当前位置: 仪器信息网 > 行业主题 > >

硫镓银晶体

仪器信息网硫镓银晶体专题为您整合硫镓银晶体相关的最新文章,在硫镓银晶体专题,您不仅可以免费浏览硫镓银晶体的资讯, 同时您还可以浏览硫镓银晶体的相关资料、解决方案,参与社区硫镓银晶体话题讨论。

硫镓银晶体相关的资讯

  • 微电子所在二硫化钼负电容场效应晶体管上取得进展
    近日,2020国际电子器件大会(IEDM)以视频会议的形式召开。会上,微电子所刘明院士科研团队展示了二硫化钼负电容场效应晶体管的最新研究成果。 功耗是制约未来集成电路发展的瓶颈问题。在栅极中引入铁电新材料的“负电容晶体管”(NCFET)可突破传统场效应晶体管的亚阈值摆幅开关极限,有望在极低电源电压下工作,从而降低功耗并保持高性能。同时,原子层厚度的二硫化钼(MoS2)免疫于短沟道效应,具有较高的迁移率、极低的关态电流和CMOS兼容的制造工艺等优势,是面向先进晶体管的可选沟道材料之一。近期的一些实验显示,MoS2 NCFET能实现低于60mV/dec的亚阈值摆幅。但这些研究仅实现了较长沟道(500 纳米)的器件,没有完全发掘和利用负电容效应在短沟道晶体管中的优势。 针对该问题,刘明院士团队通过对器件参数以及制造工艺的设计与优化,首次把MoS2 NCFET的沟道长度微缩至83 纳米,并实现了超低的亚阈值摆幅(SSmin=17.23 mV/dec 和 SSave=39 mV/dec)、较低回滞和较高的开态电流密度。相比基准器件,平均亚阈值摆幅从220 mV/dec提高至39 mV/dec,沟道电流在VGS=0 V和1.5 V下分别提高了346倍和26倍。这项工作推动了MoS2 NCFET尺寸持续微缩,对此类器件面向低功耗应用有一定意义。 基于上述研究成果的论文“Scaling MoS2 NCFET to 83 nm with Record-low Ratio of SSave/SSRef.=0.177 and Minimum 20 mV Hysteresis”入选2020 IEDM。微电子所杨冠华博士为第一作者。图(a) MoS2 NCFET转移曲线。(b)亚阈值摆幅~沟道电流关系。MoS2 NCFET与MoS2 FET对比数据:(c)转移曲线和(d)输出曲线
  • 微电子所在在有机分子晶体器件的载流子输运研究中获进展
    近日,中国科学院微电子研究所微电子器件与集成技术重点实验室在有机分子晶体器件的载流子输运研究中取得重要进展。相比于传统基于无序半导体材料的场效应晶体管中掺杂引起的缺陷钝化(trap-healing)现象,由有序单晶电荷转移界面制备的场效应晶体管整体电导、迁移率高,并具有跨导不依赖于栅压的电学特性,这表明迁移率的提高取决于trap-healing效应,且存在其他影响电学性能的机制。中科院院士、微电子所研究员刘明团队制备了基于p型和n型有机分子构成的单晶电荷转移界面的晶体管器件,探究了电荷转移界面以及栅氧界面电场的相互作用对晶体管工作时载流子及电导分布特性的影响。相较于界面,单晶体内的缺陷态减少3个数量级以上,这意味着更小的散射概率和更高的器件迁移率。研究通过开尔文探针显微镜对表面电势的栅压依赖性表征和二维数值仿真证实,电荷转移界面的内建电场与栅氧界面电场发生有效耦合,提高了载流子体传输比例,减少了界面无序因素对载流子传输的限制作用,大幅提升了器件的跨导。相关研究成果以Surface Doping Induced Mobility Modulation Effect for Transport Enhancement in Organic Single Crystal Transistors为题,发表在Advanced Material上。研究工作得到国家重点研发计划、微电子所微电子器件与集成技术重点实验室开放课题、国家自然科学基金、中科院战略性先导科技项目的支持。图1.电荷转移晶体管的迁移率调制效应的原理图图2.利用扫描开尔文探针显微镜对电荷转移界面的表面电势的表征分析
  • 硒镓钡晶体 助力实现中红外高灵敏探测
    记者从中国科学院沈阳自动化研究所(以下简称沈阳自动化所)获悉,该所太赫兹研究团队在红外探测领域取得关键技术突破,实现了基于硒镓钡晶体的3—8微米中红外高灵敏探测,对纳秒脉冲的探测灵敏度指标达到国际先进水平。这项技术将为我国在生物、医疗、化工等领域开展前沿科学研究提供强有力的探测工具。相关成果于1月20日刊发在《光学》上。  相对于传统的可见光近红外波段,中红外光与分子之间的共振现象可大幅度提高光谱测量的信噪比,进而实现对物质成分的有效识别。中红外探测技术对于推动生命科学、物性分析等科学探索,以及环保、化工行业、医学诊断等实际应用具有重要意义。当前的中红外探测主要采用热探测和光电探测两种直接探测手段,难以满足科学家们对微量物质的精准检测的需求,探测灵敏度已成为中红外系统的瓶颈问题。  针对当前中红外探测的瓶颈问题,研究团队提出了基于激光频率变换技术的解决方案,设计并搭建了实验系统。研究团队负责人、沈阳自动化所研究员祁峰介绍,该方案的工作原理是将弱中红外信号高效率地转换为近红外信号,近红外光携带了中红外光的信息且易于探测,通过这种间接探测的方式可大幅度提高中红外信号的探测灵敏度。  经过深入分析研究多种晶体的光学特性,科研团队将目标锁定在硒镓钡晶体,该晶体由中国科学院理化技术研究所姚吉勇团队研制。祁峰介绍,硒镓钡晶体通常是作为波源使用,研究人员大胆尝试,将它作为探测系统的一部分,在掌握其光学特性的基础上设计了高性能光参量振荡器,优化了相位匹配条件,解决了弱信号环境下的强背景噪声抑制等问题,从而实现了收发一体的中红外系统。
  • 半导体情报,中国科学家发明新型“热发射极”晶体管!
    【科学背景】随着信息技术和电子设备的迅猛发展,对高性能、高速运算的需求日益增加。因此呢,晶体管作为核心电子器件,其性能的提升成为了关键研究方向。传统的晶体管,如金属氧化物半导体场效应晶体管(MOSFET)和双极结晶体管(BJT),已经在现代集成电路中取得了显著成功。然而,随着应用对速度和功能的要求不断提高,热载流子晶体管作为新兴技术开始受到关注。热载流子晶体管是一类利用载流子过剩动能的设备,与常规晶体管依赖于稳态载流子输运不同,热载流子晶体管通过将载流子调节至高能状态来提升设备的速度和功能。这种特性对于需要快速开关和高频操作的应用,例如先进电信和尖端计算技术,具有重要意义。然而,传统的热载流子生成机制主要包括载流子注入和加速,这些机制在功耗和负微分电阻(NDR)方面限制了设备的性能。例如,载流子注入机制和加速机制都无法提供低于60&thinsp mV&thinsp dec&minus 1的超低亚阈值摆幅,这对于现代低功耗应用至关重要。为了解决这些问题,中国科学院金属研究所研究员刘驰、孙东明和中国科学院院士成会明,联合中国科学院金属研究所研究员任文才团队、北京大学助理教授张立宁团队合作提出了一种基于双重混合维度石墨烯/锗肖特基结的热发射晶体管(HOET)。该晶体管利用加热载流子的受激发射机制,实现了低于1毫伏每十年(decade)的超低亚阈值摆幅,超出了玻尔兹曼极限,并且在室温下具有大于100的峰值-谷值电流比的负微分电阻。通过这种新颖的机制,HOET克服了传统热载流子晶体管在功耗和NDR方面的限制,提供了一种具有显著潜力的多功能晶体管,适用于低功耗和负微分电阻应用,为后摩尔时代的技术进步提供了新的解决方案。【科学亮点】(1)实验首次报道了一种基于双重混合维度石墨烯/锗肖特基结的热发射晶体管(HOET),该晶体管利用加热载流子的受激发射实现了超低亚阈值摆幅和高峰值-谷值电流比的负微分电阻(NDR)。(2)实验通过结合块状材料和低维材料(石墨烯和锗),利用其不同的能带组合形成潜在障碍,从而实现了以下结果:&bull 该HOET实现了低于1毫伏每十年(decade)的亚阈值摆幅,超出了玻尔兹曼极限,这使得设备在低功耗应用中表现优异。&bull 在室温下,HOET的负微分电阻具有大于100的峰值-谷值电流比,这在石墨烯设备中为最高之一,显示出优异的性能。&bull 进一步演示了具有高反相增益和可重配置逻辑状态的多值逻辑应用,展示了设备的多功能性和高性能。【科学图文】图1:器件结构及基本特性。图2:超低SS和SEHC机制。图3:负微分电阻。图4: 用于MVL技术的HOET。【科学结论】本文的研究提供了对热载流子晶体管(HET)领域的重要科学启迪。传统的热载流子生成机制,如载流子注入和加速,存在限制设备性能的不足,特别是在功耗和负微分电阻(NDR)方面。本文提出了一种基于双重混合维度石墨烯/锗肖特基结的热发射晶体管(HOET),利用加热载流子的受激发射机制,显著突破了传统机制的限制,实现了低于1毫伏每十年(decade)的超低亚阈值摆幅,并在室温下展现出大于100的峰值-谷值电流比。这一创新不仅提升了器件的性能,还为低功耗和NDR应用提供了新颖的解决方案。通过将块状材料与低维材料结合,利用不同能带组合形成的潜在障碍,HOET展示了如何通过新机制生成热载流子,推动了热载流子晶体管技术的发展。这项研究为后摩尔时代的电子器件设计开辟了新的方向,尤其是在高性能、低功耗和多功能应用方面,具有重要的科学价值和应用前景。参考文献:Liu, C., Wang, XZ., Shen, C. et al. A hot-emitter transistor based on stimulated emission of heated carriers. Nature (2024). https://doi.org/10.1038/s41586-024-07785-3
  • 众星联恒将参加中国晶体学会第六届学术年会暨代表大会
    北京众星联恒科技有限公司专注于提供X射线及高端的材料分析仪器设备领域,以高效的技术支持、服务为核心,提供系统解决方案。我公司紧密跟进学科的发展,为广大的科研机构及高端制造业研发部门提供高品质的产品及优质的服务。 北京众星联恒科技有限公司将精心组织参加中国晶体学会第六届学术年会暨代表大会,本次会议期间,我公司携手德国INCOATEC公司参加,德国INCOATEC公司技术专家Lars Kuttnik将做口头报告,报告题目:Pushing the Limits of Microfocus X-ray Sources for Biological Crystallography。同时,北京众星联恒科技有限公司将携本公司新产品FemtoX II 相关产品资料参展,作为德国X-SPECTRUM、德国GREATEYES、捷克ADVACAM等公司中国区总代理,我公司也将携带其X射线相关产品资料参展,欢迎新老客户莅临展位参观咨询。 会议名称:中国晶体学会第六届学术年会暨代表大会会议地点:中大凯丰酒店会议时间:2016年12月19日-22日会议详情:http://ch.sysu.edu.cn/ccr2016/ccrsnews/Index.aspx您也可以联系我们提前预约洽谈
  • 大连化物所发现六光子激发自陷态激子发光的无铅钙钛矿晶体
    近日,大连化物所分子反应动力学国家重点实验室、大连光源科学研究室(二十五室)袁开军研究员团队发现了一种具有多光子激发自陷态激子发光的全无机Cs2TeCl6无铅钙钛矿晶体。多光子吸收是一种非线性效应,是指材料可以同时吸收多个单色红外光子,并将电子从基态激发到激发态,然后上转换为高能光子。无铅钙钛矿作为一种“明星”材料,具有较高的稳定性和低毒性,已经成为铅基钙钛矿的替代品。但与铅基钙钛矿相比,对于无铅钙钛矿高阶多光子吸收效应的研究还比较匮乏。本工作发现了一种在800至2000nm波长范围内,具有3至6光子吸收的全无机Cs2TeCl6无铅钙钛矿晶体。稳态和瞬态光学实验结果表明,Cs2TeCl6晶体中单光子和多光子激发的宽带橙色发射归因于自陷态激子的复合。此外,研究人员通过飞秒激光激发的多光子荧光吸收饱和法,量化了Cs2TeCl6晶体的多光子吸收截面,其中六光子吸收截面为1.87×10-174cm12s5photon-5(1980 nm)。该工作为无铅钙钛矿家族在非线性光电领域的应用和发展提供了一个有潜力的候选材料。相关研究成果以“Six-Photon Excited Self-Trapped Excitons Photoluminescence in Lead-Free Halide Perovskite”为题,于近日发表在《先进光学材料》(Advanced Optical Materials)上。该工作的第一作者是大连化物所2507组博士研究生蒋举涛。该工作得到国家自然科学基金、辽宁省兴辽英才计划等项目的资助。
  • 大连化物所发现六光子激发自陷态激子发光的无铅钙钛矿晶体
    近日,大连化物所分子反应动力学国家重点实验室、大连光源科学研究室(二十五室)袁开军研究员团队发现了一种具有多光子激发自陷态激子发光的全无机Cs2TeCl6无铅钙钛矿晶体。多光子吸收是一种非线性效应,是指材料可以同时吸收多个单色红外光子,并将电子从基态激发到激发态,然后上转换为高能光子。无铅钙钛矿作为一种“明星”材料,具有较高的稳定性和低毒性,已经成为铅基钙钛矿的替代品。但与铅基钙钛矿相比,对于无铅钙钛矿高阶多光子吸收效应的研究还比较匮乏。本工作发现了一种在800至2000nm波长范围内,具有3至6光子吸收的全无机Cs2TeCl6无铅钙钛矿晶体。稳态和瞬态光学实验结果表明,Cs2TeCl6晶体中单光子和多光子激发的宽带橙色发射归因于自陷态激子的复合。此外,研究人员通过飞秒激光激发的多光子荧光吸收饱和法,量化了Cs2TeCl6晶体的多光子吸收截面,其中六光子吸收截面为1.87×10-174cm12s5photon-5(1980 nm)。该工作为无铅钙钛矿家族在非线性光电领域的应用和发展提供了一个有潜力的候选材料。相关研究成果以“Six-Photon Excited Self-Trapped Excitons Photoluminescence in Lead-Free Halide Perovskite”为题,于近日发表在《先进光学材料》(Advanced Optical Materials)上。该工作的第一作者是大连化物所2507组博士研究生蒋举涛。该工作得到国家自然科学基金、辽宁省兴辽英才计划等项目的资助。
  • 山东大学成功研制高质量4英寸氧化镓晶体
    近日,山东大学陶绪堂教授团队使用导模法(EFG)成功制备了外形完整的4英寸(001)主面氧化镓(β-Ga2O3)单晶,并对其性能进行了分析。劳厄测试衍射斑点清晰、对称,说明晶体具有良好的单晶性,无孪晶;X射线衍射摇摆曲线显示晶体(400)面半峰全宽仅为57.57″,结晶质量较高;湿法化学腐蚀测试结果表明,晶体位错密度为1.06×104 cm-2;C-V测试确认β-Ga2O3晶体中载流子浓度为7.77×1016 cm-3。测试结果表明,该团队通过导模法获得了高质量的4英寸β-Ga2O3单晶。相关内容以“4英寸氧化镓单晶生长与性能研究”为题已在《人工晶体学报》网络首发(DOI:10.16553/j.cnki.issn1000-985x.20220831.001.)。该成果是继2019年团队获得4英寸(100)主面单晶后的又一新突破。 图1 4英寸β-Ga2O3晶体 图2 β-Ga2O3单晶(010)面劳厄衍射图图3 β-Ga2O3单晶摇摆曲线   此外,团队通过优化提拉法晶体生长工艺,在原有1英寸晶体基础上,成功放大到2英寸,晶体外形规整、无裂纹,晶体质量较高。晶体生长尺寸与德国IKZ及美国空军实验室相当,达到国际先进水平。 图4 提拉法生长2英寸氧化镓柱状单晶   山东大学晶体材料国家重点实验室在国内最早开展导模法氧化镓单晶生长,经过长期潜心攻关,从零开始,先后突破了1~4英寸氧化镓单晶生长、缺陷、掺杂、加工等关键核心技术。通过导模法、提拉法等多种晶体生长方法,生长出n型导电及半绝缘氧化镓晶体并开展了系统的晶体加工和缺陷研究,为打破国外技术封锁和产品禁运奠定了基础。   β-Ga2O3作为超宽禁带半导体材料,可用于制备功率器件、紫外探测器、高能射线探测器,同时也可作为GaN、ZnO等半导体的衬底材料使用。由于超高的击穿场强和巴利加优值,β-Ga2O3功率器件具有耐压高、导通损耗低、开关速度快的优点。目前,β-Ga2O3二极管及场效应晶体管器件耐压均可达几千伏,器件击穿场强已超过SiC和GaN的理论极限。   由于β-Ga2O3禁带宽度为4.8 eV,吸收截止边位于260 nm处,紫外透过率可达80%以上,并且具有良好的化学稳定性和热稳定性。因此,β-Ga2O3晶体自身便满足“日盲”光电器件的需求,避免了目前常用氮化物需要合金化等复杂问题。β-Ga2O3晶体因其卓越的材料性能,在深紫外光电探测以及超高压功率器件方面具有重要的应用,也是最近美国等西方国家对我国实施禁运的关键材料。
  • 我科学家发现一种新型光学晶体
    本报北京2月28日电 2月19日的《自然》杂志,以《中国藏匿的晶体》为题,用3页篇幅对中科院理化技术研究所陈创天院士率领的团队,发现并生长出一种最新的光学晶体———氟代硼铍酸钾(KBBF)晶体进行了详细报道,并称“中国实验室成为这种具有重大科学价值的晶体的唯一来源,它表明中国在材料科学领域实力日益增强”。   KBBF晶体是目前唯一可直接倍频产生深紫外激光的非线性光学晶体,是在非线性光学晶体研究领域中,继硼酸钡、三硼酸锂晶体后的第三个“中国产”非线性光学晶体。《自然》杂志称:“其他国家在晶体生长方面的研究,目前看来还无法缩小与中国的差距。”   陈创天团队经过18年研究,采用“局域自发成核生长技术”,突破大尺寸KBBF晶体生长的技术瓶颈,生长出迄今为止尺寸最大的透明块状KBBF单晶,并结合他们发明的非线性光学晶体的棱镜耦合专利技术,成功制作出KBBF晶体厚度为2.3毫米的光接触棱镜耦合器件,保证了产生深紫外激光的实用性和精密化性能。这项技术为193纳米光刻技术系统中所需要的全固态光源奠定了基础。目前,该技术已获中国、美国和日本发明专利授权。   KBBF晶体能够缩短激光的波长,装备该晶体的各种激光器能发出具有极窄频宽的紫外光波,可测量固体电子能级的分辨率达到360微电子伏特 并可用于建造超高分辨率光电子能谱仪、超导测量、光刻技术等前沿科学研究,对未来的微纳米加工、生物医学、激光电视等将产生深远影响。
  • 我国科研人员为氧化镓晶体管找到新结构方案
    26日,记者从中国科学技术大学获悉,该校微电子学院龙世兵教授课题组联合中科院苏州纳米所加工平台,分别采用氧气氛围退火和氮离子注入技术,首次研制出了氧化镓垂直槽栅场效应晶体管。相关研究成果日前分别在线发表于《应用物理通信》《IEEE电子设备通信》上。作为新一代功率半导体材料,氧化镓的p型掺杂目前尚未解决,氧化镓场效应晶体管面临着增强型模式难以实现和功率品质因数难以提升等问题,因此急需设计新结构氧化镓垂直型晶体管。研究人员分别采用氧气氛围退火和氮离子注入工艺制备了器件的电流阻挡层,并配合栅槽刻蚀工艺研制出了不需P型掺杂技术的氧化镓垂直沟槽场效应晶体管结构。氧气氛围退火和氮离子注入所形成的电流阻挡层均能够有效隔绝晶体管源、漏极之间的电流路径,当施加正栅压后,会在栅槽侧壁形成电子积累的导电通道,实现对电流的调控。类似于硅经过氧气氛围退火处理可形成高阻表面层,氧化镓采用该手段制备电流阻挡层具有缺陷少、无扩散、成本低等特点,器件的击穿电压可达到534伏特,为目前电流阻挡层型氧化镓MOSFET(金属氧化物半导体场效应晶体管)器件最高值,功率品质因数超过了硅单极器件的理论极限。研究人员表示,这两项工作为氧化镓晶体管找到了新的技术路线和结构方案。
  • 半导体情报,科学家首次研发小于1纳米的晶体管!
    【科学背景】镜像孪晶界(MTBs)指的是在MoS2等材料中,两个相邻单层晶体通过精确的60°旋转形成的镜像反射结构。这种特殊的结构不仅具有稳定性,还被理论预测具有一维电子态的特性,可能展现出与传统二维材料不同的电子传输性质。然而,过去对MTBs的研究主要局限于小尺寸晶体和非控制条件下的实验,这限制了其在实际应用中的潜力发挥。因此,韩国浦项科技大学Moon-Ho Jo教授团队联合通过确定性的外延生长,成功地实现了可扩展的MTBs结构,并验证了其作为一维金属性质的稳定性和可靠性。这一研究不仅扩展了对MTBs电子性质的理解,还为将其应用于二维电子电路中提供了新的合成途径。在研究的过程中,研究团队不仅实现了对MTBs结构的精确控制,还探索了其作为电子元件中的潜在应用,如利用MTBs作为接触和互连的可能性。通过将MTBs集成到二维场效应晶体管(FETs)中,他们成功地展示了在低功耗逻辑电路中的先进性能。【科学亮点】(1)实验首次利用位置控制的外延生长技术,在原子厚的范德瓦尔斯半导体中实现了确定性MoS2镜像孪晶界(MTBs),并将其作为一维门的局部应用。(2)实验通过简单的直流测量验证了这些MTBs在室温下作为稳健的一维欧姆导体的金属性质,证实其在单个和网络水平上的大规模应用潜力。此外,作者报道了将外延MTBs集成为原子尺度的门,构建vdW异质结场效应晶体管(FETs)的成功案例。【科学图文】图1 | 在外延范德华硫化钼MoS2 单层ML双晶中的镜像孪晶MTB。图2 | 范德华vDW MoS2 单层ML双晶中,1D外延金属网络。图3 | 通过位置控制成核设计的1D外延金属网络几何结构。图4 | 具有MoS2镜像孪晶界MTB作为1D局域栅的场效应晶体管field-effect transistors,FET。【科学启迪】在本研究中,作者首次通过位置控制的外延方法成功实现了确定性的MoS2镜像孪晶界(MTBs),这些MTBs表现出显著的一维金属性质。通过简单的直流测量,作者验证了这些MTBs在室温下作为稳健的一维欧姆导体的能力,展示了其在电路长度尺度上的金属性质。此外,作者还将这些MTBs成功集成为一维门,构建了集成的二维场效应晶体管(FETs),并在单个和阵列FETs中展示了其在低功耗逻辑电路中的优异性能。这些研究成果不仅为利用范德瓦尔斯半导体中的MTBs构建高效电子器件提供了新的合成途径,还展示了在实现大面积单晶生长方面的潜力。未来,通过更精确地控制晶体纹理的大小、位置和取向序列,作者有望进一步推动创新的二维电子电路设计,利用MTBs作为关键的接触和互连元件,从而实现更高效、更紧凑的电子器件。这些发现不仅对范德瓦尔斯材料的工程设计具有重要意义,还为下一代电子技术的发展开辟了新的可能性。原文详情:Ahn, H., Moon, G., Jung, Hg. et al. Integrated 1D epitaxial mirror twin boundaries for ultrascaled 2D MoS2 field-effect transistors. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01706-1
  • 迄今速度最快能耗最低二维晶体管问世
    北京大学电子学院彭练矛教授-邱晨光研究员课题组日前制备出10纳米超短沟道弹道二维硒化铟晶体管,首次使得二维晶体管实际性能超过Intel商用10纳米节点的硅基鳍型晶体管,并将二维晶体管的工作电压降到0.5V,这也是世界上迄今速度最快能耗最低的二维半导体晶体管。该研究成果以《二维硒化铟弹道晶体管》为题日前在线发表于《自然》。芯片为大数据和人工智能的发展提供源源不断的动力,芯片速度的提升得益于晶体管的微缩,然而当前传统硅基场效应晶体管的性能逐渐接近其本征物理极限。受限于接触、栅介质和材料等方面的瓶颈,迄今为止,所有二维晶体管所实现的性能均不能媲美业界先进硅基晶体管,其实验结果远落后于理论预测。对此,团队在研发过程中实现了三方面技术革新:一是采用高载流子热速度(更小有效质量)的三层硒化铟作沟道,实现了室温弹道率高达83%,为目前场效应晶体管的最高值,远高于硅基晶体管的弹道率(小于60%);二是解决了二维材料表面生长超薄氧化层的难题,制备出2.6纳米超薄双栅氧化铪,将器件跨导提升到6毫西微米,超过所有二维器件一个数量级;三是开创了掺杂诱导二维相变技术,克服了二维器件领域金半接触的国际难题,将总电阻刷新至124欧姆微米。研究团队表示,这项工作突破了长期以来阻碍二维电子学发展的关键科学瓶颈,将n型二维半导体晶体管的性能首次推近理论极限,率先在实验上证明出二维器件性能和功耗上优于先进硅基技术,为推动二维半导体技术的发展注入了强有力的信心和活力。
  • 我国科学家创制极化激元晶体管
    纳米尺度的光电融合是未来高性能信息器件的重要发展路线。如何在微纳甚至原子尺度对光进行精准操控是其中的关键的科学问题。中国科学院国家纳米科学中心研究员戴庆研究团队率先提出利用极化激元作为光电互联媒介的新思路,充分发挥它对光的高压缩和易调控优势,不仅有望实现高效光电互联,而且可以提供额外的信息处理能力,从而进一步提升光电融合系统的性能。   该团队通过十多年的努力,实现了极化激元的高效激发和长程传输。在此基础上,研究设计并构筑了微纳尺度的石墨烯/氧化钼范德华异质结,实现了用一种极化激元调控另一种极化激元开关的“光晶体管”功能。研究表明该晶体管可实现光正负折射的动态调控,类似电子晶体管能切换(1,0)两个高低电位,为构筑与非门等光逻辑单元奠定了重要基础。该研究充分发挥了不同材料的纳米光子学特性,从而突破了传统结构光学方案如使用人工结构(超材料和光子晶体等)在波段、损耗、压缩和调控等方面的性能瓶颈。   与电子相比,光子具有速度快、能耗低、容量高等优势,被寄予未来大幅提升信息处理能力的厚望。因此,光电融合系统被认为是构建下一代高效率、高集成度、低能耗信息器件的重要方向。光电互联(电-光-电转换)是光电融合主的基础,相当于光电两条高速公路交汇的收费站。而现有硅基光电集成方案存在效率低(依赖多次光电效应)、体积大(光模块无法突破衍射极限)等问题,制约光电器件之间的信息流转。然而,光子不携带电荷且光的传输受限于光学衍射极限,相比于能轻易通过电学调控的电子,对光子的纳米尺度局域和操控并不容易。   极化激元是一种由入射光与材料表界面相互作用形成的特殊电磁模式(表面波)。它具有优异的光场压缩能力,可轻易突破光学衍射极限从而实现纳米尺度上光信息的传输和处理。   戴庆团队以攻克高速光电互联这一世界技术难题为目标,提出以纳米材料的表面波(极化激元)为媒介,实现高效光电互联的新思路。构筑光-极化激元-电转换路径相当于将高速公路的收费站改造成立交桥,具有显著优势:一是效率高,光/电激发材料表面波的效率相比光电效应提升潜力巨大;二是集成度高,光波转化成材料表面波可将波长压缩百倍轻松突破衍射极限,从而显著提升光模块集成度;三是算力强,材料表面波具有光子性质可进行高效并行计算,从而将现有光电融合的“光传输、电计算”拓展成为“光传输、电计算+光计算”,实现“1+12”的效果。   戴庆提出,我们利用电学栅压对极化激元这种光波的折射行为实现了动态调控,使其从常规的正折射转变到奇异的负折射。这好比可以像操纵电子一样操纵光子,为将来高性能光电融合器件与系统的发展提供重要促进作用。这一研究在应用上面向光电融合器件大规模集成缺乏高效、紧凑光电互联方式的重大需求,在科学上为解决突破衍射极限下高效光电调制的难题提供了新思路。   2月10日,相关研究成果以Gate-tunable negative refraction of mid-infrared polaritons为题,发表在《科学》(Science)上。该论文审稿人评价道,这证实了一项非常规的物理现象,为研究纳米尺度的光操控提供了崭新的平台。图示极化激元晶体管的基本原理,通过在氧化钼上覆盖石墨烯构筑范德华异质结,天线激发极化激元传输穿过界面后形成负折射。极化激元晶体管的光学显微镜照片
  • 我国著名晶体学家、中国科学院院士、中国科学院物理研究所研究员范海福先生在北京逝世
    我国著名晶体学家、中国科学院院士、中国科学院物理研究所研究员范海福先生因病医治无效,于2022年7月8日14时在北京逝世,享年89岁。范先生真诚质朴,勇于开拓,科研成果独具特色,处于世界领先水平。他是国际上最早提出并成功地将小分子晶体结构分析中的"直接法" 应用于蛋白质晶体结构分析的学者之一。与李方华先生合作在电子显微学研究中引进X射线晶体学方法,创建出高分辨电子显微学中的一种新图像处理技术。将直接法的应用从三维空间拓展到四维以上的空间,使测定晶体的非公度调制结构或组合结构无需依赖于一个假想的模型。今天,我们以《中国科学技术专家传略 理学编—物理学卷4》中的个人传记,纪念和送别这位令人敬重的物理学家。|作者:古元新 郑朝德1早期求学和工作经历范海福1933年生于广东省广州市。父亲原是一位中学教师,后来经商。虽然范海福9岁时父亲就去世,但是父亲给他留下的影响是很深的。小学时。范海福有一次参加学校的重要活动。留影时因站位靠边、靠后,拍出来的照片几乎找不到他的踪影。父亲看后在照片边框上题注:"不必居前列,守真不为名;埋头其苦干,昂首迈前程。"父亲对待他人,不论地位高低都一视同仁,并以诚相待,这给范海福留下特别深刻的印象。母亲是一位中、小学教师。她十几岁的时候,因反抗包办婚姻,在一位小学老师的帮助下只身从农村跑到广州。之后,通过半工半读完成了中学学业并考进了大学。母亲使范海福养成了"认理不信邪"的习惯。范海福中学时期就读于广州中山大学附属中学。这所学校有很好的教师、五花八门的学生和比较宽松的环境。老师中对范海福影响较深的有教语文并兼班主任的谭宪昭、教物理的黄杏文和教化学的袁凤文。他们讲课深入浅出、条理清晰,常举一些生动而寓意深刻的例子。他们对学生关怀爱护、诚恳亲切。范海福和谭老师接触更多些。对老师,范海福有时既狂妄又调皮,谭老师总是耐心地引导。范海福对谭老师有过几次无礼的顶撞,终因谭老师的宽容和善意而感到内疚,并打心里对谭老师更加敬重。中学时期,范海福起初只对语文、美术和音乐有兴趣。一位志趣相投的同学是他的好友,那位同学教会范海福吹口琴。不久,他发现范海福的口琴水平超过了自己,于是放下口琴学起了小提琴。范海福又向他求教小提琴。他还是毫无保留地给予帮助。结果,发生在学口琴过程中的事情又重演了。那位同学又放下了小提琴,但丝毫没有影响与范海福的友谊。几十年来,范海福不断地审视自已与同事、同行之间的关系。检香自己在学术上是否能够做到同样的毫无保留。初中二年级时,母亲给范海福买了一本顾钧正编著的《少年化学实验手册》。范海福觉得化学实验好玩,于是在家里搞起一个"实验室"。由于条件所限,不可能完全按照"手册"去做实验,必须找一些代用品和变通办法。这就要求比较彻底地弄清实验的原理并多看几本参考书。为此,范海福跑遍了当时广州市所有他能进得夫的图书馆,从此养成了看课外书和独立思考的习惯。进入高中阶段后,范海福又多了几位喜欢理科的要好同学。他们在课余时间经常一起做无线电和化学实验,探讨课堂内外各种感兴趣的问题。有时也会发生激烈但无伤友谊的争论。争论使他对问题有更深刻的理解,锻炼了思维方法,培养了表述能力。范海福1952~1956年就读于北京大学化学系。他有幸聆听当时国内一流的专家学者讲课。这是范海福打下学业基础、形成思维方法、入门科学研究的关键时期。唐有祺是范海福的晶体学启蒙老师。范海福大学毕业多年后仍得到唐先生许多帮助。大学期间,还有几位老师对范海福以后的科研生涯有重要的影响。傅鹰归国前已是国际知名的胶体化学家。他讲课精辟透彻、风趣幽默。他特别强调学以致用。开学第一课,他就公开期末考试的一道必答题:"举一个你亲身经历的例子来说明一条胶体化学的原理",附带要求:"这个例子不能是我在课堂上讲过的,也不能是其他考生举过的。否则你最多只能得3分(5分是满分)"!几句话就让一班学生随时随地注意周围发生的各种自然现象,并试着用刚刚学到的胶体化学原理去加以阐释。这在教学法中堪称一绝。徐光宪为人平易谦和,他在讲课之余还向同学们介绍自己的科研经验,告诫他们,科学研究的路途中会有一些地方"花草很好看",但是不要因此迷失方向,偏离更重要的目标。周光召是当时给化学系讲课的最年轻老师,也是最受欢迎的老师之一。他讲理论物理的"化学系精简版"。没有现成的教材,来不及写讲义,上课也没有写好的提纲,就手拿一支粉笔,边讲边写。一年下来,用心的同学只要记下关键的话语。抄下黑板上的公式,就成一部好讲义。周先生不仅讲授物理内容,更注重训练思维方法,要求学生对于类似的概念不仅要看到它们的雷同,更要弄清它们的差异。大学三年级时,范海福在大连石油研究所陈绍礼的指导下作科研实习。陈老师是刚从美国归来的青年学者,待人友善诚恳。他的书桌旁有一个许多小抽屉的柜子,里面全是文献卡片。范海福跟陈老师学会了上图书馆查文献,通过对文献资料的分析对比得出自己的推论,然后用实验去检验。大学毕业以后,范海福一直在中国科学院物理研究所(1958年10月以前称为应用物理研究所)工作。2"发明一种新方法,可能比测定十个新结构更重要""发明一种新方法,可能比测定十个新结构更重要" 这是范海福在物理所的导师吴乾章与他第一次见面时说的话。这里说的"方法",是指晶体结构分析方法。晶体结构分析方法主要有两大类,即以X射线衍射为代表的衍射分析方法和以电子显微术为代表的显微成像方法。电子显微镜的成像过程也可以看作两个相继的电子衍射过程。因此可以说,衍射分析是晶体结构分析的核心。如果入射波在晶体中只被衍射一次,晶体结构同它的衍射效应之间就有互为傅里叶(Fourier)变换的关系。这里说的衍射效应,是指从晶体向不同方向发出的衍射波的振辐和初相位。衍射实验可以记录下衍射波的振辐,但是一直还没有普遍适用的方法来记录由晶体发出的衍射波的相位。因此。要想从行射效应的傅里叶变换解出晶体结构,就必须先设法找回"丢失"了的相位。这就是晶体学中的相位问题,它一直是研究晶体结构分析方法的关键问题。1956年范海福在吴乾章的指导下开展了"光学模拟"的研究。其要点是用光学衍射模拟X射线衍射,以了解物体与衍射图之间的精细关系并从中寻找解决相位问题的途径。这项研究在1957年中止。1959年吴乾章按当时中国科学院杜润生秘书长的指示,重新建立了一个从事单晶体结构分析的研究组。吴先生还请苏联专家И. В. Яворский(约 维 亚沃尔斯基)来指导X射线分析工作,请中国科学院数学所干寿仁来讲概率论基础。他们两人对这个组的成长都起了很重要的作用。范海福从这个研究组建立伊始就对当时还处干发展初期的"直接法"产生兴趣。这种方法是要在一定的约束条件下从一组衍射振幅"直接"推定相应的衍射相位。1965年范海福发表了他最早的两篇直接法论文。第一篇论文提出将直接法与重原子法相结合的思路,后来由此衍生出用直接法处理由赝对称性引发的"相位模糊"(phase ambiguity)问题;第二篇论文提出将直接法与同晶型置换法或异常衍射法相结合的思路,这是直接法进入结构生物学领域的一个发端。这两篇论文得到本所吴乾章、吉林大学余瑞璜、中国科学院副院长吴有训的鼓励和支持。可惜这方面的研究很快就进入了持续十多年的"冬眠"时期。尽管如此,已经发表的论文还是留下了一点历史的印记。国际著名的晶体学直接法专家C. Giacovazzo在其1980年出版的专著中以近3页的篇幅详细地引述了他的这几篇论文。1980年的晶体结构分析方法研究组。左起:古元新、郑朝德、千金子、许章保、范海福、韩福森 、郑启泰3.走出传统领域"文化大革命"期间,国际上的直接法研究得到飞速发展,并逐渐在小分子晶体结构分析领域取得主导地位。它成十倍地提高了解析小分子单晶体结构的能力和效率,有力地推动了结构化学的发展并促成了基于小分子的药物设计的创立。为此,直接法的两位先驱J. Karle 和H. Hauptman于1985年获得诺贝尔化学奖,在庆贺之余,不少人在问:诺贝尔奖之后的直接法研究还能做些什么?1987年第十四届国际晶体学大会期间为庆祝 Karle 和 Hauptman 获得诺贝尔奖,举办了一个学术报告会。主席是直接法先驱之一,英国皇家学会会员M. M. Woolfson。报告人连Hauptman和Karle在内共有5人,范海福是其中之一。他以"Outside the traditionalfield"为题作报告提出,诺贝尔奖之后的直接法应该走出传统领域去开拓新的应用。他指出了4个发展方向∶(1)从单晶分析到粉晶分析;(2)从X射线晶体学到电子显微学;(3)从周期性晶体到非公度晶体;(4)从小分子晶体到生物大分子晶体。其实,那时范海福和同事们已经在"(2)"、"(3)"、"(4)"3个方面展开了工作,并已取得了初步的成果。9年后,1996年第17届国际晶体学大会的一个分会主席 S. Fortier 在她的总结报告中采用了上述提法。其报告的开头写道∶"这个小型报告会Direct Methods of Phase Determination的着重点正如范海福所概括的,是直接法的应用向传统领域之外转移;从小分子到大分子;从单晶到粉晶;从周期结构到非公度结构;从X-射线数据到电子衍射数据。"自20世纪80年代中、后期至今,我国在上述4个领域中的3个领域一直具有重要的国际影响。1978年范海福(后排左2)初出国门,随中国晶体学代表团(团长唐有祺教授,前排左2)在英国晶体学家、诺奖得主Dorothy Hodgkin(前排左1)家中做客4.从X射线晶体学到电子显微学高分辨电子显微学是研究固体材料微观结构的重要手段。许多材料由于晶粒太小或缺陷严重而不适于X射线分析,却宜用电子显微镜观察。然而,高分辨电子显微像往往因电子光学系统的像差而严重畸变;其分辨率又远低于相应的电子衍射图,在多数情况下不足以辨认单个的原子。因此,高分辨电子显微像需要经过特殊处理才能反映出物体内部的结构细节。国外常用的处理方法,实验量大、计算繁复,而且事先对被观察试样的结构要有个大致的了解,这就局限了高分辨电子显微学的应用。另一方面,X射线晶体学中的直接法实质上是一种特殊的图像处理方法。在高分辨电子显微学中引入直接法,将可创立新的图像处理技术。从20世纪70年代起,范海福与李方华合作,建立了用于高分辨电子显微学图像处理的新方法。这一方法将衍射分析与显微成像结合起来。与原有的方法相比,所需的实验工作量较少,计算过程也较简捷。尤其是无需对被测试样的结构预先有所了解。具体的处理过程分为两步:第一步是图像解卷,即利用衍射分析中的算法消去由像差引起的图像畸变;第二步是提高分辨率,先由校正过的电子显微像经傅里叶变换求出低分辨率衍射点的相位,然后结合电子衍射图的信息,通过直接法相位外推获得接近衍射分辨极限的结构像。这一方法曾成功地用于处理一张Bi-2212高超导体的高分辨电子显微像。经过处理后的图像,除校正了畸变外还将图像的分辨率从2 提高到1 ,Cu-O层上的氧原子也清晰可见。1987年与夫人李方华院士在悉尼海滨5.从周期性晶体到非周期性晶体通常,晶体结构分析都假定晶体具有严格的三维周期性。但是实际的晶体都有缺陷,基于衍射效应的晶体结构分析只给出大量晶胞的平均结果。在实际的晶体中,原子往往会发生取代、缺位或偏离平均位置等缺陷。如果这种缺陷的分布本身具有周期性,就形成所谓调制晶体。缺陷分布的周期若为晶体周期的整数倍,即形成公度调制结构或称超结构。缺陷分布的周期若非晶体周期的整数倍,则开形成非公度调制结构。非公度调制是晶体缺陷长程有序分布的一种形式,它对晶体的性质有重要影响。目前国际上用于测定非公度调制结构的流行方法均在某种意义上属干尝试法。其要点是先假定一个调制模型,算出其衍射效应,然后同实验结果比较,并据此对模型进行调整和修正。这种方法费时、费事,易出差错。因此,有必要建立一种更直接、更有效的方法以代替尝试法。非公度调制结构就其整体而言,在三维空间不具备严格的周期性。但是,它可以表示为一个n-维(n3)周期结构的三维"截面"。因此,先对那个-维周期结构求解,然后用一个三维的"超平面"去"切割"所得的n-维结构,就可以导出三维空间中的非公度调制结构。为了在维空间中求解晶体结构。首先需要将现有的晶体结构分析方法从三维室间推广到多维空间。范海福等人在1987年首先将直接法推广到多维空间,建立了直接法测定非公度调制结构的理论。这一方法曾用于研究高Tc 超导材料Bi-2223晶体的非公度调制结构。有关结果由赵忠贤在1991年的诺贝尔庆典报告会上向国际超导界展示。范海福和同事们还将用于电子显微学图像处理以及用于从头测定非公度调制晶体结构的直接法综合到一个程序句 VEC(Visual computingin Electron Crystallography)中。该程序包自2000年在网上发行以来,已有来自60多个国家和地区的一千多人下载。6.从小分子晶体到生物大分子晶体蛋白质的晶体结构分析是结构生物学的重要实验基础。晶体结构分析的理论和实践水平,直接关系到结构生物学的发展。结构未知的蛋白质可分为两类。其中一类虽然本身的结构未知,但是有结构已知的同源类似物可供参照;另一类则是"完全未知"的,也就是没有结构已知的同源类似物。前者在近年来解出的蛋白质结构中约上70%。后者所占比例较小然而更难解决。测定前者的主要方法是"分子置换"(MR)法,测定后者的主要方法是"多对同晶型置换"(MIR)法和"多波长异常衍射"(MAD)法。MIR和MAD有一个共同的缺点,就是对试样制备有特殊的要求,而且实验量和计算量都较大,遇到晶体试样不易制备或者晶体易受辐照损伤的情况就不便使用。因此,用单对同晶型置换(SIR)法或单波长异常衍射(SAD)法来代替就是合乎逻辑的出路。但是,从SIR或者SAD的实验数据不能唯一地确定衍射相位。在多数情况下每一个衍射点的相位都有两个可能的解(双解)。要利用SIR或SAD数据,必须设法解决这一问题。1965年范海福提出用直接法破析SIR或SAD的相位双解问题。1982年H. Hauptman发表了一篇整合直接法和SAD数据的论文(Acta Cryst.,1982,A38∶632-641)。其目标与范海福在论文中提出的相同,但方法各异。Hauptman还以"Direct methods and anomalous dispersion"(直接法与异常散射)作为他1985年诺贝尔奖获奖演说的题目,表明他在"诺贝尔奖之后"将以此为研究重点。从1983年起,世界上著名的直接法研究小组纷纷投入这方面的研究。由此掀起的"国际竞争"一直延续了大约20年。在中国,范海福和同事们在原先的基础上作了重大的改进和发展,干1984~1985年间发表了5篇论文。这些文章得到国际同行包括竞争对手的肯定评价。1988年应中国科学院邀请,美国科学院派出了一个"生物技术"代表团到中国考察。当时中国科学院没有安排他们访问物理研究所。但是他们在其考察报告Biotechnology in China(美国科学院出版社,1989)一书中,仍然认真地评述了范海福和同事们在20世纪80年代中期的工作(见原书32-33页)∶研究精选在文献调查中显示,中国的某些研究已经达到国际水平。下节介绍那些在基础和应用生物技术方面前景最好的项目… … X射线晶体学… … 在北京物理研究所,范海福及其同事们已经使用概率相位推演方法测定越来越大的生物分子的晶体结构。他们是最早发展并使用随机起始、从头相位推演技术的一员。这一方法的优点在于无需对重原子衍生物在不同波长下作重复的测量。最近范(海福)小组用2分辨率的X -射线单波长异常散射数据重新测定了 avian pancreatic peptide 的结构,以此展示其方法的精确性。这一方法终将能够直接测定一系列肽和蛋白质的结构。这对蛋白质工程将有广泛和重要的潜在意义… … 范海福和同事们的后续研究,印证了美国考察团的预言。1990年,他们用直接法推定一套2.0 分辨率的SAD数据的相位,获得可以跟踪解释的电子密度图。1995年,他们进一步提出用直接法和"电子密度修饰法"协同处理蛋白质的SAD数据,并用3.0 分辨率的SAD数据证实这样的方法可以解出蛋白质streptavidin的晶体结构。这个结构原本是用3倍于SAD的MAD数据解出的。1998年,英国的同行用范海福和同事们所发展的方法和程序从2.1 分辨率的SAD数据解出一例原属未知的蛋白质晶体结构(Acta Cryst.,1998,D54∶629-635)。2000年,基于范海福等人的方法编写的程序OASIS被国际上使用最广泛的蛋白质晶体结构分析程序库CCP4 正式采用。成为其中用干推演SAD或SIR衍射相位唯一的直接法程序。进入21世纪以来,范海福和同事们针对蛋白质晶体学的直接法研究又有新的进展。2004年,他们提出SAD或SIR衍射相位的"双空间迭代"方法,将原有方法的功效提高了好几倍,同时使直接法在蛋白质晶体结构分析中从相位推演的环节进一步渗透到自动建模的环节。2007年,他们又提出无需SAD或SIR信息的"结构碎片双空间迭代扩展"方法。这一方法使直接法得以同蛋白质晶体结构测定中使用最多的分子置换(MR)法相结合并显著地提高了它的功效。同时,也使直接法扩大了在"自动建模"这一重要环节中的影响。2004~2009年,范海福和同事们完成了OASIS程序的3个更新版本。OASIS程序已经被国内外(包括中、英、法、美、日、德)的结构生物学家使用,解出多例用其他方法难以解决的蛋白质晶体结构。OASIS的2006版本已被CCP4的最新版本(2008)采用以代替原有OASIS 2000版本。此外,欧洲分子生物学组织EMBO所建立的、向世界各科研单位提供网络在线服务的蛋白质晶体结构分析自动化流水线 Auto-Rickshaw 从2006年起采用OASIS作为执行相位信息和结构模型循环迭代的关键程序。1996(或1997)年10月,左起:章综、范海福、蒲富恪、李荫远、梁敬魁、李方华,在物理所A楼2层接待室7.躬耕不息已过古稀之年的范海福仍然坚持在科研第一线。他和同事们一起讨论、研究工作的具体细节,评估学科发展趋势,提出新的目标并为此和同事们一起协同工作。长期与范海福一起工作的同事们的感受是;他在科研团队中既是"帅"又是"将"和"兵"。他不仅把握研究方向、选定课题,还会亲自动手。像主要由其他同事完成的SAPI和OASIS程序,他都亲自参与了一部分代码的编写。他熟知团队中每个人的能力和特点,善于调动每个人的积极性。范海福认为在科研团队中应该有和谐皆的氛围。而"和谐"应该以相互了解、相互尊重为基础。他会时常自问,是否每—位同事的劳动都得到了应有的尊重?范海福对年轻人的要求是严格的。他布置的任务定会跟踪检查;另一方面,他会无保留地向年轻人介绍自己的经验和教训,详细地解释每一个选题的思路,注意在学术上给年轻人提供自由发展的空间。8.人云不亦云两个无机化学实验在大学时期,范海福很得意的两个无机化学实验可能也是他所做的最让老师生气的两个实验。一个是要证实碳酸钙能溶于二氧化碳的水溶液。按当时从苏联搬来的一本实验教程,要将碳酸钙粉末放入盛蒸馏水的烧杯中,然后通入二氧化碳直至溶液成碱性。许多同学做了几十分钟也没有结果。范海福装了半试管澄清的石灰水溶液,然后通入二氧化碳。一两秒钟后就出现白色沉淀,这就是碳酸钙。继续通入二氧化碳,白色沉淀消失,这就说明了碳酸钙能溶于二氧化碳的水溶液。整个实验只用了大约1分钟。另一个实验是要证实碳酸钙加热后可以变成能溶于水的氧化钙,使水溶液呈碱性。"教程"要求把碳酸钙放入坩埚再用煤气灯烧半小时。范海福用一把镊子夹了小块碳酸钙直接放在火焰的外沿,只烧了几秒钟实验就完成了。两个实验连准备带收拾一共不到10分钟(整个实验课是一个半小时),然后他得意地溜出了实验室"自由活动"去了。事后老师批评他不重视苏联"老大哥"的经验和不遵守课堂纪律。范海福只接受了第二项批评。苏联专家1959年,苏联专家И. В. Яворский(约 维 亚沃尔斯基)到物理所指导范海福等人开展 X射线分析工作。范海福从Яворский那里学到不少理论和实践的知识。Яворский对范海福也很满意,经常和范海福单独讨论学术问题(有翻译在场)。有时候,他们之间有学术上的争论。双方都觉得这很正常而日很有好处。但是个别领导却"提醒"范海福∶要尊重苏联专家!范海福的回答是∶"我非常尊敬苏联专家,但这不等于不能表达不同的学术见解"。Яворский回国后不久的1960年,范海福因所谓"对苏联专家的态度" 被批判,并被提升到"反苏"的高度。面对当时的环境,范海福并没有写出哪怕是一个字的"检讨"。事后范海福听说,Яворский回国以后给他来过封很长的信。他确信,那一定是写满友谊和鼓励的信。只可理科学奖。看来有关工作人员和多数评委都宽容了范海福的 "与众不同"。
  • 分子大小的晶体管新鲜出炉
    在一个砷化铟晶体上,12个带正电的铟原子环绕着一个酞菁染料分子,这就是科学家最新研制的分子大小的晶体管。按照摩尔定律的硬限制,这很可能是一个晶体管所能达到的最小尺寸。  新型晶体管是由德国PDI固体电子学研究所、柏林自由大学、日本NTT基础研究实验室和美国海军研究实验室研究人员组成的国际团队开发的。这一发表在科学期刊《自然物理》上的最新成果朝着量子计算迈出一大步。  构成晶体管的每个铟原子的直径是167皮米(0.167纳米),比目前的最小电路——IBM公司刚刚推出的7纳米芯片(晶体管尺寸为7纳米)要小42倍。人类发丝厚度为10万纳米,大约是铟原子尺寸的60万倍 红血球直径6000纳米,是它的36000倍 甚至只有2.5纳米宽的DNA链,大小也达到了铟原子的15倍。  在这样的原子尺度上,电子流通常很难得到可靠地控制,电子会跳到晶体管外,导致晶体管无效。英国《卫报》网站21日报道称,研究团队使用一个扫描隧道电子显微镜,将铟原子放置在精确位置上,并对通过栅极的电子流进行控制。他们意外发现,位于晶体管中心的酞菁染料分子的方向是由其电荷决定的,这意味着,与传统晶体管只有一种简单的类似开关的状态相比,新型晶体管可能并不只限于此。  研究证明,通过精确控制原子来创建一个比现有任何其他量子系统都要小的晶体管是可能的,它也为进一步研究如何将这些微晶体管应用于处理能力超过目前水平几个数量级的计算机和系统打开了大门。  摩尔定律说,集成电路上可容纳的元器件的数目约每隔18个月到24个月便会增加一倍,性能也将提升一倍。芯片上集成的晶体管越多,其功能越强大。目前最新款计算机芯片已经突破7纳米尺度,向更小型化发展越来越难。虽然单分子晶体管距离集成到芯片中还很遥远,但这项新研究仍将有助于下一代计算机——量子计算机的开发。
  • 基于光电晶体管架构的X射线直接探测器研发成功
    中国科学院深圳先进技术研究院先进材料科学与工程研究所材料界面研究中心副研究员李佳团队,中科院院士、西北工业大学教授黄维团队,以及深圳先进院生物医学与健康工程研究所生物医学成像研究中心合作,首次将具有内部信号增益效应的异质结光电晶体管用于X射线直接探测器,实现了超灵敏、超低辐射剂量、超高成像分辨的X射线直接探测。相关研究成果以Ultrathin and Ultrasensitive Direct X-ray Detector Based on Heterojunction Phototransistors为题,发表在Advanced Materials上。   当前,X射线直接探测器多采用反向偏置二极管结构(图1a)。这类器件普遍缺乏内部信号增益效应或增益较低,这意味着没有足够的信号补偿方案来补充载流子复合过程中湮灭的电子-空穴对。因此,这类设备的光-电转化效率较低,且需要使用高质量和高度均匀的X射线光电导材料(Photoconductor)以保证有效的电子-空穴的产生和传输,这对探测器性能的进一步提升设定了难以突破的上限,也增加了材料、器件制备的复杂性和成本。   科研团队在前期研究的基础上(Advanced Materials, 31,1900763,2019),提出异质结X射线光电晶体管(Heterojunction X-ray Phototransistor)这一新型器件概念,首次将具有内部信号增益效应的异质结光电晶体管引入X射线直接探测。光电晶体管是三电极型光电探测器,其沟道载流子密度可通过调控栅压和入射光子进行有效调制,从而结合了晶体管和光电导的综合增益效应,如图1b所示。将这种高增益机制引入X射线探测器可以对光生电流进行放大,并使外量子效率远超过100%,进而实现超灵敏的X射线直接探测。本工作中,研究团队设计了由钙钛矿光电导材料与有机半导体沟道材料组成的异质结光电晶体管,实现了高效的X射线吸收,获得了快速的载流子再注入与循环,导致高效的载流子产生、输运与巨大的信号增益效应,使X射线直接探测灵敏度达到109μCGyair-1cm-2(图2c),最低可检测剂量率低至1 nGyair s-1。同时,探测器具有较高的成像分辨率(图2e)——X射线成像调制传递函数(MTF)在20%值下显示每毫米11.2线对(lp mm-1),成像分辨率高于目前基于CsI:Tl的X射线探测器。   高增益异质结X射线光电晶体管为高性能X射线直接探测与成像开辟了新机遇,并体现出超灵敏、超低检测限、高成像分辨率、轻量、柔性(图2d)、低成本等优点,在医学影像、工业检测、安检安防、科学设备等领域具有广阔的应用前景。该成果将激发科研人员开发各种高增益器件以实现直接探测不同类型高能辐射的研究动力。   研究工作得到国家自然科学基金、深圳市科技计划等的资助。图1.a、传统X射线探测器中,间接探测(左)使用闪烁体材料与光电二极管可见光探测器相互集成,X射线通过闪烁体材料转换为可见光,可见光由光电二极管探测器探测;直接探测(右)使用如非晶硒等半导体材料,半导体吸收X射线后直接产生电子-孔穴对,在半导体材料上施加高电场,分离和收集电子-空穴对;b、X射线光电晶体管结构,异质结中电子-空穴对产生(1)、分离(2)、电子捕获/空穴注入(3)和空穴再循环(4)产生高增益效应的过程图示图2.a、X射线光电晶体管器件结构;b、X射线探测的时间响应;c、X射线辐照下探测器灵敏度随栅压的变化关系;d、柔性X射线光电晶体管器件;e、金属光栅的光学显微照片(上)与X射线成像图(下),scale-bar为200微米;f、X射线光电晶体管的MTF曲线
  • 打破空白局面,KRS-5红外晶体实现国产
    红外光谱作为“分子的指纹”,可用于分子结构和物质化学组成的研究,被广泛应用在药品质量监测、油品鉴别、工业大气空间特性测定等领域,而绘出红外光谱的红外光谱仪也就成了科学家们的重点青睐对象。其中,红外光学窗片则是该仪器中必不可少的器件,其品质的好坏直接影响红外光谱仪的性能。现有的红外光学材料能同时应用于中红外、远红外两个波段的材料较少。目前应用最为广泛的红外窗片是溴化钾和氯化钠,但这两种材料均存在潮解问题,大大限制了其应用。表1所示为几种常用的傅立叶红外光谱仪窗片,与其他材料对比,KRS-5窗片因有相当宽的红外透射范围和不易潮解的特点脱颖而出。窗片名称性能透射波长KRS-5窗片不易潮解,耐高气压,强度高0.5~40μm氯化钠窗片容易潮解,适合测试无水样品0.2~15μm溴化钾窗片容易潮解,适合测试无水样品0.2~15μm氟化钙窗片不易潮解,耐一定温度200℃1~11μm石英窗片不易潮解,耐高压,耐高温190nm~4.5μm硫化锌窗片不易潮解,耐高压1~14μm表1 常见傅立叶红外光谱仪窗片材料对比KRS-5,又名溴碘化铊,是溴化铊和碘化铊的混合结晶体,呈橘红色,如图1所示,不易潮解,对红外线有较好的透过性,尤其在空气中能透过相当宽的红外线波段,在波长为0.6~40μm的区域内,其透过率可达70%以上,是一种性能优良的红外材料,可用于制作红外光学零件,窗片、透镜、组合物镜、棱镜等。图1 KRS-5晶体由于KRS-5晶体的生产工艺技术难度较高,该晶体的生产和应用主要集中在海外,且价格比较昂贵,此前国内一直处于空白状态。不过现在,这个空白已经被北京滨松光子技术股份有限公司(简称北京滨松)所填补。北京滨松一直致力于晶体的开发生产,并已完成多种闪烁晶体的研发并实现稳定生产。凭借多年的经验,近期成功研制出KRS-5晶体,性能与国外同类产品相当,且价格方面相比国外晶体具有很大的优势。图2 北京滨松公司KRS-5与国外同类产品透过率对比除可供应常规规格产品外,北京滨松还可根据用户具体需求提供定制服务,如加工各种薄片、方形棱镜、纽扣状晶体、锥形晶体等,同时也可以提供KRS-5窗片的研磨、抛光等处理。图3 北京滨松公司KRS-5样品北京滨松是滨松光子学株式会社(简称滨松公司)与北京核仪器厂于1988年共同投资兴建的,是国内著名的以光电探测为核心的高新技术企业。滨松公司在华的全资子公司——滨松光子学(商贸)中国有限公司(简称滨松中国)负责北京滨松产品在国内的商务活动。如希望对KRS-5有进一步了解,敬请联系我们。
  • 逆境中长出的“中国牌”晶体
    2009年2月,国际期刊《自然》发表题为《中国晶体——藏匿的珍宝》的采访调研文章,认为中国禁运氟代硼铍酸钾晶体(KBBF),将对美国功能晶体相关领域的研究和发展产生严重影响,并断言“其他国家在晶体生长方面的研究,还无法缩小与中国的差距”。该文的缘起是中国2007年正式宣布停止对外提供KBBF,美国人不惜重金请求购买或邀请相关中国专家去美国工作,都被严词拒绝。中国科学家用国际领先的自主创新成果在高技术领域对美国说“不”。从20世纪60年代开启理论研究,到80年代研制出低温相偏硼酸钡晶体(BBO)、三硼酸锂晶体(LBO),再到90年代研制出KBBF,中国科学院福建物质结构研究所(以下简称福建物构所)等单位的科学家,打破了中国在晶体生长领域仿制、跟跑的局面,让“中国牌”晶体闪耀世界。几十年过去了,“中国牌”晶体这个“老字号”更显创新活力。很难想象,当年研发“中国牌”晶体的科学家们经历了怎样的奋斗历程。不跟在外国人后面走材料是人类社会进步的里程碑。作为一类重要材料,晶体指能自发生长成规则几何多面体形态的物体。随着科技进步和经济发展,人工功能晶体已成为激光设备等不可或缺的基础材料。激光技术是20世纪“四大科技发明”之一。作为激光设备的上游关键部件,非线性光学晶体可以将某一频率的激光转换成另一频率的激光。20世纪60年代初,国外已发现一些非线性光学晶体材料,而中国尚未研发出自己的晶体。整体看,国际上非线性光学晶体研发都相对滞后,导致激光器进一步应用乏力。功能晶体乃至所有功能材料的性能,都取决于其组成和结构,而这需要专业人才深入研究。在那个年代,我国缺乏这方面的人才,谁来研发“中国的晶体”?1945年,我国结构化学领域开拓者卢嘉锡留学归国,组织队伍开启晶体材料研究,并在国内首次招收以结构化学专业为主的研究生。卢嘉锡1955年当选中国科学院化学学部委员,1981年至1987年任中国科学院院长。在美国留学期间,卢嘉锡在美国国家科学院院士鲍林的指导下,利用X射线和电子衍射法技术分析研究晶体结构和分子结构;他所设计的卢氏图表载入《国际X射线晶体学用表(第二卷)》,被国际化学界应用了几十年。国外晶体研究已开展数十年,我国如何赶超?基于对国际国内晶体研究的分析,卢嘉锡认为探索新晶体材料,不应受国外学术思想束缚,跟在外国人的后面走,而应在分析、总结国外已有工作基础上走自主创新之路。“打造科研平台很关键。”福建物构所所长曹荣介绍,1959年,中国科学院福建分院设立并筹建技术物理所、化学所等6个研究所和生物物理研究室。卢嘉锡一直构想建立现代化物质结构研究室,福建分院的设立让他看到了希望。1960年,卢嘉锡经过深思熟虑,向中国科学院和福建省委提出将福建分院筹建的“六所一室”整合,最终形成福建物构所,卢嘉锡为首任所长。自此,卢嘉锡带领福建物构所的研究团队开始研制非线性光学晶体。卢嘉锡(左)指导福建物构所青年科技人员工作。让人匪夷所思的重大发现当时,我国缺乏技术、没有经验和专业人才,只能从仿制起步。由于没有理论指导,工作很快就遇到瓶颈。那时科研条件极为简陋。建所之初,主体建筑是一幢四方形平房,人员主要是复退军人和大中专毕业生,办公和仪器设备是从其他学校搬来的,吃饭就在临时搭建的竹棚里。 创办初期的福建物构所。即便如此,卢嘉锡还是凭借研究积累,部署了结构化学、非线性光学晶体等研究方向,希望从结构化学角度探讨晶体和分子结构、电子结构之间的关系。构想有了,关键是靠大团队联合开展大攻关。为此,卢嘉锡想方设法从高校调来理论物理等专业的毕业生,陈创天(2003年当选中国科学院院士)就是其中之一。那是1962年,陈创天25岁,刚从北京大学物理系毕业。到福建物构所没几天,卢嘉锡就找到他,语重心长地说:“研究所搞的是结构化学,你的研究重点要从理论物理向结构化学转移。”卢嘉锡给陈创天介绍了基本知识并列出参考书单,嘱咐他“可边工作边学习,不懂可来问我,相互切磋”。此后3年,陈创天系统学习了结构化学知识,最终选择非线性光学材料结构和性能之间关系为研究方向。1976年,苦心钻研10年后,陈创天提出阴离子基团理论,找到了非线性光学晶体材料宏观效应与微观结构间的关联。次年,他被任命为非线性光学材料探索组组长。据介绍,当时研究所几乎一穷二白,一群怀揣梦想的年轻人自己动手创造科研条件,如自行组装激光器、测试设备等。1979年,研究组发现BBO是一种非常有希望的新型材料。3年后,他们终于生长出大块BBO。 BBO晶体。中国科学家以翔实的数据和无懈可击的实验证明了BBO是非中心对称的晶体,在200纳米至350纳米波长范围内,其透过率可达80%以上。1986年,陈创天在美国参加一个国际激光与光电子会议,向全世界宣布成功研制出BBO,引起轰动。业界赞誉这是中国人按照自己的科学思想创造出的首块“中国牌”晶体。吴以成(2005年当选中国工程院院士)正是那一年在福建物构所获得博士学位。他回忆:“陈老师告诉我们,他发言结束后,参会的200多位科学家竟有一多半跟他出去向他进一步了解情况,导致会都没法开了。”福建物构所副所长、国家光电子晶体材料工程技术研究中心主任林文雄1988年被保送到福建物构所读研究生。“教材都把BBO写进去了。”林文雄说,BBO的面世让全世界的科学家感到匪夷所思,他们感受到严峻挑战,认为这样的重大发现不该在中国诞生,而应在美国、日本或欧洲国家。曹荣感慨,福建物构所取得这样的成就,离不开国家的一贯支持,也得益于中国科学院面向世界科技前沿、面向国家重大需求进行的前瞻布局和建制化研究。 福建物构所建所初期的结构化学研究队伍。在高技术领域对外国说“不”正当外国学者为横空出世的“中国牌”晶体感到震惊时,陈创天、吴以成等中国科学家又在1987年宣布一项新的重磅成果——他们发现并生长出第二块“中国牌”晶体LBO。 LBO晶体。与BBO相比,LBO紫外截止波长移到150纳米,是迄今为止实现高功率三倍频输出最好的非线性光学晶体。BBO、LBO分别被美国《激光电子学》杂志评为1987年、1989年“十大尖端产品”。“BBO和LBO的背后,光研究组就有多个,包括理论组、化学合成组、结构分析组、相图研究组、晶体生长组等。大家互相协作、劲往一块儿使,才有这样的结果。”吴以成说。山东大学教授王继扬介绍,当时国内晶体研究界有“三驾马车”,分别是福建物构所、山东大学和南京大学,它们在晶体生长、消除晶体畴等方面各有所长,非常团结又能创新,把晶体研究这个国际上本不受重视的领域变成各国争相研究的焦点。“我国科学家有股迎难而上的拼劲,敢走新路、勇于自主探索。”1988年,福建物构所成立成果转化公司——福建福晶科技股份有限公司(以下简称福晶科技),开启了BBO、LBO商业化之路。“商业化后,外国就眼红了。BBO面世时,中国的专利法还没出台,但LBO研发出来时已有专利法,团队有意识地申请专利将它保护起来。”吴以成说,美国最先坐不住,他们以专利无效为借口和中国打官司,希望能取消中国的LBO晶体专利权。“美国最终没有凭借蹩脚的理由得逞。”吴以成回忆,当时国际上关于LBO的研究成果都是中国科学家发表的,团队把整个研究的详细实验记录等收集起来应诉,最终打赢了官司。这个案例再次印证了团队协作的重要性。“那时候,团队里以林朝熙为代表的知识产权方面的专家就懂得申请专利,他们不是为了报奖,而是要把自主创新成果保护起来。”林文雄说,更关键的是,他们申请的不是晶体生长专利,而是器件专利,很好地避免了国外钻空子侵权。LBO面世前,美国等国家都在基于BBO等晶体开展多倍频研究,中国科学家也在寻求新突破。“我国虽已取得领先成果,但当时科研条件仍很落后。”吴以成举例,LBO晶体生长是在坩埚中进行的,耐温1000摄氏度以上的铂金是做坩埚的理想材料。当时铂金比黄金还贵,一小块就上千美元。“我们每次用完坩埚都要称重,如有损耗须说明。然而落后的科研条件没能阻止我们做出领先世界的重大成果。” 科研人员用提拉法培养晶体。外国对中国科学家的态度,也随着“中国牌”晶体的相继面世,从傲慢转向尊重。吴以成回忆,陈创天讲过这样一件事。 BBO面世前,有位中国学者在美国一家实验室工作,有人不小心打碎了一块杜邦公司生产的非线性光学晶体,中国学者想把碎片带回国研究,但被实验室负责人以保密为由拒绝。没想到数年后,中国就制备出领先世界的BBO。20世纪90年代,陈创天在日本访问期间,日方曾为他升起中国国旗表示尊敬和欢迎。研发出BBO、LBO后,陈创天团队意识到,由于微观结构条件限制,二者无法通过简单倍频技术产生深紫外光谱区的谐波光输出。经过反复计算和思考,陈创天等又踏上一条长达10多年的新型非线性光学晶体探索之路,研制出全球独一无二的KBBF。KBBF是目前唯一可直接倍频产生深紫外激光的非线性光学晶体。当时国际激光界普遍认为,用固体激光器产生波长小于200纳米的激光几乎不可能,KBBF则使激光最短波长达到184.7纳米,在深紫外激光领域大展身手。KBBF独特的薄片层状生长习性,使其难以获得实际应用。为此,陈创天联合中国科学院院士蒋民华团队、中国工程院院士许祖彦团队等开展联合攻关,攻克晶体生长难关,实现多种波长的深紫外激光有效输出,保障了中国在深紫外固体激光方面的国际领先地位。2007年,KBBF被禁止对外出口。中国科学家用国际领先的自主创新成果,在高技术领域对外国说“不”。“老字号”焕发新活力2000年,洪茂椿(2003年当选中国科学院院士)任福建物构所常务副所长,主持研究所工作。当时,中国科学院基于对知识创新与技术创新前沿的把握,批准福建物构所关于福晶科技改制的申请,做大做强“中国牌”晶体产业。洪茂椿面临的第一个难题,就是让“好酒”走出“深巷”。“首先要聚人才。”洪茂椿表示,当时福建物构所建所成立已有40多年,老一辈科学家年纪大了,科学家梯队出现了断层。“当时所里引进了一批人才,积极申请系列科研项目,包括多个上亿元的大项目。”洪茂椿强调,当时申请项目并非盲目扩充研究方向,而是更聚焦科技创新价值链,把知识创新、技术创新与产业创新链接起来,以国家重大需求推动福建物构所的科学研究。2008年,福晶科技正式上市。几年里,洪茂椿经常白天忙完,晚上回所里搞科研,企业管理经验是现学现用。好在经过几年努力,人才梯队建起来了,晶体产业发展脉络理顺了。这个团队人才济济。中国科学院光电材料化学与物理重点实验室主任吴少凡带领团队致力于激光与非线性光学晶体、闪烁晶体新型功能材料研究,成果已在国家重大工程中获得应用。“90后”研究员罗敏已成长为课题组长,聚焦非线性光学晶体材料的设计、合成和生长,以学术骨干身份参与国家重大项目和中国科学院战略性先导科技专项等。走进福晶科技的晶体熔盐车间,工作人员正在一排排晶体生长监控器前观察晶体生长炉的温度。“以前晶体生长都需要工作人员在坩埚旁守着,温度很高,夏天更受不了,现在定时观察显示器即可。”福晶科技董事长陈辉说。如今的福晶科技已成为全球知名的LBO、BBO、磁光晶体等龙头厂商,产品广泛应用于激光、半导体等领域,2023年实现营业收入7.82亿元。“需求端推动供应,目前公司生产的我国原创晶体占全球此类晶体生产总量的近五成,出口超过四成。”陈辉说,“国内晶体需求占全球总需求的比例,从20世纪90年代初的不足5%到如今超过五成,说明我们积极应对了产业链转移及国内需求增长等市场变化。” 晶体提拉生长车间。福建物构所供图今天,我国的晶体研究是否依然领先?曹荣表示,我国原创晶体在研制和应用上不断取得新成果,始终领先国际。近年来,福建物构所又取得一系列引领国际的研究成果,使我国成为激光晶体强国。“当前,我们正积极将人工智能技术应用到晶体设计和生长等环节。”曹荣表示,福建物构所将进一步面向世界科技前沿及国家重大需求,抢占科技制高点,助推我国科技创新事业迈上新台阶。“纵观我国晶体研究发展史,我感受最深的就是科研没有捷径,是靠一代又一代科学家一步步走出来的。”洪茂椿表示,跟在别人后面永远不是创新。正是有了国家和中国科学院对晶体研究的持续大力支持,有了几代科学家的团结互助、勠力创新,我国晶体研究才长盛不衰。
  • 中国科学家创制全波段相位匹配晶体
    激光是20世纪人类最重大的发明之一,60多年来,13项诺贝尔奖与激光技术密切相关。非线性光学晶体可用来对激光波长进行变频,从而扩展激光器的可调谐范围。近期,我国科学家成功创制了一种新型非线性光学晶体——全波段相位匹配晶体,为整个透光范围内实现双折射相位匹配提供了新思路。   该研究由中国科学院新疆理化技术研究所晶体材料研究中心潘世烈团队完成,相关成果于近期在国际学术期刊《自然-光子学》在线发表。   非线性光学晶体是获得不同波长激光的物质条件和源头。在晶体中实现应用波段相位匹配被普遍认为是重要的技术挑战之一,决定最终激光输出的功率和效率。目前有多种技术方案可供选择,其中利用晶体各向异性的双折射相位匹配技术是应用最广泛的弥补相位失配的有效途径。该方案转换效率高,但现有晶体均存在相位匹配波长损失,即可用晶体紫外截止边和最短相位匹配波长的差值表征。   团队前期在特邀综述(Angew. Chem. Int. Ed. 2020, 59, 20302-20317)中提出关于非线性光学晶体一种理想状态的假设,即在基于双折射相位匹配的非线性光学晶体中,是否可以实现“紫外截止边等于最短匹配波长”的理想状态?近期,该团队创制了一类新非线性光学晶体,即全波段相位匹配晶体。该类晶体基于应用广泛的双折射相位匹配技术,且可以实现对晶体材料透过范围内任意波长的相位匹配。该研究揭示了全波段相位匹配晶体的物理机制,并以此为指导获得一例非线性光学晶体(GFB)。基于晶体器件实现了193.2-266 nm紫外/深紫外激光输出,该材料193.2 nm处晶体透过率
  • 北京睿远科技发展有限公司参加第六届晶体药物研发学术研讨会
    12月19-21日,北京睿远科技发展有限公司在广州参加了中国晶体学会主办,中山大学承办的第六届晶体药物研发学术研讨会,与会代表600多人,其中北京睿远科技发展有限公司邀请厂家加拿大C-Therm公司技术经理陈鏖先生一起参会,并展出了用于药物仿制药一致性评价的自动化仪器ESP系统。
  • 中国科学家研制出首个半浮栅晶体管
    复旦大学微电子学院张卫课题组成功研制出第一个介于普通MOSFET晶体管和浮栅晶体管之间的半浮栅晶体管(SFGT)。8月9日,美国《科学》杂志刊发了该研究成果。这是我国科学家首次在该杂志上发表微电子器件领域的论文,标志着我国在全球尖端集成电路技术创新链中获得重大突破。   据介绍,金属&mdash 氧化物&mdash 半导体场效应晶体管(MOSFET)是目前集成电路中最基本的器件,而我们常用的U盘等闪存器件,多采用另一种被称为浮栅晶体管的器件。此次研究人员把一个隧穿场效应晶体管(TFET)和浮栅器件结合起来,构成了一种全新的&ldquo 半浮栅&rdquo 结构器件,称为半浮栅晶体管。它具有高密度和低功耗的明显优势,可取代一部分静态随机存储器(SRAM),并可应用于动态随机存储器(DRAM)领域以及主动式图像传感器芯片(APS)领域。   &ldquo 在这些领域,中国大陆具有自主知识产权且可应用的产品几乎没有。&rdquo 张卫介绍说,作为一种基础电子器件,半浮栅晶体管在存储和图像传感等领域的潜在应用市场规模超过300亿美元。它的成功研制将有助于我国掌握集成电路的核心技术,从而在国际芯片设计与制造领域内逐渐获得更多话语权。   不同于实验室研究的基于碳纳米管、石墨烯等新材料的晶体管,半浮栅晶体管是一种基于标准硅CMOS工艺的微电子器件。SFGT原型器件在复旦大学的实验室中研制成功,而与标准CMOS工艺兼容的SFGT器件也已在国内生产线上被成功制造出来。   &ldquo 半浮栅晶体管兼容现有主流集成电路制造工艺,具有很好的产业化基础。&rdquo 张卫表示,不过,拥有核心专利并不等于拥有未来的广阔市场。尽管半浮栅晶体管应用市场广阔,但前提是对核心专利进行优化布局。
  • 郭建刚:新时代“晶体人”
    晶体学,这个最初为窥探物质原子结构和排列方式而形成的一门学科——至今有100余年历史,且已获颁23项诺贝尔奖。然而,这门学科的基础研究犹如科学界的一门“古老手艺”,人才渐缺、关注渐少。  郭建刚是个“逆行者”。这个中国科学院物理研究所“80后”研究员执着地相信:百余年来沉淀下的晶体学知识在当今依然具有强大生命力,“认识全新物质体系,要回到最根本、最基础的结构。虽越基础、越困难,但也越重要。”  传统科学与新月的碰撞  正如月球研究,晶体科学就提供了新视角,而后获得了新发现。  2020年,我国嫦娥五号从月球背面带回1731克的月壤样品。经过激烈地竞争答辩,郭建刚所在的先进材料与结构分析实验室获得了1.5克的月壤样品。  拿到珍贵的最新月壤样品,郭建刚抑制不住内心地兴奋,这是他的研究课题第一次触及“太空”。  “月球土壤与我们在地面上看到的土壤类似,是一些矿石经过不断风化,逐渐变成细碎的土壤。”郭建刚介绍。  与大多形态形貌研究不同,他们想借助自身优势,在更深、更细处探索未知,剖析月壤内部结构与原子分布状态,试图“见微知著”,了解太阳风化和月球演变等。  装在白色透明小瓶里,月壤犹如碳粉一般,呈黑色粉末状。郭建刚首先要做的是“挑样”——在数十万个颗粒中挑出微米级大小的晶体,这是项考验耐心的技术活。  晶体的大小约等于一根头发丝直径,郭建刚站在手套箱前、紧盯着显微镜,寻找着在特殊灯光照射下反射亮光的晶体,然后屏住呼吸,利用一根纤细挑样针的静电效应,小心翼翼“粘”出。  他和学生两人一组,反复这一连串动作,每次需要持续3小时。为保证安静环境,他们常常在深夜工作,结束时身体僵直、眼睛酸胀、几近“崩溃”。  实验室窗台上的几盆被拔“秃头”的仙人球见证着他们的付出,他们需要使用仙人球的刺来“粘”住微米级晶体,放置在四圆衍射仪和高分辨透射电镜上测试晶体结构。  郭建刚知道,我国嫦娥五号采集的月壤样品属于最年轻的玄武岩,且取样点的纬度最高,为探究月壤在太空风化作用下的物质和结构演化提供了新机会。挑选样品的质量,在一定程度上或许决定了能否把握住这次机会,因此,必须仔细再仔细。  郭建刚和团队在月壤样品中找到了铁橄榄石、辉石和长石等晶体,经过测试,在铁橄榄石表面发现了非常薄的氧化硅非晶层,这其中包裹着大小为2到12纳米的晶体颗粒,通过系统的电子衍射及指标化、高分辨原子相和化学价态分析,确认它们是氧化亚铁,并非此前在其他月壤样品中发现的金属铁颗粒。  他们还在铁橄榄石中还观察到了分层的边缘结构,这种特殊的微结构首次在月球土壤中看到。  扎实的数据得到了美国行星之父、匹兹堡大学地质与行星科学系教授Bruce Hapke的肯定:“这种橄榄石晶体的边缘结构是独特的。”  “我们确认了铁橄榄石在太空风化作用下出现了分步分解现象。通过表面微结构和微区晶体结构分析,我们首次在铁橄榄石的边缘确认了氧化亚铁的存在,表明矿物在风化过程中,经历了一个中间态,而非一步到金属游离铁,这将有利于进一步理解月球矿物的演变历史。”郭建刚说。  越基础,越重要  2008年,从吉林大学硕士毕业,郭建刚来到物理所跟随陈小龙研究员攻读博士学位。在团队里,他感受到的第一个研究“逻辑”就是,要想得到或利用一个材料,首先要想办法弄清楚材料最基本的晶体结构,理解原子之间的排布与结合方式。  “是什么、为什么、能做些什么,这是我们要探索全新体系时要回答的三个基本问题。”他至今记得,博士期间,按照这条“底层逻辑”,做出了第一个让他惊奇的超导新材料。从此,他便更加热爱晶体科学。  “晶体,尤其是超导这类单晶,非常重要,在电力运输、磁悬浮等有着广泛应用,若原子微观结构不清楚,很难理解和优化其物性,离应用就更远了。”郭建刚说。  的确,对物质晶体结构的了解,有助于在物质内部微观结构、原子水平的基础上,阐明物质各种性能,并为改善材料的性能、探索新型材料和促进材料科学的发展提供重要科学依据。  10余年来,郭建刚一直牢记着这个“逻辑”。他以探索电磁功能材料和生长晶体为主要方向,以理解晶体结构为出发点,研究材料的物性和晶体结构之间的关系,取得了诸多重要成果。  2010年,还在读博期间,郭建刚在国际上最早制备出了碱金属钾插层铁硒超导体系,其最高超导转变温度为30 K,创造了当时常压下FeSe基化合物超导转变温度的最高纪录。  该成果开辟了国际铁基超导研究的新领域,所开创的研究方向‘Alkali-doped iron selenide superconductors’被汤森路透《2013研究前沿》和《2014研究前沿》列为物理学10个最活跃前沿领域之首和第7名,将其发展成了与铁砷基并列的第二类铁基高温超导体。  他成功地解决了较小尺寸碱金属钾插层铁硒的难点,制备出了纯相的钠插层铁硒超导体,进一步将超导转变温度提高至37 K。  弄清晶体结构,会大大缩短新型材料探索时间、加速解决实际问题。  郭建刚介绍,用传统方法合成一个新材料,需要不断地试,因为不知道哪些组分、温度等合适,试的足够多,可能会碰到一个新的,但试错法效率低、成本高。而弄清楚了晶体结构,就能了解某一类材料中物性的决定性单元(也称功能基元),再以此为基础,发展新的材料体系,“比如要制备一个新材料,有3个组分,通过晶体结构分析,我们能发现决定材料物性的功能基元,就能够以相应的物性为导向,高效地探索新材料和新效应。”  即以不同功能基元为基础,调控基元的排列方式,或通过调控功能基元里配位的原子种类和数目来改变其电子结构,制备新高温超导晶体体和诱导新效应。  基于这一思路,由陈小龙牵头,郭建刚作为第2完成人所承担的挑战性课题“基于结构基元的新电磁材料和新效应的发现”,荣获2020年度国家自然科学二等奖,这项成果解决了由功能基元出发、高效探索新材料和新效应的若干关键科学问题,推动了无机功能材料科学的研究与发展。  肩负重任的新生力量  在先进材料与结构分析实验室,作为青年科学家的郭建刚,肩负延续学科发展与服务国家需求新的重任。  “老一辈科学家的事迹和精神始终鼓舞着我。”郭建刚说。“陆学善院士和梁敬魁院士分别是中国著名的晶体物理学家和晶体物化学家,导师陈小龙除了在晶体结构分析和单晶生长具有深厚的学术功底,也是推动碳化硅晶体从基础研究到产业化的先行者之一。  让郭建刚感触最深的是,老师们总是以一丝不苟的态度,对待基础研究,即使看似很小的工作也做得非常扎实、严谨。  他一直记得陆学善先生和梁敬魁先生的一个科研故事,上世纪60年代,梁敬魁回国来到物理所,与陆学善合作开展了铜-金二元体系超结构研究,为了达到合金的平衡态,需要诸多工艺,单是退火处理这一个工艺过程,就需要六个月或者一年时间。他们耐住寂寞,几年之后,获得了一系列长周期的超结构相,其中有的是国外研究者已经研究多年,却始终没有观察到的现象。  “在很多人看来,这样的研究方法可能比较‘原始’,但恰是这种方法,为科研打下了扎实的基础,产出了诸多原创性成果。”郭建刚说,耐心、潜心是他从老先生那里学到的科学精神。  在郭建刚看来,今天,研究组在晶体生长领域产生了多项引领性的工作,尤其在碳化硅宽禁带半导体生长与新功能晶体材料探索方面,都是在多年的基础研究积累上取得的。  碳化硅是一种重要的宽禁带半导体,具有高热导率、高击穿场强等特性和优势,是制作高温、高频、大功率、高压以及抗辐射电子器件的理想材料,在军工、航天、电力电子和固态照明等领域具有重要的应用,是当前全球半导体材料产业的前沿之一和国内“十四五”规划重点攻关的半导体材料之一。  然而,一直以来,用于应用研究的大尺寸单晶存在较多难以突破的关键科学和技术问题,严重影响器件性能,诸多关键技术和设备面临着国外封锁。  近年来,针对相关难题,在陈小龙的带领下,郭建刚在扎根基础研究的同时,与团队共同推动研究成果产业转化,获得了2020年度中国科学院科技促进发展奖。  “最大的挑战是基础研究领域的突破,在晶体研究领域,我们还需要更细致、更系统和更‘原始’的研究。”郭建刚深知,基础科学问题的突破将会极大地提高晶体的质量和应用范围,给学术和产业界带来巨大变革,但攀登科学高峰这条路必定不轻松,还好,有热爱,可抵漫长岁月。
  • 科学家实现基于硒镓钡晶体的中红外高灵敏探测
    1月25日,记者从中国科学院沈阳自动化研究所获悉,该所太赫兹团队在红外探测领域取得关键技术突破,实现了基于硒镓钡晶体的3-8微米中红外高灵敏探测,对纳秒脉冲的探测灵敏度指标达到国际先进水平。该技术将为我国在生物、医疗、化工等领域开展前沿科学研究提供强有力的探测工具,相关成果日前在国际学术期刊《光学》发表。相对于传统的可见光近红外波段,中红外光与分子之间的共振现象可大幅度提高光谱测量的信噪比,进而实现对物质成分的有效识别。中红外探测技术对于推动生命科学、物性分析等科学探索,以及环保、化工行业、医学诊断等实际应用具有重要意义。当前的中红外探测主要采用热探测和光电探测两种直接探测手段,现有性能已难以满足科学家们对微量物质的精准检测的需求,探测灵敏度已成为中红外系统的瓶颈问题。团队负责人、沈阳自动化所祁峰研究员介绍称,针对当前中红外探测的瓶颈问题,我们提出了基于激光频率变换技术的解决方案,设计并搭建了实验系统。其工作原理是将弱中红外信号高效率地转换为近红外信号,该近红外光携带了中红外光的信息且易于探测,通过这种间接探测的方式大幅度提高中红外信号的探测灵敏度。
  • 仪器情报,科学家提出高密度垂直晶体管制备表征新技术!
    【科学背景】垂直晶体管(VFET)是一种源极和漏极垂直对齐,电流垂直流过晶圆表面的晶体管架构。近年来,随着技术的发展和对高密度集成电路需求的增加,垂直晶体管因其能够在不增加芯片面积的情况下实现高密度堆叠的特点,成为了研究热点。然而,实现高密度垂直晶体管具有相当大的挑战,主要归因于垂直结构与传统横向制造工艺的不兼容性。具体来说,传统的平面工艺使用的物理粒子如光子、反应离子或物理/化学气相,只能在晶圆平面内生成多个结构,而无法在垂直方向上进行大规模制造。此外,制造垂直晶体管需要复杂的多层沉积和图案化步骤,这使得工艺复杂且产量低。有鉴于此,湖南大学邹旭明、刘渊、廖蕾教授以及美国加利福尼亚大学圣迭戈分校物理系Chunhui Rita Du教授合作在“Nature Communications”期刊上发表了题为“High-density vertical sidewall MoS2 transistors through T-shape vertical lamination”的最新论文。科学家们提出了一种通过T形层压方法实现高密度垂直侧壁晶体管的新方法。这种方法的核心是先在平面基板上预制横向晶体管,然后使用定制设计的T形印章将其干释放并层压到垂直基板上。这一技术克服了平面工艺与垂直结构之间的不兼容性,使预制的晶体管可以在不损坏或退化的情况下与垂直基板完好接触。通过这一技术,研究团队在0.035 μm² 的小面积内垂直堆叠了60个MoS2晶体管,达到理论上的1.7 × 10¹ ¹ cm-2的器件密度。此外,他们还提出了两种可扩展制造垂直侧壁晶体管阵列的方法,包括同时在多个垂直基板上层压,以及在同一垂直基板上多周期逐层层压。研究结果表明,这种新方法为实现高密度垂直晶体管和垂直电子器件提供了一条有效的替代途径,开辟了高密度集成电路的新维度。【科学亮点】(1)实验首次使用T形层压方法,将预制的横向晶体管转移到垂直基板上,实现了高密度垂直侧壁晶体管。这一技术突破克服了传统平面工艺与垂直结构之间的不兼容性,使得横向晶体管可以在垂直基板上无损层压。(2)实验通过以下几个关键步骤和结果,展示了这一技术的有效性和潜在应用:步骤一:在平面基板上预制横向MoS2晶体管。通过常规批处理工艺制造横向晶体管,以确保其性能和质量。步骤二:使用定制设计的T形PDMS印章进行层压。通过干层压技术,将预制的横向晶体管从平面基板转移到垂直基板上。干层压过程中产生的低应变确保了晶体管与垂直基板完好接触,无损坏或退化。结果一:通过SEM、STEM和电气特性表征验证了层压后晶体管的完整性和功能性,证明了该方法的有效性。结果二:实现了在0.035&thinsp μm² 的垂直面积内垂直堆叠60个MoS2晶体管,相应的理论器件密度达到了1.7&thinsp ×&thinsp 10¹ ¹ &thinsp cm⁻ ² 。实验展示了在小面积内实现高密度垂直器件堆叠的可能性。步骤三:提供了两种可扩展制造垂直侧壁晶体管阵列的方法:一是同时在多个垂直基板上进行层压,二是使用多周期逐层层压在同一垂直基板上进行堆叠。结果三:展示了在不同基板上制造大规模垂直侧壁晶体管阵列的可行性,进一步拓展了这一技术的应用范围。【科学图文】图1:基于MoS2的垂直侧壁晶体管的垂直层压工艺和表征。图2:MoS2晶体管的电气特性表征。图3:可扩展的垂直侧壁晶体管制造。图4:高密度垂直器件的逐层垂直集成。【科学结论】本文通过创新的T形层压方法,成功克服了传统横向制造工艺与垂直结构的不兼容性,为高密度垂直侧壁晶体管的制造开辟了新途径。传统上,晶体管的制造依赖于平面处理技术,而垂直方向的器件堆叠则面临着工艺复杂度和低产量的挑战。本文所提出的T形层压方法不仅保留了传统制造的高效性和成本效益,还在垂直方向上实现了多器件的紧密堆叠,大大提升了器件密度和集成度。此外,本文的成功实验验证了干层压过程中的低应变特性,确保了晶体管与垂直基板的良好接触和稳定性,从而在器件性能和一致性上取得了显著的进展。这一技术创新不仅对垂直电子器件领域具有深远的影响,还为未来集成电路设计提供了新的思路和可能性。通过在小尺寸区域内成功堆叠多个MoS2晶体管,并展示出极高的器件密度,本文为实现更小型化、更高性能的电子设备奠定了坚实的实验基础。原文详情:Tao, Q., Wu, R., Zou, X. et al. High-density vertical sidewall MoS2 transistors through T-shape vertical lamination. Nat Commun 15, 5774 (2024). https://doi.org/10.1038/s41467-024-50185-4
  • 最小耐高温的等离子体晶体管问世(图)
    美国犹他大学的研究人员研制了迄今为止最小的等离子体晶体管,其可承受核反应堆的高温和离子辐射环境条件,有助于研制在战场上收集医用X射线的智能手机、实时监测空气质量的设备、无需笨重的镜头和X射线光束整形装置的X射线光刻技术。   这种晶体管有潜力开辟适用于核环境工作的新一类电子器件,能用于控制、指引机器人在核反应堆中执行任务,也能在出现问题时控制核反应堆,在核攻击事件中继续工作。   作为当代电子设备的关键组成元件,硅基晶体管通过利用电场控制电荷的流动来实现晶体管的打开或关闭,当温度高于550华氏度时失效,这是核反应堆通常工作的温度。而此次美研究人员将利用传导离子和电子的等离子体空气间隙作为导电沟道,研制了可在极高温度下工作的等离子体晶体管。它的长度为1-6微米,为当前最先进的微型等离子体器件的1/500,工作电压是其六分之一,工作温度高达华氏1450度。核辐射可将气体电离成等离子体,因此这种极端的环境更易于等离子体器件工作。
  • 新发现!科学家通过扫描隧道显微镜揭示新型晶体材料!
    【科学背景】随着科学界对强相关材料的探索不断深入,科学家对于多体系统中新奇量子现象的理解也在不断拓展。其中一个引人关注的领域是相关电子和空穴晶体的研究,这些晶体的共存为实现量子激子态提供了可能性,这些态具有反流超流性和长程量子纠缠等特性。这种研究引发了人们对相关电子和空穴晶体的性质、形成机制以及在材料中的实验验证的兴趣。在半导体物理学领域,当电子密度与晶格位点数一致时,强电子-电子相互作用会驱使新的晶体顺序形成,导致了Wigner晶体等现象的出现。而在掺杂的Mott绝缘体中,也可能出现电荷序等有趣的现象。然而,对于相关电子和空穴晶体的研究仍存在着一些挑战,包括如何在实验中实现这种晶体的形成,以及如何准确地观测和理解其微观结构。为了解决这些问题,科学家们进行了一系列研究,试图通过实验和理论模拟来揭示相关电子和空穴晶体的性质和形成机制。然而,由于目前可用的实验手段限制,例如扫描隧道显微镜(STM)无法同时可视化不同界面上的两个晶体,因此对于这种晶体的实验验证一直面临着挑战。为解决这一难题,新加坡国立大学Kostya S. Novoselov和吕炯等人在 “Nature Materials”上发题“Evidence for electron–hole crystals in a Mott insulator”的最新论文。本研究通过在石墨烯/几层α-RuCl3异质结构中实现非侵入式的范德瓦尔斯掺杂,成功地在掺杂的Mott绝缘体中观测到了相关电子和空穴晶体的存在。利用扫描隧道显微镜,科学家们能够在原子尺度上对这些晶体进行成像,并进一步理解了它们的微观结构和特性。通过这项研究,科学家们解决了相关电子和空穴晶体在自然材料中的实验验证问题,为进一步探索强相关材料中的量子现象和激子态提供了新的实验依据和理论基础。【科学亮点】(1) 实验首次在一个掺杂的 Mott 绝缘体,即 α-RuCl3,通过非侵入式的 van der Waals 掺杂方法,获得了相关的不平衡电子-空穴晶体。(2) 实验通过使用扫描隧道显微镜(STM)在实空间对 α-RuCl3 进行了原子级别的成像,发现了两种不同的电荷序:在更低的 Hubbard 带能量下,出现了一个以位点为中心的超晶格结构,而在更高的 Hubbard 带能量下,出现了旋转对称性破缺和键中心迹象,类似于一个角度为 98° 的超晶格。&bull 在更低的 Hubbard 带能量下,观察到的空穴晶体显示出一个以位点为中心的超晶格结构。&bull 而在更高的 Hubbard 带能量下,观察到的电子晶体则呈现出旋转对称性破缺和键中心迹象,形成了一个角度为 98° 的超晶格结构。&bull 通过对石墨烯中的 QPI(准粒子干涉)测量,实验验证了从石墨烯到 α-RuCl3 单元晶胞的额外电子转移量。(3) 进一步实验发现,通过控制门极诱导的电子注入,可以改变 UHB 电荷序的晶格配置,迫使成对的电子晶体重新排列成一个几乎具有六重对称性的更紧凑的晶格。【科学图文】图1. 用于STM研究G/α-RuCl3的二维范德瓦尔斯van der Waals,vDW异质结构。图2. G/α-RuCl3电子结构和偏压相关的STM图像。图3. 下哈伯德带lower Hubbard band,LHB和上哈伯德带upper Hubbard band,UHB能量时,两种不同的电荷序。图4. 载流子密度相关的上哈伯德带UHB电荷序。【科学结论】本研究发现了在可门极调控的电子储备系统中与之相关联的相关系统,创造了一个独特而多功能的平台,用于实现新颖的相关量子态。与最近关注的远距离分布在莫尔超晶格中的电子-空穴晶体的研究相辅相成,作者的研究揭示了在掺杂的多轨道Mott绝缘体中的相关驱动电子和空穴晶体,为在原子尺度上探索相关玻色态提供了机会。这一发现不仅为探索未知参数空间中的相关玻色相图提供了前所未有的机会,也为进一步的实验和理论研究提供了新的思路。通过对多轨道蜂窝Mott绝缘体中相关电子和空穴的研究,作者可以期待发现许多新颖的相关玻色态,这些成果将推动作者对相关量子相互作用的理解,促进相关材料领域的进一步发展。文献详情:Qiu, Z., Han, Y., Noori, K. et al. Evidence for electron–hole crystals in a Mott insulator. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01910-3
  • 联影开建世界最大高端医械晶体生产基地
    在科创板过会、研发取得重大突破的联影医疗又有大动作!6月18日上午,2022年常州国家高新区重点项目集中签约“拿地即开工”仪式上,联影高端医学影像设备及核心部件项目等总投资103.4亿元的12个重点项目落地。随着“健康中国”已上升为国家战略,我国大健康市场快速扩容、高端医学影像行业支持力度增加以及新冠疫情的常态化防控等因素都促进了对医学影像设备的潜在需求,经过十余年国产医学影像设备技术的发展以及相关核心部件公关,国产品牌的进口替代趋势愈发明显,进口品牌的市场份额呈现下降趋势。据了解,联影高端医学影像设备及核心部件项目将规划达成400台RT(直线加速器)的部件加工和整机生产规模,以及500台PET-CT的晶体生产能力,项目建成后,将成为世界上最大的高端医疗设备晶体生产基地,这将极大地满足国内医学影像设备需求。01、要建世界最大高端医疗设备晶体生产基地围绕《新材料产业发展指南》明确的十大重点领域,力争到2020年在关键领域建立20家左右。“医疗器械材料生产应用示范平台”即此前工信部按照国家新材料产业发展总体规划,在“生物医药 和高性能医疗器械材料”领域部署的国家级应用示范平台。LYSO/LSO晶体在核医学设备、高能物理、油井钻探、安全检查、环境检查等领域应用广泛,是目前全球最重要和最理想的射线探测器材料之一。当前,我国正推动大型医疗设备国产化,为打破国外材料供应商对国内医疗设备厂商的垄断供应局面,进一步完善国产高端医疗设备的研发、生产体系,LYSO/LSO晶体等闪烁晶体材料的国产化是重要环节。而在影像产业链中,核心部件主要涉及闪烁晶体、液氦、X射线球管、高压发生器、探测器等。闪烁晶体是能够与X射线、伽玛射线、带电粒子等粒子发生作用,将粒子沉积在闪烁晶体中的动能转换为可见光光子的透明晶体。硅酸钇镥(LYSO)稀土闪烁晶体作为PET探测器的核心部件,占到PET/CT整机成本的40%-50%,与溴化镧稀土闪烁晶体同为最具商业价值的新材料。国产PET/CT无论是关键技术还是核心材料,均已不逊色国外品牌,甚至在一些“卡脖子”的原材料方面也取得了突破性进展,2019年,联影医疗联合下游企业——上海新漫晶体,通过上海市工业强基项目“符合PET/CT需求的大尺寸晶体的开发与产业化”的持续攻关,制定晶体性能指标要求,承担晶体性能检测、效果验证等工作,实现了LYSO 晶体的国产化,解决了国产PET/CT对进口晶体的依赖问题。现在,上海新漫系联影重要子公司,为公司提供分子影像产品重要原材料LYSO闪烁晶体。除了晶体制造技术,联影公司还掌握探测器技术、数据传输和处理技术、产品设计和制造能力等,在高端医疗影像设备研发及产业化中联影展现更大雄心,在刚过科创板的招股书中:联影要新建高端智能制造工厂,购置和安装必要的产线生产设备、自动化升级设备、自动控制设备、立体仓库和物流设备以及搭建厂区智能化系统,建成后主要用于生产高端XR、CT、PET/CT、MR和PET/MR等系列产品;新建生产研发楼;新建配套综合楼以及其他配套设施。RT在研产品 CT在研产品2018 年,联影医疗uRT-linac 506c 获NMPA 医疗器械技术审评中心第三类医疗器械认证,是世界首款一体化CT 直线加速器。目前联影医疗在放疗领域的前沿性、关键性技术的掌握情况如下:联影医疗对加速管、多叶光栅已实现自研自产,并结合治疗床技术,精密剂量控制系统,治疗计划系统,肿瘤信息系统等方面形成技术基础。未来联影医疗在放疗领域核心部件的布局规划主要包括下一代功率源系统、加速管系统、新一代多叶光栅等。经过多年的经营积累,常州联影已具备包括MR、CT、DR和RT在内的高端医学影像设备上游机加工和整机生产能力。此次,常州联影高端医学影像设备及核心部件项目将规划达成400台RT(直线加速器)的部件加工和整机生产规模,以及500台PET-CT的晶体生产能力。项目建成后,将成为世界上最大的高端医疗设备晶体生产基地。02、揭秘联影常州基地重大项目建设,是经济发展的“稳定器”。二季度,常州强保障、优服务,启动“拿地即开工”攻坚行动,保障重大项目快开工、快推进、快投产,以项目之“进”撑经济发展之“稳”。在科技创新的加持下,常州产业发展的韧性得以进一步加强:全国每五台工业机器人中,就有一台是“常州造”;动力电池年产值国内第一,占全国份额的三分之一、全省的三分之二;智能制造装备、新型碳材料产业集群进入“国家队”… … 瞄准“国际化智造名城、长三角 中轴枢纽”发展定位,常州正在智能制造上找准定位、增强特色、拉长长板。2022年,常州国家高新区确立实施173个重点项目,年内计划投资367亿元。今年以来,常州高新区全面深化“招推服一体化”改革,最大程度压缩审批时限,在签订土地出让合同的当天即同步下发“四证五书”,实现从拿地到开工“零时差”。本次集中签约项目共24个:包括总投资30亿元重大项目1个,精品外资项目5个,高端智造产业及生产性服务业项目12个,科技人才项目6个。在此次签约仪式上,新北区代区长石旭涌为12个拿地即开工项目代表:联影(常州)二期项目负责人颁发了证书。据了解,今年二季度,常州国家高新区共有40个开工重点项目,总投资达231.6亿元。联影(常州)医疗科技有限公司是全球单体规模最大的全线高端医疗设备生产基地。联影(常州)项目总占地面积340亩,一期用地162亩,建筑面积91505平方米,总投资15亿元,建成后形成年产数字平板X射线成像系统3600套、CT系统500套、分子影像系统(磁共振成像)720套、放射治疗仪系统400套的生产能力。2020年销售额为9.92亿元,纳税额为1.3亿元。联影自落户常州高新区以来,始终保持高质量发展态势,取得了很好的发展。新冠疫情期间,联影在第一时间驰援武汉,更是展现出了让人称赞的“中国速度”。据介绍,从小年夜到年初五,按计划生产的移动DR15台,CT530系列设备10台,已基本按需完成。后续,仍保质保量供应。去年1月19日上午,常州国家高新区与联影医疗技术集团举行项目签约仪式,联影医疗技术集团决定在常州高新区投资30亿元,建设二期新项目,作为全国获得国家专利金奖和商标金奖仅有的两家企业之一,上海联影医疗科技股份有限公司在投资联影(常州)一期项目基础上,今年投资建设的二期项目正式启动,此次联影高端医学影像设备及核心部件项目要建成的世界最大高端医疗设备晶体生产基地便在该期项目中。联影(常州)医疗科技有限公司总经理严全良感慨道:“联影(常州)一期项目在整个报建、生产过程中,得到了市、区、镇各级政府的大力支持和帮助!原本至少近70个工作日的审批过程,缩短为1个工作日,真正做到了‘拿地即开工’。政府部门高效的审批,让我们企业真正实现了‘少走路’、‘少等待’,帮助我们项目‘早开工、早投产’”。03、差异化定位、区域化分工构建的全球化产能格局形成上海联影医疗科技股份有限公司成立于2011年3 月,是联影医疗技术集团的总部,研发中心辐射全球,主要从事高端医学影像诊断产品、放射治疗产品及高端生命科学仪器的设计、研发、生产和销售,并提供配套智能化、信息化解决方案,主打高端医疗设备市场,有国内唯一设计、研发、制造医用1.5T、3.0T超导磁体等全线产品的能力。2020年,联影医疗在武汉全面布局,总投资约50亿元,占地20余万平方米的联影医疗武汉总部基地一期已正式启用,是全球高端医疗设备行业规模最大,最具特色的研发、生产、运营中心。同时,联影智能武汉分部、UIHCloud联影云总部也“安家”于此。联影武汉总部基地智能制造中心该基地投用后,到2028年,将实现高端医疗设备本土化生产和销售,预计年收入百亿元。联影医疗将在武汉重点打造联影高端医疗设备研发及智能制造中心,自主研发生产手术机器人、医疗可穿戴设备等先进医疗装备。常州是一个世界级加工基地,联影认为整个产业链的把控才能确保产品的质量,才能确保最优的性价比利用一流设备,从原材料精加工到模具都是自己做。此外联影在美国德州还拥有休士顿研发基地,并称未来在国外还会建更多生产基地,进入世界市场。去年9月24日,虹桥国际开放枢纽重大项目集中开工长宁区分会场活动,在联影智慧医疗产业园项目建设工地举行,联影智慧医疗产业园是此次5个集中开工的参与项目之一。联影医疗科技智慧医疗总部项目位于广顺北路临华路,用地面积约2.99万平方米,地上建筑面积约9.45万平方米,地下建筑面积约8万平方米。园区主要包括联影智慧医疗全球总部、中国智慧医学影像研究院及智慧影像产业基地、智慧医疗亚洲体验中心及旗舰店、联影互联网医院管理中心、联影全国基层医疗升级指导培训中心和共建关键学科专家工作室中心,将建成具备集团优势、生态优势和运营团队优势的产业集聚区。据文汇报报道,未来五年联影智慧医疗预期年收入100亿元,团队接近5000人,服务覆盖国内大部分地区,带动医疗大健康领域人工智能技术设备创新和医疗健康产业的产融结合服务创新,催生1000亿元产业规模,助力长宁相关产业发展。联影医疗产业化示范基地二期效果图今年1月6日,联影医疗产业化示范基地二期项目作为嘉定新城今年首批6个重大项目之一正式启动建设。此次启动建设的联影医疗产业化示范基地二期,将建成为全球规模领先的、国际一流的现代化、智能化高端医疗装备研发生产基地。据悉,联影医疗产业化示范基地二期项目总投资31.26亿元,总建筑面积约42万平方米,将建设成为集技术研发、智能制造、国际交流培训、全球品牌展示、生活服务、中央公园等功能于一体的智慧园区,可容纳8000-10000人。园区将由曾设计上海中心大厦的全球顶尖建筑设计公司Gensler设计,预计2024年底竣工。此次,大手笔打造的“超级工厂”将作为公司全球研发总部,新基地对标国际最高水平,加速下一代产品与技术研发创新,推动PET/MR、PET-CT、MR、CT、XR等全线高端医疗装备、核心部件与先进技术从研发到产业化的进程,推动“卡脖子”技术自主可控。新基地还将打造数智化超级工厂,借助工业物联网、大数据、人工智能等前沿技术,将实现生产制造、仓储、物流等各环节生产要素全面感知和控制,以自动化、智能化、精密化的生产及运营管理,大幅提升全线高端产品全球供给能力与速度。由此,上海总部基地、常州工厂、武汉基地、美国基地几大基地之间也将构建起差异化定位、区域化分工的全球化产能格局。两月前,万众瞩目的联影医疗终于过会了!融资金额高达124.8亿元,市值有望破千亿,这也是科创板市场2022年以来IPO规模最大的上市企业。募集资金用于下一代产品研发、高端医疗影像设备产业化基金项目等,提前规划“多中心、分级次”的生产基地战略布局,新建生产基地,将有力提升公司品牌的全球影响力。
  • 半导体情报,科学家开创超薄高κ氧化物的理想平台与2D晶体管集成新方法!
    【科学背景】二维(2D)半导体具有原子级厚度,是潜在的高度缩放晶体管沟道材料,因其能够抑制短沟道效应而成为研究热点。然而,要超越传统的硅基晶体管,需要在2D半导体上开发无瑕的超薄高介电常数(κ)介电材料,以实现高效的栅极控制。然而,由于2D半导体表面没有悬挂键,直接进行原子层沉积(ALD)来沉积介电层存在非均匀成核和电流泄漏的问题,特别是在介电层厚度小于3nm的情况下。为了解决这个问题,科学家们提出了多种界面工程方法,包括等离子预处理和种子层预沉积,但这些方法通常会引入额外的界面电荷散射、较差的热稳定性或整体栅极电容降低等问题。有鉴于此,南开大学材料科学与工程学院张磊,吴金雄等教授提出了一种垂直金属辅助的范德华(vdW)集成方法,这种方法能够在不损伤2D半导体表面的情况下,将高κ介电材料层叠到2D半导体上。研究中开发了一种铋氧化物(Bi2O3)辅助的化学气相沉积(CVD)方法,用于垂直生长钯、铜和金等单晶纳米片,这些纳米片具有原子级平整的表面。通过无聚合物的机械压合方法,这些纳米片可以轻松转移到目标基板上。此外,CVD生长的钯与ALD过程兼容,能够在其上沉积超薄高κ介电材料如Al2O3和HfO2,同时保持其原子级平整表面。通过一步转移过程,研究人员将小于3nm的Al2O3/Pd和HfO2/Pd异质结构堆叠在几层的MoS2或石墨烯上,形成了清洁的vdW界面,没有有机污染或沉积引起的损伤。结果表明,使用2nm厚Al2O3或HfO2介电材料的顶栅MoS2场效应晶体管(FET)展示了约61mV/dec的亚阈值摆幅、0.45V的低工作电压、107的开/关比、10&minus 6A/cm² 的栅极漏电流和~1mV的可忽略滞后。【科学亮点】(1) 实验首次介绍了铋氧化物辅助化学气相沉积(CVD)方法:&bull 首次开发了铋氧化物辅助CVD方法,用于垂直生长单晶金属纳米片,如钯、铜和金,这些纳米片具有原子级平整表面。&bull 创新性地展示了纳米片通过无聚合物机械压合技术轻松转移到目标基板上,这一过程没有引入有机污染物,保持了原子级平整度。(2) 实验通过vdW集成成功实现了亚1nm CEC的2D晶体管的制备:&bull 使用了铋氧化物辅助CVD生长的钯纳米片作为基础,成功实现了超薄高介电常数(高κ)介电材料(如Al2O3和HfO2)的原子层沉积(ALD),保持了介电材料的原子级平整度。&bull 在少层二硫化钼(MoS2)和石墨烯上,通过一步转移过程堆叠了小于3nm厚的Al2O3/Pd和HfO2/Pd异质结构,形成了清洁的vdW界面,避免了常见的沉积损伤和有机污染物的引入。(3) 实验所制备的MoS2顶栅场效应晶体管(FET)展示了亚1nm CEC(0.9nm)的高介电常数(高κ)介电材料(Al2O3或HfO2)的优异性能。具体包括低至0.45V的操作电压、106 A/cm² 的栅极漏电流。【科学图文】图1:垂直生长的单晶金属化学气相沉积chemical vapour deposition,CVD生长、无聚合物转移和表征。图2:垂直生长钯Pd纳米片的原子层沉积atomiclayer deposition,ALD兼容性和范德华van der Waals,vDW集成。图3:以亚3nm Al2O3/Pd作为顶栅介质和电极的MoS2晶体管。图4:以2nm HfO2/Pd作为顶栅介质和电极的MoS2晶体管。【科学结论】本文的科学启迪在于了一种新颖的方法,利用铋氧化物辅助化学气相沉积(CVD)生长垂直单晶二维金属纳米片,并成功将其作为高质量原子层沉积(ALD)氧化物的平台。这一方法不仅解决了传统ALD技术在二维半导体表面上沉积难题,还避免了传统转移技术中介电层厚度过大的问题。通过铋氧化物的引入,实现了在原子级别上对金属表面的垂直生长,从而为超薄介电层的制备提供了一种新途径。此外,本文还通过简化的一步法集成过程,成功在二维半导体上形成了范德华界面,避免了传统转移过程中的有机污染和损伤,确保了介电层的质量和性能。这不仅有助于在极小的电容等效厚度下实现高效的栅极控制,还为制造更高性能的二维场效应晶体管(FET)奠定了基础。原文详情:Zhang, L., Liu, Z., Ai, W. et al. Vertically grown metal nanosheets integrated with atomiclayerdeposited dielectrics for transistors with subnanometre capacitanceequivalent thicknesses. Nat Electron (2024). https://doi.org/10.1038/s41928024012023
  • “跨界”科学家的两重身份——走近凝固技术和晶体生长领域著名专家介万奇
    刚刚过完64岁生日的介万奇有两重身份:西北工业大学教授、博士生导师,凝固技术和晶体生长领域著名专家,是中国辐射探测半导体晶体拓荒者;陕西迪泰克新材料有限公司创始人、董事长兼首席科学家,带领团队实现碲锌镉(CZT)晶体材料国产化及产业化落地,解决了关键核心技术的“卡脖子”难题。在神舟十五号及此前数次载人航天任务中,航天员均配备了以迪泰克CZT探测器作为核心部件的辐射剂量仪,迪泰克产品已多次助力我国航天事业发展。“搞科研就像跑马拉松,科研成果只有真正实现落地转化,才能发挥它应有的社会价值。”介万奇说,“西安‘北跨’战略提出,要发挥秦创原创新驱动引领作用,突破关键核心技术,赋能产业转型升级,打造‘北跨’科创走廊,这为像迪泰克这样的科研企业注入了新的发展动力。”攻克CZT晶体“卡脖子”难题CZT,一种性能优异的室温核辐射半导体探测器材料。“说到半导体材料,我其实是半路出家。”介万奇在西北工业大学学的是传统金属材料加工的铸造专业。毕业留校工作后,他开始思考在凝固科学技术大框架下,结合功能晶体材料进行晶体生长研究,“考虑了很多方向,最终选择半导体作为切入点”。CZT半导体材料具有非常高的计数率、灵敏度、能量分辨率及空间分辨率,在X射线和伽马射线检测与成像领域有着较好的发展前景。“当时,我们国家在这方面处于技术空白,相关产品主要依赖进口。”介万奇介绍,“1992年,全球首篇探测器级CZT晶体材料相关文献出版,第二年我们便开始研制国产CZT材料,朝着攻克‘卡脖子’难题的目标努力。”CZT晶体生长存在成分复杂、熔点较高、元素易挥发等难点,介万奇团队通过工艺优化和技术升级实现了大尺寸晶体生长,但材料仍有大量位错和Te沉淀等缺陷,而且晶体所需的高电阻率、高载流子迁移率也很难控制。“CZT晶体材料的研发过程非常艰苦。”介万奇坦言。苦苦探索,终成正果。经过十余年攻关,介万奇团队在国内首次解决了晶体材料的成分设计和优化、晶体合成与生长等多项技术难题,开发出了高性能探测器级CZT晶体及高效率、低成本单晶制备技术和关键设备,一举打破了外国的技术封锁。“经英国卢瑟福国家实验室、中核北京核仪器厂等多家权威机构测定,我们开发的CZT晶体性能达到了国际先进水平。”介万奇说,与当年国际最先进的传统工艺技术产品相比,团队研发的晶体材料成品率提高了3至5倍,生产效率提高了3倍以上,综合成本则下降了50%以上。打造国产CZT探测器产业链2013年,介万奇主持完成的这项“高能射线探测器用碲锌镉晶体材料及制备技术”,被评为国家技术发明奖二等奖。在介万奇看来,科学研究如果只是纸上谈兵,不能转化为实际生产力,搞科研就是一种无用功。2012年,团队成立陕西迪泰克新材料有限公司,在西咸新区秦汉新城建设了研发生产基地,推动CZT晶体材料国产化及产业化落地。“真正把一项技术、一个材料成功做成产品,过程太复杂了!”一向不言辛苦的介万奇在回顾团队产学研历程时感慨,“从实验室走向产业化,要面对一系列难题,从0到1,这种突破是最难的,弯路没少走,苦头没少吃。我们用近两年时间才自主研发了完整的晶片切割、清洗、抛光、腐蚀等加工工艺,建立了完整的晶体生长、材料加工和器件设计体系。”如今,迪泰克已发展成为国内唯一、全球第三可产业化批量生产、销售探测器级CZT晶体和相关探测器产品、设备的高新技术企业,牵头承担了科技部、工信部及国防领域多项国家级重点项目,牵头制定了国内首个探测器级碲锌镉晶体国家标准,拥有各类专利近百项,覆盖产品所有技术关键点。迪泰克产品已被广泛应用于航空航天、核工业军工、安检及工业检测、医疗影像等领域,并与全球20多个国家和地区的近400家客户建立了稳定合作关系,在全球碲锌镉半导体辐射探测与成像核心部件提供商中名列前茅,开创了我国在新一代辐射探测技术领域与国际领先水平“并跑”的局面。“迪泰克正在布局可用于医疗及工业成像的碲锌镉材料、器件、模块产业化,打造国产CZT探测器产业链,需要大量资金用于研究及产能扩建。西咸新区和秦汉新城帮我们拓宽了融资渠道,加快了融资速度,这无疑是雪中送炭。”介万奇表示,迪泰克将抢抓西安“北跨”全面启动的重大机遇,依托秦创原创新驱动平台资源优势,瞄准国家重大需求,加强自主创新,加快关键核心技术攻关,不断提升产品竞争力,为陕西先进装备制造业高质量发展及国家辐射探测与成像行业技术进步作出新的贡献。
  • 突破性成果!从“盖房子”到“顶竹笋”:我国科学家首创晶体制备新方法
    晶体是计算机、通讯、航空、激光技术等领域的关键材料。传统制备大尺寸晶体的方法,通常是在晶体小颗粒表面“自下而上”层层堆砌原子,好像“盖房子”,从地基逐层“砌砖”,最终搭建成“屋”。北京大学科研团队在国际上首创出一种全新的晶体制备方法,让材料如“顶着上方结构往上走”的“顶竹笋”一般生长,可保证每层晶体结构的快速生长和均一排布,极大提高了晶体结构的可控性。这种“长材料”的新方法有望提升芯片的集成度和算力,为新一代电子和光子集成电路提供新的材料。这一突破性成果于7月5日在线发表于《科学》杂志。图为用“晶格传质-界面生长”新方法制备晶圆级二维晶体北京大学物理学院凝聚态物理与材料物理研究所所长刘开辉教授介绍,传统晶体制备方法的局限性在于,原子的种类、排布方式等需严格筛选才能堆积结合,形成晶体。随着原子数目不断增加,原子排列逐渐不受控,杂质及缺陷累积,影响晶体的纯度质量。为此,急需开发新的制备方法,以更精确控制原子排列,更精细调控晶体生长过程。为此,刘开辉及其合作者原创提出名为“晶格传质-界面生长”的晶体制备新范式:先将原子在“地基”,即厘米级的金属表面排布形成第一层晶体,新加入的原子再进入金属与第一层晶体间,顶着上方已形成晶体层生长,不断形成新的晶体层。实验证明,这种“长材料”的独特方法可使晶体层架构速度达到每分钟50层,层数最高达1.5万层,且每层的原子排布完全平行、精确可控,有效避免了缺陷积累,提高了结构可控性。利用此新方法,团队现已制备出硫化钼、硒化钼、硫化钨等7种高质量的二维晶体,这些晶体的单层厚度仅为0.7纳米,而目前使用的硅材料多为5到10纳米。图为基于二维晶体的电子和光子集成电路“将这些二维晶体用作集成电路中晶体管的材料时,可显著提高芯片集成度。在指甲盖大小的芯片上,晶体管密度可得到大幅提升,从而实现更强大的计算能力。”刘开辉说,此外,这类晶体还可用于红外波段变频控制,有望推动超薄光学芯片的应用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制