当前位置: 仪器信息网 > 行业主题 > >

量子点材料

仪器信息网量子点材料专题为您整合量子点材料相关的最新文章,在量子点材料专题,您不仅可以免费浏览量子点材料的资讯, 同时您还可以浏览量子点材料的相关资料、解决方案,参与社区量子点材料话题讨论。

量子点材料相关的仪器

  • CS10组合式太阳能电池量子效率测试系统功能 适用电池:小尺寸无机材料太阳能电池、染料敏化电池、量子点电池、有机太阳能电池、聚合物太阳能电池、钙钛矿太阳能电池等 光谱范围:300-1100nm,可扩展至1700nm 可测量参数:光谱响应度、外量子效率、光子电子转换效率、积分短路电流密度、光束诱导电流 可测样品尺寸:1mmX1mm至100mmX100mm 可测样品模式:直流测试法、直流偏置光测试法 注:该染料敏化太阳能电池的测试条件为:绿色曲线为交流(3.8Hz)+ 0.1sun 偏置光;蓝色曲线为直流不加偏置光;红色曲线为直流+0.1sun偏置光。 CS10组合式太阳能电池量子效率测试系统特点 1. 多样化测试手段SCS10 系统测试方案可以是交、直流测试方法,也可以是交、直流偏置光测试方法,方便用户用不同的方式在不同的条件下进行测试。偏置光测试方法中的偏置光可以采用75W 溴钨灯或者150W 氙灯作为偏置光光源,配合特色的双滤光片轮,以及配套的滤光片支架,可以实现丰富的偏置光配置。这样的配置方案,可以使用户满足在不同强度不同波段的偏置光条件下测试样品的量子效率。滤光片轮所用滤光片型号型号透过率光密度OD NDFI2501 79% 0.1 NDFI2503 50% 0.3 NDFI2504 39.8% 0.4 NDFI2508 15.8% 0.8 NDFI2510 10% 1 2. 专用软件,专用测试流程SCS10 组合式小尺寸太阳能电池量子效率测试系统所用软件是为测量小尺寸太阳能电池,特别是染料敏化太阳能电池、有机材料太阳能电池、钙钛矿太阳能电池专业参数设置的软件,并且可以调整系统偏置光参数,以适应各种太阳能电池不同偏置光测试条件的调整。
    留言咨询
  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光… … SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光……SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • 量子点喷胶机是一种将量子点材料以喷雾的形式均匀涂覆在目标表面的设备。量子点是一种纳米级的半导体颗粒,具有特殊的光学和电学性质。以下是量子点喷胶机的介绍及应用:介绍:工作原理: 量子点喷胶机通过将量子点溶液喷雾在目标表面,使得量子点均匀地附着在基底上。材料选择: 喷胶机通常使用量子点溶液,其中包含了被喷覆表面所需的量子点材料。精准控制: 这种设备可以实现对喷雾过程的高度控制,确保量子点均匀分布在表面上。应用: 量子点喷胶机在半导体芯片上的应用涉及到纳米技术和半导体制造的领域。量子点是纳米尺度的半导体颗粒,具有特殊的电子结构,因此在半导体芯片制造中有一些特定的应用。以下是量子点喷胶机在半导体芯片上的一些可能应用:光电子学应用: 量子点具有优异的光学性能,可以用于制造高效的光电子器件。通过喷胶机在芯片上精确涂覆量子点,可以实现更高分辨率和灵敏度的光电子元件,如光探测器和激光器。显示技术: 量子点在显示技术中被广泛应用,特别是在液晶显示(LCD)和有机发光二极管(OLED)屏幕中。通过量子点喷胶机,可以实现在半导体芯片上的精确位置涂覆量子点,以提高显示屏的色彩饱和度和色域。量子点传感器: 量子点还可以用于制造高灵敏的传感器。通过喷胶机将量子点精确地集成到芯片上,可以实现在微观尺度上检测环境变化的传感器,例如气体传感器或生物传感器。量子点标记: 在生物医学领域,量子点被用作细胞和生物分子的标记剂。喷胶机可以在芯片上实现微小尺度的标记,用于生物成像和分析。量子点量子计算: 量子点也可以在量子计算领域发挥作用。通过在半导体芯片上精确部署量子点,可以实现更复杂的量子比特排列,用于量子计算的研究和开发。这些应用说明了量子点喷胶机在半导体芯片制造中的多样性和灵活性,为各种领域提供了创新的解决方案。 量子点是一种通常仅由几千个原子组成的晶体,就大小而言,它与足球的比例就相当于足球与地球的比例。这么小的粒子,我们肉眼是看不见的,但它们却有着非常特殊的性质。我们都知道,物质是由原子组成的,原子又由核和电子组成。电子在原子中运动时,会受到核的吸引力和其他电子的排斥力。这些力会限制电子运动的范围和能量。当物质被光照射时,电子会吸收光的能量,并跃迁到更高的能级。当电子从高能级回到低能级时,会释放出光。
    留言咨询
  • Super - ME 多铁性磁电测量系统 多铁性材料中的磁电相互作用因具备广泛的应用前景而成为科学工作者的一个研究重点。 Quantum量子科学仪器贸易(北京)有限公司在基于清华大学南策文教授实验室已有测量方法上,作进一步改进后推出了高度自动化的多铁性磁电测量系统。 该套系统允许用户直接测量样品正磁电系数大小及相位随着偏置直流磁场、外加交流磁场幅值和频率、样品与磁场夹角、不同温度的变化而变化。此外,系统还配有磁电阻测量、磁致伸缩测量功能;针对薄膜和块材样品设计有不同测量样品杆。 系统自带可视化全自动的高操作软件,保证了用户在短的时间内获取可靠的测量数据。基本测量参数 磁电信号测量精度范围:1uV(锁相);1mv(示波器)相位范围:-180 --180相位精度:1大交流频率:1M Hz大直流磁场:±1T磁场控制精度: 2 Oe大交流磁场:6 Oe自动转角度精度:1度电阻率测量精度:0.5%温度范围:100K--300K温度稳定度:±.5K 不同温度下的磁电信号测量曲线 薄膜样品的磁电信号测量曲线,高幅值小于5uV
    留言咨询
  • 深圳市芬析仪器制造有限公司生产的量子点荧光定量检测仪适用于荧光法制成的各类检测项目试纸条。 产品名称:量子点荧光定量检测仪仪器型号:CSY-YG技术参数:测试条宽度:2-6mm(支持定制)屏幕:真彩触摸屏检测结果:半定量、定量检测结果可排除无效检测结果,能对数据结果、原始扫描曲线进行保存和打印浓度结果和浓度单位检测项目参数:用户可以从仪器功能选项中读取仪器的配置参数检测结果报告:可准确报告出被测物质的浓度,可在触摸屏上显示,可通过仪器内置打印机输出连接方式:USB接口,串口,网口(支持定制)测量原理:光电测量反射衰减信号强度(扫描)检测速度:240次/小时重复性:DR值不大于1%(标准卡)仪器批间差:3%以内(标准卡)数据传输:USB 以及网口屏幕显示:7英寸、10英寸(支持定制)LED光源波长:365nm/610nm整机支持按客户要求定制(ODM加工及OEM项目合作) 自主知识产权产品:农药残留快速测试仪、真菌毒素定量分析仪、ATP荧光检测仪、ATP荧光检测仪、胶体金读数仪、荧光定量分析仪、荧光定量PCR检测仪、多功能食品安全检测仪、酶联免疫检测仪、药物残留及动物疫病检测仪、农产品质量安全检测仪、注水肉快速检测仪、食用油品质检测仪、环境监测设备、水质检测仪器等有毒有害物质残留检测设备。
    留言咨询
  • 【设备参数】 通过量子点免疫荧光技术进行食品安全、医疗卫生、农林牧渔、药物残留等项目的全定量检测。1)检测迅速:检测时间(单样)5s2)检测精准:重复性CV值<3%,仪器批间差<3%3)检测原理:量子点荧光免疫层析法4)便捷人机操作:7寸触电容摸屏,内置、可外接条形码扫描枪5)高度集成信息化:配备多种通讯接口:USB、WIFI、蓝牙模块、以太网、串口等,与HIS、LIS无缝对接,自带热敏打印机模块6)外观尺寸:280*240*130(mm)7)重量:2kg8)电源:220V,50Hz9)工作环境:5℃-40℃ 湿度 10-80%【检测设备特点】1)轻巧便携,利于现场检测2)采用内标技术,无需使用标准品3)多重质控,确保检测结果准确、可信4)联卡检测,操作便捷、节约时间、成本5)智能化管理,自动识别产品信息,数据传输
    留言咨询
  • QY绝对量子效率和EQE外量子效率测量系统 产品优点◆体积小巧,可直接放入手套箱内使用 ◆一体化集成稳定性更好 ◆电动进样重复性和准确性高◆操作界面简单,功能实用性好 ◆更高反积分球材料,抗老化经久耐用 ◆更灵活的电致发光夹具,更贴合您的芯片◆多通道软件自动切换,一键测完所有点数据产品应用领域◆半导体发光二极管 LED ◆微型LED发光器件 MircoLED量子点◆发光器件QLED◆有机发光材料和器件OLED◆钙钛矿发光材料和器件PeLED 绝对荧光量子效率测量系统特点◆电动升降台,稳定进出样,让测量重复性、重现性更优且不容易污染积分球。◆整机一体化设计,光路稳定,减少震动对光路带来的扰动。◆采用Spectralon?材料积分球,具有高朗伯效特性,积分球光稳定性更好,抗老化经久不衰。◆0-100%功率可调单色多通道LED,激发光更加稳定◆更简单的操作,简化手套箱内的操作步骤,更快得出测量结果。 电致发光量子效率测量系统特点 ◆操作非常简单,只需培训30-60分钟即可上手操作。软件控制多通道切换器,一键测试完一片芯片上的所有发光点。 ◆夹具设计灵活,根据客户样品尺寸和电极定位量身定制夹具。样品的取放简单,无需打开积分球,减少积分球污染的概率。 ◆仪器可以通过手套箱大仓直接进入手套箱内,体积适中,安装方便。 ◆一体化整机设计,让测试稳定性、重复性、准确性更优异。 ◆器件寿命测量终点可在0-100%L范围内任意设置,可实时查看器件衰减比率。产品设备参数:
    留言咨询
  • 尖端光传感器的尖端工具 量子效率与参数分析先进光电探测器APD-QE随着 5G 与移动装置的兴起与普及,越来越多新型光传感器被应用于我们的日常生活中,为了能更好的应用在行动装置上,这些先进光传感器的组件感光面积越做越小。但这些应用却对先进光传感器的光感测性能要求却越来越高,在感光面积微缩的过程中,也带来量子效率精准测量的挑战;例如,传统聚光型小光斑在不同波长下,色散差造成焦点位移可到 mm 等级。难以将所有的光子都聚焦到微米等级的感光面积中。因此,难以准确测得全光谱量子效率曲线。 APD-QE 采用独家光束空间均匀化技术,利用 ASTM 标准的 ”Irradiance Mode” 测试方式,与各种先进探针台形成完整的微米级光传感器全光谱量子效率测试解决方案。APD-QE 已被应用于多种先进光传感器的测试中,例如在 iPhone 光达与其多种光传感器、Apple Watch 血氧光传感器、TFT 影像传感器、有源主动像素传感器(APS)、高灵敏度间接转换 X 射线传感器等。客制化光斑尺寸与光强度光焱科技 APD-QE 光传感器量子效率测试系统在光斑直径 25mm、工作距离 200mm 条件下量测,可以达到光强度与光均匀度如下。在波长 530nm 时,光强度可以达到 82.97uW/(cm2)。在光斑直径25mm、工作距离200mm条件下,APD-QE光传感器量子效率测试系统测得的光强度。WL (nm)半宽高 (nm)光均 U%=(M-m)/(M+m)5mm×5mm3mm×3mm47017.651.6%1.0%53020.131.6%1.2%63019.851.6%0.9%100038.891.2%0.5%140046.051.0%0.5%160037.401.4%0.7%在光斑直径25mm、工作距离200mm条件下,APD-QE光传感器量子效率测试系统测得的光均匀度。光焱科技具备自主光学设计能力。光斑大小与光强度在一定范围内,可以接受客制化,如有需要请与我们联系。Contact Us定光子数控制功能APD-QE光传感器量子效率测试系统具有 “定光子数” 功能 (选配),使用者可以透过控制各个单色光的光子数,让各波长的光子数都一样,并进行测试。这也是光焱科技APD-QE光传感器量子效率测试系统的独家技术,其他厂家都做不到。客户在不同的constant photon flux条件下,进行的光谱测试结果。使用定光子数控制模式 (CP 控制模式),光子数变异可以 1%以上图为例,灰色的Normal 线是氙灯光源在各波长下的光强度分布,呈现氙灯的光谱曲线特征。如采用CP控制模式,可控制不同光子数在不同波长下,保持一致的输出特性。以橘色线CP=15000为例,在不同波长下输出的光子数都是15,000 photons/s/um2。样品测试分析范例a-Si photo-FET 样品不同光强条件下,测试出来的不同光谱响应确实会不一样,可参考下面的测试结果。OPV或是钙钛矿PV样品对于OPV或是钙钛矿PV样品,一般模式或是CP控制模式的测试结果没有差异,可参考下面的测试结果。系统架构系统规格主要系统:● 量子效率测试系统– 300nm ~ 1100nm – 可扩展到 2500nm● 测量软件– PDSW 软件– 可选配 FETOS 软件( 3T 或 4T 组件)● (选配)探针台系统– 4” 标准探针台 (MPS-4-S)● 可客制化探针台系统整合与屏蔽暗箱均光系统与探针台整合高均匀度光斑  采用独家专利傅立叶光学组件均光系统,可将单色光光强度空间分布均匀化。在 10mm x 10mm 面积以 5 x 5 测量光强度分布,不均匀度在 470nm、530nm、630nm、850nm 均可小于 1%。而在 20mm x 20mm 面积以 10 x 10 矩阵测量光强度分布,不均匀度可以小于 4%。PDSW 软件  PDSW 软件采用全新 SW-XQE 软件平台,可进行多种自动化测量,包含 EQE、SR、I-V、NEP、D*、频率噪声电流图(A/Hz1/2)、噪声分析等。▌EQE 测试  EQE 测试功能,可以进行不同单色光波长测试,并且可自动测试全光谱 EQE。▌I-V 测试  软件可支持多种 SMU 控制,自动进行照光 I-V 测试以及暗态 I-V 测试,并支持多图显示。▌D* 与 NEP  相较于其它 QE 系统,APD-QE 可以直接测量并得到 D* 与 NEP。▌频率-噪声电流曲线▌可升级软件  升级 FETOS 软件操作画面(选配),可测试 3 端与 4 端的 Photo-FET 组件。内部整合探针台  APD-QE 系统由于其出色的光学系统设计,可以组合多种探针台。全波长光谱仪的所有光学组件都集成在精巧的系统中。单色光从光谱仪引导到探针台屏蔽盒。图片显示了 MPS-4-S 基本探针台组件,带有 4 英寸真空吸盘和 4 个带有低噪声三轴电缆的探针微定位器。  集成探针台显微镜,手动滑块切换到被测设备的位置。使用滑动条后,单色光均质器被 “固定” 在设计位置。 显微图像可以显示在屏幕上,方便用户进行良好的接触。可客制化整合多种探针台与屏蔽暗箱A. 客制化隔离屏蔽箱。B. 因为先进的 PD 讲究响应速度快,所以有效面积就要小(降低电容效应),因此,多会有需要整合探针台的需求。C. 可整合不同的半导体分析仪如 4200 或 E1500。应用范围LiDAR 中的光传感器– InGaAs 光电二极管 / SPAD苹果手表的光传感器用于高增益传感和成像的光电二极管门控晶体管高光电导增益和填充因子光传感器高灵敏度间接转换 X 射线探测器表征硅光子学– InGaAs APD应用 1:iPhone 12 的 LiDAR 和其他传感器中光电二极管的外部量子效率应用 2 : APPLE Watch 6 血氧传感器中光电二极管的外量子效率  全新 Apple Watch Series 6 配备血氧传感器和配套应用程序,为您提供更多监测心脏和呼吸系统健康的方式,内置于 Apple Watch 的背面。 它使用四组红、绿、红外 LED 灯和四个光电二极管,这些器件可以将光转换为电流。 光照射到手腕上的血管,光电二极管测量反射回来的光量。 基本上,含氧和脱氧的血液以不同的方式吸收红光和红外光,因此 Apple Watch 可以通过反射光来确定血液的颜色。   采用 APD-QE 系统对血氧传感器中的光电二极管进行研究和分析,包括可见光和红外波长范围。  APD-QE 可以提供这些光电二极管的信息:外部量子效率 EQE(300nm~1700nm)光谱响应 SR (A/W)NEP 和 D*频率-噪声曲线(A/Hz1/2)噪音类型  如果您想了解更多关于移动设备中血氧传感器的光学传感器/光电二极管测试的详细信息,请立即联系 Enlitech。应用 3: 用于高增益传感和成像的光电二极管门控晶体管  在光学传感和成像应用中,为了提高灵敏度和 SNR,APS (active pixel sensor) 包括一个光电探测器或一个光电二极管和几个晶体管,形成一个多组件电路。其中一个重要的单元:像素内放大器,也称为源追随者是必须使用。 APS 自诞生之日起,就从三管电路演变为五管电路,以解决晕染、复位噪声等问题。除了 APS,雪崩光电二极管 ( APD )及其相关产品:硅光电倍增器(SiPM)也可以获得高灵敏度。然而,由于必须采用高电场来启动光电倍增和碰撞电离,因此在这些设备中高场引起的散粒噪声很严重。   最近,提出了亚阈值操作光电二极管(PD)门控晶体管的器件概念。它无需高场或多晶体管电路即可实现高增益。增益源自光诱导的栅极调制效应,为了实现这一点,必须进行亚阈值操作。它还以紧凑的单晶体管( 1-T ) APS 格式将 PD 与晶体管垂直集成,从而实现高空间分辨率。这种器件概念已在各种材料系统中实施,使其成为高增益光学传感器的可行替代技术。  APD-QE 系统致力于研究和分析光电二极管门控非晶硅薄膜晶体管:不同光强下的光转移曲线特性。光强度函数的阈值电压变化(ΔVth)。有/无曝光的晶体管输出特性。量子效率与光敏增益光谱。(a) a-Si:H 光电二极管门控 LTPS TFT 结构示意图;(b) 等效电路图,显示具有高 SNR 的 APS(a) 像素的显微照片; (b) 部分阵列的显微照片; (c) 图像传感器芯片的照片如果您想测试 TFT 型图像传感器或了解更多测试细节,请立即联系 Enlitech。Contact Us3-D 双栅光敏 a-Si:H TFT 的光传输特性在各种光子通量下,作为波长函数的光敏 TFT 增益。曝光和没有曝光的 TFT 输出特性。推荐的系统组合APD-QE 系统QE波长范围 300nm ~ 1100nm恒光子 / 恒能光控模块高度均匀的光束均化器Keysight B2912 半导体分析仪 x 2探针台: MPS-4-S 探针台系统与暗屏蔽盒软件升级: FETOS-SW应用 4: 高光电导增益和填充因子光学有源像素传感器  可应用于”间接转换 X 射线成像”、 “光学指纹成像”和”生物医学荧光成像”的光学有源像素传感器。应用 5: 高灵敏度间接转换 X 射线探测器表征高灵敏度间接转换 X 射线探测器。高分辨率背照式 (BSI) 型 X 射线探测器面板。  高灵敏度大面积 X 射线探测器是低剂量医学诊断 X 射线成像的关键,例如数字射线照相、透视和乳房 X 线照相术。 X射线的探测方式一般有直接转换和间接转换两种。在直接转换模式中,光电导体(例如,非晶硒)用于将 X 射线光子直接转换为电荷。在间接转换模式中,这些电荷由非晶硅薄膜晶体管 (TFT) 进一步读出。X 射线光子首先通过闪烁体如碘化铯 (CsI:Tl)、锗酸铋晶体 (Bi4Ge3O12) 或 Gd2O2S:Tb 荧光粉,然后,通常由非晶硅光电二极管和开关 TFT 形成的光学成像传感器检测。在任一模式下,为了实现高灵敏度,必须从材料 / 设备级别或像素电路级别进行信号放大。例如,最近研究了高度敏感的直接 X 射线光电导体,例如钙钛矿,因为与市售的直接转换 a-Se 光电导体相比,它利用光子的效率高,从而导致高量子产率。然而,钙钛矿具有高漏电流并且也遇到稳定性 / 可靠性问题。在 X 射线成像应用中,可靠性和稳定性至关重要,因为每年必须进行数千次扫描。在高灵敏度的间接转换 X 射线探测器的情况下,由于许多闪烁体的量子产率已达到其极限,然而,由于 TFT 电路和光电二极管之间的占用面积竞争,空间分辨率和填充因子通常会受到影响,因此其灵敏度和高空间分辨率需要权衡。因此,拥有同时获得高灵敏度和高空间分辨率的检测器或像素架构是具有挑战性的。 APD-QE 系统用于高灵敏间接侦测型的X射线探测器的开发:不同光强下的光转移曲线特性。有/无曝光的晶体管输出特性。量子效率与光敏增益光谱。不同 VTG(-12 V、-18 V、-24 V)阈值电压变化的光强依赖性。橙色线是实测的 CsI:Tl 的 X 射线激发光致发光发射光谱,蓝色线是光敏双栅 TFT 的光增益 (Gph),紫色线是经典pin光电二极管的外部量子效率 (EQE) 曲线 。推荐的系统组合APD-QE 系统QE波长范围 300nm ~ 1100nm恒光子 / 恒能光控模块高度均匀的光束均化器Keysight B2912 半导体分析仪 x 2探针台: MPS-4-S 探针台系统与暗屏蔽盒软件升级: FETOS-SW如果您想测试间接转换 X 射线探测器或了解有关测试的更多详细信息,请立即联系 Enlitech。Contact Us应用 6: 高光电导增益和填充因子有源像素传感器(APS)有源像素传感器(APS)  垂直堆栈了一个 a-Si:H p-i-n 光电二极管和一个低温多晶硅(LTPS)读出 TFT 通过使用 p-i-n 光电二极管门控 TFT 架构并在亚阈值范围内操作 TFT,所提出的 APS 器件提供高填充因子和高内部光电导增益。垂直积分导致像素中的高填充因子( 70% )和扩大的感光区域。 在传感器的光电二极管门控 TFT 结构中,通过在亚阈值状态下操作 TFT 来放大输出电流。 在可见光波长处获得了弱波长相关的光导增益 10,从而实现大面积低强度光检测。   大面积光学成像和传感设备可以在间接转换 X 射线成像 光学指纹成像和生物医学荧光成像的许多应用中找到。而高增益与高填充因子的 APS 深具商业应用的潜力。APD-QE 系统有源像素传感器( APS ):不同光强下的光转移曲线特性。有/无曝光的晶体管输出特性。量子效率与光敏增益光谱。(a) SNR = AS/(N+n) 的混合有源像素传感器和 (b) SNR = S/(N + n) 的传统无源像素传感器的等效像素电路; A是放大系数,N是像素噪声,n是数据线噪声。高光电导增益和填充因子光学传感器混合传感器的光子传输特性。在 VBG = &minus 6.3V 下测得的光电导增益和外部量子效率作为各种光子通量的波长函数。采用 APD-QE 系统测量有源像素传感器的外量子效率。推荐的系统组合APD-QE 系统QE波长范围 300nm ~ 1100nm恒光子 / 恒能光控模块高度均匀的光束均化器Keysight B2912 半导体分析仪 x 2探针台: MPS-4-S 探针台系统与暗屏蔽盒软件升级: FETOS-SW
    留言咨询
  • 量子点激光器由于内部的特殊结构可以有效减少温度对激光器输出参数的影响,波长范围主要集中在1300nm附近的通讯波段。产品序列中QLF1339是波长1310nm法布里玻罗腔(FP)激光器,QLD123x 为波长范围在1240nm-1270nm的DFB激光器,激光器的封装形式有TO封装或蝶形封装产品特点量子点 FP/DFB 激光波长范围1240-1310nmTO-56 CAN 封装形式主要应用激光通信气体传感激光显示激光雷达产品参数产品编号波长功率LD类型封装产品参数备注QLD1261-40051240nm5mWDFB14pin Butterfly-QLD123F-40101240nm10mWDFBTO-56-QLF1339-AA1310nm6mWFPTO-56-QLF1312-P101310nm10mWFPchip-QLF131F-P161310nm16mWFPchip
    留言咨询
  • C11347-11绝对量子效率测量系统,Quantaurus-QY Quantaurus-QY是一款紧凑而易用的仪器,用于测量光致发光材料的量子效率。它能胜任绝对量子效率的测量,而且无需传统相关方法所必需的已知参考标准。不同形式的样品,包括薄膜、固体、粉末和溶液等均能被分析。液氮能将液体样品冷却到-196摄氏度(77 K)。欢迎您登陆滨松中国全新中文网站 查看该产品更多详细信息!详细参数光致发光测量波长范围300-950nm单色光源光源150W氙灯激发波长250-800 nm 带宽10 nm以下(FWHW) 激发波长控制手动 多通道光谱仪测量波长范围200-950 nm波长分辨率 2 nm感光器件通道数1024 ch制冷温度-15 摄氏度A/D分辨率16 bit光谱仪类型Czerny-Turner型光纤类型光纤束(1.5 m)光纤接收面积直径 1 mm积分球 材料 Spectralon 尺寸 3.3 inch 样品夹持器(可选) 薄膜 A10095-01/-03 (不包含基底) 溶液(室温) 光致发光溶液测量夹持器A10104-01 溶液(低温)-196摄氏度(77K)光学低温测量 A11238-01 温度控制室温(RT)到+180摄氏度带样品夹持器的温度控制 样品盒(可选) 粉末 采用光致发光粉末测量皿A10095-01/-03 溶液(室温) 采用光致发光溶液测量侧臂盒A10095-02 溶液(低温) -196摄氏度(77K)采用样品管低温测量A10095-04 软件 测量项目光致发光量子效率荧光材料发光发光测量(量子效率X吸收)量子效率和激发波长的关系(-02G,-03G)光致发光谱(峰值波长,FWHM)光致发光激发谱(-02G,-03G)色彩测定(色度、色温、显色指数等)EEM(激发-发射矩阵) 特性 ●测量发光材料光致发光的绝对量子效率在开发新的发光材料过程中,提高他们的光致发光效率是至关重要的。提高该效率就需要测量量子效率*的精确技术。Quantaurus-QY系统包含了一个氙灯型激发光源、一个单色仪、一个氮气流可选的积分球和一个能同步测量多个波长的多通道探测器,并将所有元件集成到一个封装里。系统采用专用软件用于测量。探测器采用制冷型背照式CCD传感器,能进行高灵敏度的瞬时测量。Quantaurus-QY能处理溶液、薄膜和粉末样品,并能将溶液样品冷却到液氮温度。*光致发光过程发射光子数与发光材料吸收光子数的比值●瞬时测量多通道探测器能捕获灵敏度补偿型光谱,并且通过计算快速获得量子效率数值。对话框型专用软件使得测量过程变得更简单。●全自动硬件软件控制的单色仪可以选择激发波长以使样品能被多种波长激发。基于波长的量子效率和激发谱可以自动测定。●分析不同形式的样品Quantaurus-QY能处理溶液、薄膜和粉末样品,并能将溶液样品冷却到-196摄氏度(77K)。●波长范围:300 nm – 950 nm●测定发光材料的绝对光致发光量子效率(光致发光测量)●采用积分球测量整个谱域●制冷型背照式CCD传感器实现超高灵敏度和高信噪比测量●激发波长的自动控制●空间集约的紧凑型设计●可选择多种分析功能 ?光致发光的量子效率测量 ?激发波长关系 ?光致发光谱 ?光致发光激发谱●量子效率测量原理 量子效率和荧光寿命的关系右图的Jablonski能级图描述了普通有机分子的电子能级,并标示了能级间的电子跃迁。S0、S1和T1分别代表基态,最低单态和最低三重态。光激发后,激发态分子可以沿几种跃迁路径,包括辐射过程和非辐射过程而回到基态。辐射过程涉及了光发射,例如荧光和磷光。非辐射过程涉及内转换和系统间热释放。辐射过程和非辐射过程相互竞争。当荧光速率常数、内转换和系统间交换分别用kf, kic, and kisc来简写时,荧光寿命Tf可以用下式表示:Tf = 1/ (kf + kic + kisc) (1)同时荧光量子效率Φf可以用下式表示:Φf = kf / (kf + kic + kisc) (2)因此等式(3)可以从等式(1)和(2)推导出:kf = Φf / Tf (3)从以上的等式可以看出,荧光寿命和量子效率之间有密切的关系。这些参数在控制荧光材料的发光特性上有着基础而重要的作用。滨松集团开发了Quantaurus系列用于不同的发光材料的评估。现有的Quantaurus-Tau和Quantaurus-QY可分别用于测量荧光寿命和量子效率。这两个系统的支持性分析可以推动用户对光致发光材料的开发。您可以在下面的推荐产品区域获取紧凑型荧光寿命光谱仪Quantaurus-Tau的细节信息。应用 量子效率测量能在诸多领域满足开发和研究的应用需求。典型应用包括:包括有机EL材料、白光LED和FPD荧光粉等多种类型的发光材料的性能提升,有机金属复合物的研究,染料敏化型太阳能电池的基础特性评估,生物领域的荧光探针效率测量等。?有机金属复合物?荧光探针?染料敏化型PV材料?OLED材料?量子点?LED荧光粉
    留言咨询
  • 产品应用量子效率测量能在诸多领域满足开发和研究的应用需求。典型应用包括:包括有机EL材料、白光LED和FPD荧光粉等多种类型的发光材料的性能提升,有机金属复合物的研究,染料敏化型太阳能电池的基础特性评估,生物领域的荧光探针效率测量等。有机金属复合物;荧光探针;染料敏化型PV材料;OLED材料;量子点;LED荧光粉;有机LEDs的开发。基本材料的光子发光量子效率;内量子效率测量;薄膜和器件的量子效率。LEDs的开发和显示;无机LED材料;白光LED的荧光材料;平板显示(等离子显示、场激发显示等)的荧光材料。基础研究:物理和化学场中的样本特性;光谱学;荧光量子效率;磷光量子效率。生物研究:荧光探针;量子点。详细介绍量子效率测量系统CEL-EQE外量子效率测量系统CEL-QYQE绝对量子效率测量系统应用方向:量子效率测量能在诸多领域满足开发和研究的应用需求。典型应用包括:包括有机EL材料、白光LED和FPD荧光粉等多种类型的发光材料的性能提升,有机金属复合物的研究,染料敏化型太阳能电池的基础特性评估,生物领域的荧光探针效率测量等。有机金属复合物;荧光探针;染料敏化型PV材料;OLED材料;量子点;LED荧光粉;有机LEDs的开发。基本材料的光子发光量子效率;内量子效率测量;薄膜和器件的量子效率。LEDs的开发和显示;无机LED材料;白光LED的荧光材料;平板显示(等离子显示、场激发显示等)的荧光材料。基础研究:物理和化学场中的样本特性;光谱学;荧光量子效率;磷光量子效率。生物研究:荧光探针;量子点。CEL-EQE外量子效率测量系统发光材料可以由荧光量子效率进行表征。对于有机/无机LED等发光器件,对应的物理参数是通过电致发光法测得的外量子效率(EL,electroluminescence)。针对这种应用,外量子效率测量系统应运而生。OLED器件的发光效率受多种因素的影响,包括各层和玻璃基底的吸收、表面发射、辐射角和基底波导通量等。这些因素通过作为样品室的积分球进行测量。样品放置在球内,并被固定的电流或电压激发。产品特点1) 积分球的采用能使外量子效率(EQE)的测量不受样本发光角特性的影响2) 软件控制能量源(KEITHLEY 2400系列)3) 对应于每一步加载电压/电流的光谱能被瞬时测量(I-V-L测量)4) 背照式制冷型CCD实现高灵敏度测量5) 直观的软件易于操作,用于测量、计算和系统控制。6) 可以在不同图表中绘制多种变量(电流、电流密度、电压、发光效率、色度等)。7) 系统易于被扩展到绝对光致发光量子效率测量系统和光分布测量测量系统。详细参数 型号, CEL-EQE外量子效率测量系统 积分球, 3.3-8 inch 内径, 发射材料: Spectralon,可定制 探测器, AULTT-P4000 软件控制能量源, KEITHLEY 2400系列 感光器件通道数, 2048 ch 波长范围, 200 nm ~ 1100 nm 光纤长度, 1.2 m光纤直径, 0.8mm 光通量测量范围, 0.00013 lm 到 0.12 lm (白光,发射面积 2x2 mm2)光功率测试, CEL-NP2000-2标准接口, 1inchCEL-QYQE绝对量子效率测量系统测量发光材料光致发光的绝对量子效率在开发新的发光材料过程中,提高他们的光致发光效率是至关重要的。提高该效率就需要测量量子效率的精确技术。QYQE系统包含了氙灯激发光源、单色仪、一个氮气流可选的积分球和一个能同步测量多个波长的多通道探测器,并将所有元件集成到一个封装里。系统采用专用软件用于测量。探测器采用制冷型背照式CCD传感器,能进行高灵敏度的瞬时测量。QYQE能处理溶液、薄膜、半导体和粉末样品。系统能用于多种领域,包括工业、生物和学术研究等。光致发光过程发射光子数与发光材料吸收光子数的比值。产品特点:1) 瞬时测量:多通道探测器能捕获灵敏度补偿型光谱,并且通过计算快速获得量子效率数值。对话框型专用软件使得测量过程变得更简单。2) 全自动控制设置:软件控制的单色仪可以选择激发波长以使样品能被多种波长激发。基于波长的量子效率和激发谱可以自动测定。3) 分析不同形式的样品:QYQE能处理溶液、薄膜、半导体和粉末样品。4) 波长范围:200 nm – 1100 nm;5) 测定发光材料的绝对光致发光量子效率(光致发光测量);6) 采用积分球测量整个谱域;7) 制冷型背照式CCD传感器实现超高灵敏度和高信噪比测量;8) 激发波长的自动控制;9) 空间集约的紧凑型设计;10) 可选择多种分析功能:光致发光的量子效率测量;激发波长关系;光致发光谱;光致发光激发谱;11) 量子效率测量原理。详细参数 型号, CEL-QYQE绝对量子效率测量系统光致发光测量波长范围, 200-110nm单色光源, 光源, CEL-S150/S500氙灯光源激发波长, 250-1100 nm 带宽, 2 - 10 nm(随狭缝变化) (FWHW) 激发波长控制, 软件自动控制 多通道光谱仪, CEL-IS151 双光束测量波长范围, 200-1100 nm波长分辨率, 2 nm感光器件通道数, 2048 chA/D分辨率, 16 bit光谱仪类型, AULTT-P4000型光纤类型, 光纤束(1.2m)光纤接收面积, 直径0.8 mm积分球, 3.3-8 inch 内径, 发射材料: Spectralon,可定制 软件 测量项目, 光致发光量子效率荧光材料发光发光测量量子效率和激发波长的关系光致发光谱(峰值波长,FWHM)光致发光激发谱色彩测定(色度、色温、显色指数等EEM(激发-发射矩阵)
    留言咨询
  • 绝对量子效率测量系统滨松 荧光/发光材料和器件参数的评估系统目录:绝对量子效率测量系统 用于发光材料的采用光致发光法的绝对量子效率测量系统。薄型材料、液体溶液和粉末等都能被分析。绝对量子效率测量系统Quantaurus-QY 外量子效率测量系统 采用积分球的高精度外量子效率测量系统。它实现了不受待测物发光角特性影响的高精度测量。欢迎您登陆滨松中国全新中文网站 查看该产品更多详细信息!绝对量子效率测量系统产品:采用了光致发光法(photoluminescence)来快速而准确地测定绝对量子效率。该系统装置包括一个激发电源、一个单色仪、一个氮气流积分球和一个同步探测整个谱域的CCD光谱仪。专用软件易于操作。两种样品夹持器能用于薄膜、粉末,比色皿能用于液体样品。系统能用于多种领域,包括工业、生物和学术研究等。产品图像产品型号产品名称 C9920-02绝对量子效率测量系统 C9920-02G绝对量子效率测量系统 C9930-03绝对量子效率测量系统 C9930-03G绝对量子效率测量系统
    留言咨询
  • 石墨烯等二维材料的微纳加工与刻蚀需要很高的精度,而目前成熟的传统半导体刻蚀系统在面对单层材料的高精度刻蚀需求时显得力不从心。为了解决目前微纳加工中常用的等离子刻蚀系统功率较大、难以精细控制的问题,Moorfield Nanotechnology与曼彻斯特大学诺奖得主Andre Geim课题组联合研发了台式超二维材料等离子软刻蚀系统- nanoETCH。与传统的刻蚀方案相比,nanoETCH在石墨烯和2D材料的关键加工中表现出了很高的性能。该系统对输出功率的分辨率可到达毫瓦量,对二维材料可实现超的逐层刻蚀,也可实现对二维材料进行层内缺陷制造,还可对石墨基材等进行表面处理。该系统性能已经在剑桥大学石墨烯中心、曼彻斯特大学、英国石墨烯中心、西班牙光子科学研究所等诸多用户实验室得到验证。该系统可刻蚀3英寸或更大尺寸的样品,样品放置在专门设计的样品台上,低功率毫瓦精细控制的射频单元提供高精度的刻蚀功率,分子泵高真空系统可确保样品免受污染。应用方向举例:石墨基材的处理:表面处理,更有利于剥离出大面积的石墨烯微纳刻蚀:去除石墨烯,对其他区域无损伤缺陷加工:在石墨烯层中制造点缺陷主要特点:◎ 软刻蚀功率:30W 高精度射频源◎ MFC-流量计控制◎ 3英寸、6英寸样品台◎ 全自动触屏操作系统◎ 设定、保存多个刻蚀程序◎ 可连接电脑记录数据◎ 本底真空5×10-7 mbar◎ 易于维护◎ 完备的安全性设计◎ 兼容超净室◎ 稳定的性能表现系统选件:◎ 机械泵类型可选◎ 腔体快速充气◎ 超高精度射频源控制◎ 高精度气压控制◎ 增加过程气体发表文章Detection of individual gas molecules adsorbed on grapheneSchedin, F., et al. Nature Materials 2007 DOI: 10.1038/nmat1967作者报到了由石墨烯制成的微米大小的传感器能够检测到单个气体分子附着在传感器表面的情况。Moorfield nanoETCH软刻蚀技术用于清洗放置石墨烯的衬底,并用于将石墨烯蚀刻到所需的(霍尔棒)器件结构。相关设备:Moorfield nanoETCH Chaotic dirac billiard in graphene quantum dotsPonomarenko, L. A., et al. Science 2008 DOI: 10.1126/science.1154663作者利用石墨烯雕刻出各种大小的量子点。大型量子点(100nm)表现为传统的单电子晶体管。另一方面,对于较小的量子点,量子限制效应显示出了作用。Moorfield“软蚀刻”技术用于制备石墨烯的石墨基材的处理,以及将石墨烯蚀刻成量子点结构。相关设备: Soft-Etching systems Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronicsGeorgiou, T., et al. Nature Nanotechnology 2012 DOI: 10.1038/nnano.2012.224垂直场效应晶体管是由二维材料石墨烯和二硫化钨重叠而成。这种器件中特的传输机制允许前所未有的电流调制和高电流密度。Moorfield软蚀刻技术用于处理衬底表面,对器件的制备进行刻蚀。相关设备: Soft-Etching systems Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistanceSassi, U., et al. Nature Communications 2017 DOI: 10.1038/ncomms14311作者报告了石墨烯作为非冷却式中红外光电探测器的一部分的使用,其中LiNbO3晶体的热释电响应以高增益(高达200)转换为石墨烯的电阻率调制。nanoETCH系统是这项工作的关键部分,它既可用于将石墨烯蚀刻成所需的图案,也可用于修改单片石墨烯以提供超低接触电阻。相关设备: nanoETCH用户单位:剑桥大学曼彻斯特大学西班牙光子科学研究所
    留言咨询
  • C9920系列产品是一款应用光致发光或者电致发光方法对量子产率进行完美分析。通过单色仪氙灯输出值来选择激发光的波长。还在单色仪中配有机械装置,可以自动控制激发光的波长。实现连续波长下量子效率的测量。各种样本容器可以满足薄膜、细粉、溶液样本的分析需要。新产品还可以加装低温装置,可以在零下-196℃下进行样本分析。 应用领域有机发光二极管,LED和显示器领域,发光材料的基础性研究,生物领域的研究(主要是荧光探针和量子点)参数特性实现绝对量子效率的测试,无需任何参考样品高灵敏度的CCD相机配以高品质积分球,可实现快速精确的测量和分析多种措施实现高灵敏度和高性噪比可以实现薄膜,粉末和液体等多形态样品的分析自动控制激发波长(通过软件实现即可)可测试低温样品,最低可至-196℃产品扩展C9920系列产品包含C9920-11,12产品中电致发光设备,能够对外部量子产率进行分析;也包含C9920-11产品中光照强度和光分布分析装置。通过对C9920系列产品添加电源、配备专用软件,可以实现与C9920-11,-12系列产品的完美转换。
    留言咨询
  • 量子单光子探测器 400-860-5168转2623
    产品简介: 技术革新,单分子传感显神威传统上,量子传感器在探测电场和磁场方面已展现出强大能力,但要在空间分辨率上达到原子尺度,一直是科学家们难以逾越的鸿沟。创新性地采用了一种基于单个分子的传感方式。这种分子被巧妙地附着在扫描隧道显微镜的尖端,能够在极近的距离内(仅几个原子)探测目标物体的电磁特性。与依赖晶格缺陷的传统传感器不同,这种新型传感器不再受限于材料内部的特性展现,而是直接利用单个分子的高度敏感性,实现了对原子尺度磁场的精确捕捉。这种概念上的转变,不仅极大地提高了传感器的灵敏度和空间分辨率,更为未来的量子传感技术提供了全新的思路。 量子传感器产品特点即插即用慕尼黑量子仪器公司开发了即插即用的单光子探测器系统 Qone,这使得使用最高质量的光子量子传感器变得非常容易。Q one 是一个紧凑的 19 英寸机架系统。方便使用与现有解决方案相比,我们的产品无需连接外部水冷电源。此外,标准110V/220V 插座足以为探测器系统供电。因此,Qone 基本上可以安装在任何实验室或房间中。大数据率和高数据质量另一个关键特性是连接传感器的光纤采用创新耦合技术。这使我们能够以完全定制的方式连接多像素传感器芯片的多个检测器通道。高度可定制此外,我们将基于特别优化的超导纳米线的尖端单光子探测器集成到探测器系统中。我们的设计使我们能够根据客户的要求以非常灵活的方式做到这一点
    留言咨询
  • 1、量子芯片高真空存储箱产品介绍量子芯片中的超导材料对环境敏感度较高,容易和空气中的氧气、水分子产生化学反应。本源量子团队采用高真空存储技术,自主研发出量子芯片高真空存储箱,它可以为量子芯片提供高真空的保存环境,就像是量子芯片的“冰箱”,研发人员用它调节存储空间的室内压强,从而给量子芯片“保鲜”,避免其失去效用。2、量子芯片高真空存储箱产品特点具备量子芯片高真空储存功能,真空度≤ 8×10 Pa (空载运行3小时)配备三个保存腔体,单个腔体可独立操作配备智能监控系统,可实时监控真空度配备人机交互界面,实现设备全自动化操作3、量子芯片高真空存储箱产品参数真空度:≤ 8×10^-4Pa(空载运行 3 小时) 系统的真空漏率:<10^-7 Pa&bull L/s 真空报警阈值:80Pa 各室内腔尺寸:580mm×500mm×180mm(宽×深×高)
    留言咨询
  • 滨松量子效率测试系统 C11347系列量子产率测量仪是滨松量子产率系列的经典产品,体积小巧,性价比高。其制冷型背照式CCD具有超高的灵敏度和信噪比,可以更加稳定快速得到结果。涂有Spectralon涂料的积分球,可以支持粉末、薄膜和液体样品的测量,Spectralon涂料在全谱波段拥有的超高反射率,可以完全匀化入射光,消除积分球反射不均匀对结果的影响。整体系统采用软件自动化控制,从选择激发波长开始,整个测量结果只需要三步操作即可得到,快捷有效。产品指标:型号C11347-11(标准型)C11347-12(近红外型)光谱测试范围300nm—950nm400nm—1100nm单色仪光源光源150W氙灯激发波长250nm—850nm375nm—850nm带宽10nm(半高宽)激发波长控制自动控制多通道光谱探测器测量波长范围200nm—950nm350nm—1100nm波长分辨率2nm2.5nm光敏通道数1024制冷温度-15℃动态域16 bit分光装置Czerny-Turner型积分球材料Spectralon尺寸3.3英寸软件测量项目PL量子产率量子产率激发波长依赖性PL光谱(峰值波长 FWHM)PL激发光谱色度测试(色度、色温、显色性指数等) 配件:型号说明标准配置高温测试低温测试C11347-11/12量子产率测试仪●●●A11238-04用于低温测试的杜瓦瓶支架,可制冷至77K━━●A9924-17用于温度控制的样品架,可以将粉末样品加热至300℃━●━A10095-04用于低温测试的样品池━━●C13543控温单元(室温至300℃)━●━ 外形尺寸图(单位: mm) 重量 约26.5kg应用案例:- 新一代OLED发光材料的量子产率测量- 荧光探针生物酶反应检测- 苯甲酮在零下196摄氏度(77K)的磷光量子产率测量
    留言咨询
  • 一,中红外量子阱QWIP超快探测器 5um 26.5GHzMIR QWIP是基于先进的QWIP技术而研发的一款超快速中红外探测器。它的响应速度高达数十GHz,是市场上最快的检测器。它是表征QCL频率梳、构建外差仪器、开发中红外高带宽光学通信链路的完美工具。QWIP的技术是卡洛瑟托里教授在Pierre Aigrain实验室研发的。我们对包装和设备进行了优化,以适应低温下的超高速运行。同时,我们开发并优化专用偏置器和宽带射频放大器,以匹配设备的高端性能。技术参数产品特点市面上最快的中红外探测器响应速度至少 26.5 GHz基于QWIP技术工作温度77K波长:5 μm响应速度高达数十GHz高响应度专用和优化偏置器即插即用产品应用:QCL频率梳外差仪器高速中红外光学链路二,中红外量子级联超快光电探测器 20GHz 4.65 µ m这是一款超快中红外光电探测器,响应带宽超过20GHz (-3 dB)。它无偏压工作,不需要冷却,因此不需要外部电源。安装过程只需两个简单步骤:将SMA装置连接到测量仪器(示波器等),并将入射光定向到内部聚焦透镜。中红外量子级联超快光电探测器 20GHz 4.65 µ m,中红外量子级联超快光电探测器 20GHz 4.65 µ m技术参数特征响应超过20GHz的超快中红外光电探测器频率响应范围 (-3 dB): 直流到 20 GHz敏感波长峰值: 4.65 µ m光敏性: 1 mA/W (典型值)无需冷却,无需偏置操作应用 外差检波高频/高时间分辨测量 一般参数参数描述单位连接器类型SMA—冷却非冷却—镜头聚焦透镜 *1—光圈4.5mm偏振方向在机身有标记 *2—*1入射光必须准直。*2 见 "表 4" 绝对最大额定值参数符号值单位工作温度*1Topr-10 至 +50°C储存温度*1Tstg-10 至 +50°C入射光水平Pmax1W/cm2*1 无凝结* 无需偏置操作* 环境温度: Ta=25 °C 电气和光学特性参数符号条件最小值典型值最大值单位敏感波长峰值P—4.604.654.70µ m光敏性Sλ=λp, f0=1200 Hz, Δf=1 Hz0.51.0—mA/W探测率D*λ=λp, f0=1200 Hz, Δf=1 Hz8.0 × 1081.5 × 109—cmHz1/2/W噪声等效功率NEP λ=λp, f0=1200 Hz—3.0 × 10-101.0 × 10-9W/Hz1/2截止频率fc-3 dB down, Zi=5Ω 1820—GHz终端电容Ctf=1 MHz—1.11.5pF并联电阻RshVmeas=10 mV7090110k * 环境温度: Ta=25 °C
    留言咨询
  • SpectrumTEQ-PL光致发光量子效率测量系统SpectrumTEQ-PL系列光致发光量子效率测量系统,针对器件的光致发光特性进行有效测量,可在手套箱内完成搭建,无需将样品取出,即可完成光致发光量子效率的测试。系统搭配QE Pro光谱仪为业内公认旗舰系列,信噪比高、杂散光低, 动态范围大,适合不同波段和强度的激发光发射光测量。同时,系统配有强大的测试软件,向导式的软件操作逻辑让测试过程变的简单,迅速。 应用:无机光致发光有机光致发光EL器件封装前体 优势:体积小巧:便于灵活使用及运输原位测量:可放至手套箱内,实现原位测量结构稳定:设备无需频繁校准 光谱仪型号QEPro/QE65Pro(可选) 光谱范围(nm)350-1100 信噪比1000:1 分辨率2.5nm(FWHM) 动态范围85000:1(QEPro单次采集) 25000:1(QE65Pro单次采集) AD位数18-bit(QEPro) 16-bit(QE65Pro) 积分球尺寸3.3" 涂层材料Sperctralon激发光源365-880nm光纤耦合高功率LED 强度可调典型半峰全宽 (FWHM)=14nm@405nm
    留言咨询
  • 量子效率测试仪 400-860-5168转2623
    BQE – 100C光谱响应/量子效率测量系统能力评估在每个波长输出性能,非常适用于材料的研究和开发太阳能电池。此外,短路电流密度(Jsc)可以从光谱响应的计算获得光谱和参考太阳光,使得测量更准确。外量子效率(External Quantum Efficiency, EQE),太阳能电池的电荷载流子数目与外部入射到太阳能电池表面的一定能量的光子数目之比。(不考虑电池表面对光的反射R)规格参数测量模式:光谱响应/量子效率测量波长范围:300 - 1100 nm波长纯度:约20nm辐照面积:10mmx 10mm辐照强度:超过100μW /cm 2 (大约470nm)光强检测器:Si-PD提供校准光谱响应数据灯:氙灯150 w臭氧免费类型软件:显示光的强度、光谱响应和量子效率 计算短路电流密度(Jsc=mA/cm2) 操作系统:Windows7
    留言咨询
  • SpectrumTEQ-EL 电致发光量子效率测量系统SpectrumTEQ-EL系列电致发光量子效率测量系统,可以针对发光器件的光电特性进行有效测量,系统搭配QE Pro光谱仪为业内公认旗舰系列,具有高信噪比、低杂散光等特性;同时,系统配有强大的测试软件,对话框式的软件操作界面让测量过程变得更为简单。 应用:无机电致发光有机电致发光分子薄膜EL器件 优势:体积小巧:便于灵活使用及运输原位测量:可放至手套箱内,实现原位测量结构稳定:设备无需频繁校准光谱仪型号QEPro/QE65Pro(可选) 光谱范围(nm)350-1100 信噪比1000:1 分辨率2.5nm(FWHM) 动态范围85000:1(QEPro单次采集) 25000:1(QE65Pro单次采集) AD位数18-bit(QEPro) 16-bit(QE65Pro) 积分球尺寸3.3" 1.5"涂层材料Sperctralon源表Keithley 2400
    留言咨询
  • 面向有机发光材料的角分辨光谱仪0~360° 变角度 / 最宽 220~2500nm / PL & EL 角分辨光谱 / 分子取向 R1-OLED 有机发光材料角分辨光谱仪 支持 0~360° 全角度测量,波段最宽可扩展至 220~2500nm。可应用于 TADF 材料、磷光材料、荧光上转换材料光致/电致荧光光谱各向异性研究,为 OLED 器件、OPV 器件和相关超构材料提供表面光场调控表征。搭配专用软件,模拟出射光谱变角度强度分布,获取分子取向因子,为有机发光材料检测提供全新体验。典型应用领域: 角分辨 PL&EL 测量 有机发光材料具有辐射空间分布,需要系统具有角分辨光谱采集能力。 微结构光场调控 钙钛矿超构材料对不同角度入射光具有光场调控效应,需要系统具有角度分辨能力。 偶极分子取向 有机发光材料分子取向影响外量子效率 (External Quantum Efficiency, EQE),需要系统具有检测分子取向的能力。 R1-OLED 有机发光材料角分辨光谱仪 在以上领域的应用得益于如下几个特点: 1 0~360° 完整角度探测 R1-OLED 有机发光材料角分辨光谱仪采用两个高精度定位旋转电机,实现完整的 0~360° 变角度 光谱探测。 2 宽谱段 PL&EL 测量 R1-OLED 有机发光材料角分辨光谱仪采用面阵背照式光谱仪进行光谱采集,搭配激发光源及源表,最宽可实现 220~2500nm 波段 PL&EL 光谱探测。 3 光学仿真拟合 搭配配套软件,R1-OLED 有机发光材料角分辨光谱仪可根据发光材料结构参数,模拟出射光谱变角度强度分布,获取 分子取向因子。 4 可扩展性 R1-OLED 有机发光材料角分辨光谱仪可兼容氘灯、激光器等外接光源,满足多种实验对不同光源的需求。同时样品台采用模块化设计,支持 定制化改造,适配不同尺寸样品。 测试案例:
    留言咨询
  • FastEQE 高速量子效率测试仪 超高的测量速度,单次测量仅需要8秒钟,而传统的单色仪系统需要近8分钟才能完成相 同的测量。 节省时间 节省空间 节省工时 节省成本 测量太阳能电池量子效率的速度比其他任何系统快5900% 专为太阳能电池的制造研发而制造一键式系统:仅需一点即可开始使用 FastEQE系统附带用户图形界面, 一键式的软件使得客户能够非常快速 地测量量子效率。 优秀的重复性使得用户可以观察到 不同设备之间量子效率的微小差异。 左图:对同一设备进行5次测量的 结果 灵活且自动化的设计 FastEQE系统配有一个灵活的测量探头 ,易于在水平和垂直方向的配置中实现系统 化流程。 易于集成到其他的自动化测量和控制系 统中,便于在日常测量中使用。它的尺寸也 很小,可以快速地安装到生产线上设备参数 保修 图形用户界面软件的下载和安装次数不限, 包括后续的免费更新。 我们将提供为期1年的保修服务,包括所有 的材料和工艺缺陷、电子部件和人工。 此保修服务还包括全球范围内的退货运输。 在安装和验收期间,我们将全程提供在线 测量时间 8s 光谱范围 390-1090nm 光斑大小 4-12mm 光电二极管监测器 配备 工作距离 5mm 波长数量 40 光源 LED 背景光 红光/蓝光/白光 偏压 (+/-) 5000 mV 插口类型 Male BNC 操作系统 Windows 工作电压 220V 尺寸(长宽高) 45x28x38 cm 重量 46 Kg
    留言咨询
  • 导电和防静电材料体积电阻率测量装置仪器所符合的国标及美标行标国家标准GB11210《硫化橡胶抗静电和导电制品电阻的测定》 国际标准ISO1853 《导电和防静电橡胶-电阻率测量》 国际标准ISO 3915 《导电塑料体积电阻率测试方法》 国家标准GBT 7971-2007 半导电电缆纸 国家标准GB2439 《导电和抗静电橡胶电阻率(系数)的测定方法》 国家标准GB/T15662《导电、防静电塑料体积电阻率测试方法》 交通行业标准JT230-95 汽车导静电橡胶拖地带 美国ASTM D991标准《橡胶特性---导电材料及防静电产品的体积电阻的标准测试方法》(要另配ASTM电极)导电和防静电材料电阻率测试仪简介导电和防静电材料体积电阻率测试仪一款主要用于导电材料和防静电材料电阻率的专用测试仪器,该仪器有静电计、皮安电流表、测试箱、可调电源组成,性能优越,质量可靠。导电和防静电材料体积电阻率测试仪的工作原理是什么呢? 在测量导电材料电阻率若采用三电极或二电极测量时会因为电极与被测量材料表面电阻而影响测量准确性,本装置采用四电极(四点探针或四探针)法测量导电和防静电材料体积电阻率,可以克服表面接触电阻造成的误差影响。 BEST-19导电和防静电材料体积电阻率测量装置,配合最输入电阻高达1014Ω的EST103(FS3)静电计和测量超微弱电流(飞安10-15A)的EST122皮安电流表,采用标准的四电极,可以测量测量20个数量级范围的电阻率,其测量范围:10-9Ω.m~1011Ω.m (世界上超宽测量范围,达20个数量级),几乎可以测量从金属导体到所有静电导电材料、静电屏蔽材料及静电消电等各种材料导电、防静电塑料、橡胶体积电阻率。导电和防静电材料电阻率测试仪技术指标:2.1 测量范围:10-9Ω.m ~1011Ω.m (*另配测试三电极和电源,高可以测量体积电阻率达1019Ω.m)2.2 准确度:1%2.3 静电计(静电电压表):100mV~±200V,输入电阻≥1014Ω(100TΩ),0.5%2.4 皮安电流表:1×10-15A (飞安fA), 0.5%2.5 数字可调电压源2.6 测试屏蔽箱(内含国家标准四电极)(注:不同的标准有不同的电极,如果要美国ASTM电极,请订货时请说明)。 2.7 绝缘板 ≥100TΩ.m (1014Ω.m)导电和防静电材料电阻率测试仪有关标准的规定GB 11210《硫化橡胶抗静电和导电制品电阻的测定》、ISO 1853 《导电和防静电橡胶-电阻率测量》、ISO 3915 《导电塑料体积电阻率测试方法》 、国家标准GB 2439 《导电和抗静电橡胶电阻率(系数)的测定方法》 国家标准 GB/T15662《导电、防静电塑料体积电阻率测试方法》 交通行业标准JT 230-95 汽车导静电橡胶拖地带以及美国ASTM D991标准《橡胶特性---导电材料及防静电产品的体积电阻的标准测试方法》都规定了导电、防静电塑料、橡胶体积电阻率测试方法,这些标准都规定要采用四电极法测量,其测量准确度不会像采用三电极或二电极测量因表面接触电阻而增大测量误差,特别是在测量导电材料时,这种影响更明显,所以采用四电极测量时准确度很高。 导电和防静电材料电阻率测试仪特点具有极高的输入阻抗(1×1014Ω=100TΩ),几乎不消耗被测量物体任何电。 灵活运用可测量高电压(50kV)以上,微电流(0.001pA)以及高电阻等符合国家标准GB11210《硫化橡胶抗静电和导电制品电阻的测定》的要求符合国际标准ISO1853 《导电和防静电橡胶-电阻率测量》的要求。符合国家标准GB2439 《导电和抗静电橡胶电阻率(系数)的测定方法》的要求。符合国家标准GB12014《防静电工作服》或日本JIST8118-1983《防静电工作服》的要求。符合国家标准GB/T 12703《纺织品静电性能测试方法》的要求。典型应用1、导电和防静电橡胶电阻率测量国家标准GB11210《硫化橡胶抗静电和导电制品电阻的测定》(国际标准ISO1853)这种方法又叫四电极方法,因为测量时用两个电源电极和两个电压电极。所以叫四电极,如图示,将试样(10mm~150mm宽,70mm~150mm长,2.4-6.3mm厚)。将相距10mm-20mm的两电压电极放置在试样上把FS3型静电计(标准中仅要求静电计的输入电阻大于1× 1011Ω即可)与两电压电极按图连接好,且电压电极与电流电极的距离要大于20mm以上,施加电压,读取1分钟后FS3静电计的电压,用PB-12型电流表测出流过试样的电流I,用下式计算出平均电阻R: R(平均电阻)=V(静电计读数)÷I(流过试样的电流)再用下式计算电阻率: 电阻率ρ=R(平均电阻)×S(测样截面积)÷L(电压电极距离) 利用四电极测量电阻率时一般只能测量电阻率小于1×108Ω.M的材料,要测量电阻率更高的材料,可采用二电极或三电极,使用EST120型高阻计。2、导电和防静电塑料电阻率测量方法同上3、测量防静电工作服电荷量按照国家标准GB12014-89《防静电工作服》或日本JIST8118-1983《防静电工作服》将工作服放入滚筒擦机(需另购)内摩擦使其带电,把带静电的工作服投入法拉第筒内,从FS3型静电计上读出电容C上的电压值V。利用Q=CV计算电荷量。电容C应选用聚乙烯电容以防漏电,否则读数不稳。测量纺织品的带电电荷量,可按照国家标准GB/T 12703-91《纺织品静电性能测试方法》进行。测量防静电工作服及织品时电容C的选择可参考下表:静电计量程C200V10nF20V100nF2V1μF200mV10μF 复零后可进行下一次测量。若是测量纺织品的带电电荷量,可按照国家标准GB/T 12703-91《纺织品静电性能测试方法》进行。4、测量各种粉体、液体、固体的带电电荷量把粉体或液体到入法拉第筒内。测量粉体的带电电荷量时,可根据被测粉体的多少制作不同形状和不同规格的法拉第筒。5、灵活运用测量微弱电流(皮安表)方法见下图,用FS3型静电计测出取样电阻R上的电压V,则被测电流I=V0/R 如取R=1010,用FS3的2V量程可测量的电流范围为1X10-14A到2X10-10A  由于输入线及仪器存在一定的电容及电阻,为使充电时间(正比于RC)较短和减小测量的误差,取样电阻R0不要超过1011次。6.测量灵活运用扩大测量范围6.1 电阻分压测量20kV电压甚至100kV以上的高电压为了测量超过200V的电压,应采用电阻分压其原理见下图:  其中R应采用耐压高于被测电压的高压电阻,被测电压为: 其中为FS3静电计的读数。  由于输入线及仪器存在一定的电容及电阻,为使充电时间(正比于RC)较短和减小测量的误差,取样电阻R0不要超过1011次。  例如,要测量20kV的电压,如果要求静电计上的电压约为2V,则要求R是R0的10000倍,可取R为10000M(要求耐压20kV),R0 为1M(好精密电阻) 6.2电容分压测量20kV甚至100kV以上的高电压为了测量超过200V的电压,采用电容分压,测电容C的耐压应大于被测电压,其测量原理见下图: 则: V0为静电计测得的电压。例如要测量10kV的静电,可以取C0为10nF(要求绝缘电阻大于1013, C为10pF(要求耐压为20kV以上),此时静电计上的电压1V=被测电压1kV。要注意的是测量前两个电容要短路放电,而且随着时间增加会因电容漏电或静电计极微弱的电荷泄漏显示会有少量的变化。所以用电容分压时成为可以输入电阻极高的测量高压的接触式测量静电电压表.型静电计的应用很灵活,用户可根据需要设计测量原理,但在使用过程中,不应超出静电计各档的量程,以免损坏仪表。
    留言咨询
  • 药液过滤材料泡点压力测试仪药液过滤材料泡点压力测试仪,仪器符合中华人民共和国医药行业标准(YY0770.1-2009医用输、注器具用过滤材料第 1 部分:药液过滤材料)的试验要求。执行标准YY0770.1-2009医用输、注器具用过滤材料第 1 部分:药液过滤材料)的试验要求。技术参数控制系统;PLC;操作界面:彩色7寸触摸屏,中英文切换;试剂:纯化水环境、试剂温度:(20~25)℃。压力范围:0-2000kpa,精度0.5%;高精度调压阀测试池:内径50mm*120mm亚克力透明制造3、试验步骤将经A.1预处理过的试样置于测试池底座上,试样有效测试直径应不小于35mm,旋紧测试池上盖,在测试池上盖中加入试验用试剂,用氮气升压测试,至测试池中出现第一个气泡并连续出泡时立即停止升压,读取此时的压力值,即为泡点压力。泡点压力(适用于标称孔径小于2um的膜材)。药液过滤材料在新产品投产前、原材料发生改变时、设计或工艺有重大改变时,应按GB/T 16886.1的规定对细胞毒性、皮内刺激反应、致敏、急性全身毒性和血液相容性进行生物学评价。
    留言咨询
  • 详细参数光致发光测量波长范围300-950nm单色光源光源150W氙灯激发波长250-800 nm 带宽10 nm以下(FWHW) 激发波长控制手动 多通道光谱仪测量波长范围200-950 nm波长分辨率 2 nm感光器件通道数1024 ch制冷温度-15 摄氏度A/D分辨率16 bit光谱仪类型Czerny-Turner型光纤类型光纤束(1.5 m)光纤接收面积直径 1 mm积分球 材料 Spectralon 尺寸 3.3 inch 样品夹持器(可选) 薄膜 A10095-01/-03 (不包含基底) 溶液(室温) 光致发光溶液测量夹持器A10104-01 溶液(低温)-196摄氏度(77K)光学低温测量 A11238-01 温度控制室温(RT)到+180摄氏度带样品夹持器的温度控制 样品盒(可选) 粉末 采用光致发光粉末测量皿A10095-01/-03 溶液(室温) 采用光致发光溶液测量侧臂盒A10095-02 溶液(低温) -196摄氏度(77K)采用样品管低温测量A10095-04 软件 测量项目光致发光量子效率荧光材料发光发光测量(量子效率X吸收)量子效率和激发波长的关系(-02G,-03G)光致发光谱(峰值波长,FWHM)光致发光激发谱(-02G,-03G)色彩测定(色度、色温、显色指数等)EEM(激发-发射矩阵) 特性●测量发光材料光致发光的绝对量子效率在开发新的发光材料过程中,提高他们的光致发光效率是至关重要的。提高该效率就需要测量量子效率*的精确技术。Quantaurus-QY系统包含了一个氙灯型激发光源、一个单色仪、一个氮气流可选的积分球和一个能同步测量多个波长的多通道探测器,并将所有元件集成到一个封装里。系统采用专用软件用于测量。探测器采用制冷型背照式CCD传感器,能进行高灵敏度的瞬时测量。Quantaurus-QY能处理溶液、薄膜和粉末样品,并能将溶液样品冷却到液氮温度。*光致发光过程发射光子数与发光材料吸收光子数的比值●瞬时测量多通道探测器能捕获灵敏度补偿型光谱,并且通过计算快速获得量子效率数值。对话框型专用软件使得测量过程变得更简单。●全自动硬件软件控制的单色仪可以选择激发波长以使样品能被多种波长激发。基于波长的量子效率和激发谱可以自动测定。●分析不同形式的样品Quantaurus-QY能处理溶液、薄膜和粉末样品,并能将溶液样品冷却到-196摄氏度(77K)。●波长范围:300 nm – 950 nm●测定发光材料的绝对光致发光量子效率(光致发光测量)●采用积分球测量整个谱域●制冷型背照式CCD传感器实现超高灵敏度和高信噪比测量●激发波长的自动控制●空间集约的紧凑型设计●可选择多种分析功能 ?光致发光的量子效率测量 ?激发波长关系 ?光致发光谱 ?光致发光激发谱●量子效率测量原理 量子效率和荧光寿命的关系右图的Jablonski能级图描述了普通有机分子的电子能级,并标示了能级间的电子跃迁。S0、S1和T1分别代表基态,最低单态和最低三重态。光激发后,激发态分子可以沿几种跃迁路径,包括辐射过程和非辐射过程而回到基态。辐射过程涉及了光发射,例如荧光和磷光。非辐射过程涉及内转换和系统间热释放。辐射过程和非辐射过程相互竞争。当荧光速率常数、内转换和系统间交换分别用kf, kic, and kisc来简写时,荧光寿命Tf可以用下式表示:Tf = 1/ (kf + kic + kisc) (1)同时荧光量子效率Φf可以用下式表示:Φf = kf / (kf + kic + kisc) (2)因此等式(3)可以从等式(1)和(2)推导出:kf = Φf / Tf (3)从以上的等式可以看出,荧光寿命和量子效率之间有密切的关系。这些参数在控制荧光材料的发光特性上有着基础而重要的作用。滨松集团开发了Quantaurus系列用于不同的发光材料的评估。现有的Quantaurus-Tau和Quantaurus-QY可分别用于测量荧光寿命和量子效率。这两个系统的支持性分析可以推动用户对光致发光材料的开发。您可以在下面的推荐产品区域获取紧凑型荧光寿命光谱仪Quantaurus-Tau的细节信息。应用 量子效率测量能在诸多领域满足开发和研究的应用需求。典型应用包括:包括有机EL材料、白光LED和FPD荧光粉等多种类型的发光材料的性能提升,有机金属复合物的研究,染料敏化型太阳能电池的基础特性评估,生物领域的荧光探针效率测量等。有机金属复合物荧光探针染料敏化型PV材料OLED材料量子点LED荧光粉测量程序图分析功能激发波长自动扫描左图展示了光致发光量子效率和激发波长的关系。通过机动型单色仪易于测定样本的光致发光量子效率对激发波长的函数关系。 光致发光的激发谱 样品产生的激发谱可以在激发光照射下由机动型单色仪测定。通过选择两条光标线的范围可以轻松获取某个激发波长范围内的光致发光激发谱。 光致发光谱 光致发光谱是在减去激光光后显示的。量子效率测量过程中样品的发光谱线常包含未被样品吸收的激发光成分。减去这种激发光就可以显示仅由样品本身发射的光谱。 光致发光量子效率测量 左图是量子效率测量的基本界面。荧光量子效率在测量后自动计算。激发带和发射带由光标调整来界定。量子效率的数值显示在图表下方,紧邻发光强度、峰值波长、峰值计数和峰值带宽(FWHM)。 X-Y坐标轴 除了显示光致发光谱和计算量子效率,该软件也包括彩色坐标功能。除了被测样品的色度(x,y),三刺激值(X, Y, Z)也被显示。外形尺寸发表文献应用发表文献作者标题期刊名卷号页数年份OLEDsA. Endo, K. Suzuki, T. Yoshihara, S. Tobita, M. Yahiro. and C. Adachi Measurement of phosphorescence efficiency of Ir(III) phenylpyridine derivatives in solution and solid-state filmsChem. Phy. Lett.460 155 2008T. Sajoto, P. I. Djurovich, A. B. Tamayo, J. Oxgaard, W. A. Goddard III, and M. E. Thompson Temperature Dependence of Blue Phosphorescent Cyclometalated Ir(III) ComplexesJ. Am. Chem. Soc. 1319813 2009H.-F. Chen, S.-J. Yang, Z.-H. Tsai, W.-Y. Hung, T.-C. Wang, and K.-T. Wong1,3,5-Triazine Derivatives as New Electron Transport-type Host Materials for Highly Efficient Green Phosphorescent OLEDs J. Mater. Chem. 19 8112 2009H. J. Bolink, L. Cappelli, S. Cheylan, E. Coronado, R. D. Costa, N. Lardies, Md. K. Nazeeruddin, and E. OrtiOrigin of the Large Spectral Shift in Electroluminescence in a Blue Light Emitting Cationic Iridium(III) ComplexJ. Mater. Chem. 17 5032 2007R. D. Costa, F. J. Cespedes-Guirao, H. J. Bolink, F. Fernandez-Lazaro, A. Sastre-Santos, E. Orti, and J. Gierschner A Deep-Red-Emitting Perylenediimide-Iridium-Complex Dyad: Following the Photophysical Deactivation PathwaysJ. Phys. Chem. C 113 192922009 R. D. Costa, F. Fernandez, L. Sanchez, N. Martin, E. Orti, and H. J. Bolink Dumbbell-Shaped Dinuclear Iridium Complexes and Their Application to Light-Emitting Electrochemical CellsChem. Eur. J 16 9855 2010R. D. Costa, E. Orti, H. J. Bolink, S. Graber, C. E. Housecroft, and E. C. Constable Efficient and Long-Living Light-Emitting Electrochemical CellsAdv. Funct. Mater. 20 1511 2010R. D. Costa, E. Orti, D. Tordera, H. J. Bolink, S. Graber, C. E. Housecroft, L. Sachno, M. Neuburger, and E. C. Constable Stable and Efficient Solid-State Light-Emitting Electrochemical Cells Based on a Series of Hydrophobic Iridium ComplexesAdv. Funct. Mater. 1 282 2011 荧光粉T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai Direct fabrication of metavanadate phosphor films on organic substrates for white-light-emitting devicesNature Materials 7 735 2008T. Ogi, Y. Kaihatsu, F. Iskandar, W.-N. Wang, and K. Okuyama Facile Sunthesis of New Full-Color-Emitting BCNO Phosphors with High Quantum Efficiency Adv. Mater 203235 2008荧光探针H. Ito, M. Matsuoka, Y. Ueda, M. Takuma, Y. Kudo, and K. Iguchi Quinolinecarboxylic acid based fluorescent molecules: ratiometric response to Zn2+ Tetrahedron 65 4235 2009S. Kamino, H. Ichihara, S. Wada, Y. Horio, Y. Usami, T. Yamaguchi, T. Koda, A. Harada, K. Shimanuki, M. Arimoto, M. Doi, and Y. Fujita Degign and Synthesis of Regioisomerically Pure unsymmetrical Xanthene Derivatives for Staining live Cells and Their Photochemical Properties,Bioorg. Med. Chem. Lett. 18 4380 2008Y. Mikata, A. Yamashita, A. Kawamura, H. Konno, Y. Miyamoto, and S. Tamotsu Bisquinoline-based fluorescent zinc sensorsDalton Trans. 3800 2009Takahisa Suzuki, Seisuke Arai, Mayumi Takeuchi, Chiye Sakurai, Hideaki Ebana, Tsunehito Higashi, Hitoshi Hashimoto, Kiyotaka Hatsuzawa, Ikuo Wada Development of Cysteine-Free Fluorescent Proteins for the Oxidative EnvironmentPLoS ONE 7 e37551 2012 有机复合物K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita Reevaluation of Absolute Luminescence Quantum Yields of Standard Solutions Using a Spectrometer with an Integrating Sphere and a Back-Thinned CCD DetectorPhys. Chem. Chem. Phys. 119850 2009 R. Kato, K. Suzuki, A. Furube, M. Kotani, and K. Tokumaru Fluorescence quantum yield of aromatic hydrocarbon crystalsJ. Phys. Chem. C 113(7) 2961 2009N. Hayashi, Y. Saito, H. Higuchi, and K. Suzuki Comparative Studies on Electronic Spectra and Redox Behaviors of Isometric Benzo[1,2-b:4,5-b’] difurans and Benzo[1,2-b:5,4-b’]difransJ. Phys. Chem. A 113(18) 5342 2009K. Tani, C. Ito, Y. Hanaka, M. Uchida, K. Otaguro, H. Horiuchi, and H. Hiratsuka Photophysical Property and Photostability of J-Aggregate Thin Films of Thiacyanine Dyes Prepared by the Spin-Coating Method,J. Phys. Chem. B 112(3) 836 2008M. Shimizu, K. Mochida, and T. Hiyama Modular Approach to Silicon-Bridged Biaryls: Palladium-Catalyzed Intramolecular Coupling of 2-(Arylsilyl)aryl TriflatesAngew. Chem. Int. Ed 47 9760 2008M. Shimizu, Y. Takeda, M. Higashi, and T. Hiyama 1,4-Bis(alkenyl)-2,5- dipiperidinobenzenes: Minomal Fluorophores Exhibiting Highly Efficient Emission in the Solid StateAngew. Chem. Int. Ed 48 3635 2009A. Fukazawa, M. Hara, T. Okamoto, E.-C. Son, C. Xu, K. Tamao, and S. Yamaguchi Bis-Phosphoryl-Brigged Stilbenes Synthesized by an Intramolecular Cascade Cyclization, Org. Lett 10(5) 913 2008C.-H. Zhao, A. Wakamiya, Y. Inukai, and S. Yamaguchi Highly Emissive Organic Solids Containing 2,5-Diboryl-1,4-phenylene UnitJ. Am. Chem. Soc. 128 15934 2008金属-有机化合物 A. Ishii, K. Habu, S. Kishi, H. Otsu, T. Komatsu, K. Osaka, K. Kato, S. Kimura, M. Tanaka, M. Hasegawa, and Y. Shigesato Novel Emission Properties of Melem Caused by the Heavy Metal Effect of Lanthanides(III) in a LB FilmPhotochem. Photobiol. Sci. 6 804 2007K. Matsumoto, N. Matsumoto, A. Ishii, T. Tsukuda, M. Hasegawa, and T. Tsubomura Structual and Spectroscopic Properties of a Copper(I)-bis(N-heterocyclic)carbene ComplexDalton Trans. 6795 2009Y. Matano, T. Miyajima, N. Ochi, Y. Nakao, S. Sakai, and H. Imahori Synthesis of Thiophene-Containing Hybrid Calixphyrins of the 5,10-Porphodimethene TypeJ. Org. Chem. 73(13) 5139 2008D. Kuzuhara, J. Mack, H. Yamada, T. Okujima, N. Ono, and N. Kobayashi Synthesis, Structures, and Optical and Electrochemical Properties of BenzoporphycenesChem. Eur. J 15 10060 2009D. Maeda, H. Shimakoshi, M. Abe, M. Fujitsuka, T. Majima, and Y. Hisaeda Synthesis of a Novel Sn)IV) Porphycene-Ferrocene Triad Linked by Axal Coordination and Solvent Polarity Effect in Photoinduced Charge Separation ProcessInorg. Chem. 49 2872 2010D. Maeda, H. Shimakoshi, M. Abe, and Y. Hisaeda Synthesis and photophysical behavior of porphyrin isomer Sn(IV) complexesInorg. Chem. 48 9853 2009H. Shimakoshi, T. Baba, Y. iseki, I. Aritome, A. Endo, C. Adachi, and Y. Hisaeda Photophysical and photosensitizing properties of brominated porphycenes Chem. Commun. 2882 2008
    留言咨询
  • 简介:MWQCL-4600-0500-M 系列激光模块是中红外波段量子级联激光器。基于最先进的量子阱外延层生长技术,采用磷化铟为基底、高可靠性脊波导结构,法布里-珀罗腔型。能够输出4.6 微米波段的高功率激光,光束质量好。MWQCL-4600-0500-A 系列激光模块采用镀金紫铜外壳,具有良好的导热特性。采用镀金电极,具有良好的导电特性。内涵10kΩ热敏电阻测试量子级联激光器芯片附近温度,为外围温控系统提供温度数据。MWQCL-4600-0500-A 系列激光模块采用的中红外波段量子级联激光器输出激光波长可根据需要进行设计,典型输出激光波长为4.6 微米,其输出激光谱线受注入电流影响,在较低工作电流下,其谱线宽度窄,可达到1nm,在满功率运行是其谱线宽度较宽,可达到50 nm。量子级联激光器输出激光由电源直接驱动,其输出功率可根据注入电流进行调节,调节范围0~100%。可配置脉冲电源实现输出激光的直接调制,实现调制频率范围1Hz ~10kHz。激光器的输出稳定性与供电电源和散热器密切相关。该系列量子级联激光器具有优秀的光束质量,其M2 值优于1.3,近单横模输出。MWQCL-4600-0500-A 系列激光模块体积小、重量轻。可根据用户需求灵活集成到相应的设备中。该模块可集成可见光作为指示光,便于用户光路调试和科学实验。MWQCL-4600-0500-M 系列激光器可为红外激光对抗、生物显微镜、医学照明、材料分析等领域提供优质光源。光束质量M2 值是合适的激光功率下测量的,超过合适的输出功率下运行可能会引起光束质量下降。光斑尺寸是是从距离激光出光口1m 处测量的。指向误差指激光输出方向与窗口镜片的垂直度偏差。
    留言咨询
  • 基于NV色心的超分辨量子磁学显微镜磁性材料的显微观测有助于材料的微观结构及其形成机理的研究,随着科研的发展,磁性材料研究的尺度已经趋向于亚微米甚至纳米。因此,超高分辨和超高灵敏度的测试有助于对这些小尺寸的材料进行研究。源自瑞士苏黎世联邦理工大学自旋物理实验室的Qzabre公司,结合多年的NV色心的磁测量技术与扫描成像技术开发出的QSM系统,能够实现高灵敏度和高分辨率的磁学成像,并且可以实现定量的磁学分析,使得它成为下一代扫描探针显微镜— —基于NV色心的超分辨量子磁学显微镜。相比于传统的显微观测设备如克尔显微镜(分辨率~300 nm),磁力显微镜MFM(分辨率~50 nm ),该设备除了拥有优于30 nm的磁学分辨率外,还可以进行样品表面磁场大小的定量测试,而且NV色心作为单自旋探针, 所产生的磁场不会对待测样品有扰动,在磁学显微成像上有着显著的优势。QSM超分辨量子磁学显微镜-典型应用√ 磁性纳米结构分析√ 铁磁/反铁磁磁畴成像√ 磁畴壁分析√ 电流分布成像√ 纳米尺度的温度测量√ 多铁材料扫描√ 磁场任意波形时间分辨QSM超分辨量子磁学显微镜-扫描成像原理简介金刚石NV色心为金刚石中一个氮原子取代碳原子同临近的空位形成的缺陷,它的电子能为自旋三重态,其基态ms=0与ms=±1(简并态)存在2.87GHz的零场分裂,在外磁场B作用下,ms=±1解除简并发生分裂。NV色心的自旋状态可通过激光和微波实现操作和探测,通常采用光学探测磁共振(ODMR)的方法测量外加磁场,此时NV色心处于微波作用下,当微波能量刚好等于ms=±1基态电子与ms=0基态电子的能差时发生共振,此时荧光探测表现为低谷。Ms=+1和Ms=-1基态的能差为△f=2γB,△f可以通过ODMR谱的两个共振峰谱得出,γ为NV色心的电子旋磁比,γ=28 MHz/mT ,这样可以计算出外磁场B大小。通过扫描探针持续对样品表面的磁场进行探测后,可以得出样品表面的磁场分布成像图。基于NV色心的超分辨量子磁学显微镜扫描成像原理示意图QSM超分辨量子磁学显微镜-主要特点√ 超高磁学分辨率及灵敏度√ 可定量测量样品表面磁场大小及空间分布√ 优化的光学系统获得更大的光通过率√ 多种成像模式√ 交钥匙系统√ 易更换的探针设计√ 矢量磁场选件 QSM超分辨量子磁学显微镜-技术参数√ 操作模式: NV 模式,NV quenching模式,AFM模式,MOKE模式;√ NV模式:磁场空间分辨率:30nm~70nm, 磁场灵敏度:1-10 μT/Hz^(1/2),(取决于选用探针);√ AFM模式:使用Qzabre探针分辨率~250nm,使用Akiyama探针分辨率<30nm;√ MOKE模式:使用向克尔显微模式快速获取感兴趣区域,视场150μm;√ 扫描范围:90 μm x 90 μm x 15 μm (闭环控制, 0.15nm分辨率);~6mm粗调(100nm分辨率);√ 可放置样品大小:25mm直径(标准型),大可到50mm×50mm(定制);√ 漂移率:6nm/h , 0.3℃温度稳定性;√ 优化光学系统:NA=0.75,>87% 的光通过率(600~850nm),比传统的共聚焦系统增加了>10% 的光通过率;√ 矢量电磁铁选项提供任意方向的矢量场高至75 mT;√ 定制样品托扩展直流或微波连接、加热功能等。QSM超分辨量子磁学显微镜-部分应用案例■ 反铁磁磁畴观测 反铁磁材料器件拥有电学或光学激发翻转的性能,在新型磁存储上有着潜在的应用前景,本文通过使用基于NV色心的超分辨量子磁学显微镜研究了电流脉冲注入CuMnAs微器件后弛豫过程中和弛豫后反铁磁畴织构产生的磁杂散场,研究表明大的电阻变化与写入电流脉冲引起的畴的纳米碎裂有关。通过对具有交叉几何结构的微器件中电流密度分布的成像,进一步证明了电流引起的畴结构的变化是不均匀的。在不同延迟时间获得的磁杂散场图像显示,碎片化的磁畴模式保持着对它们放松的原始状态的记忆。该研究揭示了导致金属反铁磁体电开关的微观机制,并为今后反铁磁自旋电子学领域的研究指明了方向。参考文献:Current-induced fragmentation of antiferromagnetic domains, M. S. W?rnle, P. Welter, Z. Ka?par, K. Olejník, V. Novák, R. P. Campion, P. Wadley, T. Jungwirth, C. L. Degen, P. Gambardella, arXiv:1912.05287(2019).■ 磁畴壁研究通常SOT(自旋轨道力矩)诱导的磁畴翻转强烈依赖于磁畴臂的结构,2019年Saül Vélez等人使用NV色心磁学显微镜来揭示TmIG和TmIG/Pt层的磁畴臂磁化情况。如图所示,作者对TmIG和TmIG/Pt层进行了磁学显微测试,并对图b中的两个不同位置TmIG/Pt和TmIG区域的磁畴边界d/e进行了磁场扫描,经过同模拟结果对比发现位置d处的磁畴臂处于Left Néel-Bloch中间结构,而到了位置e处的磁畴臂转变成了Left Néel 结构,这些结果表明磁性石榴石中存在界面Dzyaloshinskii-Moriya相互作用,为稳定中心对称磁性缘体中的手性自旋织构提供了可能。 参考文献:Saül Vélez, et al. High-speed domain wall racetracks in a magnetic insulator. Nature Communications (2019) 10:4750. ■ 场成像微波场的成像和探测对于未来微波器件的工程以及在原子和固体物理中的应用具有重要意义。例如,利用原子和超导量子比特进行的腔量子电动力学实验,或者量子磁体和量子点的相干控制,都是基于利用微波电场或磁场操纵量子系统。因此,控制和了解微波近场的空间分布是获得佳器件性能的关键。本文通过使用基于NV色心的超分辨量子磁学显微镜对微波电流产生的磁场空间分布进行了探测。参考文献:P. Appel, New J. Phys.17(2015)112001 ■ 斯格明子研究 “斯格明子(skyrmion)”是一种具有拓扑保护性的准粒子。由于受到拓扑保护,相比于传统的磁存储基本单元(磁畴),磁斯格明子可以被压缩到更小的尺寸,而且具有更高的稳定性;同时,它可以被很低的电流所驱动,因此,被广泛认为是未来实现高速度,高密度,低能耗磁(自旋)存储器件的基本单元。2016年,Y. Dovzhenko等人通过NV色心磁学显微镜对磁性斯格明子表面的磁场进行了测试,重构出表面杂散磁场的分布,对斯格明子的类型具有指导意义。在Bloch 型斯格明子的假定下重构出的磁化分布中,中心处z 方向磁化几乎为零, 也就是磁化方向在面内, 这样的结构无法形成一个完整的斯格明子。而Néel 型假定给出的磁化分布更加符合理论模型中斯格明子的磁化分布. 因此, Néel 型的斯格明子更加符合实验结果. 对一些新颖的磁性斯格明子结构, 如纳米条带的边缘态和双斯格明子,基于NV 色心的磁成像能够为解析其磁化结构提供帮助。参考文献:Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Büttner F, Walsworth R L, Beach G S D, Yacoby A 2016 arXiv:1611.00673 [cond-mat]. ■ 磁性涡旋结构研究磁性vortex是一种具有手性的磁性结构, 在自旋动力学和磁存储器件等方面有重要研究价值。该研究实验表明,基于NV色心的超分辨磁学显微镜能够与微磁模拟进行强有力的比较,是纳米磁性和更普遍的纳米科学基础研究的有力工具。事实上,直接测量弱磁场,不受扰动,具有纳米的分辨率,可以解决一些重要的问题,例如垂直各向异性薄膜中磁畴壁的性质,这些磁畴壁控制着薄膜的电流感应运动。参考文献:Rondin, L., Tetienne, J., Rohart, S. et al. Stray-field imaging of magnetic vortices with a single diamond spin. Nat Commun 4, 2279 (2013).■ 纳米结构中的电流分布测试纳米结构和薄膜中的电荷输运是许多科学技术现象和过程的基础,由于这种结构的纳米尺寸和电流的流动性质,直接显示这种结构中的电荷流具有挑战性。本次研究使用基于NV色心的超分辨磁学显微镜对二维导体网络(包括金属纳米线和碳纳米管)中电流密度进行磁成像。在电流密度噪声为~2×104A/cm2的情况下,对直流电流进行低至几个μA的检测。重建图像的空间分辨率通常为50nm,小为22nm。电流密度成像为研究二维材料和器件中的电子输运和电导变化提供了一条新的途径。参考文献:Chang et al., Nano Lett. 17 (2017) ■ 磁场任意波形时间分辨 基于NV色心的超分辨量子磁学显微镜除了进行过空间的磁学分辨外,还可以直接记录与时间相关的磁场,而不需要信号重建。J. Zopes & C. Degen等人使用自旋回波来差分检测波形的短片段,同时获得高的磁场灵敏度(~4μT/Hz1/2)和高的时间分辨率(~20ns),能进行任意波形的检测。可能的应用包括微型射频发射器的现场校准、集成电路中的信号映射检测、脉冲光电流的检测和薄膜中的磁开关等。 参考文献:J. Zopes & C. Degen, Phys. Rev. Appl. 12, 054028 (2019)
    留言咨询
  • 电液伺服材料试验机 400-860-5168转1580
    一、电液伺服材料试验机产品介绍: 电液伺服材料试验机适用于金属材料及构件的拉伸、压缩、弯曲、剪切等试验,也可用于塑料、混凝土、水泥等非金属材料同类试验的检测。本机采用油缸下置液压钳口,试验空间可调整。应用微机电液伺服(比例)全数字闭环控制系统,加载速度可自由设定。测量采用进口高精度传感器,能实现在恒定的应力的情况下结果力值、位移、变形、计算机跟踪试验数据和曲线动态显示。试验数据编辑、曲线浏览、存储、联网,并能打印出完整的所需试验报告和曲线。二、电液伺服材料试验机技术参考:1、型号规格:qjwe-50b、qjwe100b、qjwe300b、qjwe600b、 qjwe1000b、qjwe2000b2、测试精度:±1%3、相对分辨率:≤0.5%4、压缩空间:550、600、700mm5、拉伸空间:550、600、700mm6、圆试样夹持直径:φ6-12、φ10-32、φ13-40、φ15-60、φ20 -70mm7、扁试样夹持直径:0-15mm、0-15mm、0-30mm、0-40mm、0-40mm8、活塞行程:200mm、 250mm9、弯曲支点距离:400mm、600mm、700mm、800mm、900mm、10、剪切试样直径:φ10mm、φ10mm、φ20mm、φ20mm、φ30mm11、尺寸(mm):640×550×1800 1255×866×470012、电机功率:1.5kw或 3.25kw,3相13、机台重量:1200或6600kg三、电液伺服材料试验机公司承诺:1.购机前,我们专门派技术人员为您设计合适的流程和方案2.购机后,将免费指派技术人员为您调试安装3.整机保修一年,产品终身维护4.常年供应设备的易损件及耗品确保仪器能长期使用
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制