一百万倍。而且液滴的尺寸越小,这些现象越明显。图2:家庭中常见的加湿器,产生的微液滴中可以是微小的反应容器。Zare认为,微液滴的表面自然带有高达109 V/m的电场(相比之下,在空气中生成闪电的击穿电压仅有106 V/m)。微液滴表面的电场是如此庞大,甚至可以撕裂水中的氢氧根(OH-),生成一个自由电子和一个羟基自由基(OH)。自由电子具有极高的还原性,而OH具有极高的氧化性,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了神奇的矛盾统一体(unity of opposites)。加州大学伯克利分校的Teresa Head-Gordon教授在近期发表的论文中,也从理论上为微液滴表面极高电场的存在提供了新的证据。张新星指出,本实验中紫菁化合物在微液滴中的自发降解现象,是通过微液滴表面自发生成的电子还原了正二价的紫菁化合物,生成了相对不稳定的紫菁正离子自由基,并以此为基础,通过Beta消除反应和霍夫曼消除反应进一步分解。而质谱为上述反应机理涉及的自由基和中间产物提供了有力的证据(图3)。图3:a) 微液滴喷雾装置的示意图;b) 乙基百草枯的降解产物的质谱解析图。把一滴水做到极致——小水滴化学的研究未来在记者的采访中,张新星表示,相比这项工作的应用价值——开发了一种新的十分简便的降解百草枯的方法,他更在意这项工作背后的科学意义。水对于很多化学体系来说都是极其稳定的、无污染的绿色溶剂,为什么体相的水被打散成小水滴之后就能促成原本无法发生的化学反应的进行?是由于微液滴表面的极高电场吗?那么微液滴表面自发生成的极高电场的物理来源是什么,是正负离子在微液滴表面自发生成的双电层吗?如果这是真的,这些离子都倾向于扩散到微液滴的表面的物理驱动是什么?微液滴表面极高电场解离氢氧根产生的电子是以自由电子还是以水合电子的形式存在?微液滴表面解离氢氧根同时产生了电子和羟基自由基,前者具有极高的还原性,而后者具有极高的氧化性,这对矛盾是如何共存的?几乎所有大气化学的模型研究都是在水的体相中进行的,而云彩和雾都是微液滴,那么此前所有体相中的大气化学研究是否需要重新审视?张新星表示,上述的问题,有的已经部分有了答案,有的还在探索之中。无论如何,这些问题的解答都必将推动分析化学和物理化学认知的进步。通讯作者简介张新星,复旦大学学士、美国约翰霍普金斯大学PhD,美国加州理工学院博士后,南开大学化学学院研究员,研究方向为分析化学、物理化学、科学仪器的智能制造等多学科综合交叉的科学技术问题,迄今已发表SCI论文75篇,含第一或通讯作者论文56篇。2017年入选国家第14批海外高层次人才引进计划,2021年入选了天津市杰出青年基金。2018年回国独立工作以来,以南开大学为通讯单位发表了论文32篇,其中包括PNAS 1篇,JACS 3篇,Angew. Chem. 7篇,Nat. Commun. 1篇,JPCL 2篇。在科研上,开发了多项国际上独特独有的新型(智能)装置用于多学科交叉的化学体系研究,并由此获得了2020年中国化学会第二届菁青化学新锐奖(本届全国共5名),2021年美国质谱学会ASMS新兴科学家称号(本届全球共11名,2015年该称号设立以来唯一中国大陆获得者),2021年中国物理学会质谱青年奖(全国唯一获奖人),以及2021年天津市科协优秀青年科技工作者等称号。原文信息:Spontaneous Reduction-Induced Degradation of Viologen Com-pounds in Water Microdroplets and its Inhibition by Host-Guest Complexation. 作者:宫矗、李丹阳、李熙来、张冬梅、邢栋、赵玲玲、苑旭、张新星* JACS
  • 我国学者在聚乙烯废塑料降解研究方面取得重大进展
    p   近日,中国科学院上海有机化学研究所的黄正课题组和加州大学尔湾分校管治斌课题组合作,在聚乙烯废塑料降解研究方面取得重大进展,相关成果于6月17日以“Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions”(温和条件下高效选择性降解聚乙烯制备液体燃料和石蜡)为题在Science Advances杂志上在线发表(Sci. Adv., 2016, 2, e1501591)。该研究工作得到优秀青年科学基金(21422209)和重点项目(21432011)等的支持。 /p p   烃类物质(烷烃、烯烃、芳烃等)是化石能源的重要组成体,也是重要的基础化工原料。为应对绿色、可持续发展的挑战,一方面需要从自然界丰富的烃类物质出发,发展高效、原子经济性的合成技术,直接制备高价值化学品,实现“分子价值的增量” 另一方面也需要发展温和、实用的催化降解技术,将废弃的高分子量、稳定的烃类化学化工产品转化成可再次利用的小分子物质,避免对环境造成污染,实现“污染物质的减量”。黄正课题组发展了高效的金属有机催化方法和技术,在这两方面取得了重要突破。 /p p   烷烃由高键能、非极性C-C单键和Csp sup 3 /sup -H键组成,是最惰性的有机分子之一,其在合成化学中的应用价值较低。黄正课题组一直致力于烷烃催化转化方面的研究。该课题组先前发展了一类新型的PSCOP螯钳型铱金属有机配合物,其在烷烃脱氢反应中表现出非常高的催化活性,但是在直链烷烃脱氢过程中,由于催化剂具有烯烃异构活性,在反应后期阶段不可避免地生成内烯烃混合物作为主要产物。为解决该问题,他们巧妙地利用双金属催化一锅两步法进行烷烃末端高区域选择性硅基化,实现烷烃至直链烷基硅的高效催化转化(图1a)。催化体系包括由该课题组发展的PSCOP螯钳型铱金属有机络合物作为烷烃脱氢催化剂,将烷烃脱氢生成内烯烃混合物,吡啶二亚胺铁络合物作为串联烯烃异构和端烯烃硅氢化催化剂。该转化的关键在于:烷烃脱氢所生成的烯烃中间体快速异构,并通过铁催化剂对端烯烃选择性硅氢化促使内烯烃向端烯烃转化。该工作为烷烃选择性官能团化提供了新思路,相关成果发表在Nature Chemistry上(Nat. Chem.,2016, 8, 157 Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation 利用铑-铁催化的脱氢-异构化-硅氢化串联反应实现烷烃到直链烷基硅的转化)。 /p p   聚乙烯和烷烃结构单元相似,均由C-C单键和Csp sup 3 /sup -H键组成。聚乙烯是年产量 大的塑料产品(年产超过上亿吨),由于其化学惰性,被弃置后难以降解构成“白色垃圾”主要成分。研究人员利用双金属催化交叉烷烃复分解策略,使用价廉量大的低碳烷烃作为反应试剂和溶剂,与聚乙烯发生重组反应,可有效降低聚乙烯的分子量。由于在反应体系中低碳烷烃过量存在,可多次参与和聚乙烯的重组反应,直至把分子量高至上百万的聚乙烯降解为适用于运输系统燃油的烷烃产品。该反应适用于 HDPE、 LDPE和 LLDPE的降解,且催化剂可以兼容商业级聚乙烯中包含的各类添加剂,并进一步被证明可应用于实际生活中所产生的聚乙烯废塑料瓶、废塑料膜和废塑料袋的降解(图1b)。相比较传统高温裂解方法,该方法具有反应条件相对温和,产物选择性高的优点。高温裂解方法往往需要超过400度反应温度,产生包括气、油、蜡、焦等非常复杂的混合物 产物包括直链烷烃、支链烷烃、烯烃、芳烃等,产品利用价值低。而且黄正等发展的降解方法温度较低(150-200度),生成的产物以直链烷烃为主,且可以通过催化剂结构调控或反应时间控制,选择性生成可作为柴油的C9-C22烷烃或者聚乙烯蜡。这项研究成果得到了Nature、Science、Chemical & amp Engineering News等学术杂志的正面评论,并被《洛杉矶时报》、《华盛顿邮报》和新华网等国内外新闻媒体报道。 /p p style=" TEXT-ALIGN: center" img title=" tpxw2016-06-27-01.jpg" src=" http://img1.17img.cn/17img/images/201606/insimg/0b7ccaeb-e75f-4906-95ec-5a09ef3bc04a.jpg" / /p p style=" TEXT-ALIGN: center" strong 图1. a) 烷烃选择性硅基化 b) 聚乙烯降解。 /strong /p p /p
  • 科学岛团队在单原子负载氮化碳高效降解抗生素研究方面取得新进展
    近期,中科院合肥研究院固体所环境材料与污染控制研究部孔令涛研究员团队提出了一种在氮化碳纳米片上锚定单原子的预组装策略,制备出系列单原子负载氮化碳类芬顿催化剂并用于水中四环素污染物的降解,将催化活性提升了1-2个数量级。相关研究成果发表在Separation and Purification Technology 上。   类芬顿是一种以自由基为主要活性物种的反应,H2O2和PMS(过硫酸盐)是两种常用的类芬顿氧化剂,由于两者产生的自由基的半衰期短,利用效率低,因此可通过缩短自由基向污染物分子的迁移距离提高催化效率。目前,单原子材料已被证明对氧化剂具有较好的活化作用。氮化碳是一种二维富氮材料,其具有纳米片结构、可调节的比表面和较高的稳定性,是一种很好的单原子催化剂支撑材料;同时,其丰富的氮元素可以为金属离子的嵌入提供理想位点,形成独特的配位结构和电子构型。因此,将金属原子固定在氮化碳纳米片上,可将自由基限制在污染物附近,从而有效提高类芬顿催化效率。   鉴于此,研究人员提出了一种具有广谱通用的热解配位聚合预组装策略,将单原子(如Cu、Fe、Co、Mn等)锚定在氮化碳纳米片上,并证明了它们在类芬顿催化中的通用性。作为概念性验证,研究选择单原子铜催化剂(SA-Cu-CN)作为四环素(TC)降解和机理阐述的模型材料。SA-Cu-CN的类芬顿催化活性相比于研究中使用的其他材料提高了1-2个数量级。EPR分析和淬灭实验表明该催化体系中?OH和SO4?-的生成对降解TC起着至关重要的作用。结合超高液相色谱-质谱分析与DFT理论计算,对TC的降解路径及产物毒性进行了分析鉴定,SA-Cu-CN类芬顿催化剂显示出对有机污染物的深度处理能力。此外,通过相同的制备方法合成了SA-Fe-CN、SA-Co-CN和SA-Mn-CN等系列单原子催化剂,均表现出较好的类芬顿催化活性。该研究对发展类芬顿催化剂及其在水处理领域的应用具有十分重要意义。   上述工作得到了国家重点研究开发计划、国家自然科学基金、安徽省自然科学基金及合肥研究院院长基金等项目的资助。图1. CN和SA-Cu-CN的形貌和结构表征。图2. SA-Cu-CN的类芬顿催化性能探究。图3. 四环素降解的路径分析以及其产物的鉴定和毒性评估。
  • 食品包装含氟化物 人体降解需四年
    新知客2月9日报道 应用了半个多世纪的全氟化合物,由于可能损害人体健康,即将要被终结。   2009年5月9日,联合国环境规划署重新审订《持久性有机污染物名录》,全氟辛烷酸及其盐类(PFOS)和胺类(PFOA)化合物被列入黑名单,成为继滴滴涕之后的又一位上榜者。曾经一度被隐瞒20多年、几年前还在欧美等国就其去留问题引发争吵的全氟辛烷酸,终于被终结了。   北极熊和新生儿之劫   2008年,科学家在格陵兰岛的北极熊肚子里,检测出一种只有在人类化学工业里才使用的致癌物质:全氟辛酸胺(PFOA)。   科学家很快将这消息和之前进行的调查结果联系起来。2007年,约翰霍普金斯医学中心对在该院出生的300名婴儿的血液进行了抽样调查,发现100%的血液样本中含有PFOA,99%含有PFOS。PFOS和PFOA几乎普遍存在于母体子宫中。   这种人工合成的化学物质,在1997至2002这30年间,总产量在10万吨左右,主要用于生产杀虫剂、防护剂以及材料的表面改性。   无论PFOS还是PFOA都属于含氟化合物的一种。但和众所周知的氟利昂不同,这类化合物中的氢被氟全部代替,在碳链的末端形成一层致密的“氟壳”,不仅普通的酸碱对它根本不起任何作用,油、水和高温均奈何不了它,化学性能极其稳定。   但这同样也导致它很难降解。“PFOA在雌鼠体内的降解速度是几个小时,在雄鼠体内几天,在猴子体内是几个月,而在人体内则几乎是4年。”美国环保署污染预防和有毒品办公室的Jennifer Steed指出。动物和人身上表现出毒理实验的差异令科学家困惑。   “我们确实不清楚是什么样的生物学作用造成了这些差异。”美国环保署国家健康和环境影响实验室的首席生物学家Lau说。   更困难的是确定这些化合物的来源。因为这些化合物通常不作为商品出售,它们只是降解产物或制造其他商业化学品过程中的加工助剂,难以追踪。   这种只有化工里使用的成分,究竟是怎样进入人体,并最终漂洋过海袭击北极熊的?   氟从口入?   霍普金斯大学的研究指出,PFOS和PFOA应该是从消费产品渗透并污染整个生态环境,它们普遍存在于家庭用品中。PFOS常用于纺织品、皮革的防污防水涂层,而PFOA则广泛用于各种家具、金属、防火泡沫、包装材料的表面。   最著名的全氟化合物当属杜邦的“特氟龙”系列,这是杜邦公司对其研发的各种碳氢树脂的总称。其中最广泛的是聚四氟乙烯,它被称作“塑料之王”,作为一种最常用的表面涂料,在工业生产和日常生活中几乎无所不在。它由杜邦公司化学师Roy Plunkett在1938年偶然发明,并投入商业化生产。   然而近半个世纪后,这款曾经造福于人类的化工产品却遭到美国环境署的投诉。2006年,该署对杜邦公司提出抗议,称特氟龙的生产过程中添加了PFOA作为助剂,并被广泛用于全世界使用特氟龙涂料的不粘锅上,抗议还称,杜邦公司早在20多年前就已知道PFOA对人有害,却将这一秘密守口如瓶。   全球第一款采用杜邦特富龙不粘涂料的炊具诞生于1962年。除了不粘锅,很多快餐店也在铝质蛋盘上使用这种不粘涂料来降低成本,使得重复涂覆频率大大降低。玉米片制造商则用它涂在切马铃薯的刀面上,降低残渣的集积,使停工时间缩短。   继不粘锅之后,越来越多的线索将焦点指向了食物。科学家发现,一个重要入口就是食品包装。不仅美国人最喜欢的爆米花和比萨的防油包装纸上使用了聚四氟乙烯涂层,而且面包、奶酪以及方糖,从生产过程中的模具,到专卖店里的托盘,到家庭用的包装袋,几乎都离不开这种涂料。   全球狙击   杜邦事件并非孤例。早在2000年,美国3M公司就宣布全球召回PFOS。它曾是该公司著名的斯科奇加德防油防水剂的主要组分。3M的研究人员 .现,PFOS不仅会造成工作人员中毒,还会向环境释放。2 0 0 3年,3M宣布停止生产PFOS。   尽管对其危害性评估和每一个中间环节的整体论证仍需时日,一些国家已经坐不住了。   继美、加、英、挪等国之后,2006年12月27日,欧盟理事会发布限令,禁止PFOS在欧洲范围内生产、销售和使用,并出台了严格剂量标准和检测方法。   杜邦坚称,聚四氟乙烯本身是对人体无毒的,而作为生产助剂的PFOA即使对人体有毒,含量也很微小。在经过380度高温的烧结时,“不到两秒钟就消失了”。   真的如此吗?就算成品完全不含PFOA,在高温下特氟龙仍有可能会分解,释放出PFOA。为此,美国环境署特别对特富龙在高温焚化时大气环境中PFOS和PFOA的含量展开了测试。但目前的实验研究显示,特富龙涂料只会长链降解形成短链聚合物,而不会分解成PFOA或PFOS。   “理论上说很难完全清除”。中科院上海有机化学所的氟化学专家陈庆云院士说。他表示,国内这方面的研究还开展得很少。   据了解,环保部国际合作司正委托中国印染行业协会进行行业调查,至于相关研究,主要还停留在对检测方法的摸索上。这在很大程度上来自于履行国际公约的承诺,及欧盟限令对中国出口贸易的影响。卫生部门则尚未将其纳入近期工作计划。
  • 傅里叶变换离子回旋共振质谱仪揭示高硫原油的生物降解机理
    p & nbsp & nbsp 全球已探明的油藏中很大一部分是含硫原油,有不少高硫原油经历了生物降解。此外,全球供给的原油含硫量呈逐年上升趋势,高硫原油泄露引发的环境问题也相当突出,微生物修复技术已被成功地应用于漏油事件的处理中。已有研究表明,无论是在有氧还是在厌氧条件下,微生物都可以将一些结构简单的模型有机硫化物(二苯并噻吩等)作为碳源和/或硫源,但对原油中结构复杂的有机硫化物的降解机理的研究仍不够深入。这是因为原油中的大多数有机硫化物不仅分子结构和组成都非常复杂,极性弱且不稳定难以离子化,其降解产物的浓度也非常低,因此很难对有机硫化物的降解机理进行深入的研究。近期,中国科学院广州地球化学研究所研究员廖玉宏课题组通过原油好氧生物降解模拟实验的方法,结合中国石油大学(北京)教授史权课题组研发的加入HCOONH4的方法来增强弱极性的硫化物的电离效率,采用广州地化所最新引进的傅里叶变换离子回旋共振质谱仪(FT-ICR MS,型号为SolariX XR 9.4T),研究了高硫原油的有氧生物降解过程。型号为SolariX XR 9.4T的傅里叶变换离子回旋共振质谱仪能够提供极高的分辨率和灵敏度,比常规的GC-MS都要高几个数量级,因而能很好地分辨出原油中各种浓度悬殊的有机硫化物及其降解产物。 /p p & nbsp & nbsp 模拟实验中使用的含硫原油来自江汉盆地潜江组,所用的降解菌富集培养自内蒙古扎赉特旗露头油砂矿的油浸土壤,培养的时间最长达到了17周,从0周(Z-0)到17周(Z-17)每隔1到数周取出一个油样进行分析。随着降解时间增加,原油中的正构烷烃逐渐减少(图2),最终正构烷烃几乎消耗殆尽,异构烷烃也部分损失,因此这些降解油处于轻微-中度生物降解阶段。与烷烃的减少相对应的是,原油中羧酸的含量随着生物降解的加剧而呈上升趋势。这与研究人员之前对一高蜡原油的好氧生物降解模拟实验结果一致(Pan & amp Liao*等, 2017,& nbsp Energy & amp Fuels)。这是因为烷烃发生末端氧化生成了羧酸。有趣的是,原油中的长链有机硫化物的降解似乎有着与烷烃降解类似的降解机理:随着降解时间增加,正构烷烃迅速减少直至基本被消耗完毕,随后发生降解的主要对象变成了只含有一个五元或六元硫环、与正构烷烃结构具有较高相似性的长链有机硫化物,说明长链有机硫化物在降解过程中也发生末端氧化形成了相应的有机酸类,这可以从原油中的含硫羧酸类化合物的快速增加得到印证。 /p p & nbsp & nbsp 此外,研究人员并没有发现原油中的亚砜和砜类化合物与对照组相比有明显增加,这也从另一侧面证实了长链有机硫化物的降解产物主要为含硫羧酸而不是亚砜和砜类,即降解优先从烷基侧链开始。此外,研究还发现有机硫化物的环数增加可以提高其抗生物降解性能(图3)。这与Oldenburg等(2017)在储层中观察到的含硫原油的降解规律类似。这样的相似性可能表明储层中含硫原油的生物降解是好氧和厌氧微生物共同作用的结果。 /p p & nbsp & nbsp 该项成果得到中科院先导科技专项B和A、国家自然科学基金面上项目以及有机地球化学国家重点实验室自主课题资助。论文近期发表在国际期刊Organic Geochemistry上,论文的第一作者为博士生刘卫民,通讯作者为廖玉宏,共同作者还包括广州地化所助理研究员潘银华、工程师蒋彬、实验员曾清,以及中国石油大学(北京)教授史权和佛罗里达州立大学教授许强。 br/ /p p 论文信息:Liu, W., Liao, Y.*, Pan, Y., Jiang, B., Zeng, Q., Shi, Q. and Hsu, C.S., 2018.& nbsp Use of ESI FT–ICR MS to investigate molecular transformation in simulated aerobic biodegradation of a sulfur-rich crude oil. Organic Geochemistry, Vol.123, pp.17-26. /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/c1f069a2-8da7-4870-adef-700bb0ae57ba.jpg" title=" 1.jpg" / /p p br/ /p p style=" text-align: center " 图1 广州地化所2016年引入的傅里叶变换离子回旋共振质谱仪(FT-ICR MS,型号为SolariX XR 9.4T) /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/cbee4a85-50c8-4a5b-b2cd-c36bebd20f5f.jpg" title=" 2.jpg" / /p p style=" text-align: center " 图2 降解油饱和烃的总离子流图 /p p br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/10c5643b-0356-4533-901b-38e1db1209b5.jpg" title=" 3.jpg" / /p p style=" text-align: center " 图3 含有1、2、3个硫原子的有机硫化物的相对丰度 /p p br/ /p
  • 复旦大学陈建民/方明亮等合作揭示可降解塑料微粒在体内的健康风险
    暴露于人为来源的“生态友好型”可生物降解塑料的健康风险及其对胃肠道的影响在很大程度上是未知的。  2023年3月2日,复旦大学方明亮、陈建民及安徽医科大学黄以超共同通讯在Nature Nanotechnology(IF=40)在线发表题为“Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation”的研究论文,该研究表明肠道酶催化的聚乳酸塑料释放低聚物纳米颗粒引发急性炎症。该研究证明了聚乳酸微塑料在胃肠道过程中通过争夺甘油三酯降解脂肪酶而酶解生成纳米塑料颗粒。纳米颗粒低聚物通过疏水驱动的自聚集形成。  在小鼠模型中,聚乳酸寡聚物及其纳米颗粒在肝脏、肠道和大脑中生物积累。水解低聚物引起肠道损伤和急性炎症。大规模药效团模型显示,低聚物与金属氧化物酶12相互作用。在机制上,低聚物对锌离子指区具有较高的结合亲和力,导致金属氧化物酶12失活,这可能介导了聚乳酸低聚物暴露后的不良肠道炎症反应。生物降解塑料被认为是解决环境塑料污染的解决方案。因此,了解生物塑料的胃肠道命运和毒性将为潜在的健康风险提供见解。  微塑料(MPs)在水生和陆地环境中无处不在,是世界上最紧迫的环境问题,因为它们对环境和人类健康有潜在风险。MPs在环境中转移,并通过食物链和直接吸入或摄入进入人体进行生物积累。尽管人类MP暴露的确切数量存在很大的不确定性,但研究初步估计,每周口服MP颗粒的摄入量在0.1至5.0克之间。因此,MPs已在人类粪便中检测到。对小鼠、牡蛎和贻贝的研究表明,接触与环境相关的MPs会导致生殖受损、DNA损伤和神经毒性。导致这些影响的机制主要是未知的,尽管许多研究调查了MPs物理损伤的原因,喂入量减少或有毒化学物质的浸出。为了减轻塑料污染,人们引入了可生物降解塑料作为传统塑料的环保替代品。例如,聚乳酸(PLA)是最常见的生物塑料,被用于制造食品包装、一次性餐具和生物医学输送载体。PLA产量稳步增长,预计到2024年将超过30万吨。包装是PLA塑料的主要用途,2014年占收入份额的36%以上。采用人类和小鼠模型的研究表明,基于PLA的植入会引发炎症。此外,PLA MPs对斑马鱼具有显著的不良影响风险,尽管其确切机制尚不清楚。  胃脂肪酶消化PLA MPs(图源自Nature Nanotechnology )PLA塑料可能比“持久性”聚合物产生更多的MPs,因此,PLA MPs越来越多地出现在土壤、沉积物和室内灰尘中。尽管摄入PLA MPs的毒理学作用值得进一步深入研究,但对其在肠道中存在的生物转化如何影响人类健康的知识尚缺乏。在低pH和酶的生理条件下,人们对PLA MPs的化学结构如何被体内的相互作用所改变的理解是不够的。因此,必须对增加PLA MPs生物反应活性的机制进行详细分析,这些机制增强了它们与蛋白质和细胞表面的相互作用。该研究探讨了PLA作为人体肠道中可生物降解塑料模型的转化和毒性。PLA MPs被胃肠道中的脂肪酶消化,形成数百万个纳米塑料。此外,生物物理和计算方法表明,所得的低聚物水解产物可以形成纳米塑料。总之,该研究表明,肠道酶会产生意想不到的降解产物,包括来自PLA塑料的低聚物和纳米塑料,这些具有潜在的健康风险,需要继续研究和潜在的监管。原文链接:https://www.nature.com/articles/s41565-023-01329-y
  • 博纳艾杰尔将参加2010年第二届天然产物与传统医药国际会议
    第二届天然产物与传统医药国际会议将于2010年8月21-23日在西安举办,届时博纳艾杰尔将携带相关资料参加。我们在此次展会上重点展示的产品是CHEETAH,为了让广大客户进一步熟悉CHEETAH的使用,我们不仅将携带仪器在展会现场展示并讲解使用方法,同时在会议宣讲中进行题为&ldquo 天然产物的分离纯化&mdash &mdash 中压制备色谱应用&rdquo 的报告,热忱邀请新老客户届时参加讨论并提出问题,博纳艾杰尔希望与您共聚古城西安。
  • 塑料生物降解测试用样品该如何制备
    在塑料生物降解测试中,对于塑料材料原料或制品的前处理制样是一个非常重要的步骤,但也一直是广大测试人员最头疼的问题之一。由于塑料材料普遍具有较低的软化温度、较高的粘度,对于样品的研磨、剪切都造成了极大的障碍。塑料材料原料或制品通常主要以粉末、颗粒、薄膜、片材、空心管状、块状等几种形态呈现。在降解测试中,为了确保样品能够以最大的接触面积充分接触接种物底物,使微生物和所分泌的各种不同解聚酶容易进攻塑料材料,我们一般都会将塑料样品处理成更细小的颗粒或更薄的片材。常见生物降解标准所要求样品形态(参考GB/T 38787-2020《塑料 材料生物分解试验用样品制备方法》)其中:(1)对于吸管类制品,一般需将其剖开,并剪成不大于2 cm的片状材料。(2)对于非薄膜、非粉末状样品,一般参考GB/T 38787-2020《塑料 材料生物分解试验用样品制备方法》,采用干冰或液氮冷却并机械研磨制成粉料。(3)对于要求采用薄膜样品的方法,需采用平板硫化机将塑料颗粒热压成约几十μm的薄膜,再按照要求进行裁片。湖北洛克泰克是国内少有的通过完全自主研发,提供材料生物降解测试仪器和服务全解决方案的供应商。我们为广大不同需求的客户提供RTK PBDA塑料生物降解分析仪、RTK PBD 全自动塑料崩解分析仪、RTK CRM密闭呼吸计、RTK BMP全自动甲烷潜力测试系统、RTK-BRE微生物降解呼吸仪等产品,可适用于各类塑料生物降解性能评估标准方法的测试。湖北洛克泰克仪器股份有限公司成立于2013年,是国家级高新技术企业(证书编号GR202042003741),拥有包括生物降解领域的近30余项专利证书(含发明专利)。为中国农业大学厌氧发酵联合实验室、华中农业大学产学研合作基地。作为中国科学测试仪器研究型制造商,洛克泰克努力为全球客户提供专业的科学测试仪器、测试方法、培训及技术服务。洛克泰克秉承“技术推动科学进步”的使命,致力于我国的“碳达峰、碳中和”目标,为政府、大学、研究机构及企业提供服务,实现更健康、更安全、更环保的高质量发展。欢迎垂询!
  • 海南持续提升全生物降解材料及制品检测能力 推动降解产业高质量发展
    全生物降解塑料制品到底能否降解?在海南,只需7天就能揭晓答案。“可在过去,通常需要3到6个月。”近日,省市场监管局相关负责人在接受海南日报记者采访时透露,目前我省全生物降解材料及制品检测能力在全国处于领先地位,为海南禁塑工作提供了有力技术支撑。在海南大胜达纸浆模塑环保餐具智能研发生产基地,工作人员正在检查环保餐具质量。海南日报记者 袁琛 摄让这一检测时间实现大提速的,是海南省产品质量监督检验所(以下简称省质监所)联合中国科学院理化技术研究所打造的国家市场监管重点实验室(降解材料质量安全评价与研究)。成立仅两年,该重点实验室便在技术攻关等方面取得多项突破。目前,该重点实验室已开发堆肥生物降解专用材料5种,设计和合成海水降解材料2种,研制降解制品3种,开发生物降解塑料制品检测新方法6项,获CMA(检验检测机构资质认定)或CNAS(中国合格评定国家认可委员会)检验参数578项,获CNAS认可的国际标准33项。全生物降解材料及制品检测能力的提升,一方面助力“禁塑”监管执法,一方面也正通过科技成果转化服务企业发展,推动海南降解塑料制品产业高质量发展。“随着我省‘禁塑’工作的开展,降解塑料制品企业逐渐增多,急需检验检测机构提供技术帮扶。”省质监所相关负责人介绍,目前该所已为我省一批降解塑料生产企业提供准确、高效的检测服务,帮助企业打通从生产到销售的产品质量关。为服务海南降解材料产业发展,我省还成立了降解材料产业质量基础设施一站式服务平台,通过有机融合计量、标准、认证认可、检验监测、质量管理等要素资源,持续满足降解材料产业高质量发展需求。“近年来,海南生物降解产业发展迅猛,全省降解材料生产能力年产量达2.5万吨。”该负责人表示,今后,该所将依托不断提升的检验、科研、技术实力,进一步帮助降解材料企业引进技术、改进工艺、提高质量、开发新品,打造一批拥有自主知识产权的高新技术产品、绿色环保产品。
  • 利用传统光刻设备制备柔性可降解电子器件!
    光刻技术是在硅基工业中的一种关键且成熟的技术,它可以精密地定义与制备小尺度的微电子器件。然而,要将光刻技术应用于柔性电子器件的实现,柔性可降解基底对光刻过程中要用到的有机溶剂、高温以及紫外光的敏感性是它面临的核心挑战。很多时候,由于柔性层表面的粗糙性、剥落、不均匀性以及气泡等问题,器件难以实现预期性能。因此,为了保护光刻过程中脆弱的柔性可降解基底,来自土耳其伊斯坦布尔的科克大学的研究人员提出可以利用一层额外的无机薄膜层来隔绝柔性基底与表面光刻工艺的各种操作。相关论文以题为“Photolithography-Based Microfabrication of Biodegradable Flexible and Stretchable Sensors”发表在Advanced Materials上。研究人员通过优化的微纳加工工艺流程实现了具有高性能、一致性、可拉伸性以及稳定性的柔性生物可降解的电子器件。图1a和1b展示了在一个指尖大小(1 cm2)的柔性PLA贴片上包含了1600个IDE电容器,它们的器件均一性达到了3.08±3.89*10-3 pF。同时,多种其他类型的电子器件如电极、电阻、电感以及平行板电容器也可以实现小型化与可拉伸性(图1c)。图1d展示了在一个已经发生部分降解的PGS基底上制备的IDE电容器。制备这种柔性可降解电子器件工艺的关键策略在于隔离在硅衬底上的柔性可降解基底。基本的制备步骤为(图1e):i)在硅衬底上增加牺牲层图层;ii)依次沉积柔性可降解聚合物基底层、保护层、黏附层以及金属层;iii)金属层图案化。其中,值得关注的是:(1)牺牲层采用水溶性的右旋糖苷(Dextran),以确保在工艺完成后整块薄膜可以从硅衬底上剥离;(2)利用旋涂15 %(w/w)的PLA溶液(氯仿作为溶剂)加软烘脱气泡形成PLA柔心可降解基底;(3)锗(Ge)则利用物理气相沉积(PVD)在PLA表面被形成保护层,CVD不被选用的原因是会对PLA薄膜基底表面产生明显损伤。图1. 基于光刻工艺,在柔性可降解基底上制备可拉伸与小型化图案。(a) 在1cm2面积上包含有1600个器件的柔性贴片 (b) IDE电容阵列的共聚焦显微镜图像。插图:放大后的IDE电容器显微图像。比例尺:500 um(右)和200 um(左);(c) 在硅衬底上的聚乳酸基底上制备的各种器件照片。比例尺:1 cm; (d)放在PBS中,已经发生部分降解的PGS基底上的IDE器件 (e) 基于剥离法和反应离子刻蚀法(RIE)进行的工艺流程图。基于所提出的光刻制备柔性可降解器件的工艺,研究人员展示了器件良好的柔性(图2a)、优良的可降解性(图2b)以及使用其他材料的可拓展性(图2c-2d)。同时,对器件的均一性控制(图3a - 3c)以及器件不同尺寸的可定制性(图3d-3f)也做了响应的制备实验与表征。最后,为了展示该工艺在柔性可降解传感器制备中的应用潜力,该工作为我们展示了利用光刻工艺制作的电容式压力传感器以及葡萄糖电化学传感器并分别进行了测试。图2. 在柔性可拉伸基底上微纳制造可降解器件。(a) 带有电阻器件的柔性PLA贴片被环绕在一个直径1cm的玻璃棒上 (b) 在PDB溶液中浸泡时(1 M,室温下PH≈12),PLA基底上的钼(Mo)器件图案逐渐消失 (c) PGS柔性基底上的螺旋Mo器件 (d) 可拉伸器件在PBS溶液中降解的光学图像。图3. PLA基底上IDE电容阵列的表征。 (a) 8*8阵列的光学图像 (b) 每个IDE电容器在不同频率下的测试表现,插图显示了该阵列电容的数值分布 (c) 电容均一性展示图;(d) 4个不同宽度和间隙的微加工IDE电容器器件显微图像 (e) 高度小型化的IDE电容器件的SEM表征 (f) 不同尺寸IED电容器件在不同频率下的测试表现。图4. 可拉伸柔性基底上的微纳制备的可降解应变与化学传感器。 (a)光学和SEM图像 (b) 器件结构示意图 (c) 器件在不同频率下的响应特性测试 (d) 化学传感器的光学图像 (e) 化学传感器的性能测试 (f) 不同浓度被测物与传感器的电流响应。总的来说,该研究为我们展示了一种基于传统光刻工艺的制造柔性可降解电子器件的新方法。它尝试解决了光刻工艺中有机溶剂、紫外光和高温等操作对柔性可降解基底的损伤问题,并取得了较好的器件均一性。由于利用了硅基工业上已经很成熟且普及的光刻设备,它在批量制造上具有明显优势。同时,光刻工艺的小尺度加工的优点也被带入柔性电子器件的制备中,实现了小尺度器件的精细制造。但是,目前该研究工作中的电子器件还未涉及半导体材料,因此还有待进一步的发展与思考。
  • 地沟油能用于制造可降解生物塑料
    据物理学家组织网9月4日(北京时间)报道,英国伍尔弗汉普顿大学科学家9月3日在普通微生物学会秋季会议上报告的一项研究结果称,借助一种细菌,用俗称地沟油的废弃食用油作为原材料就能以较高效率合成可降解生物塑料,一旦实现规模化生产,不仅可减少环境污染,还可为医疗植入物提供合适的高品质塑料。   不可降解的塑料在废弃后处置过程中会造成重大的环境问题。过去二十年来,在英国海滩上的废塑料只增不减,现已占到海洋垃圾约60%。而由多种细菌合成的聚羟基脂肪酸酯(PHA)家族是可降解生物塑料,其中的聚3-羟基丁酸酯(PHB)最常用,推广这种可生物降解塑料将有助于减少环境污染。   目前,细菌在大型发酵罐中生成这种高质量生物塑料所用的原料是葡萄糖,成本较高,严重制约了生物塑料的商业化。而新研究表明,使用废食用油作为原料可以降低塑料的生产成本。   研究人员解释说:“我们生产生物塑料的细菌——罗尔斯通氏菌菌株H16,在油中超过48小时时间里比在葡萄糖中产生3倍之多的PHB。与英国伯明翰大学研究合作的电纺丝法实验结果表明,产生于油中的塑料纳米纤维,具有很低的结晶,这意味着该塑料更适合于医疗应用。”以前的研究表明,PHB因生物降解性和无毒特性,可在肿瘤治疗中用作传输药物的微胶囊,也可作为医用植入物。   采用地沟油制造生物塑料,对环境的好处可谓一举两得。因为它不仅可以产生可以降解的生物塑料,也减少了地沟油对环境的污染。该研究团队的下一个挑战是,适当扩大试验规模,以在工业领域实现生物塑料的规模化生产。   总编辑圈点   地沟油回流餐桌着实让人伤透脑筋,在地沟油人人喊打的今天,如何将其合理利用,成为新一轮的热点。不论是将其生产出生物柴油,还是制造出生物塑料,最好的解决办法就是进行循环利用,变废为宝。随着国家打击力度的加大,地沟油渐渐地无处遁形,而相较于德国每桶泔水有身份证、英国专设废油垃圾桶,我国的地沟油“战争”还有很艰巨的任务要完成。
  • 均多相融合选择性催化制备生物基可降解聚酯单体——岛津XPS用户成果分享
    团队介绍:李福伟研究员团队李福伟老师现任中国科学院兰州化学物理研究所研究员,博士生导师,中科院特聘研究员,国家优秀青年基金获得者。2005年于中科院兰州化学物理研究所夏春谷研究员组获物理化学博士学位,随后在中科院过程工程研究所张锁江院士研究组从事绿色化工研究,2006年4月-2009年12月在新加坡国立大学化学系贺子森教授(Professor Andy Hor, 现香港大学副校长)研究组开展博士后研究。2010年入选中科院“百人计划”并于同年获择优支持,在兰州化学物理研究所开始独立研究工作,研究领域为面向清洁能源和先进合成的绿色催化,主要开展功能含氮杂环化合物的高效催化合成以及可再生碳资源(生物质、二氧化碳)的增值催化转化研究。已发表研究论文80余篇,论文H因子30,其中2011年以来以通讯作者在Chem. Rev., Nat. Commun., Angew. Chem. Int. Ed., ACS Catal., J. Catal., Appl. Catal. B: Environ., Green Chem.等期刊上发表50余篇论文。编著中英文专著2个章节,申请授权中国发明专利10余项。曾获中国化学会催化委员会首届“中国催化新秀奖”(2012)、中科院院长优秀奖(2005)等。2015年获国家自然科学基金“优秀青年基金”资助。均多相融合选择性催化制备生物基可降解聚酯单体羟基脂肪酸酯(PHA)是制备生物可降解聚酯高分子材料的重要单体, 现有制备方法存在催化效率和选择性低等不足。从可再生的生物基碳氧资源出发,发展简便、高效、高选择性的催化制备生物基羟基烷酸酯聚酯单体技术具有重要意义和潜在应用价值。中科院兰州化学物理研究所李福伟研究员团队从半纤维素下游产品糠醇出发,发现Pd与具有一定咬角结构的双膦配位后能够高效、高选择性地实现均相催化切断糠醇的羟基C-O键,插入制备PHA所需要的羧酸酯官能团,催化转化数(TON)高达104以上。减压蒸馏出呋喃乙酸酯产物后,催化剂可以循环使用二十次而不失活,为生物质的“量体裁衣”增碳提供了一个新的方法。图1 利用原位XPS分析xNi/CeO2催化剂中Ni物种的结构特点及演变规律Science Technology 以糠醛衍生物呋喃乙酸的C-O键氢解制备6-羟基羧酸酯为例,开发制备了非贵金属催化剂Ni/CeO2,并表现出高的催化活性和稳定性;如图1所示,利用in situ XPS技术详细分析了xNi/CeO2催化剂中Ni物种的结构特点及Ni物种在制备过程中的演变规律,结果显示8Ni/CeO2中存在金属Ni0物种和界面Nin+-VO-Ce物种。研究了Ni/CeO2表界面Ni物种类型及相对含量,发现催化剂界面Ni物种主要为Ni0和Niδ+,结合动力学分析,推断Ni0是C=C加氢的活性中心,而Niδ+是C-O氢解的活性中心。通过改变Ni负载量优化Ni0和Niδ+相对含量,实现C=C加氢和C-O氢解反应速率的动力学匹配,获得理想催化性能。相较于传统的石油基制备方法而言,其合成策略显示出:高的原子经济性,高能源利用率,原料来源可持续,并避免了易爆过氧化物的使用。参考文献Zelun Zhao, Guang Gao, Yongjie Xi, Jia Wang, Peng Sun, Qi Liu, Wenjun Yan, Yi Cui, Zheng Jiang, Fuwei Li*, Chem, 2022, 8, 1034-1049.本文内容非商业广告,仅供专业人士参考。
  • 核酸降解知多少
    导语在实验过程中,最心累的莫过于好不容易提取的核酸却降解了。那么核酸为什么会发生降解呢,我们又该如何预防呢?关于核酸降解,你了解多少呢?让我们一起对核酸降解一探究竟吧。 什么是核酸 核酸是一种高分子化合物,核苷酸是构成核酸的基本单位。核酸水解后得到许多核苷酸,核苷酸是组成核酸的基本单位,即组成核酸分子的单体。一个核苷酸分子是由一分子含氮的碱基、一分子五碳糖和一分子磷酸组成的。根据五碳糖的不同可以将核苷酸分为脱氧核糖核苷酸和核糖核苷酸。如果5-碳糖是核糖,则形成的聚合物是RNA;如果5-碳糖是脱氧核糖,则形成的聚合物是DNA。 核酸降解本质 核酸降解是DNA/RNA分子中的碱基和戊糖间的氮糖苷键,或磷酸二酯键在物理因素、化学因素和生物因素等作用下发生水解,使DNA/RNA链发生断裂。核苷磷酸化酶:能分解核苷生成含氨碱基和戊糖的磷酸酯酶。广泛存在于生物体内,催化的反应可逆。可在核苷水解酶作用下继续分解核苷成嘌呤碱、嘧啶碱和戊糖。核苷水解酶:主要存在于植物和微生物体内,只水解核糖核苷。 核酸降解原因 DNA降解的因素很多,主要分为物理因素,化学因素和生物因素。一、物理因素:温度,机械剪切力、核酸的反复冻融、高温煮沸及辐射等。二、化学因素:PH值,水解反应,氧化反应等。三、生物因素:酶解及微生物侵染等作用。一、物理因素的影响★ 温度:高温条件下,RNA不稳定,易加速磷酸二酯键的水解,使核酸降解;★ 机械剪切力:包括剧烈震荡、搅拌、细胞突然至于低渗溶液中,以及让溶液快速通过狭长的孔道;★ 核酸的反复冻融、高温煮沸及辐射等,均会导致核酸的降解。二、化学因素影响水解★ PH值:氢离子参与催化磷酸二酯键、糖苷键的水解,但糖苷键比磷酸二酯键更易被酸水解。过高或过低的PH值都易破坏复键。核酸(特别是RNA)在碱性溶液中十分容易降解;★ 氧化反应:会氧化碱基中的含氨杂环,使其变性,从而改变一级与二级的核酸构象;★ 苯酚在空气中被氧化生成醌,它能够产生自由基,直接用于DNA的分离,会使磷酸酯键断裂,造成DNA的降解。三、生物因素影响★ 酶解:核酸酶可以催化水解多聚核苷酸链中的磷酸二酯键,直接破坏核酸的一级结构,使其降解。1.核酸酶(磷酸二酯酶)核酸内切酶:在环境或生物体内具有识别双链DNA分子中特定核苷酸序列,并由此切割DNA双链的核酸内切酶统称为限制性核酸内切酶。作用方式从多聚核苷酸链中间开始,在某一个位点切断磷酸二酯键。如DNase,RNase等。核酸外切酶:核酸外切酶的作用方式是从多聚核苷酸链的一端(3' -端或5' -端)开始,逐个水解切除核苷酸。如蛇毒磷酸二酯酶,牛脾磷酸二酯酶等。2.核苷酸酶(磷酸单酯酶)专一性的磷酸单酯酶:3' -核苷酸酶,5' -核苷酸酶非专一性磷酸单酯酶。★ 微生物侵染:微生物会将DNA作为营养物质或是其分泌的化学物质含酶。 预防降解的方法 预防RNA降解的方法:★ 去除环境中RNase酶的污染或强有力地抑制其活性。★ 获取样品后最好立即提取RNA,若无条件立即实验,应于-80℃液氮中保存样品,提取时取出样品后立即在低温下研磨裂解细胞,以防RNA降解。★ 在总RNA提取分离的最初阶段,联合使用Rnase的特异抑制剂,尽可能的灭活胞内的Rnase的活性。★ 避免样品的反复冻融。★ 保证裂解液的质量,裂解液的用量不足,也会导致RNA降解。★ RNA提取后,放入-80℃保存,防止降解。预防DNA降解的方法:★ 简化操作步骤,缩短提取过程,以减少各种有害因素对核酸的破坏;★ 减少化学物质对DNA的降解,为避免过酸、过碱对DNA双链中磷酸二酯键的破坏;★ 防止基因组DNA的生物降解,主要是DNase降解基因组DNA,Dnase需要二价金属阳离子Mg2+等的激活,可用EDTA等金属离子整合剂整合Mg2+以抑制Dnase的活性;★ 减少物理因素对DNA的降解,物理降解因素主要包括机械剪切力(如剧烈震荡、搅拌等);★ 避免样品的反复冻融,可将DNA分装保存于缓存液中;★ 所有试剂应用无菌水配制,耗材经高温灭菌;★ 避免DNA的过高温处理等。
  • 俄罗斯研制出生物降解复合材料
    p   俄罗斯普列汉诺夫经济大学与俄罗斯科学院伊曼纽尔生化物理研究所的科研人员经过联合研究,研制出聚乙烯和各种植物填充物基生物分解复合材料。这项新技术有助于制造生态无害包装材料,其成分包括各种工业天然废料。研究成果刊登在近期荷兰《聚合物和环境杂志》(Journal of Polymers and the Environment)上。 /p p   俄罗斯普列汉诺夫经济大学化学和物理教研室“远景合成材料和技术”实验室的研究人员在混有各种植物填充物的聚乙烯基础上,对生物成分进行了生物分解试验,确定了填充物微粒大小影响聚合物的物理性能及其生物分解速度的合理性,从而生产出聚乙烯及植物填充物基生物分解复合材料。 /p p   研究人员将葵花子的外壳、小麦谷糠、木材的锯末制成木质纤维粉颗粒,用亚麻和小麦茎秆的纤维制成颗粒,并将每种颗粒分别与聚乙烯等化学聚合物按一定比例混合,并加入含EVA树脂的添加剂,以促使混合物中各种材料更好地融合。研究组检测了制成的两类复合材料的物理特性、吸水性、高温下降解速度与生物材料颗粒尺寸之间的关系。 /p p   实验结果表明,颗粒大的木质纤维粉与聚乙烯等混合制成的复合材料在土壤中自然降解的速度越快,但农作物茎秆纤维制成的颗粒大小与其制成的复合材料降解速度并无明显联系。专家指出,这种复合材料可大大减少环境污染,使用的廉价工业废料重量占成品复合材料总重量的30%到70%,成品复合材料的价格与传统聚合物持平,甚至更低。 /p p   全世界目前正在积极开展制造此类复合材料的研究工作。美国研究人员尝试利用洋麻、棉花、香蕉纤维、咖啡壳用作填充物,中国利用竹子,印度利用黄麻,巴西利用甘蔗杆。研究人员面临的主要任务是要把这些填充物与聚合基体有效结合在一起,确保成品复合材料具有高的机械性能,在此条件下生物分解性能得以保持下来,俄罗斯研究人员成功做到了。 /p
  • 二十七期质谱沙龙成功举办
    仪器信息网讯 2010年6月5日下午,第二十七期质谱沙龙活动在第二炮兵总医院药学部举行。该质谱沙龙活动由第二炮兵总医院和北京师范大学、AB SCIEX公司共同组织主办。10余位来自第二炮兵总医院、北京师范大学、空军总医院、安贞医院、AB SCIEX公司等单位的一线研究人员等参加了此次沙龙,仪器信息网亦应邀参加。   此质谱沙龙以专题报告和讨论为主,参与者均为从事液质联用工作的一线实验人员,着重于质谱应用技术的交流,大家将自己所做的工作以及工作中遇到的难题、积累的经验等提出来,讨论交流、相互帮助,开拓思路、解决问题。 质谱沙龙活动现场   第二炮兵总医院李鹏飞老师首先做题为“免疫抑制剂及其合并用药LC-MS/MS高通量检测方法研究”的报告。如今,“器官移植”已经成为治疗各种器官衰竭的有效手段,而为“器官移植学”三大支柱之一的免疫抑制剂的发展与应用,仍是器官移植成败的关键,免疫抑制剂的长期应用及其不良反应的控制仍是临床移植医学研究的重点。利用LC-MS/MS方法高通量同时检测免疫抑制剂及合并用药在人血中的浓度,可以为临床个体化给药提供依据,进而为验证或确认药物之间的相互作用提供方法支持,更好地为临床服务。 第二炮兵总医院李鹏飞老师   李鹏飞老师的报告中介绍了其在研究工作中,分别比较了选择1-2种不常用药物、选择1种非药物、选择同位素内标这三种内标物各自的优缺点,以及沉淀蛋白法、固相萃取法、液-液萃取法、固相微萃取法四种样品前处理方法的各自优势。并在此基础上,建立了霉酚酸酯、霉酚酸、硫唑嘌呤等10多种药物的同时检测样本的前处理方法、同时检测多种药物浓度的色谱条件、拟测定药物各自的质谱条件、定量分析方法的验证,并用建立的检测方法检测未知生物样本。   北京师范大学分析测试中心田菲菲博士做题为“混合炸药种类识别及溯源方法研究”的报告。田菲菲博士是北京师范大学分析测试中心谢孟峡教授的学生,谢孟峡教授近年进行的主要科研工作中包括公安部科研项目——爆炸物研究以及法医鉴定等。掌握爆炸案件现场爆炸残留物的检验方法,对于严厉打击利用爆炸进行的犯罪活动有着十分重要的意义。我国2007年各种工业炸药的总产量达2864906吨,其中乳化炸药和铵油炸药所占比例最多,分别是47.4%、39.1%,而乳化炸药和铵油炸药主要成分为硝酸铵。 北京师范大学分析测试中心田菲菲博士   田菲菲博士在研究工作中收集了77种工业硝铵炸药,采用GC/MS方法分别对其非炸药成分、爆炸残留物进行分析。结果表明:25种铵锑炸药中只有7种含有碳质燃料复合蜡,铵油炸药的废炸药成分主要为柴油等。24种乳状乳化炸药根据乳化剂的差异实现个体识别。乳状乳化炸药种类识别机溯源研究发现:乳化剂经过酯交换、硅烷化衍生得到的衍生产物具有灵敏度高、选择性的优点,且能排除环境的干扰。在乳化炸药原药及其300g、600g药量残留物中均检测到山梨醇硅烷酯、油酸甲酯和复合蜡等特征成分,能够实现炸药的溯源,也验证了次方法是可行的。   美国AB SCIEX中国公司市场部产品经理赵贵平先生做了题为“液相色谱基础—基础知识介绍”的报告。AB SCIEX公司虽然没有液相色谱,但其公司以液质联用产品为主,并且赵贵平先生在报告一开始即指出,色谱的分离效果严重影响整个实验的分析结果。 美国AB SCIEX中国公司市场部产品经理赵贵平先生   赵贵平先生的报告中从色谱法的起源、基本原理及术语概念、色谱图常见问题等开始讲解,继而介绍了液相色谱实验技术、液相色谱柱的选择及其使用保养、液相色谱方法开发。赵贵平先生凭借其多年分析仪器行业从业经验所做的液相色谱系统知识报告,对初学者以及实验室第一线的工作人员有很大帮助。
  • 美科学家研制硅制可降解电路 可用于医疗和环境监测
    有些科学家想制造出能存世几百年甚至上千年的东西,有些科学家却想让他们制造出的东西快速消亡。日前,来自美国的一个科研团队就想方设法地要让看似经久耐用的硅制电路在几天甚至十几个小时之内化为乌有。   他们将这种能够在水或者生物质液体中存留一定时间而后发生分解的电路称为&ldquo 瞬时电路&rdquo 。该技术将有望在生物医学植入、可降解传感器以及许多其他半导体设备领域获得应用。   物理学家组织网1月16日报道称,这项研究由美国伊利诺伊大学厄巴纳&mdash 香槟分校的约翰· 罗杰斯和塔夫斯大学的洛伦左· 奥姆内托领衔,相关论文发表在《物理评论快报》上,他们对各种可溶性半导体材料的性能和溶解时间进行了分析。研究表明,硅这种在今天的电子元件中最常见的半导体也能溶于水。   研究人员发现,虽然大块的硅需要上百年甚至几个世纪才能溶解,但硅薄片却能在一个看似缓慢但仍能被人接受的时间内完成分解,这个速度大概是每天5&mdash 90纳米。硅在水中溶解,会与水反应形成硅酸。而硅酸具有生物相容性和环境友好的特征,因此完全可以在生物医学植入和环境监测中进行应用。   在这项新的研究中,研究人员对二氧化硅和钨的溶解特性进行了分析,这是他们用来制造场效应晶体管和环形振荡器的材料。在生物相容的条件下&mdash &mdash 温度37摄氏度,pH值7.4,用钨制成的部件溶解速度大约是1周的时间,二氧化硅组件的溶解速度从3个月到3年不等。   研究人员发现电子设备的溶解速度与材料的厚度、溶液中离子的类型、浓度,以及制造二氧化硅原始基板的沉积方法相关。通过显微镜观察,他们发现,电路的溶解并不是按照一层一层的方式来进行的,而是有些地方的溶解速度更快。这是由于一些电路的机械结构更为脆弱,溶液更容易渗入其中。   虽然有机电子材料也能够实现可生物降解,但基于硅的电子器件具有性能更好以及使用互补金属氧化物半导体(CMOS)制造工艺能够实现大规模生产的特征。   罗杰斯称,他们在此项研究中最大的一个发现是,制造传统芯片的工厂完全能够通过选材、设计以及加工工艺顺序的改变生产瞬时电路。这将在很大程度上降低瞬时电路制造成本,缩短其技术转化过程。   瞬时电子设备具有非常广泛的应用领域,特别是在医疗领域当中。例如,它们可以被用来制造可以溶解的导管 用来监测肾脏、心脏或肺的可生物降解的传感器 术后用于监测细菌感染的水溶性电子设备等。在用于环境监测时,瞬时电路可以从远程位置发送数据,任务完成后可降解到土壤当中,减少对环境带来的污染。   罗杰斯说:&ldquo 我们正在与一些工厂进行接触,希望能一起制造出更先进的可降解电路和传感器,让具备水溶性的聚合物电路基底成为可能,相信在不久的将来上述设想都能够成为现实。&rdquo
  • 2020年限塑令空降 禁止外卖酒店等使用非降解塑料
    p style=" text-align: justify text-indent: 2em " 塑料在生产生活中应用广泛,是重要的基础材料。不规范生产、使用塑料制品和回收处置塑料废弃物,会造成能源资源浪费和环境污染,加大资源环境压力。积极应对塑料污染,事关人民群众健康,事关我国生态文明建设和高质量发展。 /p p style=" text-align: justify text-indent: 2em " 1月19日,国家发改委、生态环境部印发《关于进一步加强塑料污染治理的意见》,明确了未来一段时间内塑料污染治理的具体时间表和路线图。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 603px height: 320px " src=" https://img1.17img.cn/17img/images/202001/uepic/ba5f5dc8-c040-40ee-ae88-587d0c783558.jpg" title=" 限塑令.png" alt=" 限塑令.png" width=" 603" height=" 320" / /p p style=" text-align: justify text-indent: 2em " 这一政策是对2007年12月发布的《国务院办公厅关于限制生产销售使用塑料购物袋的通知》(限塑令)的重大升级,因此被市场称为“新版限塑令”。 /p p style=" text-align: justify text-indent: 2em " strong 主要目标 /strong /p p style=" text-align: justify text-indent: 2em " 到2020年,率先在部分地区、部分领域禁止、限制部分塑料制品的生产、销售和使用。到2022年,一次性塑料制品消费量明显减少,替代产品得到推广,塑料废弃物资源化能源化利用比例大幅提升;在塑料污染问题突出领域和电商、快递、外卖等新兴领域,形成一批可复制、可推广的塑料减量和绿色物流模式。到2025年,塑料制品生产、流通、消费和回收处置等环节的管理制度基本建立,多元共治体系基本形成,替代产品开发应用水平进一步提升,重点城市塑料垃圾填埋量大幅降低,塑料污染得到有效控制。 /p p style=" text-align: justify text-indent: 2em " strong 这些和你我息息相关的领域禁止、限制使用的塑料制品。 /strong /p p style=" text-align: justify text-indent: 2em " strong 1.不可降解塑料袋。(商场、超市、药店、书店等) /strong /p p style=" text-align: justify text-indent: 2em " span style=" background-color: rgb(255, 192, 0) " 到2020年底,直辖市、省会城市、计划单列市城市建成区的商场、超市、药店、书店等场所以及餐饮打包外卖服务和各类展会活动,禁止使用不可降解塑料袋,集贸市场规范和限制使用不可降解塑料袋。 /span /p p style=" text-align: justify text-indent: 2em " strong 2.一次性塑料餐具。(外卖领域、旅游景区等) /strong /p p style=" text-align: justify text-indent: 2em " span style=" background-color: rgb(255, 192, 0) " 到2025年,地级以上城市餐饮 strong 外卖 /strong 领域不可降解一次性塑料餐具消耗强度下降30%。 /span /p p style=" text-align: justify text-indent: 2em " strong 3.宾馆、酒店一次性塑料用品。(宾馆、酒店、民宿) /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 0, 0) background-color: rgb(255, 192, 0) " 到2022年底,全国范围星级宾馆、酒店等场所不再主动提供一次性塑料用品;到2025年底,实施范围扩大至所有宾馆、酒店、民宿。 /span /p p style=" text-align: justify text-indent: 2em " strong 4.快递塑料包装。(快递) /strong /p p style=" text-align: justify text-indent: 2em " span style=" background-color: rgb(255, 192, 0) " 到2022年底,北京、上海、江苏、浙江、福建、广东等省市的邮政快递网点,先行禁止使用不可降解的塑料包装袋、一次性塑料编织袋等,降低不可降解的塑料胶带使用量。到2025年底,全国范围邮政快递网点禁止使用不可降解的塑料包装袋、塑料胶带、一次性塑料编织袋等。 /span /p
  • 可自然降解传感器问世
    p style=" text-indent: 2em " 在英国《自然· 电子学》杂志14日在线发表的一篇动物研究论文中,美国科学家介绍了一种可移植、可伸展的应变及压力传感器,可以在有效使用期结束后自然降解。该装置将用于实时监测受损软组织所受的微弱应力和压力变化,有助于为患者设计个性化的康复方案。 /p p style=" text-indent: 2em " 传感器技术早已“轻松”应用于多种不同的环境,它们能集成到小型化的发射器或接收器系统中,也能与人体直接接触服务于医疗应用。这其中,可降解传感器是一种新兴技术,它们在预定的使用期限结束后会自然降解,因此不需要通过二次手术取出来。 /p p style=" text-indent: 2em " 但是,生物相容性微传感器的生产目前还是一个非常耗时和昂贵的过程,现有的这类传感器的感应性能十分有限,或是其生物相容性还未经证明。 /p p style=" text-indent: 2em " 此次,美国退伍军人事务部研究人员佩吉· 福克斯、斯坦福大学鲍哲南及他们的同事,报告了一种由完全生物可相容材料构成的、可伸展、可生物降解的应变及压力传感器。这一可移植传感器具有高灵敏度,能够区分小到0.4%的应变和12Pa的压力(一粒盐产生的压力)变化。 /p p style=" text-indent: 2em " 为了测试该传感器的生物相容性,研究团队将其移植进一只大鼠的背部。在移植手术8周后,未观察到负面炎症反应(除了第1周出现初期炎症反应)。 /p p style=" text-indent: 2em " 研究人员表示,他们能够控制传感器的降解,使其寿命与组织愈合所需的时长一致。此外,经过一定的设计,在降解过程中,该传感器的灵敏度也不会有明显下降。 /p p style=" text-indent: 2em " 针管有一次性的,医疗电子仪器也可以有一次性的。可降解的生物传感器一旦进入实用,我们就可以将很多临床定性描述转为量化指标,病人的恢复快慢可显示在屏幕上,痛觉程度也不再模糊。医生的工作将因此大大便利。 /p
  • 《Matter》钙钛矿光吸收剂降解机制研究为封装技术提供新方向
    【重点啇要】虽然钙钛矿太阳能电池具有低成本和高效率的优势,但稳定性差是商业化的绊脚石。开发具有高屏障性能的封装技术,可以有效隔绝外界环境,提升钙钛矿太阳能电池的稳定性。分析钙钛矿作为光吸收剂的降解机制,为封装技术的发展指明方向。【研究背景】由于钙钛矿太阳能电池具有工艺简单、成本低廉和效率高等优势,已广受关注。但是这类电池的稳定性仍然较差,是其商业化路径上的重大障碍。为克服这一问题,必须开发具有高屏障性能的封装技术,以保护钙钛矿太阳能电池免受外界环境的影响。【研究成果】乔治亚理工学院Ching-Ping Wong、东莞理工学院Fang Baizeng、南方科技大学Haijiang Wang、兰州理工大学Cheng Bow团队,探讨了钙钛矿作为光吸收剂的降解机制,为封装技术的发展提供了方向。分析现有封装材料对紫外线、湿气、氧气等的屏障性能。综述各种封装技术与配置方案的优劣。提出加速封装材料与结构发展的建议。【研究方法】文献回顾:整合分析现有文献,了解钙钛矿太阳能电池稳定性问题与封装技术发展现状。理论分析:基于钙钛矿的化学稳定性理论,探讨其作为光吸收剂的可能降解机制。比较研究:比较硅太阳电池等商业化光伏技术的封装方案,找出钙钛矿太阳能电池封装技术的差异与特殊需求。综合评估:整合不同封装材料、技术与配置方案的优劣势分析。总结建议:根据文献与理论研究结果,提出加速封装技术发展的具体建议。【结论】通过分析钙钛矿的降解机制与封装技术现状,找出满足钙钛矿太阳能电池封装需求的材料与方法,将可大幅提升其商业化应用的稳定性与可靠性。未来仍需持续优化封装技术,促进钙钛矿太阳能电池的产业化进程。
  • 防护服能降解毒素?核磁共振波谱给你答案
    图片来源:Pixabay.com美国科学家开发出一种与锆基金属有机框架(MOFs)集成的水凝胶,可以快速降解化学战中使用的有机磷类神经毒剂。与现有的粉状MOF吸附材料不同,这种水凝胶材料不需要添加水,便于用在防护口罩或服装上。这项研究日前发表在《化学催化》上。“以有机磷为基础的神经毒剂是人类已知毒性最强的化学物质之一。”西北大学化学教授、论文通讯作者Omar Farha说,“在这项工作中,我们将MOFs和含胺交联水凝胶整合到布料中,以建立适当的微环境,进而促进神经毒剂的快速降解,并提供实时保护。”虽然科学家之前已经证明了MOFs在实验室中快速分解有机磷制剂和类似模拟物质的能力,但事实证明,这些粉末吸附剂很难直接集成到防护布中。当神经毒素与锆6簇结合时,通常会使粉末和纤维复合催化剂失活。这一缺陷要求使用碱性溶液再生MOFs的催化位点——这不会阻止MOFs被用于消除储存的化学武器,但会阻碍它们在穿戴防护装备中的使用。为了克服这一挑战,Farha及同事设计了一种基于MOF的织物复合系统,该系统使用胺基水凝胶中的水分解神经毒剂。这种材料的工作原理是将3个关键组分结合在一起,进行水解反应,从而去除有毒的有机磷剂。MOF的锆节点提供了一个路易斯酸性位点,它能激活磷中心(神经毒剂的活性部分),而水凝胶孔则捕获必要的水,最后水凝胶主链上的碱性胺基生成羟基,促进对有机磷底物的攻击,进而使水解产物在锆中心上发生置换(即催化周转)。研究人员将这种水凝胶复合材料与棉纤维结合,并用模拟或实际神经毒剂进行了测试。他们使用核磁共振波谱分析了产品和衬底,发现复合材料在短短10分钟内化学转化了99%的试剂,即使在密封瓶中保存3个月,也能保持这种高水平的催化活性。虽然将其集成到现有产品还需要进一步的工程和测试,但由于材料生产方法简单且易于扩展,Farha认为大规模生产基于该材料的面罩和防护服在未来是可能的。
  • 化妆品行业或被彻底改变:纤维素制成闪光材料无毒可降解
    生活中有很多闪闪发光的包装,化妆瓶、水果盘等等,但它们很多是由有毒和不可持续的材料制成的,会造成塑料污染。最近,英国剑桥大学的研究人员找到了一种方法,可以从纤维素(植物、水果和蔬菜的细胞壁的主要组成部分)中制造出可持续、无毒、且可生物降解的闪光剂。相关论文发表在11日的《自然材料》杂志上。  这种闪光剂由纤维素纳米晶体制成,是通过结构色来改变光线,从而焕发出鲜艳的颜色。在自然界中,譬如蝴蝶翅膀和孔雀羽毛的闪光,都是结构色的杰作,这种色彩经历一个世纪也不会褪色。  研究人员称,利用自组装技术,纤维素可以产生色彩鲜艳的薄膜。通过优化纤维素溶液和涂层参数,研究小组能够完全控制自组装过程,从而使材料可以成卷地大规模制造。他们的工艺与现有的工业规模机器兼容。使用商业上可获得的纤维素材料,只需几个步骤就能转化为含有这种闪光剂的悬浮液。  在大规模地生产出纤维素薄膜后,研究人员将它们研磨成用于制造闪光或效果颜料的大小的颗粒。这种颗粒可生物降解,不含塑料,无毒。此外,与传统方法相比,该过程的能源密集度要低得多。  他们的材料可用来替代化妆品中广泛使用的塑料闪光颗粒和微小的矿物颜料。传统颜料,如日常使用的闪光粉,属于不可持续材料,而且会污染土壤和海洋。一般的颜料矿物必须在800℃的高温下加热才能形成颜料颗粒,这也不利于自然环境。  该团队制备的纤维素纳米晶体薄膜可以用“卷到卷”工艺大规模制造,就像用木浆造纸一样,首次将这种材料工业化制造。  在欧洲,化妆品行业每年使用约5500吨微塑料。该论文资深作者、剑桥大学优素福哈米德化学系的西尔维亚维格诺里尼教授表示,他们相信这种产品可以彻底改变化妆品行业。  将来,研究人员还将进一步优化生产过程,并使该种闪光剂商业化。
  • 溶解有机物影响抗生素光降解机理研究获进展
    近岸海域中,常常会产生抗生素的残留,这些残留对海洋生物甚至人类健康产生了威胁。光降解是抗生素在海洋环境中重要的非生物降解途径,包括直接光降解和间接光降解,其中,间接光降解是表层水体中抗生素的重要转化途径。溶解有机物可通过光照作用产生活性中间体参与间接光降解反应,是影响抗生素间接光降解的关键性因素。由于溶解有机物结构组成的复杂性,目前国际上关于溶解有机物对抗生素间接光降解的影响机制尚不明确。多年来,中国水产科学研究院黄海水产研究所渔业环境优化与循环水处理技术创新团队针对这一科学问题展开了深入研究,揭示了溶解有机物结构组成在磺胺类抗生素间接光降解过程中的关键作用,阐明了海水中关键环境因子对间接光降解的影响机理。近日,相关研究成果发表在环境科学与生态学领域期刊《整体环境科学》和《环境污染》上。溶解有机物的结构组成对磺胺类抗生素间接光降解的影响机制 黄海水产研究所供图据了解,该研究以溶解有机物的结构、性质以及环境中pH、盐度、硝酸根、碳酸氢根等关键因子为影响因素,首次系统阐明了近海海水中溶解有机物对磺胺类抗生素光降解的影响机制。研究发现,溶解有机物通过产生活性中间体,有效促进了磺胺类抗生素的间接光降解;溶解有机物中陆源类腐殖质组分对磺胺类抗生素间接光降解的影响要显著强于海源类腐殖质组分;pH、盐度、硝酸根和碳酸氢根均可通过改变活性中间体的稳态浓度影响磺胺类抗生素的间接光降解。团队进一步研究表明,由于具有高的芳香性,陆源类腐殖质组分能够较好促进磺胺类抗生素的间接光降解;低分子量的溶解有机物比高分子量的溶解有机物对磺胺类抗生素间接光降解的促进作用更显著;由于具有较高的芳香性和陆源类腐殖质物质,亲水性酸、亲水性碱和疏水性酸是影响磺胺类抗生素间接光降解的主要组分。这些研究结果揭示了磺胺类抗生素在我国近岸渔业水域光降解过程的反应动力学及降解机理,为准确掌握近岸海域环境中抗生素的归趋和评估其生态环境风险提供了理论依据。相关研究得到国家自然科学基金、山东省自然科学基金、崂山实验室项目和中国水产科学研究院创新团队等项目的支持。
  • Thmorgan生物降解分析仪再次中标
    近日,Thmorgan生物降解分析仪OM7000A在中国科学院宁波材料技术与工程研究所中标。OM7000AThmorgan生物降解分析仪适用于固有生物降解试验、快速生物降解试验、模拟生物降解等实验。Thmorgan生物降解分析仪凭借一流的品质、优质的售后服务,陆续在各科研院所、环保局等安家落户,获得了用户的肯定。产品免费咨询热线:4000-688-151.欢迎您的来电咨询!Thmorgan市场部2016年3月25日
  • 技术讨论:工业污水中COD去除方法及降解剂介绍
    废水处理厂出水和受污染的水中,能被强氧化剂氧化的物质(一般为有机物)的氧当量。在河流污染和工业废水性质的研究以及废水处理厂的运行管理中,它是一个重要的而且能较快测定的有机物污染参数,常以符号COD表示。那危险有哪些呢?使水体发黑,发臭,甚至危害到人体的健康。1、常见的是生化法。生化法常用SBR法,A/O之类的,根据不同情况选择。经过生化法处理之后,基本上COD的浓度可以降至中低浓度。 2、物理法常用的可以用格栅,筛网之类的,根据情况不同来选择。 3、化学法可以选择合适的COD降解剂,这种COD降解剂药剂是针对于生物法处理过后的中低浓度的COD而研发的。COD降解剂的简单介绍: 1、使用范围:适用于中低浓度的COD废水,在500ppm以内COD废水的效果佳。 2、使用原理:集合了氧化、反应沉降、吸附等处理技术,能将污水中的COD等污染物从水体中快速去除。 3、药剂特点: 1)反应速度快,大大缩短了处理流程 2)处理效果优,真正解决了COD的超标问题 3)环保无污染,添加后不会带来新的污染
  • 兰州化物所邱洪灯、陈佳等天然产物中酶抑制剂筛选研究取得新进展
    天然产物具有资源丰富、安全有效、环境友好和毒副作用小等特点,是天然酶抑制剂的重要来源之一。从天然产物中筛选有效、低毒、价廉的酶抑制剂具有重要意义。低共熔溶剂(Deep eutectic solvents, DES)作为一类新型离子液体,具有制备简单、蒸气压低、可生物降解、成本低和设计性强等特点。近年来,中国科学院兰州化学物理研究所中科院西北特色植物资源化学重点实验室手性分离与微纳分析课题组在新型碱性DES的设计合成及用于纳米酶分析方面取得了系列成果。最近,研究人员以L-脯氨酸为氢键供体、六水合硝酸铈为氢键受体,结合理论计算合成了新型DES(图1)。图1. L-脯氨酸与六水合硝酸铈以不同的摩尔比形成的混合物的玻璃化转变温度及三维结合模式图研究人员以摩尔比为1:1的L-脯氨酸和六水合硝酸铈组成的DES为溶剂、反应物和模板,制备出CeO2-Co(OH)2复合材料。结果表明,与水溶液中制备的CeO2、Co(OH)2和CeO2-Co(OH)2材料相比,在该DES中制备的CeO2-Co(OH)2复合材料具有更显著的类氧化酶活性,这主要是由于DES中制得的CeO2-Co(OH)2具有丰富的氧空位。基于CeO2-Co(OH)2纳米材料优异的类氧化酶活性,构建了可视化检测乙酰胆碱酯酶活性和不可逆抑制剂筛选的新方法。在此基础上,研究人员将其成功应用于生物碱类天然产物(盐酸小檗碱、咖啡因、喜树碱、苦参碱和吴茱萸碱)中乙酰胆碱酯酶可逆抑制剂的筛选,并通过分子对接和动力学模拟实验探讨了其作用机理(图2)。该研究不仅拓展了DES在纳米酶中的应用,而且为从天然产物中筛选阿尔茨海默病等神经退行性疾病的治疗药物提供了一种新策略。图2. CeO2-Co(OH)2复合材料用于乙酰胆碱酯酶活性检测及抑制剂筛选该研究发表在Analytical Chemistry上,硕士研究生刘芸为该论文第一作者,兰州化物所陈佳副研究员、邱洪灯研究员和东北大学于永亮教授为共同通讯作者。前期相关研究成果发表在Chinese Chemical Letters(2020, 31, 1584)、Analytical and Bioanlytical Chemistry(2020, 412, 4629)、Microchimica Acta(2020, 187, 314)、ACS Applied Nano Materials(2021, 4, 2820)、Talanta(2021, 222, 121680)和ACS Sustainable Chemistry & Engineering(2021, 9, 15147)上。以上工作得到了国家自然科学基金、中科院青年创新促进会和甘肃省自然科学基金项目的支持。
  • 浅谈限塑令下的生物降解标准和仪器设备
    一、政策背景2020年1月16日,《国家发展改革委、生态环境部关于进一步加强塑料污染治理的意见》正式公布,塑料是重要的基础材料,在社会生产和居民生活中应用广泛。不规范生产、使用、处置塑料会造成资源能源浪费,带来生态环境污染,甚至会影响群众健康安全。中国党中央、国务院高度重视塑料污染问题,将塑料污染治理作为生态文明建设和实现高质量发展的重要内容加以推动;中央全面深化改革委员会将制定“白色污染”综合治理方案列为重点改革任务。随后,北京、上海、浙江、海南、广东、山东等各省市都出台了相关的政策法规,进一步加强塑料污染治理的意见。 二、塑料降解的标准:塑料的降解,一般从4个方面进行评估:(1)分解能力:最终的碎片化堆肥-这是通过以下方式进行的试验堆肥测试(EN 14045标准):测试材料的标本与生物废物堆肥了3个月。 在这段时间之后,测试材料残留物的质量必须小于原始质量的10%。(2)生物降解性:即可堆肥材料的能力在微生物的作用下被转化为二氧化碳。该标准包含必须在不到6个月时间内达到至少90%的生物降解的强制性阈值(实验室测试方法EN14046)。(3)生物相容性:堆肥残留物不能对生物成长过程造成负面影响。(4)重金属含量:在规定范围内,且不得对生物产生毒理作用。 三、生物降解性标准:围绕塑料降解的第2个要点,也就是生物降解性,目前常用于塑料生物降解的相关标准有:(1) GB/T 19277.1-2011(等同ISO 14855-1:2005)受控堆肥条件下材料最终需氧生物分解和崩解能力的测定 采用测定释放的二氧化碳的方法 第1部分 通用方法(2) GB/T 19277.2-2013(等同ISO 14855-2:2007)受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第2部分:用重量分析法测定实验室条件下二氧化碳的释放量 通用方法(3) ASTM D 5338 堆肥条件下塑料材料的好氧性生物降解试验方法(4) EN 13432 包装.通过合成及生物降解评定包装可回收性的要求 四、RTK-PBD塑料生物降解仪RTK公司推出满足GB/T 19277.1-2011和GB/T 19277.2-2013标准的塑料生物降解仪,二者区别如下:标准GB/T 19277.1(2011)GB/T 19277.2(2013)反应器数目每组3个每组2个反应器容积至少2 L,建议3 L500 mLCO2测量原理气相色谱或气体分析仪连续测量;碱液吸收固定后,手动滴定或者TOC测定天平称重 RTK公司是国家高新技术企业。RTK公司自主研发生产RTK-PBD塑料生物降解仪可用于塑料的生物降解性评估,另提供各类实验室生物发酵反应器(如CSTR反应器、UASB反应器、IC反应器、干法车库式反应器等)及其它定制服务。欢迎大家垂询!
  • 《化学品 降解筛选试验 化学需氧量》等化学品国标预审
    全国危险化学品管理标准化技术委员会化学品毒性检测分技术委会(SAC/TC251/SC1)在广州召开了对2008年制定的《化学品 降解筛选试验 化学需氧量》等13项化学品国家标准的预审会议。来自全国危标委、中国人民解放军军事医学科学院毒物药物研究所、中国科学院华南植物园、中山大学、暨南大学、中科院广州地球化学研究所、中国检科院多位专家到会出席了此次会议。   与会专家听取了标准编制单位的汇报,审议了提交的标准初稿,对标准预审稿进行了认真地讨论,并按照GB/T1.1-2009有关规定,就标准编制中的有关问题提出了修改意见和建议。请各标准起草单位按照预审专家组提出的要求和建议进行修改,提交技术委员会正式审定。标准分别是:   一、20080040-T-469化学品危险性分类试验方法 鱼类急性毒性试验   二、20080444-T-469化学品 降解筛选试验 化学需氧量   三、20080446-T-469化学品 生物降解筛选试验 生化需氧量   四、20080451-T-469土壤/污泥吸附常数估测试验 高效液相色谱法(HPLC)   五、20080453-T-469土壤中好氧厌氧转化试验   六、20080890-T-469水 沉积物系统中好氧厌氧转化试验   七、20081305-T-469化学品 快速生物降解性通则   八、20080448-T-469化学品 土壤微生物 碳转化试验   九、20081303-T-469 沉积物-水系统中摇蚊毒性试验 加毒于沉积物的方法   十、20081304-T-469沉积物-水系统中摇蚊毒性试验 加毒于水的方法   十一、20080445-T-469化学品 陆生植物测试 生长活性试验   十二、20080447-T-469化学品 土壤微生物 氮转化试验   十三、20080449-T-469化学品 有机化合物在消化污泥中的厌氧生物降解性 气体产量测定法
  • 托摩根—AO1000模拟生物降解仪新品上线!
    模拟生物降解仪AO1000适用于生物降解性实验, 符合DIN/DEV38412-L24和OECD 303A实验要求,可用于实验室小规模污水处理。 AO1000AO1000模拟生物降解仪利用活性污泥对有机废物的分解消化作用,通过厌氧发酵,好氧生物降解,沉淀分离等流程,来达到对污水的模拟生物降解。托摩根将一如既往,将产品质量放在第一位,加大研发投入,为用户带去更优质的仪器、更完善的服务,为中国的科研事业添砖加瓦!Thmorgan产品咨询热线:4000-688-151. 市场部2017年4月26日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制