当前位置: 仪器信息网 > 行业主题 > >

空气流场

仪器信息网空气流场专题为您整合空气流场相关的最新文章,在空气流场专题,您不仅可以免费浏览空气流场的资讯, 同时您还可以浏览空气流场的相关资料、解决方案,参与社区空气流场话题讨论。

空气流场相关的资讯

  • PALL PM 2.5空气监测膜片满足美国EPA标准
    PM 2.5标准是为了检测可吸入颗粒物的一个标准,来衡量空气的被污染程度   PM,是颗粒物英文全称Particulate matter的缩写   PM2.5,指大气中空气动力学直径小于或等于2.5微米的颗粒物,亦称可入肺颗粒物.   人为来源:主要来自燃烧过程,比如化石燃料(煤、汽油、柴油)的燃烧、生物质(秸秆、木柴)的燃烧、垃圾焚烧。在空气中转化成PM2.5的气体污染物主要有二氧化硫、氮氧化物、氨气、挥发性有机物。   自然来源:风扬尘土、火山灰、森林火灾、漂浮的海盐、花粉、真菌孢子、细菌其粒径小,富含有毒有害物质,因而对人体健康和大气环境质量影响极大   PM10,则指大气中空气动力学直径等于或小于10微米的颗粒物,也称可吸入颗粒物,粒径2.5微米至10微米的粗颗粒物主要来自道路扬尘等,属于粗颗粒物,与细颗粒物相对。   PM2.5的危害   PM2.5主要对呼吸系统和心血管系统造成伤害,包括呼吸道受刺激、咳嗽、呼吸困难、降低肺功能、加重哮喘、导致慢性支气管炎、心律失常、非致命性的心脏病、心肺病患者的过早死。老人、小孩以及心肺疾病患者是PM2.5污染的敏感人群。 世界卫生组织(WHO)和一些国家的PM2.5标准(单位:微克/立方米)   PM 2.5的标准最早是由美国在九七年的时候提出来,目前世界上很多的发达国家都把PM 2.5列入了一个评价空气质量的标准,我们国家采用的是新的环境空气评价办法—环境空气质量指数(AQI).   《环境空气PM10和PM2.5的测定 重量法》(中华人民共和国国家环境保护标准,HJ618-2011)   “根据样品采集目的可以选用玻璃纤维、石英等无机滤膜或聚氯乙烯、聚丙烯、混合纤维素等有机滤膜。滤膜对0.3um标准粒子的截留效率不低于99%。”   美国EPA标准,用做PM2.5 检测的膜厂家应该满足的EPA 40 CFR Part 50 (EPA 1997a)   生产标准:   • 大小—圆盘, 46.2-mm ±0.25 mm (带支撑环)   • 材质—带完整支撑环的(PTFE) Teflon®   • 支撑环—PMP或相等的惰性材料,0.38±0.04mm厚度,外部直径46.2±0.25mm,宽3.68 mm。支撑环应保持性能一直,否则会影响操作。   • 孔径—2μm (按ASTM F 316-94标准)   • 厚度—30-50μm   其他信息请访问美国环保局网站,http://www.epa.gov/air/particlepollution/health.html   PALL用于PM 10,PM 2.5检测的膜片符合EPA规定   Teflo PTFE膜片   PTFE膜,拥有EPA规定的PMP支撑层,专用于PM-10, PM-2.5,分道采样和其他空气抽样检测技术。在X射线萤光分析下极低的化学背景,低成分也适用于高精度的重量分析测定法。   滤材:带 PMP支撑层的PTFE膜(符合美国EPA法规)   厚度: 1 µ m: 76 µ m (3 mils), 2 µ m: 46 µ m (1.8 mils), 3 µ m: 30.4 µ m (1.2 mils)   典型气溶胶截留 (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求) :1 和2 µ m: 99.99%, 3 µ m: 99.79%   典型空气流速(0.7 bar (70 kPa, 10 psi)): 1 µ m: 17 L/min/cm2, 2 µ m: 53 L/min/cm2 , 3 µ m: 90 L/min/cm2   A/E玻璃纤维   用于各种空气分析的顶级玻璃纤维过滤膜,符合EPA法规推荐使用的要求为:无粘合剂的硼酸硅玻璃纤维。   滤材: 无粘合剂的硼酸硅玻璃纤维   孔径: 1 µ m (nominal)   厚度: 330 µ m (13 mils)   典型气溶胶截留 :99.98% (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)   典型空气流速(0.7 bar (70 kPa, 10 psi)): 60 L/min/cm2   典型水流速度(0.3 bar (30 kPa, 5 psi) ): 250 mL/min/cm2   最大操作温度-空气: 550 °C (1022 °F)   Zefluor™ PTFE膜   低化学本底,高灵敏度,无干扰. 0.5 µ m孔径,满足 NIOSH标准,适合监测酸雨,芳香烃和为例检测.   滤材: 有PTFE支持层的PTFE 膜   孔径: 0.5, 1, 2, 和3 µ m   厚度: 0.5 µ m: 178 µ m (7 mils), 1 µ m: 165 µ m (6.5 mils), 2 and 3 µ m: 152 µ m (6 mils)   典型气溶胶截留 :0.5, 1, and 2 µ m: 99.99%, 3 µ m: 99.98% ((按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)   典型空气流速(0.7 bar (70 kPa, 10 psi))0.5 µ m: 1, 1 µ m: 14.6, 2 µ m: 25.3, 3 µ m: 53 L/min/cm2   Pallflex Tissuquartz™ (石英膜)   纯石英,没有粘合剂,最高化学纯度, 高流速,高过滤效率. 独特的设计适用用高温和热气体的监测应用。   滤材: 纯石英,没有粘合剂   厚度: 432 µ m (17 mils)   重量t: 5.8 mg/cm2   典型气溶胶截留 :99.98% (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)   典型空气流速(0.7 bar (70 kPa, 10 psi)): 73 L/min/cm2   典型水流速度(0.35 bar (35 kPa, 5 psi) ): 220 mL/min/cm2   最大操作温度-空气: 1093 º C (2000 º F)   PM 10, PM 2.5监测配件   滑动盖   保护样品膜的完整性   具体购买事宜,请联系PALL当地代理商:   http://www.ebiotrade.com/custom/ebiotrade/DLS2009/pall.htm   或Email PALL 实验室市场部:   Jessie_jing_chen@ap.pall.com
  • 检测空气之前,给仪器行业来个体检
    span style=" line-height: 1.5em text-align: justify "    /span span style=" line-height: 1.5em text-align: justify " “一批网红甲醛检测仪全部不符合技术要求”的新闻近日刷屏了。上海市市场监管部门公布了对网红产品“甲醛检测仪”的风险监测结果,结果显示:抽检样品中无一批次“甲醛检测仪”产品示值误差符合技术要求,无一批次“甲醛检测仪”在设定的检测环境条件下的重复性符合要求。 /span p style=" line-height: 1.5em text-align: justify "   无独有偶,国家质检总局2017年曾组织开展对网售室内有害物质检测仪产品的风险监测,随机检测电商平台销售的30批次手持“霾表”,但样品无一合格。这些产品的说明书上注明对PM2.5检测精度高,多数还能检测甲醛、挥发性有机物等。 /p p style=" line-height: 1.5em text-align: justify "   近年来,随着公众对室内装修甲醛问题、PM2.5健康危害了解的深入,“测一测”的要求随之而来。于是,价格便宜、携带方便的甲醛、PM2.5检测仪纷纷登场,成为销售的热点。这些仪器一般只有手机大小,公众可以非常便捷地获得室内空气质量的各种数据。 /p p style=" line-height: 1.5em text-align: justify "   这样的检测仪看似方便,实际却很不靠谱。专业人士拆解发现,这些检测仪基本使用的是传感器。由于价格低廉、传感器的品质差,测量精度低。技术路线也不靠谱,传感器基本都采取扩散式采样方式,检测结果反映的只是污染物在某一点位的瞬间浓度情况,并不能代表整个空间的污染物浓度值。而甲醛等局部浓度受空气流速、温度、湿度甚至家具数量、摆放位置等因素影响,这导致测出来的数值不稳定,误差率大。拆解样品后还发现,检测仪设计较为简单,部分产品没有辅助的风扇或其他辅助气流进入装置,吸入的空气少,检测的准确程度也就可想而知。其实,空气检测仪是需要定期校准服务的,这些网红检测仪普遍缺乏自动校准、自净功能,也没有企业的后续跟踪服务。一旦在使用过程中,传感器受到粉尘等污染,其敏感性下降甚至失灵,反而误导公众,甚至引起心理恐慌。 /p p style=" line-height: 1.5em text-align: justify "   过去,甲醛和PM2.5等检测仪属于造价昂贵的专业设备,根据精度要求,售价从几万到几十万元不等,只是少数专业部门和企业才拥有。近年来,随着公众对室外、室内空气质量的重视,类似的检测仪才逐渐“飞入寻常百姓家”。目前我国没有规定民用便携式检测仪需通过认证再上市,民用甲醛检测仪也缺乏统一的技术标准,很多民用甲醛检测仪只是电子元件的简单拼凑。面对如今公众出现的新需求,有关部门除了要对市场上的民用甲醛检测仪等仪器的质量检测外,更要亡羊补牢,尽快制定行业标准和技术规范,遏制目前行业内鱼龙混杂、产品质量参差不齐的乱象 公众也不要盲目追捧所谓的网红产品,尽量请专业机构用专业设备来检测空气质量。 /p p br/ /p
  • 专家:车内空气质量检测存在较多问题
    参加车内空气质量联席会议的专家指出   车内空气质量检测存在较多问题   “目前,在车内空气质量检测方面存在很多问题,比如检测方法不规范、检测仪器不规范等,从而导致一些检测结果不真实,对汽车企业及消费者均起到不好的影响。”这是上周在京举行的首次车内空气质量联席会议上一些专家的观点。   此次会议由中国室内环境监测工作委员会牵头组织,国家环保部、国家认监委、中国汽车工程学会、中国汽车工业协会、中国消费者协会、汽车企业等相关单位负责人及专家参加,共同就解决车内空气质量问题群策群力,出谋划策。   中国室内环境监测工作委员会秘书长、国家室内环境与室内环保产品质量监督检验中心主任宋广生在会上介绍说,随着我国汽车产业的快速发展,车内空气污染的问题开始引起人们的重视,特别是2012年3月1日《乘用车内空气质量评价指南》国家标准发布以后,车内空气质量受到越来越多人的关注。车内空气质量安全和食品安全一样,是和老百姓生活息息相关的。2012年,车内空气质量问题已经成为和产业动态、车展论坛排在前三位的热点话题。这和大家的关注度及国家标准的实施是有直接原因的。   宋广生特别提到,标准实施将近一年,但是在车内空气质量检测方面存在很多问题,比如检测方法不规范、检测仪器不规范、检测条件不规范、检测项目不规范、检测结果发布不规范等等,这就可能在市场上造成了一些混乱,其后果是影响了国家标准的正确实施,并且影响了品牌汽车对车内空气质量的控制,对汽车企业的实际工作产生了影响。同时也误导了消费者。   专家举例说,比如标准有严格的控制方法,就是汽车要在一个封闭的环境当中去做检测,这种检测才是有真正意义的。而实际上,很多检测方法是不规范的,包括去年一些很有影响的检测都是在室外进行的。   宋广生说,没有一个封闭的环境舱,把温度、湿度、空气流速进行控制,其检测就是不规范的。对此,宋广生在会上提出建议,应该规范车内空气质量评价活动,包括规范车内空气质量检测实验室、规范车内空气质量检测活动、规范车内空气质量检测结果评价和宣传、规范车内饰件的有害物质检测活动、规范车内空气质量净化治理服务以及规范车内空气净化器和净化技术的检测认证。   国家认监委认证监管处处长王昆介绍说,车内空气污染问题成因比较简单,主要是车内的内饰材料释放的挥发有机物,超标物质对于驾乘人员的健康有很大的影响。而主要的根源还是产品在生产制造过程当中产生的。如何通过认证的手段来控制污染物的产生,这个问题需要认证机构、检测机构做更深入的制度设计和相关的技术安排,确保质量控制工作能更加科学合理。   中国消费者协会消费指导部主任张德志特别提到有一些误区应该重视。他说,车内的污染问题跟汽车厂家当然有关系,但是消费者也不要忽视车内装饰等的二次污染问题。有时,二次污染可能比第一次污染更难控制,问题更严重。比如有消费者购车后,买了几个味道特别大的脚垫,这就有可能导致原来出厂时车内的污染物加一起,都不如后购买的脚垫产生的有害物质多。   据了解,目前车内环境污染问题也越来越受到汽车主机厂和众多配套厂家的重视,如何净化车内环境,保障车主及乘客的身心健康,已成为整个汽车行业迫切需要解决的问题。在这方面一些汽车企业已走在了前面。参会的吉利汽车及沃尔沃汽车在会上介绍了企业在这方面做的大量工作,并受到专家好评。   有关专家表示,车内空气的污染跟乘客的距离是最近的,我们可以最直接地感受到这样的污染。中国的汽车保有量已经超过1亿辆,而且基本上每年以近2000万辆的数量在推进。汽车中这种有机物的挥发不仅仅影响到车内的空气,而且还要往大气中排放。所以,汽车的排放也应该放在同样重要的程度上来考虑。   此次联席会议最后还对2012年车内空气质量十大新闻奖进行了颁奖,吉利控股集团、沃尔沃汽车网络传播、中客华瑞北京车内指导中心等单位摘得奖项。作为唯一的新闻媒体,本报也因一年来对车内空气质量的大力宣传获此殊荣。
  • 五大豪华品牌车型车内空气质量排名PK
    在今年北京开始实施实时公布空气质量PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物)数值以来,空气质量问题开始渐渐被更多的人所关注,而在汽车室内也存在着空气质量好坏的问题。近日,全国22家城市消协及消费维权单位联合发布《汽车室内空气质量比较试验报告》,在报告中共公布了5大豪华品牌相应车型的空气质量检测结果,其中包括对甲醛、苯、苯乙烯等有害化合物的检测,本期就为大家介绍下豪华品牌车型在室内空气质量的把控如何。   沃尔沃S60室内空气质量达五星 好于其他车型     【5大豪华品牌相应车型车内空气质量排名】   在全国22家城市消协及消费维权单位联合发布《汽车室内空气质量比较试验报告》中,共涉及了5大汽车豪华品牌的6款车型。如上表所示,沃尔沃旗下的S60车型获得了5星(星数越多空气质量越好)的空气质量表现,好于其他品牌车型。虽然雷克萨斯ES240、奔驰C200等车型在车内空气质量检测中均获得了4星的成绩,但由于综合不同检测物含量的检测结果得出了如上表所示的排名。   6款车型检测化合物含量均低于标准值   【检测物中含醛类化合物检测结果】    【检测物中含苯类化合物检测结果】   如上表所示,在检测项目中共分为对两大类化学物质的检测,一类是醛类化合物一类是苯类化合物,总共针对包括苯、甲醛、乙醛、甲苯、乙苯等8种有害化学物质的检测。公布数据显示,沃尔沃S60、雷克萨斯ES240、奔驰C200、宝马5系、奥迪Q5和A4L虽然在检测的化学物质含量有所不同,但检测坚果均低于标准值。   内饰材料使用的化合物对人身体危害    【8种化合物对人体健康造成的危害】   在《汽车室内空气质量比较试验报告》中针对苯、醛类化合物的检测,这两类化合物在日常生活中长期接触可导致慢性中毒,如乙醛在低浓度时可引起对眼、鼻、上呼吸道的刺激和支气管炎,而甲苯在长期接触后可发生神经衰弱综合征、肝肿大等症状。   消费者购车时应如何选择   新车在出厂后一般都带有&ldquo 新车&rdquo 所特有的味道,气味较为难闻,所以消费者在选购车辆时,最好先打开车门闻闻味道,选择无异味或异味较轻的车型。   新车购买后需要注意事项   在购买新车初期,上车前先打开车门让车内的空气进行流通,行驶中常开窗通风(车窗、天窗均可有效保持车内空气流通),使用空调时多采用外循环模式。另外,尽量不要增添或改装车内饰,吸烟、放置劣质香水也会加重&ldquo 毒气&rdquo 浓度。  在生活水平逐步提高的今天,对于健康的重视程度也在广大消费者中逐渐引起共鸣。现如今汽车已成为我们日常生活中使用较为频繁的活动空间之一,由于车内空间较为局限并且经常处于闭合状态,所以车内空气质量的好坏也直接影响了乘员的身体健康,而在豪华品牌车型中汽车室内空气质量整体水平的把控也相对较高。
  • 新型评估体系可详细监测小城市空气质量
    最近,俄罗斯秋明国立大学提出了一种详细评估城市气候和空气质量的体系,有助于在不设大型气象中心的小城市组织环境质量监测。相关论文发表在《环境科学与政策》杂志上。  当空气中含有大量有害物质和灰尘时,会危害环境质量。在这种情况下,空气检测经典统计监测模型不能很好发挥作用,需要扩展性的、一体化的方法和模型。秋明国立大学的科研人员制订出一种扩展方法,可用于更详细地评估城市环境质量。  这种评估体系的关键特点之一是“按需工作”。在大城市可能配备有空气质量连续监测和预报体系,但在问题同样严重的小城市可能没有。根据科学家的说法,当需要详细分析小城市环境质量时,通常方法的缺点也变得尤为明显。  研究人员提出的方法原理与天气预报模型相同,能更详细地计算空气流动。研究人员在俄罗斯北部小城阿帕季特进行了一项计算机试验:一个具有高分辨率的模型显示,污染羽流覆盖了整个城市,与此同时,传统模型却显示污染将被风吹往偏离城市的方向。  “秋明国立大学参与这个方向的研究工作,为在全新水平上研究秋明北部的社会生态问题并测试我们的研究成果提供了机会。我们目前在分析纳德姆市的环境状况。这项研究将帮助我们更深入地理解一些关键生态因素,确保生活在俄罗斯北部严酷自然气候条件下的人们的生活质量。”秋明国立大学低温学和冷冻学国际中心冷冻学术系高级研究员罗曼费奥多罗夫介绍说。  研究人员还指出,空气质量监测是联合国可持续人类发展计划的一部分,为实现这些目标,世界气象组织正在积极发展创建扩展性整体一体化方法,以开展详细环境评估。
  • 国家标准室内空气质量标准
    GB18883 中华人民共和国国家标准室内空气质量标准   1、范围   本标准规定了室内空气质量参数及检验方法。   本标准适用于住宅和办公建筑物。   2、规范性引用文件   下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改(不包括勘误内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。   GB 6921-86 大气飘尘浓度测定方法 重量法   GB 9801-88 空气质量 一氧化碳的测定 非分散红外法   GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法 气相色谱法   GB 12372-90 居住区大气中二氧化氮检验标准方法 改进的 Saltzman 法   GB/T 14679-93 空气质量 氨的测定 次氯酸钠 - 水杨酸分光光度法   GB/T 14669-93 空气质量 氨的测定 离子选择电极法   GB/T 14582-93 环境空气中氡的标准测量方法   GB 14677-93 空气质量 甲苯、二甲苯、苯乙烯的测定 气相色谱法   GB/T 15262-94 环境空气 二氧化硫的测定 甲醛吸收 - 副玫瑰苯胺分光光度法   GB/T 15435-1995 环境空气 二氧化氮的测定 Saltzman 法   GB/T 15438-1995 环境空气 臭氧的测定 紫外光度法   GB/T 15439-1995 环境空气 苯并 [a] 芘测定 高效液相色谱法   GB/T 15516-1995 空气质量 甲醛的测定 乙酰丙酮分光光度法   GB/T 16128-1995 居住区大气中二氧化硫卫生检验标准方法 甲醛溶液吸收 - 盐酸副玫瑰苯胺分光光度法   GB/T 16129-1995 居住区大气中甲醛卫生检验标准方法 分光光度法   GB/T 16146-1995 住房内氡浓度控制标准   GB/T 16147-1995 空气中氡浓度的闪烁瓶测量方法   GB/T 17095-1997 室内空气中可吸入颗粒物卫生标准   GB/T 18204.18-2000 公共场所室内新风量测定方法—示踪气体法   GB/T 18204.23-2000 公共场所空气中一氧化碳检验方法   GB/T 18204.24-2000 公共场所空气中二氧化碳检验方法   GB/T 18204.25-2000 公共场所空气中氨检验方法   GB/T 18204.26-2000 公共场所空气中甲醛测定方法   GB/T 18204.27-2000 公共场所空气中臭氧检验方法   5 室内空气质量检验   5.1 室内空气中各种化学污染物采样和检验方法见附录 A 和附录 B 。   5.2 室内空气中苯浓度的测定方法见附录 C 。   5.3 室内空气中总挥发性有机物( TVOC )的检验方法见附录 D 。   5.4 室内空气中细菌总数检验方法见附录 E 。   5.5 室内热环境参数的检验方法见附录 F 。   附录 A   (规范性附录)   室内空气采样技术导则   1、范围   本导则在进行室内空气污染物监测时,对采样点位,采样高度,采样时间和频率,以及采样方法和质量保证措施等项做出规定。 本导则作为《室内空气质量标准》配套的空气采样技术的指导原则,适用于《室内空气质量标准》中所规定的各种化学污染物的采样。   2、选点要求   2.1 采样点的数量:采样点的数量根据监测室内面积大小和现场情况而确定,以期能正确反映室内空气污染物的水平。原则上小于 50m 2 的房间应设 1~3 个点 50~100m 2 设 3~5个点 100m 2 以上至少设 5 个点。在对角线上或梅花式均匀分布。   2.2 采样点应避开通风口,离墙壁距离应大于 0.5m 。   2.3 采样点的高度:原则上与人的呼吸带高度相一致。相对高度 0.5m~1.5m 之间。   3、采样时间和频率   采样前至少关闭门窗 4 小时。日平均浓度至少连续采样 18 小时, 8 小时平均浓度至少连续采样 6 小时, 1 小时平均浓度至少连续采样 45 分钟。   4、采样方法和采样仪器   根据污染物在室内空气中存在状态,选用合适的采样方法和仪器,用于室内的采样器的噪声应小于 50dB 。具体采样方法应按各个污染物检验方法中规定的方法和操作步骤进行。   5、采样的质量保证措施   5.1 气密性检查:有动力采样器在采样前应对采样系统气密性进行检查,不得漏气。   5.2 流量校准:采样系统流量要能保持恒定,采样前和采样后要用一级皂膜计校准采样系统进气流量,误差不超过 5% 。   采样器流量校准:在采样器正常使用状态下,用一级皂膜计校准采样器流量计的刻度,校准 5 个点,绘制流量标准曲线。记录校准时的大气压力和温度。   5.3 空白检验:在一批现场采样中,应留有两个采样管不采样,并按其他样品管一样对待,作为采样过程中空白检验,若空白检验超过控制范围,则这批样品作废。   5.4 仪器使用前,应按仪器说明书对仪器进行检验和标定。   5.5 在计算浓度时应用下式将采样体积换算成标准状态下的体积:   式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。   5.6 每次平行采样,测定之差与平均值比较的相对偏差不超过 20% 。   6、记录和报告   采样时要对现场情况、各种污染源、采样日期、时间、地点、数量、布点方式、大气压力、气温、相对湿度、风速以及采样者签字等做出详细记录,随样品一同报到实验室。   附录 B   (规范性附录)   室内空气中各种参数的检验方法 *   污染物 检验方法 来源   (1) 二氧化硫 SO 2 甲醛溶液吸收 —— 盐酸副玫瑰苯胺分光光度法 ( 1 ) GB/T 16128-1995   ( 2 ) GB/T 15262-94   (2) 二氧化氮 NO 2 改进的 Saltzaman 法 ( 1 ) GB/ 12372-90   ( 2 ) GB/T 15435-1995   (3) 一氧化碳 CO ( 1 )非分散红外法   ( 2 )不分光红外线气体分析法 、气相色谱法 、汞置换法 ( 1 ) GB 9801-88   ( 2 ) GB/T 18204.23-2000   (4) 二氧化碳 CO 2 ( 1 )不分光红外线气体分析法   ( 2 )气相色谱法   ( 3 )容量滴定法 GB/T 18204.24-2000   (5) 氨 NH3 ( 1 )靛酚蓝分光光度法   纳氏试剂分光光度法   ( 2 )离子选择电极法   ( 3 )次氯酸钠—水杨酸分光光度法 ( 1 ) GB/T 18204.25-2000   ( 2 ) GB/T 14669-93  ( 3 ) GB/T 14679-93   (6) 臭氧 0 3 ( 1 )紫外光度法   ( 2 )靛蓝二磺酸钠分光光度法 ( 1 ) GB/T 15438-1995   ( 2 ) GB/T 18204.27-2000   (7) 甲醛 HCHO • AHMT 分光光度法   • 酚试剂分光光度法   气相色谱法   ( 3 )乙酰丙酮分光光度法 ( 1 ) GB/T 16129-95   ( 2 ) GB/T 18204.26-2000   ( 3 ) GB/T 15516-95   (8) 苯 C 6 H 6 气相色谱法 • 附录 C   ( 2 ) GB 11737-89   ( 9 ) 甲苯 C 7 H 8 、   二甲苯 C 8 H 10 气相色谱法 GB 14677-93   (10) 苯并 [a] 芘   B(a)P 高压液相色谱法 GB/T 15439-1995   (11) 可吸入颗粒   PM10 撞击式 —— 称重法 GB/T 17095-1997   (12) 总挥发性有机物   TVOC 气相色谱法 附录 D   (13) 细菌总数 撞击法 附录 E   (14) 温度、相对湿度、空气流速 热环境参数的检验方法 附录 F   (15) 新风量 示踪气体法 GB/T18204.18-2000   (16) 氡 Rn ( 1 )空气中氡浓度的闪烁瓶测量方法   ( 2 )环境空气中氡的标准测量方法 ( 1 ) GB/T 16147-1995   ( 2 ) GB/T 14582-93   * 注:检验方法中( 1 )法为仲裁法。   附录 C   (规范性附录)   空气中苯浓度的测定   (毛细管气相色谱法)   1、方法提要   1.1 相关标准和依据   本方法主要依据 GB 11737-89 居住区大气中苯、甲苯和二甲苯卫生检验标准方法—气相色谱法。   1.2 原理:空气中苯用活性炭管采集,然后用二硫化碳提取出来。用氢火焰离子化检测器的气相色谱仪分析,以保留时间定性,峰高定量。   1.3 干扰和排除:空气中水蒸汽或水雾量太大,以至在碳管中凝结时,严重影响活性炭的穿透容量和采样效率。空气湿度在 90% 时,活性炭管的采样效率仍然符合要求。空气中的其他污染物干扰,由于采用了气相色谱分离技术,选择合适的色谱分离条件可以消除。   2、适用范围   2.1 测定范围:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,测定范围为 0.05~10 mg/m 3 。   2.2 适用场所:本法适用于室内空气和居住区大气中苯浓度的测定。   3、试剂和材料   3.1 苯:色谱纯。   3.2 二硫化碳:分析纯,需经纯化处理,保证色谱分析无杂峰。   3.3 椰子壳活性炭: 20~40 目,用于装活性炭采样管。   3.4 纯氮: 99.99% 。   4、仪器和设备   4.1 活性炭采样管:用长 150mm ,内径 3.5~4.0mm ,外径 6mm 的玻璃管,装入 100mg 椰子壳活性炭,两端用少量玻璃棉固定。装好管后再用纯氮气于 300~350 ℃温度条件下吹 5~10min ,然后套上塑料帽封紧管的两端。此管放于干燥器中可保存 5 天。若将玻璃管熔封,此管可稳定三个月。   4.2 空气采样器:流量范围 0.2~1L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。   4.3 注射器: 1ml 。体积刻度误差应校正。   4.4 微量注射器: 1μl , 10μl 。体积刻度误差应校正。   4.5 具塞刻度试管: 2ml 。   4.6 气相色谱仪:附氢火焰离子化检测器。   4.7 色谱柱: 0.53mm × 30mm 宽径非极性石英毛细管柱。   5、采样和样品保存   在采样地点打开活性炭管,两端孔径至少 2mm ,与空气采样器入气口垂直连接,以 0.5L/min 的速度,抽取 20L 空气。采样后,将管的两端套上塑料帽,并记录采样时的温度和大气压力。样品可保存 5 天。   6、分析步骤   6.1 色谱分析条件:由于色谱分析条件常因实验条件不同而有差异,所以应根据所用气相色谱仪的型号和性能,制定能分析苯的最佳的色谱分析条件。   6.2 绘制标准曲线和测定计算因子:在与样品分析的相同条件下,绘制标准曲线和测定计算因子。   6.2.1 用标准溶液绘制标准曲线:于 5.0ml 容量瓶中,先加入少量二硫化碳,用 1μL 微量注射器准确取一定量的苯( 20 ℃时, 1μl 苯重 0.8787mg )注入容量瓶中,加二硫化碳至刻度,配成一定浓度的储备液。临用前取一定量的储备液用二硫化碳逐级稀释成苯含量分别为 2.0 、 5.0 、 10.0 、 50.0μg/ml 的标准液。取 1μL 标准液进样,测量保留时间及峰高。每个浓度重复 3 次,取峰高的平均值。分别以 1μL 苯的含量( μg/ml )为横坐标( μg ),平均峰高为纵坐标( mm ),绘制标准曲线。并计算回归线的斜率,以斜率的倒数 Bs[μg/mm] 作样品测定的计算因子。   6.3 样品分析:将采样管中的活性炭倒入具塞刻度试管中,加 1.0ml 二硫化碳,塞紧管塞,放置 1h ,并不时振摇。取 1μl 进样,用保留时间定性,峰高( mm )定量。每个样品作三次分析,求峰高的平均值。同时,取一个未经采样的活性炭管按样品管同时操作,测量空白管的平均峰高( mm )。   7、结果计算   7.1 将采样体积按式( 1 )换算成标准状态下的采样体积   式中 c —空气中苯或甲苯、二甲苯的浓度, mg/m 3   h —样品峰高的平均值, mm   h ' —空白管的峰高, mm   B s —由 6.2.1 得到的计算因子, μg/mm   E s —由实验确定的二硫化碳提取的效率   V 0 —标准状况下采样体积, L 。   8、方法特性   8.1 检测下限:采样量为 20L 时,用 1ml 二硫化碳提取,进样 1μl ,检测下限为 0.05mg/m 3 。   8.2 线性范围: 10 6 。   8.3 精密度:苯的浓度为 8.78 和 21.9μg/ml 的液体样品,重复测定的相对标准偏差 7% 和 5% 。   8.4 准确度:对苯含量为 0.5 , 21.1 和 200μg 的回收率分别为 95% , 94% 和 91% 。   附录 D   (规范性附录)   室内空气中总挥发性有机物( TVOC )的检验方法   (热解吸 / 毛细管气相色谱法)   1、方法提要   1.1 相关标准和依据   ISO 16017-1 “Indoor , ambiant and workplace air — Sampling and analysis of volatile organic compounds by sorbent tube/thermal desorption/capillary gas chromatography — part 1 : pumped sampling”   1.2 原理   选择合适的吸附剂( Tenax GC 或 Tenax TA ),用吸附管采集一定体积的空气样品,空气流中的挥发性有机化合物保留在吸附管中。采样后,将吸附管加热,解吸挥发性有机化合物,待测样品随惰性载气进入毛细管气相色谱仪。用保留时间定性,峰高或峰面积定量。   1.3 干扰和排除   采样前处理和活化采样管和吸附剂,使干扰减到最小 选择合适的色谱柱和分析条件,本法能将多种挥发性有机物分离,使共存物干扰问题得以解决。   2、适用范围   2.1 测定范围:本法适用于浓度范围为 0.5 m g/m 3 ~100mg/m 3 之间的空气中 VOC S 的测定。   2.2 适用场所:本法适用于室内、环境和工作场所空气,也适用于评价小型或大型测试舱室内材料的释放。   3、试剂和材料   分析过程中使用的试剂应为色谱纯 如果为分析纯,需经纯化处理,保证色谱分析无杂峰。   3.1 VOC S :为了校正浓度,需用 VOC S 作为基准试剂,配成所需浓度的标准溶液或标准气体,然后采用液体外标法或气体外标法将其定量注入吸附管。   3.2 稀释溶剂:液体外标法所用的稀释溶剂应为色谱纯,在色谱流出曲线中应与待测化合物分离。   3.3 吸附剂:使用的吸附剂粒径为 0.18~0.25mm ( 60~80 目),吸附剂在装管前都应在其最高使用温度下,用惰性气流加热活化处理过夜。为了防止二次污染,吸附剂应在清洁空气中冷却至室温,储存和装管。解吸温度应低于活化温度。由制造商装好的吸附管使用前也需活化处理。   3.4 纯氮: 99.99% 。   4、仪器和设备   4.1 吸附管:是外径 6.3mm 内径 5mm 长 90mm 内壁抛光的不锈钢管,吸附管的采样入口一端有标记。吸附管可以装填一种或多种吸附剂,应使吸附层处于解吸仪的加热区。根据吸附剂的密度,吸附管中可装填 200~1000mg 的吸附剂,管的两端用不锈钢网或玻璃纤维毛堵住。如果在一支吸附管中使用多种吸附剂,吸附剂应按吸附能力增加的顺序排列,并用玻璃纤维毛隔开,吸附能力最弱的装填在吸附管的采样人口端。   4.2 注射器:可精确读出 0.1 m L 的 10 m L 液体注射器 可精确读出 0.1 m L 的 10 m L 气体注射器 可精确读出 0.01mL 的 1mL 气体注射器。   4.3 采样泵:恒流空气个体采样泵,流量范围 0.02~0.5L/min ,流量稳定。使用时用皂膜流量计校准采样系统在采样前和采样后的流量。流量误差应小于 5% 。   4.4 气相色谱仪:配备氢火焰离子化检测器、质谱检测器或其他合适的检测器。   色谱柱:非极性(极性指数小于 10 )石英毛细管柱。   4.5 热解吸仪:能对吸附管进行二次热解吸,并将解吸气用惰性气体载带进入气相色谱仪。解吸温度、时间和载气流速是可调的。冷阱可将解吸样品进行浓缩。   4.6 液体外标法制备标准系列的注射装置:常规气相色谱进样口,可以在线使用也可以独立装配,保留进样口载气连线,进样口下端可与吸附管相连。   5、采样和样品保存   将吸附管与采样泵用塑料或硅橡胶管连接。个体采样时,采样管垂直安装在呼吸带 固定位置采样时,选择合适的采样位置。打开采样泵,调节流量,以保证在适当的时间内获得所需的采样体积( 1~10L )。如果总样品量超过 1mg ,采样体积应相应减少。记录采样开始和结束时的时间、采样流量、温度和大气压力。   采样后将管取下,密封管的两端或将其放入可密封的金属或玻璃管中。样品可保存 5 天。   6、分析步骤   6.1 样品的解吸和浓缩   将吸附管安装在热解吸仪上,加热,使有机蒸气从吸附剂上解吸下来,并被载气流带入冷阱,进行预浓缩,载气流的方向与采样时的方向相反。然后再以低流速快速解吸,经传输线进入毛细管气相色谱仪。传输线的温度应足够高,以防止待测成分凝结。解吸条件 ( 见表 1) 。   表 1 解吸条件   解吸温度 250 ℃ ~325 ℃   解吸时间 5~15min   解吸气流量 30~50ml/min   冷阱的制冷温度 +20 ℃ ~-180 ℃   冷阱的加热温度 250 ℃ ~350 ℃   冷阱中的吸附剂 如果使用,一般与吸附管相同, 40~100mg   载气 氦气或高纯氮气   分流比 样品管和二级冷阱之间以及二级冷阱和分析柱之间的分流比应根据空气中的浓度来选择   6.2 色谱分析条件   可选择膜厚度为 1 ~ 5 m m 50m × 0.22mm 的石英柱,固定相可以是二甲基硅氧烷或 7% 的氰基丙烷、 7% 的苯基、 86% 的甲基硅氧烷。柱操作条件为程序升温,初始温度 50 ℃保持 10min ,以 5 ℃ /min 的速率升温至 250 ℃。   6.3 标准曲线的绘制   气体外标法:用泵准确抽取 100 m g/m 3 的标准气体 100ml 、 200ml 、 400ml 、 1L 、 2L 、 4L 、 10L 通过吸附管,制备标准系列。   液体外标法:利用 4.6 的进样装置取 1~5 m l 含液体组分 100 m g/ml 和 10 m g/ml 的标准溶液注入吸附管,同时用 100ml/min 的惰性气体通过吸附管, 5min 后取下吸附管密封,制备标准系列。   用热解吸气相色谱法分析吸附管标准系列,以扣除空白后峰面积的对数为纵坐标,以待测物质量的对数为横坐标,绘制标准曲线。   6.4 样品分析   每支样品吸附管按绘制标准曲线的操作步骤(即相同的解吸和浓缩条件及色谱分析条件)进行分析,用保留时间定性,峰面积定量。   7、结果计算   7.1 将采样体积按式( 1 )换算成标准状态下的采样体积   式中 V 0 —换算成标准状态下的采样体积, L   V —采样体积, L   T 0 —标准状态的绝对温度, 273K   T —采样时采样点现场的温度( t )与标准状态的绝对温度之和,( t+273 ) K   P 0 —标准状态下的大气压力, 101.3kPa   P —采样时采样点的大气压力, kPa 。   7.2 TVOC 的计算   ( 1 )应对保留时间在正己烷和正十六烷之间所有化合物进行分析。   ( 2 )计算 TVOC ,包括色谱图中从正己烷到正十六烷之间的所有化合物。   ( 3 )根据单一的校正曲线,对尽可能多的 VOC S 定量,至少应对十个最高峰进行定量,最后与 TVOC 一起列出这些化合物的名称和浓度。   ( 4 )计算已鉴定和定量的挥发性有机化合物的浓度 S id 。   ( 5 )用甲苯的响应系数计算未鉴定的挥发性有机化合物的浓度 S un 。   ( 6 ) S id 与 S un 之和为 TVOC 的浓度或 TVOC 的值。   ( 7 )如果检测到的化合物超出了( 2 )中 VOC 定义的范围,那么这些信息应该添加到 TVOC 值中。   7.3 空气样品中待测组分的浓度按( 2 )式计算   式中 : c —空气样品中待测组分的浓度 , mg /m 3   F —样品管中组分的质量 , mg   B —空白管中组分的质量 , mg   V 0 —标准状态下的采样体积, L 。   8、方法特性   8.1 检测下限:采样量为 10L 时,检测下限为 0.5 m g/m 3 。   8.2 线性范围: 10 6 。   8.3 精密度:在吸附管上加入 10μg 的混合标准溶液, Tenax TA 的相对标准差范围为 0.4% 至 2.8% 。   8.4 准确度: 20 ℃、相对湿度为 50% 的条件下,在吸附管上加入 10mg/ml 的正己烷, Tenax TA 、 Tenax GR ( 5 次测定的平均值)的总不确定度为 8.9% 。   附录 E   (规范性附录)   室内空气中细菌总数检验方法   1、适用范围   本方法适用于室内空气细菌总数测定。   2、定义   撞击法 (impacting method) 是采用撞击式空气微生物采样器采样,通过抽气动力作用,使空气通过狭缝或小孔而产生高速气流 , 使悬浮在空气中的带菌粒子撞击到营养琼脂平板上 , 经 37 ℃、 48h 培养后 , 计算出每立方米空气中所含的细菌菌落数的采样测定方法。   3、仪器和设备   3.1 高压蒸汽灭菌器。   3.2 干热灭菌器。   3.3 恒温培养箱。   3.4 冰箱。   3.5 平皿 ( 直径 9cm) 。   3.6 制备培养基用一般设备:量筒,三角烧瓶, pH 计或精密 pH 试纸等。   3.7 撞击式空气微生物采样器。
  • 《GB/T 18883-2022室内空气质量标准》已批准发布 将于明年实施
    《GB/T 18883-2022室内空气质量标准》已批准发布 将于明年实施《GB/T 18883-2022室内空气质量标准》于2022年7月11日经国家市场监督管理总局(国家标准化管理委员会)批准发布,代替《GB/T 18883-2002室内空气质量标准》,将于2023年2月1日起正式实施。《GB/T 18883-2002室内空气质量标准》(先下载阅读报批稿)运行20年,迎来了第一次修订,本次修订主要更新哪些内容呢?让我们一起比较下新旧版GB/T 18883的区别。首先,调整了5项指标的限值,包括二氧化氮、甲醛、苯、细菌总数、氡,其中有三项关键参数进行了限值缩紧。具体如下:1)二氧化氮NO2限值从0.24mg/m缩紧至0.20mg/m;2)甲醛HCHO限值从0.1mg/m缩紧至0.08mg/m;3)苯C6H6限值从0.11mg/m缩紧至0.03mg/m,缩紧力度较大;4)生物性菌落总数名称变更为细菌总数,限值由2500cfu/m缩紧为1500cfu/m。其次,新版《GB/T 18883-2022室内空气质量标准》参数中将新增细颗粒物PM2.5、三氯乙烯C2HCl3、四氯乙烯C2Cl4三项化学性参数及其限值规定。再次,新版本或将新增4个规范性附录。用以补充甲醛、苯并[a]芘、PM10、PM2.5、氡等有害物质的相关规范性。另外,新版标准还对温度、相对湿度、空气流速、新风量、臭氧、二氧化氮、二氧化硫、二氧化碳、一氧化碳、甲醛(分光光度法)、氨等11项指标的标准检验方法来源,并在附录A中增加参考采样方法参数,甲醛(高效液相色谱法)、苯、甲苯、二甲苯、总挥发性有机物(TVOC)、苯并[a]芘、可吸入颗粒物(PM10)、细颗粒物(PM2.5)、细菌总数、氡等10项指标以附录形式列出完整的检验方法(见附录B –附录 H),三氯乙烯和四氯乙烯可直接参照TVOC的检验方法,细化TVOC的计算方法。新旧GB/T 18883标准比较一览 报批稿下载:《GB/T 18883-2002室内空气质量标准》(报批稿)
  • 瑞德仪器发布室内空气TVOC气相色谱仪新品
    新房装修必有装修污染,若是没有治理达标或急于入住,居住者会很容易生病,甚至引发严重的病变。什么是TVOC?它是一种总挥发性有机物,英文全称Total Volatile Organic Compounds,指室温下饱和蒸气压超过了133.32pa的有机物,其沸点在50℃至250℃之间。室内空气TVOC检测已有国家标准: GB50325-2010《民用建筑工程室内环境污染控制规范》附录G和GB/T18883-2002《室内空气质量标准》 附录C,现有标准均采用热解吸/毛细管气相色谱法。 山东瑞德化工仪器供应国产TVOC气相色谱仪TVOC/热脱附/气相色谱仪方法原理 用以Tenax-TA为吸附剂的TVOC吸附管收集一定体积的空气样品,空气流中挥发性有机物保留在吸附管中。高温下进行热脱附,解吸挥发性有机物,采集管中待测样品随载气进入气相色谱中,分离后进入FID检测。以保留时间定性,峰面积定量。主要仪器配置及试剂1)GC-7890气相色谱仪,带FID检测器;2)一次热解析仪;3)大气采样器;4)TVOC专用分析柱;5)Tenax-TA吸附管6)TVOC系列浓度标准样品电子流量显示气相色谱仪,GC-7890气相色谱仪,可加EPC气相色谱仪★ 仪器内部设计3个独立的连接IP地址,可以连接到工作电脑(实验室现场)、分管电脑(如质检科、生产部等)、以及高管电脑(如环保局、技术监督局等),需要时可实时监控仪器的运行以及分析数据结果; ★ 仪器配备的工作站可以同时支持多台色谱仪接入,实现数据处理以及仪器反向控制,简化文档管理; ★ 仪器可以通过互联网连接到生产厂家,实现远程诊断、远程更新等(需用户设置); ★ 仪器配备的 8 吋彩色液晶触摸屏,支持热插拔,可作手持控制器使用; ★ 仪器采用了多处理器并行工作方式,使仪器更加稳定可靠;可选配多种高性能检测器选择,如 FID、TCD、ECD、FPD 和 NPD,zui多可同时安装三个检测器,满足复杂样品的分析需求。 ★ 仪器采用模块化的结构设计,后期维护简单方便。 ★ 全新的微机温度控制系统,控温精度高,可靠性和抗干扰性能优越;具有八路完全独立的温度控制输出,可实现二十阶程序升温,具有柱箱自动后开门系统,近室温控制能力得到提高,升/降温速度更快; ★ 仪器配置电子流量控制单元(EFC)、电子压力控制单元(EPC)实现了气路的数字化控制,大大提高了仪器的稳定和分析结果的重现性; ★ 色谱机内置低噪声、高分辨率 24 位 AD 电路,并具有基线存储、基线扣除的功能。 ★ 标配的工作站适于 WinXP 、Win2000、Win7、Win8、Win10 等操作系统。 我们提供环保、食品、石油、医药、煤炭、环境等行业色谱分析仪器。创新点:1、之前是压力表控制流量,现在是电子流量显示,也可带EPC控制流量 2、原来是工作站不是内置的,目前可内置反控工作站 3、外观美观 4、应用性广 室内空气TVOC气相色谱仪
  • 环保部:大规模启动空气污染物来源解析
    3月25日,环保部发布《2013年京津冀、长三角、珠三角等重点区域及直辖市和省会城市空气质量报告》(以下简称《报告》)。   《报告》首次对我国自2013年实施环境空气质量新标准的74个城市进行评价。 结果表明,2013年74个城市中,只有海口、舟山、拉萨3个城市各项污染指标年均浓度均达到二级标准,其他71个城市存在不同程度超标现象。   重污染区域的首要污染物为PM2.5。对此,环保部官员表示,2014年要大规模、规范化启动污染物来源解析研究工作,北京等重点城市要在今年上半年提交初步成果。   京津冀区域污染最重   根据《报告》,京津冀、长三角、珠三角区域是空气污染相对较重的区域,尤以京津冀区域污染最重。京津冀13个城市中,有11个城市排在污染最重的前20位,其中有7个城市排在前10位,部分城市空气重度及以上污染天数占全年天数40%左右。   此外,该地区共13个城市,空气质量平均达标天数比例为37.5%,比74个城市低23个百分点,有10个城市达标天数比例甚至低于50%。其中,北京市达标天数比例为48%,重度及以上污染天数比例为16%。   该区域首要污染物为PM2.5,其次是PM10和O3(臭氧)。区域内所有城市PM2.5和PM10年平均浓度超标,PM2.5年平均浓度为106微克/立方米,PM10年平均浓度为181微克/立方米。   &ldquo 在空气质量最差的城市中,河北占了7个,可见河北仍然是重灾区,需要加大治霾力度。&rdquo 中国环科院副院长柴发合对21世纪经济报道分析,希望随着京津冀一体化进程的加快,通过体制与机制创新,河北的空气质量能够有所改善。   从74个城市空气质量状况看,我国大气污染形势非常严峻。环保部监测司有关负责人认为,主要有四个原因:高耗能、高污染的重工业发展过快、比重过大、集中度高 大气污染物长期超环境容量排放 城市化加快以及不利的气象条件。   对第二个原因,该负责人解释称,京津冀、长三角、珠三角区域占全国面积的8%,消费了全国43%的煤炭,生产了55%的钢铁、40%的水泥、52%的汽柴油,二氧化硫、氮氧化物、工业粉尘排放量占全国的30%,单位面积主要大气污染物排放量远远高于全国平均水平。   第四个原因也同样值得关注。该负责人解释,2013年华北平原和山东半岛的大部分区域年均风速同比减少0.1~0.3 m/s,静风、逆温现象增多,空气流动性差,不利于污染物的扩散。同时,这些地区的降水较常年同期偏少,其中河南、天津分别较2012年偏少24%、21%,弱化了对空气污染物的清除,加剧空气污染。   此外,报告显示,2013年空气质量相对较好的前10位城市是海口、舟山、拉萨、福州、惠州、珠海、深圳、厦门、丽水和贵阳。   大规模启动污染物来源研究解析   环保部也在报告中明确了2014年大气环境质量的任务。   根据部署,今年环保部将推动第三阶段空气质量新标准监测能力建设,力争早日完成全国地级以上城市新标准监测能力全覆盖。   环保部监测司副司长朱建平对21世纪经济报道介绍,2014年全国各直辖市、省会城市和计划单列市要启动污染物来源解析研究工作。其中北京、天津和石家庄要在上半年前提交初步成果 其他直辖市、省会城市和计划单列市要在年底前提交阶段性研究成果。   &ldquo 以前各个城市自发地做过,但这是第一次全国大规模地、规范地做源解析,我们将根据这次源解析的结果决定以后多长时间做一次,是不是每年都做。&rdquo 朱建平介绍。   朱建平还介绍,去年环保部开展了监测数据质量督查,&ldquo 还没有发现地方在监测数据上造假的问题&rdquo 。今年,环保部还将重点选择京津冀、长三角、珠三角等重点地区开展监测数据监督监测。   根据环保部的要求,对检查中发现的数据质量问题及时督促整改,对存在行政干预、数据造假等严重问题的单位约谈负责人和相关责任人并给予严肃处理,进一步提高自动监测数据质量,不断增强自动监测数据的公信力和权威性。
  • 2015年两会打响空气 土壤及水污染防治“三大战役”
    北极星节能环保网讯:近年来,环保问题一直是公众广泛关注的焦点,也是历届两会热议的话题。今年全国两会上,生态保护、环境治理再次成为代表、委员讨论建言的热点领域。谈到当前中国正在进行的大气污染、水污染、土壤污染防治“三大战役”,全国政协委员、环保部南京环境科学研究所所长高吉喜说,雾霾形成表面上看主要是能源结构的问题,但深层次来看,还有产业结构的问题。不同产业,能源需求不一样。西方发达国家产业结构以高新技术产业为主,能耗较低,中国则以中低端制造业为主,能耗较高。所以雾霾治理,也是个产业升级、结构调整的过程。只有从根本上去调整,排放量才能从源头上得到控制。高吉喜指出,相比已经得到足够重视的空气污染问题,从长期危害性和治理难度等方面看,水污染和土壤污染问题更值得关注。他说,空气污染因为空气流通性问题,只要措施得当,治理起来相对容易。但水污染治理难度比空气污染治理要难得多,特别是湖泊污染治理,一般需要几十年甚至上百年的时间。而土壤污染治理,周期更长,难度更大。高吉喜介绍,环保部对环境污染治理有一套顶层设计。“大气十条”(即《大气污染防治行动计划》)已经颁布设施,“水十条”(即《水污染防治行动计划》)应该是在今年上半年出台,“土十条”(即《土壤污染防治行动计划》)现在已经制定完成,预计下半年能够出台。此外,包括生物多样性保护等措施也在设计当中,环保部不会因为治理雾霾而忽视其他环境问题。“土壤对人类的生存发展太重要了,不仅仅关系到粮食安全,而且与整个生态环境密切相关。”全国政协委员、中国科学院南京分院院长周健民说,土壤直接关系到人类可持续发展,联合国把今年定为国际土壤年,就是希望唤起全世界对土壤保护的关注。土壤保护是周健民今年两会关注的主要问题之一。作为土壤保护专家和十届、十一届、十二届全国政协委员,周健民多次在全国两会上提交关于土壤污染防治和耕地保护的提案。周健民建议,相关部门应制定更为合理的评价标准,科学施治,以解决“土壤病”。土壤污染最大的问题是家底不清,同时多部门管理造成职责交叉、界限不清,建议尽快开展第三次土壤普查。土壤污染防治工作目前面临的另一个挑战是法律法规的不健全。土壤污染防治工作一定要有法可依,建议尽快出台《土壤污染防治法》,实现土壤污染依法防治、依法监督、依法管理,这也是许多代表、委员的共识。周健民强调,我国土地资源紧张,要合理地利用,对不同污染程度的土地,可以采用不同的利用方式,边利用边修复。同时,还应加强宣传教育和科学普及,增强全社会土壤保护意识。“公众真正了解了土壤状况,就能更加合理地利用,能够有防范意识,同时也不至于对土壤污染过分恐慌。”周健民说。“要形成绿色导向和绿色制度,优化绿色布局,保护绿色资产,促进绿色转型,共享绿色福利,‘十三五’规划就应将强化水资源保障与水生态环境保护投融资体系建设列入重要内容。”全国政协委员、台盟福建省委副主委骆沙鸣用一连串绿色作为他提案的开场白。骆沙鸣认为,“十三五”规划的制定应按照以水定城、以水定地、以水定人、以水定产的新思路和体现生态承载力的新理念,严守生态红线。为此,他建议,对不同的水资源实施动态管理,全面推行严格的水资源制度考核,并细化水资源水量紧缺和水污染突发应急事件处理预案。对于水资源管理,骆沙鸣表示,应明确“十三五”期间我国污水资源化利用目标和生态清洁水流域治理目标,加强水资源管理与推广水务高新技术,形成“江河湖库海”全水域整治格局,高标准达到节水型社会目标,明确节水就是治污理念。同时,他建议建立清洁水基金。开放水环境治理的公共服务领域,鼓励社会各方面利用基金优惠政策加大环境保护的投入,形成政府、企业、社会和公众四位一体的多元投融资模式。作为一名环保工作者,全国政协委员、湖南省环保厅副厅长潘碧灵委员打算在此次会议上提交11份建议,绝大多数与环保、生态有关。他透露,其中一个提案将建议由政府及相关部门支持,加快建设具有中国特色的生态文明智库并纳入国家重点建设50~100个专业化高端智库之中,充分发挥生态文明专业化智库作用,统筹利用国内外各类智库资源和专业人才,围绕生态文明建设中的重大问题,从把握政策需求、决策参考、体制机制创新、法规制度等角度,提供有效的咨询服务,为党中央国务院推动生态文明建设提供高质量的决策参考。原标题:两会热点:打好空气 土壤及水污染防治“三大战役”
  • 燃料电池测试系统的背压、相对湿度、空气化学计量比对测试结果的影响
    聚合物电解质膜燃料电池(PEMFC)凭借高效、低排放的优点被普遍认为是一种最有前途的能源设备和电力运输系统。解决掉PEMFC的高成本以及耐用性有限、稳定性差的问题,就成为了实现商业化应用的关键。研究发现,PEMFC的性能与相对湿度、背压、氢气和气体化学计量比、电池温度等各种操作参数密切相关。1、背压对PEMFC的极化曲线和EIS曲线的影响图1 不同背压下PEMFC的极化和功率密度曲线(0、0.3和0.6 bar)图1中显示了0、0.3和0.6 bar背压下,商业Pt/C(Johns Manville Corporation GM Pt/C)在25cm² 的PEMFC中极化和功率密度曲线。随着背压从0到0.6 bar变化,PEMFC在0.4V电压下电流密度从1370 mA/cm² 分别增加到1400 mA/cm² 和1450 mA/cm² , 而0.7V电压下电流密度从476 mA/cm² 增加到588 mA/cm² 和708 mA/cm² 。可以发现,PEMFC的电流密度随着背压增大而明显增大。图2 不同背压下PEMFC的电化学阻抗 (0、0.3和0.6 bar)图2中显示了0、0.3和0.6 bar背压下,该PEMFC在0.8 V下频率范围为0.1Hz至10kHz的阻抗图谱。经过Zahner和Zview软件解析发现不同背压下,R1(欧姆电阻)从1.54 mΩ略微下降到1.52 mΩ,而R2(阴极电荷传递阻抗)从7.48 mΩ显著下降到5.29 mΩ,最后降低至3.48mΩ。相反的是,R3(阳极电荷传递阻抗)从0.76 mΩ增加到1.29 mΩ。在不加背压时,极化曲线显示了一个明显的欧姆极化电压降,这与阻抗图谱中显示的变化一致。在较高的背压下,使气流饱和所需的水,比低背压下所需的水少。证实了较高的背压下,质子膜的加湿性和导电性得到改善,从而降低了欧姆电阻和阴极电荷转移电阻。2、相对湿度对PEMFC的极化曲线和EIS曲线的影响图3 不同相对湿度下PEMFC的极化和功率密度曲线 (64、70、80和100%)图3显示了0.3bar背压下,PEMFC的极化曲线和能量密度在不同相对湿度下的变化。当相对湿度从64%增加到70%时,0.4 V电压下的电流密度从764 mA/cm² 增加到790 mA/cm² ,在0.7 V电压下,从405 mA/cm² 到453 mA/cm² 。然而,在相对湿度从70%到80%再到100%的情况下,0.4 V电压下电流密度分别降至744和588 mA/cm² , 0.7 V电压下电流密度分别降至424和364 mA/cm² 。可以发现,在同一背压下,PEMFC的电流密度随着相对湿度升高呈现出先增大后减小的趋势。图4 不同相对湿度下PEMFC的电化学阻抗 (64、70、80和100%)通过拟合解析可知,在不同的相对湿度下,PEMFC的欧姆阻抗(R1)都在1.92 mΩ间波动。当相对湿度提高到70%时,阴极转移电阻(R2)首先从8.34 mΩ下降到8.23 mΩ。相对湿度为80%和100%时,阴极转移电阻继续增大,分别达到9.32 mΩ和9.49 mΩ。阳极电荷转移电阻(R3)也有类似的变化趋势,相对湿度在64%时为1.19 mΩ,为70%时达到最低值0.54 mΩ,在80%时为2.48 mΩ,在100%时为3.24 mΩ。在相对湿度为64%时,Nafion型膜无法吸收足够的水分以获得适配的水合作用,从而影响离子电导率,从而产生更高的电池电阻。当相对湿度从70%增加到100%时,阴极和阳极电荷转移电阻急剧增加,造成PEMFC性能急剧下降。3、空气化学计量比对PEMFC的极化曲线和EIS曲线的影响图5 不同空气化学计量比下PEMFC的极化和功率密度曲线 (2.5、3、3.5)当空气化学计量从2.5变为3和3.5时,0.7V电压下的电流密度从621 mA/cm² 变化到584 mA/cm² 和598 mA/cm² ,0.4V电压下的电流密度从1417 mA/cm² 增加到1564 mA/cm² 和1686 mA/cm² 。由此可见,不同空气化学计量比下,PEMFC在低电流密度区域和高电流密度区域性能呈现出差异性变化。当进入流道的空气流速增大时,电化学反应更平稳,整体性能更好。然而,在低电流密度范围内,空气化学计量比为2.5时表现出较好的性能。这可能是由于流速较慢,水合条件较好,对空气量的需求较低。图6 不同空气化学计量比下的PEMFC的电化学阻抗(2.5、3、3.5)不同空气化学计量比下,欧姆电阻(R1)和阳极电荷转移电阻(R3)基本保持稳定,分别为1.59 mΩ和2.38 mΩ左右。空气化学计量量为2.5时阴极电荷转移电阻最高,随着空气化学计量量从3提高到3.5,阴极电荷转移电阻从5.36 mΩ仅变化到5.5 mΩ,几乎无变化。当空气化学计量比由2.5变化至3.5时,PEMFC在高电流密度范围内的性能得到明显改善,而在低电流密度范围内的效果不太明显。阴极电荷转移电阻随着空气化学计量比的增大而减小(图6)。可以推断,在空气化学计量比为2.5,空气含量相对不足,大多数电流密度范围内,自产水较少和膜的含水量较低,使得膜的离子电导率相对较低。当空气化学计量量为3和3.5时,空气供应充足,水管理得到改善,PEMFC的阴极转移电阻也就几乎保持恒定。4、结论燃料电池的背压对其性能有着重要影响。背压较高时,可以提高湿化率、降低阻力损失、加快反应速度,从而改善整体性能。研究还发现,相对湿度转折点设置在70%时,可以平衡膜的干燥和水合作用,保持适当的电池含水量,避免局部水淹。同时,适度提高空气化学计量比可以改善燃料电池的整体性能和低电压空间电流。燃料电池测试系统980pro最后,研究中对背压、相对湿度和空气化学计量比与PEMFC极化曲线和阻抗的变化规律进行了探究,为相关研究提供了参考和依据。但不同MEA实际的变化趋势和测试需求可能不同,因此未来还需更多样本的多样化研究。参考文献[1] Zhang,Q,Lin,et al.Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution[J].ENERGY -OXFORD-, 2016.以上内容由理化有限公司技术中心整理,有不足之处请指正,转载请注明出处。
  • 气流筛分仪在制药行业中的应用
    据数据显示早在2017年,我国粉体行业市场总生产总值已达到约60万亿元,在世界范围内继续名列前茅。如今,在粉体行业迎来快速发展的背景下,筛分设备企业赢得商机,同时也面临着不少挑战。 近年来,随着医药、食品等行业对粉状物料筛分精度等要求的提升,气流筛分仪设备也亟待改进升级。 例如小于4000um粒度的微细粉末如中西药微细粉在筛分过程中,非常容易发生团聚、起静电和堵塞空气喷射筛筛孔的现象,传统的振动筛分仪无法对中西药微细粉、玻璃纤维微细粉等物料的微细粉进行准确地、快速地筛分。而气流筛分仪是针对微细粉末快速、准确筛分需要而设计,可以满足粉体气流筛分的需求,适用于医药、食品、橡胶、塑料、机械、矿业等行业粉状物料的筛选分级。 气流筛分仪的工作原理是:通过气流筛分仪专用除尘器产生负压,气压产生筛分气流后经过气流喷射技术筛分喷嘴,将此负压转化为气流喷射力量,这种喷射力量能将颗粒推向筛分筛盖,使之与筛盖碰撞以消除团聚,继而呈分散状态的颗粒被负压吸引至标准筛网处,大颗粒停留在标准筛网表面,小颗粒顺利通过标准筛网,从而实现气流喷射筛分目的。关于德国Hosakawa Alpine  作为气流筛分仪的专业制造商,ALPINE气流筛分仪的特点是操作简单,测试结果可靠。在产品性能提升的道路上,ALPINE也一直努力增加舒适度的同时,提高分析测试效率和速度。 e200LS气流筛分仪在仪器的功能和设计上,继续延续了200LS-N气流筛分仪机型的优势,具有众多特点:高效工作  所有标准功能与评估功能都已集成在气流筛分仪e200LS中。系统界面的设计充分考虑人员的操作,力求简单可靠。操作更加快捷,工作更加舒适,同时减少配套的辅助设备。自动负压控制  气流筛分仪e200LS集成自动控制器,用于对筛分室内压力进行监控,从而监控喷嘴对物料的分散效果,该控制器可以使得在整个筛分过程中保持压力稳定。意味着操作更加高效、可靠与舒适。Alpine筛网识别器  Alpine筛网均配有识别芯片,能够被气流筛分仪内置软件自动识别和记录。无需手工输入筛网孔径,可以防止输入错误。自动生成分析日志。这对于在实验室中需要用不同的筛网设置来分析不同的物料,无疑是个巨大的优势。工艺参数如筛分时间和负压值等能被单独储存,在筛分操作时能够自动读取。智能筛分时间确定  应用eTimeSave功能,可以确保用户选择正确的筛分时间。筛分时间是筛分过程中关键的参数,既不能多也不能少。这将决定筛分是否成功,即样品是否被筛分或筛分结果是否可重复。技术规格测量范围:直径200/203mm筛网(20μm~4mm) 直径76mm筛网(10mμm~2.5mm)屏 幕:高清晰7"IPS触摸屏筛 网:筛网带芯片可自动识别气 流 量:30-115m3/h负 压:1500~5500pa尺寸 LBH:503*370*380
  • 技术前沿:超声波沼气流量计的优势探讨
    随着沼气集中供暖的逐年发展,沼气流量计得到了广泛应用。目前,有几种流量监测技术在沼气流量监测领域得到了成功应用,直接方法包括涡轮流量计、涡街流量计、孔板流量计、均速管流量计、热式气体质量流量计、超声波流量计,以及光学闪烁相关流量计等。 但由压力低,不耐腐蚀等因素,这些流量测量技术也存在一些具体应用问题,对测量的稳定性和日常维护带来麻烦。本文针对沼气测量方法的优异进行比较,对高性价比超声波沼气流量计BF-3000系列流量计详尽描述。 沼气流量测量的现状对比 沼气流量测量难点在于:流量变动大、不耐腐蚀、粘稠杂质、压力低。超声波流量计与孔板、涡轮、涡街等传统流量计相比,具有适应性强,操作方便等特点,4种流量计对比如下图所示: 超声波沼气流量计BF-3000是针对腐蚀性、低压、低流速、工业或市政现场状况开发的一种流量仪表,满足市政、工业测量需求。通用性强,可单独工作或接入大中小型沼气工程物联网监测系统。超声波沼气流量计BF-3000 工作原理 采用时差法,利用一对超声波换能器相向交替(或同时)收发超声波,通过观测其在介质中的顺流和逆流传播时间来测量流体的流速,再通过流速来计算流量,是一种间接、非接触式的测量方式,测量精度高、量程宽、耐压力、耐腐蚀。 功能特性 1.全数字化电子单元:电子单元采用最新的微电子技术和元件,采用数字算法程序,使仪表信号处理更精准,运算速度更快捷。 2.抗腐蚀性:传统的涡街、涡轮等流量计在高H2S和水分条件下容易被腐蚀破损,超声波沼气流量计探头采用特制陶瓷超声波探测器,具有超强的耐腐蚀性。 3.低流量测量:在传统气体流量计量程比范围窄,适合稳定的流量工艺;小型沼气工程供气具有明显的“谷峰”特性,要求流量计具有很宽的测量范围。超声波气体流量计更适合低流量测量,国际上天然气贸易计量就是采用超声波气体流量计。 4.温度、压力测量:内置防腐型温度、压力传感器,可实现沼气标准流量的测量。 5.CH4浓度测量功能:实施沼气产品补贴政策,沼气CH4浓度测量是关键,否则与城市燃气表盗气相仿,小型沼气工程会出现采用鼓空气的方法获取更多补贴的风险。传统气体流量计均无法完成这项重要功能,超声波沼气流量计BF-3000无需增加成本就可以实现CH4的准确测量。 6.低维护、低运行费用:传感器没有可造成堵塞或聚集残留的部件,内部无被磨损的机械运动部件,少日常维护,低运行成本。 安装要求 1.流量计安装位置应尽可能选择上游大于10倍直管径、下游大于5倍直管径以内无任何阀门、弯头、变径等均匀的直管段,这种安装条件将有助于确保有更加对称的速度分布剖面; 2.为消除沼气管道中凝结水的不良影响,建议用户在直管段前加装排污阀,并适当抬高流量计的安装位置,使冷凝水有效地在前端的排污口排出; 3.在沼气流量计管道旁并联一路旁路管段,以方便流量计的检修维护。沼气流量计入口处的管道必须安装一个关闭气路的阀门。沼气流量计安装好后,应检查联接处的密封性; 4.严禁用明火检漏。进入沼气流量计内的气体压力不得超过其规定的最大压力值; 5.流量计表体的内径与直管段的内径应一致,对于流量计上游的直管段尤其重要; 6.流量计表体与连接的直管段之间的轴线不重合度减至最小,沼气流量计应保证气室水平安装; 7.垫片如突入管道可能会造成对流场分布的干扰。应该采取措施确保垫片是在法兰密封面上且与法兰保持同心,不允许有垫片突入管道; 8.安装时应检查流量计测量管段内腔是否清洁,若有油脂及灰尘,需及时清除干净。 由于准确度高和维修费用低,超声沼气波流量计己被气体工业界所接受,它是自气体涡轮流量计后被气体工业界接受的最重要的气体流量计量器具。至今已有较多国家的政府机构批准气体超声波流量计为法定计量器具。 版权声明:本文转载自微信公众号@沼气工程及其测控技术,如欲转载,请务必注明来源,违者必究。
  • 可视化音速风洞气流变化,FLIR T1K高清热像仪监控飞机试验过程!
    如果让你想象未来的飞机长什么样?你的脑海中会浮现出什么样的画面?肯定会有科幻电影中造型古怪的各种飞行器也许不久的将来这样的飞行器就会出现在天空中飞机的研发过程是一项严谨的工作今天小菲就来带大家瞧瞧FLIR热像仪是如何助力飞机研发过程!✦ 飞机研发中温控的重要性✦ 一家总部位于英国的空气动力学研究机构——飞机研究协会(ARA),致力于为世界主要商用飞机和国防制造商提供创新项目。它最近开始测试一种长期理论,随着各国迈向净零排放,该理论可能会使长途航班更有效率。ARA在测试过程中使用FLIR红外热像仪证明了其理论的正确性,这项研究将对提高未来飞机设计的飞行效率产生直接影响。✦ 使用热像仪可视化气流✦ ARA希望测试其混合层流控制理论,该理论提出,在飞机机翼前部创建多孔部分将控制气流的过渡点,以减少湍流的影响并提高燃料消耗。ARA运营着一个大型跨音速风洞,本质上是一个高速风洞,速度高达1.4马赫(1000英里/小时),用于测试飞机模型。由于空气在如此高的速度下会产生湍流,气流的过渡点变化不到1℃,因此需要非常精确的热测量。此前,它使用的是热膜测量仪,然而这些测量仪只能测量到温度下降,却看不见温度状况,而且它们是通过粘合会干扰机翼表面。幸好,FLIR高清红外热像仪使ARA能够在不影响空气动力学的情况下清晰观察气流的变化,它确保了在测试和识别过渡点时具有更高的准确性。为了实现这项技术并进行测试,ARA需要一个集成合作伙伴。它选择了Teledyne FLIR的英国集成商合作伙伴Thermal Vision Research,后者将FLIR T1K热像仪借给ARA进行研究。ARA已经在风洞中使用了两台FLIR A655C红外热像仪来测试温度变化,当有机会使用更先进的热像仪来开发测试,以查看结果有何不同时,这似乎是更完美的选择。ARA光学测量系统部的Neil Stokes说:“我们与Thermal Vision Research的Matthew Clavey的关系可以追溯到很久以前。我们一直在研究整个站点的热成像技术。我看过几家公司的演示,但很多都是基于经验和对特定分销商或供应商的信任。Matthew真的很乐于助人,所以他把热像仪借给我们尝试了一周。每当我们有问题时,他都会给出正确的技术答案”。✦ T1K热像仪:提升准确性✦ 在完成测试之前,ARA进行了试验,以确保将FLIR T1K热像仪安装在隧道中,可以远程控制。ARA团队需要在大约30米外控制热像仪,以便他们可以在计算机上实时检索图像,从而能够看到气流的变化。当隧道运行时,它会引起振动,可能导致热像仪失焦,因此能够实时查看图像意味着他们可以纠正任何类似的问题。使用FLIR T1K热像仪可在测试过程中提高精度,并提升识别过渡点的准确性。FLIR T1K高清红外热像仪FLIR T1K配有1024x768像素的非制冷红外探测器,其灵敏度是非制冷传感器行业标准的2倍,所生成的图像质量非常出众。搭配尖端技术——UltraMax高清图像增强技术和FLIR MSX® 多波段动态成像专利技术(专利号:201380073584.9),能生成最高达310万像素的明亮清晰的热图像。其配备的FLIR OSX红外镜头系统还具有连续自动对焦功能,即使从较远距离处也能获得良好的测量值,因此任何时候都能让您的检测更轻松、随心、便捷。FLIR T1K高清红外热像仪使ARA能够证明混合层流控制理论在安全和受控的环境中是正确的。它现在能够将安装在风洞中的T1K作为一个概念提供给客户,以改进机翼设计获得更好的空气动力学性能。FLIR T1K拥有专家为用户量身定制的创新功能与用户界面如此出色的高清红外热像仪在各行业的检修和研发过程中都能帮您精准看透其中的温度变化
  • 气相色谱仪的常用操作小技巧
    气相色谱仪是一种多组份混合物的分离、分析工具,它是以气体为流动相,采用冲洗法的柱色谱技术。当多组份的分析物质进入到色谱柱时,由于各组分在色谱柱中的气相和固定液液相间的分配系数不同,因此各组份在色谱柱的运行速度也就不同,经过一定的柱长后,顺序离开色谱柱进入检测器,经检测后转换为电信号送至数据处理工作站,从而完成了对被测物质的定性定量分析。 Gas-PC20气相色谱仪  气相色谱仪的常用操作小技巧  1 加热  由于气相色谱仪的生产厂家和质量的不同,蛤定温度的方式也不相同 对于用微机设数法或拨轮选择法给定温度,一般是直接设数或选择合适给定温度值加以升温,而如果是采用旋钮定位法,则有技巧可言:  1.1 过温定位法  将温控旋钮调至低于操作温度约30℃处 给气相色谱仪升温 当过温至约为操作温度时,配台温度指示和加热指示灯,再逐渐将温控旋钮调至台适位置。  1.2 分步递进定位法  将温控旋钮朝升温方向转动一个角度,升温开始,指示灯亮:当温度基本稳定时,再同向转动温控旋钮。开始继续升温:如此递进调节、直至恒温在工作温度上。  2 调池平衡  调池平衡 实际是调热导电桥平衡.使之有较为台适的输出 讲调节技巧.其实是对具有池平衡、调零和记录调零等调珊能的气相色谱仪而言  3 点火  氢焰气相色谱仪 开机时需要点火,有时因各种原因致使熄火后,也需要点火 。然而,我们经常会遇到点火不着的情况 ,下面介绍两种点火技巧,供同行们相试。  3.1 加大氢气流量法  先加大氢气流量,点着火后,再缓慢调回工作状况 此法通用。  3.2 减少尾吹气流量法  先减少尾吹气流量,点着火后,再调回工作状况 此法适用于用氢气怍载气,用空气作助燃气和尾畋气情况。  4 气比的调节  氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气=l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢?本人认为 为各气旌以良好匹配。目的是既有高的检测器灵敏度又能有较好的分离效果。还不致于容易熄火。本着上述原则 气比应按下法调节:  (1)氮气流量的调节  在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素 调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止  (2)氢气和空气流量的调节  氢气和空气流量的调节效果,可以用基流的大小来检验 先调节氢气流量 使之约等于氮气 的流量。再调节空气流量 在调节空气流量时,要观察基流的改变情况 只要基流在增加,仍应相向调节,直至基流不再增加不止 最后,再将氢气流量上调少许。  5 进样技术  在定量分析中,应注意进样量读数准确在气相色谱分析中,一般是采用注射器或六通阀门进样 在考虑进样技术的时候,主要是以注射器进样为对象。  5.1 进样量  进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化。达到规定分离要求和线性响应的允许范围之内 ,填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升,气体样品一般为0.1~ 10毫升 。  (1)排除注射器里所有的空气  用微量注射器抽取液体样品时,只要重复地把液体抽凡注射器又迅速把其排回样品瓶,就可做到遗一点。  还有一种更好的方法,可以排除注射器里所有的空气 那就是用计划注射量的约2倍的样品置换注射器3~5次。每扶取到样品后,垂直拿起注射器,针尖朝上 任何依然留在注射器里的空气都应当跑到针管顶部 推进注射器塞子,空气就会被排掉。  (2)保证进样量的准确  用经换过的注射器取约计划进样量2倍左右的样品,垂直拿起注射器,针尖朝上,让针穿过一层纱布,这样可用纱布吸收从针尖排出的液体 推进注射器塞子。直到读出所需要的数值用纱布擦干针尖 ,至此准确的液体体积已经测得。需要再抽若干空气到注射器里,如果不慎推动柱塞,空气可以保护液体使之不被排走。  5.2 进样方法  双手章注射器 用一只手(通常是左手)把针插入垫片,洼射大体积样品(即气体样品)或输入压力很高时,要防止从气相色谱仪来的压力把柱塞弹出(用右手的大拇指)让针尖穿过垫片尽可能踩的进入进样口,压下柱塞停留1~ 2秒钟,然后尽可能快而稳地抽出针尖(继续压住柱塞)。  5.3 进样时间  进样时间长短对柱效率影响很大,若进样时间过长,遇使色谱区域加宽而降低柱效率 。因此,对于冲洗法色谱而言,进样时间越短越好,一般必须小于1秒钟。
  • 告别“假天平”,远离称量雷区
    天平在使用过程中除了人为因素外,以下八大环境因素也会影响其称量精准性,需要特别留意。就天平使用的常见问题小编总结以下解决方法,让你远离称量雷区,轻松应对精准称量困恼。1、空气流动因素解决方法-避免空气流动-使用防风罩-使用网格称盘2、温差因素解决方法-让天平在实验室稳定一段时间-把样品放置在天平附近3、震动因素解决方法-平稳的实验地点-使用稳定的大理石实验台4、静电因素解决方法-使用去静电装置消除静电5、挥发和回潮因素解决方法-封闭样品盘-快速读数6、热辐射因素解决方法-避免热源-穿着实验服7、磁场因素解决方法-避免易磁化的材料 (钢、铁)-在样品和秤盘之间放置不导磁的物品-如果准确度可以保证,使用应变片传感器的天平8、空气浮力因素解决方法-使用浮力补偿公式计算浮力的影响最后小编敲黑板再为大家提供一些放置天平的建议:-天平应该放置在实验室远离窗户、门、空调、加热器、电机、风扇等的角落;-实验桌要求放置水平,建议使用大理石实验台;-环境温度控制在恒定值,湿度控制在rh40%以上;-实验开始前保证足够时间的上电预热,万分位天平预热1小时以上;十万分位天平预热4小时以上或不断电;-建议将样品摆放在天平附近,如从冰箱取出请快速读数或放置一会儿再做称量。希望以上这些小tips可以帮助大家更好地使用电子天平。欲了解更多产品信息,请及时与我们联系!
  • 实验室设计基本原则:人流、物流、气流
    实验室设计的目的是要建立有高效率、功能完善和考虑周全的实验室。在实验室设计时,应充分考虑影响实验室效率和安全的因素,如空间、工作台、储藏柜、通风设施、照明等。特殊实验室应按国家标准有关要求设计。实验室设计要有合理化的空间实验室设计时应根据实验功能模块及放置设备的需要。而考虑空间的合理化分配来决定布局。同时应从发展眼光确定实验室空间大小。有很多因素影响到实验室空间的设计,如工作人员的数量、分析方法和仪器的大小。实验室应是灵活的,让工作人员感到舒适,又不产生浪费。工作空间的大小应保证zui大数量的工作人员在同一时间工作。应将有效的空间划分为清洁区(办公室、休息室、学习室),缓冲区(储存区、供给区、过道),污染区(工作区、洗涤区、标本储存区)。实验室设计基本原则:人流、物流、气流要畅通;清洁区、缓冲区、污染区要分离。在指-定的实验区域,应控制工作人员数量和运输人员数量。在控制实验室通路的同时,还应设置一些预备区,如接受样品或标本,准许进入实验室人员和参观者的通道。通过工作人员、自动传输、风力系统或其他自动化系统运输样品或标本。还应充分考虑内部通信联络系统和警报器以便通知或报警(如灾害、火警、样本到达、或实验室其部分寻求帮助等)。还应考虑实验室空间的扩展需要,将实验室设计为可向外扩展或者可以移动性,以满足实验室未来发展的空间有拓展的需要。运输和电脑网络系统分别用于实验室内和实验室与单位各科之间样品或标本运输和信息交流。国家的法律法规(有国家标准和行业标准等)在很大程度上影响到实验室设计,在整个实验室设计中应由建筑师提出有关法规的要求。在制定空间分配计划前,应对仪器设备、工作人员数量、工作量、实验方法等因素作全面分析和对空间标准的要求进行评估,并计算区域的净面积和毛面积。特殊功能的区域根据其功能和活动情况不同决定其分配空间的不同。实验室的布局设计实验室的布局情况应考虑以下几点:由于每个实验室的工作性质不同,无法建立一个统一的实验室通用的设计方案。但应考虑原则性和灵活性。1、样品的转运和人员流动:分配实验室区域,首先应考虑工作流程、样品的转运和流转、生物安全因素等。2、灵活性:实验室设计能否适应未来发展变化的需要是极其重要的。3、安全性:实验室的设计和大小应考虑安全性,满足紧急清除和疏散出口的建筑规则,针对各实验室情况配备安全设备。距危险化学试剂30米内,应设有紧急洗眼处和淋浴室。所有的实验室和与污染物直接接触的地方均应安装洗手池,将洗手池设在出口处。洗手池应是独-立专用的,不能与污染物处理及实验混用。4、设立烟雾罩和安全设施:任何安全罩的放置均应尽量远离出口处,以符合有害实验远离主通道的原则。5、特殊实验室设计与布局:特殊实验室在这里主要指微生物和分子生物学实验室,其设计总体上应按《微生物和生物医学实验室生物安全通用准则》的要求。基因扩增实验室应有充分的空间和按标准要求进行设计与布局,以避免实验室的污染。微生物学实验室所接触的有害微生物,通常将微生物实验室划分成清洁区、半污染区、污染区。在污染区应使用生物安全柜,以保护工作人员的健康。现代微生物学实验室还必须具备有空气调节和过滤的设备。实验室通风设计为了实验室的安全,有条件的或具备条件的必须装备中央空气处理系统。避免因电扇鼓风导致微生物实验室传染性疾病的传播。特别是微生物和生物医学实验室应严禁使用电扇。适当通风不仅去除实验室有害气味和毒气,而且也保证设备正常运行。空气交换数量目前倡导在一般实验室,在使用蒸气和生化危险剂的区域,空气交换每小时12次。在从事微生物检验区域空气交换达16次每小时。电源和通讯设计电源布局应对实验室所需电源,做充分的考虑和分析,注意以下:1、实验室所有仪器所需电量和所需电插座数量,布局合理,使用安全和方便。2、电插座是三孔或是二孔。3、电插座分布各地方,保证使用安全和方便。4、仪器所需电压(220V或380V)、电量。5、应充分考虑计算机所需插座。6、实验室所需照明设备的数量由工作的类型、工作台面的颜色、工作室天花板和墙壁的颜色、固定照明与工作台面之间的距离、需要照明空间的大小而决定。7、照明设备安装的位置:照明设备应安装成与工作台面呈垂直或对角线,可消除物体遮挡产生的阴影。8、特殊照明设备:如果实验室用于分离微生物和分子生物学实验区域,应能有效地保护工作人员和标本免污染。紫外灯是zui-常用的消毒设备。固定紫外灯距地面的距离不要超过2.1米,紫外灯的数量应根据实验室空间决定。使用紫外照明设备时,必须确信物体表面(例如,墙体表机的涂料、工作台面等)能经受紫外光的漂白作用。9、在设计电源时除考虑已满足现在使用需要外,要有足够多的扩展量满足实验室的需要。10、通讯在实验室实现信息化、网络化,将很大程度上提高实验室的管理质量和工作效率,在实验室设计时应周密设计通讯线路,除充分满足目前的需求外,还应有额外的容量适应仪器的增加和移动。
  • 锦玟发布JTRGZ-24W土壤干燥箱 锦玟推荐土壤样品风干箱新品
    JTRGZ-24W新型土壤干燥箱采用模拟室内空气流动模式,即风干模式进行土壤的干燥。干燥空气是经过粗过滤和活性炭吸附的洁净热空气,样品分室独立存放和干燥,它具有洁净,避免样品交叉污染。省时省力节省空间,提高土壤干燥效率等特点。● 土壤干燥箱采用空气扰动技术,模拟室内空气流动,较大程度上接近室内环境,达到快速风干的目的。● 采样了先进的空气过滤和吸附技术,防止样品的二次交叉污染。● 采样加热干燥空气技术,提高了样品风干效率。● 箱体内为独立的24位样品室,将样品隔开,防止交叉污染。● 样品室为不锈钢材质,避免化学腐蚀和有机物吸附,易于清理。● 样品室设有透明观察窗,方便客户随时观察样品状态。● 样品室搭配不锈钢托盘,可以直接放置普通的土壤样品,也可以放置河道底泥等高含水量的样品。● 土壤干燥箱底部装有滚轮,方便移动。● 操作简单,易于维护。● 可根据用户特殊需求进行定制,如每个样品箱可以进行独立控温恒温,也可实现每排四个独立开关等。● 可根据客户需求定制:每个样品室设置有独立加热模块,使每个样品室恒温范围和精度得到明显改善,温控均匀度得到有效提高,近邻的样品室之间相互无干扰。干燥空气温度:35±5℃(温度可调)加热方式:加热及恒温技术,高效样品干燥样品室数量:12位、24位、36位(可选)样品室尺寸(mm):200×120×300(长×高×深)可根据客户需求定制外形尺寸(mm):1100×430×1610(长×宽×高)样品室托盘:每个样品室均配托盘,用于盛放土壤样品,每样品量≥2.5KG隔离:样箱内为独立的样品室,样品存储和干燥气路完全分开,将样品隔开,防止交叉污染窗口:样品室设置透明观察窗,方便随时观察样品干燥时间:≤20h;工作环境:温度15~35℃ 相对湿度20%~90%电源电压:220V 50Hz功率:300W移动:底部安装万向轮方便移动和固定创新点:1、箱体内为独立的24位样品室,将样品隔开,防止交叉污染。 2、 可根据客户需求定制:每个样品室设置有独立加热模块,使每个样品室恒温范围和精度得到明显改善,温控均匀度得到有效提高,近邻的样品室之间相互无干扰。 JTRGZ-24W土壤干燥箱 锦玟推荐土壤样品风干箱
  • 市场监管总局全力推进计量“硬能力”
    一、紧抓“关键少数”,国家计量基准能力不断提升   计量基准是国家量值的最高依据,是保障全国量值准确可靠的源头。截至目前,我国建成国家计量基准达到185项。2021年市场监管总局新批准建立5项国家计量基准,填补我国相关领域最高测量能力空白,对推动科学技术创新、促进产业转型升级、保障改善民生具有重要意义。其中:(0.2~30)m/s空气流速基准装置的建立,实现我国空气流速量值向国际单位制的有效溯源,在(0.2~30)m/s的空气流速范围内,测量不确定度达到0.1%的校准水平,意味着可以准确测量蝴蝶扇动翅膀引起的空气流速;水量热计加速器光子水吸收剂量基准装置的建立,实现医用加速器10MV光子水平照射条件下的水吸收剂量的绝对测量,填补了我国医用高能光子水吸收剂量量值复现与传递能力的空白,为癌症放射治疗水吸收剂量的准确获取和利用提供技术支撑;漫透射视觉密度基准装置的建立,解决了以漫透射视觉密度定值的图像视觉技术相关领域的量值溯源需求,其测量范围和测量不确定度达到较高水平,能够实现在核磁图像的早期病变阶段,当病变引起图像深浅在视觉上有千分之一的变化时就能被医生发现;同轴功率基准装置可看作是某一频段内全国无线电功率的“公平秤”,测量频率为10MHz~18GHz,覆盖大部分无线电应用场景,测量能力相当于测量无线信号的覆盖范围每1000米误差不超过5米;乳腺X射线空气比释动能基准的建立,为乳腺X射线标准计量器具和工作计量器具提供量值溯源,满足临床乳腺诊断X射线设备的溯源需求,测量不确定度达到0.86%,可测量电离电流相当于手机充电电流的千亿分之一。 二、带动“绝大多数”,计量标准建设速度大幅增长   计量标准是计量体系的中坚力量,将量值传递到生产生活中所用测量仪器(器具)。截至目前,我国共建成社会公用计量标准6.3万余项。2021年,市场监管总局共批准新建和复查考核计量标准器具1623项,比2020年增加531项,是2020年的146%。批准新建和复查社会公用计量标准730项,同比增长47%。为保障人民生命健康、促进产业转型升级提供精准“砝码”,有力确保了测量数据准确可靠。一是聚焦医疗卫生领域,持续完善医疗领域计量标准器具体系,2021年新批准建立20余项计量标准器具,为保障医疗设备测量数据精准性提供了有力技术支撑。尤其是在保证疫情防控常态化核酸检测、体温测量数据有效性方面,《聚合酶链反应(PCR)分析仪校准装置》《辐射温度计检定装置》等标准装置的建立为疫情防控筑起第一道“安全防护墙”;二是聚焦生态环境监测领域,不断强化空气质量、地表水环境、土壤和地下水环境、海洋环境、生态质量等领域环境监测质量,2021年新批准建立15项生态环境监测的计量标准器具。其中《海水浊度测量仪校准装置》《海水营养盐测量仪校准装置》《海水pH测量仪校准装置》等3项计量标准填补了我国海水水质监测仪器校准方面的空白,为海洋生态环境监测数据的准确提供技术支撑;三是聚焦高新技术产业领域,围绕战略性新兴产业和高技术领域的计量需求,以国家产业计量测试中心为抓手,新批准建立一批高新技术领域的计量标准器具,持续为信息技术、高端装备、新能源、新材料等产业发展提供“全溯源链、全产业链、全寿命周期、前瞻性”的计量测试服务。 三、强化标准物质提质增量,标准物质覆盖面大幅扩大   标准物质是生物、化学、材料等领域的“测量砝码”,是保障相关领域精准测量的重要基础。市场监管总局坚持问题导向,标本兼治,在推动标准物质供给质量提升、完善标准物质计量技术规范体系等方面取得进展。一是强化标准物质研制。2021年,国家标准物质定级数量创新高,全年批准建立2050项国家标准物质,涉及食品安全、生物医药、环境监测、工业制造、自然资源等多个重点领域,比2020年增加1494项,是2020年的368%,为经济社会和科学研究高质量发展提供计量技术支撑。二是加强顶层设计。印发《关于加强标准物质建设和管理的指导意见》,部署了到2035年的标准物质建设管理重点任务。成立全国标准物质委员会,进一步加强和规范全国标准物质管理,提升标准物质供给质量。三是优化行政许可流程。加快推进行政许可系统改进和完善工作,实施系统优化改进54项,推行标准物质电子证书,压缩审批时限。四是实施立体式监管。在全国范围内对258家7712种标准物质进行专项监督检查,引导标准物质研制生产单位落实主体责任。   下一步,市场监管总局将会同国务院有关部门,面向经济主战场和重大民生需求,围绕计量供给不充分、不平衡、不全面的问题,实施计量优先战略,加强计量基础研究,强化计量应用支撑,加强计量能力建设,赋能经济社会高质量发展。
  • 神八着陆 17项实验项目首次公布
    11月17日神八飞船返回舱在内蒙古四子王旗着陆   在经历了17天的太空之旅,两次与“天宫一号”完美的太空之吻,在地球外遨游了263圈后,神舟八号飞船昨天结束了自己的使命,平安回到祖国的怀抱。昨天19时32分,在北京航天飞行控制中心的控制下,神舟八号飞船飘然落于内蒙古中部的阿木古郎草原。   20时10分左右,搜索人员在主着陆场区找到神舟八号飞船返回舱。随后,中国载人航天工程总指挥、总装备部部长常万全宣布,根据着陆场区报告,神舟八号飞船返回舱已在内蒙古主着陆场安全着陆,天宫一号与神舟八号空间交会对接任务取得圆满成功。   搭载神舟八号飞船遨游太空的中国和德国科学家联合开展的17项空间生命科学实验项目,是中国载人航天首次在空间科学应用领域开展的国际合作。中科院空间应用系统科研管理部副主任曲风说,通用生物培养箱要在返回舱着陆后7.5小时内转运到北京实验室,而且越快越好。返回舱内有活物,像线虫、水稻都需要光照和氧气,飞船落地后就断电了,里面原有的运行环境就没有了,光照没有了,产生的氧气就很少了,就容易死,所以说要越快越好。 这是从飞船返回舱舱门看到的场景   “类地环境”保障航天员不遇险   “神八”昨天重返地球了,独守太空的天宫一号将默默地等待着明年航天员来到这个太空新家。天宫一号从无人到有人,最显著的差别之一是飞行器里要有适宜的氧气、温度、湿度、压力等,建立一个类似于地面的环境。否则,航天员无法只身在太空真空、缺氧、骤冷骤热的险恶环境下生存。昨天,航天员系统的有关专家揭秘在明年航天员入住“天宫”之前,怎样在舱内建立适宜人生活的环境。   呼吸的空气是合成的   氧气是人类生存必不可少的,航天器里的氧气供应十分重要。但是氧气也不是多多益善,过多过少都会影响航天员健康和飞行器运行。天宫一号配备的是混合空气,有氧气和氮气两种成分。地面空气包含的一氧化碳、二氧化碳等成分,在人工合成空气时是不需要的。航天器中一般不用纯氧,它有助燃性,一点火花就可导致严重火灾。   “天宫”和飞船对接后,整个组合体的容积大大增加,因此,供氧的时间也会相对延长,好比大房间里空调反应变慢一样。专家赵丕盛介绍,在航天员进入“天宫”之前的几个月,由于无人消耗,氧气只是储存,不往外释放,检测不泄漏就可以。   “天宫”的一大突破是首次验证纯水变氧的技术。据项目负责人吴志强介绍,航天员要对带上去的一箱纯水进行试验,利用电解制氧的技术,使水分解成氧气和氢气,产氧率可满足半个人的呼吸用氧。   强迫空气流动控制温湿   地球会有风,是因为温度不均匀造成气体密度变化,从而产生空气对流。而在太空失重状态下,无论温度如何变,舱内的气体密度都不会变化,无法产生对流,这就需要风机等设备促使空气流动起来。   强迫空气流动,主要是为了进行气体净化和温湿度控制。研制人员卞强打比方说,这如同空调制冷原理,室内的空气要流动起来,从冷源走一圈出来,才能降温变冷。舱里的净化和温湿度控制也是如此。只有让舱里的空气首先流动起来,经过各种净化装置,才能降温除湿、去除有害气体和微生物等。   微生物来自航天员代谢   “天宫”任务首次明确提出了微生物指标和可吸入颗粒物指标。赵丕盛说,微生物有两大危害,一是影响航天员健康,二是会腐蚀航天器里的设备。航天员在密闭的“天宫”要待上10多天,人体代谢是微生物的重要来源。卞强说,他们在地面已经做过试验,把3个人关进了和“天宫”一样大的洁净舱里,进行过滤效果试验,能在一个半小时将舱内洁净度降到了万级以下,比卫星厂房的洁净度要求还要高出十倍。   入住前净化空气   “天宫”在航天员入住前,已经无人运行了好几个月。专家余青霓说,家里关闭门窗几个月,会产生很大气味,更何况是密闭飞行器,舱里的材料和设备会释放有害气体,长期积累在舱里面,有害量值很高。   “天宫”配备了微量有害气体净化装置,综合了化学吸附、物理吸附、催化氧化等多种净化手段。这个装置在航天员进入“天宫”前15天就开启,提前净化空气。   排汗是致命隐患   人的呼吸、排汗等正常代谢,每天可产生1.8公斤的水汽。这些不起眼的水汽会在飞船的冷舱壁等部位凝上一层霜雾,使电气设备受潮引起短路。   “天宫”带上了专门的冷凝水储箱用于回收这些水汽。这种技术此前就已经应用,但那时是靠航天员手动操作收集,2小时一次,工作量很大。“天宫”采用了电动的方式,定时抽吸,把航天员解放了出来。
  • 国产超声波沼气流量计BF-3000的应用优势分析
    超声波流量计是近年来随着集成电路技术迅速发展才开始应用的一种非接触式仪表,国际上天然气贸易计量就是采用超声波流量计。相比传统的涡轮流量计和孔板流量计,超声波流量计在测量天然气、沼气流量中的应用更具优势。 超声波频率高,波长短,衍射不严重,具有良好的定向性且穿透能力强。超声波流量计的基本原理是通过测量超声波脉冲顺流和逆流传播时传播速度不同引起的时差来计算被测流体速度,因此这种原理又称为“时差法”。超声波流量计的工作原理 如上图所示,探头1发射信号,信号穿过管壁1、流体、管壁2 后被另一侧的探头2接收到 在探头1发射信号的同时,探头2也发出同样的信号,经过管壁2、流体、管壁1后被探头1接收到 由于流速的存在使得两时间不等,存在时间差,因此根据时间差便可求得流速,进而得到流量值。超声波流量计剖析图 超声波流量计具有以下主要优势: 1.高精度,满足低流量测量 超声波流量计的主要优点之一是高精度,不受气体中固体颗粒和液滴的影响,并且可采用多次反射将声程加长。单路径超声波流量计的精度通常在1%至2%的范围内,而通过使用多条路径,它可以达到0.5或更高的精度范围。此外,由于超声波流量计量程比较宽,它非常契合小型沼气工程的“峰谷”特性,能够满足低流量测量。 2.极少的压力损失 压损是天然气输送中存在的主要问题。孔板流量计流体压力损失的主要原因是孔板前后涡流的形成以及流体的沿程摩擦,它使得流体具有的总机械能的一部分不可逆转地变成了热能,消失在流体内。涡轮流量计依赖转子转速来确定流量,当天然气流经涡轮,引起转子旋转,同样会产生压损。 使用超声波流量计,不用在流体中安装测量元件,故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行,因而极少或无压力损失,是一种理想的节能型流量计。 3.无运动部件 运动部件主要是涡轮流量计的问题,涡轮流量计的转子,包括轴承,都会受到磨损。化学品和污垢在影响轴承的同时,也会影响涡轮流量计的性能。超声波流量计不存在易于磨损的运动部件,可保证长期使用精度不变,与此同时,无运动部件也让超声波流量计具有低维护特性。 4.低维护 无运动部件是超声波流量计低维护的原因之一,另一个因素则与它本身无磨损有关。孔板流量计随着时间推移不断遭受磨损,导致测量准确性劣化。当流体中存在污垢或任何其它杂质,则尤其如此。因此,孔板式流量计需要定期检查磨损,并确定它们是否仍然读数准确。与之相反的,由于超声波流量计不会磨损,并且没有运动部件,维护成本非常低。 5.轻松处理大尺寸管径 超声波流量计可以轻松地适用于大尺寸的管道。事实上,用于天然气流量测量的超声波流量计最适合6英寸及更大的管道。为了测量大管道中的天然气流量,例如20、30和36英寸管道,可能需要不止一个的孔板流量计。在这些情况下,流体有时会被转移到一组较小的管道中,以达到测量的目的。这也是为什么超声波流量计可以代替多达十个孔板流量计。超声波沼气流量计BF-3000 四方仪器自主研发的超声波沼气流量计BF-3000,巧妙地在流量计中融入了CH4测量功能,实现了沼气流量、成分的同时测量。不仅能够适应国家沼气产品补贴政策,防止鼓空气获取补贴的现象出现,也能够成为沼气工程运行的可靠数据来源,充当沼气工程验收、监督的“金标准”。 由于超声波流量计利用超声波对流体的流量进行测量,其比传统仪表更能适应工业现场的环境,不仅可以测量常规管道流量,还可以测量诸如具有强腐蚀性、放射性、易燃、易爆等特点的流体,因此测量具有高水分和高H2S的沼气自然也不在话下。 17世纪托里拆利奠定差压式流量计的理论基础,这是流量测量的里程碑。我国开展近代流量测量技术的工作比较晚,早期所需的流量仪表均从国外进口。可以说,超声波流量计的出现是又一个里程碑,它见证了国内涌现的一批科技创新企业,也见证了当今微电子技术和计算机技术的飞跃发展如何极大地推动了流量仪表的更新换代。来源:微信公众号@沼气工程及其测控技术,转载请务必注明出处
  • 关于热脱附解吸仪二级解吸“热气流瞬时解吸技术”的说明
    热脱附解吸仪是分析空气中挥发性有机物的重要前处理设备,其中二级解吸时的解吸速度和效率直接决定仪器的性能。图1 AutoTD系列自动热脱附解吸仪我公司使用了“热气流瞬时解吸技术”,在传统加热丝加热的基础上,使用了高温热气流辅助加热,在二级解吸开始的瞬间,高温热气流打开,冷阱中填料的温度瞬间达到设定值,消除了热量传递带来的影响,冷阱升温速度趋近于无穷大,样品解吸速度快,峰形好,残留少。图2 “热气流瞬时解吸技术”示意图
  • 玩转生物安全柜:如何让你的实验室变得更加安全和高效
    在现代实验室中,生物安全柜是必不可少的设备之一。它们被设计用于保护实验室工作者和公众免受潜在的危险微生物和生化物质的伤害,同时也可以提高实验的效率和准确性。但是,对于新手来说,生物安全柜的正确使用可能有些棘手,尤其是在充满压力和紧迫感的实验室环境中。本文将向你介绍生物安全柜的基础知识、使用技巧和维护要点,帮助你轻松驾驭生物安全柜,让你的实验室变得更加安全和高效。一、生物安全柜的分类和基础知识生物安全柜根据它们的空气流动方式和过滤系统的类型,可以分为三类:A型、B型和C型。A型生物安全柜通常用于对非致病性微生物和生化试剂进行工作,而B型生物安全柜则更加灵活,可用于处理病原微生物和生物制品,因为它们提供更高的生物防护级别。C型生物安全柜通常用于对有毒气体和化学物质进行工作。无论是哪种类型的生物安全柜,它们都包含以下基本部件:工作区、风机和过滤器。工作区是用于进行实验的区域,通常是一个完全密封的金属箱子,以保护工作者免受危险物质的伤害。风机是用来引导空气流动的装置,而过滤器则用于过滤空气,以去除有害微生物和化学物质。二、使用技巧在使用生物安全柜时,需要遵循一些基本规则,以确保安全和实验的成功。以下是一些有用的技巧:1.正确穿戴个人防护装备在使用生物安全柜前,需要正确穿戴个人防护装备,包括手套、口罩、防护眼镜和实验服等。这些装备不仅可以保护工作者免受危险物质的伤害,还可以防止实验中的交叉污染。2.清洁工作区和工具在进行实验前,需要清洁工作区和实验工具,以确保它们不会影响实验结果。使用70%的酒精或其他适当的清洁剂,彻底清洁工作区和工具表面。另外,应该避免在生物安全柜中存放无关物品或实验工具,以避免交叉污染。3.正确放置实验样品和废弃物在进行实验时,需要将实验样品和废弃物放置在正确的位置。实验样品应该放置在工作区的中心位置,以获得最佳的风速和过滤效果。废弃物应该放置在特定的容器中,以便安全处理。4.注意实验过程中的卫生在实验过程中,需要注意卫生,避免对实验室环境和生物安全柜造成污染。应该定期更换手套,并在必要时更换其他个人防护装备。5.了解生物安全柜的工作原理了解生物安全柜的工作原理可以帮助工作者更好地使用它们。生物安全柜的工作原理基于负压原理,即通过引导空气流动来保护工作者免受危险物质的伤害。空气从周围环境流向生物安全柜内,然后被过滤器过滤,再从顶部或侧面排出。这种空气流动形成了一种虚拟的壁垒,保护工作者免受污染。6.避免开启多个生物安全柜如果需要在同一实验室内使用多个生物安全柜,应该避免同时开启多个生物安全柜。这样可以确保空气流动的均衡和过滤效果,同时也可以避免工作者之间的交叉污染。三、生物安全柜的维护要点除了正确使用生物安全柜外,还需要定期维护它们,以确保其效果和安全性。以下是一些维护要点:1.定期更换过滤器过滤器是生物安全柜的核心部件之一,它们负责过滤空气中的有害物质。因此,需要定期更换过滤器,以确保其效果和安全性。通常情况下,过滤器的更换时间取决于使用频率和类型,应该按照生产商的指示进行更换。2.定期检查风机和管道风机和管道也需要定期检查和清洁,以确保它们的正常运作和空气流动效果。如果风机和管道存在故障或堵塞,将会影响生物安全柜的效果和安全性。可以使用吸尘器和清洁剂对风机和管道进行清洁,同时应该注意不要损坏它们。3.定期清洁生物安全柜生物安全柜的清洁也是非常重要的,它可以避免污染和细菌滋生。定期清洁生物安全柜的内部和外部表面,使用70%的酒精或其他适当的清洁剂,彻底清洁工作区、工具表面和其他可接触部位。定期清洁还可以延长生物安全柜的使用寿命。4.注意生物安全柜的温度和湿度生物安全柜的温度和湿度对其效果和安全性也有重要影响。应该避免生物安全柜暴露在阳光下或高温环境中,同时定期检查生物安全柜的湿度和温度,以确保其在适宜的条件下工作。5.注意生物安全柜的细节在使用和维护生物安全柜时,还需要注意一些细节。例如,不要将化学品直接倒入生物安全柜内,因为这样可能会损坏过滤器或造成危险。此外,应该避免在生物安全柜中存放食物或饮料,以避免交叉污染。结语生物安全柜是实验室中重要的安全设备,兰伯艾克斯生物安全柜LAB-BC系列,采用气幕式隔离设计,防止内外交叉污染,气流30%外排70%内循环,负压垂层流,无需安装管道;上下移动玻璃门,可任意定位,易于操作,并能完全关闭以便杀菌,定位高度限位报警提示;工作环境确保无污染泄漏,采用优质304不锈钢,光滑、无缝,可轻松彻底消毒,可防止腐蚀剂和消毒剂的侵蚀;采用LED液晶面板控制,内置紫外灯防护装置,当前窗和荧光灯关闭时,紫外灯才能运行,并具有紫外线定时功能;它们可以保护工作者免受危险物质的伤害,并避免污染和交叉感染。正确使用和维护生物安全柜对实验的安全性和效果有重要影响。在使用和维护生物安全柜时,需要注意其使用方法和维护要点,以确保其效果和安全性。生物安全柜的使用和维护需要一定的技能和经验,对于新手来说可能会比较困难。因此,实验室应该对工作者进行相关的培训和指导,以确保其正确使用和维护生物安全柜。同时,实验室也应该定期检查生物安全柜的效果和安全性,以保障工作者的安全和实验的质量。最后,希望这篇文章能够帮助新手更好地理解和使用生物安全柜,并提高实验室的安全性和效果。
  • 【瑞士步琦】喷雾干燥制备鼠李糖乳杆菌微胶囊研究
    喷雾干燥技术微囊化鼠李糖乳杆菌ATCC 7469益生菌是一种活的微生物,当摄入足够的量时会对健康有益,只有在生存能力(107-1010 CUF m/L)得到保护的情况下才能发挥其作用。益生菌通常是乳杆菌和双岐杆菌,它们常与胃肠道有关;它们通常以冻干培养物的形式供应,或者被雾化并直接添加到食物中。益生菌功能食品在市场上需求量很大,酸奶和发酵乳制品通常被用作这类生物活性微生物的载体;然而,人们对在其他类型的非乳制品基质中掺入益生菌菌株越来越感兴趣,尤其是对于患有乳糖不耐受症、对酪蛋白过敏或与乳制品有关的其它问题的消费者。一些研究报告了微胶囊益生菌的应用。例如,将益生菌菌株掺入奶酪、巧克力涂层和巧克力中,以及掺入果汁、蛋黄酱、黄油、肉类和烘焙产品等非乳制品中。益生菌菌株对胃肠道健康很重要,因为它们可以预防肠道炎症,为上皮细胞提供保护,并调节抗体。它们可以产生细胞因子或趋化因子,改善乳糖不耐受,增加对结直肠癌的保护,抑制幽门螺杆菌活性,并用于治疗食物过敏和预防急性腹泻。然而,这些微生物有不幸的缺陷,特别是在菌株存活方面。喷雾干燥是微胶囊化最广泛使用的方法之一,因为其成本低,在最佳干燥条件下具有高存活率,并且在配方中加入了保护剂。近年来,乳清蛋白作为益生菌保护剂的使用获得了越来越多的兴趣,因为这些蛋白是提高益生菌活性的天然载体,并且由于结构和理化特征,可以作为胃肠道中的递送系统。蛋白质可以在干燥过程中增加益生菌的存活率,因为它们能够形成降低热应力的保护膜。糖的添加也会影响干燥的益生菌制剂的存活。研究人员肯定了糖(如肌醇、山梨醇、果糖、乳糖、葡萄糖和海藻糖)对脱水细菌细胞的保护作用。研究发现,海藻糖等糖是一种能够通过氢键与蛋白质分子相互作用的二糖;它可以在脱水和再水化过程中替代蛋白质周围的水分子,形成一种玻璃状基质,稳定生物大分子。科学家研究了使用奶酪乳清与淀粉、阿拉伯胶、麦芽糖糊精和乳清蛋白浓缩物联合干燥鼠李糖乳杆菌 64 的载体剂选择。另一方面,干燥温度是影响存活率的因素。例如,喷雾干燥的植物乳杆菌 WCFS1 再低干燥温度下表现出较高的存活率。在此背景下,本研究以 WPC、麦芽糊精和海藻糖为原料,采用喷雾干燥的方法对鼠李糖乳杆菌 ATCC 7469 进行微囊化,并评估微囊化对细胞活力和干粉性能的影响。以喷雾干燥条件(包括进口温度、空气流量和进料泵)为自变量,益生菌存活率、水分含量、水分活性和有效产量为因变量。采用响应面法对喷雾干燥包裹的鼠李糖乳杆菌的存活率进行了优化,并对粉末的稳定性进行了评估。1样品制备按最佳稳定性配方乳清浓缩蛋白:麦芽糊精:海藻糖(75:10:15)的比例采用超滤的方法制备乳制品悬浮液。将冻干的鼠李糖乳杆菌 ATCC 7469 菌株悬浮于 2ml 培养基中,在 MRS 肉汤(蛋白胨:10.0g,牛肉浸粉:10.0g,酵母浸粉:5.0g,葡萄糖:20.0g,吐温80:1.0g,磷酸氢二钾:2.0g,醋酸钠:5.0g,柠檬酸铵:2.0g,硫酸镁:0.1g,硫酸锰:0.05g,pH6.2±0.2,25℃)中重新激活制备细菌悬浮液。2实验过程在磁力搅拌下将鼠李糖乳杆菌 ATCC 7469 菌株悬浮液添加到每个乳悬浮液中,在微囊化过程期间使所述分散液保持在恒定的搅拌状态。喷雾干燥仪选用瑞士步琦 B-290,通过改变进口温度(120℃-180℃)、干燥空气流量(70%-90%,即:28-35m3/h)和进料量(10%-55%,即 3-17mL/min)来进行工艺摸索。▲S-300工艺探索采用响应面法和二次复合中心设计对益生菌微囊化进行了优化,其自变量有进口温度、空气流速和进料流量。在最优理论条件下进行了三次实验验证。图1 考察了菌株存活率的响应面变化。由图可知存活率与出口温度呈反比,低温时存活率在 69%、高温时存活率在 23%。其他科学家在使用含益生元的脱脂乳制备鼠李糖乳杆菌 GG(ATCC 53,103),70℃ 时的存活率为 76%。也跟我们的研究结果相吻合。图2 考察了水分含量的响应面变化。从图可得到进口温度与水分含量之间呈反比关系,当进口温度与进料量较高时,粉末的水分含量较低,结合存活率考虑,水分含量在 3.0%-5.8% 之间,与其他报道的数值相接近。图3 考察了水活度的响应面变化。在较高的进口温度下,进料量和气体流量得到了较低的水活度值,因素与结果之间呈反比关系。其他使用麦芽糊精、乳清蛋白浓缩物和葡萄糖的相关研究中,水活度的值与本研究中活性最高的粉末报告结果一致。3实验结果确定益生菌的包封中壁材的最佳比例对于提高微生物对抗整个胃肠道条件的稳定性很重要。在干燥过程中指定最佳条件以最大限度地提高作为壁材的蛋白质-海藻糖-麦芽糊精混合物的保护能力并因此提高鼠李糖的存活值也是重要的。因此,使用响应面方法确定干燥过程的最佳条件。表2显示了鼠李糖乳杆菌微囊化的最佳操作参数,结果表明,理论模型可以很好地近似实验值(差异<10%)。得到的最佳喷雾干燥条件是进口温度、空气流量和进料泵流量分别为169℃、33m3/h和16ml/min,存活率为70%,吸气率为84%,出口温度为52℃,总体满意度为0.96。物理性质评价如图4所示,得到的粉末水活性动力学显示了较高的吸水能力,这可能是海藻糖作为低分子量碳水化合物,表现出的分子运动和扩散效应,与用于包封基质的典型吸水行为一致。吸湿性随着储存时间的延长有增加的趋势,直到达到某种程度的平衡。因此加入了 WPC 来降低吸湿性,因为它的表面活性和形成具有较高 Tg 膜的能力。粒径和形态结果如图5显示。(a)在最佳工艺参数上制备的粉体,其微胶囊紧凑,类球形形状,具有不同的大小和不规则的表面与压痕,外表面显示无裂缝或破坏的墙壁,这是确保更高的保护和更低的气体渗透性的基础。4结论结果表明,蛋白质-海藻糖-麦芽糊精混合物是包裹鼠李糖乳杆菌的良好壁材,在干燥过程中表现出重要的热保护作用,并提高了其存活率;通过响应面方法优化的喷雾干燥工艺条件生产的微胶囊具有可接受的理化性质——水分、水活性、吸湿性和粒径等,为益生菌的微囊化提供了思路。5文献来源Microencapsulation of Lactobacillus rhamnosus ATCC 7469 by spray drying using maltodextrin, whey protein concentrate and trehalose.
  • 高端制造业的守护神 | 我们在洁净室里做什么?
    以前有个同学问我知不知道洁净室,一般都在洁净室干嘛。笔者愣了一下,具体做什么我也不知道,肯定不在里面玩游戏看电影了。要想知道这个问题的答案,先来了解一下什么是洁净室吧。什么是洁净室典型的洁净室,图片来自Avantor洁净室又可称作无尘室(Cleanroom),通常用作专业工业生产或科学研究的一部分,包括制造药品,集成电路,CRT,LCD,OLED和microLED显示器等。洁净室的设计是为了保持极低水平的微粒,如灰尘,空气中的生物体,或汽化的微粒。确切地说,洁净室有一个受控的污染水平,该水平由在指定的颗粒尺寸下每立方米的颗粒数来规定。洁净室也可指任何给定的容纳空间,在该空间中设置了减少微粒污染和控制其他环境参数,如温度,湿度和压力。在药学意义上,洁净室是指符合GMP无菌规范(即EU和PIC/S GMP指南附件1以及当地卫生当局要求的其他标准和指南)中定义的GMP规范要求的房间。在我看来,洁净室(Cleanroom)是将普通房间转换为洁净室所需的工程设计、制造、完成和操作控制(控制策略)的组合。很多行业会使用无尘室,只要是小颗粒会对生产过程产生不利影响的地方都会有洁净室的身影。它们的尺寸和复杂度各不相同,广泛应用于半导体制造,制药,生物技术,医疗设备和生命科学等行业,以及航空航天,光学,军事和能源部中常见的关键工艺制造。历史现代无尘室是由美国物理学家威利斯惠特菲尔德发明的。惠特菲尔德作为桑迪亚国家实验室的雇员,于1966年为无尘室设计了最初的设计方案。在惠特菲尔德发明之前,早期的无尘室经常遇到颗粒和不可预测的气流的问题。Whitfield设计的无尘室具有恒定的且经过严格过滤的气流来保持空间内的洁净。硅谷的大部分集成电路制造设施由三家公司制造:MicroAire,PureAire和Key Plastics。他们制造了层流装置,手套箱,洁净室和空气淋浴器,以及用于集成电路“湿法工艺”建造的化学罐和工作台。这三家公司也是将特氟龙用于气枪,化学泵,洗涤器,水枪和其他集成电路生产所需设备的先驱。William(Bill)C.McElroy Jr.曾担任三家公司的工程经理,制图室主管,QA/QC和设计师,他的设计为当时的技术增加了45项原始专利。洁净室气流原理洁净室通过使用HEPA或ULPA过滤器,采用层流(单向流)或湍流(乱流,非单向流)气流原理,来控制空气中的颗粒。层流或单向气流系统将过滤的空气以恒定的流向下或水平方向引导到位于洁净室地板附近墙壁上的过滤器,或通过凸起的穿孔地板板进行再循环。层流空气流动系统通常在洁净室天花板的80%上使用,以保持恒定的空气。不锈钢或其他非脱落材料用于构造层流空气流动过滤器和罩,以防止多余的颗粒进入空气。湍流,或非单向空气流动使用层流空气流动罩和非特定速度过滤器来保持洁净室中的空气在恒定的运动,尽管不是所有的方向相同。粗糙的空气试图捕获可能存在于空气中的颗粒,并将它们驱赶到地板上,在地板上它们进入过滤器并离开洁净室环境。有的地方也会增加矢量洁净室:在房间的侧上角送风,采用扇形高效过滤器,也可以用普通高效过滤器配扇形送风口,在另一侧的下部设回风口,房间的高长比一般在0.5~1之间为宜。这种洁净室也可以达到5级(100级)洁净度。“层流(也叫单向流)洁净室”的气流模式“湍流(乱流,非单向流)洁净室”的气流模式洁净的房间需要大量的空气,并且通常在一个可控的温度和湿度下。为了减少改变环境温度或湿度的费用,大约80%的空气会再循环(如果产品特性允许),循环的气体会先通过过滤系统去除微粒污染,同时保持合适温度和湿度,在通过洁净室。空气中的微粒(污染物)要么漂浮在周围。大多数空气中的微粒会慢慢沉降,沉降速率取决于它们的大小。一个设计良好的空气处理系统应该将新鲜的和再循环的过滤后的洁净空气一起输送到洁净室中,在一起把颗粒从洁净室带走。根据操作对象的不同,从室内取出的空气通常通过空气处理系统再循环,在空气处理系统中过滤器去除微粒。如果工艺、原料或产品的含有大量水分,有害蒸汽或气体就不能再循环回至室内了,这种空气通常被排出到大气中,然后100%的新鲜空气被吸到洁净室系统中,处理后到洁净室内。进入洁净室的空气量是严格控制的,被排出的空气量也是严格控制的。大多数洁净室是加压运行的,通过将比从洁净室排出的空气供应量更高的空气供应量进入洁净室来实现的。较高的压力会导致空气从门下或通过任何洁净室不可避免的微小裂缝或缝隙泄漏出去。良好的洁净室设计的关键是空气引入(供给)和排出(排气)的适当位置。在布置洁净室时,应优先考虑送风和排风(回风)格栅的位置。进口(天花板)和回风格栅(在较低的位置)应位于洁净室的相对侧。如果需要保护操作员不受产品的影响,则风流应远离操作员。美国FDA和欧盟为微生物污染制定了非常严格的指导方针和限值,也可以使用空气处理器和风扇过滤单元之间的增压室以及粘性垫。对于需要A级空气的无菌室,气流是从上到下的,并且是单向的或层流的,保证空气在接触产品之前未受到污染。洁净室的污染洁净室污染的最大威胁来自使用者本身。在医疗和制药行业,微生物的控制是非常重要的,尤其是可能从皮肤脱落而沉积到气流中的微生物。研究洁净室微生物区系对于微生物学家和质量控制人员评估变化趋势具有重要意义,特别是对耐药菌株筛查、清洁消毒方法研究有现实意义。典型的洁净室菌群主要是与人类皮肤相关的菌群,也会有其他来源的微生物,例如来自环境和水,但数量较少。常见的细菌属包括微球菌属,葡萄球菌属,棒状杆菌属和芽孢杆菌属,真菌属包括曲霉属和青霉属。保持洁净室清洁有三个大的方面要注意。1、洁净室的内表面及其内部设备原则是选材重要,日常清洁消毒更重要。为了符合GMP并达到洁净度规范,洁净室的所有表面都应光滑和不透气,并且不产生自身的污染,即不产生灰尘,或掉屑,耐腐蚀,易于清洁,否则会提供微生物繁殖的场所,表面应坚固耐用,不能开裂,破碎或凹陷。有各种各样的材料可以选择,有昂贵的达加德镶板,玻璃等,最好的和最美观的选择是玻璃。按照各级洁净室的要求进行定期清洁和消毒,频次可以是每次操作使用后,每天进行多次,每天,每几天,每周一次等进行清洁消毒。建议操作台面要每次操作后清洁消毒、地板每天消毒、墙面每周、空间每月,根据洁净室等级和设定的标准规范进行严格清洁和消毒操作,并做好记录。2、洁净室内空气的控制总的来说要选择合适的洁净室设计,定期维护保养,做好日常监测。特别要注意的是制药洁净室的浮游菌监测,空间内的浮游菌用浮游菌采样仪抽取空间内一定体积的空气,气流通过灌装特定培养基的接触皿,接触皿会捕获微生物,后将皿放入培养箱培养计数菌落数量,计算出空间内的微生物数量。层流层的微生物也需要检测,用对应的层流层浮游菌采样仪,工作原理跟空间采样类似,只是采样点要放到层流层中。如果无菌室中需要用到压缩气体,也需要对压缩空气进行微生物检测,用对应的压缩空气检测仪,需要先把压缩气体的气压调整到合适的范围,防止微生物和培养基被破坏。PBI浮游菌采样仪3、洁净室里人员的要求洁净室工作的人员要定期接受污染控制理论培训。他们通过气闸,空气淋浴器和/或更衣室进出洁净室,他们必须穿专门设计的衣服,包裹住皮肤和身体自然产生的污染物。根据洁净室的分类或功能,工作人员的着装可能只需实验服和头套简单防护,也可能完全包裹的不暴露任何皮肤的全身防护。洁净服是用来防止颗粒和或微生物从穿着者的身体释放和污染环境。洁净服本身不得释放颗粒或纤维,以防止污染环境。这种类型的人员污染可以降低半导体和制药工业中的产品性能,并且它可以导致例如医疗保健行业中的医务人员和患者之间的交叉感染。洁净防护装备包括防护服、靴子,鞋子,围裙,胡须套,圆帽,口罩,工装/实验服,长袍,手套和指套,袖套和鞋、靴套。所用洁净服的类型应反映洁净室和产品类别。低级别的洁净室可能需要特殊的鞋,鞋底完全光滑,不会站上灰尘或污垢。但是考虑到安全原因,鞋底又不能造成滑倒的危险。进入洁净室通常都需要穿洁净服。10,000级洁净室可以使用简单的实验服,头套和鞋套。对于100级洁净室,需要全身包裹,带拉链的防护服、护目镜、口罩、手套和靴套。此外还要控制洁净室内人员的数量,平均4~6m2/人,操作要轻缓,避免大幅度和快速移动。典型的AB级洁净室防护用品,图片来自Avantor洁净室常用的消毒方法A、紫外灯消毒灭菌B、臭氧消毒C、气体灭菌消毒液有甲醛、环氧已烷、过氧已酸、石碳酸和乳酸的混合液等D、消毒剂常见的消毒剂有异丙醇(75%)、乙醇(75%)、戍二醛、洁尔灭等。我国药厂传统的无菌室消毒方法是用甲醛熏蒸,国外药厂认为甲醛对人体有一定的危害,现普扁采用戍二醛(glutaraldehyde)喷洒,无菌室用的消毒剂必须在生物安全柜中0.22μm的滤膜除菌过滤。VAI洁净室消毒产品洁净室分类洁净室根据每体积空气中允许的颗粒数量和大小进行分类。“100级”或“1000级”等大数字指的是FED-STD-209E,表示每立方英尺空气中允许的0.5μm或更大颗粒的数量。该标准还允许插值;例如,SNOLAB保持为2000级洁净室。离散光散射空气颗粒计数器用于确定指定采样位置处等于或大于规定尺寸的空气颗粒浓度。小数值指的是ISO 14644-1标准,该标准规定了每立方米空气中允许的0.1μm或更大颗粒数的十进制对数。因此,例如,ISO 5级洁净室最多有105个颗粒/m3。FS 209E和ISO 14644-1均假定粒径和颗粒浓度之间存在对数关系。因此,零粒子浓度并不存在。有些类别不需要测试某些粒径,因为浓度太低或太高,无法实际测试,但此类空白不应被视为零。由于1m3约为35立方英尺,测量0.5μm颗粒时,两种标准基本相当。普通室内空气约为1,000,000级或ISO 9。ISO 14644-1和ISO 14698ISO 14644-1和ISO 14698是国际标准化组织(ISO)制定的非政府标准。前者一般适用于洁净室(见下表);后者适用于可能存在生物污染问题的洁净室。ISO 14644-1用以下公式定义了每类和每粒径的最大颗粒浓度。CN表示1立方米内最大颗粒浓度,为等于或大于所考虑的粒径(四舍五入到最接近的整数)的空气颗粒,使用不超过三个有效数字。N是ISO分类号。D是以μm为单位的颗粒尺寸,0.1是以μm为单位的常数。标准粒径的结果如下表格所示。分级最大颗粒/m3a对应FEDSTD 209E≥0.1 μm≥0.2 μm≥0.3 μm≥0.5μm≥1 μm≥5 μmISO 110bddddeISO 210024b10bddeISO31,00023710235bde1级ISO 410,0002,3701,02035283be10级ISO 5100,00023,70010,2003,520832def100级ISO 61,000,000237,000102,00035,2008,3202931,000级ISO 7ccc352,00083,2002,93010,000级ISO 8ccc3,520,000832,00029,300100,000级ISO 9ccc35,200,0008,320,000293,000普通空气a表中的所有浓度都是累积的,例如,对于ISO 5级,在0.3μm处显示的10,200个颗粒包括所有等于或大于该尺寸的颗粒。b这些浓度将导致大量空气样本用于分类。可采用顺序取样程序c浓度限值不适用于该表区域,由于颗粒浓度非常高。d低浓度颗粒的取样和统计限制使得分类不合适。e由于取样系统中的潜在颗粒损失,低浓度和粒径大于1μm的两种颗粒的样品采集限制使得该粒径的分类不合适。f是指洁净室微粒清洁度的水平,以每立方米一定大小的空气粒子数为基础。US FED STD 209E分级最大颗粒/立方英尺对应ISO≥0.1 μm≥0.2 μm≥0.3 μm≥0.5μm≥5 μm1357.5310.007ISO 3103507530100.07ISO 41003,5007503001000.7ISO 51,00035,0007,5003,0001,0007ISO 610,000350,00075,00030,00010,00070ISO 7100,0003,500,000750,000300,000100,000830ISO 8目前的监管机构包括:ISO、USP 800、美国联邦标准209E(以前的标准,仍在使用)药品质量和安全法案(DQSA)于2013年11月制定,以应对药物复合死亡和严重不良事件。《联邦食品、药品和化妆品法案》(FD&C法案)为人类配方制定了具体的指导方针和政策。503A由州或联邦授权机构由授权人员(药剂师/医生)监制503B与外包设施有关,需要由持牌药剂师直接监督,不需要是持牌药房。工厂通过食品和药品管理局(FDA)获得许可证。欧盟GMP分类欧盟GMP指南比其他指南更为严格,要求洁净室在运行时(生产过程中)和静止时(不进行生产过程,但房间AHU开启时)达到颗粒计数。分级最大颗粒/m3静态动态0.5 μm5 μm0.5 μm5 μmA级3,520203,52020B级3,52029352,0002,900C级352,0002,9003,520,00029,000D级3,520,00029,000没有定义没有定义BS 5295BS 5295是英国标准。分级最大颗粒/立方米≥0.5 μm≥1 μm≥5 μm≥10 μm≥25 μm13,0000002300,0002,0003031,000,00020,0004,00030004200,00040,0004,000BS 5295第1类还要求任何样品中存在的最大颗粒不得超过5μm。BS 5295已被取代,自2007年起撤销,替换为“BS EN ISO 14644-6:2007”。USPStandardsUSP 800是美国药典公约(USP)制定的美国标准,生效日期为2019年12月1日。关于洁净室的小白提问1、怎样进出洁净室?人员和货物通过不同出入口进出。工作人员通过气闸(有的设有空气淋浴台)或没有气闸进出,并穿戴防护装备,如头套,面罩,手套,靴子和防护服。这是为了尽量减少和阻隔进入洁净室的人携带的微粒。货物通过货物通道进出洁净室。2、洁净室设计有什么特别的地方吗?洁净室建筑材料的选择不应产生任何颗粒,因此整体环氧或聚氨酯地板涂层是优选的。采用抛光不锈钢或涂粉软钢夹芯隔墙板和顶棚板。通过弯曲表面来避免直角形墙角,墙角到地板,墙角到天花板,所有接缝都需要用环氧密封胶密封,避免接缝处有任何颗粒沉积或产生。洁净室内的设备设计成能产生最小的空气污染。只使用特制的拖把和水桶。洁净室家具的设计也要产生最少的颗粒,并且易于清洁。3、怎样选择合适的消毒剂?首先要进行环境分析,通过环境监测确认污染的微生物类型。下一步需要确定哪种消毒剂可以杀灭已知数量的微生物,在进行接触时间致死率测试(试管稀释法或表面材质法),或AOAC测试之前,需要对已有的消毒剂进行评估并确认是否合适。要杀灭洁净室中的微生物,一般有两种类型的消毒剂轮换机制: ①一种消毒剂和一种杀孢子剂进行轮换,②两种消毒剂和一种杀孢子剂进行轮换。消毒系统确定好后,可以进行杀菌效力测试,为消毒剂的选择提供依据。完成杀菌效力测试后,需要进行对实地现场的研究测试,这是证明清洁消毒SOP 和消毒剂杀菌效力测试是否有效的重要手段。随着时间的发展,可能会出现之前未检测到的微生物,生产工艺,人员等也可能发生变化,所以需要定期对清洁和消毒SOP进行审核, 以确认是否还适用于当前环境。4、干净的走廊还是肮脏的走廊?片剂或胶囊等粉剂是干净走廊,无菌药品、液体药品等采用肮脏走廊涉及。通常,低水分的医药产品如片剂或胶囊干燥且多尘,因此更有可能存在显著的交叉污染风险。如果洁净区与走廊的压差为正,粉末将逸出房间进入走廊,然后很可能被转移到隔壁洁净室。值得庆幸的是,大多数干燥制剂并不容易支持微生物生长,因此作为一般规则,片剂和粉剂是在干净的走廊设施中制造的,因为漂浮在走廊中的微生物找不到能够繁衍生息的环境。这意味着房间对走廊负压。而对于无菌(加工过的),无菌或低生物负荷和液体医药产品,微生物通常会找到支持性培养物,在其中繁衍,或者在无菌加工产品的情况下,单个微生物可能是灾难性的。因此,这些设施通常都设计有肮脏的走廊,因为想把潜在的微生物排除在洁净室之外。回到最初的问题,答案是我们在洁净室里生产芯片及高端器件、制药、做手术等。文章来源:Avantor
  • 清诚科技、中科创新、布鲁克等中标浙江特科院1449.4万设备采购项目
    日前,浙江省特种设备科学研究院2022年度第一批设备采购项目公开招标。该项目分为7个标项,总预算1449.4万元,采购高精度空气流量测试系统、10T低周疲劳试验机、阀门振动试验台(6T推力)、声发射检测仪、红外热成像仪、万能摩擦磨损试验机、内外置式安全阀校验台等。4月21日,该项目结果公布。浙江燃创透平机械股份有限公司、杭州国特科技有限公司、杭州璞测科技有限公司、杭州宗灿科技有限公司、杭州杭锅检测技术有限公司5家供应商分别中标 标项一、四、五、六、七,涉及浙江燃创、清诚科技、中科创新等国产品牌,以及FLUKE、Waygate、RIZELER、Bruker、LECO、Thermo Fisher等进口品牌,总中标金额854.4万元。另外,标项二、三因有效供应商不足三家而废标。中标结果如下:设备名称品牌规格型号数量单价(万元)总价(万元)标项一(中标供应商:浙江燃创透平机械股份有限公司)高精度空气流量测试系统浙江燃创定制1套145145总中标金额145标项二(10T低周疲劳试验机 废标)标项三(阀门振动试验台(6T推力) 废标)标项四(中标供应商:杭州国特科技有限公司)声发射检测仪清诚科技SAEU3H1套56.856.8TOFD检测仪武汉中科HS8111套17.9517.95超声相控阵检测仪武汉中科HSPA30-E1套45.4545.45电解腐蚀仪耐博EP-06X型1台2.272.27磁探仪深圳中昌ZCM-XYDA1702A-UV19台2.3745.03总中标金额167.5标项五(中标供应商:杭州璞测科技有限公司)红外热成像仪FLUKE(美国)TiX6502套2448检查内窥镜Waygate(美国)XLDEA84301套34.834.8检查内窥镜Waygate(美国)XLDEA841001套24.524.5工业管道内窥镜RIZELER(德国)EMS-1001套24.524.5总中标金额131.8标项六(中标供应商:杭州宗灿科技有限公司)万能摩擦磨损试验机Bruker布鲁克UMT Tribolab1套8080高频红外碳硫分析仪LECO力可CS8441套8888持式X荧光光谱仪Thermo Fisher赛默飞XL3t8002套28.356.6总中标金额224.6标项七(中标供应商:杭州杭锅检测技术有限公司)内外置式安全阀校验台科峰SAT-QNW2套17.835.6内置式安全阀校验台科峰SAT-QN1套13.513.5空气压缩机英格索兰4-HP15-30 P3套36.5109.5水压试验机海试4DY-400/6.3A2台3.557.1石油产品自动蒸馏试验器田中ad-71台19.819.8总中标金额185.5
  • 网约车竟成新冠扩散“载体”,一文告诉你如何安全乘车
    被疫情笼罩的2020年终于过去,在2021年到来之际,新冠疫情在北京顺义、辽宁沈阳、河北石家庄等多地的出现和传播,使得人们还来不及庆祝的心又悬了起来。1月2日,北京市召开疫情防控新闻发布会,北京市疾控中心副主任庞星火介绍,1月1日0时至24时,北京市新增的1例本地确诊病例为网约车司机。此消息一出,市民不免担心起来,作为日常出行的一种方式,网约车已成为大多数人的首选。这不禁让人发出疑问,网约车是否安全?在车内是否需要戴口罩?近日,一篇来自ScienceAdvances的文章给我们提供了一些建议。开窗能降低感染风险吗?由于车内空间狭小,空气密闭,在对陌生人健康状况不确定的情况下,乘客或司机可能都本能地想打开车窗使空气流通起来。这种方式对降低病毒传播风险是否有用呢?这项关于汽车乘客舱内气流模式的研究发现,在乘坐小汽车时,打开离你最近的车窗,并不一定是保护自己免受病毒感染的最佳选择;反而,打开离你较远的窗口更有效。该研究模拟结果显示,打开身边的窗户比不开要好一些,但与打开对面的窗户相比,具有更高的暴露风险。车内可以不戴口罩吗?有网友认为,通过开窗调节车内气流,可以减少司机与乘客的呼吸道飞沫接触,有效降低传播风险。但该文章指出,空气流动并不能代替戴口罩,开窗通风后气溶胶浓度虽然有所降低,但车内交叉感染的风险无法完全消除。因此,虽然疫情目前只是在小部分地区出现,但出行过程中的安全防范意识仍不可松懈。北京市交通委员会在1月4日的新冠肺炎疫情防控工作新闻发布会上表示,营运中驾驶员和乘客全程佩戴口罩,尽量少交谈,对经劝阻后拒不佩戴口罩的乘客,驾驶员可以拒绝提供运输服务。可见乘车戴口罩仍是最有效的防范措施,不容忽视。
  • 展会资讯︱环球科技与您相约第十二届中国国际核电工业展
    展会名称:2018第十二届中国国际核电工业及装备展览会时间:2018年9月5日-7日 地点:北京中国国际展览中心静安庄馆展位号:BT65 展会概况 “十三五”以来,伴随核电安全高效发展、核电“走出去”上升为国家战略,中国核电品牌跻身世界核电第一方阵,并亮相世界舞台参与竞争,其国际辨识度正逐步清晰,且进入了发展的黄金时期。 装备是核电产业发展的重要依托,虽然装备制造业在核电领域耕耘多年且进步明显,但在技术能力、制造水平和产品稳定性上仍然存在瓶颈,制约了核电发展。为此,2018年9月5-7日在北京举办的“2018中国国际核电工业及装备展览会”将集中展示中国核电装备制造领域近年来的成果,搭建交流和服务平台,探讨发展中存在的问题。 环球科技将携带美国Tannas公司的Quantum润滑油小型旋转氧弹分析仪、润滑油泡沫特性测试仪(TFAB)参加本次展会。欢迎莅临我公司展台参观指导,9月5-7日,我们不见不散。 参展展品 Quantum润滑油小型旋转氧弹分析仪 主要参数●符合标准:ASTM D2272,D2112,D4742,D7098,IP229●压力传感器自动判定终点●温度:最大值(200±0.1)℃,典型操作温度150℃●充氧:最大值100±0.1PSI ,典型充氧压力:90PSI(620 Kpa)●氧弹倾角:30°●旋转容器:可变的速度控制,典型转速:100 rpm 特点介绍 ●加热介质:干浴加热系统——无油浴●磁力传动的旋转样品杯●使用仪器上的阀,可以方便的充氧及卸氧 润滑油泡沫特性测试仪(TFAB) 主要参数:●符合标准:ASTM D892,D6082,IP146●温度范围:20℃至175℃(±0.1℃)●加热介质:空气●程序:I @24℃ II @93.5℃ III @24℃ IV @150℃●曝气头流速:不锈钢、圆柱曝气头 预加热的曝气空气流速系统 2个内置的自动空气流量计 空气流速:94-200ml/min(±5ml/min)特点介绍●免维护的新直流驱动电机可以保证安静●非油浴的系统消除了有毒有害的浴介质●浴的各点温度相同——各样品间无温度变化●内置的冷却水循环系统辅助从高温程序降温,在温暖的实验室保持浴温24℃。可选的冷浴用于实验仪器没有冷水的情况●触摸屏控制器提供用户友好的操作界面,操作中提供持续的时间读出和每次实验的程序报警 公司介绍 环球(香港)科技有限公司成立于1991年,是一家著名的高科技仪器、设备供应商。自成立以来,环球科技始终致力于为国内各行业的广大用户提供高品质的测试设备仪器及高质量的全方位的服务。 为了更贴近用户,给用户提供更高效、便捷的服务,公司除了在香港总部设有物流管理中心以外,现已在北京、上海、广州、成都和武汉设有分公司或办事处,并在越南的胡志明市和河内市也成立了分公司。公司目前拥有员工140余人,其中技术服务人员占比40%。 油品分析仪器部自成立至今,一直致力于向中国的石油石化行业推广符合国际标准方法的、全自动的油品分析仪器,其代表品牌有:美国Waukesha,美国Tannas,英国PCS,美国Falex等。 环球科技始终注重发掘好的产品,让用户放心地购买产品,安心地使用,更好地为用户提供专业的服务。我们将一如既往,继续提供优质的产品选择以及一系列的售前、售中、售后的增值服务。
  • 镇江一村庄暗藏几十家污染企业 甲醛超标一倍
    据中国之声《新闻纵横》报道,近日,有江苏省镇江市庄泉村的村民不断打来电话反映称,在这个仅有五百户村民的小村庄中,就聚集着几十家刷子制造企业,这些企业在生产过程中大量使用油漆,严重污染空气。   当地环保部门监测显示,村内空气甲醛超标一倍多。这样的情况存在多年却一直无法治理。   明知道污染的存在却无法治理,背后缘由是什么?经济效益面前,怎样才能破解空气污染的难题?为此,记者前往当地进行了调查采访。   采访车缓缓开进庄泉村,阳光很好,油菜花在风里微微的低着头,一片金黄。可当记者摇下车窗时,却没能闻到该有的清新空气,反而带着股油漆味,越往村里开,气味越加浓烈。带路的村民生怕记者以为这就是最难闻的时候,拼命的解释。   村民:今天风大,空气流动比较快,夏天温度一高整个村子全是这个味道,刺鼻,呼吸都很难呼吸。   庄泉村从六十年代便开办集体企业做油漆刷,投入少,盈利多,如今发展到了几十家,一个个制刷厂排列在村里的道路两旁,制刷时需要给刷柄上漆,大量有害气体挥发到空气中。记者随便走进一家工厂:   记者:你不觉得油漆味对健康有影响吗?   工人:习惯了以后就闻不到了。   记者:就是你们自己也有担心的?   工人:担心?也无所谓了。习惯了,也不是一年两年了。   这个仅有五百户村民的小村庄一年产值过亿,90%的村民直接或间接参与生产。   村民:我们全靠这个赚钱,我们整个大队全靠这个,七十岁八十岁农村没有保险的。   记者:靠这个生活?   村民:对,你把我们一关就全完了,又没有田了。   记者:你家有第三代吗:   村民:有,小孙子都在家里面,不要紧。   尽管现在一些企业选择污染较小的水性油漆,但对塑料柄的刷子依然需要使用污染重的油性油漆,这些企业大多没有废气收集的环保设备。一家制刷企业的负责人对污染并不回避:   记者:空气污染的问题你觉得存不存在?   负责人:不能说不存在,也没那么恐怖,国情就在这里,你要说怎么弄?全部关掉吗?   记者:你不住在这儿?   负责人:我住丹阳。   记者:你能闻到空气中的味道吗?   负责人:我闻不到的!真的,我感觉空气很好的,我闻不到,真闻不到,你闻得到吗?   记者:闻得到。   负责人:也许你待两天就闻不到了。   与制刷厂一墙之隔的村民却不这么认为:   村民:怎么会闻不到呢?阴天要下雨时候更严重。   记者:刺鼻吗?   村民:怎么会不刺鼻?担心也没有用,我们住在这里也不可以搬走,一个村庄一个大队!有多少厂!哪个没有厂?就凭我一个人的力量是根本摆不平的。损害有什么办法?损害也没有办法!   越往村里走,挂牌的制刷厂越少,村民表示很多是家庭小作坊:   村民:家庭作坊一般都是小的,做个一两百万产值的,隔壁就是有啊,我家就在中间,几家都有小孩,空气污染对小孩造成多大的影响,庄泉村先后出现四例白血病,其中一人救治三人死亡了,其中我小孩就死掉了。   记者从镇江市丹徒区环保局了解到,今年3月初,环保局对庄泉村外部空气分东南西北中五个方位进行了监测,在空气流动的情况下依然有数据超标。   丹徒区环保局监察大队副大队长汤杰:监测出来超标的第一个点是庄泉村的东部,在十点到十一点,还有一个点是庄泉村的西部,在十三点到十四点,都是甲醛超标,最多超了一倍多。   3月14日环保局对庄泉村有厂名有工商执照的24家企业下发了限期整改通知书,然而效果并不明显:   汤杰:环保下去的东西不一定按照环保的要求执行,原则上是不可以不执行的,但是他不执行我们又没有强制手段让他必须停下来,法律没有赋予我手段,我们去查他就停,我们走了他又做了,有的根本就没有门牌。   牺牲环境求发展,这样的做法不仅是庄泉村,南通海安青墩村也走过,铝灰加工企业作为当地支柱产业,产生的废气废渣对环境污染很大,也给当地环保部门工作带来了很大阻力,但通过建立铝灰产业园集中治污,当地在村民利益和环境治理中找到了平衡。   丹徒区环保局副局长胡卫民介绍,他们也有类似的想法。   胡卫民:一个把涉及油漆的这块搬园入区,建设制刷产业园,集中处理,第二个把油漆车间集中,把有污染的这块分离出去,回来再进行手工制作。   目前相关的具体方案已经报道丹徒区政府,正在等待回复。   胡卫民:这么多企业在一个村子里面是否合理,我们现在考虑的是规划问题,我们和区政府镇政府也在联系汇报,在规划上面才能彻底解决这个现状,不从规划入手解决不了这个问题,企业和居民混居,这样很难解决根本问题。   庄泉村的空气污染并不是个例。在全国其他地区,也有不少污染环境的产业,这些产业已经发展多年,给当地百姓和地方政府创造了大量的经济收益。而如今,这些产业的环境破坏力正在逐渐显现。   要发展,还是要环境?这是老生常谈。但在面对这样的抉择时,我们仍旧希望,我们的企业能够更多地承担起社会责任,我们的政府也应该有“壮士断腕”的决心。因为以环境为代价的发展势必不可持续。   空气污染严重超标的庄泉村未来将会如何,中国之声也将继续关注!
  • 冷杉精密仪器发布 冷杉 3100-05H 非甲烷总烃/苯系物 在线气相色谱仪新品
    n行业背景为改善环境空气质量,降低 PM2.5 污染浓度,大幅减少 PM2.5 前驱体—— VOCs 排放量,应采用先进的治理技术,较大限度降低 VOCs 排放总浓度,即污染物负荷。国家“十三五”规划将 VOCs 排放纳入总量控制指标,并提出在重点区域、重点行业推进 VOCs 控排和减排,确保到 2020 年全国 VOCs 排放总量下降 10% 以上。“十三五”规划则提出,到 2020 年重点行业VOCs排放应削减 30% 以上。VOCs种类较多,单独监测每种VOCs现有技术成本较高。因此《大气污染物综合排放标准》(GB16297-1996)中规定标准中使用“非甲烷总烃(NMHC)”作为挥发性有机物排放的综合控制指标。除此之外,还规定了苯、甲苯、二甲苯控制指标。苯系物作为活性较强的VOCs,是重点控制污染物。它不仅是臭氧的前体物,也是PM2.5的前体物,同时也是恶臭类的污染物(苯乙烯)。《大气污染物综合排放标准》规定了苯、甲苯、二甲苯的排放限值。而在《中华人民共和国环保税法》列出了部分苯系物,包括苯、甲苯、二甲苯、苯乙烯等。n产品概述冷杉 3100-05H 非甲烷总烃/苯系物在线气相色谱仪,采用无氮气场景设计,采三阀、四柱、双 FID 配置,且全程高温伴热,样品经定量环定量、三阀进样、四柱分离后,氢火焰离子化检测器(FID)检测,前FID测定样品样品中的总烃(THC)和甲烷(CH4)浓度,非甲烷总烃(NMHC)的浓度由差减法计算,后 FID 测定样品中苯系物各组分的浓度。适用于污染源中非甲烷总烃和苯、甲苯、乙苯、二甲苯、三甲苯等的含量监测。n产品特点?无氮气场景设计,真正意义的在线气相色谱仪,无需更换气源?运行稳定安全,实现无人值守,运维成本低 l自我保护功能,气源供应不足时,火焰自动熄灭,且关闭氢气和空气流量,防止泄露 l自动点火,开机、气源供应恢复或意外断电恢复后,自动点火并运行 l支持远程报警与远程诊断功能?仪器定性定量重复性好(≤1%),检出限低 lFID检测限低至 1.8×10-12 g/s l高稳定性温度控制系统:0.01 ℃ l高精度电子压力控制单元EPC(0.001psi),实现温度和压力补偿 ?软件操作简单,维护方便,支持定制服务n应用场景 固定污染源VOCs 监测;VOCs 处理设备;VOCs 监控点监测;其他 VOCs监测等场景n技术参数量程甲烷 0.01~10000 ppm;总烃 0.01~10000 ppm;非甲烷总烃 0.05~10000 ppm;苯 0.1~1000 ppm(可选)功率电源500 W;220 VAC 50 Hz分析周期2 min~20 min(可选)工作环境温度:5~35 ℃;湿度 20~95%RH检出限甲烷 50 ppb;总烃 50 ppb;非甲烷总烃 50 ppb;苯 50 ppb样气要求样气温度:环境温度 ~180 ℃;流速不低于 0.5 L/min 或压力不低于 0.1Mpa重复性2.0%F.S.(24h)仪器尺寸19 英寸标准机箱,高度 6U,633 mm×430 mm×266.7 mm (L*W*H)创新点:无氮气场景设计,真正意义的在线气相色谱仪,无需更换气源。 运行稳定安全,实现无人值守,运维成本低 自我保护功能,气源供应不足时,火焰自动熄灭,且关闭氢气和空气流量,防止泄露 自动点火,开机、气源供应恢复或意外断电恢复后,自动点火并运行 支持远程报警与远程诊断功能 仪器定性定量重复性好(≤ 1%),检出限低 FID检测限低至 1.8× 10-12 g/s。 高稳定性温度控制系统:0.01 ℃。 高精度电子压力控制单元EPC(0.001psi),实现温度和压力补偿 软件操作简单,维护方便,支持定制服务 冷杉 3100-05H 非甲烷总烃/苯系物 在线气相色谱仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制