当前位置: 仪器信息网 > 行业主题 > >

硫镓银晶体

仪器信息网硫镓银晶体专题为您整合硫镓银晶体相关的最新文章,在硫镓银晶体专题,您不仅可以免费浏览硫镓银晶体的资讯, 同时您还可以浏览硫镓银晶体的相关资料、解决方案,参与社区硫镓银晶体话题讨论。

硫镓银晶体相关的论坛

  • 【资料】晶体的类型与性质

    一、一周知识概述(一)、所讲内容及目的  1、晶体的类型  2、离子晶体、分子晶体、原子晶体的性质及模型  3、氢键  4、金属晶体的结构和性质(二)、与前后周的衔接关系  本单元内容是在原子结构和元素周期律以及化学键知识的基础上介绍的,理论性较强,比较抽象,所以配了很多插图,便于理解,并能提高兴趣。重点要掌握四类晶体的概念,晶体类型与性质的关系。二、重点知识归纳及理解(一)、晶体的类型1、晶体:具有一定的几何形状,其构成粒子按某种规律排列,占有一定空间的纯净物。 (二)、离子晶体、分子晶体、原子晶体、金属晶体1、概念(1)离子晶体:阴阳离子间通过离子键结合而成的晶体。(2)分子晶体:分子间以分子间作用力相结合的晶体。(3)原子晶体:相邻原子间以共价键相结合而形成空间网状结构的晶体。(4)金属晶体:通过金属阴离子与自由电子之间的较强作用形成的单质晶体。2、四种类型晶体的比较(三)、四种晶体结构模型1、离子晶体NaCl和CsCl晶体结构特征(1)在NaCl晶体中,每个Na+同时吸引着6个Cl-,每个Cl-也同时吸引着6个Na+。故Na+、Cl-个数比为1:1,在整个晶体中不存在单个的NaCl分子。NaCl不是表示分子组成的分子式,只是表示晶体内离子个数比的化学式。(2)CsCl晶体中,每个Cs+同时吸引着8个Cl-。每个Cl-也同时吸引着8个Cs+。故而CsCl是只表示离子个数比的化学式。2、CO2分子晶体结构模型  在CO2晶体结构中,每个质点都是一个小分子,该晶体为立方体结构。每个立方体顶点上都有一个CO2分子。在立方体的六个面心也有一个CO2分子存在。每个CO2分子与12个CO2分子相邻。 3、金刚石晶体结构模型  在金刚石晶体中,每个碳原子都以共价键与相邻的4个碳原子结合四面体结构。六个碳原子形成一个六元环,每个碳原子又被12个环共用。这些正四面体(或六元环),向三维空间延伸得到立体网状晶体。4、金属共同物理性质的解释(1)金属晶体具有金属光泽和颜色:这是由于自由电子能对可见光进行选择性吸收和反射从而使金属晶体具有不同的颜色和光泽。(2)金属的导电性、导热性  导电性:由于自由电子在外加电场的作用下产生定向移动形成电流。故金属容易导电。  导热性:自由电子在运动时与金属离子相互碰撞,在碰撞过程中发生能量交换,使整块金属达到同样的温度。(3)金属的延展性:当金属受到外力时,晶体中的各原子层就会发生相对滑动,由于金属离子与自由电子之间的相互作用没有方向性,受到外力后相互作用没有被破坏,故金属只发生形变而不断裂。使金属具有良好的延展性。三、难点知识剖析(一)、晶体溶沸点高低比较(1)异类晶体分子晶体。  一般情况下:原子晶体(熔沸点)>离子晶体>分子晶体。  例如:SiO2>NaCl>CO2(2)同类晶体  原子晶体共价键键能→键长→原子半径(3)组成和结构相似的分子,分子间作用力随相对分子质量增大而增大。晶体的熔沸点升高。例如:F2<Cl2<Br2<I2,CO2<CS2。(4)分子间形成氢键时,分子间作用力增大熔沸点反常偏高。例如:H2O>H2Te>H2Se>H2S。(5)一般情况下(同类型的金属晶体),金属晶体的熔点由金属阳离子半径、所带的电荷数、自由电子的多少而定。阳离子半径越小,所带的电荷越多,自由电子越多,相互作用就越大,熔点就会相应升高。例如:熔点K<Na<Mg<Al,Li>Na>K>Rb>Cs。(二)、氢键(1)形成条件:原子半径较小,非金属性很强的原子x(N、O、F)与H原子形成极强性共价键,与另一个分子中的原子半径较小,非金属很强的原子y(N、O、F),在分子间H与y产生较强的静电吸引,形成氢键。(2)表示方法:x-H…y-H(x,y可相同或不同,一般为N、O、F)。(3)氢键能级:比化学键弱很多,但比分子间作用力稍强。(4)氢键作用:使物质有较高的熔沸点(例:HF、H2O、NH3等);使物质易溶于水(例:NH3、C2H5OH、CH3COOH等);解释一些反常现象(例:水结冰体积膨胀、水和乙醇的恒沸混合物等)。 [img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102390_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102392_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102394_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071527_102396_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071528_102397_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071528_102398_1605343_3.gif[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/08/200808071528_102399_1605343_3.gif[/img]

  • 【讨论】垂直ATR各种晶体区别

    有个问题想问下大家,我用的是Thermo的红外,常见的ATR晶体有Ge,金刚石,ZnSe,KRS-5(溴碘化铊),我看参数因为折射率不一样,适用的波数范围也不一样,好像KRS-5性能最好,最近买了一块锗晶体,银白色的,主要是因为锗晶体硬度高,不容易划伤,但是为什么同样的样品量测试,KRS-5和ZnSe晶体出来的峰差不多,但锗晶体都不出峰,要样品量增加很多才会出峰,应该是检测限也有区别阿.有人知道是为什么吗?

  • 【资料】"眼科晶体及其种类

    什么是"眼科晶体及其种类?(一)PMMA人工晶体 人们眼球内有一个能把平行光线曲折的组织结构叫晶体(前述),而且它能随人们意志随时变动屈光能力,使你看远看近都清楚。这种能力叫调节。当白内障手术时,要把病变混浊不透明的晶体摘除,术后要补足这种屈光的损失,以前用眼镜代替,后来科学家们制造了一种按病人所需类型不同的人造晶体,英文称Intraocular Lens(缩写为IOL),意思是眼球内的一个透镜,我国早期翻译为人工晶体。人工晶体的材料主要是PMMA(聚丙基丙烯酸甲酯),是通称的有机玻璃。 50年来的使用,仍然被认为是最理想的,相容性好,几乎不降解。数十年于眼内仍然保持完好的形态、光洁度、透明性、分辨率。由于PMMA质地偏硬, 80年代制造IOL时袢的材料用聚丙烯制做,后来发现仍然不如PMMA稳定,同时人们想出办法对PMMA进行处理,改变了分子排列序列,也能变软而富有弹性,所以近来的人工晶体光学部和袢是不同处理的PMMA,光学部直径一般为5.0;5.5;6.0;6.5;7.0mm,祥长12一13.5mm。  (二)折叠式人工晶体 随着超声乳化手术的开展与普及,为了把人工晶体自很小切口植入,于1984年人们设计制造了可以折叠或卷曲的晶体,近十年来才得以应用并不断改进。现用可折叠式晶体的材料主要有:硅酮(Silicone)、水凝胶(Hydrogel)、丙烯酸(Acrylate)三种。这三种材料生物相容性都很好,光学部直径6.0mm,但可由3.2一4.0mm切口植入眼内。所以,植入折叠晶体者术后效果好。缺点是价格比普通晶体贵。  (三)多焦人工晶体 人工晶体植入后,由于无调节力,看远清楚看近不清楚(老花现象),反之看近清楚看远需要近视镜补足,这是美中不足。为了克服此缺陷,30年来,人们研制应用过多焦人工晶体,其中主要分为二种类型:1、多区多焦型,有二区、三区、四区等,即把人工晶体分为中心区,周围环状区,各部位屈光度不同,一般差2.5D,形成二个焦点,一个看近,一个看远。此类晶体的缺点是远近视力受瞳孔大小、环境光线强弱的影响;2、衍射多焦型,此种晶体是根据Huygens光的波性理论为基础,在人工晶体后表面上刻了30条深2um的小槽,克服了分区多焦晶体受瞳孔大小变动的影响。但是上述二种晶体的共同缺点是必需将进入眼内光线的能量分为二部分,用一半看近,一半看远,远近都不十分清楚,可使视敏度受一定影响。所以,在临床上只有少数医师和患者应用,未成为主流。  关于人工晶体植入的位置, Ride1y1949年的设计是后房型,因当时屈光力计算和预测所限及手术后巨大散光而陷入低谷。后来,人们试制并应用了前房型,虹膜面型及虹膜夹型,由于并发症多,效果差,80年代回到了当年的设想一一后房型。又经近几年改进,现在的人工晶体是囊袋内植入的后房型,即完全回到了“上帝”造人时给予的位置。 2。 隐形眼镜材料晶体类型 切口大小 特点 合资晶体 5.5mm PMMA材料,硬性不可折叠进口单片晶体 5.5mm PMMA材料,硬性不可折叠折叠晶体 2.8mm 灭烯酸酯,软性,可折叠,手术切口小,眼内固定良好.蓝光滤过晶体 2.8mm 可减少有害光线进入眼内,保护视网膜,可预防老年性黄斑变性 多焦点晶体 2.8mm 可提供远,中,近全程视力.减少验光,减少患者术后对眼镜的依赖 可调节晶体. 2.8mm 术后具有一定的调节预定力,达到调节看远看近的效果 有晶体眼屈光性晶体 保持了晶体的调节力预定, 对中高度近视预测性高.

  • 晶体、非晶体等概念的分别

    首先要理解晶体概念,以及晶粒概念。我想学固体物理的或者金属材料的都会对这些概念很清楚!自然界中物质的存在状态有三种:气态、液态、固态 固体又可分为两种存在形式:晶体和非晶体 晶体是经过结晶过程而形成的具有规则的几何外形的固体;晶体中原子或分子在空间按一定规律周期性重复的排列。晶体共同特点:均 匀 性: 晶体内部各个部分的宏观性质是相同的。 各向异性: 晶体种不同的方向上具有不同的物理性质。 固定熔点: 晶体具有周期性结构,熔化时,各部分需要同样的温度。 规则外形: 理想环境中生长的晶体应为凸多边形。 对 称 性: 晶体的理想外形和晶体内部结构都具有特定的对称性。 对晶体的研究,固体物理学家从成健角度分为离子晶体 原子晶体 分子晶体 金属晶体 显微学则从空间几何上来分,有七大晶系,十四种布拉菲点阵,230种空间群,用拓扑学,群论知识去研究理解。可参考《晶体学中的对称群》一书 (郭可信,王仁卉著)。与晶体对应的,原子或分子无规则排列,无周期性无对称性的固体叫非晶,如玻璃,非晶碳。一般,无定型就是非晶 英语叫amorphous,也有人叫glass(玻璃态).晶粒是另外一个概念,搞材料的人对这个最熟了。首先提出这个概念的是凝固理论。从液态转变为固态的过程首先要成核,然后生长,这个过程叫晶粒的成核长大。晶粒内分子、原子都是有规则地排列的,所以一个晶粒就是单晶。多个晶粒,每个晶粒的大小和形状不同,而且取向也是凌乱的,没有明显的外形,也不表现各向异性,是多晶。英文晶粒用Grain表示,注意与Particle是有区别的。有了晶粒,那么晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织(组织简单说就是指固体微观形貌特征)参数。对于大多数的金属材料,晶粒越细,材料性能(力学性能)越好,好比面团,颗粒粗的面团肯定不好成型,容易断裂。所以很多冶金学家材料科学家一直在开发晶粒细化技术。科学总是喜欢极端,看得越远的镜子叫望远镜;看得越细的镜子叫显微镜。晶粒度也是这样的,很小的晶粒度我们喜欢,很大的我们也喜欢。最初,显微镜倍数还不是很高的时候,能看到微米级的时候,觉得晶粒小的微米数量是非常小的了,而且这个时候材料的力学性能特别好。人们习惯把这种小尺度晶粒较微晶。然而科学总是发展的,有一天人们发现如果晶粒度在小呢,材料性能变得不可思议了,什么量子效应,隧道效应,超延展性等等很多小尺寸效应都出来了,这就是现在很热的,热得不得了的纳米,晶粒度在1nm-100nm之间的晶粒我们叫纳米晶。再说说非晶,非晶是无规则排列,无周期无对称特征,原子排列无序,没有一定的晶格常数,描叙结构特点的只有径向分布函数,这是个统计的量。我们不知道具体确定的晶格常数,我们总可以知道面间距的统计分布情况吧。非晶有很多诱人的特性,所以也有一帮子人在成天做非晶,尤其是作大块的金属非晶。因为它的应力应变曲线很特别。前面说了,从液态到到固态有个成核长大的过程,我不让他成核呢,直接到固态,得到非晶,这需要很快的冷却速度。所以各路人马一方面在拼命提高冷却速度,一方面在不断寻找新的合金配方,因为不同的合金配方有不同的非晶形成能力,通常有Tg参数表征,叫玻璃化温度。非晶没有晶粒,也就没有晶界一说。也有人曾跟我说过非晶可以看成有晶界组成。 那么另一方面,我让他成核,不让他长大呢,不就成了纳米晶。人们都说,强扭的瓜不甜,既然都是抑制成核长大,那么从热力学上看,很多非晶,纳米晶应该不是稳态相。所以你作出非晶、纳米晶了,人们自然会问你热稳定性如何。后来,又有一个牛人叫卢柯,本来他是搞非晶的,读研究生的时候他还一直想把非晶的结构搞清楚呢(牛人就是牛人,选题这么牛,非晶的结构现在人们还不是很清楚)。他想既然我把非晶做出来了,为什么我不可以把非晶直接晶化成纳米晶呢,纳米晶热啊,耶,这也是一种方法,叫非晶晶化法。既然晶界是一种缺陷,缺陷当然会影响材料性能,好坏先不管他,但是总不好控制。如果我把整个一个材料做成一个晶粒,也就是单晶,会是什么样子呢,人们发现单晶确实会有多晶非晶不同的性能,各向异性,谁都知道啊。当然还有其他的特性。所以很多人也在天天捣鼓着,弄些单晶来。现在不得不说准晶。准晶体的发现,是20世纪80年代晶体学研究中的一次突破。这是我们做电镜的人的功劳。1984年底,D.Shechtman等人宣布,他们在急冷凝固的Al Mn合金中发现了具有五重旋转对称但并无无平移周期性的合金相,在晶体学及相关的学术界引起了很大的震动。不久,这种无平移同期性但有位置序的晶体就被称为准晶体。后来,郭先生一看,哇,我们这里有很多这种东西啊,抓紧分析,马上写文章,那段金属固体原子像的APL,PRL多的不得了,基本上是这方面的内容。准晶因此也被D.Shechtman称为“中国像”。 斑竹也提到过孪晶,英文叫twinning,孪晶其实是金属塑性变形里的一个重要概念。孪生与滑移是两种基本的形变机制。从微观上看,晶体原子排列沿某一特定面镜像对称。那个面叫栾晶面。很多教科书有介绍。一般面心立方结构的金属材料,滑移系多,已发生滑移,但是特定条件下也有孪生。加上面心立方结构层错能高,不容易出现孪晶,曾经一段能够在面心立方里发现孪晶也可以发很好的文章。前两年,马恩就因为在铝里面发现了孪晶,发了篇Science呢。卢柯去年也因为在纳米铜里做出了很多孪晶,既提高了铜的强度,又保持了铜良好导电性(通常这是一对矛盾),也发了个Science.这年头Science很值钱啊。像一个穷山沟,除了个清华大学生一样。现在,从显微学上来看单晶,多晶,微晶,非晶,准晶,纳米晶,加上孪晶。单晶与多晶,一个晶粒就是单晶,多个晶粒就是多晶,没有晶粒就是非晶。单晶只有一套衍射斑点;多晶的话,取向不同会表现几套斑点,标定的时候,一套一套来,当然有可能有的斑点重合,通过多晶衍射的标定可以知道晶粒或者两相之间取向关系。如果晶粒太小,可能会出现多晶衍射环。非晶衍射是非晶衍射环,这个环均匀连续,与多晶衍射环有区别。纳米晶,微晶是从晶粒度大小角度来说的,在大一点的晶粒,叫粗晶的。在从衍射上看,一般很难作纳米晶的单晶衍射,因为最小物镜光栏选区还是太大。有做NBED的么,不知道这个可不可以。孪晶在衍射上的表现是很值得我们学习研究的,也最见标定衍射谱的功力,大家可以参照郭可信,叶恒强编的那本《电子衍射在材料科学中应用》第六章。准晶,一般晶体不会有五次对称,只有1,2,3,4,6次旋转对称(这个证明经常作为博士生入学考试题,呵呵)。所以看到衍射斑点是五次对称的,10对称的啊,其他什么的,可能就是准晶。

  • 【分享】为什么晶体有熔点,而非晶体没有?

    构成物体的大量分子(含原子、离子和分子,下同)永不停息地运动着,分子运动越剧烈,分子的能量就越大,物体的内能就越大,宏观上就表现为温度越高。物体的内能除了包括分子运动的动能外,还包括分子间因存在的相互作用力而具有的势能。分子的运动和势能的总和就是物体的内能。 构成固体的分子,都有固定的平衡位置,但由于这些分子的排列方式不同,固体又可以分为晶体和非晶体两大类。如果组成固体的分子杂乱堆积,没有一定规则,这样的物质叫做非晶体,非晶体内部的分子是无规则的均匀排列。如果分子的排列有一定的规则,在三维空间里作周期性的排列,这样的物质叫晶体。 一般来说,当晶体从外界吸收热量时,其内部分子的平均动能增大,温度也开始升高,但仍保持有规则排列。继续吸热达到一定的温度(熔点)时,其分子运动的剧烈程度可以破坏其有规则的排列,于是晶体开始变成液体。在晶体从固体向液体的转化过程中,吸收的热量用来破坏晶体分子的有规则的排列。晶体熔化的过程就是破坏分子间的规则排列,增大分子间距离的过程,这个过程需要克服分子间的吸引力而做功,这就是晶体熔化之所以会吸收热量的原因。晶体熔化时吸收的热量是用来克服分子引力做功,晶体熔化时吸收的热量全部转化为分子的势能,分子的动能并没有改变,所以温度不变。当晶体完全熔化后,随着从外界吸收热量,温度又开始升高。 非晶体由于分子的排列不规则,吸收热量后不需要破坏分子的有规则排列,只用来提高平均动能,所以当从外界吸收热量时,非晶体的温度不断升高,并由硬变软,最后变成液体。 特殊情况:冰熔化的过程是破坏分子间的规则排列,减小分子间距离的过程,这个过程需要克服分子间的斥力而做功,熔化时吸收的热量全部转化为分子的势能,使分子间的势能增大,分子的动能并没有改变,所以温度也保持不变。除冰外,还有灰铸铁等也属于这种情况。

  • 【分享】晶体结构

    一、研究晶体结构的重要意义  自然界中的固体物质绝大部分都是晶体,只有极少数是非晶体。初中化学课本在溶液部分讲述结晶过程时指出:在结晶过程中形成的具有规则外形的固体叫做晶体。高中化学课本在分别讲述四类晶体的特点以前,先讲了所有晶体在结构上的共同特征。它指出:“晶体为什么具有规则的几何外形呢?实验证明:在晶体里构成晶体的微粒(分子、原子、离子等)是规则地排列的,晶体的有规则的几何外形是构成晶体的微粒的有规则排列的外部反映”。这里所说的“实验”主要指有X射线来测定分析晶体结构的实验。高中化学课本下册“金属键”一节中就指出,金属晶体的内部结果是用X射线进行研究发现或证实的。其它晶体也是如此。用X射线测定晶体结构的科学叫做X射线晶体学,它和几何晶体学、结晶化学一道,对现代化学的发展起了很大作用。它们的重要性可概括为以下四点:(1)结晶化学是现代结构化学的一个十分重要的基本的组成部分。物质的化学性质是由共结构决定的,所以结构化学包括结晶化学,是研究和解决许多化学问题的指南。结晶化学的知识在研制催化剂中的应用就是一例。(2)由于晶体内的粒子排列得很有规则,所以晶态是测定化学物质的结构最切实易行的状态,分子结构的实际知识(如键长、键角数据)的主要来源是晶体结构。很多化合物和材料只存在于晶态中,并在晶态中被应用。(3)它们是生物化学和分子生物学的支柱。分子生物学的建立主要依靠了下列两个系列的结构研究:一是从多肽的α螺旋到DNA的双螺旋结构;二是从肌红蛋白、血红蛋白到溶菌酶和羧肽酶等的三维结构。它们都是应用测定晶体结构的X射线衍射方法所得的结果。(4)晶体学和结晶化学是固体科学和材料科学的基石。固体科学要在晶体科学所阐明的理想晶体结构的基础上,着重研究偏离理想晶态的各种“缺陷”,这些“缺陷”是各种结构敏感性能(如导电、扩散、强度及反应性能等)的关键部位。材料之所以日新月异并蔚成材料科学,相当大的程度上得力于晶体在原子水平上的结构理论所提供的观点和知识。二、晶体的通性和分类  在介绍晶体结构研究的发展简史以前,需要先说明一下晶体中微粒是怎样有规则地排列的,并用晶体的这个本质特征来解释晶体的一些通性。应用X射线研究晶体内部结构的大量实验证明,一切晶体在结构上不同于非晶体(以及液体、气体)的最本质的特征,是组成晶体的微粒(离子、原子、分子等)在三维空间中有规则的排列,具有结构的周期性。所谓结构的周期性,是指同一种微粒在空间排列上每隔一定距离重复出现。换句话说,在任一方向排在一直线上的相邻两种微粒之间的距离都相等,这个距离称为周期。如果每一个微粒用一个点代表,则所有这些点组成一个有规则的空间点阵。过一点在不同方向取三根联结各点的直线作为三个坐标轴,用三组平行于坐标轴的直线将所有的点联结起来,则将空间点阵划成所谓空间格子,空间格子的最小单位是一个平行六面体。晶体的空间格子将晶体截分为一个个内容(组成粒子、粒子的排布、粒子间的作用力的性质等)完全等同的基本单位──晶胞。晶胞的形状、大小与空间格子的平行六面体单位相同。晶体可以看作无数个晶胞有规则地堆积而成。在非晶体中,微粒的排列没有规则,不存在空间点阵结构。  与非晶体不同,晶体具有以下几个通性:(1)晶体有整齐、规则的几何外形。例如,只有结晶条件良好,可以看出食盐、石英、明矾等分别具有立方体、六角柱体和八面体的几何外形。这是晶体内微粒的排布具有空间点阵结构在晶体外形上的表现。对晶体有规则的几何外形进行深入研究以后,人们发现不同晶体有不同程度的对称性。晶体中可能具有的对称元素有对称中心、镜面、旋转轴、反轴等许多种。玻璃、松香、橡胶等非晶体都没有一定的几何外形。(2)晶体具有各向异性。一种性质在晶体的不同方向上它的大小有差异,这叫做各向异性。晶体的力学性质、光学性质、热和电的传导性质都表现出各向异性。例如,石墨晶体在平行于石墨层方向上比垂直于石墨层方向上导电率大一万倍;云母片沿某一平面的方向容易撕成薄片等。这是由于在晶体内不同方向上微粒排列的周期长短不同,而微粒间距离的长短又直接影响它们相互作用力的大小和性质。非晶体由于微粒的排列是混乱的,表现为各向同性。(3)在一定压力下,晶体有固定的熔点,非晶体没有固定的熔点,只有一段软化温度范围。这是由于晶体的每一个晶胞都是等同的,都在同一温度下被微粒的热运动所瓦解。在非晶体中,微粒间的作用力有的大有的小,极不均一,所以没有固定的熔点。  晶体的分类在几何晶体学上和在结晶化学上是不同的。在几何晶体学上,按照晶体的对称性将晶体分为七个晶系、32种宏观对称类型、230种微观对称类型(可参看大学《结构化学》教材有关部分)。在晶体化学中,如高中化学课本所说,是根据组成晶体的微粒的种类及微粒之间相互作用力的性质,将晶体首先分为金属晶体、离子晶体、原子晶体和分子晶体四大类。关于离子晶体和金属晶体结构研究的历史过程,以及与另两类晶体有关的共价键理论的历史发展,分别在本章其它几节中介绍。下面主要介绍几何晶体学(其主要内容是空间点阵理论)和X射线晶体学建立和发展的史实。

  • 总磷消解完出现大量结晶体

    总磷消解完出现大量结晶体是怎么回事?今天做了一批样品,其中有一个电子产业的样品1#点过硫酸钾消解完出现大量结晶体。大概是什么物质干扰?

  • 硒化锌晶体询价

    问问大家 硒化锌晶体(用作全反射红外实验)价格一般是多少,国外,国产分别是多少。大概价位即可,我刚打碎一个,,不知道怎么交差,,,

  • 【求助】有人知道晶体学价态和xps价态的差异

    【求助】有人知道晶体学价态和xps价态的差异

    有人知道晶体学价态(通过键长计算的价态)和xps价态的差异 我做的样品中Pb有两种配位环境PbⅠ,PbⅡ: PbⅠ计算的晶体学价态为6.27Pb为6.17,实际上这两种Pb应该都为2价左右,x p s 结果如图所示[img]http://ng1.17img.cn/bbsfiles/images/2007/09/200709281804_65439_1853284_3.jpg[/img]我想问问高手这种xps所测得价态,(峰很宽,所以我拟和成两个峰,认为有两种配位环境)可以和计算的晶体学价态类比么,可以用来证实样品中Pb的两种不同的配位环境么,谢谢

  • 【原创】晶体管特性图示仪

    晶体管特性图示仪是一种可以检测晶体管的特性参数的电子测量仪器。晶体管特性图示仪操作简便,主要有六个旋钮,每个旋钮代表不同的功能作用。它们分别是用来测试调控电流开关、电压开关、峰值电压开关、功耗限制电阻、零电压、零电流开关。晶体管特性图示仪的工作原理大致是这样的:通过示波管的内刻度可直接读测半导体管的低频直流参数,通过摄影装置可记录所需的特性曲线;根据需要还可以测试隧道二极管、场效应管、VMOS管、达林顿管及可控硅等半导体材料制做的器件。晶体管特性图示仪可同时在示波器管荧光屏上显示两只同类型半导器件的特性曲线。晶体管特性图示仪的具体参数如下:集电极扫描电压0-500V 二端测试电压0-5KV、 集电极电流1μA-500mA/div 、具有脉冲阶梯信号。

  • 大家来讨论下 机器时不时出现 晶体转换错误的原因

    我们用的岛津的设备时不时会出现晶体转换错误,原来都是进行初始化就OK了。近来出错了以后初始化不行,拆开设备后发现带动晶体的主动轮在转动,晶体皮带转动缓慢,从动轮压根不动,是从动轮轴承有问题,还是晶体电机有问题,还是其他原因,希望大家可以给些见解,谢谢!

  • 量子隧穿效应“孵出”能效更高的隧穿晶体管

    有望解决目前芯片上晶体管生热过多的问题科技日报 2012年03月28日 星期三 本报讯(记者刘霞)据美国物理学家组织网3月27日(北京时间)报道,美国圣母大学和宾夕法尼亚州立大学的科学家们表示,他们借用量子隧穿效应,研制出了性能可与目前的晶体管相媲美的隧穿场效应晶体管(TFET)。最新技术有望解决目前芯片上晶体管生热过多的问题,在一块芯片上集成更多晶体管,从而提高电子设备的计算能力。 晶体管是电子设备的基本组成元件,在过去40年间,科学家们主要通过将更多晶体管集成到一块芯片上来提高电子设备的计算能力,但目前这条道路似乎已快走到尽头。业界认为,半导体工业正在快速接近晶体管小型化的物理极限。现代晶体管的主要问题是产生过多的热量。 最新研究表明,他们研制出的TFET性能可与目前的晶体管相媲美,而且能效也较以往有所提高,有望解决上述过热问题。 科学家们利用电子能“隧穿”过固体研制出了这种TFET。“隧穿”在人类层面犹如魔术,但在量子层面,它却是一种非常常见的行为。 圣母大学的电子工程学教授阿兰·肖宝夫解释道:“现今的晶体管就像一个拥有移动门的大坝,水流动的速度也就是电流的强度取决于门的高度。隧穿晶体管让我们拥有了一类新的门,电流能够流过而非翻过这道门,另外,我们也对门的厚度进行了调整以便能打开和关闭电流。” 宾州州立大学的电子工程系教授苏曼·达塔表示:“最新技术进展的关键在于,我们将用来建造半导体的材料正确地组合在一起。” 肖宝夫补充道,电子隧穿设备商业化的历史很长,量子力学隧穿的原理也已被用于数据存储设备中,借用最新技术,未来,一个USB闪存设备或许能拥有数十亿个TFET设备。 科学家们强调说,隧穿晶体管的另一个好处是,使用它们取代目前的晶体管技术并不需要对半导体工业进行很大的变革,现有的很多电路设计和电路制造基础设施都可以继续使用。 尽管TFET的能效与现有晶体管相比稍逊色,但是,去年12月宾州州立大学和今年3月圣母大学的科研团队发表的论文已经表明,隧穿晶体管在驱动电流方面已经取得了创纪录的进步,未来有望获得更大的进展。 达塔说:“如果我们在能效上取得更大成功,将是低能耗集成电路上的重大突破,这反过来会加大我们研制出能自我供能设备的可能性,自我供能设备同能量捕获设备结合在一起,有望使我们研制出更高效的健康检测设备、环境智能设备以及可移植医疗设备。” 总编辑圈点: 滚动的台球,碰到桌壁后总会反弹。而量子理论不排除“穿壁而过”的可能性——在基本粒子级的尺度下,“隧穿”的几率不能忽视。隧穿曾是晶体管电路设计者需要防范的现象,然而科学家最终利用它造出了新式晶体管。几年前就有计算机试用了这种新式硅片,它要求的电压更小,且在待机状态下不耗电。隧穿晶体管技术一旦投入商用,CPU的设计者就不必忧虑发热的老问题了。

  • 【分享】新式晶体管材质纤薄性能佳 将提高开关频率千倍

    近日,美国科学家使用世界上最纤薄的材料——石墨烯研制出一种晶体管,新晶体管拥有创纪 录的开关性能,将开关频率提高了1000多倍,这使得其可以广泛应用于未来的电子设备和计算机中,使其功能更强,性能更优异。  美国南安普敦大学纳米研究小组的扎卡里亚·摩卡塔德博士将石墨烯设置成二维的蜂巢结构,并由此研发出了该石墨烯场效应晶体管(GFETs),该晶体管拥有一个独特的管道结构,相关研究发表在《电子快报》杂志上。  摩卡塔德表示,硅互补金属氧化物半导体(CMOS)的尺寸不断缩减,正在逼近其极限,因此需要找到合适的替代物,而在电子领域,石墨烯有望取代 硅,至少能同硅集成在一起使用,但石墨烯固有的物理特性使其很难切断电流。该纳米研究小组的主任希罗斯·米祖塔说:“全球有很多科学家在殚精竭虑地进行研 究,试图切断GFETs的管道,但目前的方法要么要求管道的宽度小于10纳米,要么需要在双层石墨烯层上垂直施加超高的电压,这使得通过这些方法得到的开 关频率都无法达到实际应用需要的标准。”  摩卡塔德研究发现,通过在双层石墨烯纳米线中引入几何形状(比如弯管和边角等),可以有效地切断电流。米祖塔表示,摩卡塔德研制出的晶体管将开关频率提高了1000多倍。  该校电子和计算机科学系主任哈维·鲁特表示:“这是一个重要的突破,其对下一代计算机、通讯和电子设备的研发具有重要意义,借此,我们可以超越 目前已有的CMOS技术,研发出更加高级的晶体管。将几何形状引入石墨烯管道内是一个新想法,该方法在让GFETs保持结构简单的同时获得卓越的性能,因 此,可以很容易实现商业化生产。”  摩卡塔德现正在进行更进一步的研究,以了解致使电流在该石墨烯晶体管管道内停止流动的机制。

  • 【分享】银的晶体结构和红外光谱分析

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95989]((Hnbc)2Ag2(en)2)∞制备、结构和红外光谱分析[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95990](Ag(dnbc)(dapn))2H2O的制备、晶体结构和红外光谱分析[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95991]Ag(lll)晶面上甲基碘化物和亚甲基碘化物的红外光谱研究(美国).[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95992]配合物{(Ag.(C2H8N2))(C7H4NO4)H2O}n合成、晶体结构及红外光谱分析[/url]

  • 电子基础知识简介——晶体二极管

    电子基础知识简介——晶体二极管

    电子基础知识简介——晶体二极管知识全解 普通晶体二极管的基础知识 几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。一、二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。普通二极管实物图http://ng1.17img.cn/bbsfiles/images/2012/12/201212230001_414505_1841897_3.jpg大功率二极管实物图http://ng1.17img.cn/bbsfiles/images/2012/12/201212230002_414506_1841897_3.jpg可参考一个PPT课件,有一点电子基础的话,可能更好理解一些。

  • 【原创】只为图狂--晶体似繁星

    【原创】只为图狂--晶体似繁星

    喜欢借着显微镜拍些图片,没事上点供大家讨论。某药物高温蒸馏,晶体结晶图。[img]http://ng1.17img.cn/bbsfiles/images/2009/11/200911191619_185410_1725562_3.jpg[/img]

  • 晶体矿物差热分析

    晶体矿物差热分析

    谁知道固体白钠镁矾的失水温度以及形成硫酸镁硫酸钠时的温度?条件是不加水,只是晶体集合体下面是两个不同纵坐标的差热图[img=,527,296]http://ng1.17img.cn/bbsfiles/images/2017/08/201708171049_01_3259450_3.png[/img][img=,690,414]http://ng1.17img.cn/bbsfiles/images/2017/08/201708171053_01_3259450_3.png[/img]

  • 为什么衍生后会出现晶体

    大家好,今天想请教大家一个问题:我做的是兽药残留检测,衍生时加入100ul甲苯和100uLBSTFA,80度衍生1小时,但是有时候,衍生完了,冷却后会出现固体(晶体状),这是为什么呢??是什么原因导致衍生失败呢??谢谢各位!!

  • 问个简单的晶体学问题

    请教个小问题:六方晶体的(-1101),(01-11),(10-11),(1-101),(0-111)和(-1011)晶面可以用个指数统一表示吗?比如这样?谢谢了!!!

  • 光子晶体 reflectance 超过100%,如何解释?

    氧化钛光子晶体测紫外可见反射谱,其中有一个样品reflectance超过100%,在150%附近了,重复了很多次了,不知道如何解释。用硫酸钡做基线,仪器是 Cary 5000 Spectrophotometer 带的 The Praying Mantis accessory上做的。由于是光子晶体,因此样品是块体材料( 2 mm),这个有影响?

  • 【网络会议】Bruker新一代小分子晶体学和蛋白质晶体学解决方案

    【会议讲座】Bruker新一代小分子晶体学和蛋白质晶体学解决方案:PHOTON II CPAD探测器和IμS 3.0光源【会议时间】2016年03月16日 14:00:00【主讲老师】张振义博士,Bruker AXS SCD单晶应用科学家,负责中国区的小分子晶体学和蛋白质晶体学的技术支持工作。在晶体学领域具有10年的研究经历,涵盖蛋白质晶体学,蛋白质和药物小分子复合物以及小分子晶体结构的研究。【会议简介】本次讲座将为您带来最新单晶衍射技术的精彩介绍,让您的工作变得更加得心应手,效率更高。布鲁克公司一直致力于在光源和探测技术上革命性的创新,在材料研究、晶体结构研究等领域给用户提供了一系列解决方案,引领者单晶衍射仪的潮流。最新推出新一代PHOTON II探测器,自动化程度更高,易学易用,在提升用户工作效率方面有着惊人的进步。该探测器使用了最前沿的用于四代同步辐射光源的CPAD(电荷积分像素阵列)技术,将实验室探测器的技术提升到了一个新的高度:最大的单片有效区域,最高的动态范围,单光子的检测效率。同时布鲁克公司推出新一代,光强度媲美转靶的微焦斑光源:IμS 3.0。这些新技术的应用将为您的晶体学的实验带来质的飞跃。【会议报名】http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1798-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名截止时间:2016年03月15日 13:303、报名及参会咨询:QQ群—171692483

  • 【分享】德科学家提出全光晶体管设计方案

    新设计在开发实用光学晶体管方面迈出了重要一步2011年05月07日 来源: 科技日报 作者: 常丽君  本报讯 据物理学家组织网5月5日报道,德国维尔斯特拉斯应用分析和随机研究所和马克思·波恩研究所的科学家携手,提出了一种新型全光晶体管的设计方案,即使用一束光脉冲控制另一束,形成完全由光控制的“光路”。最新设计解决了该领域目前面临的多道难题,相关论文发表在最近出版的《物理评论快报》上。   用光子取代电子来传导光,使传统电缆或线路“变身”为“光路”,最终用光子计算机替代电子计算机,是物理学家一直孜孜追求的目标。因为,与电子晶体管相比,光晶体管在转换速度、散热等诸多性能上拥有无可匹敌的优势。  此类研究的关键是找到一个“开关”,将一束光的能量转移到另一束光上。要实现这一点,常规方法是改变光纤属性。而更好的方式是使用另一束脉冲——“控制脉冲”来实现“全光转换”,以此形成某种完全由光操控的“光路”。  在最新研究中,科学家使用一束较弱的分散脉冲来控制另一束较强的信号脉冲,分散控制脉冲比信号脉冲弱7倍。这两束脉冲能在一个非线性介质中以不同频率、相同方向和几乎相同的速度传播。如果后发脉冲能赶上另一束脉冲,两束脉冲就会相互作用。  从控制脉冲的角度而言,信号脉冲好比是宇宙白洞的边界,以它为边线,外面任何物质都无法进入,因此,科学家们设想,将信号脉冲和控制脉冲锁在这片“势力范围”内足够长的时间,直到控制脉冲改变信号脉冲的强度、频率、速度或形状等属性,控制脉冲就能像开关一样调控信号脉冲,实现其在晶体管中的功能。  研究人员在论文中指出,如果后发脉冲被前面脉冲所产生的“边界线”所影响,信号脉冲就会和控制脉冲发生能量交换。无论“边界线”的拥有者是谁,只要两束脉冲的速度非常接近,都会发生能量转移。而且,信号脉冲还能被重复调控,设计出实际可行的路线。而实现该“全光电路”的关键,就是通过调节控制激光来多次调整信号脉冲的衰减或增益。  研究人员还指出,全光晶体管还克服了光的级联能力和扇出的难题。因为强脉冲不会分散传播或破裂成多重脉冲,可输出强脉冲作为下一次转换的输入,由此实现转换路线的光级联。虽然目前全光晶体管还未得到演示,新设计在开发实用光学晶体管方面迈出了重要一步。(常丽君)

  • 【转帖】石墨晶体结构与比表面的关系

    石墨质软,黑灰色;有油腻感,可污染纸张。[url=http://baike.baidu.com/view/34359.htm]硬度[/url]为1~2,沿垂直方向随杂质的增加其硬度可增至3~5。比重为1.9~2.3。比表面积范围集中在1-20m2/g,在隔绝氧气条件下,其[url=http://baike.baidu.com/view/118854.htm]熔点[/url]在3000℃以上,是最耐温的矿物之一。 它能导电、导热。根据晶体形状可分为3种: 1.致密结晶状石墨  致密结晶状石墨又叫块状石墨。此类石墨结晶明显晶体肉眼可见。颗粒直径大于0.1毫米,比表面积范围集中在0.1-1m2/g,晶体排列杂乱无章,呈致密块状构造。这种:石墨的特点是品位很高,一般含碳量为60~65%,有时达80~98%,但其可塑性和滑腻性不如鳞片石墨好。  2.鳞片石墨 [img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191652_628475_1620171_3.gif[/img][size=4][b]鳞片石墨[/b][/size]  石墨晶体呈鳞片状;这是在高强度的压力下变质而成的,有大鳞片和细鳞片之分。此类石墨矿石的特点是品位不高,一般在2~3%,或100~25%之间。是自然界中可浮性最好的矿石之一,经过多磨多选可得高品位石墨精矿。颜色:铁黑色  条痕:光亮黑色  透明度:不透明  光泽:呈半金属光泽  硬度:1-2  解理和断口:平行解理极完全;  比重:2.21-2.26g/cm3  比表面积:5-10m2/g  其他性质:薄片具挠性,有滑感,易污手,具有良好的导电性;这类石墨的可浮性、润滑性、可塑性均比其他类型石墨优越;因此它的工业价值最大。  3.[url=http://baike.baidu.com/view/1365845.htm]隐晶质石墨[/url] [url=http://baike.baidu.com/image/373bc4b4eabb74678bd4b2c8][img]http://imgsrc.baidu.com/baike/abpic/item/373bc4b4eabb74678bd4b2c8.jpg[/img][/url] [size=4][b]隐晶质石墨[/b][/size]  隐品质石墨又称非晶质石墨或土状石墨,这种石墨的晶体直径一般小于1微米,比表面积范围集中在1-5m2/g,是微晶石墨的集合体,只有在电子显微镜下才能见到晶形。此类石墨的特点是表面呈土状,缺乏光泽,润滑性也差。品位较高。一般的60~80%。少数高达90%以上。矿石可选性较差。

  • 【总结】与晶体研究相关的中文书籍

    [B][color=#DC143C][font=楷体_GB2312]总结了一下如果谁有这方面的电子书,贴在下面,有积分奖励[/font][/color][/B][B][font=楷体_GB2312][color=#00008B]晶体研究相关的中文书籍[/color][/font][/B]1、金属X射线学 [专著] / 许顺生著. 上海 : 上海科学技术出版社, 1962.2、X射线衍射学进展 [专著] / 许顺生编. 北京 : 科学出版社, 1986.3、X射线衍衬貌相学 [专著] / 许顺生, 冯端主编. 北京 : 科学出版社, 1987.4、小角X射线散射理论及应用 [专著] / 孟昭富著 长春 : 吉林科学技术出版社, 19965、现代物理测试技术 [专著] / 梁志德,王福主编 北京 : 冶金工业出版社, 20036、织构材料的三维取向分析术 [专著] : ODF分析 / 梁志德,徐家桢,王福著 沈阳 : 东北工学院出版社, 1986.87、金属X射线学 [专著] / (苏)马里采夫(М.В.Мальцев)著 梁志德,刘永铨译 北京 : 高等教育出版社, 19548、新型超导体系相关系和晶体结构 [专著] / 梁敬魁,车广灿,陈小龙著 北京 : 科学出版社, 20069、粉末衍射法测定晶体结构 [专著] / 梁敬魁编著 北京 : 科学出版社, 200310、高Tc氧化物超导体系的相关系和晶体结构 [专著] / 梁敬魁等著 北京 : 科学出版社, 1994

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制