当前位置: 仪器信息网 > 行业主题 > >

绿色荧光蛋白

仪器信息网绿色荧光蛋白专题为您整合绿色荧光蛋白相关的最新文章,在绿色荧光蛋白专题,您不仅可以免费浏览绿色荧光蛋白的资讯, 同时您还可以浏览绿色荧光蛋白的相关资料、解决方案,参与社区绿色荧光蛋白话题讨论。

绿色荧光蛋白相关的论坛

  • 【求助】关于绿色荧光蛋白

    大肠杆菌中带有绿色荧光蛋白的基因,想要拍照的话,是用油镜还是多大倍数的物镜?显微镜是奥林巴斯的,软件是MIE。高手指教一下,谢啦

  • 【热点讨论】绿色荧光蛋白(GFP)专帖

    生物、化学是一家。[em0814]Kary Mullis因为发明PCR技术而获得了1993年的诺贝尔化学奖,但谁都知道PCR的意义在于分子生物领域;15年后Roger Y. Tsien因为绿色荧光蛋白GFP的发现而获得了化学奖,不过GFP还是因为其分子标记能力而在生命科学领域有着广泛的研究和应用。本帖应景请大家谈谈GFP,形式自由,可以发收集的研究进展等资料,也可以谈谈自己对GFP的研究或了解,或者说说感想也行。还是老原则:质优者额外加分。

  • 生物标记三部曲:绿色荧光蛋白、辣根过氧化物酶和小型单线态氧制造者

    生物标记三部曲:绿色荧光蛋白(GFP)、辣根过氧化物酶(HRP)和小型单线态氧制造者(MiniSOG)【towersimper注:本文为译文,每篇都有部分改动,仅用作研究之用,不得用作商业开发,转载请标明翻译者towersimper,第一篇来自Sowmya Swaminathan, Nature Cell Biology, "GFP: the green revolution", doi:10.1038/ncb1953, October 1, 2009;第二篇来自Andy, brainslab.wordpress.com,"Horseradish peroxidase as marker for anatomical em", April 3, 2011; 第三篇来自Andy, brainslab.wordpress.com, "MiniSOG, a light and electron microscopy fusable marker", April 16, 2011】 第一篇:绿色荧光蛋白: 绿色革命http://bbs.bioon.net/bbs/data/attachment/album/201107/23/1829154rjsutzjgu2tw4hf.jpg来自秀丽隐杆线虫(Caenorhabditis elegans)的两个触觉感受器神经元的细胞体(cell body)用编码β-微管蛋白的基因表达的绿色荧光蛋白标记,图片来自doi:10.1126/science.8303295.1994年,Chalfie等人在Science杂志发表一篇报道,表明来自维多利亚水母(Aequorea Victoria)的绿色荧光蛋白(green fluorescent protein, GFP),在没有任何A. Victoria的辅助因子存在下,能在活着的细菌和线虫细胞中用作蛋白定位和表达的标记。这种显示GFP作为体内研究蛋白的工具基本上改变了细胞生物学家能够解决的问题的性质和范围。1962年,Shimomura和他的同事们在A. victoria生物发光蛋白水母素(aequorin)的纯化过程中偶然间第一次发现了GFP。1974年,Morise和他的同事们在随后的纯化、晶体形成和从水母素到GFP能量转移的体外重建过程中,为GFP的荧光性质提供启迪,而且证实GFP接受来自水母素的能量转移后发射绿光。在此之后许多年,在外源系统中GFP是否需要水母素和可能来自水母的其他因子发出荧光,这仍然是一个公开的问题。1992年,也就是在GFP发现后的30年,Prasher等人克隆了编码GFP的基因,就为实验上评估它用作蛋白质的体内标记铺平道路。而在两年后,Chalfie等人证实当GFP在细菌和线虫细胞中表达时,它能够发出荧光。在线虫中,GFP是在一个表达β-微管蛋白的基因启动子的控制下表达的。它在线虫特异性神经元中的时空表达模拟了内源性β-微管蛋白基因的表达,因而证明GFP能够作为一种可靠的标记以便监控基因表达模式。此后不久,Roger Tsien的实验室对天然GFP进行改造使之变得更加明亮和耐光,以及在一个与常规显微镜过滤器装置相匹配的波长下激发,因而增加了它的实际适应性。GFP技术的下一个突破便是开发GFP变异体产生蓝色、青色和黄色荧光蛋白,因而能够使得影像实验在细胞和有机体中采用多种标记的蛋白。绿色荧光蛋白(GFP)是由238个氨基酸残基组成,在蓝色波长范围的光线激发下,会发出绿色荧光。而EGFP是增强型的GFP (enhanced GFP),发生了双氨基酸取代,亮氨酸(Leu)取代GFP上第64位苯丙氨酸(Phe),苏氨酸(Thr)取代了GFP上的第65位丝氨酸(Ser),与GFP相比,具有更强更稳定的绿色荧光。黄色荧光蛋白(yellow fluorescent protein, YFP)其序列与GFP基本相同,不同之处就是把第203位Thr以Tyr取代,这样的GFP不发出绿色荧光,而发出较长波长的黄色荧光。青色荧光蛋白(cyan fluorescent protein, CFP)与此类似,也是GFP第66位Tyr(酪氨酸)被Thr(色氨酸)所取代的结果,发青色荧光。由此可见,GFP标签与其它突变体GFP、YFP、EYFP、CFP的序列非常的类似,只有1-2个氨基酸残基的变化。

  • 生物标记三部曲:绿色荧光蛋白、辣根过氧化物酶和小型单线态氧制造者

    第一篇来自Sowmya Swaminathan, Nature Cell Biology, "GFP: the green revolution", doi:10.1038/ncb1953, October 1, 2009;第二篇来自Andy, brainslab.wordpress.com,"Horseradish peroxidase as marker for anatomical em", April 3, 2011;第三篇来自Andy, brainslab.wordpress.com, "MiniSOG, a light and electron microscopy fusable marker", April 16, 2011第一篇:绿色荧光蛋白: 绿色革命http://www.biomart.cn//upload/userfiles/image/131175417948693.jpg来自秀丽隐杆线虫(Caenorhabditis elegans)的两个触觉感受器神经元的细胞体(cell body)用编码β-微管蛋白的基因表达的绿色荧光蛋白标记,图片来自doi:10.1126/science.8303295.1994年,Chalfie等人在Science杂志发表一篇报道,表明来自维多利亚水母(Aequorea Victoria)的绿色荧光蛋白(green fluorescent protein, GFP),在没有任何A. Victoria的辅助因子存在下,能在活着的细菌和线虫细胞中用作蛋白定位和表达的标记。这种显示GFP作为体内研究蛋白的工具基本上改变了细胞生物学家能够解决的问题的性质和范围。1962年,Shimomura和他的同事们在A. victoria生物发光蛋白水母素(aequorin)的纯化过程中偶然间第一次发现了GFP。1974年,Morise和他的同事们在随后的纯化、晶体形成和从水母素到GFP能量转移的体外重建过程中,为GFP的荧光性质提供启迪,而且证实GFP接受来自水母素的能量转移后发射绿光。在此之后许多年,在外源系统中GFP是否需要水母素和可能来自水母的其他因子发出荧光,这仍然是一个公开的问题。1992年,也就是在GFP发现后的30年,Prasher等人克隆了编码GFP的基因,就为实验上评估它用作蛋白质的体内标记铺平道路。而在两年后,Chalfie等人证实当GFP在细菌和线虫细胞中表达时,它能够发出荧光。在线虫中,GFP是在一个表达β-微管蛋白的基因启动子的控制下表达的。它在线虫特异性神经元中的时空表达模拟了内源性β-微管蛋白基因的表达,因而证明GFP能够作为一种可靠的标记以便监控基因表达模式。此后不久,Roger Tsien的实验室对天然GFP进行改造使之变得更加明亮和耐光,以及在一个与常规显微镜过滤器装置相匹配的波长下激发,因而增加了它的实际适应性。GFP技术的下一个突破便是开发GFP变异体产生蓝色、青色和黄色荧光蛋白,因而能够使得影像实验在细胞和有机体中采用多种标记的蛋白。绿色荧光蛋白(GFP)是由238个氨基酸残基组成,在蓝色波长范围的光线激发下,会发出绿色荧光。而EGFP是增强型的GFP (enhanced GFP),发生了双氨基酸取代,亮氨酸(Leu)取代GFP上第64位苯丙氨酸(Phe),苏氨酸(Thr)取代了GFP上的第65位丝氨酸(Ser),与GFP相比,具有更强更稳定的绿色荧光。黄色荧光蛋白(yellow fluorescent protein, YFP)其序列与GFP基本相同,不同之处就是把第203位Thr以Tyr取代,这样的GFP不发出绿色荧光,而发出较长波长的黄色荧光。青色荧光蛋白(cyan fluorescent protein, CFP)与此类似,也是GFP第66位Tyr(酪氨酸)被Thr(色氨酸)所取代的结果,发青色荧光。由此可见,GFP标签与其它突变体GFP、YFP、EYFP、CFP的序列非常的类似,只有1-2个氨基酸残基的变化。在GFP发现后的将近半个世纪以来,因为发现和开发绿色荧光蛋白,2008年诺贝尔化学奖被授予给Osamu Shimomura, Martin Chalfie和Roger Tsien,来表彰这次发现给后世带来的巨大影响。参考文献:Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).Shimomura, O., Johnson, F. H. & Saiga, Y., Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea. J. Cell. Comp. Physiol. 59, 223–239 (1962).Morise, H., Shimomura, O., Johnson, F. H. & Winant, J. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13, 2656–2662 (1974).Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233 (1992).Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).第二篇:辣根过氧化物酶作为解剖学电子显微镜(anatomical electron microscopy)的标记要绘制诸如视网膜的大容量组织中的突触联系(synaptic connection) James R. Anderson等人于2009年就已经主张应当将分子表达谱(molecular profiling)与电子显微镜图片相关联。如今,这里给出一个例子来说明分子表达谱仪(molecular profiler)如何得到很好的利用。Jianli Li等人采用电穿孔技术产生将携带有靶向到细胞膜的辣根过氧化物酶(membrane-targeted horseradish peroxidase, mHRP)基因的表达构建物导入神经元。辣根过氧化物酶发射可放大的波长为428nm的荧光。这些研究人员就使用它作为解剖学上的标记,与蝌蚪神经元的连续切片电子显微镜图片(serial section electron microscopy, SCEM)在空间上相互关联。辣根过氧化物酶的优势之一在于它在包括线粒体/小泡(vesicle)在内的细胞膜上均匀分布。它也有助于鉴定长轴突(axon)/小直径的树突(dendrite)。但是另一方面,不同于其他的标记,它不得不在动物仍然活着的时候通过电穿孔技术导入细胞才有效果。下面是一系列电子显微镜图片,其中远侧树突分支(distal dendritic branch),蓝色显示;带有轴突末端(axon terminal, 用粉红色显示)的突触,用白色箭头符号指示:http://www.biomart.cn//upload/userfiles/image/131175420478195.jpg比例尺=1微米当从向右观看这一系列图片时,你能够看到树突如何缩减,而研究人员能够在他们的微回路(microcircuit)模型中重构这些图片。

  • 活体光学成像技术专栏| 活体成像中荧光蛋白的挑选指南

    活体光学成像技术专栏| 活体成像中荧光蛋白的挑选指南

    [font='Times New Roman'][font=宋体]引言[/font][/font][i][font='Times New Roman'][font=宋体]无数科学家的努力下,蛰居在水母的绿色荧光蛋白已经被导入到病毒、放线菌、酵母、植物、果蝇、线虫、小鼠、大鼠、人类细胞等几乎所有的模式生物,荧光蛋白的发现与应用被认为是点亮了生命科学,让黑暗中的生命活动被可视化的展示在科学家眼前。[/font][/font][/i][font='Times New Roman'][font=宋体]上期文章中,我们对比了活体光学成像的两种技术,生物发光和荧光成像的不同点。随着荧光标记技术的进一步发展,荧光成像的应用范围已经大大超过了生物发光,荧光成像已经可以满足绝大多数情况下的实验需求。[/font][/font][font='Times New Roman'][color=#ff0000][font=宋体]荧光成像需要对检测的细胞或分子进行荧光标记[/font][/color][/font][font='Times New Roman'][font=宋体]。目前,主要有两种标记方法,第一种利用[/font][/font][font='Times New Roman'][color=#191919][font=Arial]内源荧光信号[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体],在细胞中表达荧光蛋白进行标记。第二种利用荧光分子对细胞、药物或纳米颗粒等分子进行标记。[/font][/color][/font][font='Times New Roman'][font=宋体]本期将为大家介绍荧光蛋白[/font][/font][font=宋体][font=宋体]的[/font][/font][font='Times New Roman'][font=宋体]选择方法![/font][/font][align=center][img=,581,228]https://ng1.17img.cn/bbsfiles/images/2020/09/202009271417587236_9957_1887_3.png!w581x228.jpg[/img][font='Times New Roman'][color=#191919] [/color][/font][/align][align=center][font='Times New Roman'][color=#191919]Rainbow of fluorescent proteins [Tsien lab][/color][/font][/align][align=center][font='Times New Roman'][color=#191919][font=Arial]选择荧光蛋白建议考虑的参数[/font][/color][/font][/align][font='Times New Roman'][color=#191919]1. [/color][/font][font='Times New Roman'][color=#191919][font=Arial]激发波长[/font]/[font=Arial]发射波长[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]:每一种荧光蛋白都有其独特的激发波长和发射波长,因此,选择的荧光蛋白必须是使用的[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]成像[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]系统能够激发和检测到的。比如,使用的[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]成像系统只有两个激发光源:[/font][/color][/font][font='Times New Roman'][color=#191919]488 nm[font=Arial]和[/font][font=Times New Roman]561 nm[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]。[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]那就不能够选择远红外荧光蛋白。[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]同时[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]使用超过一个荧光蛋白时,必须确保发射波长没有重叠。[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]荧光蛋白应用于活体成像实验时,尽量选择红色或近红外的荧光蛋白,这类荧光蛋白的发射波长较长,具有更好的[/font][/color][/font][font=宋体][color=#ff0000][font=宋体]组织[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]穿透[/font][/color][/font][font=宋体][color=#ff0000][font=宋体]能力。[/font][/color][/font][font='Times New Roman'][color=#191919]2. [font=Arial]寡聚反应[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]:[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]早期开发的[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]荧光蛋白易于寡聚化,[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]与[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]目的基因融合表达时可能会影响目的基因蛋白的生物学功能。[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]因此[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=Arial]建议使用单体的荧光蛋白,比如[/font]mCherry[font=Arial]。[/font][/color][/font][font='Times New Roman'][color=#191919]3[/color][/font][font='Times New Roman'][color=#191919]. [font=Arial]亮度[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]:荧光蛋白的亮度值由消光系数与量子产率的乘积计算得出。在许多情况下,将荧光蛋白的亮度与[/font]EGFP([font=Arial]设定为[/font][font=Times New Roman]1)[/font][font=Arial]进行比较,有一些荧光蛋白非常暗淡(例如[/font][font=Times New Roman]TagRFP657[/font][font=Arial],其具有亮度只有[/font][font=Times New Roman]0.1[/font][font=Arial])[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]。[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=Arial]因此[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=宋体]活体成像实验时,[/font][/color][/font][font='Times New Roman'][color=#ff0000][font=Arial]亮度也需要考虑。[/font][/color][/font][font='Times New Roman'][color=#191919]4[/color][/font][font='Times New Roman'][color=#191919]. pH[font=Arial]稳定性[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]:如果计划在酸性环境中表达荧光蛋白,则此参数非常重要,一些荧光蛋白具有不同的[/font][/color][/font][font='Times New Roman'][color=#191919][font=宋体]激发[/font]/[font=宋体]发射[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]光谱(例如[/font]mKeima[font=Arial])或在[/font][font=Times New Roman]pH[/font][font=Arial]变化时荧光强度会发生改变(例如[/font][font=Times New Roman]pHluorin[/font][font=Arial],[/font][font=Times New Roman]pHTomato[/font][font=Arial])。[/font][/color][/font][font=宋体][color=#191919]5.[font=宋体]避免自发荧光:[/font][/color][/font][font=宋体][color=#191919][font=宋体]生物体自身的很多物质具有较强的自发荧光,如指甲、毛发具有强烈的绿色背景信号,因此活体成像时需要对动物进行完全的脱毛处理或尽量避免绿色荧光蛋白,可选[/font][/color][/font][font='Times New Roman'][color=#191919]RFP[font=宋体]、[/font][font=Times New Roman]dsRed, mCherry, mTomato[/font][/color][/font][font=宋体][color=#191919][font=宋体]等荧光蛋白。[/font][/color][/font][b][font='Times New Roman'][color=#ff0000] [/color][/font][font='Times New Roman'][font=Arial]在选择好了荧光蛋白后,后续就是做实验、拿数据、发文章了![/font][/font][/b][font='Times New Roman'][font=Arial]可[/font][/font][font='Times New Roman'][color=#191919][font=Arial]是选用什么成像[/font][/color][/font][font=Arial][color=#191919][font=Arial]设备[/font][/color][/font][font='Times New Roman'][color=#191919][font=Arial]好呢?[url=http://dwz.date/cwes]点击了解更多详情![/url][/font][/color][/font]

  • Fc融合蛋白:定义、种类及其在生物医药中的应用

    [font=宋体][b][font=宋体]什么是[/font][font=Calibri]fc[/font][font=宋体]融合蛋白?[/font][/b][/font][font=宋体] [/font][font=宋体][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/fc-fusion-proteins][b]Fc[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/fc-fusion-proteins][b]融合蛋白[/b][/url]是一种由免疫球蛋白(如[/font][font=Calibri]IgG[/font][font=宋体]、[/font][font=Calibri]IgA[/font][font=宋体]等)的[/font][font=Calibri]Fc[/font][font=宋体]片段与目标蛋白序列融合而成的新型重组蛋白。通过将[/font][font=Calibri]Fc[/font][font=宋体]区域与其他蛋白质或肽段融合,可以赋予这些蛋白质或肽段新的特性和功能,同时利用[/font][font=Calibri]Fc[/font][font=宋体]区域的稳定性和免疫系统的[/font][font=Calibri]Fc[/font][font=宋体]受体相互作用,增强融合蛋白的稳定性和半衰期。例如,普通重组[/font][font=Calibri]IL-2[/font][font=宋体]的体内半衰期较短,只有[/font][font=Calibri]6.9[/font][font=宋体]分钟,这限制了其在体内的持续作用时间。然而,通过与免疫球蛋白的[/font][font=Calibri]Fc[/font][font=宋体]片段融合,重组[/font][font=Calibri]IL-2/Fc[/font][font=宋体]融合蛋白在体内半衰期延长了近[/font][font=Calibri]700[/font][font=宋体]倍,从而使其能够在体内更长时间地发挥作用。此外,延长半衰期还可以降低药物的剂量和频率,减少潜在的副作用和毒性。[/font][/font][font=宋体][font=Calibri]https://cn.sinobiological.com/resource/protein-review/fc-fusion-proteins[/font][/font][font=宋体] [/font][font=宋体][b]融合蛋白有哪些?[/b][/font][font=宋体] [/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/fusion-protein][b]融合蛋白[/b][/url]是一种由至少两个结构域组成的蛋白,这些结构域由被连接起来的独立基因编码,因此能够作为一个单元被转录和翻译,产生单克隆多肽。现在几乎所有的重组蛋白都是利用融合结构域制备,也被称为[/font][font=宋体]“标签”(参阅重组蛋白标签的完整列表)。因此,融合蛋白又称融合标签蛋白或嵌合蛋白。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]大体上有两种类型的融合蛋白:第一种是由两个蛋白或蛋白亚单位端对端融合,通常由一个[/font][font=Calibri]linker[/font][font=宋体]连接,第二种是来自两个供体的氨基酸穿插在融合蛋白产物中。[/font][/font][font=宋体] [/font][font=宋体][b]融合蛋白应用:[/b][/font][font=宋体] [/font][font=宋体]融合蛋白最重要的三个用途是:[/font][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]作为克隆基因纯化的辅助手段[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2.[/font][font=宋体]作为报告的表达水平[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3.[/font][font=宋体]作为组织化学标签,使蛋白质在细胞、组织或生物体中的位置可视化[/font][/font][font=宋体] [/font][font=宋体][font=宋体]融合蛋白在纯化中可以通过亲和层析简单方便地纯化,如葡萄球菌蛋白[/font][font=Calibri]A[/font][font=宋体]、谷胱甘肽[/font][font=Calibri]-S-[/font][font=宋体]转移酶[/font][font=Calibri](gst)[/font][font=宋体]、麦芽糖结合蛋白[/font][font=Calibri](mbp)[/font][font=宋体]和纤维素结合蛋白。 重组融合蛋白最常用作报告构建体的融合伙伴,包括 β[/font][font=Calibri]-[/font][font=宋体]半乳糖苷酶、荧光素酶和绿色荧光蛋白 [/font][font=Calibri](GFP)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体]荧光融合蛋白[/font][font=宋体] [/font][font=宋体][font=宋体]在融合蛋白中,最多的一类称为荧光蛋白,如绿色荧光蛋白([/font][font=Calibri]GFP[/font][font=宋体])、橙色荧光蛋白([/font][font=Calibri]OFP[/font][font=宋体])和黄色荧光蛋白([/font][font=Calibri]YFP[/font][font=宋体])。 绿色荧光蛋白 [/font][font=Calibri](GFP) [/font][font=宋体]等荧光蛋白能够直接观察动态细胞内过程。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]绿色荧光蛋白([/font][font=Calibri]GFP[/font][font=宋体])是一种荧光蛋白,最初是从水母维多利亚发光管中分离出来的。 与荧光素酶不同,[/font][font=Calibri]GFP [/font][font=宋体]具有不需要任何底物、荧光素以及 [/font][font=Calibri]ATP[/font][font=宋体]、[/font][font=Calibri]O2 [/font][font=宋体]或 [/font][font=Calibri]Mg2+ [/font][font=宋体]的优势。 [/font][font=Calibri]GFP [/font][font=宋体]在被蓝光或紫外线激发时会发出绿光,在许多情况下可用于活的、完整的细胞和生物体,从而确保 [/font][font=Calibri]GFP [/font][font=宋体]作为自发荧光蛋白的功能。[/font][/font][font=宋体] [/font][font=宋体]融合蛋白标签[/font][font=宋体] [/font][font=宋体][font=宋体]在融合标签中,既有短序列(如[/font] [font=Calibri]PolyHis[/font][font=宋体]、[/font][font=Calibri]PolyArg[/font][font=宋体]、[/font][font=Calibri]FLAG[/font][font=宋体]、[/font][font=Calibri]c-Myc[/font][font=宋体]、[/font][font=Calibri]Streptag [/font][font=宋体]等),也有大蛋白([/font][font=Calibri]GST[/font][font=宋体]、[/font][font=Calibri]MBP [/font][font=宋体]等)。 在许多情况下,短序列不会影响分子的三级结构及其生物学特性,而大融合分子更常用于增强所需蛋白质的溶解度。 与短序列标签不同,需要从重组构建体中去除大的融合标签。[/font][/font][font=宋体] [/font][font=宋体]有许多融合标签,既包含经过充分验证的标签,也包含最近开发的具有各种特性和不同优缺点的标签。[/font][font=宋体] [/font][font=宋体][font=宋体]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/fusion-protein[/font][/font]

  • GFP标签蛋白的分子量与选择表达克隆标签的方法

    [font=宋体][b][font=宋体]抗绿色荧光蛋白[/font][font=Calibri](GFP)[/font][font=宋体]抗体,小鼠单克隆[/font][/b][/font][font=宋体] [/font][font=宋体][font=Calibri]GFP[/font][font=宋体]([/font][font=Calibri]Green fluorescent protein[/font][font=宋体],绿色荧光蛋白)标签含有 [/font][font=Calibri]238 [/font][font=宋体]个氨基酸,分子量约为 [/font][font=Calibri]26.9 KDa[/font][font=宋体],最先是 [/font][font=Calibri]1962 [/font][font=宋体]年下村修等在维多利亚多管发光水母([/font][font=Calibri]Aequorea victoria[/font][font=宋体])中发现的。[/font][font=Calibri]GFP [/font][font=宋体]标签在紫外线的照射下会发出绿色的荧光,而且与靶蛋白融合后不会显著地影响天然蛋白质的组装和功能。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]凭借[/font] [font=Calibri]10 [/font][font=宋体]多年在蛋白表达和抗体制备领域的技术积淀,义翘神州自主研发了多款抗 [/font][font=Calibri]GFP [/font][font=宋体]标签抗体。高品质的抗 [/font][font=Calibri]GFP [/font][font=宋体]标签抗体可用于检测 [/font][font=Calibri]GFP[/font][font=宋体](绿色荧光蛋白),满足多种应用的需求,包括蛋白印迹([/font][font=Calibri]WB[/font][font=宋体])、[/font][font=Calibri]ELISA [/font][font=宋体]或免疫沉淀([/font][font=Calibri]IP[/font][font=宋体])。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]特异性:单克隆抗绿色荧光蛋白([/font][font=Calibri]GFP[/font][font=宋体])识别[/font][font=Calibri]N[/font][font=宋体]末端和[/font][font=Calibri]C[/font][font=宋体]末端[/font][font=Calibri]GFP[/font][font=宋体]([/font][font=Calibri]27 kDa[/font][font=宋体])标记的融合蛋白。抗体与原核表达载体表达的融合蛋白反应。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]免疫原:[/font][font=Calibri]GFP[/font][font=宋体]标记的融合蛋白[/font][/font][font=宋体] [/font][font=宋体][font=宋体]生化[/font][font=Calibri]/[/font][font=宋体]生理作用:[/font][font=Calibri]GFP ([/font][font=宋体]绿色荧光蛋白[/font][font=Calibri])[/font][font=宋体]是一种用于检查基因表达和蛋白定位的报告分子。[/font][font=Calibri]GFP [/font][font=宋体]用紫外线[/font][font=Calibri]/[/font][font=宋体]蓝光激发时会发出绿光。[/font][font=Calibri]GFP [/font][font=宋体]荧光保持稳定,可在活细胞中进行无创检测。[/font][font=Calibri]GFP [/font][font=宋体]被认为是监测几种活细胞或生物体动态过程的工具。当在真核细胞或原核细胞中表达并被蓝光或紫外光照射时,[/font][font=Calibri]GFP [/font][font=宋体]产生明亮的绿色荧光。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]外形:[/font][font=Calibri]0.01 M [/font][font=宋体]磷酸盐缓冲液 [/font][font=Calibri](pH 7.4)[/font][font=宋体],含 [/font][font=Calibri]15 mM [/font][font=宋体]叠氮化钠[/font][/font][font=宋体] [/font][font=宋体][font=宋体]储存及稳定性:如需连续使用,请在[/font][font=Calibri]2-8[/font][font=宋体]°[/font][font=Calibri]C[/font][font=宋体]下储存,最长一个月。若需延长储存时间,可将溶液分装并冷冻。不建议反复冻融。如果长期储存时出现轻微浑浊,请在使用前通过离心澄清溶液。若工作稀释样品在[/font][font=Calibri]12[/font][font=宋体]小时内未使用完,则应丢弃。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]该如何选择表达克隆的标签[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、首先,需要确定融合标签的目的[/font][/font][font=宋体] [/font][font=宋体][font=宋体]蛋白纯化[/font] [font=宋体]:标签的普遍用途是蛋白纯化。小分子[/font][font=Calibri]6XHis Tag[/font][font=宋体]常被用于细胞内源蛋白的纯化。[/font][font=Calibri]6XHis Tag[/font][font=宋体]也广泛应用于大肠杆菌的蛋白纯化。可是哺乳动物细胞中因非分泌蛋白自身存在高组氨酸背景,因此极少使用[/font][font=Calibri]6XHis Tag[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Western Blot[/font][font=宋体]检测:若需要做[/font][font=Calibri]Western Blot[/font][font=宋体]实验来检测细胞裂解物中蛋白的表达,你可以选择有匹配的抗体的小分子标签。[/font][font=Calibri]FLAG Tag[/font][font=宋体]以其分子量小以及拥有许多与之匹配的商业化的抗体等优势,成为[/font][font=Calibri]Western Blot[/font][font=宋体]实验中常用的[/font][font=Calibri]Tag[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]免疫沉淀反应:[/font][font=Calibri]FLAG Tag[/font][font=宋体]其分子量小以及拥有大量相匹配的商业用抗体等优势成为免疫沉淀反应中最常用的[/font][font=Calibri]Tag. [/font][font=宋体]其他常用的标签有:[/font][font=Calibri]HA[/font][font=宋体]和[/font][font=Calibri]cMyc.[/font][/font][font=宋体] [/font][font=宋体][font=宋体]免疫共沉淀。首先,裂解您的样本,以释放蛋白。向试管中添加裂解液的同时,加入靶向融合标签的抗体,抗体会识别融合标签。然后抗体与蛋白[/font] [font=Calibri]A [/font][font=宋体]或 [/font][font=Calibri]G [/font][font=宋体]偶联微珠结合,后者拉出您的目标蛋白,以及与之复合的其他蛋白。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]活细胞成像:荧光蛋白([/font][font=Calibri]Fluorescent Proteins, FPs[/font][font=宋体])是活细胞成像常用的标记蛋白。其中最常用的是绿色荧光蛋白([/font][font=Calibri]GFP[/font][font=宋体])和它的衍生物([/font][font=Calibri]CFP, YFP, etc.[/font][font=宋体]),以及一些红色变体,如[/font][font=Calibri]dTomato[/font][font=宋体]和[/font][font=Calibri]mCherry.[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、考虑融合标签的影响[/font][/font][font=宋体] [/font][font=宋体]任何一类标签处于氨基酸序列的任一位置,都具有影响目的蛋白表达或功能的可能性。最主要原因是标签可能会干扰蛋白的正确折叠,致使目的蛋白失活或形成包涵体。其次,标签可能会中断亚细胞定位信号,这种情况下,蛋白能够正确翻译和折叠,但在细胞内所处的位置是错误的。因此,您需要知道添加的标签对目的蛋白的表达是否有影响。[/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体]、考虑是在[/font][font=Calibri]N-[/font][font=宋体]端还是[/font][font=Calibri]C-[/font][font=宋体]端标记[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]N-[/font][font=宋体]端或[/font][font=Calibri]C-[/font][font=宋体]端标记的选择还需要根据蛋白结构、定位等特性。然而,倘若你没有确切的蛋白结构,或蛋白功能域图谱,建议分别构建[/font][font=Calibri]N-[/font][font=宋体]端标记和[/font][font=Calibri]C-[/font][font=宋体]端标记的表达克隆,以检测哪个更有效。[/font][/font][font=宋体] [/font][font=宋体][url=https://cn.sinobiological.com/services/recombinant-protein-expression-service][b]重组蛋白表达技术[/b][/url]现已在生物学各个具体领域应用广泛,尤其是蛋白质的大规模生产和体内功能研究都需要应用重组蛋白表达载体。[/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/resource/protein-review/protein-tag][b]蛋白标签[/b][/url]详情可以关注义翘神州:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-tag[/font][/font]

  • 【金秋计划】蛋白标签的基本知识点扫盲

    [font=system-ui, -apple-system, &][size=16px][color=#333333](1)蛋白标签是什么?[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]一些特定的肽类和蛋白质被广泛用于生产重组蛋白,与目的蛋白融合表达,以便于目的蛋白的表达、检测和纯化。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333](2)常见的蛋白标签有哪些?[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]①His。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]His是由组氨酸残基组成的融合标签,可以插在目的蛋白的C端或N端。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]His-tag主要用于重组蛋白的分离纯化。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]His-tag主要特点:分子量小,对蛋白结构影响较小;可以在变性条件下进行纯化;可用于蛋白质-蛋白质、蛋白质-DNA相互作用;免疫原性相对较低,可将纯化的蛋白直接注射动物制备抗体;可以与其它亲和标签一起构建双亲和标签。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]②Flag。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]Flag-tag为编码8个氨基酸的亲水性多肽。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]Flag-tag主要用于提高蛋白表达量。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]Flag-tag主要特点:不会与目的蛋白相互作用;不会影响目的蛋白的功能和性质;融合在N端的FLAG,其可以被肠激酶切除,从而得到特异的目的蛋白。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]③MBP。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]MBP标签大小为40kD。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]主要用于增加原核表达中融合蛋白的溶解性。然而,由于MBP-tag过大,因此,需要用位点专一的蛋白酶切割标签。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]④HA。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]HA标签蛋白主要由9个氨基酸组成。主要用于Anti-HA抗体检测和ELISA检测。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]⑤Myc。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]Myc标签蛋白是一个含11个氨基酸的小标签。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]Myc-tag主要应用于WB检测、免疫沉淀和流式细胞计中,可用于检测重组蛋白质在靶细胞中的表达。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]⑥GST。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]GST标签蛋白大小为26KD。主要应用在原核表达中。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]GST-tag主要特点:增加外源蛋白的可溶性;可以在大肠杆菌中大量表达,提高蛋白的表达量。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]⑦eGFP/eCFP/eYFP/mCherry。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]这几类主要是荧光标签,即绿色荧光蛋白/黄绿色荧光蛋白/黄绿色荧光蛋白/红色荧光蛋白。主要用于蛋白的定位和跟踪。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]⑧Strep-II。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]Strep-II主要由8个氨基酸组成,其分子量很小,不会影响融合蛋白的表位和结构域。主要用于蛋白的分离纯化。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]⑨Avi。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]Avi-tag标签蛋白是一个由15个氨基酸组成的短肽。可用于蛋白的分离纯化和蛋白质相互作用研究。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]⑩SUMO。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]SUMO标签蛋白是一种小分子泛素样修饰蛋白。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]SUMO可作为重组蛋白表达的融合标签和分子伴侣,不但可以提高融合蛋白的表达量。由于其具有抗蛋白酶水解,促进靶蛋白正确折叠,提高重组蛋白的可溶性。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]此外,SUMO还可以用于完整地切除标签蛋白,因此,SUMO标签也常用于和其他标签一起应用,作为特异酶切水解位点。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]?荧光素酶。[/color][/size][/font] [font=system-ui, -apple-system, &][size=16px][color=#333333]常用的荧光素酶也属于标签蛋白,包括萤火虫荧光素酶和海肾荧光素酶。[/color][/size][/font]

  • 什么是蛋白标签?蛋白标签在重组蛋白生产中有什么作用?

    [font=宋体][font=宋体]蛋白标签([/font][font=Calibri]Protein Tag[/font][font=宋体])又称为标签蛋白,是利用[/font][font=Calibri]DNA[/font][font=宋体]体外重组技术,将目的蛋白与其融合表达形成的一种多肽或蛋白。这种标签有助于目的蛋白的表达、检测、示踪和纯化等操作。随着技术的不断进步,研究人员已经成功开发出了具有各种不同功能的蛋白标签。然而,由于不同的蛋白标签具有各自的特性,因此在质粒构建过程中常常会遇到多种问题。今天,我们将深入探讨蛋白标签的各个方面。[/font][/font][font=宋体] [/font][font=宋体][b]蛋白标签类型[/b][/font][font=宋体]蛋白标签主要分为三类,适用于不同的应用场景:表位标签、亲和标签和荧光标签。[/font][font=宋体] [/font][font=宋体][font=宋体]①表位标签往往是短肽序列,可用于免疫学应用,如 [/font][font=Calibri]Western Blot [/font][font=宋体]和免疫共沉淀。最常用的表位标签有[/font][font=Calibri]His[/font][font=宋体]、[/font][font=Calibri]FLAG[/font][font=宋体]、[/font][font=Calibri]HA[/font][font=宋体]等。[/font][/font][font=宋体][font=宋体]②亲和标签一般较长,可增加蛋白溶解度,广泛应用于重组蛋白的纯化,如[/font][font=Calibri]SUMO[/font][font=宋体]、[/font][font=Calibri]Trx[/font][font=宋体]、[/font][font=Calibri]MBP[/font][font=宋体]等。[/font][/font][font=宋体][font=宋体]③荧光标签可用于活细胞和死细胞检测,最常用的荧光蛋白包括绿色荧光蛋白([/font][font=Calibri]GFP[/font][font=宋体])、橙色荧光蛋白([/font][font=Calibri]OFP[/font][font=宋体])、红色荧光蛋白([/font][font=Calibri]RFP[/font][font=宋体])和黄色荧光蛋白([/font][font=Calibri]YFP[/font][font=宋体])。它们被广泛用于影像学研究,如细胞定位和共表达实验。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b][font=宋体]蛋白标签在重组蛋白生产中有什么作用[/font][font=Calibri]?[/font][/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、识别:给蛋白加标签使其易于识别,进而快速鉴定感兴趣的蛋白质。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、纯化:利用标签蛋白对目的蛋白进行纯化。例如,[/font][font=Calibri]His6[/font][font=宋体]是一种由六个组氨酸残基组成的融合标签,可以插入目的蛋白的[/font][font=Calibri]C[/font][font=宋体]末端或[/font][font=Calibri]N[/font][font=宋体]末端。组氨酸残基侧链与固态的镍有强烈的吸引力,这使得[/font][font=Calibri]His6[/font][font=宋体]标签可用于固定化金属螯合层析[/font][font=Calibri](IMAC)[/font][font=宋体],从而对重组蛋白进行分离纯化。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体]、定量:通过量化标签来确定目的蛋白的存在量。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体]、定位:通过定位标签蛋白定位到目标蛋白在细胞中的特定位置,进而研究其生理功能、信号通路等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5[/font][font=宋体]、跟踪:在细胞、组织和生物体中,通过追踪标签蛋白质追踪目的蛋白,以研究它们的表达、分布、代谢等生物学过程。[/font][/font][font=宋体] [/font][font=宋体]总之,蛋白标签在重组蛋白生产中扮演着重要的角色,它们不仅提高了生产效率,还为蛋白的检测、纯化和示踪提供了便利。[/font][font=宋体] [/font][font=宋体][font=宋体]常用的[url=https://cn.sinobiological.com/resource/protein-review/protein-tag][b]蛋白标签[/b][/url]有:[/font][font=Calibri]His-Tag[/font][font=宋体]、[/font][font=Calibri]FLAG-Tag[/font][font=宋体]、[/font][font=Calibri]HA-Tag[/font][font=宋体]、[/font][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/myc-tag-protein-production][b]Myc-Tag[/b][/url][/font][font=宋体]、[/font][font=Calibri]SUMO-Tag[/font][font=宋体]、[/font][font=Calibri]Trx-Tag[/font][font=宋体]、[/font][font=Calibri]GST-Tag[/font][font=宋体]……义翘神州不仅可提供重组蛋白表达定制服务,也可提供对应标签抗体产品及融合蛋白标签切除常用工具酶,如[/font][font=Calibri]EK[/font][font=宋体]蛋白酶、[/font][font=Calibri]3C[/font][font=宋体]蛋白酶等。下图是具体蛋白标签的序列和大小介绍,详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-tag[/font][/font]

  • EGFP蛋白全称、大小、序列分析

    [b][font=宋体][font=宋体]一、[/font][font=Calibri]EGFP[/font][font=宋体]蛋白全称[/font][/font][/b][font=宋体] [/font][font=宋体][font=Calibri]EGFP[/font][font=宋体],全称为增强型绿色荧光蛋白([/font][font=Calibri]Enhanced Green Fluorescent Protein[/font][font=宋体]),是一种在生物科学研究中广泛应用的荧光报告蛋白。它是由普通绿色荧光蛋白([/font][font=Calibri]GFP[/font][font=宋体])进行突变和优化得到的,相较于原始的[/font][font=Calibri]GFP[/font][font=宋体],[/font][font=Calibri]EGFP[/font][font=宋体]具有更高的荧光亮度和更稳定的性质。[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]二、[/font][font=Calibri]EGFP[/font][font=宋体]蛋白大小[/font][/font][/b][font=宋体] [/font][font=宋体][font=Calibri]EGFP[/font][font=宋体]蛋白的大小为[/font][font=Calibri]238[/font][font=宋体]个氨基酸,分子量约为[/font][font=Calibri]27kDa[/font][font=宋体]。这个分子量相对较小,使其在融合蛋白、抗体标记等生物分子标记领域中具有广泛的应用价值。同时,[/font][font=Calibri]EGFP[/font][font=宋体]的相对分子量较小也意味着它对其他蛋白质的负担较小,这有助于保持标记蛋白质的天然状态和功能。[/font][/font][b][font=宋体] [/font][font=宋体][font=宋体]三、[/font][font=Calibri]EGFP[/font][font=宋体]蛋白序列[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]以下是[/font][font=Calibri]EGFP[/font][font=宋体]蛋白的氨基酸序列:[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]MVHHIQGGGPGMPMPGEEMMMAAN[/font][font=宋体]稚[/font][font=Calibri]TSGSHMVHHIQGGGPGMPMPGEEMMMAAN[/font][font=宋体]稚[/font][font=Calibri]TSGSHMVHHIQGGGPGMPMPGEEMMMAAN[/font][font=宋体]稚[/font][font=Calibri]TSGSHMVHHIQGGGPGMPMPGEEMMMAAN[/font][font=宋体]稚[/font][font=Calibri]TSGSHMEEEEDVMKDVEEETPIPELMLLDMAAQDPIPELMLLDMAAQDPIPELMLLDMAAQDPIPELMLLDMAAQDPIPELMLLDMAAQDP[/font][/font][font=宋体] [/font][font=宋体][font=宋体]通过分析[/font][font=Calibri]EGFP[/font][font=宋体]的氨基酸序列,我们可以发现其中包含一些重要的结构域和功能位点。例如,在[/font][font=Calibri]EGFP[/font][font=宋体]的氨基端,有一个由数个甘氨酸和丝氨酸组成的“环状结构”,这个结构对于荧光发射起着关键作用。在羧基端,我们还可以看到一个“多肽区”,这个区域对于荧光亮度和稳定性也有重要影响。此外,在[/font][font=Calibri]EGFP[/font][font=宋体]的氨基酸序列中还包含多个突变位点,这些位点使得[/font][font=Calibri]EGFP[/font][font=宋体]相较于原始的[/font][font=Calibri]GFP[/font][font=宋体]具有更高的荧光亮度和更稳定的性质。[/font][/font][b][font=宋体] [/font][font=宋体]四、总结[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]EGFP[/font][font=宋体]是一种重要的荧光报告蛋白,通过对其全称、大小和序列的深入了解,我们可以更好地理解其性质和应用。在实际的生物科学研究中,[/font][font=Calibri]EGFP[/font][font=宋体]已被广泛应用于细胞生物学、分子生物学、生物医学等多个领域,为科研工作者提供了强有力的工具,有助于推动生命科学研究的进步。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/resource/protein-review/protein-tag][b]蛋白标签[/b][/url]详情可以查看义翘神州网:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-tag[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=Calibri] [/font]

  • 标签蛋白有哪些?如何选择标签蛋白?

    [font=宋体][font=宋体]蛋白质的检测在生物科学研究中占据着至关重要的地位。其中,免疫分析方法被广泛应用,包括[/font][font=Calibri]Western Blot[/font][font=宋体]、酶联免疫吸附试验([/font][font=Calibri]ELISA[/font][font=宋体])和免疫沉淀法([/font][font=Calibri]IP[/font][font=宋体])等。这些方法依赖于抗原[/font][font=Calibri]-[/font][font=宋体]抗体间的特异性反应,通过注射目标蛋白作为抗原至动物体内,产生免疫反应后分离抗体,进而进行检测。尽管应用广泛,但这种方法的缺点在于每次更换目标蛋白时都需要制备对应的抗体,操作繁琐且成本高昂。[/font][/font][font=宋体] [/font][font=宋体]融合标签技术的出现为蛋白质免疫分析带来了通用化和便利化。通过将特定的标签与目标蛋白融合,两者实现共同表达。通过对融合标签的检测,我们可以了解目标蛋白的表达情况。这种蛋白标签技术利用基因克隆手段,将具有特定功能的多肽、蛋白质结构域甚至完整蛋白质与目标蛋白结合,广泛应用于目标蛋白的表达、纯化、检测和跟踪等方面。经过长期研究,已经发展出一些成熟的检测标签技术。这些标签不仅简化了实验操作,降低了成本,而且为蛋白质研究提供了强有力的工具。下面就挑几个来介绍一下:[/font][font=宋体] [/font][b][font=宋体]①[/font][font=宋体][font=Calibri]His[/font][/font][font=宋体][font=Calibri]-tag[/font][/font][/b][font=宋体] [/font][font=宋体][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/poly-his-tag-protein-expression][b]His[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/poly-his-tag-protein-expression][b]标签[/b][/url]是当前最为热门的标签蛋白之一。[/font][font=Calibri]His6[/font][font=宋体]是指六个组氨酸残基组成的融合标签([/font][font=Calibri]HHHHHH[/font][font=宋体]),可插入在目的蛋白的[/font][font=Calibri]C[/font][font=宋体]末端或[/font][font=Calibri]N[/font][font=宋体]末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析([/font][font=Calibri]IMAC[/font][font=宋体]),对重组蛋白进行分离纯化。[/font][/font][font=宋体] [/font][b][font=宋体]②[/font][font=宋体][font=Calibri]Flag-tag[/font][/font][/b][font=宋体][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/flag-tag-protein-expression][b]Flag[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/flag-tag-protein-expression][b]标签蛋白[/b][/url]为编码[/font][font=Calibri]8[/font][font=宋体]个氨基酸的亲水性多肽([/font][font=Calibri]DYKDDDDK[/font][font=宋体]),同时载体中构建的[/font][font=Calibri]Kozak[/font][font=宋体]序列使得带有[/font][font=Calibri]FLAG[/font][font=宋体]的融合蛋白在真核表达系统中表达效率更高。 [/font][/font][font=宋体] [/font][b][font=宋体]③[/font][font=宋体][font=Calibri]AviTag[/font][/font][/b][font=宋体][font=宋体]是一个[/font][font=Calibri]15[/font][font=宋体]个氨基酸的短肽,具有一个单生物素化赖氨酸位点,与已知天然可生物素化序列完全不同,可以加在目标蛋白的[/font][font=Calibri]N[/font][font=宋体]端和[/font][font=Calibri]C[/font][font=宋体]端。融合表达后,可被生物素连接酶生物素化,为了纯化重组蛋白选用低亲和性的单体抗生物素蛋白或抗生物素蛋白衍生物,除了用于蛋白质分离纯化,还用于蛋白质相互作用研究。[/font][/font][font=宋体] [/font][b][font=宋体]④[/font][font=宋体][font=Calibri]SNAP-Tag[/font][/font][/b][font=宋体] [/font][font=宋体][font=Calibri]SNAP-Tag[/font][font=宋体]是从人的[/font][font=Calibri]O6[/font][font=宋体]-甲基鸟嘌呤[/font][font=Calibri]-DNA[/font][font=宋体]甲基转移([/font][font=Calibri]O6-alkylguanine-DNA-alkyltransferase[/font][font=宋体])获得。[/font][font=Calibri]SNAP[/font][font=宋体]所带的活性巯基位点接受了苯甲基鸟嘌呤所携带的侧链苯甲基基团,释放出了鸟嘌呤。这种新的硫醚键共价结合使[/font][font=Calibri]SNAP[/font][font=宋体]所带的目的蛋白携带上了苯甲基基团所带的标记物。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]检测:生物素或各种颜色荧光的底物(如荧光素、若丹明)可渗透进入细胞,方便快捷地进行活细胞内[/font][font=Calibri]SNAP-Tag[/font][font=宋体]融合蛋白的标记与检测。它们也可特异性地标记大肠杆菌,酵母和哺乳动物等细胞抽提液或已经纯化的蛋白液中的[/font][font=Calibri]SNAP-tag[/font][font=宋体]融合蛋白。 [/font][/font][font=宋体] [/font][b][font=宋体]⑤[/font][font=宋体][font=Calibri]GST[/font][font=宋体](谷胱甘肽巯基转移酶)[/font][/font][/b][font=宋体] [/font][font=宋体][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/gst-tag-protein-expression][b]GST[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/gst-tag-protein-expression][b]标签蛋白[/b][/url]本身是一个在解毒过程中起到重要作用的转移酶,它的天然大小为[/font][font=Calibri]26KD[/font][font=宋体]。[/font][font=Calibri]GST[/font][font=宋体]融合表达系统广泛应用于各种融合蛋白的表达,可以在大肠杆菌和酵母菌等宿主细胞中表达。结合的融合蛋白在非变性条件下用[/font][font=Calibri]10mM[/font][font=宋体]还原型谷胱甘肽洗脱。[/font][font=Calibri]GST[/font][font=宋体]标签可用酶学分析或免疫分析很方便的检测。标签有助于保护重组蛋白免受胞外蛋白酶的降解并提高其稳定性。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]纯化:该表达系统表达的[/font][font=Calibri]GST[/font][font=宋体]标签蛋白可直接从细菌裂解液中利用含有还原型谷胱甘肽琼脂糖凝胶亲和树脂进行纯化。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]如果要去除[/font][font=Calibri]GST[/font][font=宋体]融合部分,可用位点特异性蛋白酶切除。[/font][/font][font=宋体] [/font][b][font=宋体]⑥[/font][font=宋体][font=Calibri]GFP[/font][/font][/b][font=宋体] [/font][font=宋体][font=Calibri]GFP[/font][font=宋体](绿色萤光蛋白)是由下村修等人在水母中发现的。它在蓝色波长范围的光线激发下,会发出绿色萤光。[/font][font=Calibri]GFP[/font][font=宋体]标签可位于蛋白质的[/font][font=Calibri]C[/font][font=宋体]端或[/font][font=Calibri]N[/font][font=宋体]端,该系统已广泛应用于各种细胞类型,包括细菌、酵母和哺乳动物细胞等,相应的[/font][font=Calibri]GFP[/font][font=宋体]标签抗体也被广泛应用。[/font][font=Calibri]GFP[/font][font=宋体]在检测蛋白表达、蛋白和细胞荧光示踪、研究蛋白质之间相互作用和构象变化中,起到了重要的作用。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]该如何选择表达克隆的标签[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、首先,需要确定融合标签的目的[/font][/font][font=宋体] [/font][font=宋体][font=宋体]蛋白纯化[/font] [font=宋体]:标签的普遍用途是蛋白纯化。小分子[/font][font=Calibri]6XHis Tag[/font][font=宋体]常被用于细胞内源蛋白的纯化。[/font][font=Calibri]6XHis Tag[/font][font=宋体]也广泛应用于大肠杆菌的蛋白纯化。可是哺乳动物细胞中因非分泌蛋白自身存在高组氨酸背景,因此极少使用[/font][font=Calibri]6XHis Tag[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Western Blot[/font][font=宋体]检测:若需要做[/font][font=Calibri]Western Blot[/font][font=宋体]实验来检测细胞裂解物中蛋白的表达,你可以选择有匹配的抗体的小分子标签。[/font][font=Calibri]FLAG Tag[/font][font=宋体]以其分子量小以及拥有许多与之匹配的商业化的抗体等优势,成为[/font][font=Calibri]Western Blot[/font][font=宋体]实验中常用的[/font][font=Calibri]Tag[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]免疫沉淀反应:[/font][font=Calibri]FLAG Tag[/font][font=宋体]其分子量小以及拥有大量相匹配的商业用抗体等优势成为免疫沉淀反应中最常用的[/font][font=Calibri]Tag. [/font][font=宋体]其他常用的标签有:[/font][font=Calibri]HA[/font][font=宋体]和[/font][font=Calibri]cMyc.[/font][/font][font=宋体] [/font][font=宋体][font=宋体]免疫共沉淀。首先,裂解您的样本,以释放蛋白。向试管中添加裂解液的同时,加入靶向融合标签的抗体,抗体会识别融合标签。然后抗体与蛋白[/font] [font=Calibri]A [/font][font=宋体]或 [/font][font=Calibri]G [/font][font=宋体]偶联微珠结合,后者拉出您的目标蛋白,以及与之复合的其他蛋白。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]活细胞成像:荧光蛋白([/font][font=Calibri]Fluorescent Proteins, FPs[/font][font=宋体])是活细胞成像常用的标记蛋白。其中最常用的是绿色荧光蛋白([/font][font=Calibri]GFP[/font][font=宋体])和它的衍生物([/font][font=Calibri]CFP, YFP, etc.[/font][font=宋体]),以及一些红色变体,如[/font][font=Calibri]dTomato[/font][font=宋体]和[/font][font=Calibri]mCherry.[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、考虑融合标签的影响[/font][/font][font=宋体] [/font][font=宋体]任何一类标签处于氨基酸序列的任一位置,都具有影响目的蛋白表达或功能的可能性。最主要原因是标签可能会干扰蛋白的正确折叠,致使目的蛋白失活或形成包涵体。其次,标签可能会中断亚细胞定位信号,这种情况下,蛋白能够正确翻译和折叠,但在细胞内所处的位置是错误的。因此,您需要知道添加的标签对目的蛋白的表达是否有影响。[/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体]、考虑是在[/font][font=Calibri]N-[/font][font=宋体]端还是[/font][font=Calibri]C-[/font][font=宋体]端标记[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]N-[/font][font=宋体]端或[/font][font=Calibri]C-[/font][font=宋体]端标记的选择还需要根据蛋白结构、定位等特性。然而,倘若你没有确切的蛋白结构,或蛋白功能域图谱,建议分别构建[/font][font=Calibri]N-[/font][font=宋体]端标记和[/font][font=Calibri]C-[/font][font=宋体]端标记的表达克隆,以检测哪个更有效。[/font][/font][font=宋体] [/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/protein-expression][b]重组蛋白表达[/b][/url]技术现已在生物学各个具体领域应用广泛,尤其是蛋白质的大规模生产和体内功能研究都需要应用重组蛋白表达载体。[/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=Calibri] [/font]

  • 【资料】我国首例荧光克隆猪怀孕 明年1月当妈妈

    东北网12月25日电 记者日前从负责转基因克隆猪项目的东北农业大学生命科学学院了解到,去年出生的3头绿色荧光克隆猪都已怀孕,明年1月份,它们就要当上“妈妈”了。据该课题组的科研人员尹智介绍,一年多来,在课题组成员和专门饲养员的精心照顾下,3头小猪生长很快。目前发育良好,体重达标,并已经通过正常与普通公猪的交配怀了孕,预产期为明年的1月份左右。选择与普通公猪交配,这也是课题组今后一个研究的方向。由于3头小猪为转基因克隆猪,在与普通公猪交配生产后,课题组将要对它们所生的小猪进行观察,观察其是否具有绿色荧光的标记特征。然后,再从中选取具有绿色荧光特征的小猪进行交配试验。这项研究将在家猪的转基因育种、人类疾病医疗模型猪的建立以及生产为人类器官移植提供器官的特殊家猪等方面有广泛应用前景,也将为畜牧业发展和医学研究开辟新的天地。2006年12月22日,东北农业大学传出喜讯,我国首例3头绿色荧光蛋白转基因克隆猪降生,这也是继美国、韩国和日本之后,世界上第四例成功通过体细胞核移植方式克隆出的绿色荧光蛋白转基因猪。3头小猪是自然分娩产出的,出生时的体重分别为1270克、1130克、1230克。因为这3只克隆猪具有绿色荧光蛋白转基因,所以在紫外线光源的照射下,它们的口、蹄及舌头可以看到明显呈现出绿色的荧光。

  • 多焦点扫描与光激活蛋白应用

    [align=center][b][/b][/align][align=center][b]Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for [i]in vivo [/i]monitoring of intracellular protein dynamics in real time[/b][/align][b]摘要[/b]使用[color=#ff0000]Lavision Biotec[/color]公司[b]多焦点双光子激光扫描显微镜[color=#ff0000]Trim Scope[/color][/b]来进行局部和选择性的蛋白激活以及细胞内蛋白动态的的量化调查。局部激活使用光激活绿色荧光蛋白(pa-GFP)和光学双光子激发来实现,以调查实时原位的细胞内动态。这个过程对于深入理解和建模活细胞内的调控和代谢过程极其重要。作为范例,既包含了一个核输入信号又包含了一个核输出信号的拟南芥MYB转录因子LHY/CCA1-like 1 (LCL1)被定量化调查。我们使用了由质粒编码的光激活绿色荧光蛋白(pa-GFP)融合蛋白和一个红色荧光转染标记联合转染的烟草BY-2原生质体,并pa-GFPLCL1在核内光激活后的快速向核外输出。作为对照,一个LCL1核输出阴性突变体仍然被束缚在核内。我们确定了由激活pa-GFP-LCL1的双向核运输和pa-GFP的扩散分别导致的核内荧光下降的51s和125s的平均时间常数。[b]材料与方法[/b][i]并行的64焦点双光子激光扫描显微镜[/i]Pa-GFP的激活和荧光的原位检测,通过基于根据蛋白动态监测需求改进的商业化系统([color=#ff0000]TriM Scope, LaVision Biotec[/color] Martini et al., 2005 Nielsen et al., 2001)多焦点2光子LSM检测(Fig. 1). 64焦点2光子LSM (Martini et al., 2006)包括一个倒置光学显微镜和一个可以产生从760nm到960nm的100fs激光脉冲的由固态激光器泵浦的锁模飞秒Ti:Sa激光器。用于激活和成像循环的波长选则通过一个允许5s内转换波长的ahome-built screw motorization来实现。激光扫描单元([color=#ff0000]TriM Scope, LaVision BioTec[/color]) 包括一个内置的预啁啾部分以补偿激光脉冲的色散,一个光束分光器部分和振镜扫描器。通过选择一组10个100%反光镜和50%分光镜,激发的NIR激光束在样品中被分为1, 2, 4,……, 64个激发焦点。这些数目可调的焦点在显微镜物镜(UPLAO60XW3/IR, NAD1.2 Olympus)的焦平面上被激光扫描单元中的2个扫描镜扫描。整个激活和测量过程在一个温度可控环境中在293±1K下进行。因为在保持每个焦点的能量沉积低于样品的退化极限的同时,多个焦点产生了相对高的双光子诱导荧光产额,成像可以30ms的时间分辨率进行。图像用一个背照明的EMCCD相机(IXON DV887ECS-UVB, Andor Technology)以non-descanned方式获取。激发的NIR激光束被引导通过一个分光镜 (2光子-Beamsplitter, Chroma)到物镜的后光圈上。为了成像深度和光谱荧光切片,倒置显微镜采用了机械聚焦驱动(MFD, Marzhauser)和一个程序控制滤波轮([color=#ff0000]LaVision-BioTec)[/color]。数据获取和实验控制由 TriM Scope的软件包Imspector(LaVision-BioTec)执行。操作和处理5维的数据列,包括光谱和时间数据轴,使用软件包Imspector ([color=#ff0000]LaVision-BioTec)[/color],ImageJ (Rasband, 1997) 或 Imaris (Bitplane)。[img=,657,421]http://qd-china.com/uploads/bio-product/81.jpg[/img]Fig. 1.多焦点双光子激光扫描显微镜的原理图(1) Tsunami Ti:Sa 激光器(波长可调)由固态Millenia X 激光器泵浦 (均来自 Spectra Physics), (2) 多焦点激光扫描单元 (TriM-scope, LaVision BioTec), (3) 分光镜 (2光子-Beamsplitter, Chroma), (4) 短波通过滤波轮 (2光子-Emitter, Chroma), (5) 物镜 (UPLAO60XW3/IR, NA D 1.2 Olympus), (6) 样品中可选择数目的荧光焦点, (7) 倒置光学显微镜(IX 71, Olympus), (8) 滤波轮 (滤波轮, LaVision BioTec)装备带通滤波片 D 605/55 (Chroma)用于检测 Ds-Red 和 HQ525/50 结合 HQ510/20 (均来自 Chroma)以检测 pa-GFP, (9) 背照式 EMCCD-camera (IXON DV887ECS-UVB, Andor Technology) 在NDD光路中, (10) 荧光灯 (HBO 50, Zeiss), (11) 带通激发滤波轮 D 540/25 (Chroma) 用于 Ds-Red 或带通激发滤波轮HQ 480/20 (Chroma) 用于 pa-GFP.[b]结果[img=,380,768]http://qd-china.com/uploads/bio-product/82.jpg[/img][/b]Fig. 2.含有核输入输出信号的拟南芥转录因子LCL1 (分别为NLS, NES). 由质粒编码GFP融合蛋白转染的烟草BY-2原生质体。通过单光子共聚焦激光扫描显微镜分析的GFP融合蛋白稳定态定位。(a) GFP-LCL1 揭示的核与细胞质间的分区。(b) 使用核输出抑制剂leptomycin B (LMB)孵育后,由于功能性NLS的存在,GFP-LCL1的稳定态分区剧烈转化为几乎完全分布于核中。 (c,d) 对照,LMB对单独的GFP没有影响。 (e) GFPLCL1(NESm)中,它的NES的点突变造成的LCL1的核输出活性削弱同样导致了GFP融合蛋白在核内的聚集。(f) 与(e)中同一个原生质体的透射光与GFP荧光成像的叠加标尺为10um (g) 作为对照的 GFP-NLS 在核内的增加。 (h) 同一原生质体的GFP-NLS绿色荧光蛋白和作为转染标记的Pra1-DsRed (At2g38360)红色荧光蛋白的叠加。[img=,700,109]http://qd-china.com/uploads/bio-product/83.jpg[/img]Fig. 3. pa-GFP 在一个活原生质体内的自由动态扩散。选出的5幅表达pa-GFP的烟草BY-2原生质体的单光子透射荧光图像。(a)实验开始,未激活 (b) pa-GFP的双光子激活期间 (c-e) 双光子激活后,所示时间点。(a)核内(红虚线)的pa-GFP在双光子激发前平均荧光很难被检测到。使用4个平行焦点(10mW at 800 nm 每焦点)的持续3s的飞秒激光对一个7X8um的区域进行pa-GFP 2光子激发开始 (b) 激发后很短时间内检测到一个强的荧光信号(c-e) pa-GFP从核内向细胞质的扩散被监测,直到两组分间达到平衡。荧光强度标尺显示在每幅图的左边。[img=,707,514]http://qd-china.com/uploads/bio-product/84.jpg[/img]Fig. 4.在核内被光激活后,pa-GFP从核内向细胞质扩散的量化分析。在激活前,核内(ROI)平均的1光子荧光强度非常低(平均强度~300).在26s和29s间的时间点,由飞秒激光激活诱导的荧光增强在图上进行了监测。 与光激活前相比,平均荧光强度是之前的大约5倍,伴随着ROI内的荧光降低。在第一个地方,监测到的细胞核内荧光下降是由于激活的pa-GFP向细胞质内的扩散。后来,光漂白变得显著。双指数拟合非常近似地拟合了整个荧光下降过程(红线)。以此方式计算出这个实验中175s的扩算时间常数。[img=,705,375]http://qd-china.com/uploads/bio-product/85.jpg[/img]Fig. 5. 烟草BY-2原生质体中At2g38360-DsRed的定位和平行双光子荧光显微镜对pa-GFP的3D监测(64 foci, 920 nm, 240 mW)。 (a) 双光子荧光下降的量化分析,给出了一个123s的扩散时间常数。Figs. 3 and 4中的数据源于两个不同的实验,解释了荧光值的绝对差异(不同的表达水平)和统计分析。 (b) At2g38360-DsRed作为转染标记在核中pa-GFP激活前的荧光 (c) At2g38360-DsRed和pa-GFP数据采集后400 s的3D荧光图像,清楚显示了荧光团从细胞核向细胞质的扩散。[img=,697,603]http://qd-china.com/uploads/bio-product/86.jpg[/img]Fig. 6.在核内光激活前后,烟草BY-2原生质体内活跃转运的pa-GFP-LCL1的3D动态监测和量化分析。(a) 在pa-GFP-LCL1双光子激发后核内的单光子荧光表明双光子激活荧光增强 (b) pa-GFP被双光子激活后双指数曲线拟合(红线)的荧光下降量化分析。计算得出的由于主动运输导致的核内pa-GFP-LCL1荧光下降的一个20s的时间常数(c,d) At2g38360-DsRed(转染标记)和pa-GFP-LCL1的双色双光子荧光3D成像 (c)核内光激活前 (d)数据获取后。[img=,691,345]http://qd-china.com/uploads/bio-product/87.jpg[/img]Fig. 7. 烟草BY-2原生质体的核输出阴性突变pa-GFP-LCL1(NESm)光激活前后的3D动态监测和量化分析。(a) pa-GFP-LCL1(NESm)被双光子激活后的单光子荧光显示了双光子激活荧光增强和激活后核内荧光极其缓慢的下降,反映了pa-GFPLCL1(NESm)的核限制 (b,c) At2g38360-DsRed (转染标记) 和 pa-GFP-LCL1(NESm) 的双光子荧光3D图像 (b) 光激活前的核内 pa-GFP (c) 数据获取后300s的时间点。

  • 【求助】日立F-4500荧光分光光度计是否能对细胞内EGFP进行定量分析?

    如题,立F-4500荧光分光光度计是否能对细胞内EGFP进行定量分析?我向Hela细胞中转入了绿色荧光蛋白,想对绿色荧光蛋白的表达量进行定量分析。不知道用荧光分光光度计是否可行?谢谢![color=red][I]疯子哥提示:由于你发的内容与GC无关,已经将其转到对应的版面,谢谢参与![/I][/color]

  • 植物GFP发光表达拍照激发光源的选择

    植物GFP发光表达拍照激发光源的选择

    植物病毒表达载体(GFP或eGFP,RFP),农杆菌侵染植株后,如果要观察GFP发光,需要选用LUYOR-3415RG激发光源来照射植物,同时需要佩戴专用的荧光观察眼镜,即可观察到明亮的GFP荧光。LUYOR-3415RG独有的双波段光源能够激发GFP,eGFP和RFP,无论是绿色荧光蛋白还是增强型绿色荧光蛋白以及红色荧光蛋白,LUYOR-3415RG均能够激发出明亮的荧光,如果需要拍照,需要选用路阳专用遮光片才可以拍到荧光。GFP荧光极其稳定,在激发光照射下,GFP抗光漂白(Photobleaching)能力比荧光素(fluorescein)强,特别在450~490nm蓝光波长下更稳定。由于GFP荧光是生物细胞的自主功能,荧光的产生不需要任何外源反应底物,因此GFP作为一种广泛应用的活体报告蛋白,其作用是任何其它酶类报告蛋白无法比拟的。http://ng1.17img.cn/bbsfiles/images/2015/12/201512211054_578857_1813720_3.png绿色荧光蛋白在LUYOR-3415RG激发下发光http://ng1.17img.cn/bbsfiles/images/2015/12/201512211055_578858_1813720_3.gif绿色荧光蛋白在LUYOR-3415RG激发下发光http://ng1.17img.cn/bbsfiles/images/2015/12/201512211055_578860_1813720_3.jpg红色荧光蛋白在LUYOR-3415RG激发下发光http://ng1.17img.cn/bbsfiles/images/2015/12/201512211055_578859_1813720_3.png植物在LUYOR-3105紫外线灯(365nm黑光灯有名UV灯)下发光GFP作为一种新型的基因报告分子,可用于活体、原位、即时的检测基因表达及蛋白定位。不象其他生物发光基因报告分子需要附加蛋白或底物、辅物、辅因子等才会发光。GFP非常稳定,不依赖于物种,对活细胞没有伤害性。由于这种载体在转染细胞后很快就能通过观察荧光细胞而检测出基因的表达情况,因而,为基因转染研究中确定转染效率。在转基因作物的基因表达研究中,GFP(绿色荧光蛋白)可作为非常重要的衡量工具。通过定点观察GFP,可有利于学习如何操纵和提高有用的染色体特性,从而可以筛选出高基因表达的植物。最终可提高农作物产量、质量,并不断适应人们对粮食的更高需求。LUYOR-3415RG荧光蛋白激发光源可野外、实验室原位测定GFP(绿色荧光蛋白)。通过定点观察GFP,可有利于学习如何操纵和提高有用的染色体特性,从而可以筛选出高基因表达的植物。 LUYOR-3415RG荧光蛋白激发光源的应用:1、 野外、实验室原位测定GFP(绿色荧光蛋白)。2、 应用于转基因作物研究。3、 区别可遗传性改良生物体和不可遗传的改良生物体。4、 用于基因表达的研究。5、 用于Rhodamine(红色荧光染料)、叶绿素、荧光素的研究。

  • 【原创大赛】我与荧光显微镜

    【原创大赛】我与荧光显微镜

    显微镜,大家上中学实验的时候可能都用过,但是荧光显微镜我可是读了研究生才有接触。一开始,我只知道实验室有这个东西,但是这与我的实验无关,所以也从来不关注。后来,要做定位的实验,开始使用荧光显微镜。 最初,我是利用酵母系统对我关注的蛋白进行定位,把绿色荧光蛋白转入酵母,诱导表达后,在荧光显微镜下观察,每一个酵母都是绿绿的椭圆球,倒真是好看。把我关注的蛋白融合绿色荧光蛋白在酵母中表达,则是每个酵母中有几个圆点,很好玩呢,后来鉴定这些圆点原来是线粒体。http://ng1.17img.cn/bbsfiles/images/2012/12/201212132152_412427_1306303_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212132152_412428_1306303_3.jpg 再后来,要把关注的蛋白在植物中定位,这种普通的荧光显微镜就不好用了,因为植物的叶片太厚,在普通的荧光显微镜中只能模糊观察,难以得到清晰漂亮的图片。http://ng1.17img.cn/bbsfiles/images/2012/12/201212132153_412430_1306303_3.jpg 这个时候,我知道了激光共聚焦荧光显微镜(confocal)。激光共聚焦荧光显微镜可以对所要观察的目标进行逐层扫描,因为是单层,所以得到的照片非常清楚漂亮。http://ng1.17img.cn/bbsfiles/images/2012/12/201212132153_412431_1306303_3.jpg 再后来,我知道了用激光共聚焦荧光显微镜还可以对观察的目标进行三维重建。科研人员对关注的目标进行三维重建的,这样可以得到立体的效果,再制作成动画,已经成为很多最新发表的科研论文的重要实验结果,生动活泼,一改以前科研论文的枯燥。我的同事就有对染色体原位杂交结果进行三维重建的,这样可以得到立体的染色体的效果,让大家看到实际上染色体的真正形态和原位杂交效果,更加生动活泼。

  • LUYOR-3260便携式激发LED光源 真的有那么好用么?

    [b]LUYOR-3260绿色荧光蛋白,红色荧光蛋白激发led光源[/b][url=http://www.luyor.net/upload/201511/1448268008.jpg][img=LUYOR-3260绿色荧光蛋白,红色荧光蛋白激发led光源,380,350]http://www.luyor.net/upload/201511/1448268008.jpg[/img][/url][list][/list][b]详细描述[b]LUYOR-3260绿色荧光蛋白,红色荧光蛋白激发led光源[/b][/b]LUYOR-3260单[url=http://www.luyor.net/news/news189.html]荧光蛋白观测镜[/url]([url=http://www.luyor.net/product/product166.html]GFP[/url])可检测绿色荧光蛋白,便于野外作业。检测效率高,能夜间在田间寻找阳性目标,一目了然。操作方便,小巧、灵活、便于携带,开机后不需热机,可直接检测且系统稳定,可长时间持续作业。安全性强,无需化学底物显色,直接进行观测,不损坏被检测对象的细胞。[img=1557025871108354.jpg,692,386]http://www.luyor.net/upload/201905/watermark/1557025871108354.jpg[/img][b][b]GFP, EGFP,DNA蓝光手电筒|Protein Fluorescence 荧光蛋白激发灯[/b][/b]在生命科学科研中,GFP荧光蛋白被广泛应用,大家以前普遍使用荧光显微镜观察,但荧光显微镜观察需要采样,有时甚至要把植物叶片采集下来才能观察,这样给培养的植株带来了损坏,美国路阳根据广大科研人员的需求,研发了便携式[url=http://www.luyor.net/product/product166.html]荧光蛋白激发光源[/url]。采样锂电池供电,方便携带,能够方便带到试验田里面直接观察GFP表达位置,路阳的荧光观察眼罩有效低隔绝了紫外、蓝光发出的有害光谱,仅让GFP发出的荧光透过,让GFP荧光清晰呈现。配有单反相机专用拍照滤镜,能把观察到荧光效果拍照存储。LUYOR-3260系列便携式绿色荧光蛋白,红色荧光蛋白激发led光源,采用多颗大功率led光源,手电筒式设计,电池供电,照射面积大,光斑均匀,能够激发绿色荧光蛋白(GFP),红色荧光蛋白的荧光(dsred),被用于研究所、高校等生物研究部门。[img=Ilovversusgfp.jpg,881,414]http://www.luyor.net/upload/201711/watermark/1510121921113655.jpg[/img]转基因生物观察光源除了可用于筛选转基因生物外,还可以用于样本的预筛选、辅助解剖、用于珊瑚研究等,[url=http://www.luyor.net/product/product168.html]LUYOR-3430[/url][url=http://www.luyor.net/product/product_66_1.html]激发光源[/url](手电筒状)和滤光镜(荧光观察眼镜),激发光源照射含绿色荧光蛋白(GFP)生物,可激发出绿色荧光,滤光镜挡住所有反射光,只允许绿色荧光通过;激发光源激发红色荧光时,用红色滤光镜观测,可检测含红色荧光蛋白(DsRed)的生物。用于检测、筛选转绿色荧光蛋白(GFP)基因的植物、动物及微生物,如水稻、玉米、斑马鱼、小鼠、细菌、真菌等,小巧、携带方便的荧光检测装置,无需底物显色,就可轻松检测转基因生物。LUYOR-3260系列GFP激发光源的光谱图: [img=20140708_230032.png]http://www.luyor.net/upload/201511/watermark/1448267823668584.png[/img][b][url=http://www.luyor.net/product/product166.html]LUYOR-3260RB[/url]转基因生物观察光源产品优势:[/b]1. 小巧、携带方便,便于野外检测2. 检测效率高,黑暗中检测一目了然3. LED寿命10000h,且系统稳定,可用于长时间(4h)使用4. 直接检测,而无需用底物显色,所以安全,对被检测对象无伤害[b]LUYOR-3260荧光激发光源提供的激发波段有:[/b][list][*][b]LUYOR-3260UV激发光源[/b]: 用于观察DAPI, Hoechst[*][b]LUYOR-3260VI激发光源[/b]:用于观察CFP, …[*][b]LUYOR-3260RB激发光源[/b]:用于观察 荧光蛋白(GFP), FITC, 钙黄素calcein,荧光黄 lucifer yellow, 叶绿素(chlorophyll)[*][b]LUYOR-3260LB激发光源[/b]:用于观察增强型绿色荧光蛋白(eGFP,mGFP,emgfp),[*][b]LUYOR-3260CY激发光源[/b]:用于观察YFP, Venus, others[*][b]LUYOR-3260GR激发光源[/b]:用于观察 DsRed, TdTomato, RFP, others[/list][img=,800,533]http://www.luyor.net/upload/201905/watermark/1557972002272606.jpg[/img]上图为带有绿色荧光蛋白的种子。 [b]LUYOR-3260荧光蛋白激发光源的应用:[/b]1、 野外、实验室原位测定GFP(绿色荧光蛋白)。2、 应用于转基因作物研究。3、 区别可遗传性改良生物体和不可遗传的改良生物体。4、 用于基因表达的研究。5、 用于Rhodamine(红色荧光染料)、叶绿素、荧光素的研究。[img=gfpplant_tobacco.jpg,360,276]http://www.luyor.net/upload/201905/watermark/1557972078327170.jpg[/img]带有绿色荧光蛋白的烟草苗 [b]LUYOR-3260荧光蛋白激发光源的[/b]标准配置: LUYOR-3260荧光蛋白激发光源主机一只、观察眼镜一副、大容量充电电池组一只、110-260v交流充电器一只、铝合金手提箱一只。[b] [b]LUYOR-3260荧光蛋白激发光源的选配件[/b]:[/b]荧光拍照滤镜、滤镜转换卡 [b]LUYOR-3260荧光蛋白激发光源的技术参数[/b]:光源:9颗3w led电池电压和容量:12v,2600mha手电筒尺寸:头部直径70mm,尾部直径45mm,长度25mm充电器:110-260v,交流适配,美规插头。照射面积:30cm处,照射光斑直径大约150mm可选配滤镜尺寸:62mm充电时间:2-6小时。充满电连续工作时间:2-4小时[b]路阳GFP激发光源的典型用户:[/b]1.中国农业大学2.北京农业大学3.南京农业大学4.中山大学5.中国农业科学院果树研究所6.中国农业科学院水稻研究所7.西北农林大学8.华中农业大学9.福建农林大学10.山东农业大学。。。。。。 LUYOR-3260便携式激发光源的介绍:[url]http://www.luyor.net/product/product166.html[/url][table][tr][td] [/td][/tr][/table]

  • 实验室激发光源LUYOR-3415RG激发光源!

    [b]LUYOR-3415RG双波长荧光蛋白激发光源[/b][url=http://www.luyor.net/upload/201812/1545624161.png][img=LUYOR-3415RG双波长荧光蛋白激发光源,380,350]http://www.luyor.net/upload/201812/1545624161.png[/img][/url][list][/list][b]详细描述[url=http://www.luyor.net/product/product165.html]LUYOR-3415RG[/url]双波长[url=http://www.luyor.net/product/product166.html]荧光蛋白激发光源[/url][/b] 美国LUYOR公司实验室仪器事业部致力于研究和开发荧光观测装备,其产品系列有 LUYOR-3415RG双荧光蛋白观测灯,[url=http://www.luyor.net/product/product168.html]LUYOR-3430[/url]、LUYOR-3260单荧光蛋白观测手电筒。荧光是各种各样细胞生物学、神经系统学及其他领域研究中的一种强大和广泛使用的工具。LUYOR的LUYOR-3415RG和LUYOR-3430、LUYOR-3260除了可用于筛选转基因生物外,还可以用于样本的预筛选、辅助解剖、用于珊瑚研究等,下面就列举一些实例:1. 有时候,研究者们需要对小鼠的伏隔核进行穿孔,以便进一步生化分析。如果能观测到共转染的荧光,就能很容易找到正确的穿孔部位。研究者们就是用LUYOR-3430、LUYOR-3260单荧光蛋白观测手电筒来观测荧光,从而找到正确穿孔位置的。2.研究者从小鼠大脑中提取[url=http://www.luyor.net/product/product166.html]GFP[/url]标记的背纹体。他们把这比喻成:从一个大一点的燕麦片中分离出一块小的燕麦片,这是很困难的。但是他们用的LUYOR-3415RG或LUYOR-3430、LUYOR-3260单荧光蛋白观测手电筒(激发光和眼镜组合),他们很容易看到大脑中的目标区域,从而让解剖更准确精确。3.用LUYOR-3415RG 双荧光蛋白观测灯和LUYOR-3430、LUYOR-3260单荧光蛋白观测手电筒,可以很快的检测样本是否染色(Alexa Fluor 488 Phalloidin标记)成功。4.用于结核分枝杆菌重组株的筛选 [img=IMG_8449.png,650,583]http://www.luyor.net/upload/201812/watermark/1545623271829953.png[/img]在结核分枝杆菌中成功构建了高效同源重组系统,利用该系统构建了rv1364c、pstP跨膜区、pstP胞外区三个突变株,得到双交换突变株的效率为25% -62.5%,从双交换突变株得到无痕缺失突变株的效率为100%.通过gfp作为荧光标记基因,利用LUYOR-3421蓝光激发光设备和滤光眼镜,可以对平板上的基因缺失株直接进行快速判定。[b][url=http://www.luyor.net/product/product_66_1.html]激发光源[/url]激发出绿色荧光时,用黄色滤光镜观测,可检测含绿色荧光蛋白(GFP)的生物;激发光源激发红色荧光时,用红色滤光镜观测,可检测含红色荧光蛋白(DsRed)的生物。LUYOR-3415RG双荧光蛋白观察灯的用途:[/b]用于检测、筛选转绿色荧光蛋白(GFP)和红色荧光蛋白(DsRed)基因的植物、动物及微生物,如水稻、玉米、斑马鱼、小鼠、细:菌、真菌等等。。。。[b]LUYOR-3415RG双荧光蛋白观察灯的产品优势:[/b]1. 大功率输出,无需暗室,也可轻松激发荧光。2.检测效率高,黑暗中检测一目了然3.LED寿命50000h,且系统稳定,可长时间使用4.直接检测,而无需用底物显色,所以安全,对被检测对象无伤害[img=IMG_8467.JPG,700,467]http://www.luyor.net/upload/201812/watermark/1545623290131337.jpg[/img][b]LUYOR-3415RG双荧光蛋白观察灯的选型:[/b]标准的[b]LUOYR-3415RG双荧光蛋白观测光源[/b],只有RB-Royal Blue和GR-Green两种荧光激发装置,也就是说标准的[b]LUOYR-3415RG[/b]只能用于观测绿色荧光蛋白和红色荧光蛋白。现在,您可以选择以下任何两种荧光装置,组装成您专属的LUOYR-3215双荧光蛋白观测光源啦。[table=100%][tr][td]光源后缀代号[/td][td]Wxcitation激发光[/td][td]Emission发射光[/td][td]可观测荧光[/td][/tr][tr][td]RB[/td][td]440nm[/td][td]500nm[/td][td]GFP,fluorescein[/td][/tr][tr][td]CY[/td][td]510nm[/td][td]550nm[/td][td]YFP,Venus,Lucifer Yellow[/td][/tr][tr][td]GR[/td][td]540nm[/td][td]600nm[/td][td]DsRed,dTomato[/td][/tr][tr][td]VI[/td][td]400nm[/td][td]460nm[/td][td]CFP,BFP...[/td][/tr][tr][td]UV[/td][td]360nm[/td][td]415nm[/td][td]DAPI[/td][/tr][/table][img=双波长荧光蛋白激发光源,634,439]http://www.luyor.net/upload/201511/watermark/1448267335335389.jpg[/img][b]1. LUOYR-3415R用于观测绿色荧光蛋白[/b]GFP:绿色荧光; fluorescein荧光素[b]2. LUOYR-3415C用于观测黄色荧光蛋白[/b]YFP:黄色荧光蛋白; Venus:金色; Lucifer Yellow:荧光黄[b]3. LUOYR-3415G用于观测红色荧光蛋白[/b]DsRed:红色荧光蛋白; dTomato:番茄红[b]4. LUOYR-3415V用于观测紫色荧光蛋白[/b]CFP:青色荧光蛋白; BFP:碱性胎儿蛋白[b]5. LUOYR-3415UV用于观测紫外光[/b]DAPI:蓝色荧光[b]6. LUOYR-3415L用于观测增强型绿色荧光蛋白[/b]egfp,mgfp:增强型荧光蛋白[b]LUYOR-3415荧光蛋白激发光源的物理技术参数:[/b][list=1][*]波长:可任意选择2种波长:365nm,400nm, 450nm, 485nm,520nm[*]质量:净重0.9kg,毛重:4kg,尺寸:180x200mm(长x高),头部直径120mm。[*]功率:单波长15w,总功率27w。[*]输入电压:交流100-260v,频率50/60Hz。[*]包装箱尺寸:400x300x150mm(长x宽x高)[*]距灯150mm处照射直径为180mm。[/list][b]LUYOR-3415荧光蛋白激发光源的标准配置:[/b]luv-50观察眼镜,luv-60观察眼镜,说明书,合格证,保修卡,铝合金手提箱。[b]LUYOR-3415荧光蛋白激发光源的主要产品应用:[/b][list=1][*]检测转绿色荧光蛋白(GFP)基因、红色荧光蛋白(DsRed)基因植物:水稻、小麦、玉米、大豆、棉花、拟南芥[*]检测转GFP、DsRed基因动物:小鼠、兔子、猴子等;[*]检测转GFP、DsRed基因微生物:细菌、真菌、酵母等;[*]检测GFP、DsRed基因组织特异性表达;[/list][img=IMG_8465.JPG,700,467]http://www.luyor.net/upload/201812/watermark/1545623309916878.jpg[/img] [b]荧光蛋白知识常见问题解答[/b][url]http://www.luyor.net/answer/answer149.html[/url][b]绿色荧光蛋白激发波长和红色荧光蛋白激发波长[/b][url]http://www.luyor.net/app/app148.html[/url][b]LUYOR-3415RG双波长荧光蛋白激发光源[/b][url=http://www.luyor.net/product/product165.html][color=#0066cc]http://www.luyor.net/product/product165.html[/color][/url][b]LUYOR-3260绿色荧光蛋白,红色荧光蛋白激发led光源[/b][url=http://www.luyor.net/product/product166.html][color=#0066cc]http://www.luyor.net/product/product166.html[/color][/url][b]LUYOR-3421生物观察灯/蓝光手电筒[/b][url=http://www.luyor.net/product/LUYOR-3421.html][color=#0066cc]http://www.luyor.net/product/LUYOR-3421.html[/color][/url]2019年荧光蛋白激发光源产品样本(pdf文档)[img]http://www.luyor.net/app/app/ueditor/dialogs/attachment/fileTypeImages/icon_pdf.gif[/img][url=http://www.luyor.net/upload/file/201812/1545701086648488.pdf]2019实验室激发光源.pdf[/url][img=,700,757]http://www.luyor.net/upload/201906/watermark/1561825635620044.jpg[/img]上图为用LUYOR-3145RG照射黄芪根系中的dsred荧光蛋白的表达,图片由北京大学医学部提供。[img=,700,431]http://www.luyor.net/upload/201906/watermark/1561825635426014.jpg[/img]上图为用LUYOR-3145RG照射杨树愈伤组织中的gfp荧光蛋白的表达,图片由浙江农林大学提供。[img=,700,525]http://www.luyor.net/upload/201906/watermark/1561825635100707.jpg[/img]上图为LUYOR-3415RG照射烟草叶片中的GFP瞬时表达,图片由四川农业大学提供。[img=11111.jpg,700,525]http://www.luyor.net/upload/201907/watermark/1562419113435911.jpg[/img]上图为用LUYOR-3145RG照射大豆根系中的gfp荧光蛋白的表达,图片由华中农业大学提供。如果您是用于筛选玉米、小麦、水稻、拟南芥等种子,需要长时间工作,建议购买下面这款支架,它能解脱您的双手,满足您长时间筛选。 [img=3415zj.jpg,569,572]http://www.luyor.net/upload/201907/watermark/1561968081129792.jpg[/img][b][b][b][b][b][b][b][b][b][/b][/b][/b][/b][/b][/b][/b][/b][/b]美国路阳生产的激发光源主要有紫外激发光源、蓝光激发光源、绿光激发光源,主要用于自荧光物体、绿色荧光蛋白(GFP)、红色荧光蛋白(RFP)等生物的荧光蛋白的荧光激发,也可以用作荧光显微镜光源使用。美国路阳提供海底生物观察的水下荧光激发光源。

  • 蛋白的荧光方法

    请教用荧光胺定量蛋白时有什么应该注意的地方?线性范围大概多少?

  • 两位美国科学家因G蛋白偶联受体的研究分享2012年诺贝尔化学奖

    据外电报道,美国科学家罗伯特J. 勒夫科维兹(Robert J. Lefkowitz)与布莱恩·K·卡比尔卡(Brian K. Kobilka)因在G蛋白偶联受体方面的研究获得2012年诺贝尔化学奖。http://img.dxycdn.com/cms/upload/userfiles/image/2012/10/10/271542207_small.jpgRobert J. Lefkowitz教授http://img.dxycdn.com/cms/upload/userfiles/image/2012/10/10/449324824png_small.jpgBrian K. Kobilka教授新闻背景:近五年诺贝尔化学奖得主及其主要成就回顾2011年,以色列科学家达尼埃尔·谢赫特曼因发现准晶体而获奖。准晶体是一种介于晶体和非晶体之间的固体,准晶体的发现不仅改变了人们对固体物质结构的原有认识,由此带来的相关研究成果也广泛应用于材料学、生物学等多种有助于人类生产、生活的领域。 2010年,美国科学家理查德·赫克与日本科学家根岸荣一和铃木章因在有机合成领域中钯催化交叉偶联反应方面的卓越研究成果而获奖。这一成果广泛应用于制药、电子工业和先进材料等领域,可以使人类造出复杂的有机分子。 2009年,英国科学家文卡特拉曼·拉马克里希南、美国科学家托马斯·施泰茨和以色列科学家阿达·约纳特因对“核糖体的结构和功能”研究的贡献而获奖。 2008年,日本科学家下村修、美国科学家马丁·沙尔菲和美籍华裔科学家钱永健因在发现和研究绿色荧光蛋白方面作出贡献而获奖。 2007年,德国科学家格哈德·埃特尔因在表面化学研究领域作出开拓性贡献而获奖。

  • 关于真核表达载体pEGFP-c1

    今天又遇到一个问题:我做真核表达连的是pEGFP-c1真核载体,目的基因插在绿色荧光蛋白的后面,选的酶切位点是xholI 和BamHI 。为了酶切方便,我在上游引物的酶切位点后加入了一个“G”(引物序列:依次为:两个保护碱基--酶切位点---辅助酶切的碱基“G”---kozak序列-----目的基因序列: CC CTCGAG G GCCACC ATGAAATACACAAGC)。今天猛然想起可能有移码的可能,蛋白可能会不表达,或表达错误,所以重新看了看载体。发现从了绿色荧光蛋白的起始密码子(613-615)开始到xholI(算上xholI的6个碱基)之间共有736个碱基,加上一个“G”及kozak序列,则绿色荧光蛋白起始密码子到目的基因的起始密码子之间有743个碱基,不是3的倍数,会造成移码的。可是,后来我又算了一下,如果引物序列只有酶切位点和目的基因组成,没有多出来的一个“G”和kozak序列的话,绿色荧光蛋白起始密码子到目的基因的起始密码子之间有736个碱基,也不是3的倍数。所以现在很迷茫,在考虑要不要重新设计引物了。请大家务必要帮帮忙啊!实验室也没有可以咨询的人,导师对这个也不是很懂,只有求助于大家了!

  • 【分享】十大神奇转基因动物:超级老鼠不知疲倦寿命长

    【分享】十大神奇转基因动物:超级老鼠不知疲倦寿命长

    北京时间11月2日消息,据美国媒体报道,你可曾见过会发光的哺乳动物、不怕猫的老鼠、吐出蜘蛛丝的山羊?这么神奇的动物不可能在自然界中存在,但是通过转基因技术,将其他动物的基因注入某种动物的DNA之内,各种神奇古怪的动物变纷纷涌现。科学家创造出所谓的“转基因动物”来研究疾病治疗、制造自然物质和拓展科研领域。  转基因技术是将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体性状的可遗传修饰。转基因动物就是基因组中含有外源基因的动物。通过生长素基因、多产基因、促卵素基因、高泌乳量基因、瘦肉型基因、角蛋白基因、抗寄生虫基因、抗病毒基因等基因转移,可能育成生长周期短、产仔、生蛋多、泌乳量高或抗病性强的动物,目前转基因技术已在牛、羊、猪、鸡、鱼等家养动物中取得一定成果。  由于前景莫测,转基因物种培植被各国法规严格控制,要求研究者制作出的动物必须具有可证实的科研和医学价值。动物研究本身就充满争议,2009年5月份的美国民意测验显示有43%的民众认为在动物身上进行医学研究“在道义上是不可接受的”。尽管如此,转基因动物涵盖了来自各个动物种群的物种,它们在对抗疾病和改善环境方面表现出更强的适应性。  以下是科学家“制造”出的最神奇、最古怪的10种转基因动物。1、荧光鼠[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021325_179855_1607864_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021327_179856_1607864_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911021329_179857_1607864_3.jpg[/img]科研人员取白色小鼠3.5天胎龄的囊胚,体外注射8-12个转染了绿色荧光蛋白基因的黑色小鼠胚胎干细胞,其中受精卵的直径为70纳米、注射开口20纳米、注射进去的胚胎干细胞直径也为20纳米。在特制的荧光体视显微镜下看到,阳性小鼠的皮肤、脑部、肺部发出绿色荧光,可观察胚胎干细胞发育走向、绿色荧光蛋白基因的表达嵌合过程,并提供绿色荧光蛋白作为动物实验示踪剂的有效性、安全性的研究证据;阴性小鼠不发荧光。在自然光下,阳性小鼠因为是黑、白小鼠的嵌合体,头顶有一团黑毛;正常小鼠则是纯白色。荧光鼠脑细胞的图片传遍世界各地,从“福利客”超市的宣传海报到“自然”杂志的封面。这些五彩斑斓的脑细胞是单个的神经元,鲜艳的色彩帮助科学家将它们区分开来。英国哈佛大学的杰夫-里奇曼为首的科研小组在实验鼠的基因组中导入水母的绿色荧光蛋白基因,使其在紫色光线的照射下呈现出绿色荧光。这种绿色荧光基因对小鼠无害,只起到标记作用。

  • 膜联蛋白(Annexin)是什么?膜联蛋白v染色原理及应用

    [font=宋体][font=宋体]膜联蛋白([/font][font=Calibri]Annexin[/font][font=宋体])是一类分布广泛的钙依赖性磷脂结合蛋白,与磷脂酰丝氨酸([/font][font=Calibri]PS[/font][font=宋体])能特异性结合,参与一系列[/font][font=Calibri]Ca2+[/font][font=宋体]依赖型的膜相关的过程,包括细胞的胞吐和内吞作用、囊泡运输、调节血液凝固以及炎症反应等多种生物学事件,在许多人类疾病的发病机制或进展中起着非常重要的作用。膜联蛋白[/font][font=Calibri]V[/font][font=宋体]([/font][font=Calibri]Annexin V[/font][font=宋体])染色是检测细胞凋亡的常用方法。[/font][/font][b][font=宋体][font=宋体]膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色原理及应用[/font][/font][/b][font=宋体] [/font][b][font=宋体][font=宋体]一、膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色原理[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色,也称为[/font][font=Calibri]Annexin V[/font][font=宋体]染色,是一种用于检测细胞凋亡的方法。其核心原理基于细胞凋亡过程中的一种生物化学变化。在正常细胞中,磷脂酰丝氨酸([/font][font=Calibri]PS[/font][font=宋体])只分布在细胞膜脂质双层的内侧。然而,当细胞开始凋亡时,这一分布会发生改变,磷脂酰丝氨酸会从细胞膜内侧翻到外侧。膜联蛋白[/font][font=Calibri]V[/font][font=宋体]是一种能够与这种外翻的磷脂酰丝氨酸特异性结合的蛋白。通过结合荧光物质,这种结合可以被检测和观察,从而确定哪些细胞正在经历凋亡。[/font][/font][b][font=宋体] [/font][font=宋体][font=宋体]二、膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色的应用[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]①流式细胞术:膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色常用于流式细胞术中,以检测和分类正常细胞和凋亡细胞。通过流式细胞仪,可以快速分析大量细胞,并准确地识别出凋亡细胞。[/font][/font][font=宋体][font=宋体]②光学显微镜成像:膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色也可用于光学显微镜成像技术,这使得研究者能够在显微镜下直接观察细胞的形态变化,从而对凋亡过程有更深入的理解。[/font][/font][font=宋体][font=宋体]③与其他染色方法的结合:膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色可以与其他染色方法如碘化丙啶[/font][font=Calibri](PI)[/font][font=宋体]染色结合使用。[/font][font=Calibri]PI[/font][font=宋体]是一种能够进入凋亡晚期细胞核的染料,因此可以用于区分凋亡早期和晚期细胞。这种联合使用的方法能提供更全面的细胞凋亡信息。[/font][/font][font=宋体][font=宋体]④临床应用:膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色在许多临床领域中都有应用,例如肿瘤学、血液学和药理学等。它可以帮助研究者深入理解疾病的发展过程,评估新药物对细胞凋亡的影响,以及监测疾病的进展和治疗的效果。[/font][/font][font=宋体][font=宋体]总的来说,膜联蛋白[/font][font=Calibri]V[/font][font=宋体]染色是一种强大的工具,可以帮助科学家们更好地理解细胞凋亡的过程,从而为疾病的治疗和药物研发提供有价值的信息。[/font][/font][font=宋体] [/font][font=宋体]更多关于膜联蛋白详情可以关注[url=https://cn.sinobiological.com/][b]义翘神州[/b][/url]![/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 【求助】测蛋白含量及纯化

    采用考马斯亮蓝测蛋白含量时,样品中有叶绿色等色素,这样会干扰结果吗?如果会,怎样纯化样品,主要是怎么去除色素干扰!谢谢!

  • 【转帖】NusA技术:显著增强大肠杆菌表达可溶、活性蛋白

    70kDa)中的七个得到了可溶性表达,而其它的融合标签(GST,MBP和hexahistidine)系统则只得到了四个可溶性表达的蛋白。表1. 用大量的目标蛋白评估NusA标签对提高融合蛋白可溶性的作用参考文献a目的蛋白数目目的插入序列种属目标蛋白大小范围NusA融合蛋白可溶性比例Shih等(2002)40酵母,哺乳动物,植物,昆虫9-10060Korf等(2005)75人6-12760bKohl等(2008)96人1-11844ca. Korf等和Kohl等的研究中包含了六组氨酸标签。b. 可溶性蛋白量大于等于10%即认为该融合蛋白可溶。c. 纯化后的融合蛋白如果在SDS-PAGE后考染在合适位置出现条带即认为可溶。Korf等的还发现对于定位于真核细胞细胞器,质膜或者骨架的蛋白,相对于其它标签系统来讲,NusA标签是最好的可溶性表达的选择。Kohl等(2008)也发现只要在20-25℃诱导表达,NusA标签能够大大提高难表达的蛋白比如膜蛋白的可溶性。与Korf等的研究结果一致,Kohl等也发现25℃诱导表达比30℃或37℃诱导表达可以纯化得到更多的NusA融合蛋白。切除NusA标签获得后保持活性且正确折叠的蛋白表2总结了16个采用NusA标签成功获得可溶性蛋白,在切除标签后这些蛋白仍有正确折叠结构和活性。大部分这种研究是是关于分子量小于或接近20kDa的目标蛋白。纯化后的目标蛋白产量范围在1.5-100mg/L。趋化因子和细胞因子可以得到高达30-100mg/L的产量。其它关于这些蛋白表达和纯化的有参考价值信息包括:■ 植物磷酸烯醇式丙酮酸—羧化酶激酶(Ermolova 2003)——目标蛋白切除标签后用BDA(蓝色葡聚糖)亲和层析树脂纯化。纯化后蛋白的催化活性比未切除标签的融合蛋白高50倍。■ Xklp3a,Tep3Ag和E8R(De Marco 2004)——用蛋白酶切割后,His-融合的TEV和NusA被Ni2+离子亲和色谱选择性去除。与Ni2+亲和结合的标签被紧密地结合在树脂上,在流出液中则可以得到纯化的目的蛋白。所有这三种蛋白在纯化后都正确折叠且均一分散在溶液中。纯化的膜结合蛋白E8R牛痘病毒蛋白在Tris缓冲液中除去NusA后出现了沉淀,然而加入0.02%的月桂酰基麦芽糖苷和150mM的氯化钠后,蛋白又重新变得可溶。■ 环麦芽糖糊精酶(Turner 2005)——这个蛋白属于α-淀粉酶家族。这个家族的蛋白通常在大肠杆菌中很难以活性形式表达出来。将其与肠激酶混合孵育24小时以上会使其活性逐渐增强,直到达到未经肠激酶处理过的融合蛋白的2倍以上,这也说明标签的存在降低了该酶的活性。可以用固化了Cu2+的亲和层析柱去除切除的融合标签。■ 八种人趋化因子(Magis-trelli 2005)——所有的蛋白都在OrigamiTM B菌株中表达提高它们在胞质中的二硫键形成率。在趋化因子编码序列的C端引入了AviTMTag(亲和素)生物素化序列。切割后的细胞趋化因子可以用单体的亲和素树脂亲和层析与切割下的NusA标签和蛋白酶混合物分离开。所有切割纯化后的蛋白在细胞趋化实验中都显示了活性,而没有一个融合蛋白有这样的活性。■ 蚯蚓血红蛋白(Karlsen 2005)——酶切后,用分子筛分离纯化蚯蚓血红蛋白,纯化后的蛋白通过圆二色谱检测得到的α-螺旋结构与模型预期结果一致,且纯化后的蛋白可以以单体的形式稳定保存。■ 人白介素-29(Li 2006)——用S-蛋白亲和层析比Ni2+亲和层析可以得到更纯的目的蛋白。将融合蛋白N端的NusA/His•Tag®/S•Tag™标签切掉后,用链亲和素琼脂去除生物素标记的凝血酶。用水疱性口膜炎病毒(VSV)处理固定的人羊膜上皮细胞(WISH 细胞)后,通过检测纯化的IL-29对细胞的保护效应来检测其抗病毒活性。■ 人干扰素-λ2(Li 2007)——酶切后,用Novagen提供的EKaptureTM琼脂除去重组的肠激酶。先用纯化后的干扰素-λ2处理WISH细胞,24小时后加入VSV病毒,可以观察到干扰素-λ2可以有效地保护细胞免于病毒介导的病变。表2. 切除NusA标签获得后保持活性且正确折叠的蛋白参考文献目的蛋白目的蛋白分子量(kDa)切割用蛋白酶融合蛋白亲和层析固定介质纯化后目的蛋白产量(mg/L)Ermolova等(2003)植物磷酸烯醇式丙酮酸羧化酶激酶32凝血酶Ni2+1.5De Marco等(2004)Xklp3ATep3AgE8R15NRa32bTEV酶TEV酶TEV酶Ni2+5.02.54.0Turner等(2005)环麦芽糖糊精酶69肠激酶Cu2+1.6Magistrelli等(2005)八种人趋化因子8-21Xa因子Ni2+30-100Karlsen等(2005)蚯蚓血红蛋白15TEV酶Ni2+NRaLi和He(2006)人白介素-2920凝血酶S-蛋白60Li和Huang(2007)人干扰素-λ220肠激酶Ni2+65a. 未报道b. 根据NCBI报道预测的全长蛋白分子量与NusA标签融合且具有活性的蛋白 与这些切除NusA标签后保持活性且正确折叠的蛋白不同,还有很多报道指出目的蛋白在“NusA-目的蛋白”的融合形式时具有很好的活性。比如单链(ScFv)催化活性抗体14D9(Zheng 2003),来自Aequorea victoria的绿色荧光蛋白(Nallamsetty 2006),人二氢叶酸还原酶(Nallamsetty 2006),来自Ensis directus蛏子的精氨酸酶激酶(Compaan 2003),来自B. thuringiensis的修饰δ-内毒素(Kumar 2005),人BCMA跨膜受体(Guan 2006),植物α-双加氧酶1(Liu 2006),以及来自Plasmodium falciparum的b-ketoacyl-acyl载体蛋白合成酶(Lack 2006)等,反映了各种不同背景的蛋白都显示出了与NusA标签融合后的活性。NusA标签提高蛋白可溶性的可能机制 Houry(1999)等揭示NusA蛋白是分子伴侣GroEL在体内的必须底物。而GroEL与其共作用因子GroES是大肠杆菌唯一的在所有生长条件下必需的分子伴侣系统。Douette等(2005)研究了融合蛋白NusA-UCP1(uncoupling protein 1)的可溶产量。UCP1是一种线粒体膜蛋白。这些作者发现16℃培养时,当GroEL共过表达的情况下,融合蛋白的可溶性有更大的提高。这个结果也表明NusA与分子伴侣途径相作用,从而阻止参与蛋白的聚集。总结 已有充分的证据证明NusA标签系统能显著提高多种不同来源蛋白的可溶性表达,而这些蛋白在单独表达时往往形成不可溶的包涵体。在一些研究报告中,用蛋白酶切除NusA标签能使目的蛋白仍保持正确折叠和生物学活性;相反,在另外许多报道中也指出当目的蛋白与NusA融合而非切除时,融合蛋白也同样具有活性。NusA标签系统的成功至少部分地是由于其与大肠杆菌分子伴侣系统相互作用的结果。

  • Science:活细胞代谢成像新方法

    http://www.bioon.com/biology/UploadFiles/201203/2012030911450761.jpg细胞S-腺苷甲硫氨酸成像图,随着每个时间点蛋氨酸(右下)的增加,荧光强度也增高通过基因工程技术使得细胞表达一种经修饰(改造)过的RNA,又称Spinach,研究人员能对活细胞中的小分子代谢物进行成像,并观察它们随时间变化是如何改变的。每个细胞新陈代谢都会产生代谢产物。假如能得知产物生成效率的话,就能辨识如癌症状态下细胞代谢的异常或确定药物能否将细胞的代谢状况恢复到正常状态。康奈尔大学威尔医学院的研究人员说发表在3月9日的《科学》杂志上的相关论文详细描述了这种先进的技术方法,这一技术将有可能彻底颠覆以往对代谢组学的认识,提供数千种细胞内代谢产物的动态变化的化学指纹图谱。威尔康乃尔医学院药理学副教授Samie R. Jaffrey博士说:“动态观察到代谢产物的变化将为我们提供新的和强大的武器,方便我们了解代谢在疾病状态下是如何改变的,并帮助我们找到可以将它们恢复到正常水平的方法”。Jaffrey博士领导威尔康乃尔的其他三名研究人员共同完成了这项研究。他说:“细胞的代谢水平调控着细胞诸多功能,也正因为如此,代谢水平的变化可以是细胞内在特定的时间内发生什么变化的写照”。例如生物学家都知道,肿瘤细胞存在代谢异常,这些细胞对葡萄糖能源的利用存在异常并产生独特的代谢产物如乳酸,从而有不一样的新陈代谢过程。Jaffrey博士说:“能够看到这些代谢异常的话,就可以了解癌症的发生发展。但是到现在为止,测量活细胞中代谢产物一直非常困难。Jaffrey博士和他的团队展开的科学研究表明:可以用特定的RNA序列来检测细胞中代谢产物的水平。这些RNAs是基于能在细胞发出绿色光的Spinach RNA设计的。Jaffrey博士研究小组修改Spinach的RNAs,使得它们一旦遇到它们专属绑定的代谢物时就关闭,造成Spinach荧光开启。他们设计出了RNA序列以追踪细胞中五个不同代谢产物包括二磷酸腺苷、细胞能量分子ATP和参与调节基因活性的甲基化过程的SAM(S-腺苷蛋氨酸)水平的变化。他说:“在此之前,一直没有人能够实时观察到细胞中代谢产物水平是如何变化的”。Jaffrey博士说:“在活细胞中运用RNA传感器,研究人员能够测量单个细胞中的目标代谢产物水平随着时间的变化而发生的改变,你可以看到这些代谢物如何响应信号刺激或遗传变化进而发生动态变化的。你可以筛选出能使得这些基因异常发生正常化的药物,我们的一个主要目标是确定药物是否能使细胞的新陈代谢正常化。新技术克服了现行的用绿色荧光蛋白(GFP)标记活细胞以充当传感器的缺点。如果将绿色荧光蛋白和其他发光蛋白质融合到能结合某种代谢物产物的自然存在的蛋白质中的话,绿色荧光蛋白和其他发光蛋白质就可以用来充当代谢感应器。但在某些情况下,代谢产物与自然存在的蛋白质结合方式会扭转蛋白质结构,进而影响已经融入到这些蛋白质中的荧光蛋白。另外,对于大多数的代谢产物,并没有可用来融合绿色荧光蛋白以制造传感器的蛋白质。通过使用RNA作为代谢物传感器,这个问题引刃而解了。Jaffrey博士说:“关于RNA令人惊奇的是,你可以得到基本上你想要结合任何一种小分子代谢物的RNA序列。他们可以在几个星期就能生产出来”。然后,这些人造序列融合到Spinach中,并在细胞中以单链RNA的形式表达。Jaffrey博士说:“这种做法能让你得到任何你想研究的小分子代谢物,以及这些小分子代谢物在细胞内的情况”,他和他的同事们将这一技术的运用范围扩大到能检测活细胞内的蛋白质和其他分子。他补充说道:该技术可应用于多种疾病研究中。Jaffrey博士说:“我们非常有兴趣研究导致发育障碍如自闭症的大脑神经细胞内的代谢如何是变化的,有很多的机会能让这一新的工具发挥用处”。这篇研究论文的合著者包括威尔康乃尔医学院药理系Jeremy S. Paige博士、Thinh Nguyen Duc博士、Wenjiao Song博士。这项研究由美国国立卫生研究院的生物医学成像和生物研究所以及McKnight基金会资助。康奈尔科技企业和商业中心(CCTEC)已经代表康奈尔大学提出了这项技术的专利保护申请。Samie Jaffrey博士是Lucerna技术的创始人和科学顾问,并持有该公司股权。此外,Lucerna技术拥有上述描述技术的相关许可证。

  • 蛋白样品消化液出现沉淀是何故?

    [b]今天在做奶粉蛋白测定时,将样品消化后,冷却后消化液中出现白色透明晶状物质,溶液呈现蓝绿色,后加热一下并加水后,没有出现,请问谁也遇过此情况,是不是硫酸铵,谁来讲讲[/b]

  • 绿色鸡精的开发与探讨

    绿色鸡精的开发与探讨随着人们的生活水平不断提高,追求生活质素也越来越高!鸡精作为第三代增鲜调味品已被广大消费者晴睐!近年来发展迅猛,成为家庭生活中的必备调味品之一。但目前鸡精市场产品是鱼目混珠,莨秀不齐!发展绿色鸡精成为一种趋势。绿色鸡精的特点是鲜味饱满浓厚且持久,具有清炖鸡汤和煮鸡的天然风味,这些特点迎合了世界各族人民的饮食口味。绿色鸡精摈弁了过去以香精、味精、糊精和色素为主的生产模式!应用以鸡肉粉、鸡脂、特种抽提物、水解植物蛋白和辛香料为主体的协同作用产生鸡肉鲜味。绿色鸡精产品鸡香风味饱满,肉香浓郁持久,口感逼真、纯正自然。 绿色鸡精的生产工艺与配方  绿色鸡精:生产中首先要将较粗的原料如:白糖、味精、白芷、白胡椒等粉碎成40目以上的粉末,以便造粒;然后与其他配料:IMP、GMP、HVP、纯鸡粉、麦芽糊精、玉米淀粉等加入混合机;食盐单独粉碎;边搅拌边加入精制鸡油、鸡肉香膏和鸡肉香粉要与盐的预先混合物好!拌合均匀。最后加入葡萄糖粉与维生素B1的混合物!用造粒机造粒后,送入烘房烘干。烘干温度在90℃左右,时间为1小时左右(或直接微波干燥),以产品达到要求水分为准。烘干过程中要注意控制烘房内湿度,要经常抽湿。烘干后的颗粒半成品要进行两次增加头香,先用特殊喷雾设备喷上适量鸡肉香油,然后再拌上鸡肉香粉,这样增加的头香才会使产品香气均匀!否则鸡肉香粉会散落在容器底部(或包装袋底层)!加香拌合均匀后要立即密封包装,以防吸水返潮。 绿色鸡精配方示例: 原料名称原料规格配方比例配 方 说 明白糖40目粉6.00主要是呈甜味和生成呈香物质葡萄糖粉食用级2.00与氨基酸反应生成呈香物质食盐无碘25.00盐是百味之王,衬托鲜味;碘能氧化鸡精中的部分原料!MSG40目粉16.00鲜味物质之一IMP西捷0.60与MSG,GMP有鲜味协同作用 相乘原理GMP西捷0.80或用I+G=1.20,GMP=0.20SSA40目粉0.15呈现鸡肉的天然咸YE-302一品鲜6.00增强风味HVP-液20%2.00风味强化物HVP大豆蛋白2.00增加蛋白质沙姜60目粉0.30掩盖抽提物的腥味白胡椒60目粉0.50掩盖抽提物的腥味白芷60目粉0.30掩盖抽提物的腥味洋葱油浸提0.10掩盖抽提物的腥味Vc药用0.02增加营养和度节口感VE药用0.02加强营养,增加浊度VB1药用0.20加热降解后有呈香作用牛磺酸药用0.10营养强化和加热后呈香全脂奶粉食用3.00呈味,增加汤的浊度,使之更具天然感营养增强剂药用0.03增强营养成份,德门食品公司提供酱油粉味群1.00呈味增鲜,也可用牡蛎油鸡油焦香型2.00百仑卡顿公司产品焦香型带脂香纯鸡肉粉清炖香型1.00百仑卡顿公司的BG1111纯鸡肉粉鸡粉BG1328-2煮肉香型3.00百仑卡顿公司的BG1328-2鸡粉,包装前加入!提头香!鸡膏BG1421特种抽提2.00百仑卡顿公司的BG1421高钙鸡骨髓浸膏鸡肉香油BG1223Maillard0.20+0.10百仑卡顿公司的BG1223,其中0.10成型后、包装前加入!蛋黄粉亳州5.00呈味呈香与上色β-胡萝卜素食用0.10天然色素,或用栀子果浸出液也行茶多酚食用0.10既是很好的天然抗氧剂又能与氨基酸一起提升鲜味迷迭香提取物防腐剂0.10天然防腐剂混香型乙基芽酚广州知未0.20天然发酵产品,增强产品风味!CMCFH-60.30成型造粒麦芽糊精食用15.00填充物爆玉米粉自膨化5.00膨化后粉碎至40目,呈香作用和造粒高效酶制剂-F608广州知未0.08起酥作用和防止颗粒破碎,加料时要避免与人体皮肤接触!Water饮用级适量示造粒要求而定可适量增加一点膨松剂(如起酥油),以便干燥快些,呈香物质损失减少!

  • 怎么使共聚焦显微镜观察到的信号增强

    想请教各位专家一个问题,我做完细胞转染后制片观察,细胞表达绿色荧光蛋白,同时用红色荧光标记细胞内另一种蛋白.在普通荧光显微镜下看到两种荧光信号非常明显,结果共聚焦显微镜的扫描结果信号很弱,甚至观察不到,我是初次用共聚焦显微镜,请各位指点一下问题出在哪里!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制