当前位置: 仪器信息网 > 行业主题 > >

联吡啶复合物

仪器信息网联吡啶复合物专题为您整合联吡啶复合物相关的最新文章,在联吡啶复合物专题,您不仅可以免费浏览联吡啶复合物的资讯, 同时您还可以浏览联吡啶复合物的相关资料、解决方案,参与社区联吡啶复合物话题讨论。

联吡啶复合物相关的资讯

  • 德国应用化学:蛋白质复合物原位解析新技术
    作为生命活动的执行者,蛋白质通过相互作用形成复合物等形式行使其特定的生物学功能。近日,中国科学院大连化学物理研究所研究员张丽华、研究员赵群等研制了一种基于糖苷键的质谱可碎裂型交联剂,显著地提高了交联信息的检索通量和鉴定准确度,同时具有良好的两亲性和生物兼容性,实现了活细胞内蛋白质复合物原位交联和规模化精准解析。相关成果发表在《德国应用化学》上。大连化物所供图  细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合物结构和功能至关重要。而化学交联技术,尤其是原位化学交联质谱技术具有规模化分析蛋白复合物原位构象和相互作用界面的优势,已成为活细胞内蛋白质复合物解析的重要技术。但是,目前活细胞原位交联面临着细胞扰动大、交联肽段谱图复杂程度高等问题。因此,如何实现活细胞低扰动下的原位快速交联是蛋白质原位构象和相互作用精准解析的先决条件。  本工作中,团队基于糖分子的高生物兼容性和糖苷键的质谱可碎裂特征,将糖苷键引入到功能交联剂的骨架设计中,筛选并获得了高生物兼容性的海藻糖作为骨架分子,研制了质谱可碎裂型交联剂——海藻糖二琥珀酰亚胺酯。该交联剂较目前已报道的可透膜型化学交联剂,展示了更加优异的细胞活性维持能力,可在低扰动状态下实现细胞内蛋白质复合物的高效交联。  在此基础上,低能量的糖苷键—高能量的肽键的质谱选择性碎裂模式,可以将“工字形”的交联肽段数据分析降幂为常规交联剂片段修饰的线性肽段数据检索,极大地降低了交联肽段谱图分析的复杂性,显著地提高了交联肽段的鉴定效率与准确度。
  • 非变性质谱高通量、定量分析肽交换MHCI复合物
    大家好,本周为大家分享一篇最近发表在Analytical Chemistry上文章,High-Throughput, Quantitative Analysis of Peptide-Exchanged MHCI Complexes by Native Mass Spectrometry1。该文章的通讯作者是美国基因泰克公司的Wendy Sandoval研究员。  癌症疫苗是通过利用肿瘤细胞相关抗原,来唤醒人体针对癌症的免疫系统。常见的策略是通过对病人的肿瘤细胞样本进行基因测序来寻找特征性抗原肽,该抗原肽会与I类主要组织相容复合体(MHCI)相结合并呈递至CD8+细胞表面,通过与CD8+细胞表面受体相结合从而诱导免疫反应。为了实现整个过程,研究人员通常会结合基因测序和计算机预测结果设计多个候选抗原肽,每个候选肽都需要通过实验测试来确认它与MHCI分子的结合能力以及相关免疫原性。此外,考虑到编码MHCI的基因具有多态性,候选抗原肽还需要与不同等位基因编码的MHCI分子进行测试。因此,本文开发了一种高通量方法,利用非变形质谱快速筛选候选抗原肽并表征形成的肽-MHCI复合物(pMHCI)。  pMHCI复合物中抗原肽的体外载入一直以来都是难点,因为MHCI复合物(包括HLA和β2M亚基)本身并不稳定,需要长度为8~10的多肽链载入到MHCI的凹槽以保持完整。本文则通过利用紫外光裂解肽-MHCI复合物(UV-MHCI)的肽交换实现抗原肽的载入,具体步骤如图1A所示,通过紫外光照,UV-MHCI中的高亲和肽被切割转为低亲和肽段,该低亲和力肽段极易发生肽交换,通过监测新的pMHCI复合物的形成实现对候选肽的评估。目前常用的检测pMHCI形成的工具包括ELISA、TR-FRET以及2D-LC-MS。然而这些方法仅能提供有限的信息关于肽交换、pMHCI分子质量,对形成的pMHCI复合物无法进一步的表征。事实上,pMHCI复合物对后续诱导免疫反应至关重要。  图1. 癌症疫苗的免疫监测的示意图:A) 筛选流程,B检测方法。  为了确认非变性质谱(nMS)能否用于pMHCI复合物表征以及肽交换率的检测,作者对UV-MHCI以及6个标准肽段进行了考察(图2)。未经UV照射的UV-MHCI MS谱图(图2A)可以观察完整的UV-MHCI复合物以及丢掉紫外光裂解肽的MHCI。MHCI复合物被认为是气相解离产生的,因为没有活性肽的稳定作用,MHCI很难存在于溶液相中,溶液中没有MHCI,“空壳”的MHCI只有可能是质谱中UV-MHCI的气相裂解产生的。图2B证实了这一观点,经紫外光照射后,紫外光裂解肽由高亲和力转为低亲和力,从MHCI上脱落,MHCI解离成HLA和β2M亚基,谱图中能观察到HLA和β2M亚基信号。确认了MHCI是由peptide-bound population产生的信号,作者开始用该方法去定量标准肽的肽交换率。如图2C为UV-MHCI与标准肽孵育并过夜UV照射得到的谱图,仅观察到完整的pMHCI以及“空壳”MHCI的信号,说明实现了100%的完全肽交换。如图2D,肽交换率随孵育时间改变,2小时孵育时间足以实现最大肽交换。  图2. nMS表征UV光照A)前B)后的UV-MHCI复合物,C)nMS测定UV-MHCI与标准肽的肽交换率,D)标准肽肽交换率随时间的变换情况。  为了提高分析通量,减少样本消耗,作者在nMS基础上开发了SEC-nMS和CZE-nMS系统。作者用SEC-nMS系统测定了50个候选肽的交换率,说明该系统能够进行中或大规模的数据采集。相比较SEC-nMS而言,CZE-nMS系统具有更高的灵敏度和通量,样品体积消耗从微升减少至纳升,分析时间也缩短为2 min(图3A)。检测信号与进样量呈线性关系,注射体积为3 nL时,最低检测限为6 ng(图3BCD)。作者测定了67个候选肽跨越4种等位基因编码的MHCI分子的肽交换率(图3E)。此外,通过将UV-MHCI复合物同时与四种以上的候选肽进行孵育可在单个实验中同时检测它们的相对肽交换率以及与MHCI结合的亲和力(图3F)。作者还提出Vc50这个概念,即导致50%的pMHCI复合物发生解离的碰撞电压,可作为评估pMHCI复合物稳定性的重要参数。  图3. 使用CZE-MS系统高通量分析pMHCI复合物  除了检测pMHCI复合物的形成,测定肽交换率,nMS还可以对形成的复合物进行进一步的结构表征。如图4所示,native top-down的分析策略可获得多层次的结构信息。本文使用的Orbitrap Eclipse “Tribrid” 质谱,图4A为完整pMHCI的MS1谱图,图4B为施加源内电压(SID)促使蛋白解离为亚基,图4C是将14+ pMHC单独分离出,为后续HCD活化做准备。图4D为pMHCI复合物经HCD解离后的MS2谱图。图4E和图4F则分别为对肽段以及HLA亚基进行top-down测序的结果。这些多层次的结构信息能够帮助区分HLA亚型、阐明候选肽的序列,包括一些PTMs、二硫键信息。这些结构细节可能会影响候选肽与MHCI分子间的亲和力甚至是后续T细胞受体的识别。  图4. Native top-down分析策略获得pMHCI复合物的多层结构信息  总之,本文将非变性质谱(nMS)与分子排阻(SEC)或毛细管电泳(CZE)分离技术相结合用于高通量筛选pMHCI复合物中的候选肽。该方法能够直观确认pMHCI的完整性,Vc50可作为评估复合物气相稳定性的重要指标,通过native top-down分析策略可获得多层次的结构信息。以上所有确保了后续临床T-细胞实验的正常进行。  撰稿:刘蕊洁  编辑:李惠琳  原文:High-Throughput, Quantitative Analysis of Peptide-Exchanged MHCI Complexes by Native Mass Spectrometry  参考文献  1. Schachner LF, Phung W, Han G, et al. High-Throughput, Quantitative Analysis of Peptide-Exchanged MHCI Complexes by Native Mass Spectrometry. Anal Chem. 2022 10.1021/acs.analchem.2c02423. doi:10.1021/acs.analchem.2c02423
  • 无压力表征三元复合物 | Dianthus助力PROTAC药物研发
    前言 /PROTAC表征难题重要靶点和候选药物的亲和力筛选非常具有挑战性。当您的亲和力筛选项目涉及到PROTAC二元和三元复合物,片段化合物库及固有无序蛋白时,需要进行样品固定的SPR技术和样品消耗量大的ITC技术的检测难度会大大增加,而这些应用则是Dianthus所擅长的。光谱位移技术(Spectral Shift)光谱位移技术是通过荧光发射光谱的蓝移或红移来检测分子间的结合。Dianthus可以为您解决哪些表征难题?Dianthus是一个基于微孔板的亲和力筛选平台,使您能够克服其他生物物理方法带来的挑战。避免这些常见的障碍,让您的PROTAC项目继续推进。1通过固定二元复合物的方法来进一步研究三元复合物,二元复合物的稳定性会受到影响。答Dianthus直接在溶液内进行检测,结合平衡状态可控。因此,在表征三元结合的过程中二元复合物可保持稳定。2在再生过程中,共价分析物几乎不可能从传感器芯片上完全去除。答在单独的孔中直接在溶液中检测分子间相互作用,使得您的亲和力分析更简单、无压力且更经济实惠。3其他检测方法难以测量warheads这样的小分子的亲和力。答光谱位移技术不依赖于分子量,因此您可以使用 Dianthus 对片段化合物进行初步筛选,还可以在后续亲和力优化中筛选PROTAC 候选物。4靶点和配体的样品量有限答使用Dianthus进行亲和力筛选无需耗费时间进行大量方法开发,检测时的样品消耗量很低,将极大节省所有的样品量。选择Dianthus表征PROTAC候选物Dianthus 是基于微孔板且无微流体系的亲和力筛选平台,您可通过 gRPC 框架轻松将其集成到任何自动化设置中。无需定期维护,您的项目不会因停机而延迟。Dianthus 随时准备好为您效劳 —— 7天24小时不间断。点击图片下载PROTAC电子书,了解更多技术难题
  • GEHC推出高效率筛查药物复合物基因毒性软件
    2005年11月17日华盛顿 DC消息 ——通用电气医疗集团(GE Healthcare)今天在华盛顿 D.C.的IBC生命科学高内涵分析(IBC Life Sciences’High Content Analysis)会议上推出了Micronucleus Formation Module。这种应用于In Cell 1000和In Cell 3000活细胞图像分析测定系统的新软件,可供在药物开发前期节省时间和资源地筛查药物的基因毒性。 通用电气医疗集团 Discovery Systems的产品开发副总裁 John Burczak 说道:“这种软件的推广将对药物及其开发过程有很大帮助。该技术能让一些公司在开发工作的前期识别复合物所具有的损害DNA的活力,而不是在药物研发过程结束时再检测这些复合物,从而即节省时间又省钱。” 这种微核分析(micronuclei assay)能识别由基因毒性复合物所引起的DNA损伤,并且是美国食品药品管理局(FDA)新药批准过程种最决定性的分析。用这种由FDA所强制规定的手工方法,每种化合物要花费多达两周才能得到分析结果,因此它仅仅用在药物开发较后期的步骤中。当与In Cell 3000活细胞图像分析测定系统一起使用时,该软件能在10 分钟以内完成对一块96孔板微核检测的成像和分析工作。因而让这种关键的基因毒性检测能在复合物的前期步骤中完成,以消除这些具有基因毒性的潜在复合物。 Burczak 说道:“Micronucleus 软件使In Cell活细胞图像分析测定系统成为研究工作者准确和高效进行大规模基因毒性筛查最理想的工具。通用电气医疗集团致力于为基于细胞的高内涵药物的筛选和研究工作提高软件分析能力。”
  • 人工智能成功预测蛋白质相互作用 确定100多个新蛋白质复合物
    美国科学家主导的国际科研团队在最新一期《科学》杂志撰文指出,他们利用人工智能和进化分析,绘制出了真核生物的蛋白质之间相互作用的3D模型,首次确定了100多个可能的蛋白质复合物,并为700多个蛋白质复合物提供了结构模型,深入研究蛋白质相互作用有望催生新的药物。  研究负责人之一、美国西南大学人类发育与发展中心助理教授丛前(音译)称,研究结果代表了结构生物学新时代的重大进步。  丛前解释说,蛋白质通常成对或成组工作,形成复合物,以完成生物体存活所需的任务。虽然科学家已经对其中一些相互作用开展了深入研究,但许多仍是未解之谜。了解蛋白质之间所有的相互作用将揭示生物学的许多基本方面,并为新药研发提供参考。  但半个世纪以来,鉴于许多蛋白质结构的不确定性,科学家们很难了解这些相互作用。2020年和2021年,深度思维公司和华盛顿大学戴维贝克实验室独立发布了两种人工智能技术“阿尔法折叠”和RoseTTAFold,它们使用不同的策略预测蛋白质结构。  在最新研究中,丛前等人通过对许多酵母蛋白复合物建模,扩展了人工智能结构预测工具箱。为了找到可能相互作用的蛋白质,科学家们首先搜索相关真菌的基因组,寻找发生突变的基因,然后使用上述两种人工智能技术来确定这些蛋白质是否可以3D结构结合在一起。  他们确定了1505种可能的蛋白质复合物,其中699个结构已被表征,验证了其方法的实用性;另外700个复合物目前获得的数据有限,剩下106个从未被研究过。为更好地理解这些很少被描述或未知的复合物,团队研究了类似的蛋白质,并根据新发现的蛋白质与此前已知蛋白质的相互作用,确定了新发现蛋白质的作用。
  • ​基于碰撞活化解离技术的非变性自上而下质谱用于蛋白复合物高级结构解析
    大家好,本周为大家分享一篇最近发表在 Journal of the American Chemical Society上文章,Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes1。该文章的通讯作者是美国加利福尼亚大学洛杉矶分校的Joseph A. Loo教授。非变性质谱(native MS,nMS)通常用于揭示蛋白及其复合物的分子量大小和化学结合计量比,但若要进一步阐明深层次的结构信息,则需要与串联质谱结合,即非变性自上而下质谱(nTDMS),通过对母离子进行二级甚至多级碎裂可获取额外的序列、翻译后修饰(PTMs)以及配体结合位点信息。此外,nTDMS能以构象敏感的方式断裂共价键,这样就可以从碎片模式推断出有关蛋白高级结构的信息。值得注意的是,使用的激活/解离方式会极大地影响得到的蛋白质高阶结构信息。电子捕获/转移解离(ECD、ETD或ExD)和紫外光解离(UVPD)等快加热的活化方式因其能够在保留蛋白整体结构的情况下先对共价键进行断裂而被广泛应用于nTDMS分析中。而慢加热的活化方式如碰撞活化解离(CAD)会在断键前进行能量重排,导致一些较弱的非共价相互作用先发生破坏,例如:亚基的释放和展开,因此对高阶结构表征没有帮助。而此次Joseph A. Loo课题组的研究结果显示使用基于orbitrap的高能C-trap解离(HCD)同样也可以从天然蛋白复合物的中直接获得序列信息,并且碎片模式可以提供有关其气相和溶液相高阶结构信息。此外,CAD还可以生成大量的内部碎片(即不包含N-/ C-端的片段)用于揭示蛋白质复合物的高阶结构。为了研究蛋白复合物HCD的碎裂化情况,作者比较了酵母来源的乙醇脱氢酶四聚体(ADH)在Complex-down MS (psedo-MS3)和nTDMS两种分析策略下的碎片模式。如图1所示,在Complex-down MS分析中,ADH经源内解离(ISD)释放出单个亚基,该亚基经HCD碎裂生成肽段b/y离子。而在nTDMS分析中,肽段离子则可以从复合物中直接获得。如图2(上)所示,在Complex-down MS分析中总共获得了24个b离子和18个y离子,能够实现11.8%的序列覆盖率。近乎相等数目的b、y离子表明Complex-down MS分析中释放的ADH亚基N-端和C-端均具有较高的表面可及性,即亚基发生去折叠。此外,碎片模式也揭示了N-端乙酰化、V58T突变体以及Zn2+结合位点等信息。相比之下,nTDMS分析则更反映ADH的高阶结构,如图2(下)所示,在nTDMS分析中主要检测到b离子,几乎没有亚基信号,说明b离子是直接由复合物中共价键断裂产生的。ADH的nTDMS分析共产生了60个N-端b离子和3个C-端y离子(17.6%序列覆盖率)。由HCD产生的大量N端碎片类似于ADH基于电子和光子解离技术产生的nTDMS产物。将这些片段映射到ADH的晶体结构上可以看出,N端区域比C端区域更容易暴露于溶剂,而C端区域主要形成复合物的亚基-亚基界面。ADH的碎片离子中来源亚基界面断裂的仅占8%,大部分碎裂都发生在溶剂可及的N-端。图1 Complex-down MS和nTDMS分析流程图1 Complex-down MS(上)和nTDMS(下)碎片模式比较ADH的nTDMS分析充分展现了CAD在蛋白复合物高阶结构表征上的潜力,为了进一步验证,作者还选择了其他的蛋白复合物进行实验,如醛缩酶同源四聚体、谷胱甘肽巯基转移酶A1二聚体、肌酸激酶二聚体等。这些蛋白复合物在n-CAD-TDMS分析中都产生了与结构对应的碎片离子,说明基于CAD的nTDMS分析是具有普适性。当然也会存在一些例外,膜蛋白水通道蛋白(AqpZ)同源四聚体在nTDMS分析过程中产生了高丰度的单体亚基、二聚体、三聚体信号,这应该归因于AqpZ四聚体亚基之间的弱疏水结合界面,导致亚基的释放发生在共价键断裂之前,因此产生的b/y离子无法反映蛋白复合物的空间结构。相较而言,以盐桥为主要稳定作用的蛋白复合物,如ADH、醛缩酶等则更容易在nTDMS分析中产生肽段碎片离子。此外,基于CAD的nTDMS分析中还发现了大量的内部碎片,ADH产生的大部分内部碎片来源于溶剂可及区。尽管内部碎片难以辨认,但可以大幅度提高序列覆盖率,提供更精细的结构信息。一个从小分子裂解衍生到大分子解离的假设是,在实验的时间尺度内,由碰撞引起的激活是完全随机化的,并以沿着最低能量途径引导碰撞诱导的解离。然而,这些假设没有考虑到熵的要求,缓慢重排可能是释放亚基所必须的,例如重新定位盐桥将一个亚基与其他亚基相连。在碰撞次数或每次碰撞能量不足以碰撞出能释放亚基的罕见构型的情况下,以释放出更小的多肽碎片(具有更少的约束) 代替重排可能具有更高的竞争性。总之,本文展示CAD在nTDMS分析中的应用,无需基于光子或电子的活化方式,CAD可直接从蛋白复合物中获得肽段离子,并且该碎裂离子能够反映蛋白复合物的空间结构。撰稿:刘蕊洁编辑:李惠琳原文:Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes参考文献1. Lantz C, Wei B, Zhao B, et al. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc. 2022 144(48): 21826-21830.
  • 李惠琳团队成果:非变性自上而下质谱用于蛋白及其复合物结构表征
    大家好,本周为大家分享一篇李惠琳课题组最近发表在Mass Spectrometry Reviews上的综述,Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes1。结构生物学的快速发展极大地促进了蛋白结构表征工具的开发。其中,基于质谱的分析方法凭借其快速、灵敏、高通量的优势从中脱颖而出。相比于原子水平的高分辨结构表征工具如X-射线晶体学、核磁共振(NMR)、冷冻电镜(Cryo-EM)等,基于质谱的分析方法能够有效地补充蛋白动力学结构变化的信息,并且不受蛋白纯度、分子量大小的限制。而相较于低分辨的蛋白表征工具如圆二色光谱、动态光散射等,基于质谱的分析方法能够提供更高的肽段或残基水平分辨率,获取额外的序列、翻译后修饰(post‐translational modifications, PTMs)、局部空间结构等信息。常见的结构质谱包括:氢氘交换质谱(hydrogen‐deuterium exchange MS, HDX-MS)、交联质谱(cross‐linking MS, CX-MS)、表面标记质谱(covalent labeling MS, CL-MS)等。已有相当多的文献对这些方法进行了详细的介绍2,3,在此不再赘述。而此篇综述将重点介绍非变性至上而下质谱(native top‐down MS, nTDMS)在蛋白及其复合物结构表征中的应用。在过去的十年,非变性质谱(native MS, nMS)特别是nTDMS发展迅速。nMS作为一个桥梁将蛋白质组学与结构生物学相连,其保留非共价相互作用的特性使其广泛用于蛋白复合物四级结构表征,如推断亚基组成、化学计量比、亚基排布等。然而,对于一些深层次的结构信息,如氨基酸序列、PTMs、配体结合位点、亚基结合界面等,仅靠单一的nMS是无法获取的。与之对应的,变性条件下的自上而下质谱(TDMS)能够在完整蛋白水平下直接获得序列以及PTMs信息,虽然有助于PTM的准确定位以及蛋白、蛋白异质体(Proteoform)的鉴别,但却丢失了涉及非共价相互作用的高级结构信息。受限于质谱仪器的发展,在早期,nMS与TDMS通常在两个独立的实验中进行,随着质量分析器以及多种活化/碎裂方式的开发,nMS与TDMS的能够有效的结合,充分发挥各自的优势,在实现多层次结构信息获取的同时,也在不断挑战更加复杂的生物体系,如核糖体、膜蛋白、内源蛋白混合物等。实验设计nTDMS已成为表征蛋白质和复合物的初级到高级结构的重要工具。随着蛋白质样品的大小和复杂性的增加,用于nTDMS的仪器不仅需要符合某些特定标准,还需要不断提高其性能以满足这些增加的需求。nTDMS分析中几个关键的步骤包括:样品前处理、ESI离子化、二级碎裂、质量检测以及数据处理。样品前处理为了维持蛋白的自然状态,通常需要在生理环境中进行nMS分析。然而,缓冲液中的非挥发性盐会产生大量盐簇并与蛋白离子形成非特异性加合物,从而抑制离子信号、降低检测的准确度和灵敏度。因此,样品前处理过程中最重要的环节就是除盐。然而适当的离子强度有助于维持蛋白的三维结构,所以通常的步骤是对蛋白进行缓冲液置换,将蛋白置换至醋酸铵或碳酸氢铵等挥发性盐溶液中。目前已开发了多种在线或离线的除盐方法,详细内容的可在综述原文中查看,此处不再赘述。除了使用非挥发性缓冲盐,减小ESI喷针孔径大小也可以提高系统耐盐能力。碎裂/活化方式二级碎裂方式是实现nMS到nTDMS的关键。常见的活化方式按照原理可分为三类:基于碰撞(CID, SID)、基于电子(ECD, ETD, EID等)以及基于光子(UVPD, IRMPD)的活化/碎裂方式。值得注意的是,CID与IRMPD都属于慢加热的活化方式,能量累积的非常慢,以至于在发生碎裂之前已经进行了能量重排,一些较弱的或者不稳定的键会优先发生断裂,最终导致非共价相互作用在活化的过程中被破坏。而SID、ExD与UVPD则属于快加热的活化方式,碎裂发生在能量重排之前,非共价相互作用得以在这一过程保留下来,碎片化程度受到非共价相互作用的限制,因此可被用于表征蛋白的空间结构。此外,将多种活化方式的结合或与离子淌度技术串联也是获取多层次结构信息的关键。质量检测与变性条件下的质谱分析相比,蛋白复合物在天然环境下通过电喷雾电离产生的电荷数相对较少,因此需要具有较大m/z 范围的质量分析仪(高达m/z = 20,000 Da甚至更高)。最初,nMS分析高度依赖基于飞行时间(time of fight, TOF)质量分析器,因为TOF具有理论上无限的m/z范围。近年来,高分辨质量分析器如轨道阱(Orbitrap)和傅里叶变换离子回旋共振(FTICR)为生物大分子的nTDMS分析带来了新的活力。在综述中,我们简要介绍了每种质量分析器的最新进展,并重点强调了FTICR和Orbitrap在nTDMS分析中的发展和应用。数据处理除了基本的硬件设施,配套的数据处理软件也十分重要。nTDMS数据处理流程通常包括以下4个步骤:同位素峰选取、去卷积、数据库搜索、验证和可视化。正文中,我们对每个步骤进行了简要描述,并重点介绍用于数据库搜索和异质体鉴别的软件。多层次结构信息的获取得益于多种活化/碎裂方式的开发,nTDMS分析可同时获得多层次的结构信息(图1)。主要有以下两种策略:第一种策略,完整蛋白复物(MS1)首先被CID或SID碎裂至亚基(MS2),亚基可进一步碎裂肽段(MS3),在MS1及MS2中可获蛋白复合物结合计量比、拓扑结构、蛋白异质性等信息,在MS3阶段则可获取蛋白序列、PTMs定位以及异质性来源等信息。第二种策略则是完整蛋白复合物(MS1)直接被UVPD或ExD碎裂成肽段(MS2),受益于UVPD以及ExD独特的碎裂方式,发生碎裂的区域主要位于蛋白复合物的表面可及区,而未发生碎裂的区域可能位于蛋白复合物的核心区域或参与亚基相互作用界面。不同的碎裂情况反映不同的空间结构,带有配体的肽段碎片可以用于配体结合位点的定位。综述中,我们详细阐述了如何利用nTDMS获得蛋白复合物的多层次结构信息以及如何将碎片信息与结构信息相关联。图1. nTDMS可提供的多维度结构信息复杂生物体系中的应用蛋白质的空间结构决定了其生物功能,而蛋白质-蛋白质/配体相互作用是大多数生物进程的基础。通过突变、翻译后修饰、或者与金属、小分子配体、蛋白质、DNA、RNA等分子发生共价或非共价的相互作用,蛋白质功能在活细胞中不断受到调节。随着MS仪器、方法的不断开发和数据处理软件的逐渐成熟,nTDMS已被广泛应用于各种生物系统,从小蛋白质、蛋白质-配体复合物到大分子组装体,如膜蛋白、蛋白酶体、核糖体、病毒衣壳,甚至是内源性蛋白混合物。它们中的许多都是极具挑战性的体系,即便是采用NMR、X-射线晶体学或Cryo-EM等生物物理方法分析也是非常困难的。因此,来自nTDMS的见解对于理解这些蛋白质和复合物至关重要。在这里,我们总结nTDMS在所有生物体系中的应用实例,旨在全面了解nTDMS在解决生物学问题方面的潜力。小蛋白的结构表征和区分最初,nTDMS主要用于50 kDa以下单体蛋白的结构表征,大部分的研究都是围绕蛋白质气相结构与溶液相结构对比展开的。根据nTDMS的碎裂情况,推断蛋白的气相空间结构,并与NRM获得的溶液结构进行对比。此外,如果在二级碎裂前增加离子预活化有助于蛋白分子的展开,以便研究蛋白气相展开路径以及获取蛋白质内部空间结构信息。得益于碎片离子对蛋白空间结构的高度敏感性,nTDMS还被用于区分不同蛋白亚型、蛋白突变体的结构差异。蛋白-小分子配体相互作用随后,nTDMS应用到了蛋白-配体复合物中,不同的配体类型适合不同的活化/碎裂方式,除了金属离子、RNA/DNA等以静电作用为主的蛋白配体能够在CID活化时存活,大部分复合物的碎裂都需要选择ECD或UVPD等方式。nTDMS可用于蛋白-配体结合计量比、亲和力、结合位点、作用机制、结构动力学/变构效应的研究。它是一种强大的结构表征工具,其在抑制剂筛选、酶催化监控、RNA-蛋白质互作机制的应用实例在正文中已有详细的介绍。蛋白-蛋白相互作用随着仪器设备的快速发展,nTDMS已应用到更大的体系如蛋白-蛋白复合物,通过组合不同的活化/碎片化技术,在一次实验中可以获得多层次的结构信息。nTDMS可以帮助区分不同的蛋白异质体,并在完整复合物、亚基、肽段三个水平上确定异质性的来源。蛋白的异质性与其生物学功能密切相关,通过调整蛋白的异质性可以实现蛋白功能的转变,具体的应用案例已在正文详细介绍。除此之外,nTDMS还可以用作蛋白-蛋白复合物结合界面、气相展开以及深层次结构探索。治疗性抗体和抗原-抗体复合物在过去的几十年中,治疗性抗体已成为最受欢迎的候选药物之一,它们的高特异性和低副作用促进了治疗性抗体的快速增长。在综述中,我们还详细地介绍了nTDMS在治疗性抗体和抗原-抗体复合物体系中的应用。nTDMS可用于抗体可变区的测序、具有不同药物计量比(DARs)的抗体耦联药物的结构表征、以及抗体-抗原复合物中互补决定区及抗原表位区的鉴别。膜蛋白无论是对于传统的结构表征工具如:X-射线晶体学、NMR还是nTDMS,膜蛋白的结构表征一直以来面临着诸多困难。膜蛋白具有低丰度以及低溶解性等特点,最常见的方法是利用与nMS兼容的膜模拟物如:去污剂胶束、纳米微盘等去溶解膜蛋白,在nTDMS分析时再将膜蛋白从胶束中释放出来,释放出的蛋白可在nTDMS中进一步碎裂获取结构信息。具体的实验流程和应用实例可在综述正文中查看。大分子组装体正文中,还介绍nTDMS在极具挑战性的大分子组装体如:核糖体、蛋白酶体、病毒衣壳中的应用实例,这些生物体系普遍存在的问题是分子量非常大(接近MDa),且具有较高的异质性。对这些大分子机器进行nTDMS分析要求仪器具有较高的质量范围以及分辨率。大分子机器的结构表征充分说明nTDMS方法无论在深度还是广度上都有极大的提升。Native top-down MS蛋白质组学值得注意的是,当质谱前端结合非变性分离技术,如native GELFrEE,尺寸排阻色谱,毛细管区带电泳,离子交换色谱等,nTDMS还可以在靶向模式或发现模式下用于复杂蛋白质组的高通量分析,如内源性蛋白混合物。nTDMS分析最大的优势在于它能区分不同的蛋白异质体,并对每种蛋白异质体进行结构表征,这是其他在肽段水平进行分析的结构质谱法如:HDX-MS, CL-MS所无法实现的。总结与展望总之,在这篇综述中我们重点介绍了nTDMS的最新进展和在不同生物体系中的应用,强调通过nMS与TDMS结合可以获得额外的多层次结构信息。新技术的出现以及仪器的进步使nTDMS能够应用于结构生物学中日益复杂的生物样本体系,包括蛋白质配体、多聚蛋白复合物、大分子组装体和内源性复合物。尽管这样,nTDMS分析仍面临着的挑战,包括但不限于前端的样品分离、离子化、去溶剂化、高质荷比分子传输、异质性样本的分析以及软件的开发。未来nTDMS将与其他的一些结构表征方法相结合以获取更加全面的结构信息。正文中对未来发展趋势进行了讨论并提到了其他一些令人兴奋的创新技术如:基于MALDI离子源的质谱成像技术用于蛋白原位分析、电荷检测质谱(CDMS)用于异质性样本分析,多重技术的结合将为蛋白质复合物的nTDMS研究开辟新的道路。我们希望这篇综述能让读者更好地理解nTDMS提供的独特结构信息,并推动该方法的广泛应用。撰稿:刘蕊洁编辑:李惠琳原文:Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes. 参考文献1.Liu RJ, Xia SJ, Li HL. Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes. Mass Spec Rev. 2022 e21793. https://doi.org/10.1002/mas.217932.Britt HM, Cragnolini T, Thalassinos K. Integration of mass spectrometry data for structural biology. Chem Rev. 2022 122(8):7952-7986. 3.Liu XR, Zhang MM, Gross ML. Mass spectrometry-based protein footprinting for higher-order structure analysis: fundamentals and applications. Chem Rev. 2020 120(10):4355-4454.
  • 施一公团队再发《科学》报道复合物3.3埃高分辨电镜结构
    center /center p    strong 科研进展 /strong /p p   2018年5月25日,生命中心PI施一公教授研究组就剪接体的组装机理与结构研究于《科学》(Science)杂志以长文形式再次发表重大研究成果。这篇题为《完全组装的酿酒酵母剪接体激活前结构》(Structures of the Fully Assembled Saccharomyces cerevisiae Spliceosome Before Activation)的论文报道了酿酒酵母剪接体处于被激活前阶段的两个完全组装的关键构象——预催化剪接体前体(precursor pre-catalytic spliceosome,定义为“pre-B复合物”)和预催化剪接体(pre-catalytic spliceosome,定义为“B复合物”)。这两个整体分辨率分别为3.3-4.6埃和3.9埃的高分辨率三维结构首次展示了在剪接体组装过程中 pre-mRNA的5’剪接位点和分支点(BPS)的识别状态与动态变化,回答了剪接体激活前pre-mRNA的5’剪接位点和分支点识别机理,以及激活过程中5’剪接位点和分支点如何逐步进入活性位点、剪接体如何逐步组装并通过结构重组最终完成激活等重要问题。 /p p   RNA剪接是真核生物基因表达调控的重要环节之一。上世纪70年代,科学家们首次发现真核生物基因的不连续性,从而表明遗传信息从DNA转移到RNA上之后,需要经历有效遗传信息的 “剪断”与重新“拼接”,这种有效遗传信息的拼接与“无效”遗传信息的去除,被称为RNA剪接。RNA剪接普遍存在于真核生物中,随着物种的进化,含有内含子的基因数量增加,发生RNA剪接的频率也相应增高,使得一个基因编码多个蛋白质成为可能。RNA剪接的本质是两步转酯反应,这种看似简单的化学反应在细胞中难以自行发生,而负责执行这一化学反应的是细胞核内一个巨大且高度动态变化的分子机器——剪接体(spliceosome)。在剪接反应过程中,多种蛋白质-核酸复合物及剪接因子按照高度精确的顺序发生结合和解聚,依次形成预组装复合物U4/U6.U5 Tri-snRNP(U4/U6.U5三小核核糖核蛋白复合物)以及至少8个状态的剪接体pre-B、B、Bact、B*、C、C*、P以及ILS复合物。 /p p   由于剪接体高度的动态性和复杂性,获得不同状态的剪接体的高分辨率三维结构被公认为世界难题。在这种巨大的挑战下,施一公教授率领研究组迎难而上,经过7年的努力,终于在2015年首次报道了裂殖酵母剪接体3.6埃的高分辨率结构,首次展示了剪接体催化中心近原子分辨率的结构。这一重大研究成果对RNA剪接机理的研究产生革命性影响。自2015年第一个剪接体结构发表以后,施一公研究组相继解析了酿酒酵母剪接体复合物处于6个不同状态的高分辨率结构,分别是3.8埃的预组装复合物U4/U6.U5 Tri-snRNP、3.5埃的激活状态复合物Bact complex、3.4埃的第一步催化反应后复合物C complex、4.0埃的第二步催化激活状态下的C* complex、3.6埃的完成两步转酯反应后状态下的P complex,以及3.5埃的内含子套索剪接体ILS complex的结构。这些已解析的剪接体基本覆盖了整个RNA剪接循环,从分子层面揭示了剪接体催化RNA剪接两步反应的工作机理,同时为理解剪接体的激活和解聚等过程的发生提供依据。然而,想要清楚解释剪接体是如何逐步组装并完成激活的机制仍有困难,而最新发表的这篇文章所解析的两个关键状态的剪接体,则弥补了领域内对这一部分研究的缺陷。 /p p   本文报道的处于激活前的两个完全组装的剪接体结构,从复合物的提纯、样品的制备到结构的解析,每一步都十分具有挑战。预催化剪接体前体(pre-B complex)由U1 snRNP、U2 snRNP以及U4/U6.U5 tri-snRNP组成,目前被认为是组成蛋白最多、分子量最大的剪接体,该状态结构复杂,但各组分之间的相互作用并不紧密,使得该复合物在提纯过程中十分容易解聚。在最新发表的这篇《科学》文章中,施一公研究组对提纯方案多次探索,最终优化出一套可以获得稳定的、性质良好的pre-B complex样品。随后利用单颗粒冷冻电镜技术重构出了U1 snRNP、U2 snRNP以及U4/U6.U5 tri-snRNP部分分辨率高达3.3埃、3.6-4.6埃以及3.4埃的冷冻电镜结构,并搭建了原子模型(图1)。 /p center img alt=" 图1" src=" http://p3.ifengimg.com/fck/2018_21/ba9a2db2fe902a0_w550_h630.jpg" height=" 630" width=" 550" / /center p style=" text-align: center "    strong 图1 酿酒酵母预催化剪接体前体和预催化剪接体的三维结构 /strong /p p   该文解析的pre-B complex结构是目前世界上已解析的唯一一个同时包含五种核糖核蛋白(snRNP)剪接体结构,它由68个蛋白和6条RNA组成。在该结构中,首次观察到了剪接体组装早期U1 snRNP对5’剪接位点的识别,以及五种核糖核蛋白之间的相互作用界面。与此同时,该文还报道了处于pre-B complex之后的另一个完全组装的剪接体,即预催化剪接体B complex的高分辨率三维结构。结合B complex的结构信息,通过结构对比,可以清楚的看到在组装过程中,pre-mRNA的5’剪接位点由一开始被U1 snRNP识别,而后由于构象变化被转移并与U6 snRNA配对,这一步的变化为剪接体激活提供了结构基础。除此之外,分支点的动态变化、剪接体的各组分所经历的结构重组与构象改变也都清晰的呈现出来。在文章最后,根据pre-B的结构特征,作者还大胆推测了最早期的不完全组装的预剪接体(pre-spliceosome,定义为“A 复合物”)的三维结构模型(如图2)。这两个关键状态剪接体结构的解析,为揭示剪接体组装初期如何识别5’剪接位点和分支点、如何进行结构重组以及如何完成剪接体的激活等问题的机理提供了最直接、有效的结构证据,也将为更高等真核生物可变剪接的研究提供结构基础与理论依据。 /p center img alt=" 图2" src=" http://p3.ifengimg.com/fck/2018_21/3ac0a90b5e6dd9b_w550_h672.jpg" height=" 672" width=" 550" / /center p style=" text-align: center "    strong 图2 酿酒酵母预剪接体三维结构的预测与剪接体组装并激活的模型 /strong /p p   截至目前为止,施一公研究组在酵母中一共解析了9个不同状态的剪接体高分辨的三维结构(如图3),从组装到被激活,从发生两步转酯反应到剪接体的解聚,这9 个状态的剪接体完整覆盖了剪接通路,首次将剪接体介导RNA剪接的过程串联起来,为理解RNA剪接的分子机理提供了最清晰、最全面的结构信息。 /p center img alt=" 图3 施一公研究组解析的酵母剪接体结构汇总(图片来源: Shi Lab)" src=" http://p3.ifengimg.com/fck/2018_21/f2e159672c130e9_w550_h388.jpg" height=" 388" width=" 550" / /center p style=" text-align: center "    strong 图3 施一公研究组解析的酵母剪接体结构汇总(图片来源: Shi Lab) /strong /p p   生命中心PI施一公为本文的通讯作者 清华大学生命学院三年级博士研究生白蕊、医学院博士后万蕊雪以及生命学院博士后闫创业为该文的共同第一作者 清华大学冷冻电镜平台的雷建林博士为冷冻电镜数据收集提供了帮助。电镜数据采集于清华大学冷冻电镜平台,计算工作得到清华大学高性能计算平台、国家蛋白质设施实验技术中心(北京)的支持。本工作获得了北京结构生物学高精尖创新中心及国家自然科学基金委的经费支持。 /p p   原文链接: /p p   http://science.sciencemag.org/content/early/2018/05/23/science.aau0325 /p p   相关论文链接: /p p   http://science.sciencemag.org/content/early/2016/01/06/science.aad6466 /p p   http://science.sciencemag.org/content/early/2015/08/19/science.aac8159 /p p   http://science.sciencemag.org/content/early/2015/08/19/science.aac7629 /p p   http://science.sciencemag.org/content/early/2016/07/20/science.aag0291 /p p   http://science.sciencemag.org/content/early/2016/07/20/science.aag2235 /p p   http://science.sciencemag.org/content/early/2016/12/14/science.aak9979.full /p p   http://www.cell.com/cell/fulltext/S0092-8674(17)30954-6 /p p   http://www.cell.com/cell/fulltext/S0092-8674(17)31264-3 /p
  • 基于镜像酶正交酶切的蛋白质复合物规模化精准分析新方法
    蛋白质作为生命活动的执行者,通过自身结构的动态改变,以及与其他蛋白质相互作用组装为蛋白质复合物,调控各种生物学过程。因此,如何实现蛋白质复合物的精准解析已成为当前生命科学的研究热点。化学交联结合质谱(CXMS)技术作为蛋白质复合物解析的新兴技术,利用化学交联剂将空间距离足够接近的蛋白质分子内或分子间的氨基酸残基以共价键连接起来,再利用液相色谱-质谱联用对交联肽段进行鉴定,实现蛋白质复合物的组成、界面和相互作用位点的解析。该技术具有分析通量高、灵敏度高、可提供蛋白质间相互作用的界面信息、普遍适用于不同种类和复杂程度的生物样品等优势,已成为X射线晶体衍射、低温冷冻电镜、免疫共沉淀等蛋白质复合物研究技术的重要补充。化学交联位点的鉴定覆盖度和准确度决定着该技术对于蛋白质复合物结构的解析能力。目前,为了实现蛋白质复合物的高覆盖度交联,研究人员发展了可用于共价交联赖氨酸(K)的氨基、谷氨酸(E)/天冬氨酸(N)的羧基、精氨酸(R)的胍基以及半胱氨酸(C)的巯基等多种活性基团的新型交联剂。进而,为了提高低丰度交联肽段的鉴定灵敏度,体积排阻色谱法、强阳离子交换色谱法,及亲和基团富集策略被提出用于交联肽段的高选择性富集,如可富集型化学可断裂交联剂——Leiker,与不具备富集功能的交联剂相比,通过亲和富集可以将交联位点鉴定数目提高4倍以上。胰蛋白酶镜像酶(LysargiNase)的酶切位点与胰蛋白酶互为镜像,可特异地切割赖氨酸和精氨酸的N端。由于LysargiNase的N端酶切特点,电荷主要分布在交联肽段的N端,在碰撞诱导裂解(CID)和高能诱导裂解(HCD)模式下产生以b离子为主的碎片离子,与胰蛋白酶酶切肽段以y离子为主的碎片离子互为镜像补充,为胰蛋白酶酶解肽段在质谱鉴定中b离子缺失严重的问题提供了很好的解决办法。由于具有较高的酶切特异性和酶活性,镜像酶已经成功地应用于蛋白质C末端蛋白质组鉴定、磷酸化蛋白质组研究、甲基化蛋白质组鉴定等方面,然而在CXMS中的应用仍未见报道。为进一步提高对蛋白质复合物结构及相互作用位点的解析能力,本文发展了LysargiNase与胰蛋白酶联合酶切的方法,基于镜像酶正交切割的互补特性,通过产生赖氨酸及精氨酸镜像分布的交联肽段,以增加特征碎片离子数量和肽段匹配连续性,从而提升交联肽段的谱图鉴定质量,达到提高交联位点的鉴定覆盖度和准确度的目的。通过分别对牛血清白蛋白及大肠杆菌全蛋白样品的交联位点鉴定结果的考察,评价该策略对单一蛋白样品和复杂细胞裂解液样品蛋白质复合物表征的应用潜力。蛋白质样品制备称取牛血清白蛋白粉末,以20 mmol/L 4-(2-羟乙基)-1-哌嗪乙磺酸(HEPES, pH 7.5)作为缓冲体系,配制0.1 mmol/L牛血清白蛋白溶液。大肠杆菌细胞(种属K12)在37 ℃下采用Luria-Bertani(LB)培养基培养24 h,然后于4 ℃以4000 g离心2 min,收集细胞沉淀。细胞沉淀采用磷酸盐缓冲液(PBS)清洗3遍后,悬浮于细胞裂解液(含20 mmol/L HEPES和1%(v/v)蛋白酶抑制剂)中,冰浴超声破碎180 s(30%能量,10 s开,10 s关)。匀浆液于4 ℃以20000 g离心40 min,收集上清,采用BCA试剂盒测定所得蛋白质含量。稀释大肠杆菌蛋白裂解液至蛋白质含量为0.5 mg/mL。化学交联样品制备以20 mmol/L HEPES(pH 7.5)为溶剂配制浓度为20 mmol/L 的BS3交联剂母液 将交联剂母液加入牛血清白蛋白的缓冲溶液及大肠杆菌蛋白裂解液中,使交联剂的终浓度为1 mmol/L,在室温条件下反应15 min 通过添加终浓度为50 mmol/L的淬灭溶液NH4HCO3进行交联反应淬灭,并在室温下孵育15 min 在冰浴条件下,将交联样品逐渐滴入8倍体积的预冷丙酮中,于-20 ℃静置过夜 在4 ℃条件下,以16000 g转速离心,去除丙酮,然后将交联蛋白用预冷丙酮清洗2次,去除上清液后,于室温挥发掉残余的丙酮 以8 mol/L尿素溶液复溶蛋白质沉淀 将牛血清白蛋白交联样品以5 mmol/LTCEP作为还原剂,于25 ℃下反应1 h进行变性和还原 将大肠杆菌样品以5 mmol/LDTT作为还原剂,于25 ℃下反应1 h进行变性和还原,避免大肠杆菌蛋白在酸性条件下发生变性 添加终浓度为10 mmol/L的碘乙酰胺(IAA),在黑暗中,于室温下反应30 min 以50 mmol/LNH4HCO3稀释样品至尿素浓度为0.8 mol/L后,将样品均分为两份,一份以蛋白样品与蛋白酶的质量比呈50:1的比例加入胰蛋白酶,于37 ℃酶解过夜,另一份加入终浓度为20 mmol/L的CaCl2,以蛋白样品与蛋白酶的质量比呈20:1的比例加入LysargiNase,并在37 ℃温度下酶解过夜。液相色谱-质谱鉴定及数据搜索上述所有样品经过除盐,使用0.1%甲酸(FA)溶液复溶,用超微量分光光度计测定肽段浓度,进行反相高效色谱分离和质谱分析。牛血清白蛋白样品采用Easy-nano LC 1000系统偶联Q-Exactive质谱仪平台进行质谱分析。流动相A: 2%(v/v)乙腈水溶液(含0.1%(v/v)FA) 流动相B: 98%(v/v)乙腈水溶液(含0.1%(v/v)FA)。梯度洗脱程序:0~10 min, 2%B~7%B 10~60 min, 7%B~23%B 60~80 min, 23%B~40%B 80~82 min, 40%B~80%B 82~95 min, 80%B。Q-Exactive质谱仪采用数据依赖性模式,Full MS扫描在Orbitrap上实现,扫描范围为m/z 300~1800,分辨率为70000(m/z=200),自动增益控制(AGC)为3×106,最大注入时间(IT)为60 ms,母离子分离窗口为m/z 2。MS/MS扫描的分辨率为17500(m/z=200),碎裂模式为HCD,归一化碰撞能量(NCE)为35%, MS2从m/z 110开始采集,MS2的AGC为5×104, IT为60 ms,仅选择电荷值为3~7且强度高于1000的母离子进行碎裂,并将动态排除时间设置为20 s。每个样品分析3遍。大肠杆菌样品采用EASY-nano LC 1200系统偶联Orbitrap Fusion Lumos三合一质谱仪平台进行质谱分析。流动相A: 0.1%(v/v)甲酸水溶液 流动相B: 80%(v/v)乙腈水溶液(含0.1%(v/v)FA)。梯度洗脱程序:0~28 min, 5%B~16%B 28~58 min, 16%B~34%B 58~77 min, 34%B~48%B 77~78 min, 48%B~95%B 78~85 min, 95%B。Orbitrap Fusion Lumos三合一质谱仪采用数据依赖性模式,Full MS扫描在Orbitrap上实现,扫描范围为m/z 350~1500,分辨率为60000(m/z=200), AGC为4×105, IT为50 ms,母离子分离窗口为m/z 1.6。MS2扫描的分辨率为15000(m/z=200),碎裂模式为HCD, NCE为30%, MS2从m/z 110开始采集,MS2的AGC为5×104, IT为60 ms。仅选择电荷值为3~7且强度高于2×104的母离子进行碎裂,并将动态排除时间设置为20 s。每个样品分析3遍。质谱数据文件(*.raw)采用pLink 2软件(2.3.9)对交联信息进行检索和鉴定。使用从UniProt于2019年4月27日下载的牛血清白蛋白序列和大肠杆菌序列,搜索参数如下:酶切方式为胰蛋白酶(酶切位置:K/R的C端)、LysargiNase(酶切位置:K/R的N端) 漏切位点个数为3 一级扫描容忍(precursor tolerance)2.00×10-5 二级扫描容忍(fragment tolerance)2.00×10-5 每条肽段的质量范围为500~1000 Da 肽段长度的范围为5~100个氨基酸 固定修饰为半胱氨酸还原烷基化(carbamidomethyl [C]) 可变修饰为甲硫氨酸氧化(oxidation [M])、蛋白质N端乙酰化(acetyl [protein N-term]) 肽段谱图匹配错误发现率(FDR)≤5%。映射胰蛋白酶与LysargiNase酶解样品的交联位点在牛血清 白蛋白晶体结构(PDB: 3V03)的映射 LysargiNase与胰蛋白酶酶解样品的交联位点对及单一交联位点的互补性LysargiNase与胰蛋白酶酶解样品共同得到的交联位点鉴定打分比较b+/++与y+/++离子碎片分别在α/β-肽段的碎片覆盖度LysargiNase与胰蛋白酶酶解的交联肽段质谱图大肠杆菌样品中LysargiNase与胰蛋白酶酶切鉴定蛋白质复合物信息互补性带点击了解原文:https://www.chrom-china.com/article/2022/1000-8713/1000-8713-40-3-224.shtml
  • 我国学者解析DNA复制起点识别复合物高分辨冷冻电镜结构
    p & nbsp & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201807/insimg/859a4489-caf9-42a5-8abc-7feca5114b48.jpg" title=" 20180720.jpg" / /p p style=" text-align: center " & nbsp & nbsp & nbsp 图 & nbsp ORC通过弯曲DNA来进一步加载DNA复制解旋酶MCM2-7的过程模式图 /p p & nbsp & nbsp 在国家自然科学基金项目(项目批准号:31761163004、31725007、31630087)等资助下,北京大学生命科学学院高宁教授课题组与香港科技大学戴碧瓘教授课题组合作,解析了酿酒酵母ORC结合DNA复制起始位点3-Å 分辨率的冷冻电镜结构。研究成果以 “Structure of the Origin Recognition Complex Bound to DNA Replication Origin”(结合有复制起点DNA的起点识别复合物结构)为题,于2018年7月4日以长文(Article)形式在Nature(《自然》)上发表。北京大学高宁教授和香港科技大学戴碧瓘教授、翟元樑博士为共同通讯作者。高宁课题组博士后李宁宁、博士生程稼萱以及戴碧瓘组博士后林伟熙、翟元樑为共同第一作者。 /p p & nbsp & nbsp DNA复制起始在真核生物细胞中受到严格而精密的调控。DNA复制启动因子(ORC,Origin Recognition Complex)首先结合到DNA复制起点,以加载DNA复制解旋酶MCM2-7复合物到DNA上,随后MCM2-7被激活,DNA双链被解螺旋,从而启动DNA复制。所有真核生物都是利用由6个亚基组成的ORC来标记DNA复制起始的位点,在维持基因组稳定性过程中的重要作用,其功能缺失突变与肿瘤的发生发展也密切相关。 /p p & nbsp & nbsp 虽然在不同的真核生物中,ORC的蛋白质序列高度保守,但是ORC对DNA复制起点序列的选择性在不同物种间差别很大。酿酒酵母的ORC可以识别特异的DNA复制起点,而人源细胞ORC结合的DNA序列却没有序列特异性,主要依赖染色体结构识别复制起点。而由于一直缺少ORC结合DNA状态的高分辨结构,ORC序列识别差异背后的分子机制长期以来难以解释。 /p p & nbsp & nbsp 高宁研究员课题组解析的3-Å 分辨率ORC-ARS305 DNA复合物结构发现,ARS305包含一段ARS高度保守序列(ARS Consensus Sequence, ACS)和一段B1元件序列,长度为72 bp。在这个结构中,ORC的六个亚基通过与磷酸骨架的非特异性以及与碱基的特异性相互作用环绕DNA,并在ACS和B1位点使DNA发生弯曲。该结构的一个关键特征是Orc1的保守碱性氨基酸区域(Orc1-BP,basic patch)深深地插入ACS的小沟中进行序列特异的碱基识别。另外,酵母特有的具有物种特异性的位于Orc4 Wing Helix结构域(WHD)中的Helix Insertion(Orc4-IH)嵌入ACS的大沟中,与相应的碱基形成疏水相互作用。更重要的是,在ACS区域形成的这些碱基特异的相互作用的碱基都非常保守。此外,在B1区域中,也有类似的来自Orc2和Orc5的碱性氨基酸区域插入到大沟和小沟中,与碱基相互作用,并使DNA弯曲。因此,酿酒酵母ORC高度序列特异性主要是通过ORC亚基的大沟、小沟插入基序与ACS保守碱基之间的特异性相互作用实现的。序列比对分析显示,所有真核生物Orc1的N端都具有类似酿酒酵母的Orc1-BP 然而Orc4-IH却只在酿酒酵母中存在。这些发现,很大程度上解释了不同物种ORC识别起始DNA特异性差异背后的原因。 /p p & nbsp & nbsp 此高分辨率结构不仅为理解酵母ORC如何识别和结合序列特异性的DNA复制起点提供了分子基础,同时也从分子机制角度阐明了ORC如何通过弯曲DNA来进一步加载DNA复制解旋酶MCM2-7的过程。 /p
  • 北大陈雷课题组发现钠漏通道复合物的冷冻电镜结构
    近日,北京大学未来技术学院分子医学研究所研员陈雷课题组发现了钠漏通道NALCN-FAM155A-UNC79-UNC80复合物的冷冻电镜结构及UNC79-UNC80调节NALCN-FAM155A的机制。这一研究于5月12日发表在《自然-通讯》上。  神经细胞的静息膜电位(Resting Membrane Potential, RMP)影响着神经细胞的可兴奋性,对于维持神经细胞正常的生理功能至关重要。钠漏通道NALCN(Sodium Leak Channel, Nonselective)介导了神经细胞的钠漏电流,能使静息膜电位更加去极化,从而提高神经细胞的可兴奋性。  NALCN在哺乳动物中高度保守,与电压门控钙离子通道(CaV)和电压门控钠离子通道(NaV)同源性较高。且参与了诸多与神经系统相关的重要的生物学过程,包括呼吸节律的调节、痛觉感知、生物钟的调节和快速动眼睡眠等。  “在人群中,NALCN的单点突变会引起多种严重的神经发育遗传疾病,包括精神运动发育迟缓和具有特征面相的小儿肌张力低下症及四肢和面部先天性挛缩、肌张力低下和发育迟缓症等。尽管NALCN通道有着如此重要的功能,但其工作机制仍不清楚。”陈雷告诉《中国科学报》。  在2020年,陈雷研究组曾解析NALCN-FAM155A亚复合体的高分辨率结构,阐明了NALCN的钠离子选择性、胞外钙离子阻塞和电压调节特性的结构基础,发现了在NALCN通道中独有的位于II-III linker上的CIH螺旋可以结合在其胞内结构域上。但是UNC79和UNC80的结构以及它们是如何激活NALCN的并不清楚。  先前的研究表明,UNC79和UNC80容易与NALCN-FAM155A亚复合体发生解离。在本项研究中,作者们在NALCN的C末端融合了GFP,UNC80的N末端融合了与GFP高亲和力结合的纳米抗体以稳定UNC79/80与NALCN间的相互作用。  经过同源蛋白筛选等步骤,研究人员确定以大鼠NALCN和小鼠FAM155A, UNC79和UNC80亚基组成的复合体为研究对象,并在克服了样品制备、数据处理等困难后,通过单颗粒冷冻电镜技术获得了整体分辨率为3.2埃的四元复合物的电子密度,并搭建了原子模型。  结构显示,UNC79和UNC80均由富含螺旋的结构组成,这些螺旋进一步的组装成HEAT重复或ARM重复等超螺旋结构。UNC79的N端与UNC80的C端、UNC79与UNC80的中间铰链区以及UNC79的C端与UNC80的N端均存在着紧密的相互作用,形成钳子状的复合体,整体形状类似于无穷号“∞”。 进一步的研究发现,NALCN主要通过胞内loop区与UNC79-UNC80发生相互作用的:NALCN胞质侧的I-II linker中的一段β-发卡结构(UNIM-A)与UNC79发生相互作用,II-III linker中的一段loop-螺旋结构(UNIM-B)以及一段L型螺旋结构(UNIM-C)与UNC80发生相互作用。作者们将NALCN与UNC79/80发生相互作用的基序命名为UNC Interacting Motif (UNIM)。  陈雷介绍,该项研究还发现,UNC79, UNC80和FAM155A三个附属亚基对于NALCN能够正确的转运到细胞膜上是必不可少的。“这有可能是因为这些互作使UNC79/80遮挡了NALCN胞质侧loop上的内质网滞留信号,从而促进NALCN上膜。另外,这些互作也释放了CIH对NALCN的自抑制,使其激活。这为深入理解NALCN复合体的工作机制奠定了基础。”他说。
  • 重磅新品 禾信公司推出金属有机复合物专用质谱仪(MOC-TOFMS)
    p   金属有机复合物、自组装超分子化合物、短链双链DNA等,在食品、药物、蛋白质分析等领域都具有极其重要的作用,但是由于这些化合物“热不稳定”,一直是质谱检测的难题,进口仪器也无能为力。 /p p   近日,由广州禾信仪器股份有限公司独立研制开发的具有完全自主知识产权的金属有机复合物高分辨飞行时间质谱仪MOC-TOFMS悄然上市,快速打破行业的寂静。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/58303cb5-664f-4984-992b-09fbe716dd98.jpg" title=" 001.jpg" / /p p span style=" color: rgb(0, 112, 192) " strong   工作原理 /strong /span /p p   液体样品经过电喷雾离子源电离产生离子,在电场牵引下通过低压分子离子反应器MIR,随后离子在射频四极杆RFQ里进一步碰撞冷却聚焦,再经直流四极杆DCQ及离子光学透镜LENS调制后,由高分辨飞行时间质量分析器进行检测分析。 /p p   整套系统采用专利大气压接口,可以同时控制离子束能量分散和离子束与背景气体碰撞能量的大小,是目前全球少数的极柔和离子传输器之一。该技术与垂直引入反射式飞行时间分析器相连,整机性能完全媲美进口冷喷雾电离质谱仪器。 /p p span style=" color: rgb(0, 112, 192) " strong   特点与优势 /strong /span /p p   1) 柔性大气压接口专利技术,有效传输热不稳定分子离子 /p p   2) 三级差分真空系统,极大提高仪器灵敏度 /p p   3) 紧凑式“V”型飞行时间质量分析器,最优尺寸分辨比。 /p p span style=" color: rgb(0, 112, 192) " strong   应用领域 /strong /span /p p   药物研究、生物医学研究、环境与食品安全、功能材料研究、催化机理研究等。 /p p span style=" color: rgb(0, 112, 192) " strong   应用案例 /strong /span /p p    span style=" color: rgb(0, 112, 192) " 分析目的: /span 鉴定金属有机复合物合成产物的分子结构,为合成路线提供数据支撑。 /p p   span style=" color: rgb(0, 112, 192) "  待测样品1: /span /p p   目标化合物分子式:C sub 246 /sub H sub 276 /sub F sub 24 /sub N sub 4 /sub O sub 46 /sub P sub 12 /sub Pt sub 4 /sub /p p   目标化合物结构式: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/fae951cf-2cd5-4de3-80c2-57b1601a2b05.jpg" title=" 002.png" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " & nbsp & nbsp strong 分子离子分子式最大丰度质荷比m/z /strong /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/3bf16853-b73c-47ac-85ce-bd489f0f1b31.jpg" title=" 004.png" /   /p p span style=" color: rgb(0, 112, 192) "   分析结果: /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/9bcb5748-33d3-4a9a-91fa-c6d72cd30981.jpg" title=" 005.png" / /p p   span style=" color: rgb(0, 112, 192) "  待测样品2: /span /p p   目标化合物分子式:(Rh sub 8 /sub Ag sub 2 /sub C sub 120 /sub H sub 132 /sub O sub 16 /sub N sub 8 /sub C sub l8 /sub ) sup 6+ /sup (SO sub 3 /sub CF sub 3 /sub ) sub 6 /sub (C sub 6 /sub H sub 4 /sub Br sub 2 /sub ) /p p   目标化合物结构式: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/95eef5c7-e06a-4f3c-99ec-e6d0b3aabdab.jpg" title=" 003.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong [M-4OTf] sup 4+ /sup 模拟质谱图[M-3OTf] sup 3+ /sup 模拟质谱图 /strong /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/b267942d-cacf-4bfb-9b66-8d2dd100bbc8.jpg" title=" 006.jpg" / /p p    span style=" color: rgb(0, 112, 192) " 分析结果 sup (1) /sup : /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201712/insimg/1df41db8-cc21-4301-9d85-436bb55b0085.jpg" title=" 007.jpg" / /p p   注:(1) Wen-Ying Zhang, et al. Facile Separation of Regioisomeric Compounds by a Heteronuclear Organometallic Capsule [J]. J. Am. Chem. Soc., 2016, 138 (33), pp 10700–10707 /p p span style=" color: rgb(0, 112, 192) " strong   小结: /strong /span /p p   测试结果表明,用MOC-TOFMS对金属有机复合物检测有利于产生高价态准分子离子峰,适合热不稳定的金属有机复合物的精确质量检测。 /p p br/ /p
  • 文献解读 | 使用无标记TSA方法评估CRISPR-Cas9 RNP复合物形成的最佳条件
    01前言Thermal shift assay(TSA),也被称为差示扫描荧光法(DSF)是表征蛋白热稳定性的常用方法之一,广泛应用于蛋白配体互作表征,突变体、缓冲液、去垢剂筛选等领域。但DSF的实验操作较繁琐,需要根据蛋白的特性及去垢剂兼容性选择合适的染料,优化蛋白和染料的比例,在配制样品时还要考虑染料自带的有机溶剂对蛋白的影响。替代性技术:nanoDSF技术时下被行业深度认可的无标记的TSA验证方法-也称nanoDSF技术,可解决DSF技术的局限性,样品无需加染料就可以直接上机检测了。下面我们一起通过用户的文献案例来进一步了解。02NanoTemper用户应用案例解读检测样品:Cas9,gRNA使用仪器:PR系列蛋白稳定性分析仪涉及技术:nanoDSF技术https://doi.org/10.1016/j.isci.2023.106399CRISPER - Cas9介导的基因编辑能够帮助人们在动物和细胞模型中实现广泛的靶向敲除(KO)或敲入(KI),例如单点或多点KO、点突变、报告基因KO或KI等。然而,CRISPR-Cas9的切割效果和准确性仍是基因编辑面临的主要挑战,它们特别受到核糖核蛋白复合物 (RNP)的组装配比的影响。2023年3月,法国南特大学的研究人员近期发表了研究成果:Excess of guide RNA reduces knockin efficiency and drastically increases on-target large deletions,作者借助PR系列蛋白稳定性分析仪搭载的nanoDSF技术,一种无需标记和固定化的方法,证明了Cas9和gRNA的等摩尔比是形成RNP复合物的最佳条件。研究结果作者通过CRISPR/Cas9 KI将双等位纯合子GFP hiPSCs转化为BFP表达细胞,通过细胞表型分析证明在Cas9的最佳浓度为0.4 mM时,增加ssODN浓度有助于降低KO率,提高KI率,而增加dgRNA对KO和KI没有影响。0.4 mM的Cas9、等摩尔Cas9/gRNA比例和2 mM的ssODN是在hiPSC中实现高效GFP到BFP转换的最佳选择。 在此之前,有一些研究曾表明过量的gRNA对于靶向切割有帮助,而本文作者的实验结果则与之产生了矛盾。于是作者使用NanoTemper公司的nanoDSF技术建立了一套体外实验方法学,用来评估RNP复合物的形成效率,从而佐证他们的结论。通过nanoDSF这种无标记技术,可在升温过程中检测蛋白中的色氨酸和酪氨酸的自发荧光。随着升温,仪器同步采集在350 nm和330 nm处的最大发射光位移,并自动拟合出蛋白的热展开曲线。NanoDSF能够检测蛋白的构象变化导致的热稳定性差异,并由熔解温度(Tm)来表征蛋白的热稳定性。由于Cas9是一种含有色氨酸和酪氨酸残基的变构酶, 因此利用nanoDSF技术可以简单、直观地检测导致Cas9重排的RNP复合物的形成。 为了确定hiPSC中使用的dgRNA靶向GFP位点(dgRNA GFP)形成RNP复合物的有效性,作者使用恒定浓度的Cas9 (0.75 mM)与一定浓度范围内的dgRNA, 通过nanoDSF检测,作出升温诱导的蛋白变性曲线检测 (图1A)。根据一阶导数,可以确定Cas9单独的Tm(TmCas9 = 43.2C),以及Cas9/dgRNA摩尔比为1/1至1/5 的Tm:1/1 时TmRNP = 49.6 C、1/2 时TmRNP = 50.0 C、1/3时 TmRNP = 49.9C、1/5 时TmRNP = 49.8 C (图1B)。相比只有Cas9时, Cas9/dgRNA摩尔比为1/1至1/5 时的Tm都有明显增加,但Cas9/dgRNA不同摩尔比之间的Tm并没有显著差异(图1C)。这反映了RNP复合物的形成情况。另外,当Cas9/dgRNA为等摩尔比时,是检测不到游离Cas9的。因此,可以认为Cas9/dgRNA等摩尔比是形成RNP复合物的最优条件。图1作者在大鼠胚胎上使用点突变模型来验证等摩尔Cas9/dgRNA是否能得到最佳的KI率,以及过量的dgRNA是否会影响KI效率。 他们先使用nanoDSF检测大鼠胚胎中Cas9过量、等摩尔Cas9/dgRNA或dgRNA过量这几种情况下,RNP复合物的形成情况(图2A)。在所有条件下,添加dgRNA靶向的环氧化物水解酶2基因(dgRNA rEphx2),与单独Cas9相比,Tm都显著增加,表明RNP复合物的形成 (图2B)。 在Cas9/dgRNA摩尔比为 5/1和2/1时,可以看到变性曲线中包含了两个热变性峰,分别可表示为TmCas9和TmRNP。与单独Cas9相比(TmCas9 = 43.2℃), TmCas9对这两种RNP的比例差异不显著(TmCas9 RNP 5/1 = 43.0℃ TmCas9 RNP 2/1 = 43.3℃, p分别= 0.4809和0.9353),而TmRNP为(TmRNP RNP 5/1 = 48.0℃ TmRNP RNP 2/1 = 48.9℃, p 都= 0.029)。这些结果表明,在两个条件下,RNP复合物已经形成,而游离Cas9仍然存在。当等摩尔比(RNP 1/1)或dgRNA rEphx2过量(RNP 1/2, 1/3和1/5)时,只观察到一个热变性峰(TmRNP RNP 1/1 = 49.7℃ TmRNP RNP 1/2 = 49.9℃ TmRNP RNP 1/3 = 49.8℃ TmRNP RNP 1/5 = 49.7℃),这些Tm之间差异不显著。此外,与dgRNA rEphx2相比,RNP 1/1比例的TmRNP与RNP 2/1比例的TmRNP显著不同(TmRNP RNP 2/1 = 48.9℃ TmRNP RNP 1/1 = 49.7℃, p = 0.0206),与单独Cas9也显著不同 (TmCas9 Cas9 = 43.2℃ TmRNP RNP 1/1 = 49.7C, p03关于PR系列蛋白稳定性分析仪德国NanoTemper公司自2014年推出PR系列蛋白稳定性分析仪,以nanoDSF技术为核心,通过检测蛋白内源荧光,无需标记即可检测蛋白Tm值,快速精确评估蛋白在不同条件下的热稳定性变化。2020年NanoTemper推出新一代PR Panta仪器,并于2022年整合四大技术模块nanoDSF/Backreflection/DLS/SLS,可实时同步评估蛋白热稳定性,胶体稳定性,聚集体与粒径等信息,为科研人员在蛋白质量控制、复合物分析、化合物筛选、制剂优化等方面提供强大助力。今年年初,公司凭借自身不断创新的科学技术,推出新品型号:PR Panta + 机械臂自动上样器,这款新品拥有独立且包罗万象的系统,包含机械臂、外框架、计算机和监视器。可装载多达4个384微孔板,用于检测所有蛋白质候选分子热变性、胶体稳定性和化学变性的全自动操作。可针对高通量或配方筛选实验场景,无需手动即可完成多达1536个样品的检测。PR系列产品
  • 自然通讯成果|非变性纳米蛋白质组学捕获内源性心肌肌钙蛋白复合物的结构和动态性信息
    大家好,本周为大家分享一篇发表在Nat. Commun.上的文章:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics ,文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  蛋白质大多都是通过组装成蛋白复合物来执行特定的生物功能,因而表征内源性蛋白复合物的结构和动力学将有助于生命过程的理解。蛋白复合物在其组装、翻译后修饰(Post-translational modifications,PTMs)和非共价结合等方面是高度动态的,在native状态下通常以低丰度存在,这给研究其结构和动态性的传统结构生物学技术(如X-ray和NMR)带来了巨大的挑战。非变性Top-down质谱(nTDMS)结合了非变性质谱和Top-down蛋白组学的优势,目前已发展成蛋白复合物结构表征的有力工具,可以保留蛋白质亚基-配体间的非共价作用和PTMs等重要信息。然而,由于内源性蛋白复合物自身的低丰度特性,导致对其的分离纯化和检测非常困难,所以nTDMS目前仅限用于过表达的重组或高丰度蛋白质的表征。在本研究中,作者开发了一种非变性纳米蛋白质组学(Native nanoproteomics)技术平台,通过使用表面功能化的超顺磁性纳米颗粒(Nanoparticles,NPs)直接富集组织中的蛋白复合物,然后再利用高分辨质谱表征其结构和动态性。这里选用心肌肌钙蛋白(Cardiac troponin,cTn)异源三聚体复合物(~77 kDa)作为研究对象。cTn三聚体复合物是调节横纹肌肌动蛋白收缩的Ca2+离子调节蛋白,由TnC、cTnI和cTnT这3个亚基组成。其中,TnC是Ca2+结合亚基,cTnI是抑制肌动蛋白-肌球蛋白相互作用的亚基,而cTnT细丝锚定亚基。TnC与Ca2+的结合,以及cTnI 亚基的磷酸化,会共同引起细丝上的分子级联事件,诱导心肌收缩所必需的肌动蛋白-肌球蛋白交叉桥的形成。传统结构生物学技术不能有效捕获cTn复合物高度动态的构象变化,并且先前研究用的cTn复合物是由原核细胞表达的,缺乏PTMs的信息。因此,作者开发了native纳米蛋白组学的方法,以实现对人内源性cTn复合物结构和动力学的全面表征。作者首先使用肽功能化的超顺磁性氧化铁NPs富集了人心脏的内源性cTn复合物,同时优化了非变性蛋白提取缓冲液(高离子强度LiCl溶液,生理pH)。富集到的cTn复合物中的3种亚基的含量比例为1:1:1,真实反应了肌节cTn异源三聚体复合物的组成。作者也发现含有750 mM L-Arg,750 mM咪唑和50 mM L-Glu(pH 7.5)的溶液对蛋白复合物的洗脱效果最好,并且不会破坏亚基间的相互作用。该富集方法具有很好的重现性,proteoforms信息得到很好保留,且可以直接用于化学计量分析。总的实验流程如图1所示,洗脱后的cTn复合物经体积排阻色谱(Sze-exclusion chromatography,SEC)除盐和交换至醋酸铵溶液中,随后对cTn复合物进行多种nTDMS分析:1)在线SEC监测复合物 2)超高分辨傅里叶变换离子回旋共振质谱(FTICR-MS)表征复合物的化学计量比和proteoforms 3)捕获离子淌度质谱(TIMS-MS)解析调控复合物构象变化中的非共价作用的结构动态性。  图1. 用于表征人心脏中内源性cTn复合物的native纳米蛋白组学平台。  为了全面表征内源性cTn复合物,作者使用FTICR-MS进行proteoforms测序和复合物表征。图2展示了native状态下检测丰度最高的cTn复合物的电荷态(19+),其中包含了4种独特的proteoforms,这些复合物主要带有单磷酸化的cTnT、单磷酸化和双磷酸化的cTnI,以及结合了3个Ca2+的TnC。这些结果表明人cTn复合物在肌节中以结构多样化的分子组成存在,具有高度异质的共价和非共价修饰,可产生一系列不同的完整复合物。  图2. FTICR-MS分析展示的cTn复合物状态。红色方框中是最高丰度电荷态(19+)的放大谱图,理论同位素分布(红色圆圈)可以与谱图很好叠加,说明结果具有高质量精度(质量偏差在2 ppm 以内)。  作者接着对cTn复合物进行complex-up分析,以研究复合物的化学计量比及其组成。图3a~3b分别显示的是完整cTn三聚体复合物,以及经CAD碎裂后的蛋白亚基谱图。但这里没有检测到cTnI单体,可能是因为cTnI和TnC在native状态下的亲和力很强,且cTnI单体带的电荷不多,导致其在高m/z区域出峰,所以不易被检测到.随后,作者又对解离出的亚基进行complex-down分析。图3c展示了检测到的cTnT的多种proteoforms:未磷酸化的 cTnT、单磷酸化的cTnT(p cTnT)和 C 端 Lys 截断的磷酸化cTnT(pcTnT [aa 1-286]),CAD碎裂谱图也发现cTnT的C端较N端更易暴露在外界溶剂中。图3e则是cTn(I-C)二聚体的谱图,共检测到6种具有不同数量Ca2+结合和磷酸化的proteoforms。二级谱图可将cTnI的两个磷酸化位点准确定位在Ser22和Ser23,同时发现cTnI序列两端都较内部区域更易暴露于溶剂中。但还无法通过nTDMS准确推断Ca2+结合和磷酸化是如何影响cTn复合物的稳定性。作者在此也没有优化FTICR-MS在非常高m/z范围的离子检测,所以也会遗漏带少量电荷的cTn复合物信息。  图3.nTDMS表征人心脏来源的cTn复合物。(a~b)完整cTn复合物和经CAD碎裂后的亚基谱图 (c~d)cTnT单体及其代表性的CAD碎裂谱图 (e~f)cTn(I-C)二聚体及其代表性的CAD碎裂谱图。  人TnC蛋白含有3个钙结合EF-hand基序(结构域 II~IV)。结构域 II与Ca2+结合的亲和力较低,是触发心肌收缩的调控域。结构域 III 和 IV则与Ca2+具有强的亲和力,在心肌舒张和收缩时均始终保持与Ca2+充分结合,但结构域 II只有在收缩时才被Ca2+占据。这里观察到了TnC分别与0、1、2和3个Ca2+结合的情况,通过CAD碎裂也进一步定位了TnC与Ca2+结合的具体氨基酸序列(图4)。研究发现结构域 II的骨架最容易发生碎裂,而结构域 III的骨架最难碎裂。目前结构域 II~IV的序列在UniprotKb中分别对应65DEDGSGTVDFDE76、105DKNADGYIDLDE116和141DKNNDGRIDY152。这里分别将与1、2和3个Ca2+结合的TnC隔离出来进行CAD碎裂(m/z分别为2312、2316和2321),可以更准确地将结构域 III、II和IV的序列分别定位到113DLD115、141DKNND145和73DFDE76(图4c),表明非变性纳米蛋白组学方法在定位非共价金属结合方面具有高分辨能力。  图4.nTDMS定位 TnC与Ca2+结合的结构域。(a)FTICR-MS隔离与不同数量Ca2+结合的TnC单体 (b~c)与两个Ca2+结合的TnC的CAD碎裂谱图,蓝色、红色和黄色方框分别对应结构域 II 、III和IV。  Ca2+与TnC的结合会对cTn复合物的功能和构象有着很大影响。cTn复合物的核心区维持着构象的稳定,但当Ca2+与TnC发生结合时,其柔性区会经历广泛的构象变化,复合物结构会从“closed”状态转变成“opened”状态,这会促进肌动蛋白和肌球蛋白间的相互作用,最终导致心肌收缩。然而,传统结构生物学技术很难捕获cTn复合物与Ca2+结合时的构象变化。因此,作者使用离子淌度质谱来分析cTn复合物的构象变化。TnC亚基和与Ca2+结合的cTn(I-C)二聚体的淌度分离谱图如图5所示。与0~3个Ca2+结合的TnC的碰撞截面(Collision Cross-Section,CCS)值分别为1853、1849、1829和1844 Å2(图5a~5b),TnC构象比IMPACT预测的更为紧凑,但cTn(I-C)二聚体的CCS值与预测的非常接近(图5c~5d)。作者推测TnC与两个Ca2+结合会形成更致密的构象,是因为在静息舒张时Ca2+与结构域 III 和 IV充分结合。当第三个 Ca2+与结构域II结合时,TnC转变为“opened”构象,使其N端与cTnI的C端相结合,进而引发心肌收缩(图5e)。cTn(I-C)二聚体与Ca2+结合时的构象变化也是如此(图5f)。  图5.TnC单体(a~b)和与Ca2+结合的cTn(I-C)二聚体(c~d)的离子淌度分离谱图 (e~f)TnC和cTn(I-C)二聚体与Ca2+结合时的构象变化。  最后,作者通过添加EGTA来剥离cTn复合物中的Ca2+,以进一步研究Ca2+在维持复合物结构稳定性上的作用。图6b~6c是没有EGTA孵育时的cTn复合物的TIMS-MS谱图。cTn复合物的CCS值与理论预测值非常符合。随着EGTA孵育浓度的增加(25、50和100mM),Ca2+逐渐被螯合,cTn复合物的结构也越来越舒展,体现在平均电荷态逐渐增加,以及逐渐在较低m/z范围内出峰,这表明cTn复合物构象的稳定性丢失与EGTA浓度的增加相关(图6d~6f)。虽然100mM EGTA孵育也不敢保证Ca2+的完全剥离,并且cTnI的存在又会增强TnC与Ca2+的结合,但TIMS-MS为我们研究cTn复合物与Ca2+结合时的构象变化提供了一种切实可行的分析手段。  图6.cTn复合物与EGTA孵育时的构象变化。(a)cTn复合物的构象随EGTA孵育浓度的增加发生改变 (b~c)cTn复合物的TIMS-MS谱图 (d~f)cTn复合物与不同浓度EGTA(25、50和100mM)孵育的谱图和CCS分析。  总的来说,本研究开发了一种可用于内源性蛋白复合物富集和结构表征的非变性纳米蛋白组学方法,以获取其组装、proteoforms异质性和动态非共价结合等方面的生物信息。本文采用的功能化NPs可被灵活设计成选择性结合特定的靶蛋白,在富集和洗脱过程中可以很好保持其近似生理条件下的存在状态。更为重要的是,功能化NPs与nTDMS的整合可以作为一种强有力的结构生物学工具,可以作为传统技术的补充,用于内源性蛋白复合物的表征。  撰稿:陈昌明 编辑:李惠琳文章引用:Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics  参考文献  Chapman EA,Roberts DS, Tiambeng TN, et al. Structure and dynamics of endogenous cardiac troponin complex in human heart tissue captured by native nanoproteomics. Nat Commun. 2023 14(1):8400. Published 2023 Dec 18. doi:10.1038/s41467-023-43321-z
  • NanoTemper案例分享 | MST解析RAS/RAF复合物结构,提供KRAS抑制剂开发新思路
    研究背景RAF激酶家族是 RAS-RAF-MEK-ERK 信号级联(MAPK信号)的核心组成部分,可传导细胞增殖、分化等信号。RAF在细胞质中保持自我抑制状态,并通过活化的RAS募集到质膜,被激活后进行信号传递。该信号通路异常通常会导致癌症发生。尽管对KRAS/RAF识别有比较详细的了解,但这种相互作用如何导致RAF激活仍不清楚。研究中涉及到不同激活状态的RAF复合物和RAS结合,互作体系中将含有到3个及以上的分子,传统的方法很难获得准确互作结果。这次我们带来的这篇文献讲述美国丹娜-法伯癌症研究所的工作人员使用MST技术来解析RAF蛋白激活和与RAS互作的关系。https://doi.org/10.1038/s41467-023-40299-6IF: 16.6 Q1研究内容先前对KRAS与RAF的结构研究主要集中在RAF的两个结构域:富含半胱氨酸结构域CRD和RAS结合结构域RBD。为了更好的了解二者的结合以及RAF的激活,作者分析了在MEK1和14-33二聚体的自抑制状态下,KRAS与完整BRAF结合的冷冻电镜结构,并使用MST技术检测不同状态RAF与KRAS亲和力。综合其他实验发现,KRAS结合不足以激活BRAF,说明了RAS结合和激活RAF是可分离的,并提出小分子抑制剂的新思路。研究结果为了探究RBD对KRAS结合的可及性,作者使用MST技术检测了不同结构域的RAF与KRAS亲和力。单独的RBD结构域的亲和力最强(26nM),表明RBD结构域是RAF和KRAS结合的主要区域。此外,通过MST技术检测了RAS蛋白与自抑制(Autoinhibited)和活性状态(Active dimmer)下全长BRAF的亲和力。结果显明,二者亲和力相似(126nM/108nM),也就是RAF在自抑制状态下,RBD参与结合KRAS没有任何空间障碍。在获得自抑制或活性状态时,需将RAF蛋白与MEK或者14-3-3二聚体形成复合物,再检测与KRAS互作。MST技术无需固定样品,避免固定过程对复合物的影响,并且在溶液条件下检测,保证互作分子达到结合解离平衡状态,从而获得更加准确的Kd值。图:MST检测KRAS和BRAF片段或者复合体的亲和力技术优势MST技术是在溶液中进行的检测,无需固定操作,能够使靶标蛋白或者复合物保持稳定状态,在涉及到复合物或者多元互作时,可获得更加准确的亲和力结果。
  • 红外多光子解离用于Top-Down表征膜蛋白复合物和G蛋白偶联受体
    大家好,本周为大家分享一篇来自Angewandte Chemie - International Edition的文章:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors[1],文章的通讯作者是牛津大学化学系的Carol V. Robinson教授。  非变性质谱(Native MS)是结构生物学中一个成熟的工具。在电喷雾电离过程中使用非变性缓冲液可以保存多组分蛋白质复合物之间的非共价相互作用,以及它们的配体、辅因子或其他结合蛋白。它可以用于探究蛋白质复合物的相互作用和功能,因为结合事件导致质量变化,可以在质谱仪中跟踪和剖析。然而,由于膜蛋白的疏水性,使得它们在传统的非变性质谱缓冲液中不溶且容易聚集,因此在非变性质谱中呈现出独特的挑战。目前采用的方法是将蛋白质复合物溶解到膜类似物中,例如:去垢剂、纳米脂质盘、两性聚合物等,再将这些膜类似物通过碰撞激活去除。其中去垢剂是应用的最广泛的一种。然而由于碰撞激活的能量在应用中受到限制,该方法并不能在质量分析前很好地去除去垢剂。此外,在非变性质谱条件下,键的断裂也受到非共价相互作用强度的影响(例如蛋白质-蛋白质、蛋白质-去垢剂剂以及去垢剂胶束内的相互作用)。  基于光子的方法,如紫外光解离(UVPD)和红外多光子解离(IRMPD)已被证明有利于可溶性蛋白质及其复合物的Top-Down质谱分析。与此同时,基于光子的膜蛋白Top-Down模式的应用正在兴起。原理上,激光束路径中的离子被连续地驱动到振动激发态。因此,在基于光子的方法中,能量储蓄通常与前体离子的电荷状态和分子量无关。然而,电荷状态和分子量仍然会影响肽键解离需要的输入能量。先前报道的通过UVPD对79 kDa的五聚体的大电导机械敏感通道(MscL)Top-Down的断裂得到了令人印象深刻的54%的序列覆盖。然而,对于氨通道(AmtB)一个127 kDa的同源三聚体,通过碰撞激活和UVPD两种不同的方式破碎,仅实现了20%的序列覆盖率。事实上,相对较低的序列覆盖率是由于大分子量以及三聚体中增加的非共价相互作用影响的结果。尽管这些工具能够在非变性状态下实现Top-Down质谱分析,但其在膜蛋白表征中的应用仍不广泛。这就要求建立一种能使低电荷密度的高分子量蛋白质稳定地产生蛋白质序列离子的方法,而膜蛋白嵌入异质膜或膜类似物则使这一问题更加复杂。虽然IRMPD之前被用于从去垢剂中释放膜蛋白,但使用IRMPD对非变性的膜蛋白进行测序的研究相对较少。  图1. (A)改进的Orbitrap Eclipse Tribrid的原理图,其中包括一个红外激光器直接进入四极线性离子阱(QLIT)的高压细胞。离子化的蛋白质胶束被转移到高压QLIT中,在那里整个离子群受到红外光子的照射,然后被转移到Orbitrap进行质量分析。通过调节激光输出功率(W)和照射时间(ms),可以使膜蛋白从去垢剂胶束中完全解放出来。(B)三聚氨通道(AmtB)在3.0 W输出功率和200ms辐照时间下的非变性质谱。(C)在3.3 W输出功率和200ms辐照时间下AmtB的非变性质谱。  因此,作者利用改进的Orbitrap Eclipse Tribrid质谱仪,与连续波远红外(IR) CO2激光器连接,使光束聚焦到双四极杆线性离子阱(QLIT)的高压池中(图1A)。红外激活可以有效地去除蛋白质复合物中的去垢剂胶束,随后通过IRMPD使得膜蛋白碎片化。在这种安排下,由纳米电喷雾电离产生的蛋白质复合物被转移到高压池中。在转移到Orbitrap进行检测或m/z分离和随后的碎片化之前,整个离子群将受到943cm-1红外光子的照射。利用红外的方法去除去垢剂胶束,红外激光有两个可调控参数:激光输出功率(高达60瓦)和照射时间(毫秒到秒)。因此,可以更好地控制从蛋白质胶束中释放膜蛋白,确保非变性复合物的保存,同时完全去除包裹复合物中的去垢剂。通过对激光输出功率和照射时间的优化,作者发现红外激活的参数是高度可调的,不同的激光功率和照射时间的组合也可以产生分辨率相当的谱图。其中例如在3.3 W下照射200 ms时,可以得到多个电荷态的三聚体峰(~6500 m/z),也可以观察到三聚体与脂质结合的峰,而且对于图谱中的单体也能观察到与脂质结合的峰(图1C)。作者还对不同的去垢剂产生分辨率较高的图谱所需要红外参数进行了评估,从而评价了这几种去垢剂得到高分辨率图谱的难易程度(图2)。  图2. 红外辐射去除膜蛋白离子中的去垢剂是高度可调的。增加激光输出功率对三种常用的MS兼容去垢剂(C8E4,G1和DDM) AmtB三聚体峰外观的影响。辐照时间固定为200 ms,激光输出功率分别为2.1、2.4、3.0和3.6 W。去垢剂在真空中按易去除的顺序显示,这是由完全释放膜蛋白复合物所需的激光输出功率决定的,从而在m/z光谱中产生良好分辨的电荷状态峰。为了探究IRMPD分离蛋白质和去垢剂胶束的机制,作者对三种不同的去垢剂:四聚乙二醇单辛醚(C8E4)、树突状低聚甘油(G1)和十二烷基-β-D-麦芽糖苷(DDM)的溶液相和气相红外光谱进行了表征,并利用密度泛函理论(DFT)计算得到了C8E4头部基团的红外谐波光谱,用来验证所得到的红外吸收光谱会受到振动耦合的影响,对于质子化的去垢剂离子,氢键和富氧去垢剂内的质子共享可以改变观察到的振动频率。结果表明C8E4胶束的溶液相吸收光谱包含一个与预期激光波数943cm-1重叠的显著带,这就解释了为何较低的激光能量可以将去垢剂胶束和蛋白质复合物分离。而在谐波光谱中在预期的激光波数处的确产生了峰,并推测该峰来自于O-H伸缩、C-C伸缩,C-H弯曲和C-O伸缩振动的耦合。而G1和DDM的最大吸收则偏离了943cm-1的预期波数,作者认为这是不同去垢剂氢键作用的结果。而蛋白质在真空中的红外吸收能力较弱,由此推测在IRMPD的过程中,去垢剂是主要的吸收对象。所以仅需要较低的能量就可以使蛋白质从复合物中剥离而不至于破坏蛋白质的非共价作用。完整的蛋白质离子还支持串联质谱的实验,为了得到蛋白质的序列信息,作者分离了m/z在6674处(电荷态为+19)的AmtB三聚体蛋白,并将其置于高激光输出功率(9 W)下照射5 ms,在m/z 1750~4000之间产生密集的多电荷态离子片段,并得到了26%的序列覆盖,这优于之前基于碰撞激活的方法(  图3. 三聚体AmtB的IRMPD。(A)在m/z 6674处分离19+电荷态离子阱后,IRMPD后观察到的碎片离子MS2谱。多重带电碎片被高亮显示 来自相同地点的重复片段用虚线分组。为了清楚起见,许多指定的离子没有注释 (B)片段丰度相对于裂解原点(残基数)的条形图,其中丰度表示来自每个位点的片段归化一强度之和。条形图的颜色强度表示每个片段的加权平均电荷。将AmtB的拓扑域叠加在条形图上 α-螺旋跨膜区域用黄色方框表示,编号为1到11。跨膜区由质周环和细胞质环连接,用灰色线表示。(C)主干裂解位点覆盖在AmtB (PDB: 1U7G)的结构上。蓝色和红色阴影区域分别代表b型和y型离子。颜色强度对应于所分配片段的丰度。从气相分子动力学模拟中得到的高温(500 K)下的跨膜螺旋快照用虚线圈标出。为了验证这一个推测,作者又对另外两种GPCR蛋白:β -1-肾上腺素能受体(β1AR)和腺苷A2A受体(A2AR)用IRMPD进行了MS2图谱的测定,结果也观察到了片段离子相似的二级结构定位,在跨膜结构区域有着高丰度的片段,但是在二硫键相连的螺旋中并没有观察到丰富的离子片段。并再次利用分子动力学模拟研究了两种GPCR的结构对断裂的影响。在500 K下的最终结构中显示,两种GPCR中都保留了α-螺旋特征,并与观察到的裂解位点密切相关。此外,还对这两种蛋白进行了HCD和IRMPD的比较分析。对于β1AR, IRMPD产生的片段离子平均分子量为8866 Da,高于HCD产生的5843 Da。IRMPD产生的片段离子也保留了更高的平均电荷(4.7 + vs 3.6+ z)。最终,IRMPD的碎片化导致β1AR的序列覆盖率更高,为28%,而HCD为17%。在A2AR中也观察到类似的趋势,IRMPD的覆盖率为19%,而HCD为9%。  总的来说,作者证明了可以在改进的Orbitrap Eclipse质谱仪的高压QLIT下,通过红外照射可以完全释放一系列去垢剂胶束中的膜蛋白。然后,通过增加激光输出功率,获得直接从膜蛋白及其复合物中释放的序列信息片段离子,证明红外光去除去垢剂是通用的和高度可控的,为保存和鉴定膜蛋白和配体之间脆弱的非共价相互作用构建了一个可靠的方法。而且还对片段离子的产生机制做了阐述,即质子可以通过沿蛋白质骨架迁移来稳定和诱导连续的肽键裂解。  撰稿:李孟效  编辑:李惠琳  文章引用:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors  参考文献  Lutomski, C.A., El-Baba, T.J., Hinkle, J.D., et al. Infrared multiphoton dissociation enables top-down characterization of membrane protein complexes and g protein-coupled receptors[J]. Angewandte Chemie-International Edition,2023.
  • PD新模型:破坏线粒体复合物I功能足以诱导进行性帕金森症
    帕金森疾病(Parkinson’s disease, PD)是第二常见的神经退行性疾病,患者所表现出的运动功能障碍主要由黑质(substantia nigra, SN)中多巴胺能神经元丧失引起。尽管PD致病因素多样,但多项证据表明线粒体功能缺陷在其中的重要性,例如编码维持线粒体质量控制蛋白的PARK7、PARK6和PARK2基因突变能引起早发型PD【1】。多巴胺能神经元对线粒体功能障碍的易感性可部分归因于其高代谢需求,从而引起线粒体氧化磷酸化(OXPHOS)的持续刺激,然而这种巨大能量的提供是以线粒体氧化损伤增加为代价的。尸检研究表明,PD患者SN中mtDNA完整性的丧失与功能性线粒体复合物I(MCI)的丧失存在相关性。然而,这种MCI获得性损伤究竟是PD疾病进程中的一种副产品还是疾病的驱动因素还不得而知。2021年11月3日,来自美国西北大学Feinberg医学院的D. James Surmeier团队在Nature杂志上发表了一篇题为 Disruption of mitochondrial complex I induces progressive parkinsonism 的文章,这项研究通过选择性破坏小鼠多巴胺能神经元中MCI功能,发现MCI功能障碍足以导致进行性的帕金森病相关运动缺陷,且不同类型的运动功能损伤(精细动作和粗大运动)与不同部位(纹状体和黑质)多巴胺释放的相关性,挑战了长期以来存在的关于该疾病运动症状的观点。为了证明MCI功能障碍是否作为PD的驱动因素,该团队从小鼠多巴胺能神经元中特异性地敲除编码MCI催化核心亚基的Ndufs2基因。cNdufs2-/-小鼠在出生后20天(P20)仍表现出正常的粗大运动行为。但在随后10天中,SN多巴胺能神经元中的线粒体成为ATP的净消费者而非生产者,且线粒体嵴结构发生了明显改变。利用RiboTag方法分离多巴胺能神经元中的mRNA并进行测序发现,cNdufs2-/-小鼠中存在一种类似Warburg效应的代谢重编程,即编码促进糖酵解蛋白的基因上调,而与OXPHOS以及编码糖酵解抑制剂的基因下调。除了触发代谢重编程外,该团队还发现Ndufs2的缺失会导致与轴突生长和运输、突触传导、多巴胺(DA)合成和储存等相关的基因表达发生显着变化。对纹状体组织的液相色谱和质谱分析进一步验证cNdufs2-/-小鼠纹状体DA合成明显下降,此外,有助于驱动起搏的环核苷酸门控阳离子通道电流也明显减少。到P60,与多巴胺能信号相关的轴突蛋白的丢失由背侧纹状体扩大到腹侧纹状体,且cNdufs2-/-小鼠SN多巴胺能神经元胞体树突区域中的酪氨酸羟化酶表达降低至对照组一半左右,且DA释放量下降约75%。与在整个基底神经节中DA迅速耗尽的传统PD模型相比,cNdufs2-/-小鼠的病理分期能够评估DA释放的区域缺陷如何与行为相关联。随着背侧纹状体DA释放在P30左右下降到接近检测阈值,cNdufs2-/-小鼠失去了执行联想学习任务的能力,有趣的是,该任务可以通过P30时的左旋多巴治疗恢复,而P60的治疗则不能恢复。在通过小鼠从前爪去除粘合剂所花费的时间来评估精细运动技能的实验中,cNdufs2-/-小鼠完成任务时间明显延长,同时也表现出较差的旷场探索行为表现。此外,P60的cNdufs2-/-小鼠仅表现出轻微的步态障碍,到了P100才会表现出后肢张开、爪子位置异常和步幅改变等特征。而在P120-150期间,大约有40%的SN多巴胺能神经元丢失。需要注意的是,cNdufs2-/-小鼠在后期才出现粗大运动行为缺陷,这与SN DA而非背侧纹状体 DA释放变化平行。尽管有明确的临床证据表明纹状体DA耗竭对于PD患者的运动迟缓和僵硬是必要的【2】,但其充分性从未得到充分测试,因为传统的PD模型往往会导致整个基底神经节DA的快速耗竭。在此处通过对cNdufs2-/-小鼠的观察表明,背侧纹状体DA释放的丧失足以产生运动学习和精细运动缺陷,但并未达到类似于临床PD的运动症状水平。该团队通过分别向小鼠背侧纹状体或SN中立体定位注射携带AADC(可将左旋多巴转化为DA)的AAV,以及随后对小鼠旷场步态的分析,证明黑质多巴胺释放丧失对于粗大运动缺陷而言是必要因素。总的来说,这项研究不仅证明多巴胺能神经元中MCI功能丧失足以引发进行性的、轴突先行的功能丧失和左旋多巴反应性帕金森病,还证明背侧纹状体的DA耗竭对于联想运动学习和精细动作而言是必要的,但黑质的DA释放缺陷才会引起类似于临床PD患者表现出的粗大运动损伤特征。针对这项研究,来自美国格莱斯顿研究所的Zak Doric和Ken Nakamura在同期杂志上发表观点文章 Principles of Parkinson’s disease disputed by model 。他们指出González-Rodríguez等构建的基于线粒体功能障碍的帕金森疾病小鼠模型代表了目前可用的散发性PD最佳模型之一,它不仅可以研究复合物 I 缺陷在疾病中的作用,还可以提供一个模型来评估治疗策略的潜力。此外,该模型一个显著特征是多巴胺神经元在几个月中进行性退化,且轴突和胞体退化存在延迟,这种延迟便于详细研究两个不同部位多巴胺损伤所带来的影响。另一个相当大的进步是该模型证实纹状体多巴胺释放减少对于运动缺陷来说是必要而不充分的,也就是说,黑质多巴胺在维持粗大运动方面起着至关重要的作用。原文链接:https://doi.org/10.1038/s41586-021-04059-0https://doi.org/10.1038/d41586-021-02955-z
  • 揭开“圣杯”面纱:核孔复合物胞质环的高分辨率冷冻电镜结构
    核孔复合物(nuclear pore complex, NPC)是真核细胞的核膜上负责物质双向运输的唯一通道,同时也是真核细胞中最庞大,最复杂的分子机器之一。核孔复合物在维持细胞核的微环境稳态,保护遗传物质,调控基因表达等方面起着至关重要的作用,其功能异常与包括癌症在内的多种疾病的发生联系在一起。NPC的高分辨率结构研究对理解真核细胞活动的基本过程,探究核质运输的结构机制以及探索相关疾病的致病机理都具有重要意义,也是开发相应治疗方法和药物的基础。NPC镶嵌于细胞核的双层核膜(nuclear envelope, NE)之上,在从细胞质到细胞核的方向上,主要由胞质丝(cytoplasmic filaments)、胞质环(cytoplasmic ring, CR),内环(inner ring, IR)、腔环(Luminal ring, LR)、核质环(nuclear ring, NR)和核篮(nuclear basket)组成(图1)。其中,CR、IR和NR构成NPC最稳定的支架部分,其直径可达约110 nm,高约70 nm。而附着于CR上的胞质丝、附着于NR上的核篮以及主要由IR中的FG重复(FG repeats)构成的扩散屏障(diffusion barrier)则是NPC选择性运输的主要执行者。此外,在垂直于NE的方向上,NPC还具有C8对称性。一个NPC含有约30种不同的核孔蛋白(nucleoporin),每种核孔蛋白的拷贝数一般为八的倍数,因此一个NPC含有的核孔蛋白数目非常大(500-1000个)。这也导致NPC具有非常大的分子量,在酿酒酵母中约为60 MDa,而在人中则可达约110 MDa。图1:NPC的结构示意图2022年6月10日,西湖大学施一公团队在Science上在线发表了题为 Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex 的最新研究成果,报道了目前分辨率最高的,NPC中CR亚基的结构。该研究以非洲爪蟾(Xenopus laevis)NPC为研究对象,单颗粒冷冻电镜分析为主要研究手段。团队共收集46143张电镜照片,从中人工筛选出33747张可用照片,并进一步挑选出800825个NPC颗粒用于数据处理。经过多轮迭代计算,该团队最终将NPC中CR亚基重构至3.7-4.7 分辨率。同时,该研究还利用重组表达技术和单颗粒冷冻电镜分析手段,将脊椎动物中特有的核孔蛋白Nup358的N端结构域解析至3.0 分辨率。以这些重构结果为基础,该团队最终搭建了迄今为止最完整的CR结构模型(图2)。图2:CR亚基的单颗粒冷冻电镜结构该模型中CR亚基的主体由两个Y复合物组成,此外还包含五个Nup358、两个Nup205和两个Nup93分子。在Y复合物中,新解析的Nup160的C端片段作为组织中心,在介导三条臂汇集上起着重要作用。而Nup358、Nup205和Nup93在辅助以及稳定CR骨架的组装过程中起着重要的作用。结合施一公团队之前解析的NR和IR高分辨结构,他们搭建了NPC支架部分的结构模型。该模型包含了来自632个核孔蛋白中的约445000个氨基酸残基,是目前为止最详细,且最精确的NPC支架结构模型(图3),为领域内理解脊椎动物NPC的组成、结构、组装以及功能提供了坚实的基础。图3. NPC支架的结构模型西湖大学生命科学学院博士后朱薛辰、黄高兴宇、曾超、占谢超和三年级博士生梁珂为该文共同第一作者,黄高兴宇和施一公教授为该文共同通讯作者。原文链接:https://doi.org/10.1126/science.abl8280
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • 高分辨SID-EMR Orbitrap仪器研制及大蛋白复合物结构测定
    p style=" text-align: justify "   近日俄亥俄州立大学化学和生物化学系的 span style=" font-family: times new roman " VickiH. Wysocki /span 教授课题组在AC上发表了一篇文章,题目为 span style=" font-family: times new roman " Surface-InducedDissociation of Noncovalent Protein Complexes in an Extended Mass RangeOrbitrap Mass Spectrometer /span 。 /p p style=" text-align: justify "   获取蛋白质复合物的四级结构信息,对于理解其生物功能来说至关重要。与传统的CID/HCD通过多次碰撞沉积能量以实现解离相比, strong 表面诱导解离 /strong ( span style=" font-family: times new roman " Surface induceddissociation,SID /span )是通过使复合物离子撞击一个具有化学惰性、刚性的表面,经过单次高能撞击后,产生相比于CID和HCD技术电荷更均匀分布的蛋白亚基(如图1),从而提供化学计量比和互作网络等信息。此外,相比于CID常常导致小分子配体丢失,SID可以产生保留小分子配体的复合物亚基。 /p p style=" text-align: justify "   & nbsp /p p style=" text-align: center " img width=" 600" height=" 253" title=" SID.webp.jpg" style=" width: 600px height: 253px " alt=" SID.webp.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/671db102-c3a5-4bc3-ad7d-5e07248fc1a3.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center "   图1. SID示意图 /p p style=" text-align: justify "   目前,SID技术在蛋白复合物方面的工作主要是在飞行时间质谱( span style=" font-family: times new roman " TOF MS /span )上完成,但随着蛋白复合物的分子量越来越大,结构解析深度越来越深入,对质谱仪器的分辨率也提出了更高的要求。每一种类型的质量分析器( span style=" font-family: times new roman " TOF、FTICR或者Orbitrap /span )都有它们的优劣势,而仪器的选择主要依赖于待解决的问题本质。为此,Vicki H. Wysocki课题组与赛默飞公司Alexander A. Makarov博士合作, strong 首次将SID解离源装配到Exactive Plus Extended Mass Range(EMR)Orbitrap仪器上 /strong (如图2)。这套SID即可用来传输离子又可用来进行SID。值得一提的是,SID装置并未影响离子进入HCD池和一级质谱分析。 /p p style=" text-align: center " img title=" EMR-orbitrap.jpg" alt=" EMR-orbitrap.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/97acf2a9-f158-474e-bef1-ca2f3c2deea8.jpg" / /p p style=" text-align: center " img width=" 600" height=" 498" title=" 2.webp.jpg" style=" width: 600px height: 498px " alt=" 2.webp.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/7c134afb-82fa-472e-8848-062123d511f0.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: justify "   图2. a)SID装置3D设计图,b)SID模式下离子轨迹图,c)SID改造后EMR Orbitrap仪器图。 /p p style=" text-align: justify "   随后,作者 strong 利用该仪器对Streptavidin和L-GlutamateDehydrogenase蛋白复合物进行了质谱分析 /strong 。其中,前者是具有D2对称性的同源四聚体,后者是具有D3对称性的同源六聚体。图3为Streptavidin的一级谱及其SID谱图。先前的文献表明,通过CID主要产生的是streptavidin复合物的去折叠单聚体和三聚体,但这一结果显然不能支持streptavidin是由同源二聚体组成的结构。而11+的母体streptavidin复合物经过SID会解离成两个二聚体,分别为5+和6+,证明SID更能反映他们真实的拓扑结构(图3a-c)。值得一提的是,之前对于谱图中出现的3+单聚体和6+同源二聚体,由于TOF MS分辨率不高所以要依靠IMS才能进行分辨3,但现在EMR Orbitrap在高分辨率模式(R=140,000 at m/z 200)下就可直接对它们二者进行分辨(图3d),甚至盐加和离子或者N末端Met修饰与否都可以在高分辨谱图中完全获得(图3e)。 /p p style=" text-align: center " img width=" 600" height=" 466" title=" 3.webp.jpg" style=" width: 600px height: 466px " alt=" 3.webp.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/335862ab-316e-4d66-8193-777c95b0aa48.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: justify "   图3. a)Streptavidin四聚体拓扑结构(PDB ID:1SWB),b)Streptavidin四聚体一级质谱图,c)11+价态Streptavidin四聚体的SID谱图( span style=" font-family: times new roman " 45 V,495 eV /span ),d)高分辨率模式下3+价态Streptavidin单聚体和6+价态的二聚体,e)3+价态单聚体和6+价态二聚体的N末端蛋氨酸修饰和Na离子加和谱图。 /p p style=" text-align: justify "   此外,作者还考察了 span style=" font-family: times new roman " L-Glutamate Dehydrogenase /span 同源六聚体的拓扑结构。HCD结果表明,该六聚体很难在气相中发生解离,需要较高HCD能量和高电荷态,常常导致先失去一个去折叠单体,无法真实反映亚基组成。而通过SID可以获得比较稳定的三聚体信号,反映出 span style=" font-family: times new roman " L-GlutamateDehydrogenase /span 同源六聚体的拓扑结构主要为三聚体-三聚体界面,在低能量下主要断裂较弱的三聚体界面(图4a),当能量逐渐升高单体会从三聚体亚基中解离出来(图4b)。 /p p style=" text-align: center " img width=" 600" height=" 461" title=" 4.webp.jpg" style=" width: 600px height: 461px " alt=" 4.webp.jpg" src=" https://img1.17img.cn/17img/images/201903/uepic/f1e97f6c-ca94-485b-825b-e918eeceb873.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: justify "   图4. 28+价态L-Glutamate Dehydrogenase同源六聚体在a)175 eV和b)235 eV能量下的SID谱图。 /p p style=" text-align: justify "   综上所述,相比于SID-TOF MS仪器,具有更高质谱分辨率的SID–EMR Orbitrap仪器后续将为大蛋白复合物提供更丰富的四级结构信息。此外,Vicki H. Wysocki课题组先前还报道了将SID装载到FTICR-MS仪器,在SID谱图中可对霍乱毒素(Cholera toxin B,CTB)多种亚基进行同位素分辨(R=210,000 at m/z 5803.7),例如8+四聚体、6+三聚体、4+二聚体和2+单聚体4,感兴趣的学者们可进一步了解。得益于Orbitrap和FTICR的超高质量分辨率,相信SID源将在蛋白-蛋白、蛋白-金属离子、蛋白-小分子配体复合物体系中发挥越来越重要的作用。 /p p style=" text-align: justify text-indent: 2em " 参考文献: /p p style=" text-align: justify "    span style=" font-family: times new roman " [1] VanAernum, Z. Gilbert, J. Belov, M. Makarov, A. A. Horning, S. Wysocki, V. Anal. Chem., 2019, DOI: 10.1021/acs.analchem.8b05605. /span /p p style=" text-align: justify " span style=" font-family: times new roman "   [2] Zhou, M. Wysocki, V. H. Acc. Chem. Res., 2014, 47, 1010-1018. /span /p p style=" text-align: justify " span style=" font-family: times new roman "   [3] Quintyn,Royston S. Yan, J. Wysocki, Vicki H. Chem. Biol., 2015, 22, 583-592. /span /p p style=" text-align: justify " span style=" font-family: times new roman "   [4] Yan, J. Zhou, M. Gilbert, J. D. Wolff, J. J. Somogyi, Á . Pedder, R. E. Quintyn, R.S. Morrison, L. J. Easterling, M. L. Pa?a-Toli?, L. Wysocki, V. H. Anal. Chem., 2017, 89,895-901. /span /p p style=" text-align: justify text-indent: 2em " strong 文献链接: /strong /p p style=" text-align: justify text-indent: 2em " a style=" color: rgb(0, 32, 96) text-decoration: underline " href=" https://pubs.acs.org.ccindex.cn/doi/10.1021/acs.analchem.8b05605" target=" _blank" span style=" color: rgb(0, 32, 96) " https://pubs.acs.org.ccindex.cn/doi/10.1021/acs.analchem.8b05605 /span /a /p p style=" text-align: justify text-indent: 2em " (文献原文可联系仪器信息网编辑部提供,联系电话:010-5165-4077-8223) /p p style=" text-align: justify text-indent: 2em " 文中提及的赛默飞 span style=" font-family: times new roman " ExactivePlus(EMR)Orbitrap /span 相关信息可点击链接:& nbsp /p p style=" text-align: justify text-indent: 2em " a style=" color: rgb(0, 32, 96) text-decoration: underline " href=" https://www.instrument.com.cn/netshow/sh100244/C152611.htm" target=" _blank" span style=" color: rgb(0, 32, 96) " https://www.instrument.com.cn/netshow/sh100244/C152611.htm /span /a /p
  • 日立高新积极参加“第22届国际糖复合物会议(GLYCO22)”
    由国际糖复合物组织主办,复旦大学、大连医科大学、中科院大连化学物理研究所承办的&ldquo 第22届国际糖复合物会议(GLYCO22)&rdquo 于2013年6月23日至28日在大连中国科学院化学物理研究所成功举办,此次会议吸引了来自全球的400多位学者。 图为.大会现场日立高新技术公司积极参加此次会议,下图为日立高新展位。关于日立高新技术公司:  日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是&ldquo 成为独步全球的高新技术和解决方案提供商&rdquo ,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn
  • 低电压透射电镜LVEM 5助力“生物导弹”载体复合物纳米颗粒的相关研究
    癌症的治疗一直是医学科学家研究的前沿方向,靶向治疗作为一种定向杀灭癌/肿瘤细胞的治疗方法,俨然成为癌症治疗的研究热点。简单来说,靶向治疗就是在细胞分子水平上,针对已明确的致癌位点来设计相应的治疗药物,药物进入体内会特定选择致癌位点相结合,杀死特定的肿瘤细胞,但不会波及肿瘤周围的正常组织细胞,因此又被称为“生物导弹”。 在这种“生物导弹”研究中,生物可降解聚合物纳米粒子经常作为药物的载体应用于靶向治疗。纳米颗粒的一个优势是,他们利用肿瘤发生过程中,肿瘤区域的血管和淋巴具有增强的渗透和截留(EPR)特性,允许纳米的颗粒通过血管壁。进入肿瘤区后,通过溢出,这些粒子可以实现封装药物释放,并杀灭肿瘤细胞。安德烈斯贝罗大学(Santiago, 智利),Luis A.Velasquez教授在《Biomaterials》杂志上发表文章,结合物理化学特性和生物分析对可生物降解的聚羟基丁酸戊酯(PHBV)-紫杉醇(paclitaxel)复合物纳米颗粒癌症细胞株的吸收、释放和细胞毒性进行了详细研究。分子模拟显示复合物纳米颗粒具有高水亲和力的界面和多孔纳米结构,具有48小时窗口期的毒性保护,228~264nm颗粒尺寸范围让它们具有适当的EPR被动靶向的效果,其-6~8.9 mV的负电性也适合生物环境允许的颗粒细胞的内吞作用,并完成癌症细胞内的药物释放,对IIIc浆液性卵巢癌细胞有很好的治疗效果。Time-dependence of the NP-Taxel size and surface-polymer structuresduring Taxel liberation processes observed using LVEM. 0 (A), 1 (B), 2 (C), 3(D), 4 (E) and 5 (F) days 该研究过程中,低电压透射电子显微镜LVEM 5起到了非常关键的作用。Velasquez教授应用的纳米颗粒为有机聚合物,组成为C,H,O,N等轻质原子的分子,这些分子对电子的散射能力较弱。常规透射电子显微镜的加速电压通常为80~300kV,有机分子在不通过重金属染色的情况下,电子束大部分透过了样品到达荧光屏,无法呈现高对比度的形貌图像。然而,重金属染色后的样品由于和重金属的络合作用造成有机分子的畸变,以至于观察到的形貌不是天然状态,影响研究结果的后续分析和结论的准确判断。Velasquez教授借助低电压显微镜LVEM 5对样品进行观察,由于加速电压小(约5kV),未经染色的样品可以得到高对比度清晰的TEM图像,实现生物有机分子纳米结构的天然状态下的检测。低电压显微镜LVEM 5呈现的图像有效帮助Velasquez教授完成聚羟基丁酸戊酯(PHBV)-紫杉醇(paclitaxel)复合物纳米颗粒针对卵巢癌细胞治疗过程的机理及动力学问题的分析和研究。 相关产品:LVEM5 超小型透射电子显微镜: http://www.instrument.com.cn/netshow/SH100980/C157727.htmLVEM25小型低电压透射电子显微镜:http://www.instrument.com.cn/netshow/SH100980/C234215.htm
  • 使用Native MS和HDX-MS探究高阶蛋白复合物结构
    血红蛋白(Hb)是红细胞中的一种关键蛋白质,负责氧气的运输。它由α和β亚基组成,形成四聚体结构,通过氧合(relaxed)和脱氧(tense)状态之间的变构转变来实现氧气的运输。Hb作为一个重要的模型蛋白,广泛应用于蛋白质基础特性的研究以及包括质谱技术在内的分析化学方法的开发。研究中使用的Hb样品通常从化学公司购买(商业Hb)或从哺乳动物血液中新鲜提取(血液Hb),尽管理论上商业Hb和血液Hb都应该反映血红蛋白的天然活性和三维构象,但先前的电喷雾离子化质谱(ESI-MS)分析显示,这两种Hb来源的性质存在差异,这可能与商业Hb在制备过程中的变性有关。迄今为止,商业Hb和血液Hb之间的结构差异仅使用Native ESI-MS进行过研究。考虑到Native MS不同纯化方法(缓冲液置换、脱盐)对样品的影响,本文尝试使用氢/氘交换质谱(HDX-MS)对血液Hb和商业Hb中的血红蛋白复合物进行比较研究。与Native ESI-MS相比,HDX-MS对不挥发性盐的耐受性要高得多,这主要是由于肽段的脱溶剂效率高于完整蛋白质。在本研究中,作者直接对商业Hb和血液Hb进行了HDX-MS分析,得到的HDX-MS结果与Native ESI-MS数据非常吻合,证实商业Hb已广泛变性形成二聚体物质。对于Native ESI-MS,作者认为缓冲液置换方法对于检测结果具有一定的影响。图1和图2分别展示了血液Hb和商业Hb样品在经过不同次数的缓冲液置换后得到的Native ESI-MS谱图。由图1可见,血液Hb在经过1-5次缓冲液置换后,其质谱图谱从主峰为单体型信号逐渐转变为由二聚体和四聚体信号峰主导,表明缓冲液置换次数对样品结构的完整性有显著影响。图2表明商业Hb在0-4次缓冲液置换后,其质谱图谱从主峰为单体型信号逐渐转变为由二聚体信号主导,最终在四次置换后显示出二聚体为基峰,表明商业Hb在多次置换后更倾向于形成二聚体结构。图1.缓冲液置换(A)1、(B) 2、(C) 4和(D)5次后获得的血液Hb的ESI质谱图。红色符号αh, βa、D、Q分别代表单体全α亚基、单体apo-β亚基、二聚体αhβh和四聚体(αhβh)2离子。标有星号(*)的信号对应电流噪声。图2.缓冲液置换(A)0、(B) 1、(C) 2和(D)4次后获得的商业Hb的ESI质谱图。红色符号αh, βaox、D、D-h,(D-h)ox,Q代表单体全α亚基、氧化单体apo-β亚基、二聚体αhβh、二聚体αhβa、 氧化二聚体αhβaox和四聚体(αhβh)2离子。B和D的插图分别对应β的扩展峰βaox和(D-h)ox。单氧化、二氧化和三氧化物质表示为βaox/(D-h)ox+O, βaox/(D-h)ox+2O 和βaox/(D-h)ox+3O。标有星号(*)的信号对应电流噪声。由于Native ESI-MS分析的可靠性在很大程度上依赖于样品处理方法,因此有必要开发一种互补方法来分析高阶蛋白质复合物的完整性。作者采用HDX-MS来查看是否可以获得血液Hb和商业Hb样品的一致结构信息。图3展示了血液Hb和商业Hb的HDX-MS速率曲线。这些曲线显示了不同时间点上肽段的氘化水平,揭示了两种样品在结构上的显著差异。血液Hb的肽段氘化水平普遍低于商业Hb,特别是在α亚基的33-46及130-141段和β亚基的33-41及130-146段,这表明新鲜血红蛋白在这些区域的溶剂可及性较低,结构更稳定。相反,商业Hb在这些区域显示出更高的氘化水平,暗示其结构可能已经发生了部分解离,增加了溶剂可及性。 图3.血液Hb(绿色曲线)和商业Hb(红色曲线)酶切片段的HDX速率曲线。每个数据点报告三次试验的平均值,误差线表示三次试验的标准偏差。为了将HDX结果与Hb的三维结构相关联,将t = 180 min时两个Hb样品之间的氘代水平差异映射到天然氧合血红蛋白晶体结构(PDB:1LFQ)中,如图4所示。在 t = 180 min时,商业 Hb 的氘水平分别α 130-141和β 130-146比血液Hb高18.9%和26.6%。更高的氘吸收量意味着在这两个区域中商业Hb的溶剂可及性更高。α 130-141和β 130-146分别属于α 1α 2(图4A)和β1β2(图4B)界面。这两个链段中溶剂可及性的增加可能是因为天然四聚体(αhβh)2解离成二聚体αhβh亚复合物,这将导致α1α2和β1β2界面相互作用的破坏。这一推论与Native ESI-MS分析结果一致,即商业Hb的质谱基峰是二聚体信号(图2D),而血液Hb的质谱基峰是四聚体信号(图1D),进一步验证了商业Hb样品在制备和存储过程中可能经历了结构变化。图4.人氧合血红蛋白(PDB:1LFQ)的晶体结构,包括亚基(A)α1和α2,(B)β1和β2,(C)α1和β2,以及(D)α1和β1。根据t = 180 min时商业Hb和血液Hb之间氘代的百分比差异对结构进行着色。总的来说,本文通过Native ESI-MS和HDX-MS来表征商业Hb和血液Hb之间的差异。发现血液Hb主要保持四聚体结构,而商业Hb则主要表现为二聚体,且在商业Hb中观察到更多的氧化形式。这些发现强调了在进行生物医学研究前验证蛋白质高阶结构完整性的重要性,并展示了两种质谱技术在分析蛋白质结构变化中的互补性。
  • Cryo-EM在膜蛋白复合物研究中的应用专题研讨会召开
    p strong 仪器信息网讯 /strong   第六届全国冷冻电子显微学与结构生物学专题研讨会在北京隆重召开,研讨会由中国生物物理学会冷冻电子显微学分会(以下简称:中国冷冻电镜分会)主办,北京大学承办,中国电子显微镜学会低温电镜专业委员会协办。18日上午,生物大分子复合物的高分辨率动态结构专题报告会作为大会三大专题之一,在中国科学技术大学蔡刚教授和国家蛋白质科学中心(上海)丛尧研究员联合主持下,顺利召开。上午的会议围绕“膜蛋白复合物”共安排了11个专题报告,吸引了来自海内外400多名代表与会。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/9ac8f2be-f797-4b8b-925c-19f6d71f8f94.jpg" title=" 会场.jpg" alt=" 会场.jpg" / /p p style=" text-align: center "   研讨会现场 /p p   抗生素耐药性已成为全球健康威胁,革兰氏阴性细菌是最难对付的病原体之一,主要是由于它们独特的“外膜”阻止了大多数抗生素进入细胞。脂多糖(LPS)是外膜的主要成分,在限制抗生素的进入中起着至关重要的作用。美国哈佛医学院廖茂富教授的《High-resolution views of lipopolysaccharide transport driven by bacterial ABC transporters》报告使用高分辨率单粒子Cryo-EM来揭示这些分子机器的机制。理解和靶向LPS生物合成对于开发新型抗生素以穿透外膜并杀死革兰氏阴性细菌至关重要。在组装到外膜之前,LPS必须穿过内膜、周质和外部构件,这个非凡的旅程由两个必需的ATP-binding cassette(ABC)转运蛋白来提供动力:MsbA和LptB2FGC。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 283px " src=" https://img1.17img.cn/17img/images/201906/uepic/3d990b6a-e671-45cc-b619-27fa72ad4d41.jpg" title=" 廖茂富.jpg" alt=" 廖茂富.jpg" width=" 450" vspace=" 0" height=" 283" border=" 0" / /p p style=" text-align: center "   廖茂富作《High-resolution views of lipopolysaccharide transport driven by bacterial ABC transporters》报告 /p p   在植物中,高渗性刺激能触发渗透通道的开放,导致细胞溶质钙浓度升高而引发快速的下游信号级联。拟南芥中OSCA家族的成员,被认为在高渗应激反应的初始阶段发挥关键作用。 在这里,中国科学技术大学孙林峰教授《Structure of the hyperosmolality-gated calcium permeable channel OSCA1.2》报告通过单粒子冷冻电子显微镜确定了拟南芥OSCA1.2的原子结构。 拟南芥OSCA1.2是含有11个跨膜螺旋并形成的同型二聚体,处于灭活状态下,被清楚地识别出孔隙里残留物 其胞质结构域包含RNA识别基序和两个独特的长螺旋,这两个螺旋之间的连接体在脂质双层中形成锚,并且可能是渗透传递所必需的。 研究显示,AtOSCA1.2的结构可作为研究渗透胁迫响应和机械传感潜在机制的平台。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 283px " src=" https://img1.17img.cn/17img/images/201906/uepic/bbaafb19-ff20-4ad7-b76f-295737c6953c.jpg" title=" 孙林峰.jpg" alt=" 孙林峰.jpg" width=" 450" vspace=" 0" height=" 283" border=" 0" / /p p style=" text-align: center "   孙林峰作《Structure of the hyperosmolality-gated calcium permeable channel OSCA1.2》报告 /p p   北京大学李龙副教授作《Structure of a substrate engaged SecASecY protein translocation machine》报告。通过蛋白质传导通道SecY / Sec61的蛋白质易位是原核生物和真核生物的常见细胞过程。在原核生物中,SecY通道与ATP酶SecA合作,在蛋白质翻译后将分泌蛋白质移过膜。目前尚不清楚SecA-SecY复合物如何转移其高度多样化的蛋白质底物。李龙组装了由SecA,SecY和多肽底物组成的蛋白质易位中间体,并确定了其在脂质环境中的Cryo-EM结构。研究结果显示,多肽底物被捕获在复合物的中心 SecA的夹子紧紧地保持多肽,SecA的双螺旋指状物将多肽引导至SecY的中央通道。李龙认为,该结构定义了ATP水解驱动蛋白质易位的关键步骤。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 283px " src=" https://img1.17img.cn/17img/images/201906/uepic/8ece8079-a629-4258-b296-571ef9db56a3.jpg" title=" 李龙.jpg" alt=" 李龙.jpg" width=" 450" vspace=" 0" height=" 283" border=" 0" / /p p   李龙作《Structure of a substrate engaged SecASecY protein translocation machine》报告 /p p   β-氧化是分解脂肪酸分子以产生能量的基本代谢途径。TFP在此过程中催化三种反应,并且TFP亚基中的突变会引起诸如TFP缺乏和妊娠急性脂肪肝的疾病。尽管TFP催化反应几乎在所有主要的生物化学教科书中都有详细记载,但人类TFP的结构尚不清楚。北京大学肖俊宇研究员作《Cryo-EM structure of human mitochondrial trifunctional protein》报告,研究中使用cryo-EM单粒子重建方法,确定了人类TFP的4.2Å 2四聚体结构。研究结果为TFP功能研究提供了结构基础,并对脂肪酸氧化相关疾病具有重要意义。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 283px " src=" https://img1.17img.cn/17img/images/201906/uepic/aa32d868-23c6-449b-94c0-9ee6f4482019.jpg" title=" 肖俊宇.jpg" alt=" 肖俊宇.jpg" width=" 450" vspace=" 0" height=" 283" border=" 0" / /p p style=" text-align: center "   肖俊宇作《Cryo-EM structure of human mitochondrial trifunctional protein》报告 /p p   围绕会议主题,主办方还组织了其他7个专题报告,中国科学技术大学陈宇星教授作《Cryo-EM structure and transport mechanism of a wall teichoic acid ABC transporter》报告 浙江大学张岩教授作《Conformational dynamics and heterogeneity of GPCR signaling complexes》报告 美国哈佛医学院李宗利教授作《Cryo-EM structures of TRPC4/TRPC5 ion channels》报告 香港科技大学党尚宇作《Investigation of TMEM16 family proteins using single particle Cryo-EM》报告 美国国立卫生研究院吴雄武教授作《Cryo-EM and molecular simulation study of glutamate receptor activation mechanism》报告 西湖大学周强研究员作《Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex》报告 南方科技大学龚欣副教授作《Inhibition of tetrameric Patched1 by Sonic Hedgehog through an asymmetric paradigm》报告。 /p p br/ /p
  • 葛瑛团队新成果|突破性的纳米蛋白质组学技术揭示人体心肌肌钙蛋白复合物的结构和动力学
    蛋白质复合物是高度动态的实体,在组装、翻译后修饰和非共价相互作用方面表现出巨大的多样性,使它们能够在各种生物过程中发挥关键作用。天然状态下蛋白质复合物的异质性、动态性和低丰度给使用传统结构生物学技术进行研究带来了挑战。基于此,美国威斯康星大学麦迪逊分校葛瑛教授团队近期开发了一种天然纳米蛋白质组学策略,用于直接从人体心脏组织中富集内源性心肌钙蛋白 (cTn) 复合物并随后进行天然自上而下质谱分析。在非变性条件下,使用肽功能化的超顺磁性纳米粒子对 cTn 复合物进行富集和纯化,以实现 cTn 复合物的同位素解析,揭示其复杂的结构和组装。此外,nTDMS 阐明了 cTn 复合物的化学计量和组成,定位 Ca2+ 结合域,定义 cTn-Ca2+ 结合动力学,并提供蛋白质形态的高分辨率图谱。这种天然纳米蛋白质组学策略为内源天然蛋白质复合物的结构表征开辟了范例。(论文链接:)这一研究为深入了解心脏组织中内源性蛋白质复合物的神秘世界提供了一种前所未有的工具和方法。这不仅有助于揭示心脏疾病的分子机制,还为未来开发相关治疗方法提供了重要的基础。这项创新的纳米蛋白质组学技术将为生物医学研究开辟新的可能性,为科学家们提供了更深层次的洞察力,以探索蛋白质相互作用的微妙之处。
  • 上海药物所等解析糖皮质激素与GPR97和Go蛋白复合物的冷冻电镜结构
    中国科学院上海药物研究所研究员徐华强团队与山东大学教授孙金鹏团队、浙江大学教授张岩团队等首次解析了糖皮质激素与其膜受体GPR97和Go蛋白复合物的冷冻电镜结构,这也是国际上首次解析的黏附类GPCR与配体和G蛋白复合物的高分辨率结构。相关研究成果以Structures of glucocorticoid-bound adhesion receptor GPR97-Go complex为题,于2021年1月6日在线发表在Nature上。  黏附类G蛋白偶联受体(Adhesion G protein-coupled receptors, aGPCRs)是GPCR超家族成员之一,在生物体一些重要的生理过程中发挥关键分子开关的作用,如脑的发育、水盐调节、炎症以及细胞命运决定等。与GPCR超家族其他成员相比,aGPCRs除了具有经典的7次跨膜核心(7TM)外,还具有较长的胞外区域,组成了拥有不同功能的结构域。目前普遍认为aGPCRs可被结合胞外的基质蛋白或可溶性小分子激活,然而,学界尚不清楚小分子配体是否可以直接结合7TM并激活受体。  糖皮质激素对机体的发育、生长、代谢及免疫等功能发挥重要的调节作用,是机体应激反应最重要的调节激素和临床上使用最广泛的抗炎及免疫抑制剂之一。经典理论认为,糖皮质激素通过与糖皮质激素核受体结合,并穿过核孔,在细胞核内发挥调控相关基因表达的作用。该作用方式通常需要较长的反应时间,被称为基因组机制。徐华强课题组分别在2002年和2014年解析了糖皮质激素核受体与地塞米松(Cell, 110: 93-105)和内源性糖皮质激素——氢化可的松(Cell Research, 24: 713–726)的晶体结构,揭示了糖皮质激素识别与功能调控其核受体的机制,推动了糖皮质激素受体靶向药物的开发。此外,糖皮质激素被发现能够快速引起细胞和机体的变化,这提示生物体内可能存在糖皮质激素的膜受体,其能够介导糖皮质激素的快速反应。研究发现,糖皮质激素的快速反应与G蛋白有密切关系,Gi的抑制剂PTX能够抑制糖皮质激素的快速作用,并据此推测GPCR是糖皮质激素的潜在膜受体。孙金鹏和山东大学教授易凡团队等对GPR97进行了受体生理学和内源性配体发现等工作,发现包括糖皮质激素类的氢化可的松、可的松以及11-脱氧皮质醇等在内的内源性类固醇激素均能够激活GPR97,其中,地塞米松具有更强的GPR97激活能力,并最终确认Go是GPR97激活后偶联的G蛋白通路。  在前期工作基础上,合作团队采用单颗粒冷冻电镜技术,分别对外源配体倍氯米松(BCM)以及内源性配体氢化可的松(cortisol)激活GPR97后形成的复合物进行了结构解析,最终分别获得了两个配体激活态的GPR97受体与Go蛋白的复合物结构,分辨率分别为3.1埃和2.9埃(图1a和1b)。  与其他GPCR亚家族成员相比,GPR97的7TM呈现独特的空间分布,其螺旋展现出与其他受体不同的长度。根据传统理论,aGPCR特有的胞外GAIN结构域和7TM在激活GPCR的过程中作为整体发挥其核心功能,然而,研究人员在结构中首次发现糖皮质激素结合在GPR97 7TM核心中的一个椭圆形正构结合口袋(图1c);此外,GPR97还展现出不同于其他A类GPCR成员的独特激活机制。GPR97序列中不含有保守的PIF、DRY和NPxxY等motif,其首先通过toggle switch W6.53识别配体并被激活。激活的受体借助首次发现的upper Quaternary core(UQC)将受体TM3-TM5-TM6捆绑在一起,继而通过HLY motif介导与Go蛋白的结合。受体7TM组成较大的胞内侧G蛋白结合口袋,3个胞内环均参与受体与G蛋白的相互作用,胞内环与受体的组成性激活密切相关;该研究中,研究人员还首次阐述了G蛋白的棕榈酰化修饰在其偶联GPCR中的关键作用。研究首次发现Gαo的α5螺旋C351位点被棕榈酰化修饰(图2),并进一步验证了该修饰在Go与GPR97的偶联中的独特作用。  综上,合作团队首次发现了糖皮质激素的高亲和力膜受体,并通过单颗粒冷冻电镜技术,解析了黏附类GPCR家族中GPR97在糖皮质激素的激活作用下与Go蛋白复合物的结构,从而在近原子分辨率上揭示了糖皮质激素识别并激活膜GPR97,以及受体偶联Go蛋白的分子机制。该成果将对糖皮质激素膜受体功能研究和黏附类GPCR的激活机制理解发挥重要的示范及推动作用。  上海药物所为该研究的第一完成单位。上海药物所与山东大学基础医学院联合培养博士生平玉奇,浙江大学基础医学院博士后毛春友,山东大学基础医学院副教授肖鹏、硕士研究生赵儒嘉,上海药物研究所研究员蒋轶为论文的共同第一作者;孙金鹏、张岩、徐华强为论文的共同通讯作者;易凡和山东大学教授于晓为论文的共同作者。研究工作得到国家基金委、科技部、上海市科委等单位的支持。  论文链接图1.GPR97的冷冻电镜结构图2.Go棕榈酰化修饰
  • 流式荧光技术检测与化学发光技术检测那些事儿
    大家好,我是流式荧光崔工,一个旨在链接与流式荧光相关的朋友,一起赚钱、一起学习、一起工作、一起生活的靓仔。——流式荧光崔工前段时间,有很多新关注崔工公众号的朋友问崔工一个问题,什么是流式荧光检测技术?它的原理是什么?传统的化学发光检测技术又有什么?问崔工这个问题的朋友应该是刚进入到这个行业,还不是很了解这个行业。今天就跟大家聊聊,供大家参考。— 1 —什么是流式荧光检测技术?从百度百科了解到,流式荧光,又称悬浮阵列、液相芯片等,是近20多年逐渐发展起来的多指标联合诊断技术。该技术以荧光编码微球为核心,集流式原理、激光分析、高速数字信号处理等多种技术于一体,多指标并行分析,最多可一管同时准确定量检测2-500种不同的生物分子。具有高通量、高灵敏度、并行检测等特点。可用于免疫分析、核酸研究、酶学分析、受体、配体识别分析等多方面、多领域的研究。流式荧光检测技术的原理是什么?将荧光标记后的单细胞(或颗粒)悬液进入吸样管,进而随鞘液进入流动室。进入流动室之前的管道变细,迫使鞘液从四周、样本在中心进入流动室,在外加压力的作用下由下向上(或由上向下)直线流动。鞘液充满流动室将样品裹挟,当二者通过流动室喷嘴流出时,压力迫使鞘液包裹的液滴包含单一细胞或颗粒垂直通过检测区。在检测区与液滴垂直的位置设置激光,在与激光垂直的位置设置探测器(透镜等),液流、激光、探测器互相垂直并聚焦于一点实现流体动力聚焦。荧光标记的细胞或颗粒在激光激发下发出散射光和荧光的发射波,散射光和发射光被检测器获取,再经一系列滤光片、光栅处理去除干扰并将光信号经光电转换和放大后输入计算机,并由软件分析处理。而细胞分选则是对荧光标记的目的分子分别加载正或负电荷,当其在随液滴滴落的过程中受到外加高压电场的作用发生偏转而落入接收容器,从而获得目的细胞群。流式荧光检测技术有什么技术特点?1、高通量:将许多种不同荧光编码的微球放在同一反应体系内,一次可同时检测2-500种生理病理指标,这与传统方法的逐个检测相比是质的飞跃。2、高敏感性:流式荧光技术最高的检测下限可达0.01 pg/ml,常规的酶联免疫吸附试验(ELISA)仅为μg级,比后者检测的灵敏度提高10—100倍。3、线性范围宽:检测的线性范围比常规的ELISA方法高10倍以上,可达3-5个数量级。检测浓度范围为pg-μg级。4、反应快速:因流式荧光技术的杂交或免疫反应在悬浮的液相中进行,反应所需的时间短(从2 h缩短到20—40 min),杂交后常不用清洗,即可直接读数,所以检测效率高于固相杂交。5、重复性好:杂交发生在准均相液体环境中,其结果稳定,重复性非常好。检测时,抽取其中的100颗微球读数,最终的数据取其均值或中位值,这样可将误差减到最小。6、利于探针和被检测物的充分反应:由于液相环境更有利于保持蛋白质的天然构象,所以也更有利于探针和被检测物的反应。7、操作简便:流式荧光技术平台的整个反应过程只涉及加样和孵育,最后上机读数,操作步骤少,简单易用。— 2 —什么是化学发光检测技术?这里既然是跟流式荧光检测相比较的,那这里的化学发光检测技术指的是化学发光免疫分析技术。化学发光免疫分析:是将发光分析和免疫反应相结合而建立起来的一种新的检测微量抗原或抗体的新型标记免疫分析技术。化学发光检测技术的类型及原理化学发光检测技术的类型分为直接化学发光免疫分析,化学发光酶免疫分析和电化学发光免疫分析。直接化学发光免疫分析用吖啶酯直接标记抗体(抗原),与待测标本中相应的抗 原(抗体)发生免疫反应后,形成固相包被抗体-待测抗原吖啶酯标记抗体复合物,这时只需加入氧化剂(H2O2)和 NaOH使成碱性环境,吖啶酯在不需要催化剂的情况下分解、 发光 。由集光器和光电倍增管接收、记录单位时间内所产生 的光子能,这部分光的积分与待测抗原的量成正比,可从标准曲线上计算出待测抗原的含量。化学发光酶免疫分析酶免疫分析(chemiluminescence enzyme immunoassay,CLEIA)是用参与催化某一化学发光反应的酶 如辣根过氧化物酶(HRP)或碱性磷酸酶(ALP)来标记抗原或抗体,在与待测标本中相应的抗原(抗体)发生免疫反应后,形成 固相包被抗体-待测抗原-酶标记抗体复合物;经洗涤后,加入底物(发光剂),酶催化和分解底物发光,由光量子阅读系统接收,光电倍增管将光信号转变为电信号并加以放大,再把它们传送至计算机数据处理系统,计算出测定物的浓度。电化学发光免疫分析电化学发光免疫分析 (electrochemiluminescence immunoassay, ECLIA)是以电化学发光剂三联吡啶钌标记抗体(抗原),以三丙胺(TPA)为电子供体,在电场中因电子转移而发生特异性化学发光反应,它包括电化学和化学发光两个过程。化学发光免疫分析技术的优势是什么?1、灵敏度高:灵敏度高是化学发光免疫分析关键的优越性。化学发光免疫分析能够检出放射性免疫分析和酶联免疫分析等方法无法检出的物质,对疾病的早期诊断具有十分重要的意义。2、宽的线性动力学范围:发光强度在4-6个量级之间,与测定物质浓度间呈线性关系。这与显色酶联免疫分析吸光度(OD 值)2.0 的范围相比,优势明显。虽然同位素放射免疫也有较宽的线性动力学范围,但是放射性限制其应用。3、光信号持续时间长:化学发光免疫分析的光信号持续时间可达数小时甚至一天,简化了实验操作及测量。4、分析方法简便快速:绝大多数分析测定仅需加入一种试剂(或符合制剂)的一步模式。5、结果稳定、误差小:样本本身发光,不需要额外光源,避免了外来因素的干扰(光源稳定性、光散射、光波选择器),分析结果稳定可靠。6、安全性好及使用期长:到目前为止还未发现化学发光免疫分析试剂的危害性;另外这些试剂稳定,保存期可达一年之久。以上是对什么是流式荧光技术检测与化学发光技术检测基本原理做了一个说明,供大家参考。【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld @instrument.com.cn微信:JaysonXY(备注来意:投稿)(本文编辑:刘立东 点击查看KOL主页)
  • "高灵敏电化学发光检测方法"获国家专利
    近日,中科院长春应用化学研究所徐国宝等科研人员的一项发明专利“环境友好的高灵敏电化学发光检测方法”获得了国家知识产权局的授权(专利号:200510016848.4)。   联吡啶钌电化学发光标记分析是继放射分析、酶联分析、荧光分析和化学发光分析之后的新一代标记分析技术。它是基于高浓度的三丙胺与低浓度的联吡啶钌标记物发生电化学发光反应来进行生物分析,该技术由于具有灵敏度高、线性范围宽、抗干扰能力强、试剂稳定、重现性好等优点,被广泛应用于临床分析和科学研究。但联吡啶钌/三丙胺体系需要很高浓度的三丙胺才能实现高灵敏检测 且在不同工作电极上发光强度差别较大,铂电极上的发光强度仅约为金电极上的十分之一。因此十几年来人们一直在寻找替代三丙胺的新型共反应物,但一直没有找到发光效率高于三丙胺的共反应物。   该研究小组针对标记分析的特定条件,调研了一系列含有不同链长和基团如羟基、羧基和氨基等的共反应物的发光情况,找到一种高效的新型共反应物二丁基乙醇胺。在浓度为20 mM时,它在金电极和铂电极上的发光强度分别约是目前效率最好的三丙胺的十倍和一百倍。与一般采用外加增敏剂提高发光效率不同,二丁基乙醇胺是通过自身的羟乙基的催化来显著提高发光效率。由于羟乙基是一个吸电子基,因此该研究表明不是所有吸电子基团都是抑制电化学发光的,为寻找更加优良的试剂提供了新途径。二丁基乙醇胺具有优良的分析性能,在浓度只有三丙胺的五分之一时检测联吡啶钌比三丙胺的检测限好一个数量级。该研究对联吡啶钌电化学发光标记分析具有重要意义。
  • 新疆理化所基于探针结构精细调控实现高氯酸盐可视化检测
    高氯酸盐具有强氧化性和高稳定性,是广泛应用于固体推进剂、军工生产、航天器材、烟花爆竹等领域的重要含能材料之一。据美国爆炸数据中心统计,以高氯酸盐/氯酸盐作为原料直接或间接参与的爆炸案达全球爆炸案总量的63.4%。因此,开展对痕量高氯酸盐固体的高灵敏、准确的现场检测对保障国家公共安全具有重要的现实意义。中国科学院新疆理化技术研究所爆炸物传感检测团队长期致力于痕量危化品检测方法研究,在危爆品、特别是非制式爆炸物的高灵敏、快速、识别检测原理和器件设计方面发展了系列新的解决方案(Adv. Mater. 2020, 32, 1907043、Adv. Sci. 2020, 2002991、Angew. Chem. Int. Ed. 2022,DOI: 10.1002/anie.202203358等)。近期在高氯酸盐现场可视化检测方面取得进展,提出了一种基于自组装配合物探针与水凝胶耦合作用协同调控的超高灵敏比色-荧光双模可视化传感新策略,成功实现了超痕量高氯酸盐的现场双模可视化检测。该团队以三联吡啶铂(II)辅助配体为切入口,结合量子化学计算,系统研究了不同辅助配体对水溶液中三联吡啶铂(II)自组装产物Pt-Pt金属作用导致的MMLCT态光谱能量和发光稳定性的影响,阐明了辅助配体调控高氯酸根诱导聚集产物发光性质的一般性规律。研究发现,异硫氰酸根为辅助配体时,高氯酸根诱导聚集的三联吡啶铂(II)自组装产物具有能量最低且最稳定的MMLCT吸收/发射光谱,而溴为辅助配体时,自组装产物的MMLCT发生强度最高。因此,结合反阴离子调控,获得了具有良好水溶性的三联吡啶铂(II)配合物高氯酸盐比色-荧光双模可视化探针,实现了对高氯酸盐的高灵敏、高特异、快速、双模可视化传感。在此基础上,该团队提出了利用水凝胶反应介质与探针之间的耦合效应对传感材料发光信号局域增强的提升策略。通过将该铂(II)配合物探针与具有均一网络结构的PVA水凝胶耦合,利用自组装生成的微米级一维纤维状聚集体与水凝胶网络的相互作用,实现了对发光产物的完全锚定,实现了对0.75 μm(0.73 fg)高氯酸盐单颗粒的比色-荧光双模传感信号的直接观测,对空气中高氯酸盐悬浮微粒的检测限低至0.02 fg。该研究提出的辅助配体精细调控提升自组装阴离子探针双模可视化传感性能的策略,不仅可为具有特异双模光学响应信号的阴离子探针设计提供指导,还发展了基于单颗粒响应信号直接观测的超灵敏嗅觉传感方法,可为其他超痕量难挥发化学物质传感提供借鉴。此外,爆炸物传感检测团队以该研究为核心,与新疆公安厅共同发布自治区地方标准1项(DB 65/T 4451-2021《氯酸盐和高氯酸盐的检测目视化学比色法》),为相关行业提供了高氯酸盐检验鉴定操作规范。系列研究成果分别发表在《Journal of Materials Chemistry A》(杂志封底)和《Sensors and Actuators B: Chemical》上,博士研究生苏珍为第一作者,导师窦新存研究员和李毓姝副研究员为共同通讯作者,相关理论计算部分与太原科技大学李坤教授合作完成。研究工作得到国家自然科学基金委、中国科学院及自治区相关项目的资助。论文链接:https://pubs.rsc.org/en/content/articlelanding/2022/ta/d2ta00843bhttps://www.sciencedirect.com/science/article/pii/S0925400521002975封底链接:https://pubs.rsc.org/en/content/articlelanding/2022/ta/d2ta90087d
  • 整合优势资源 铸造民族精品--访汪尔康院士和西安瑞迈周起设总经理
    前言:长春应化所汪尔康院士与西安瑞迈合作研制的毛细管电泳电化学发光检测仪(MPI-A型),为“十五”国家科技攻关重大项目《科学仪器研制与开发》子项目。MPI-A在国际上首次将毛细管电泳分离和电化学发光检测性能完美结合,比相关领域通常应用的进口“毛细管电泳激光诱导荧光分析仪”大大降低了成本。目前,该仪器已应用于药物、医学等方面的科学分析工作。日前,汪院士在百忙中接受本网的邀请,以文字稿件形式详细阐述了该款产品的技术优势,随后笔者又邀请西安瑞迈公司周起设经理(以下简称“周总”)谈谈该款产品的市场推广和国产仪器行业的发展问题。此篇专访中,专家与厂商联手为国产优秀产品宣传造势,同时也为国内仪器行业的资源整合献计献策,以飨读者。 汪尔康院士 Instrument:您与西安瑞迈合作研制的毛细管电泳电化学发光检测仪将毛细管电泳分离和电化学发光检测性能完美结合,请您具体介绍其具体性能? 汪院士:电化学发光检测是近几年发展迅速的毛细管电泳分析中的一种新型检测方法,它将毛细管的分离技术与电化学发光检测相结合,可在临床分析及医药、病毒、免疫等科学试验中大大简化分析的技术难度,提高分析结果的准确性。 毛细管电泳电化学发光检测仪系结合毛细管电泳(CE)分离和电化学发光(ECL)检测于一体的多测试界面、多分析参数、多控制部件系统集成仪器。这是中国科学院长春应用化学研究所与西安瑞迈公司合作首创的一种现代分离分析仪器。它可同时对被测样品实现毛细管电泳在线分离、电化学发光实时检测,并同步显示化学发光信号、电化学电位扫描信号、电化学电极电流信号及毛细管电泳电流信号并对其进行详细分析。主要包括三个部分: (1)电化学分析仪,提供电化学发光分析所需的恒电位、循环伏安及线性扫描信号发生器及电化学电流检测器; (2)数控毛细管电泳高压电源,提供电泳分离所需高压,可按照程序对电动进样时间及高压、分析过程时间与高压进行独立控制; (3)多功能化学发光分析仪,由CE-ECL多功能检测池和化学发光检测器构成。CE-ECL多功能检测池成功将毛细管电泳、电化学及化学发光三种不同方法的检测组会在一起,实现了三种检测方法的有机结合;化学发光检测器可进行流动注射化学发光、静态注射化学发光、毛细管电泳化学发光、微芯片化学发光等各种发光检测。 Instrument:请问该仪器的关键技术是什么,取得了哪些突破性的成就,获得了哪些专利? 汪院士:我们瞄准电化学发光、毛细管电泳电化学发光及电化学检测的前沿研究领域,在检测系统设计、电极化学修饰、电化学发光试剂的固定化、整体仪器的开发和芯片系统制作取得主要成果如下: (1)建立了方便易用的毛细管电泳电化学发光、电化学的检测平台,基于该平台,对药物、环境污染物、生物分子等进行检测,并应用到临床样本等实际体系的分析,推动了该项技术的发展; (2)将化学修饰电极技术引入毛细管电化学检测,极大地提高了检测的灵敏度、选择性及电极的稳定性; (3)建立了多种电化学发光试剂的固定化技术,避免了繁琐的试剂引入操作,提高了信号的稳定性,并首次将该技术用于毛细管电泳分析;制作了腐蚀接头的电化学光检测器,有效抑制了电泳高压对检测的干扰;利用平行催化的电化学发光、电化学双检测技术扩大毛细管电泳电化学发光检测的应用范围;对毛细管电泳-电化学发光检测中的场放大效应进行研究,提高检测的灵敏度; (4)首次研制出商品化的整体毛细管电泳电化学发光检测仪,经中科院组织的鉴定会评价为“国际首创”,该仪器已成功投放市场,为该项研究的推广和相关学科的研究提供了有力的工具; (5)建立了新型的芯片毛细管电泳电化学发光、电化学检测系统,为后续进一步研究提供了有效的平台。 已申请专利15项(其中3项已授权): (1)建立电化学发光及电化学检测方法,设计制作了相应的检测池:毛细管电泳柱端喷壁安培检测池(专利号:97214642.3)、分离式电化学发光流动池(专利号:00241245.4)、喷壁式电化学发光流动池(专利号:00241246.2)、毛细管电泳柱端电化学发光检测池(专利号:01133351.0,已授权)、毛细管电泳与流动注射通用型电化学发光流通检测池(专利号:02123900.2,已授权); (2)在电化学检测发光方法中,为提高检测灵敏度、减少干扰,提出多种电化学发光检测器的制备方法:电化学发光传感器的制备方法(专利号:01120534.2)、毛细管电泳固体电化学发光检测器(专利号:02116453.3)、纳米金颗粒修饰的固体电化学发光检测器(专利号:02116460.6)、腐蚀接头毛细管电泳电化学发光检测装置(专利号:200310115835.3)、聚合物/碳纳米管复合物膜电化学发光传感器的制备方法(专利号:200410010765.x)、合成含有三联吡啶钌的微米及纳米粒子的方法(专利号:200510017158.0)、一种在电化学电极表面固定三联吡啶钌的方法(专利号:200510017159.5) (3)建立了芯片毛细管电泳-电化学、电化学发光检测系统:电化学检测-微流控芯片及制作方法和再生方法(专利号:03145053.9,已授权)、集成毛细管电泳电化学发光检测芯片的制备方法(专利号:200310115822.6)、 毛细管电泳电化学发光检测装置(专利号:200510016556.0)。 Instrument:毛细管电泳电化学发光检测仪与相关领域通常应用的进口毛细管电泳激光诱导荧光分析仪及其它同类仪器有哪些优势? 汪院士:毛细管电泳分析中应用较普遍的检测方法有紫外可见光谱、激光诱导荧光以及质谱方法。紫外方法灵敏度低,激光诱导荧光以及质谱方法具有较高的检测灵敏度,但是检测时往往需要进行化学衍生,且仪器设备较昂贵。电化学发光检测的优点是灵敏度高、成本低、检测对象广泛,应用潜力巨大。将该方法与高特异性的免疫技术相结合,发展起来的免疫电化学发光技术,则有着选择性好、检测限低的优势,在基础科学研究、临床诊断等多方面有着广泛的应用。免疫电化学发光技术的应用面大、市场广阔,但目前相关的专利技术等一直把持在国外大型公司手中,所生产的专用仪器及相配套的试剂盒价格昂贵(仪器的价值高达18万美元,每检测一个样品实际消耗费用2美元),日常使用及维护成本均很高。 我们在国际上首次研制出商品化的整体毛细管电泳电化学发光检测仪,价格大概只有国外同类产品的十分之一,被中科院组织的的鉴定会评价为“国际首创”, 可实现CE-ECL的在线分离,实时检测,操作灵活,软件功能齐全,为该项研究的推广和相关学科的研究提供了有力的工具。 Instrument:毛细管电泳电化学发光检测仪可用于哪些实际应用领域?能否请您介绍一下国内外此技术发展历程及前景? 汪院士:毛细管电泳电化学发光检测仪,可用于药物、氨基酸、多肽、蛋白质及核酸检测分析 可应用于蛋白质分离检测、免疫及DNA分析以及细胞组分测定等。研究蛋白质分子之间或与其他分子如临床药物之间的相互作用以及蛋白质折叠现象、构象转化等,对深入探讨相关疾病的发生机制具有很好的参考价值;而有关DNA的损伤及其修复等科学研究,在一定程度上有助于了解一些基因性疾病的致病原因并寻求可能的治疗手段,此外,利用DNA适配子特异识别生物分子甚至癌细胞等特点,可对特定目标进行专一标记及分析测定;单细胞分析如原位监测细胞受激释放及其代谢凋亡等,有助于我们在细胞层次上深入了解生命现象及其本质,并通过细胞与药物作用研究来初步筛选某些临床药物;利用抗体与抗原或亲和素与生物素的特异作用,可以实现目标物的靶向标记。 在国内外,关于蛋白质、DNA、细胞及免疫分析等方面的基础研究工作如日中天,与此同时,相应的分析仪器的研发和应用也得到了大力发展。Ru(bpy)32+ 电化学发光(ECL)在以上分析领域的基础研究也得到大力发展,建立了相应的活化、标记、分离和检测技术并取得广泛的应用。但国际上仅有少数几家公司在生产电化学发光仪及开发相关试剂,其中,美国IGEN公司率先推出Origen Analyzer系列的电化学发光分析仪,此类仪器是在Origen磁微球免疫标记技术基础上,结合流动注射分析方法,将电化学发光方法应用于免疫分析领域,然而,该仪器无法有效分离样品,只适合研究纯化后的样品,而且价格昂贵,每台18万美元,其备用件及消耗件如电化学发光探针等的总价格也近10万美元;德国宝灵曼公司也推出了Elecsys系列的全自动电化学发光免疫分析仪,该仪器采用了电化学发光免疫技术、链酶亲和素与生物素间接包被及间接性抗体等技术,由于这种仪器同样采用了流动进样装置,因此仍存在样品分离等问题。Roche公司分别于1998年和2003年先后收购了宝灵曼公司和IGEN公司,成为目前世界上最大的电化学发光分析仪器及其配套试剂的生产厂商;最近,Roche公司推出1010型全自动电化学发光免疫分析仪,该仪器的分析特点与前两种仪器基本类似,仍采用流动注射和磁微球技术。以上这些电化学发光仪,均在样品分离纯化方面存在明显不足,分析手段单一,并且无法进一步进行微型化,很难从根本上满足目前我们在基础科学尤其是生命科学分析等研究领域的科研需要。我们研制的毛细管电泳电化学发光检测仪(CE-ECL),是国际上的首台这类仪器。把先进的分离方法与先进的检测技术结合成为整体的智能化分离与分析仪器,在国际上是首创。中科院组织的鉴定会评价为“国际首创”,而且价格较低,可实现CE-ECL的在线分离,实时检测,操作灵活。今后的研究工作将侧重于具有实际生物分析应用前景、功能全面的微型毛细管电泳电化学和电化学发光分析仪器。 Instrument:请介绍您与西安瑞迈的合作过程,您如何将科研成果顺利的推向市场的呢? 汪院士:由于在测试方法上我们的科研小组作了大量的前期工作,加之仪器设计较为成功,与西安瑞迈紧密合作,在成果鉴定之后短短一年内就销售了30台/套,销售产值达300万元。但是随着销售数量的增长和使用对象的不同,要商品化质量是关键,产研紧密结合,不断总结经验,不断完善整体系统各项设计,分别从微电极系统、化学发光单元、电化学分析系统以及毛细管电泳高压电源等方面进行了改进,使仪器系统测试效果大大提高。并且在产品产业化和实际销售过程中,根据用户的实际需要,派生出了一系列基于CE-ECL技术的系列产品,如:多参数化学发光联用仪器系列、化学发光及荧光分析检测仪系列、进样器系列、化学发光检测器系列等。到目前为止,MPI-A型毛细管电泳电化学发光检测仪在产业化完成之后,取得了相当良好的经济效益,并初步建立了销售网络。迄今为止,该仪器(包括科研原型样机和商品化仪器)已销往全国各地,受到了用户单位的一致好评,已被清华大学、北京大学、南京大学、中国科技大学、武汉大学、西安交通大学、湖南大学、四川大学等重点院校作为教学仪器和科研仪器购置。据统计数据显示,因是国际首创,该仪器在国内销售市场独据份额,其生产总值已达1000多万,实际完成销售额达900多万,其中仅MPI-A/B型已实际销售66台/套,产值约800万;另有三十多台已被一些用户单位预定。实践证明我们与西安瑞迈公司产研结合是很成功的,我们从一开始研制到样机成功进行转化为商品,不断完善、不断改进,始终紧密结合融为一体,推动这类分析仪器的发展。 Instrument:请问毛细管电泳电化学发光检测仪自推向市场来,已经被哪些国内外科研机构选用,关于该产品近期有哪些好消息(如国家部门和权威机构的肯定)呢?是否有国际化推广的计划? 周总:毛细管电泳电化学分析检测仪自2004年正式投产以来,由于其独特的分析功能而受到了众多科研单位和大专院校的欢迎,据不完全统计,国内排名前100名的理工科院校中有近90%的院校已经购买此仪器,有些院校甚至购买了近10台,其中包括清华,北大等著名高校。中科院长春应化所、化学所、电子所、过程研究所等科研机构也相继购买了此仪器。此外,还有国外的一些科研机构也在询问购买事宜。该仪器目前已列为科技部仪器产业化示范项目产品。 Instrument:您认为目前国内科学仪器的研发和生产主要面临哪些困难?您对科研工作者与厂商加强合作及促进国内科技成果产业化有哪些建议? 周总:目前国内分析仪器行业发展势头迅猛,有些产品已经占据了国内主要市场,但在高端仪器领域,国外产品仍占有主要地位。尤其是具有自主知识产权的生化分析仪器更是如此。分析仪器由于产品开发存在投入大、周期长、技术要求高和市场风险大的问题,因此仅由企业尤其是中小企业独立开发高水平的分析仪器难度很大。一方面企业不可能建立完全用于基础研究的实验室,另一方面所开发的仪器如果没有相关测试方法的配套很难进入市场。因此,采用院企结合、校企结合研发新型分析仪器是一种将产品尽快进入市场的理想方法。西安瑞迈公司与中科院长春应化所汪尔康院士、董绍俊院士等知名专家的合作很好地证明了这一点。此外,企业应能多与所研制产品的行业顶级专家沟通,听取他们的宝贵经验;西安瑞迈分析仪器公司所研发的毛细管电泳电化学检测仪器中所涉及的许多关键技术都得益于与其相关领域的专家指导。如电化学领域的汪尔康院士,化学发光领域的章竹君教授及弱电流检测领域的陶国安教授等,他们都对仪器的研制提出了很好的建议。 分析仪器研发对技术综合性要求很高,研发人员不但需要有很强的本专业知识,而且需要很宽的知识面和很强的技术贯穿能力,但受目前国内教育体制的限制,很难直接聘到相关人才,大多需要企业对其进行较长时间的培训,因此,如何在此期间使研发队伍相对稳定,是较为困难的事情。 此外,由于分析仪器尤其是创新型仪器研发费用较高,而这部分费用却无法抵扣相应税费,导致纳税额偏高,使企业投入研发的热情受到很大影响。建议相关部门能够针对技术研发比重较大的创新型企业以税收优惠支持。 Instrument:面对国外仪器厂商的强势竞争和并购热潮,请问您认为我们应该如何提高国产仪器研发和生产能力,振兴民族科研能力和民族科研工业? 周总:1。国内仪器开发厂商必须加大对具有自主知识产权产品的研发力度,避免互相仿造,竞相降低产品价格,使自己逐渐丧失研发能力。 2.要努力打造品牌产品,努力在产品质量上下功夫,避免片面追求不实用的技术指标和表面功能,在中低档产品上占领国内主要市场,进而逐渐缩小高档分析仪器与国外产品的差距,逐步改变国外产品占据国内大部分市场的局面。 3.要改变国内分析仪器厂家规模偏小,单一厂家产品种类繁多的问题,鼓励企业做精做强具有自己优势的产品。 4.鼓励企业按行业划分进行集团化重组和并购,形成具有较强竞争优势的企业集团。 采访后记:汪院士和周总分别从技术和市场这两方面,阐述了MPI-A的技术优势和推出过程,也给众多的国内同行来自成功案例的启迪:应对激烈的市场竞争,需要整合优势资源,需要专家、厂商、政府部门等多方紧密合作。 MPI-A毛细管电泳电化学发光检测仪相关信息请登陆: http://www.instrument.com.cn/netshow/SH100665/C12035.htm 长春应化所相关信息请登陆:http://www.ciac.jl.cn/ 西安瑞迈公司相关信息请登陆: http://remex.instrument.com.cn 或 http://www.xaremex.com/About.htm 策划编辑:廖庆玲
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制