当前位置: 仪器信息网 > 行业主题 > >

灵敏度

仪器信息网灵敏度专题为您整合灵敏度相关的最新文章,在灵敏度专题,您不仅可以免费浏览灵敏度的资讯, 同时您还可以浏览灵敏度的相关资料、解决方案,参与社区灵敏度话题讨论。

灵敏度相关的资讯

  • “高灵敏度拉曼光谱检测系统”通过验收
    2013年8月29日,由四川成都拉曼光电科技有限公司承担的&ldquo 高灵敏度拉曼光谱检测系统&rdquo 项目通过了四川省科学技术厅组织的专家验收。   该项目基于周期金属纳米结构,开展了高灵敏度拉曼光谱检测系统的研究,并建立了相关的仿真计算机模型及探测试验平台,成功开发出&ldquo 高灵敏度拉曼光谱检测系统&rdquo 。   该系统可应用于公共场所的安全防范,拓展了在痕量气体探测方面的应用,为在现场环境下非接触快速痕量检测爆炸物、毒气等危险物品提供了新的思路和解决方案。为人口密集的重要场所的隐藏易燃易爆物品的痕量检测提供操作简单方便、快速响应的高性价比检测系统。该系统不仅可以分散独立便携使用,也可以组网交互式协同使用,从而为机场、地铁车站等重要公共交通枢纽的安全、重要政府机关的安全,以及各类车辆等重要移动目标的安全提供可靠的监测系统。
  • “大转小” 迎来核酸提取仪超高灵敏度
    10copies/mL!EmagPure-96plus“大转小”重新定义核酸提取仪超高灵敏度从2019年底疫情初期到现在,多轮筛查、假阴性、无症状病毒携带者、“14+7”超长隔离期、工作生活各种不便,经常是由于低病毒载量的不可检出性。目前常规新冠病毒核酸检测限为300-500copies/mL,如何更早更筛查出人群中低病毒载量及无症状病毒携带者、让生活尽早恢复常态化?医脉赛科技特别推出专利研发的核酸提取仪EmagPure-96plus,该仪器其独特的“大转小”功能就能完全解决以上“大海捞针”的困惑,让低浓度的核酸病毒无处遁形;EmagPure-96plus仪器可以通过利用大体积15mL深孔板,配以大磁头(强磁吸磁珠)在进行完全裂解洗涤后,转而采用小磁头吸取磁珠转移到小体积50μL或100μL的收集管中进行洗脱,轻松一步“大转小”实现了大体积低浓度样本到小体积高浓度洗脱液的转换,极大解决了灵敏度低、实验假阴性的可能,让我们更早一步发现,更早一步解决,尽早切断病毒传播链!使一切变得更有序!通过系列的实验数据表明:使用医脉赛科技EmagPure-96plus高通量多功能的核酸提取仪、医脉赛病毒保存管、核酸提取试剂盒,配以“大转小”独特专利技术,其荧光定量PCR仪检测结果表明大大提高了检出限,可检测病毒载量低至5-10copies/mL,较目前的常规检测灵敏度提高10-30倍,让病毒无处躲藏。从以上实验数据我们可以发现:搭载“大转小”专利技术的EmagPure-96plus大大提高了检测灵敏度,使我们能够更早一步发现“真相”;EmagPure-96plus不仅在提高灵敏度方面有卓越的表现,对于有高通量检测需求的客户来说EmagPure-96plus其双磁头的超强配置(15分钟完成192个单一样本),更能让我们在有限的时间检测更多的样本,一天上万已经触手可及;实现了真正意义上的高通量!医脉赛科技通过不断的创新和研发,广泛服务于疾病防控、临床诊断、出入境检验检疫、法医、科研等领域,我们力求为核酸检测,蛋白纯化提供更多优质高效的解决方案!“此实验所用到的试剂和仪器关于医脉赛医脉赛科技于2010年在上海张江由海归专家团队创建,并在浙江嘉善建立了2000多平米的标准化研发/生产基地。专注于磁性纳米微球技术在生物医药领域的应用和创新;截止2020年已自主研发并上市6大系列40余种产品,包括全线磁珠法提取试剂盒、蛋白纯化纳米磁珠、各种功能化磁珠、化学发光磁珠、病原体/微生物保存管,32/96/192通量全自动核酸/蛋白提取仪,具备完善的医疗器械生产管理、质量体系;拥有10万级洁净自动化试剂盒生产流水线车间、生物安全室;核心技术已取得10余项国内国际专利证书,20余个中国、欧洲、美国医疗器械注册证。医脉赛科技的产品线已能覆盖所有临床样本的前处理,包括传染病检测、肿瘤筛查、遗传病检测、核酸提取和富集等,医脉赛科技坚持为科研、医院系统,疾控系统,医检所、和动物疾控及养殖等行业提供更为简捷、绿色、环保、安全、样本纯化富集产品及解决方案。
  • 新型生物传感器可提高检测灵敏度
    近日,中科院上海应用物理研究所、苏州纳米技术与纳米仿生研究所、复旦大学中山医院、上海计量测试技术研究院合作开发了一种基于DNA纳米结构修饰界面的电化学生物传感器,用于microRNA肿瘤靶标的超灵敏检测,相关工作已于日前发表于Nature杂志社新出版的综合性期刊Scientific Reports。   微小RNA(microRNA)是一种内源性的非编码单链RNA,在细胞的一系列生理发育过程中起着重要的调控作用。研究者发现microRNA的异常表达与很多肿瘤的发生发展直接相关,特别是发现它可以稳定地在血清中存在,是一类非常有前景的肿瘤标记物。   与传统的PCR等均相检测方法相比,基于表面反应的电化学生物传感器对疾病相关的microRNAs检测具有更加廉价、更容易实现现场检测的优点。然而,电化学生物传感器的灵敏度常常受到界面传质过程和拥挤效应的限制。   为了解决这些问题,中科院上海应用物理研究所研究员樊春海及其团队之前已发展了利用三维DNA纳米结构修饰金电极表面的新方法,可以显著增强表面分子的结合能力和提高检测灵敏度。   在樊春海指导下,闻艳丽等科研人员将这种DNA纳米结构修饰表面用于microRNA的传感检测。研究表明,这种新型的生物传感器可以检测到aM(10-18 mol/L)水平(1000个分子)的microRNAs,具有良好的单碱基区分能力,且能与前体RNA很好地区分。利用这种新型生物传感器灵敏度高、重复性好、无须标记和无须PCR扩增的优点,研究者对于一系列食管鳞状细胞癌病人样本中的microRNAs表达水平进行了分析,并实现了对癌组织和癌旁组织的良好区分。
  • 小菲课堂|浅析热灵敏度对热像仪选择的重要性
    热像仪是利用热能拍摄图像,它捕获到红外能量,并利用这些能量通过数字或模拟视频输出创建图像,细节由温差定义,而红外热像仪的热灵敏度定义了热像仪可以检测到的最小温差。红外热像仪探测器由一系列探测器像元组成。由于红外光谱中的能量波长比可见光长,因此每个红外探测器像元必须相应地大于可见光探测器上的像素,以吸收更长的波长。因此,热像仪的分辨率通常低于相同机械尺寸的可见光传感器。电磁频谱包括从近红外0.75µ m到远红外近1 mm(1000µ m)的红外波段热像仪开发需要考虑的因素热像仪最初是为监视和军事行动而开发的,现在广泛用于工业生产领域,如建筑检查(水分、隔热、屋顶等)、消防、自动驾驶汽车、自动紧急制动 (AEB) 系统、工业检查、科学研究等。这些领域的热像仪有多种外形尺寸,从手持热像仪到无人机热像仪,再有应用到外太空的科学研究热像仪等。设计开发热像仪的工程师们需要清楚地了解关键设计规范,包括热像仪的场景动态范围、视场角、分辨率、热灵敏度和光谱范围等。不同的热像仪可以擅长不同的事情,因此工程师需要了解不同类型的热像仪功能之间的权衡,以及这些差异对最终产品性能的影响。热灵敏度是低对比度场景(包括有雾天气)的关键性能指标灵敏度:清晰度和实用性的关键变量热灵敏度定义了热像仪可以检测到的最小温差,其将直接影响热像仪所能产生的图像清晰度和锐度。热像仪以毫开尔文(mK)为单位标称灵敏度。数字越低,探测器越灵敏。热灵敏度,也称为噪声等效温差(NETD),描述使用热像仪时观察到的最小温差。实际上,NETD值越低,传感器检测细小温差的能力就越强。集成商和开发人员应寻找能够在行业标准30°C下提供NETD性能的制造商,下表可用于评估热探测器的灵敏度。灵敏度(mK)描述<30mK非常灵敏<50mK比较灵敏<60mK灵敏<70mK一般灵敏<80mK较低灵敏小伙伴们还要注意到一个问题,有些制造商生产的一些低成本热像仪通过将NETD标称在环境温度为50℃(NETD:XXmK,@50℃)而不是行业标准的30℃(NETD:XXmK,@30℃),从而来隐藏低灵敏度的问题。如果你需要测量的目标通常有很大的温差,那么具有较低热灵敏度的入门级产品就够用。然而,对于更微妙的应用,如检测湿度问题,你将需要更高灵敏度的热像仪。制冷or非制冷与配备非制冷探测器的红外热像仪相比,带制冷探测器的红外热像仪具有明显的优势。制冷型红外热像仪具有与低温冷却器集成的成像传感器,通过制冷器可将传感器温度降低。为了将探测器自身热噪音降低到低于成像场景温差信号的水平,传感器温度的降低是必要的,并且可以显著提高热灵敏度。但是,这些性能改进是有代价的。制冷型红外热像仪通常更大、更重、更耗电。除了牺牲SWaP(尺寸、重量和功率)之外,制冷型红外热像仪的成本要高得多,因为存在机械动作部件(制冷压缩机)因此会受到机械磨损,从而缩短热像仪的平均故障时间(MTTF),低温冷却器的运动部件具有极其严格的机械公差,机械性能会随着时间的推移而退化,氦气也会通过密封件缓慢泄漏。FLIR非制冷型热像仪的最新改进使灵敏度达到20 mK以下,与传统热像仪相比,灵敏度大幅提高,可能使非制冷型长波红外热像仪成为各种新应用的可行选择。虽然很诱人,但需要注意的是,非制冷型红外热像仪不能简单地取代制冷型热像仪。产品开发人员和系统集成商还需要考虑有关成像速度、空间分辨率、光谱滤波等方面的其他要求。灵敏度越高,受雨、雾、雪等恶劣天气条件的影响越小比如FLIR A310就搭载非制冷微量热型探测器,可在热灵敏度为50mK(0.05℃)时输出分辨率为320x240像素的热图像,配合内置分析功能,可提供单点温度测量、区域温度测量和自动报警功能。应用案例:FLIR A310——助力韩国火力发电厂,确保供电正常!FLIR A310:全天候监测火炬塔,守好大气污染的最后一条防线!想要供电不间断?来学学FLIR如何为挪威变电所保驾护航热灵敏度是热像仪选择的关键指标但并不是唯一指标想要知道自己最适合哪种红外热像仪吗?报名系统学习一周时间,在ITC红外培训课堂你就能红外热像仪小白化身为专业热像师
  • 岛津高灵敏度GC系统Tracera 的性能介绍
    传统气相色谱检测器很难胜任气体中痕量物质分析的工作,岛津公司全新开发的高灵敏度气相色谱系统Tracera,融合了专为毛细管型气相色谱仪GC-2010 Plus精心设计的BID检测器(介质阻挡放电等离子体检测器)技术,在此方面展示了强大的分析优势,完全能够满足痕量物质分析的需求。 以下介绍高灵敏度气相色谱系统Tracera具备的优异性能。 高灵敏度 灵敏度高于TCD百倍以上,高于FID 两倍以上 BID和TCD检测器灵敏度比较 分析永久性气体比较这两个检测器的灵敏度差异。对于有机化合物,BID检测器的灵敏度是TCD的200倍以上;对于永久性气体,BID检测器的灵敏度是TCD的几十倍以上。 永久性气体和轻烃类化合物的高灵敏度分析 分析永久性气体和轻烃类化合物时,常规分析方法需要配置多个检测器,且在分析ppm水平的CO和CO2时,需要甲烷转化炉和FID检测器配合才能进行分析。此时,如果使用BID检测器则完全不同,它可以替代这两个装置,实现无机气体和轻烃类混合物的高灵敏度同时分析。 检测浓度范围对比 注:图中所示为推荐检测浓度范围,实际分析中可能会因化合物结构、分析条件和仪器的不同而有所差异。 高通用性 单一检测器完全满足复杂分析要求 BID和FID检测器灵敏度比较 FID检测器对C-H键化合物响应良好,是烃类化合物分析的理想选择,但对含羰基、羧基、羟基(-OH)、醛基(-CHO)、卤素(氟,氯等)化合物的响应较差或无响应。相比较而言,BID检测器可以极大提高上述化合物的灵敏度,且灵敏度几乎无差异。 灵敏度比较 下图所示为不同溶剂在FID和BID上的响应差异。正己烷的响应值设定为1,所有化合物BID的灵敏度均高于FID,且相对响应值较为均一。 分析高沸点化合物 BID的设定温度可达350℃,完全满足n-C44以下石蜡混合物的分析要求。 高稳定性 介质阻挡放电等离子体生成技术保证仪器长期分析稳定性 下图为BID检测器等离子体发生室,其放电电极与等离子体无任何接触,此耐用式结构设计使BID完全不需要仪器维护或消耗品更换。 长期分析稳定性实验 为评估长期分析稳定性,BID检测器进行了灵敏度稳定性实验,分别在仪器连续运行96h、2688h、3240h时读取峰强度值,96h时响应值设定为1,计算2688h和3240h数值,如下图所示,其差异可以忽略。 痕量气体分析重现性实验 样品中各组分浓度约5ppm,采用定量环进样方式对样品进行一系列重现性实验,峰面积的重现性良好,RSD在0.84%&ndash 1.80%之间。 新型BID检测器(介质阻挡放电等离子体检测器) 新型等离子体技术满足痕量分析的要求 新型BID检测器(介质阻挡放电等离子体检测器)主要通过介质阻挡放电产生的氦等离子体进行电离(离子化),是一种灵敏度极高的通用型检测器。在较低温度下,通过在石英玻璃管上加高电压,产生具有极高光子能量(17.7eV)的氦等离子体。 色谱柱流出的组分在氦等离子体的能量轰击下离子化,收集极检测离子信号,输出色谱峰。 BID检测器是岛津公司与日本大阪大学工程学研究生院原子和分子技术中心Katsuhisa Kitano博士的合作研究成果,目前已获得3项美国专利,4项专利待审批。 应用对比 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 小菲课堂|浅析热灵敏度对检测精度的重要性
    目前,监控体系在生产和生活中起着越来越大的作用,成为人们生活中不可缺少的一道安全屏障。一般情况下,普通的可见光摄像头就可以很好地起到监控的作用,但如果等到夜深人静、大雾弥漫,雨雪等光照条件不足的恶劣情况时,一般可见光摄像头就难以捕捉到隐藏的问题。因此,监控技术是必须在任何可能的情况下都提供检测率。自从红外热像仪在安全应用上商业化以来,热成像技术已经成为最可靠的技术,因为它可以在可见光摄像机可见光盲区的情况下提供清晰的图像。然而,并不是所有的热像设备都是相同的,不同热灵敏度的热像仪拍摄的热图像清晰度有很大差异。热灵敏度,即噪声等效温差(NETD-Noise Equivalent Temperature Difference),其描述了所使用的热像设备所能看到的最小温差。实际上,使用毫开尔文(mK)测量的NETD值越低,传感器就越能记录较小的温差,下表可用于确定热探测器的质量:一般灵敏较低灵敏小伙伴们还要注意到一个问题,有些制造商生产的一些低成本热像仪通过将NETD标称在环境温度为50℃(NETD:XXmK,@50℃)而不是行业标准的30℃(NETD:XXmK,@30℃),从而来隐藏低灵敏度的问题。如果你需要测量的目标通常有很大的温差,那么具有较低热灵敏度的入门级产品就够用。然而,对于更微妙的应用,如检测湿度问题,你将需要更高灵敏度的热像仪。探测细微的细节,比如墙上的螺柱,需要很高热灵敏度的热像仪在为安全监控系统选择红外热像仪时,检测率是一个非常重要的考虑因素。入门级热像仪仍然容易受到雨、雾、雪等恶劣天气条件的影响,这些条件会降低图像的对比度,导致能见度低,阻碍检测精度,并导致有限的态势感知。因此,拥有一个具有优异热灵敏度的热像仪对监控系统的创建非常重要。热传感器的灵敏度越高,其检测精度就越高。比如FLIR A310能够很好地担任“监工”的职责,其搭载有非制冷微量热型探测器,可在热灵敏度为50mK(0.05℃)时输出分辨率为320x240像素的热图像。它包含内置分析功能,提供单点温度测量、区域温度测量和自动报警功能。
  • 超灵敏度检测铅离子试纸条问世
    记者从中科院广州生物医药与健康研究院获悉,该院曾令文研究组以铅离子特异性的DNAzyme为分子识别元件,构建了一种可用于铅离子超灵敏检测的非酶信号扩增试纸条。其原理为,当有铅离子存在时,切割的DNAzyme的底物链会启动一系列的DNA自组装过程,从而达到信号放大的目的。相关成果日前发表于《化学通讯》。   据介绍,铅离子是一类主要的环境污染物,具有致癌性,能够对人体健康以及生态环境产生极大的危害。传统的检测方法主要是一些色谱、质谱技术,但这些方法操作麻烦,且需要昂贵的仪器,因而限制了它们的广泛应用。   曾令文团队应用的试纸条具有很高的灵敏度,可以检测出10pM的铅离子。这一数值远远低于美国环境保护署规定的饮用水中铅离子的最大允许量72nM。   业内专家表示,该团队构建的非酶信号扩增试纸条操作简便,不需要使用检测仪器,为环境中重金属铅离子污染的快速、灵敏检测提供了一种有效的手段,降低了检测成本,在环境重金属检测领域具有重要的应用价值。   该项研究获得了国家重大科学研究计划项目资助。
  • 灵敏度不够?试试布鲁克固体核磁
    p style=" line-height: 1.75em text-indent: 2em " span style=" font-size: 14px font-family: 微软雅黑, & quot Microsoft YaHei& quot " 核磁共振波谱被用于研究分子结构、不同分子间的相互作用、分子动力学或动态特征,以及生物溶液、合成溶液或复合材料混合物的成分。该技术可分析各种大小的分子,包括小型有机分子或代谢物,到中等大小的多肽或天然产物,一直到分子量达数万 Da 的蛋白质。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-size: 14px font-family: 微软雅黑, & quot Microsoft YaHei& quot " 但有科学家表示,核磁共振本质上是不灵敏的,如果是解析表征时,灵敏度问题就更为严重了,因为表征物质已经被稀释了。这时候就需要借助动态核极化技术因为动态核极化可以大大增强核磁共振信号。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-size: 14px font-family: 微软雅黑, & quot Microsoft YaHei& quot " 布鲁克400兆赫的谱仪能很大程度地增强信号,可以将核磁共振信号放大高达两个数量级。与常规核磁共振相比,实验时间相当于节省4倍,其极高的灵敏度可以用于研究更多类型的物质。800兆赫的谱仪,则能大大减少增强因子。 /span /p script src=" https://p.bokecc.com/player?vid=8FECC5001B3BEACE9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=2BE2CA2D6C183770& playertype=1" type=" text/javascript" /script p style=" line-height: 1.75em text-indent: 0em text-align: center " span style=" color: rgb(31, 73, 125) text-decoration: underline " strong span style=" color: rgb(31, 73, 125) font-size: 14px font-family: 微软雅黑, " microsoft=" " a href=" http://www.instrument.com.cn/demand/InDemand.html" target=" _blank" title=" " style=" color: rgb(31, 73, 125) text-decoration: underline " 买仪器?一键采购! /a /span /strong /span /p
  • 表面改性纳升电喷雾针提高质谱灵敏度
    大家好,本周为大家分享一篇发表在J. Am. Soc. Mass Spectrom上的文章,Surface Modified Nano-Electrospray Needles Improve Sensitivity for Native Mass Spectrometry [1] 。该文章的通讯作者是来自美国亚利桑那大学的Michael T. Marty教授。非变性质谱(NMS)和电荷检测质谱(CD-MS)已成为表征各种蛋白质和高分子复合物的多功能工具。两者通常使用硼硅酸盐针进行纳米电喷雾电离(nESI)。但由于蛋白质在中性pH值下通常带正电荷,可能会吸附在带负电荷的玻璃nESI针表面,从而降低灵敏度,影响数据分析。为了提高NMS和CD-MS的灵敏度,作者用惰性表面改性剂修饰了nsEI针的表面。通过将聚乙二醇(PEG)共价连接到硅烷醇表面,钝化了玻璃表面,以减少非特异性吸附。首先,为确定表面改性是否能提高质谱灵敏度,作者团队采用PEG涂层的玻璃nESI针检测了两种非特异性吸附玻璃的蛋白:牛血清白蛋白(BSA)和溶菌酶。结果发现,相比于对照组,BSA和溶菌酶的信号强度均提高了2倍左右(图1)。PEG 涂层显着提高了nESI针头对标准蛋白质的MS灵敏度。图1.(A) 未涂层对照针和 (B) PEG 涂层针的 BSA 原始质谱显示信号强度。(C) 溶菌酶和 (D) BSA的PEG涂层(浅蓝色)和对照(灰色)nESI针的信号强度。接下来,作者利用搭载PEG表面涂层nESI针的CD-MS检测完整腺病毒 (AAV) 衣壳。结果发现,与采用未改良针的对照组相比,在较低浓度下,PEG改良针所收集的离子总数高出8倍以上(图2)。相比于一般的CD-MS检测,采用改良针的CD-MS检测的样品浓度更低,采集时间缩短。图2. AAV2 衣壳的 CD-MS 分析。(A) 对照组; (B) PEG 涂层针。 (C) 从空AAV2衣壳的5分钟 CD-MS 采集中收集的单个离子总数。接下来,作者研究了nESI针尖端尺寸和几何形状变化对实验结果的影响。实验发现,虽然改良针在较低浓度下显著提高了信号强度,但其针间差异很大。作者团队假设信号强度的偏差是由人工修剪nESI针的尖端直径差异引起的。为了最大限度地减少nESI针尖端尺寸和几何形状的变化,作者开发了一个针头拉拔器程序,以重复生产具有2 μm吸头直径的nESI针头。结果发现,PEG修饰的2 μm针的可明显提高检测信号强度,并且每次运行差异较小。相比于人工修剪的针头,2 μm针信号提升幅度更大。0.1 μm nESI针与2μm针两者检测到的蛋白的信号强度相似(图3)。基于以上结果,作者推测2 μm针检测到的信号值更高的原因可能是2 μm针的锥度更短。较短的锥度可能会在针尖附近产生更高的涂层密度。而手动剪断的针头具有较长的锥度,在拉拔过程中在尖端附近损坏PEG涂层,因此检测到的信号值偏低。而0. 1μm和2μm针尖上的锥度都比较短,涂层在接近针尖表面时可能完好无损,因此两者检测到的信号强度相似。图3. 具有 2 μm(左)和 0.1 μm(右)尖端直径的PEG涂层(浅蓝色)和未涂层对照(灰色)nESI 针的 BSA 最丰富电荷状态的信号强度。通过以上实验,作者已证实了PEG 修饰nESI可提高NMS与CD-MS的灵敏度。接下来,作者对其作用机制进行深入研究。首先,作者测试了灵敏度的提高是否是由于减少了对玻璃的非特异性吸附引起的。作者采用两种化学性质不同的涂层:PEG与多氟分子PFDCS修饰针头,两者均可减少蛋白的非特异性吸附,理论上均可改善质谱灵敏度。但结果发现,仅有PEG涂层针头可改善信号强度。之后,作者采用两种针头检测了泛素信号值。泛素在中性条件下不与玻璃发生吸附作用,理论上两者信号值无统计学差异,但结果发现,相比于PFDCS 修饰针头,PEG修饰针头组检测到的信号值提高了3倍。由此得出结论,PEG涂层针头不是通过减少蛋白与玻璃之间的非特异性吸附来提高质谱信号值的机制。最后,作者研究了表面改性针的毛细管作用,发现无修饰的硼硅酸盐毛细管毛细管作用最强,PEG毛细管具有中等强度的毛细管作用,而PFDCS毛细管几乎没有毛细管作用(图4A)。然后,在没有流体泵送或施加压力的静态条件下研究了不同nESI针的流速(图4B)。结果发现,PEG修饰的nESI针流速最高,而PFDCS修饰和对照nESI针的流速没有统计学差异。作者假设灵敏度的提高可能是由nESI针的流速增加导致的。由于传统针头中较高的毛细力,液体会紧紧地附着在玻璃上,降低给定ESI电压下的液体流量。而PEG修饰降低了毛细阻力,可能会增加流向尖端的液体,从而增加信号。而PFDCS修饰针头虽然具有较低毛细作用,但其流速较小,原因可能是需要一定强度的毛细作用才能获得最佳的流动速度。作者未来的实验将进行深入探索这一假设。ESI针的毛细作用照片。 (B) PFDCS修饰 (深蓝色)、PEG修饰 (浅蓝色)和未修饰 (灰色) 针的流速。总而言之,作者证明了PEG修饰的nESI针增加了多种分析物的质谱信号强度和灵敏度,展示了一种可以在较低浓度下提高难分析物的灵敏度、相对快速且成本低廉的方法。作者推测表面改性通过提高nESI针尖端流速以发挥提高质谱检测灵敏度的作用,但该推测仍需进一步证明。[1]Kostelic MM, Hsieh CC, Sanders HM, Zak CK, Ryan JP, Baker ES, Aspinwall CA, Marty MT. Surface Modified Nano-Electrospray Needles Improve Sensitivity for Native Mass Spectrometry. J Am Soc Mass Spectrom. 2022 Jun 1 33(6):1031-1037. doi: 10.1021/jasms.2c00087. Epub 2022 May 19. PMID: 35588532.
  • 掺硼石墨烯可制成超高灵敏度气体传感器
    一个国际联合研究小组近日宣布,通过在石墨烯中加入硼原子的方式,他们开发出一种灵敏度极高的气体传感器。该装置能“嗅”出空气中浓度极低的有害气体,在人们还未察觉时发出警报。该研究还有助于改善锂离子电池和场效应晶体管的性能。  用石墨烯制成的气体传感器已具有很高灵敏度,但科学家们并不想止步于此,希望通过在石墨烯中掺入其他元素的方式让其性能得到进一步提升。  美国宾夕法尼亚州立大学物理学、化学和材料学教授莫里西欧特伦斯经过不断更换掺入元素,成功合成了1厘米见方的高品质掺硼石墨烯片。为防止硼化合物暴露在空气后快速分解,他们研制中用到了类似起泡器的化学气相沉积系统。  核心部件制成后,被送往本田研究院的美国公司进行组装。2010年诺贝尔物理学奖获得者、英国曼彻斯特大学科学家康斯坦丁诺沃肖洛夫的实验室负责研究传感器的传输机制。此外,比利时、日本和中国的科学家也促成了这项研究。  测试显示,新的气体传感器能够探测到浓度极低的有害气体分子,如空气中含量为十亿分之一的氮氧化合物和百万分之一的氨气,灵敏度比单纯用石墨烯制成的气体传感器要分别高出27倍和1000倍。  负责此项研究的本田研究所首席科学家阿维迪克哈瑞泰元认为,新方法开辟了一条制造超高灵敏度气体传感器的新途径。该技术未来极有可能突破1000的五次方分之一检出限,在灵敏度上,比目前最先进的气体传感器高6个数量级。  未来这种传感器有望在科学实验和工业中获得广泛的应用,无论是有毒有害气体、超标排放的汽车尾气,还是大气污染中的氮氧化合物都会在它面前一一显出原形。研究人员称,除检测有毒和易燃气体外,这种掺硼的石墨烯理论上还能帮助改建锂离子电池和场效应晶体管。  相关论文发表在11月2日出版的《美国国家科学院院刊》。 来源:科技日报
  • 默克密理博获权开发超高灵敏度的技术
    编辑推荐:  默克密理博(默克集团的生命科学部门)近日已获得Singulex公司的全球独家授权,来控制和管理Singulex的生命科学研究业务,包括其单分子计数(SMC?)的技术。 索取CellASIC-微流控活细胞芯片资料,真实记录细胞对环境变化的反应 默克密理博(默克集团的生命科学部门)近日已获得Singulex公司的全球独家授权,来控制和管理Singulex的生命科学研究业务,包括其单分子计数(SMC?)的技术。此次交易的价格尚未披露。默克密理博已经同意向Singulex支付预付款、特许权使用费,并且在实现商业里程碑时支付额外的费用。作为回报,默克密理博将拥有SMC技术的独家经营权,在全球范围内进一步开发和商业化SMC技术。 在目前的生命科学研究中,超灵敏的蛋白质检测需求尚未得到满足。由于许多生物标志物的丰度极低,现有的技术只能检测整个蛋白质组中大约5%的蛋白质,故绝大多数蛋白质几乎检测不到。Singulex公司总部位于美国加利福尼亚州Alameda,致力于开发超高灵敏度的蛋白检测。 SMC是一项新型的专利技术。它通过信号增强和背景降低以及小体积采样,让超高灵敏度的蛋白检测成为现实。据Singulex公司介绍,与其他商业技术相比,SMC定量生物标志物的灵敏度要高出10-1000倍。 这项技术能够检测过去无法检测的生物标志物,在带来科学突破的同时,也能让医生更广泛评估患者的风险,实现积极的健康管理。这项技术可应用在多种疾病领域,包括心血管疾病、阿尔茨海默病、帕金森病、类风湿性关节炎等。 通过这项交易,默克密理博打算通过其全球影响力以及Singulex的Erenna免疫分析平台,让SMC技术成为蛋白质检测的领先标准。同时,Singulex仍然保留了在临床实验室检测和体外诊断业务中使用此技术的权利。 Singulex的总裁兼CEO Guido Baechler表示:“我们已经建立了在高灵敏度免疫分析中的领导地位,这项交易让我们能够利用我们卓越的免疫分析技术在其他诊断业务中创造更多的机会,特别是在伴随诊断领域。” 默克密理博的总裁兼CEO Udit Batra也谈道:“Erenna平台具有独特的优势,提供了无以伦比的灵敏度和精确度,将是我们蛋白质检测专营权的有力补充。” 默克密理博作为默克集团旗下的生命科学部门,为生命科学领域提供高性能的产品和服务。去年9月,默克集团以170亿美元现金收购美国Sigma-Aldrich公司,以提升其默克密理博的实验室用品业务。这也是该公司历史上最大的一起收购。
  • 水体溶解甲烷检测灵敏度提升超500倍
    日前,中国科学院合肥物质科学研究院智能所陈池来研究员团队王晗等研究人员在深海探测领域取得新突破——在前期深海质谱研究基础上,将水体溶解甲烷检测灵敏度提升500多倍,达到海洋及湖泊本底溶解甲烷检测水平,实现了从溶解甲烷异常事件监测到背景甲烷长期监测的跨越。甲烷作为仅次于二氧化碳的第二大温室气体,其排放对全球气候变化具有重要影响。每年从海洋、湖泊等水生态系统中排放的甲烷约占全球总量的53%,因此,有效监测海洋甲烷向大气的排放通量至关重要。此外,甲烷还是天然气水合物的主要成分,这种新型清洁能源被视为21世纪最具潜力的能源之一。因此,海洋甲烷监测对于海洋环境感知、甲烷异常区域发现、海洋能源勘探、海洋科学研究等均具有重要价值。由于海洋中的甲烷浓度低、变化大等特点,当前对海洋溶解甲烷的检测数据仍然很少,对海洋甲烷通量的估计还存在很大不确定性。深海质谱仪是实现海洋溶解气快速检测的重要海洋装备,因其检测灵敏度有限,也只能对特定区域或异常事件进行检测。2023年,陈池来研究员团队成功研制“智微号”深海质谱仪,并在南海某海域顺利完成多次海试,获得了海洋廓线重要溶解气信息。在前期工作基础上,为进一步提高检测灵敏度,团队针对样本水气高、检测仪器空间有限等问题,研制出小体积、低功耗的在线除水系统,同时优化进样气路设计,成功将其集成安装于深海质谱仪中。这一改进在维持目标检测气体高渗透通量的同时,将质谱仪的真空度提升超过2个数量级,将甲烷的检测灵敏度提升了超500倍,达到深海及湖泊等水域甲烷本底信号检测水平,有望实现海洋溶解甲烷的无差别监测,将为进一步实现甲烷通量计算、全球气候研究、冷泉发现等提供重要技术基础。
  • 滨松推出高信噪比、高灵敏度微型FTIR引擎
    人的指纹是各自不同的,通过指纹识别,便可以找到特定的那一个人。而在微观世界中,分子也是拥有自己独特的“指纹”的。红外光具有在特定波长被吸收的特性,该特定波长由分子固有的振动能决定。利用此特性可以识别每个分子,因此红外光的光谱范围通常被称为分子的“指纹区”,并被广泛用于分析光谱学中。 其中,傅里叶红外光谱仪(FTIR)是红外光谱分析中一种重要的光谱仪类型,发展自20世纪70年代,属于第三代红外光谱仪技术。由于可以快速、准确的进行多组分的定量和定性分析,FTIR被看看作是医药、食品、农业和化工等领域中实现质量控制的理想工具。 典型的FTIR工作示意进入FTIR光谱仪的红外光由光学干涉仪中的分束器分成两束。这两个光束分别被固定镜和可移动镜反射,并被分束器重新组合。然后,光被红外检测器检测为光学干涉信号。根据可移动反射镜的位置信息和根据光学干涉信号强度按可移动反射镜位置分布的信息,来执行傅立叶变换以计算每个波长的红外光强度,从而分析样品的成分。 不过,虽然性能棒棒,本领超凡,但FTIR却有一个关于自己“体型”的“烦恼”,那就是:真!的!太!笨!重!了!作为一个“精贵的月半子”,FTIR几乎只能止步于实验室中。面对应用场景中出现的在线检测、快速移动等需求,只能无奈说一句“臣妾做不到”了。 之所以传统的FTIR光谱仪体积非常大,主要是其中的核心部分——光学干涉仪占据了非常大的空间。虽然业界中也一直在推进小型化的工作,也推出了一些有助于缩小整机体积的内部FITR光谱组件产品。但体积的缩小,往往会带来入射光量和光能量损失的问题,许多产品也是在牺牲了灵敏度、信噪比等性能下实现的小型化。若想解决这个问题,内部元件、光路的创新性设计,以及提高工艺水平都是关键。 经过精心重构光学干涉仪的设计思路,并采用always独特的MOEMS技术,滨松成功开发出了一款高性能的微型化FTIR引擎。迈克尔逊光谱干涉仪和控制电路统统内置其中,仅手掌大小,却实现了在1.1-2.5 μm区域超高的灵敏度,具有远超同类产品的高信噪比表现(10000:1),以及高光谱重现性。可内置于便携式FTIR仪器中,实现整机小型化的同时,也可保证高性能的实现。 滨松新型FTIR引擎C15511-01左:FTIR引擎结构图右:内置在FTIR中的光学干涉仪结构图 这个FTIR引擎内部到底是有什么样的乾,什么样的坤,才实现了这样的性能的呢?下面我们来看看吧! 1、高灵敏度&高信噪比 上文我们也提到,入射光量和光能量的损失是小型化FTIR灵敏度和信噪比下降的一个重要因素。采用MOEMS技术,滨松开发出了一个直径3 mm的微型可移动反射镜,克服了缩小干涉仪尺寸而又不减少入射光量的挑战。这是信噪比得以提升的关键。 我们还通过先进的封装技术,将可移动反射镜和固定镜直接键合在一起,从而成功地将镜与镜之间的相对角度误差减小了约0.01度。光程差控制更加精确,灵敏度则得到提高。此外,还优化了移动反射镜的驱动器结构和驱动方法,以消除驱动反射镜时出现的模糊,抑制了红外光在光学干涉仪中的扩散,进一步减少了光损失。 当然,体积也进一步得到了缩小,57×49×76 mm,这样的体型仅仅是一般台式仪器的1/100。 2、高光谱重现性 一般的FTIR光谱仪基于干涉光(光学干涉信号)和可移动镜的位置信息执行傅立叶变换,以计算每个波长的红外光强度。而新FTIR引擎利用半导体激光器,可以精确地检测可移动反射镜的位置,增强了测量结果的可重复性。 除了硬件设施外,为了更加方便使用。滨松还开发了与该产品相匹配的软件,用于设置测量条件,获取数据和显示数据图。 评估软件 为了满足进一步的市场需求,滨松此后也将持续提高FTIR引擎性能,进一步减小其尺寸,以及将光谱响应扩展到更长的波长区域,敬请期待~
  • 五洲东方高灵敏度成像技术研讨会在西南大学举办
    5月11日有北京五洲东方科技发展有限公司举办的高灵敏度化学发光及荧光活体成像系统技术探讨会在重庆西南大学举行,这是五洲东方独家代理的法国VILBER产品研讨会的第一站。 报告现场 客户签到   科学研究的发展总是离不开技术的创新。显微镜的发明,切片技术和染色技术的建立,让人类从宏观世界迈进了认识人体自身的微观世界。免疫化学、原位杂交、核酸扩增等技术的创建让人类能够更进一步地了解组织细胞中蛋白质和核酸水平的变化情况,极大地提高了人类对正常组织、细胞和疾病发生发展规律的认识。数字影像技术的发展,使Westernblot成为蛋白质研究中最常用的一个手段,因此具有更高灵敏度和数据分析功能的化学发光成像系统也逐渐取代传统的胶片法,成为每个涉及生命科学研究的实验室必备的仪器。如何选购化学发光成像系统成为众多用户所困扰的一个问题。本次会议围绕着这个问题对化学发光成像系统展开详细介绍,从而对化学发光及分子成像用户有所帮助。 西南大学 报告演讲   研讨会由五洲东方的产品专家孙福鼎先生做高灵敏度化学发光及荧光活体成像系统的技术报告,并与参加会议的三十多位师生热烈交流实验操作应用方法和实验技巧,来自泸州医学院和西南大学生科院等单位的实验老师也专程带样品测试均得到了理想的成像图片和实验结果。 实验演示   五洲东方会更努力的为用户提供更全面更优质的服务!
  • 新型高灵敏度Sm-Nd同位素分析方法
    低本底高灵敏度Sm-Nd同位素分析方法对石榴子石Sm-Nd定年、陨石Sm-Nd年代学及地球化学、高度亏损超镁铁岩Sm-Nd同位素研究以及环境样品Sm-Nd同位素地球化学研究等领域具有重要的意义。   中国科学院地质与地球物理研究所科技支撑系统储著银副研究员及其合作者,利用固体同位素实验室IsoProbe-T质谱计,采用W灯丝和TaF5发射剂的涂样技术建立了一种新的高灵敏度Sm-Nd同位素分析方法。W灯丝和TaF5发射剂涂样技术通常被应用于低含量样品或微量样品的Sr同位素高精度分析,储著银等首次将该涂样技术应用于Sm-Nd同位素分析。其中,Nd同位素采用测定NdO+离子的方法进行测定,较传统的采用Re带+硅胶+磷酸的涂样技术的NdO+测定方法具有更高的离子发射效率及更稳定的离子流发射,同时不需要给离子源加氧 Sm同位素采用测定Sm+离子的方法进行测定,较传统的Re带点样方法,灵敏度和离子流稳定性均有大幅度的提高。采用该方法可对低至0.5-1ng的Nd获得高精度(内部精度可达10ppm)的同位素分析数据,可对低于0.2ng的Sm获得精确的同位素稀释分析结果。结合低本底的Sm-Nd同位素化学分离流程,可对低含量或微量地质样品进行高精度的Sm-Nd同位素分析。   该分析方法最近已发表于国际著名的分析化学刊物《分析原子光谱学杂志》(Journal of Analytical Atomic Spectrometry)(2008IF: 4.03)(Chu et al. Precise determination of Sm, Nd concentrations and Nd isotopic compositions at the nanogram level in geological samples by thermal ionization mass spectrometry. Journal of Analytical Atomic Spectrometry,2009, 24: 1534-1544)。该方法的建立将为超镁铁岩Sm-Nd同位素研究、石榴子石Sm-Nd定年、陨石Sm-Nd同位素研究及古海水Sm-Nd同位素研究等提供新的研究手段。
  • LCMSMS出峰灵敏度或重现性差?可能是这个原因导致的!!!
    各位实验猿在使用三重四极杆质谱联用仪时,做MRM检测偶尔会遇到出峰峰面积或峰高重现性差的问题。在排查了硬件部分如液相自动进样器,MS喷针或者DL管后依旧找不出问题,崩溃到简直要怀疑人生了… … 我们知道一个峰是由若干个采集点描绘而成的,简单来说Loop time就是从一个采集点开始采集到下一个点开始采集完成一次循环的时间(各个事件的时间总和)。 到底如何设定Loop time? 首先:我们得知道测定一个质谱需要20个点,所以我们应将循环时间设置为接近峰宽的1/20,比如:峰宽0.1min,设置循环时间为0.3sec。如循环时间过长:则采集时间(Dwell time)变长导致采集点数不够,峰形变差从而影响重现性。如循环时间过短:则采集时间(Dwell time)变短导致采集精度不够或不稳定,影响灵敏度和重现性。由此可知,Loop time的设置关键就是我们既要保证采集点数足够,也要保证Dwell time时间足够。 Dwell time对灵敏度到底有何影响?可参考下图: 另外多说一句,如果测定化合物过多导致分配的Dwell time不够的话我们可以根据保留时间分段进行采集哦。 这样就不会互相影响,就像下图: 相信小编这篇文章能够对您起到一定的帮助,如您需更详细的了解,欢迎致电岛津客服热线中心咨询:400-650-0439。
  • 量子精密测量技术显著提高微波测量精度和灵敏度
    发展现代化先进量子测量体系具有重要的研究意义,它符合时代发展需求和国际化发展潮流,同时面向国际前沿和国家重大需求。由于里德堡原子具有较大的电偶极矩,可以对微弱电场产生很强的响应,因此已经成为一个非常有前景的微波测量量子体系。此外,由于里德堡原子之间具有长程强相互作用,常被用于模拟研究强关联系统以及相变。强关联系统在临界点附近对外界扰动更加敏感,可以被应用于量子精密测量领域。虽然有大量理论报道利用强关联系统的临界状态去做量子传感,但在实验上一直未能成功实现。“主要原因是多体系统相变过程制备难、临界点的外场调控技术欠缺等。” 论文共同作者、中科院量子信息重点实验室丁冬生教授介绍。近年来,史保森、丁冬生科研团队利用里德堡原子体系,聚焦量子模拟和量子精密测量科学研究,已取得了重要进展。此次工作中,团队发展了里德堡原子临界点与微波电场的耦合技术。基于室温铷原子体系,利用多体系统相变点对于微波扰动更加敏感的特点,显著提高了测量微波的精度和灵敏度。丁冬生说,“实验发现,多体系统中的原子透射谱线在相变点附近变得更加陡峭,这相当于一把频域上刻度更细的尺子,因此对于微波测量具有更高的精度。”在评估传感器时,一个关键量是Fisher information,它表示一个测量量包含多少关于未知参数的信息。实验表明,相比于少体无相变的情况,多体系统在临界点的Fisher information具有显著提高,具体提高了三个数量级。对应于测量精度提升至少一个量级,并且随测量时间的增加而增加,呈现指数增长的趋势。该工作得到审稿人高度评价:“该实验真正具有开创性,具有重大的潜在影响,因为它为开发基于强相互作用多体系统的新一代量子传感器打开了大门。” “49纳伏每厘米每根号赫兹的灵敏度令人印象深刻,很好地表明了这种方法在计量方面的潜在应用。”中科院量子信息重点实验室丁冬生教授与博士研究生刘宗凯为本文共同第一作者,丁冬生教授、史保森教授、丹麦奥尔胡斯大学Klaus Molmer教授和英国杜伦大学Charles S. Adams教授为本文共同通讯作者。
  • 日研检生物标志物新方 灵敏度提高至百万倍
    日本东京大学日前发表一份公报称,其研究人员发明一种生物标志物检测新技术,使癌细胞和流感病毒等生物标志物的检测灵敏度提高到此前的100万倍。这有助于较早发现相关疾病。相关论文将刊登在《芯片实验室》杂志网络版上。   抗体抗原反应是指抗原与相应抗体之间所发生的特异性结合反应,抗原是血液中的癌细胞和病毒等产生的特异性蛋白质,抗体则指可与相应抗原发生特异性结合的免疫球蛋白。   迄今,利用抗体抗原反应进行生物标志物检测时,主要采用的酶连接免疫吸附剂测定法是将可溶性的抗原或抗体吸附到聚苯乙烯等固相载体上,进行免疫反应的定性和定量测定。不过由于要在小型试管中操作,所以浓度被稀释,灵敏度较低。   东京大学教授野地博行领导的研究小组利用半导体制造中常用的精密加工技术,在1平方厘米的玻璃上开出100万个小孔,然后让抗体抗原反应产生的分子流过,可以逐一捕捉到这些分子。在检测前列腺癌指标“前列腺特异抗原”时,即使其浓度只有传统检测法的百万分之一,也仍然可以被检测出来。
  • 智能气体传感器探测化学药品灵敏度更高
    据美国媒体报道,美国密歇根大学研究人员正在开发一种便携式可调节的二维微型气体(气相)色谱仪,能识别并检测化学气体成分,更加灵敏智能,可用于探测爆炸物、化学武器挥发气体,还能通过病人的呼吸诊断病情,侦查矿井是否安全等。仪器也非常节能,对矿井作业和偏僻地区医疗室具有很大优势。相关论文近日发表在《分析化学》杂志上。 该校生物医学工程系教授范旭东(音译)解释说,挥发气体中的各种成分就像一团团微小的云重叠在一起,检测之前要把它们分开,而在挥发性混合气体中,要识别各种成分非常困难。目前大部分传感器是让混合气体依次通过两个试管(仪器信息网注:这里可能是指色谱微柱),第一个试管内涂有一层聚合物,会减缓较重分子速度,大致把各种气体按重量分开。 研究人员正在开发的传感器在分离各种化学成分方面更有效。让气体先通过第一个试管获得初步线索,然后用一个泵和压缩机从第一个试管中收集气体,间隔规律地送入第二个试管中,进行第二道检测。第二个试管内涂有一层极化聚合物,一端带正电另一端带负电,会减慢那些被极化了的气体分子的速度,未极化的分子能以更快速度通过。根据这些信息,研究人员就能识别出气体中的化学成分。再给这套系统加上一个决策装置并连接计算机,通过计算机能看到各种化学成分逐步分离的整个过程。 在决策装置引导下,一小团云完全通过后,压缩机才能再次运作,这种方法能让同一种分子聚集在一起,分析数据更容易。第二道检测过程还可以增加一个轮换试管,让气体更快通过,此时决策装置还充当&ldquo 接线员&rdquo ,当一个试管正&ldquo 忙&rdquo 时就把气体送入另一个试管。这样气体从第一个试管出来进入二道检测试管时就不会停顿。 二道检测试管还可以专门定做,用不同涂层做成各种长度的试管来分离特殊气体,比如一种专用分子&ldquo 热线&rdquo ,可以探测某些特殊分子。范旭东说:&ldquo 如果怀疑某地有化学武器泄露,我们就送一批这种专用分子&lsquo 热线&rsquo 过去,能极灵敏地识别出这些成分。&rdquo 目前,研究小组已经证明了新装置能在两个检测试管之间分配气体,智能传感器能识别包含20种不同成分的化学气体,以及植物释放的混合物成分。 无论是探查爆炸物、化学武器,还是监测矿井安全,对于化学气体检测仪器而言,最重要的一条就是灵敏度。如果不能迅速准确地检查出目标物,即使是再尖端的技术也可以说意义不大。本文介绍的这套仪器一方面能使不同分子尽可能分开并分别聚集,另一方面通过轮换试管和定做试管的方式使检测过程更加高效和具有针对性,这些都是强化灵敏度的关键因素。与此同时,这种仪器似乎并不复杂,也大大提高了它作为实用技术进行推广的可能性。
  • 超高灵敏度芯片半导体器件失效分析显微镜
    新一代超高灵敏度半导体芯片失效分析热成像显微镜日前在美国问世,于2014年3月18日慕尼黑上海电子展上在大中华区发布并在中国大陆,台湾和香港同步上市,由孚光精仪公司负责该区域销售和售后服务。新一代热发射显微镜采用锁相热成型技术,可探测到1mK (0.001°C) 的器件温度变化,可探测到 100 μW 的功率变化。据悉,这种热发射显微镜可快速定位半导体器件的温度异常点,从而找到漏电等失效点位置。这种热发射显微镜不需要对器件表面处理,可对裸器件和封装器件失效分析,也可定位SMD器件的低功率位置,比如电容泄露测试。除了失效分析之外,这套热发射显微镜还具有器件的真实温度测量功能,以及结点温度,热阻和芯片黏着 Die Attach分析功能。详情浏览:http://www.f-opt.cn/rechengxiang/hongwaixianweijing.html应用领域:器件漏电分析栅极和漏极之间的电阻短路分析封装器件的复合模具短路分析Latch-up点定位金属性短路分析缺陷晶体管和二极管定位分析氧化层击穿SMD元件漏电分析特色和功能超高灵敏度失效点定位堆叠芯片的缺陷深度分析真实温度测量结点温度测量封装和裸露器件分析正面和背面分析检测芯片粘接问题
  • 新型ELISA技术实现超高灵敏度生物分子探测
    4月30日,国际著名科学期刊《自然-通讯》(Nature Communications)发布了一种新型的光微流激光酶联免疫吸附剂测定(Enzyme-linked immunosorbent assay,简称ELISA)技术。该技术由密歇根大学安娜堡分校生物医学工程系范旭东教授课题组与复旦大学信息学院光科学与工程系吴翔副教授共同开发。据悉,该项新技术将有望应用于重大疾病(如癌症、艾滋病等)的早期检测与诊断以及单个酶分子催化机制研究。   一般来讲,传统的ELISA技术利用被酶催化生成的荧光产物所发出的荧光强度作为探测信号,然而在实际检测过程中,生物分子的非特异性结合、材料自荧光以及激发光的泄漏等因素造成的强荧光背景会干扰目标分子荧光强度的探测,从而限制了ELISA的探测极限以及动态测量范围。   而吴翔及其合作者开发的新型光微流激光ELISA技术的创新之处在于,以荧光产物为激光增益介质,利用高品质因子的光学微腔产生激光输出 在固定的泵浦功率下,产生激光的阈值时间和被测目标分子的浓度呈反比,不同的浓度对应不同的阈值时间,由此,将阈值时间作为该技术中的探测信号。   实验表明,该项技术的探测极限可达1fg/ml(38aM)(1飞克每毫升),动态测量范围为6个数量级。这种新型的光微流激光ELISA技术,通过对激光阈值时间的探测,可以从较强的荧光背景中精确地分辨低浓度的目标分子,从而实现超高灵敏度的生物分子探测。该技术的应用,将对重大疾病(癌症、艾滋病等)的早期检测与诊断技术带来重要提升,同时对单个酶分子催化机制研究领域产生积极影响。   目前,吴翔正从事有源和无源光学微腔生物传感器以及微腔光镊的研究,希望能结合光微流激光技术的优点,进一步拓展光学微腔技术在生物传感领域的应用,实现高灵敏度和高通量的集成光学生物传感芯片。
  • 岛津发表黄曲霉素的高灵敏度分析方法
    近日发生的食品“致癌门”令广大消费者震惊不已。某些厂家生产的纯牛奶产品被国家质检部门检测出黄曲霉毒素M1结果超标。而在植物油产品中, 有3个产品的部分批次抽检不及格,原因均为黄曲霉毒素B1指标不合格。 黄曲霉是一种常见霉菌,广泛存在于自然界,潮湿易发霉的植物和食品中都会存在。同时,一些发酵食品因为发酵过程本身就易产生黄曲霉毒素。但在一般状态下,黄曲霉本身毒性并不大,高温即可杀灭。但在黄曲霉达到一定浓度后,其产生的代谢物就会产生毒素,该毒素会破坏人体免疫系统, 引起肝脏病变甚至致癌。黄曲霉毒素是霉菌的二级代谢产物,1993年就被世界卫生组织的癌症研究机构划定为1类致癌物。其中黄曲霉毒素B1毒性和致癌性最强,而黄曲霉毒素M1是黄曲霉毒素B1的代谢物。我国乳及乳制品中规定黄曲霉毒素M1限量为0.5μg/kg, 粮食中黄曲霉毒素B1为10μg/kg。 在邻国日本,黄曲霉素因具有致癌性以及强急性毒性,规定不得在食品中检出。过去,日本国内的黄曲霉素相关法规主要针对黄曲霉素B1,但从2011年10月开始总黄曲霉素(黄曲霉素B1,B2,G1,G2的总和)成为限制目标。为应对相应法规,岛津公司的日本同事们利用岛津的先进技术开发了多种黄曲霉素的检测方法。现介绍使用岛津荧光检测器“Prominence RF-20AXS” 高灵敏度检测黄曲霉素的分析方法,供从事食品检测的用户参考使用。 欲了解详细情况请点击基于"Prominence RF-20Axs"荧光检测器的黄曲霉素B1,G1,G2的高灵敏度分析。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 海洋光学紫外高灵敏度响应光谱仪的应用
    海洋光学推出的紫外高灵敏度响应光谱仪MAYA2000 Pro(175-1100nm),采用滨松背照式面阵CCD探测器,极大地增强了紫外-可见光谱谱段的光谱响应,信噪比得到极大提高,适合于低检测限及高动态范围的弱光测量应用,紫外最远波长检测限可达155nm. 特点: 1. 背照式2048像元面阵CCD,量子效率可达80% 2. 紫外高灵敏度响应,无需紫外增强镀膜 3. 低噪声、高信噪比、高动态范围 4. 积分时间最短6ms 5. USB2.0及RS232接口通信 Fig1.Maya2000 Pro Fig2. 探测器光谱响应 应用案例:工业用乙醇勾兑在线监测可行性分析 采用MAYA2000PRO测量酒精及其勾兑水溶液,测量发现乙醇在紫外217nm左右出现吸收峰,与乙醇浓度成比例,而水在970nm处出现吸收峰,与水浓度成比例,如图3所示;采用海洋光学近红外光谱仪NIRQuest所测的近红外吸收图谱如图4所示。 Fig3. 乙醇、纯水及其水溶液光谱吸收图谱(紫外可见) Fig4. 乙醇、纯水及其水溶液光谱吸收图谱(近红外) 通过实验简单配比及数据拟合发现,在两波长处217nm及970nm乙醇吸光度与其浓度均呈现出良好的线性相关性,R Square线性可达0.987,标准偏差0.04(含实验配比偏差),结果如图5所示: Fig5. 217nm及970nm数据回归拟合 关于海洋光学:总部位于达尼丁,佛罗里达的海洋光学是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过120,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学是致力于安全检测领域的英国豪迈集团的子公司。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团(www.halma.cn)。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司,2008/09财年营业额超过 4.5亿英镑。豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。通过持续不断的创新,这些产品在国际市场上始终处于领先地位。这些产品使我们的客户更安全、更富竞争力和盈利能力。豪迈的子公司正在多个领域为中国的经济做出贡献,主要包括制造、能源、水及废物处理、环境、建筑、交通运输及健康行业等。豪迈目前在上海和北京设有代表处,并且已在中国开设多个工厂和生产基地。如果需要更多的信息请联系:海洋光学亚洲分公司中国上海长宁区古北路 666 弄嘉麒大厦 601邮编:200336电话:(86) 21 6295 6600传真:(86) 21 6295 6708电子邮箱: Distributorsupportasia@oceanoptics.com网址: www.oceanopticschina.cn
  • 石墨烯鼓有望制造出超高灵敏度传感器
    科技日报讯 荷兰代尔夫特理工大学的科学家发现用石墨烯薄片制成的&ldquo 鼓面&rdquo ,能够在光的作用下发生振动,根据这一原理能够检测到非常微小的位置和力度的变化,未来有望据此用石墨烯制造出具备超高灵敏度的传感器设备和量子计算机内存芯片。相关论文发表在近日出版的《自然· 纳米技术》杂志上。   石墨烯以其独特的机械和电气性能闻名于世,而最近荷兰的科学家们发现,这种神奇材料还具有一种独特功能。由于单层石墨烯只有一个原子厚,质量极低,因此研究人员设想能否用其制造出一面能够感受到微小振动的&ldquo 鼓&rdquo 。这面鼓的鼓面由石墨烯制成,敲击它的鼓槌则是以微波频率发射的光。   领导这项研究的荷兰代尔夫特理工大学的维伯· 辛格博士和他的同事用石墨烯在一个光力学空腔中对这一设想进行了验证。他们发现,在光力学空腔中,他们能够通过观察光干涉现象产生的图案,检测出物体位置及其微小的变化,精度能够达到17飞米(原子直径的一万分之一)。   物理学家组织网近日报道称,实验中的光不仅有利于检测到鼓的位置,同时也能够向鼓面施加压力。来自光的推力非常非常小,但足以推动质量极小的用石墨烯制成的鼓面,让其发生位移。这意味着科学家们可以用光敲击石墨烯制成的鼓。根据这一原理有望制造出具备超高灵敏度的传感器设备。   此外,科学家也可以用它来制造内存,这些微波光子能够将光转化为机械振动,并将其存储长达10毫秒的时间。虽然对人类而言10毫秒极其短暂,但对目前的计算机芯片而言这已经不少了。辛格称,他们的一个远期目标是通过这种二维晶体鼓来研究量子运动。   辛格说,如果敲击一个普通的鼓,鼓面只会发生上下振动。而如果敲击的对象是一个量子鼓,将不仅能够通过敲击让鼓面发生振动,还能使其形成一种量子叠加状态:鼓面将同时既在上面也在下面。这种奇怪的量子运动不仅具有科学相关性,还能够在量子记忆芯片上获得应用。在一台量子计算机中,量子比特同时既可以是0也可以是1,因此其运算速度远远超过目前传统的计算机。石墨烯制成的量子鼓就具备这种能力,它能够在用与普通RAM芯片相同的方式来存储数据的同时,接收和存储量子计算机的量子计算结果。
  • 天津大学新技术提高光纤应变传感器灵敏度
    天津大学精密仪器与光电子技术学院教授李恩邦研究发现一种新技术构成的光纤应变传感器,具有灵敏度高且对温度变化不敏感等特点。   光纤应变传感器是世界上应用广泛的传感器类型,具有许多电传感器不可比拟的优点,对于保障大型设施安全、防止恶性和灾难性事故发生具有非常重要的意义。   李恩邦的研究成果已发表在《应用物理快报》上,英国物理学会官方网站optics.org和美国《激光世界》杂志也对此进行了报道。
  • 岛津独创高灵敏度气相色谱仪系统Tracera 问世
    ——融合创新等离子体技术,满足痕量物质分析需求灵敏度高于TCD 百倍以上、FID 两倍以上 岛津公司现隆重推出高灵敏度气相色谱仪系统Tracera。Tracera配备了岛津全新开发的BID检测器(介质阻挡放电等离子体检测器),可以满足除He和Ne之外所有有机和无机化合物0.1ppm含量水平的分析需求。Tracera适用于多种类型的高灵敏度分析——结合不同检测器分析的典型系统气相应用。 本系统将在PITTCON 2013上(3月17日-21日)精彩亮相! [开发背景] 气相色谱技术广泛应用于多个领域的研究&开发和质量控制中,如石油化学、精细化工、环境、医药、食品、电子工业/半导体、和香精香料等。近些年来,随着科技的发展,对更高灵敏度及痕量分析的要求也日益增加,比如精细化工产品中所使用一些材料的ppm级杂质分析,半导体制造行业中所使用的高纯气体的分析等。 传统气相色谱技术中,热导检测器(TCD)和氢火焰离子化检测器(FID)都属于非常通用的检测器。TCD可以检测除载气之外的多种无机和有机化合物,但是灵敏度不高。FID可以检测ppm级痕量化合物,但是只能分析有机化合物(甲醛和甲酸除外)。因此,以前针对特定目标化合物时,一次分析往往需要使用由多个不同检测器构成的复杂气相色谱系统。 正是基于这一问题的考虑,岛津公司着力研究了等离子体技术,并将此技术作为增加灵敏度的稳定性和检测浓度范围的一种手段和方法。最终BID检测器(介质阻挡放电等离子体检测器)应运而生—能够实现有机和无机化合物的高灵敏度同时分析,而且具有杰出的稳定性。 “Tracera是在岛津高性能气相色谱仪GC-2010 Plus的基础上,融合了全新开发的BID检测器,能够实现常规检测器难以达到的杰出性能,Tracera是一个独创性的新型气相色谱系统。我们希望能够借此提高高灵敏度分析工作和痕量化合物分析工作的效率,同时降低仪器和分析的成本。”岛津制作所分析计测事业部GC和TA 营业部总经理Masahito Ueda这样进行评价。 本系统的主要特点:1、高灵敏度—比TCD的灵敏度高100倍以上,比FID的灵敏度高2倍以上。新型BID检测器能够产生氦等离子体。氦等离子体具有非常高的光子能量,能够使样品成分离子化,从而实现高灵敏度分析。此系统比TCD的灵敏度高100倍以上,比FID的灵敏度高2倍以上,可以满足0.1ppm含量水平上所有类型痕量成分的分析需求。2、高通用性—能够实现所有有机和无机化合物的分析,而且灵敏度几乎没有差异。新型BID检测器的氦等离子体具有非常高的光子能量,能够检测除He和Ne之外的所有有机和无机化合物,而且在灵敏度上几乎没有差异。对于FID响应不好或无响应的化合物,如甲醛,乙醇和卤化物等,新型BID检测器可以大大提高分析灵敏度。对于传统分析中需要使用多个不同检测器或仪器的复杂系统,单一Tracera就可满足要求。比如在人工光合作用领域反应过程中产生的烃类和无机成分如甲酸等的分析,在锂离子充电电池中产生的低浓度烃类和永久气体分析等。3、长期分析稳定性—采用介质阻挡放电等离子体生成技术。新型BID检测器中,等离子体是在石英绝缘管中生成的,因此不会和放电电极产生任何接触,所以检测器电极不存在降解的风险,具有长期的分析稳定性。 注:"Tracera"是一个复合词,由"trace"(痕量)和 "era"(时代)组成。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 布鲁克公司最新推出市场上灵敏度最高的ICP-MS系统
    布鲁克公司(Bruker)不断进行产品更新,最新推出痕量元素检测系统aurora Elite ICP-MS   全新的aurora™ Elite是市场上灵敏度最高的ICP-MS系统   2013年2月11日,在波兰2013欧洲冬季等离子光谱化学会议(EWCPS)上,布鲁克全新推出超高灵敏度aurora Elite ICP-MS系统。作为对当前主要进行常规实验室分析的aurora M90 ICP-MS的补充与升级,全新的aurora Elite开创了前所未有、无与伦比的仪器灵敏度标准与稳定性,甚至在多个方面的性能超越了昂贵的扇形磁质谱,远超目前市场上其他的所有四级杆ICP-MS系统。   EWCPS会议的议题主要聚焦于分析中的等离子体光谱化学。布鲁克的专家们在现场与客户一起探讨了有关aurora M90的改进以及布鲁克ICP-MS家族新成员aurora Elite在性能、应用以及创新性设计方面的一些议题。墙报与口头报告所涉及的议题主要包括:   ICP-MS三维离子透镜   ICP-MS离子透镜   ICP-MS碰撞微单元   同位素比值分析:高灵敏度与高精度   四级杆ICP-MS高灵敏度与选择性的结合:高灵敏度ICP-MS对于激光销蚀的优点   使用四级杆ICP-MS用于环境样品中的26Mg/24Mg与44Ca/40Ca的同位素比值分析   使用布鲁克aurora M90 ICP-MS在高灵敏度模式下对环境水样中的汞进行测定。   aurora Elite有着新的设计和卓越的性能,高达1.5GHz/ppm的灵敏度使其能够轻松胜任ppt数量级甚至更低的定性与定量分析,成为目前市场上最为灵敏的ICP-MS仪器。令人难以置信的灵敏度特性尤其适合于半导体行业,地球化学,材料科学及相关应用领域。交错线圈专利技术使氧化物比值降到最低,保证了基质在等离子条件下的完全解离,且无需任何的等离子体屏蔽矩或屏蔽电极。   aurora Elite的高灵敏度特性与其全数字的检测器相结合,使同位素比值分析能在低浓度与高比值条件下进行且获得良好的测定结果,此类实验适合于液体及固体样品。aurora Elite的高灵敏度特性及极短的积分时间使其成为在最小尺度下分析纳米颗粒的理想仪器。易用的碰撞反应界面(CRI II)为干扰的消除提供了一套简单,高效与免维护的解决方案,既可使用氦气也可使用氢气,显著改善一些有光谱干扰的元素的检出限及提供更高的准确度。   Bruker公司的aurora M90以及aurora Elite已进一步延展其使用领域,其推出了适合21 CFR Part 11(美国联邦法规21章第11款)的配件以满足制药,生物技术以及临床研究领域客户的需求。   布鲁克CAM(Chemical and Applied Markets)部门全球ICP-MS产品与市场发展经理Meike Hamester博士这样评论道:“将最灵敏的ICP-MS引入市场会统治整个定量业务领域。当目标为低检出限时灵敏度将会成为关键指标,aurora Elite的出现将会重新定义元素痕量分析的应用领域。”
  • 物理所实现空气耦合的MHz频段高灵敏度超声波探测
    高灵敏度、小型化的超声探测器在诸多方面发挥着重要应用,例如医学诊断、光声成像、无损检测等。目前,商用的超声波探测器主要采用压电换能器,但为了实现较高的灵敏度,往往需要较大的尺寸,其传感器的典型尺寸一般为毫米到厘米。   近些年来,随着微纳光电技术的发展,在硅芯片上微加工制备得到的光学超声波探测器可同时实现较高的灵敏度和空间分辨率。其中,微腔光力系统由于其高灵敏度、宽带宽、低功耗和易于集成等优越特性,引起越来越多的关注。由于微腔光力系统中的较强光力相互作用,微腔的机械位移可以通过光学共振信号来敏感读出。由于机械共振增强了响应,且光学共振可增强读出灵敏度,因此微腔光力系统已被证实是位移、质量、力、加速度、磁场和声波等物理量的高灵敏探测理想平台。   前期工作中,研究人员已在各种体系的光学微腔中实现超声波/声波的探测,例如二氧化硅微腔、聚合物微腔、硅微腔等。多数超声波探测是在液体环境中实现的。而在空气环境中,由于超声波吸收损耗大,且声源/空气界面处的阻抗失配大,高灵敏度的超声波探测依然颇具挑战。前期工作中,空气耦合的超声波探测只在1 MHz以下频段实现。空气耦合的超声波探测在一些特定场景中具有重要应用,例如气体光声光谱和非接触式超声医学成像等。   为了提高空气耦合的超声波探测灵敏度,并拓展探测频率范围,近日,中国科学院物理研究所/北京凝聚态物理国家研究中心研究人员使用微芯圆环腔演示了在MHz频率范围内的空气耦合高灵敏度超声波探测。 在该工作中,研究人员通过光刻、氢氟酸腐蚀、氟化氙刻蚀、二氧化碳激光回流的微加工工艺,制备了带有较细的硅基座的微芯圆环腔,从而减少来自衬底的机械运动的约束,获得了在2.56 MHz的一阶拍动模式下约700的高机械品质因子,同时光学品质因子达到107以上。凭借较高的光学和机械品质因子,以及与超声波具有较大空间重叠的2.56 MHz的一阶拍动模式,他们在机械模式附近0.6 MHz的频率范围内实现了仅受热噪声限制的灵敏度,在0.25-3.2 MHz的频率范围内实现了46 μPa/Hz1/2-10 mPa/Hz1/2的灵敏度。此外,他们在机械共振频率下利用超声波驱动传感器时观察到了二阶和三阶机械边带,通过测量不同超声波压强(P)下的信噪比(SNR),发现一阶、二阶和三阶机械边带的分别与P、P2和P3大致成正比,三个机械边带上的测量强度与理论结果一致。这种非线性转换提供了一种扩展位移传感动态范围的方法。  该研究演示了一种基于微芯圆环腔的空气耦合高灵敏度MHz频段超声波探测方案,实现了宽带、高灵敏度超声检测。这项工作拓宽了使用微腔光力系统进行空气耦合的超声波探测的频率范围,并获得了较大频率范围的热噪声主导区域。相关研究成果以High-Sensitivity Air-Coupled Megahertz-Frequency Ultrasound Detection Using On-Chip Microcavities为题于近日发表在Physical Review Applied上。相关研究工作得到国家重点研发计划、国家自然科学基金委项目和中科院基础前沿科学研究计划的支持。图1 (a) 微芯圆环腔的光学显微镜图。(b) 模拟的回音壁模式的基模光场分布。(c) 1550 nm附近微腔的透过率谱。(d) 超声波探测实验装置的示意图。图2 (a) 微腔超声波探测器的噪声功率谱(黑色实线)与在2.56 MHz频率处施加了超声波信号的响应谱(绿色实线),虚线为计算得到的理论噪声。(b) 微腔超声波探测器的系统响应,即微腔对不同频率的超声波的响应。(c) 微腔超声波探测器的压强(左轴)和力(右轴)灵敏度谱。图3 (a) 施加单频超声波后不同阶机械边带的响应。(b) 一阶、二阶、三阶机械边带的与超声波压强的关系。
  • XPS小课堂丨XPS仪器通能的选择和谱线的灵敏度(一)
    XPS小课堂 光电子能谱图由一系列谱线(通常称为宽谱图)或一个至几个为数不多的谱线(通常称为窄谱图或高分辨谱图)所构成。谱线信息包含三要素:峰位(结合能)、峰强(以峰高计数强度或计数率表示,但在定量分析中以峰面积表达更加准确)、峰宽(以峰位强度一半处的宽度,即Full width at Half Maximum,简写为FWHM)。而在考察XPS的性能时,峰强(灵敏度)和半高宽(能量分辨率)是不可以、也是无法分割开来的。 01 XPS的能量分辨率 XPS的能量分辨率是仪器将两个相邻的谱峰分开的能力,通常能量分辨率越高,所采集到的光电子的越少,而能量分辨率越低,则采集到的光电子越多——不能离开能量分辨率来片面强调灵敏度的高低,同样也不能片面强调灵敏度的高低而忽略能量分辨率,因此要正确评估XPS的性能,需要在给定的能量分辨率下的去比较灵敏度的高低,或者可以在给定的灵敏度下来比较能量分辨率的高低。图1. Ag 3d5/2能量分辨率为0.422eV时,灵敏度300kcps 02 XPS谱线半高宽XPS的能量分辨率通常由Ag 3d5/2的半高宽来进行比较。谱线的半高宽从根本上讲,是所测谱线的发射谱线与两个展宽函数(X射线源和检测系统响应)的卷积结果。发射谱线的线型是洛仑兹型的,用来激发光电子的X射线也是洛仑兹型的,而检测系统的响应则是高斯型的,换言之我们看到的XPS的谱线的宽度是由三部分构成的,即发射谱线的宽度、X射线源的展宽和检测系统的展宽。 粗略来说测量到的XPS的谱线宽度大致是这样的: wA是样品原子能级的自然线宽——发射谱线的宽度是本征的,由其电子能级本身决定——电子能级寿命越长则谱线宽度越窄,电子能级寿命越长则谱线越窄,无法通过仪器的参数来改变; wx是X射线源的线宽——X射线源的展宽对特定的X射线源也是固定的,但是可以通过仪器的硬件设置改变,例如是否使用单色化的X射线源——500mm罗兰圆的单色化的Al Ka线宽0.25eV,非单色化则为0.85eV,所以使用单色化光源的分辨率就好于非单色化的X射线源; wD是检测系统的展宽;仪器的半球能量分析器半径和通能共同决定了检测系统的展宽——能量分析器半径越大,本征的能量分辨就越好;而通能越小能量分辨也就越好,但是信号强度也会下降——能量分辨(通能)和信号强度近似呈对数曲线关系。 03 通能(Pass energy)我们通常可以选择不同的通能来实现不同的能量分辨率。 XPS的能量分析器通常采用固定分析器传输(Fixed Analyzer Transmission,FAT)或称恒分析器能量(Constant Analyzer Energy,CAE)模式,待分析的光电子被减速到选定的通能而通过能量分析器,这是光电子在分析器的两个半球之间移动时的平均动能。FAT(CAE)模式的优点是能量分辨率在整个测量的动能范围内保持恒定。图2. XPS通能原理示意图 选择较低的通能时,可以获得了较好的能量分辨率,但同时灵敏度会降低,反之选择较高的通能时,可以获得更好的灵敏度,但同时分辨率会降低。图3. 在相同的X射线源功率下,以不同的通能(20eV和10eV)测试Al 2p 图3清晰地显示了较小的通能(10eV)时,能看到单质态Al 2p出现明显的双峰劈裂,但是灵敏度相对较低(大致在7×103cps),而在较大的通能(20eV)时,单质态Al 2p的双峰劈裂几乎消失了,但是灵敏度显著提高(大致在2×104cps)。 本期介绍了XPS的重要参数能量分辨率与灵敏度之间的联系,以及在实际操作中需要调节的参数——通能的基本概念,下期XPS小课堂将分享在具体的应用中我们应该如何选择通能大小,以及如何在分析灵敏度和能量分辨率之间寻求更好的平衡。 本文内容非商业广告,仅供专业人士参考。
  • 岛津开发高灵敏度LIBS 计划2020年上市
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/a763d910-d541-403f-92c2-66acd5eb6d7e.jpg" title=" 20180719.jpg" / /p p   岛津开发了一种基于激光诱导击穿光谱(LIBS)原理测量痕量金属的新技术,这种技术具有世界上最高的灵敏度。系统原型机的验证测试已经开始。 /p p   岛津一直在开发一种使用LIBS技术的系统,用来测量和监测半导体清洗液中含有的痕量铜、铝、钛和其他金属的含量。该系统目前计划于2020年发布。预计这种新技术也可用于半导体以外的其他领域,因此岛津也在开发这些领域的应用方案。 /p p    strong 研发背景 /strong /p p   在半导体制造中,使用洗涤溶液从晶片表面去除金属和其他污染物的洗涤过程占整个工艺过程的约20%-30%。目前,洗涤溶液的更换频率通常基于使用时间来确定的。然而,近年来,降低制造成本和减少环境影响的需求要求更有效地使用洗涤溶液。因此,有必要实时监测污染程度。 /p p   为了满足这些需求,岛津一直在研究LIBS技术,因为LIBS技术的研发可以利用岛津自身广泛的激光光学和光谱技术优势。 LIBS是一种可以轻松同时测量多个元素的技术。当样品被激光照射时,它通过样品表面的热蒸发产生等离子体。该等离子体发出特征光是样品所特有的。因此,可以通过检测所得光谱来测量元素。 /p p   通过使用岛津生产的具有高输出和稳定性的激光器以及基于岛津光谱测定技术优化的光学系统,这种新开发的技术使微量金属的测量变得非常容易和快速。 /p p    strong 新技术的概述和特点 /strong /p p   通过激光照射在特殊板上蒸发至干燥的样品产生等离子体,然后检测从等离子体发射的光以识别和定量样品中包含的金属元素。检测限为ppm级别。该技术基于LIBS测量原理,提供世界上最高的灵敏度水平(根据岛津截至2018年7月的调查)。 /p p   目前的原型机尺寸为1 m× 1 m,可与半导体晶圆清洗系统连接。从取样到测量洗涤溶液的整个过程是完全自动化的,并且可以在大约一分钟内完成12种痕量金属组分的同时测量,例如铜、铝和钛。 /p p   由于能够更好地理解最合适的洗涤溶液更换频率,使得该技术的实际应用将提供诸如提高产率和降低制造成本等益处。 /p p    strong 未来发展 /strong /p p   岛津计划通过在半导体和半导体制造设备公司进行验证测试来提高系统可用性,并计划在2020年推出该实用系统。此外,岛津打算通过研究新技术在其他领域的应用方案来开发新市场,如公共基础设施和工厂污水的检查。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制