当前位置: 仪器信息网 > 行业主题 > >

金属表面

仪器信息网金属表面专题为您整合金属表面相关的最新文章,在金属表面专题,您不仅可以免费浏览金属表面的资讯, 同时您还可以浏览金属表面的相关资料、解决方案,参与社区金属表面话题讨论。

金属表面相关的资讯

  • 新技术可将光信号变成沿金属表面行进的波
    有助于下一代单芯片光子互联的实现   据物理学家组织网4月22日报道,美国科学家制造出一种新的纳米尺度的连接设备,能将光学信号转变成沿金属表面行进的波。更为重要的是,新设备还能识别偏振光的偏振方向,并据此朝不同的方向发送信号。研究发表在4月19日出版的《科学》杂志上。   科学家们表示,最新研究提供了一种新的方式,让人们能在亚波长尺度下精确地操控光,而不会破坏可能携带有数据的信号,这为有效地从光子设备传递信息给电子设备从而实现下一代单芯片光子互联打开了大门。   该研究的合作者、哈佛大学工程和应用科学学院的研究生巴尔萨泽穆勒说:“如果你想朝一块拥有很多元件的小芯片周围发送一个数据信号,那么,你需要能精确地控制信号的行进方向。如果你无法做到这一点,信号就有可能丢失。方向是信号能否成功传递的重要因素。”   过去,科学家们也能通过改变光射入连接设备表面的角度来控制这些波的行进方向。但就像穆勒所说的:“这实在很麻烦,光学电路很难成一条直线,因此,为了给信号设定方向而不断重新调整角度非常不实际。”   新连接设备由一层薄薄的金组成,其上布满小孔,科学家们设计的天才之处正在于这些切口形成的像鲱鱼鱼骨(箭尾形)一样的图案。该研究的主要作者、哈佛大学工程与应用科学学院的费德里科卡帕索教授指出:“迄今为止,科学家们一直采用一系列平行的沟槽(格栅)来做这类事情,虽然它也能完成,但很多信号会丢失,而新设备上的新结构则能采用一种非常简单和优雅的方式来控制信号的行进方向。”   现在,光只需要垂直地射入即可,新设备会做其他事情。它会将入射光变成表面等离子体激元(在金属表面存在的自由振动的电子与光子相互作用产生的沿着金属表面传播的疏密波)。它也会阅读入射光波的偏振方向——直线、左旋圆极化还是右旋圆极化,然后为其安排合适的路径。新设备甚至能将一束光分成两部分并朝不同方向发送不同的部分,这就使得多通路信息传送成为可能。   新结构非常微小,每个图案单元比可见光的波长还要小,因此,科学家们认为,新结构应该很容易同平面光学等新奇技术整合。然而,卡帕索表示,新设备最有可能用于未来的高速信息网络内——纳米尺度的电子设备(目前已经出现)、光子设备和等离子体有望集成在一块微芯片上,从而实现下一代单芯片光子互联。
  • 工件表面油脂污染度控制检测方案|析塔金属油污清洁度检测仪
    工件表面油脂污染度控制检测方案|析塔金属油污清洁度检测仪-翁开尔"安全控制油脂污染情况"清洁度参考指南是针对零部件清洗工艺或设备系统的研发人员、操作人员、生产链负责人以及测量人员。该指南制定目的是促进通过高效监控来保证工艺质量。德国FiT工业协会 (Fachverband industrielle Teilereinigung e.V.)已经认识到,相关行业需要针对油脂污染问题提出切实可行的质量保证及监控建议。基于现有技术,FiT整理了2015年到2018年历年来多个工艺实例、专家及用户经验,并制定了 "安全控制油脂污染情况"的相关参考指南。当今许多工业领域中,尽管厂家使用了最先进的生产技术,采用多道清洗工艺对零部件进行前处理,都不能完全解决零部件表面残留污染物对后续工艺造成影响,如喷涂、粘接、焊接等后续工艺的附着力不够、起泡、虚焊等问题。因此,零部件表面清洁度是产品及工艺质量的关键指标。生产厂家应借助高效精准的清洁度检测技术来测量零部件的清洗工艺和清洗后的污染物残留情况,从而进行有针对性的清洗过程,使零部件具有足够的清洁度来进行后续生产工艺(如焊接、连接、喷涂、粘接等)和检验成品质量。过去,厂家主要只检测颗粒物清洁度,而现在,他们越来越重视油污、油脂、成品油等有机污染物对产品质量的影响作用。膜状污染物往往是无法避免膜状污染物通常是指油污、油脂、防腐剂、涂料、冷却润滑油、切削油、粘接剂和其他生产助剂残留物、手汗和手指纹等。简单来说,膜状污染物可以理解为在零部件表面上呈现为一层薄薄的、非颗粒状的污染物质。油脂、成品油类和类似有机物的合格值制定众所周知,油脂、成品油类和类似有机物的污染物残留会影响后续工艺质量,如造成涂层附着力不良、起泡、虚焊、粘接不牢固等问题。故此,目前大部分相关行业规定了零部件需要达到合格的表面清洁度。当然,零部件表面没有污染物是最好的,但这只是一个理想状态。这种想法使所有生产厂家都认为,零部件表面油脂等污染残留物会影响后续工艺。虽然在生产过程中可以使用不含硅油的生产助剂,但多数工艺还是需要使用含有油脂的生产助剂。在原材料加工工艺中,冷却润滑剂、切削油等必要生产助剂必然含有天然或合成的油脂。因此,在实际生产中必须确定零部件表面清洁度合格值,使零部件拥有足够的清洁度来保证后续工艺质量。如今越来越多的制造工艺和终端应用重视零部件表面油脂、成品油、指纹等污染物质的残留情况,因此零部件制造商和清洗设备老板需要找到合适而高效的表面清洁度检测设备。为了满足不断增长的清洁度检测需求,FiT的《零部件清洗质量保证工艺控制指南》和《清洗工艺规划检查表》可以提供初步操作指导。而参考指南 "安全控制油脂污染情况"全面论述了这个问题。参考指南相关介绍该指南的前言部分给出了相关定义和术语,用于规范语言;随后解释了膜状污染物的出现、来源及其特性和影响。基于某些具体工艺、终端应用和行业,对检测膜状污染物在生产过程中的重要性日益重要进行了说明;在最后部分指出了本指南的适用范围。该指南能协助生产厂家内部研发、建立标准和优化生产和清洗工艺,保证整体工艺质量和最终产品质量重现性。同时也重点总结了零部件的清洗工艺、清洗前的初始状态以及目前适用的清洗化学和清洗工艺的解决方案。只有通过合适的清洁度检测、分析控制技术,才能从根本上获取到经过清洗工艺零部件的表面清洁度或污染程度。为此,它提出了一些最常见的适用检测方法,并特别强调了与应用有关的适用性和局限性。在最后,该文件概述了目前工艺监测的解决方案。实例部分本指南的实例部分将基础知识与零件清洗的典型应用关联起来,并提供解决方案,也给出了实际操作建议,便于厂家系统性设计出符合产品质量标准的清洗工艺,并能正确快速调整工艺参数。此外,该指南还指出了监测清洗工艺活性物质、污染物质以及检测整个生产链的零部件真实情况。除了需要确定油污、成品油等污染物来源和检测零部件表面清洁度,该指南还提出了零部件表面清洁度合格值的确定方法。根据某个典型应用,它介绍了实际使用过程中使用到的测量和分析控制技术,并说明了各种方法的优点和局限性。此外,它还提出了保证零部件表面清洁度合格的最佳处理工艺,便于厂家以合适的清洗工艺来设计和分析零部件。结合上述建议,生产厂家能借助高效表面清洁度检测仪器来快速监控并改善零部件的上下游清洗工艺。金属零部件表面清洁度最佳检测方案德国析塔表面清洁度仪能可靠精准量化零部件表面清洁度,是目前领先的污染物量化检测技术。该仪器采用共焦法原理,通过光源发射出最佳波长的紫外光探测金属表面的污染物,内置的传感器探测荧光强度,荧光强度的大小取决于零部件表面有机物残留情况。借助完整紫外光源与传感器的共同作用,析塔表面清洁度仪能快速准确量化基材表面的污染物含量。该仪器为客户提供便携式和在线式机型,全面满足工厂车间或实验室的快速监测清洁度的工艺要求,以评价清洁工艺质量,最大程度上避免人为主观判断带来的测量误差,显著增加工艺可靠性。可见,德国析塔表面清洁度仪能协助生产厂家直接判断零部件表面清洁度是否达到合格要求,稳定零部件加工过程中的清洗质量、实现量化控制! 翁开尔是德国析塔SITA清洁度仪中国独家代理商,欢迎致电咨询。
  • 合金焊接质量保证,合金表面油脂污染度焊接清洁度检测方案
    翁开尔是析塔清洁度仪独家代理商,欢迎致电咨询析塔清洁度仪在合金焊接上的技术应用。汽车轻量化成为使命,汽车制造商越发对轻质材料情有独钟,以寻求降低能耗和最小化腐蚀风险。汽车设施从钢转向铝材,这些铝材组件是需要焊接冲压或机加工的。然而,将钢焊接技术应用于铝焊接时,事情就不是那么简单了。虽然铝焊接本身是最主要的任务,但必须满足一个前提条件——保证焊接铝材表面的清洁度。对于从钢焊接工艺过渡到铝焊接工艺的设施,焊接前的表面处理是必须考虑的因素。不单单对于汽车制造而言,对精密工具制造、造船、轨道交通、航天航空、大型机械制造等行业的焊接准备中都会清洁钢和铝表面。这也意味着过去从不需要零件清洗机的工厂将不得不将零件清洗系统集成到他们的制造过程中,在焊接前确保零件表面足够干净,以此确保焊接良品率。┃ 铝与钢焊接焊接钢和铝之间的根本区别在于铝具有更高的电阻和熔化温度。熔池中较高的温度会产生足够的热能来增加氢的溶解度和扩散率。如果零件表面存在污染物,容易导致焊缝出现气孔或开裂。┃ 铝污染物的主要类型从大规模零售制造铝到达焊接工作室,铝会暴露在几种主要类型的污染物中。这些污染物如下: 油或者油脂 墨水 润滑脂 颗粒污垢许多东西在焊接前都会弄脏和污染铝,这种污染物的存在会对焊接质量产生严重的持久影响。这就是为什么在焊接前对铝件进行清洗的原因。如果铝件表面不够干净,在焊接的过程中,则容易出现烟灰,焊缝未熔合,不确定的电弧和附加电阻等现象。┃ 清洁表面对焊接的重要性在精细化制造要求下,清洁度一定意义上决定了焊接的质量。清洁的表面助于实现成功焊接:00001. 一致性:清洁焊接材料在制造实验室中提供了一定程度的一致性,并允许您将铝用作焊接性能的控制变量。00002. 无孔隙率:孔隙率是由碳氢化合物或氧化等污染物焊接到金属中引起的金属表面质量缺陷。如果金属变得有多孔,它会形成结构较差的接头,如果金属在焊接部位有足够的多孔,则该接头甚至可能因此而失效。但如果铝是干净的,焊缝就不会有隐藏的缺陷,接头应该能按预期工作。00003. 高强度:因为没有污染物,所以用纯铝进行的焊接比用受污染的铝或含有氧化铝的铝进行的焊接具有更高的抗拉强度。由于金属焊缝在建造后承担着建造项目的整体安全性和耐久性的责任,因此所使用的焊缝必须尽可能坚固,以防止意外的结构损坏。┃析塔清洁度仪是检测铝件表面清洁情况的重要仪器在焊接铝件前,往往需要对铝件进行脱脂去除水分和残留污染物,以及采用激光清洗或机械清洗氧化层。那么怎样的清洗程度铝件才算干净呢?德国析塔清洁度检测仪可以有效量化金属件表面清洁情况,更好的保证激光焊接质量,减少激光焊接缺陷。焊接气孔会降低坚固性和密封性,下图显示在激光焊接前使用析塔清洁度仪对工件表面进行清洁度检测,当工件表面清洁度高于65%,焊接气孔数量明显降低,当工件表面清洁度低于65%时,焊接气孔数量明显增加。 德国析塔SITA表面清洁度仪采用共焦法原理,通过光源发射出最佳波长的UV光检测金属表面的污染物,内置的传感器精准探测污染物引起的荧光强度,该荧光强度的大小取决于基材表面有机物残留情况,从而能精准量化检测金属表面清洁度。德国析塔SITA清洁度测试仪可以广泛运用在焊接接头质量、安全气囊点火装置的焊接组件等方面,工件表面污染物会影响焊接质量,焊接气孔会导致泄露,因此在焊接工艺前检测工件表面清洁度非常有必要,可以有效降低焊接次品率。
  • 商用表面增强拉曼光谱传感器面世
    据每日科学网日前报道,新加坡研究人员利用黄金纳米阵列开发出适于商业应用的高性能表面增强拉曼光谱传感器。   表面增强拉曼光谱技术(SERS)是在印度科学家拉曼1928年发现拉曼散射现象的基础上发展起来的。利用拉曼光谱技术可以非常方便地鉴定物质成分,现已成为探测界面特性和分子间相互作用、表征表面分子吸附行为和分子结构的有效工具,广泛应用于癌症诊断和食品检测等领域。不过,由于很多分子直接通过拉曼光谱无法检测出信号,需要通过拉曼增强技术,将这些分子吸附在纳米金属表面,在特定波长的激光照射下,利用表面增强拉曼光谱传感器检测出待检物质。   新加坡科技研究院(A*STAR)材料工程研究所的研究人员制造出一种非常密集且有规律的黄金纳米阵列,在自组装和传感等方面具有独特的优点。此外,他们还成功将该纳米阵列置于光纤端头涂层中,使得该技术有望在遥感监测危险废弃物方面具有广泛的应用前景。   研究人员在涂有自聚物纳米粒子的表面进行纳米阵列的自组装,较小的黄金纳米粒子会自发附着。仅仅依靠涂层和吸附这些简单的过程,就可稳定高产地形成小于10纳米的纳米簇。通过调整聚合物的规模和密度等特征,研究人员可以调节纳米簇的大小和密度,使表面增强拉曼散射达到最大化。该技术的效率非常高:涂满100毫米直径的晶片,或200光纤端头,仅需要不超过10毫克的聚合物和100毫克的黄金纳米粒子,而聚合物和纳米粒子均可低成本大量生产。   由于纳米阵列的形成过程完全是自组装过程,因此该技术不需要专门的设备或特定的无尘室,非常适合低成本商业化生产。目前该技术已在新加坡、美国和中国申请了专利。
  • 表面增强拉曼(SERS)距离临床应用还有多远?
    目前,对很多应用来说,拉曼光谱已发展成为一种强大的表征技术。但如果要使其在临床分析中更有效,还需要做更多的工作。  随着激光的发现,以及后续激光器和探测器技术的进步,以前发展缓慢的拉曼光谱进入了一个高速的发展阶段。目前,已经证明了拉曼光谱在生物大分子分析方面的应用价值,包括蛋白质、DNA、活细胞、组织和微生物的检测和诊断。  然而,拉曼散射是一个很弱的过程,只有一百万分之一的光子才会发生弹性散射现象。另外一个问题,自体荧光也阻碍了拉曼技术在生物学中的应用。幸运的是,70年代早期,一个新颖的现象被发现,分子接触(或非常接近)贵金属表面,如银和金,拉曼散射信号就会增加了1011倍,由此表面增强拉曼散射(SERS)也就发展起来了。除了散射增强之外,SERS还可以有效淬灭自体荧光。  尽管现在SERS在生物结构的分析方面已经有很多研究,但在我看来,在科学研究和临床应用之间还有一定的距离。此外,如果没弄明白临床应用的需求和流程,这种技术也不可能转化为真正的应用。  例如,对于从一个生物SERS实验中收集的数据,还有几个问题需要仔细考虑,以得到清晰的解释。首先,对于感兴趣的样品的SERS衬底类型需要仔细的选择。它应该是一个纳米结构的表面或胶体纳米颗粒,如金纳米颗粒(AuNP)或银纳米颗粒(AgNP)。如果样品是活细胞,AuNPs或AgNPs是很好的选择。如果样品是微生物,表面或胶体纳米颗粒衬底是最好的。  选择最合适的衬底之后,再现性和适用性的测试也是很重要的。评估获得的光谱信息时应该考虑官能团和贵金属表面的选择性相互作用,如SH、NH2,因为这些交互作用定义了环境。  十年来,我们对这项技术是否可以应用到临床决策中进行了评估。我们利用实验室中发展起来的样品制备方法和检测技术分析了活细胞和死细胞、组织和微生物样本。我们认为还有很多工作需要去做来探索该技术的潜力,因为生物样品不仅非常复杂,而且不同样本之间也存在产异性。  临床中,快速识别传染性微生物在疾病干预方面至关重要。虽然有许多研究证明了利用SERS可以快速识别微生物,但是从临床样本中识别它们的能力尚不清楚。  生物样品的复杂性,如血液和尿液,是减少了解样品状态所需时间的一个主要的障碍。例如,尿液样本中可能有许多化学物质,包括尿素和肌酸酐、溶解的离子、白色和红色的血细胞、蛋白质连同传染性病原体。如果没有完全的清洗或分离,这些成分可能会干扰或阻碍SERS的检测,同时也势必增加分析时间。当然,其中还有几个问题需要解决以确定尿样的感染状况。第一个问题很简单:样品是否感染? 1毫升尿样中细菌的数量决定了答案,尿液样本包含细菌数大于105cfu /ml被认为感染。然后,我们必须问哪种病原体存在?然后再问是否有一个SERS可以识别的标识物来显示尿液是否感染?这项技术是否可以用于细菌样本的定量分析?这项技术能识别病原体吗?  我们已经知道, SERS可以识别细菌,但从复杂样品中识别细菌仍需进一步的努力以加快这一进程。在我看来,对于以上的部分问题得到积极的答案并不是很远的事情,而且也将缩短SERS进入提高临床决策这个位置所需的时间。  作者:Mustafa Culha  Mustafa Culha的实验室在叶迪特佩大学遗传和生物工程系,该实验室持续进行光谱技术的实用研究,如表面增强拉曼散射(SERS)揭示活细胞、死细胞相互作用,发展用于医学和生物医学的新颖的检测和诊断工具。他在同行评议的国际期刊和几本书的章节中撰写了70多篇论文,拥有若干生物分析化学和纳米技术方面的专利。他是Nanotechnology杂志的SERS研究和Nanoparticle Research纳米生物的特刊编辑,同时他也是应用光谱学编委员会的成员。
  • 问传统求新知——用扫描电镜揭开铝电解抛光表面的各向异性纳米图案的神秘面纱
    金属的电解抛光,是一种传统而常用的表面处理技术,通过可控的电化学反应使金属表面溶解(凸起部分溶解速度快)来降低表面粗糙度。利用电解抛光技术,可以获得纳米级粗糙度的镜面光泽表面,而且可以去除前序机械加工遗留的表面和亚表面损伤层。不过,不为一般仅使用该技术的研究者注意的是,在一定的电化学条件下,电解抛光后的金属表面会出现纳米级的图案(pattern),其中对金属铝的研究较多。研究者发现,金属铝(Al)经短时间电解抛光处理后,表面会出现周期或特征周期为几十至一百多纳米的有序条纹状(stripe)、六边顶角状(hexagon)及点状(dot)等多种有序或无序图案。这一现象,已经引起了研究者对其在金属表面微纳工程、微纳模板加工、微纳电子学等领域应用的关注。研究者已经开始深入挖掘纳米图案形成的机理,关键是揭示材料表面结构和界面电化学行为决定纳米图案类型及周期的物理化学规律。但是,目前已经发表的研究,缺少对多晶和单晶铝表面纳米图案形成行为的系统实验研究,定性的多定量的少,零散的多系统的少,难以用来检验和改进现有的表面纳米图案形成理论。其中一个被长期忽略的关键问题,就是铝表面结构差异导致的纳米图案的各向异性。哈尔滨工业大学化工与化学学院的甘阳教授和他指导的博士生袁原(论文第一作者)、张丹博士、杨春晖教授及机电学院的张飞虎教授,首次采用电子束背散射衍射(EBSD)对电解抛光后的多晶铝和单晶铝进行了定量的表面晶体学取向分析,并采用蔡司的Sapphire Supra 55场发射扫描电镜(FE-SEM)和原子力显微镜(AFM)对纳米图案的类型(type)和周期(size)进行了系统表征和量化分析,揭示了铝电解抛光表面纳米图案的类型和周期对于表面结构和晶体学取向的依赖性的规律。同时,基于表面物理化学的理论框架,对结果进行了深入分析和讨论,定性解释了大部分的实验结果,并指明了下一步的研究方向。研究结果近期以长文形式发表于电化学领域的国际知名期刊Journal of the Electrochemical Society,国际同行评审专家认为该工作是对本领域的重要贡献。甘阳教授课题组首先对多种铝样品的电解抛光表面纳米图案进行了系统的研究:1)多晶铝(polycrystalline Al)中不同取向的晶粒;2)切割角可控的系列单晶铝(monocrystalline Al)样品。通过EBSD测试获得晶粒表面的晶体学取向图,并结合定位SEM表征,他们发现,铝电解抛光表面纳米图案对晶面取向具有依赖性(如图1所示为多晶样品中三个毗邻的晶粒)。(背景知识:描述铝表面晶体学取向的EBSD反极图三角(IPF triangle)中,可划分为围绕三个低指数晶面方向(primary direction,主取向)的晶体学主取向区域—[101] //ND,[001] //ND和[111]//ND,单个晶粒或单晶的表面取向偏离主取向的角度称为取向差角(misorientation angle)。)通过对数十个不同取向的多晶晶粒的逐一定位SEM表征,他们发现了一系列未被报道过的现象(图2):1)纳米图案类型和周期对晶面取向的依赖性是否显著取决于所属的主取向区域;2)在同一主取向区域内,纳米图案类型和周期随着取向差角的改变呈现渐变性规律;3)对于具有相同取向差角但偏向不同主取向的晶面,纳米图案类型和周期也发生变化;4)在两个或三个主取向的交界处,纳米图案类型和周期基本相同。他们进一步测试和分析了一系列取向差角可控的单晶铝样品(图3),证实了上述多晶样品的结果,并揭示出目前尚难以解释的单晶和多晶样品间的图案周期性大小的差异问题(图4)。图1 (a)电解抛光多晶Al样品的EBSD分析IPF图,(b)放大后的IPF图和IPF三角显示三个相邻的A、B、C晶粒及其所属的主取向区域和各自的晶面取向差角值,(c)三个晶粒的定位SEM形貌图像,相邻晶粒被晶界隔开并交于一点,(d–f)三个晶粒的AFM形貌图像和细节放大图及FFT分析图,(g–i)为对应AFM图中白线段的线轮廓分析图。图2 (a)电解抛光后不同晶面取向的多晶铝晶粒在IPF三角中的位置图,(b–y)不同晶粒表面的SEM形貌图和对应的FFT分析图(SEM图上均给出了取向差角和图案的周期)。图3 (a)不同晶面取向的单晶铝样品在IPF三角中的位置图,(b–s)电解抛光后不同单晶样品表面的SEM形貌图和对应的FFT分析图(SEM图上均给出了取向差角和图案的周期)。图4(a,b)单晶和多晶样品的表面纳米图案周期(L)随取向差角(θ)变化的L–θ图,上方刻图轴给出了三个主取向区域内与θ对应的所属表面的表面台阶宽度(w)。(c,d)单晶和多晶样品的各晶面在IPF三角中的对应位置图。L–θ图和IPF三角中的几条连线,表示的是连接了近似位于延某个主取向辐射出去的直线上的若干晶面(及IPF三角中的若干对应的点)。为了解释实验结果,他们建立了一系列不同取向晶面的表面原子排列的“平台–台阶”模型(图5),还特别关注了更复杂的“平台–台阶–扭折”表面结构(图6)。尽管尚没有考虑表面驰豫、重构等的影响,他们根据表面结构特征随取向差角的变化规律,解释了实验观察到的纳米图案类型和取向差角的关系。比如,在一个主取向区域内,随着取向差角的增大,表面台阶宽度逐渐减小而不是突变,界面能的变化也应该呈现渐变的特性,这就解释了纳米图案的类型随取向差角改变的渐变现象。此外,在两个或三个主取向区域的交界处,大取向差的晶面的表面结构(平台宽度和台阶处的原子排列)很相似,所以导致纳米图案的类型基本相同。而不考虑上述结构特征,就很难解释实验上观察到的现象。图5(a–f)[001]和[101]//ND主取向区域内6个不同取向差角的晶面的表面“平台–台阶”结构模型的正视图和侧视图。表面单胞用红色平行四边形或矩形表示。(g)6个晶面在IPF三角中的位置图。图6 (a–c)[001]//ND主取向区域内3个取向差角相等但偏向不同方向的晶面的表面“平台–台阶–扭折”结构模型的正视图。表面单胞用红色平行四边形表示,特别给出了平均台阶宽度。(d)3个晶面在IPF三角中的位置图。图7 在电解抛光过程中吸附分子在不同平台宽度“平台–台阶”表面的扩散和脱附行为差异的示意图。(a)宽平台表面;(b)窄平台表面。他们基于表面结构影响电化学溶解和界面分子吸附、扩散行为的理论框架,对文献中现有的“吸附–溶解”理论进行了深化,进一步提出了表面平台宽度和台阶位点的数量会影响电解抛光液中的表面吸附分子(如乙醇)在表面的扩散(以扩散系数表征)和吸脱附(脱附速率常数)行为。取向差角越大,平台宽度越窄(台阶密度也越大),分子在表面的扩散障碍越大,但同时脱附也更困难,这二者的竞争导致图案的周期先增加并逐渐达到峰值后减小。以外,他们还提出了一套结合SEM测量和图像的FFT处理的分析步骤,以此为基准来准确确定准无序纳米图案的平均周期大小,有效避免了单点测量的较大偏差。以上研究工作,对铝及其它金属(如Ti,Ta,Zn,W)及合金的电解抛光表面纳米图案化研究具有普通意义。甘阳教授课题组正在继续深入研究更多实验因素的影响、图案演化的计算机模拟及理论模型的建立,力图全面揭示金属电解抛光表面纳米图案的形成机理。该研究得到了国家自然科学基金重点项目、国家重点研发计划项目等的资助。恭喜哈尔滨工业大学化工与化学学院甘阳老师课题组使用蔡司场发射扫描电镜做科学研究,取得丰硕的科研成果!
  • 提供MSE 表面涂层综合性能评价试验机的样品性能评估测试
    佰汇兴业(北京)科技有限公司最新引进日本MSE 表面涂层综合性能评价试验机, 可提供多种涂层材料的综合性能评估,欢迎社会各界人士对我公司进行参观考察并进行样品的性能评估测试。 日本Palmeso Co., ltd 公司 表面涂层综合性能评价试验机(MSE微粒喷浆冲蚀法)使用恒定的固体微粒对材料表面进行冲蚀,材料磨损量随表面强度而改变。MSE试验机将磨损量的变化转换成磨损率,来评估和对比各种材料表面强度。 适用范围:涂层、镀层、镀膜 ◎ 涂层强度 (可检测多级涂层强度且数值化) ◎ 复合涂层厚度(可分层检测多涂层) ◎ 涂层间、涂层与基体结合力 ◎ 通过对膜的检测,评价镀膜工艺性能 ◎ 涂层均匀度 评估事例: ◎ 表面粗糙材料上薄膜的膜强度和膜厚度的评价 ◎ 塑料镜片上的硬质薄膜的膜强度和膜厚度的评价 ◎ 基体表面上很薄的DLC涂层的膜强度和膜厚度的评价 ◎ PVD陶瓷表面复合涂层的膜强度和膜厚度的评价 ◎ 树脂薄膜上软材质复合涂层的膜强度和膜厚度的评价 ◎ 金属表面化学镀膜处理后的膜强度和膜厚度的评价 欢迎来电咨询!
  • 超快速表面处理,秒取高质量界面【GDS微课堂-7】
    上图是瑞士摄影师马丁-奥格里利 ( Martin Oeggerli ) 通过扫描电子显微镜SEM拍摄的花粉照片,是不是很炫酷?但并非所有样品通过SEM,都能得到上图中直观惊艳的照片,更多样品需要经过预处理后方可充分展示。GDS就是对样品进行预处理,将观测的界面更好展示出来的利器。通过氩气等离子体持续轰击样品表面、溅射出样品离子后再进行分析的方法,GDS可以轻松替SEM剥蚀样品,供SEM进行观测。那与其他可用的剥蚀方法相比,GDS在样品制备与表征上有哪些优势呢?让我们一起来看看。GDS通过控制溅射时间,能精确地获得不同深度和清晰度的界面,将任意深度的包埋层完美地展现出来,供SEM分析。上图是铜表面的元素深度剖析图。铜的表面覆盖一层硫脲,硫脲分子通过硫端吸附到铜表面,C-S键垂直于金属表面。这个吸附层在深度剖面上以窄峰的形式清晰地显示在铜基体上方,包括碳、氢、氮和硫。从右图我们还可以看到,峰的位置按照吸附在铜基体上的硫脲分子的方向顺序被分离和定位。在扫描电镜中,必须精确控制溅射深度,GDS这种在原子尺度深度的分辨率,使这种精细的分析得以实现。GDS使用的是能力很低(低于50eV)但电流密度很高(~100mA cm-2)的氩气等离子体。氩离子的高电流密度能确保高速溅射,溅射速率每分钟达到1-10μm,整个样品的处理时间短,包括溅射在内往往几秒至几分钟就能搞定,相比于以往费时费力的机械抛光、化学抛光、电化学抛光、超薄切片等制备方法,不知道快了多少倍。比如为了获得高质量的表面,通常会用胶态二氧化硅悬浮液对样品进行抛光,来去除受损的表面区域。但是这种方法的抛光率非常低(仅为每分钟几纳米),因此对于延伸几百纳米的区域来说,需要数小时甚至一天的时间。而通过GDS溅射,可以在几十秒内去除大多数材料的受损表面区域。另外,GDS还有一个特点就是它是靠氩离子去撞击样品,通过溅射方法移除样品表面的材料,是对样品粒子一层层的剥蚀。此外,由于差动溅射效应,GDS能够在不同材料的分界处产生清晰的界面,这对于观测样品的表面形貌非常重要。而传统的机械抛光,靠的是细小的抛光粉的磨削、滚压,在对样品表面磨削的过程中势必会将凸起的花纹也一并磨掉,只留下光秃秃的平滑面。Show一个简单的比较图,让大家更直观的感受一下:(a)是机械抛光获得的结果,(b)是GDS剥蚀3S后获得的结果(a)图中是机械抛光获得的结果,我们看到样品表面的纹理被磨掉了;(b)图是GDS剥蚀处理后的结果,样品表面的花纹和结构保存的很好,我们可以看到表面的精细结构。我们再来看一个例子:通过超薄切片处理过的镀锌钢的横截面(a)图是通过超薄切片技术制备的整个镀锌钢样品的SEM图像;(b)图是通过超薄切片技术制备的镀锌钢样品中,锌/钢界面的SEM图,可以看到表面有严重的刮痕;(c)图是对(b)进行GDS溅射10秒后,锌/钢界面的SEM图片,可以看到而GDS制备的样品消除了刮痕,完美保留了样品的形貌。GDS除了可以为扫描电镜制备样品外,还可以联合SEM全面表征样品。下面是同一个样品:AlCrN/TiN/AlCrN/TiN/Fe使用SEM和GDS分别测试的结果。SEM提供了样品横截面的结构:根据颜色的深浅,可以了解到样品包含4个镀层,图中详细标注了不同镀层的厚度;GDS则展示了样品中各元素从表面到铁基体,不同深度处的含量分布。两个结果有交叠的信息也有截然不同的信息,更加全面立体地展示了样品的结构信息和含量分布。往期回顾【GDS微课堂-1】随Dr.JY掀起GDS神秘面纱【GDS微课堂-2】七问七答,掌握GDS常用概念【GDS微课堂-3】GDS解密:如何打造钢铁侠的战衣盔甲?【GDS微课堂-4】锂电池研发的“秘密武器”【GDS微课堂-5】“钢铁侠”背后的清洁能源之梦【GDS微课堂-6】看GDS如何助力“灯厂”奥迪独领风骚? HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,旗下的JobinYvon更有着200年的光学、光谱经验,HORIBA非常乐意与大家分享这些经验,为此特创立Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 HORIBA希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 网络研讨会| 工业清洗工艺清洗质量的量化、监控和优化-析塔清洁度仪、表面张力仪和污染度仪
    2022年5月3-5月10号,德国析塔SITA将举办网络研讨会,此次研讨会的主题是“工业清洗工艺清洗质量的量化、监控和优化”。在此次的网络研讨会中,你将了解工业清洗工艺和量化工业清洗工艺质量的解决方案,了解如何使用析塔清洁度仪、表面张力和污染度仪等仪器有效监测和控制工业清洗质量!“工业清洗工艺清洗质量的量化、监控和优化-析塔清洁度仪、表面张力仪和污染度仪”网络研讨会2022年5月3号-10号举办的"工业清洗工艺量化、监控和优化网络研讨会"涉及三大模块内容:模块1:高效控制零部件清洗质量和优化清洗工艺。在模块1中,我们将回顾工业清洗过程,通过量化测量技术监控工业清洗工艺,稳定零部件的表面清洁度,建立工业清洗质量保证标准。模块2:量化监控清洗槽污染程度。在模块2中,我们将了解工业清洗工艺对清洗槽的污染程度以及如何量化监控表面活性剂浓度,通过使用析塔SITA DynoTester+动态表面张力仪和析塔SITA ConSpector污染度仪,可以了解有关表面活性剂浓度和清洗槽的污染程度,以及高效监控表面活性剂浓度和监测清洗槽的污染度,以此有效优化清洗槽液的使用寿命。模块3:零部件表面清洁度检测技术。在模块3中,通过使用析塔SITA CleanoSpector表面清洁度仪和析塔SITA SurfaSpector接触角仪,了解量化检测零部件表面清洁度的方法和技术---荧光法。析塔SITA工业清洗工艺量化控制清洗质量网络研讨会主讲人翁开尔是德国析塔SITA在中国的独家代理商,扫码联系我们报名参加!参会人员可以收到电子版的讲义课件。德国析塔SITA表面清洁度仪介绍在涂装、粘接等过程中,金属部件表面残留污染物会严重降低涂层、粘胶结合层的附着力、牢固度。析塔表面清洁度仪通过荧光测量技术,协助稳定零部件清洗质量,有效避免附着力下降等问题。德国析塔SITA表面清洁度仪可量化检测金属表面的清洁度仪,保证焊接、涂装、电镀、粘胶前的金属部件清洁度符合后面的工艺要求。仪器通过荧光法检测出金属表面诸如油渍、油脂、冷却润滑剂、手指纹及蜡等污染物。点击了解更多关于析塔清洁度仪产品信息测试结果可为清洗时间、清洗剂选择和浸泡温度等整个清洗过程的优化提供量化依据。通过控制清洗过程金属部件表面清洁质量来确保产品的高质量要求。德国析塔SITA表面张力仪介绍德国析塔SITA的表面张力仪可以监控清洗槽液的质量,为研发和清洗工艺过程建立良好的基础进而获得高质量结果。此外,表面张力检测还能避免过量使用表面活性剂,从而降低生产成本。点击了解更多关于析塔全自动动态表面张力仪产品信息析塔SITA表面张力仪采用创新的气泡压力法原理测量液体的动态及静态表面张力,无需精确控制毛细管浸入深度,测量精度高,操作灵活。传统的表面张力测试仪采用铂金环法/铂金板法原理,而这种方式不能反映表面活性剂的迁移过程,因此也就不能测出动态表面张力。而SITA析塔公司生产的表面张力仪通过智能控制气泡年龄(bubble lifetime),可以测出液体中表面活性剂分子迁移过程中表面张力的变化过程,即连续的一系列的的动态表面张力值以及静态表面张力值。德国析塔SITA污染度仪介绍德国析塔公司研制的污染度测量仪,可检测液体的荧光物质从而判断污染程度。主要应用于工业清洗过程中,监测清洗槽的污染度。用户可根据此数量有效优化槽液的使用寿命,避免污染度过高的槽液二次污染工件造成的质量问题,并可节省成本。污染物包括:油、蜡、冷却液、松香、酯、醇等。点击了解更多关于析塔污染度仪产品信息翁开尔是德国SITA析塔在中国的独家代理商,欢迎致电咨询。
  • 火箭工程材料表面研究ESI vs MALDI 谁更胜一筹?
    铝及其合金广泛用于生产火箭工程材料。这是由于铝的比重低,且其表面上形成的保护性氧化膜,使得铝对侵蚀性介质的作用具有高稳定性。然而,这种氧化薄膜会溶解在碱性介质中,铝制品暴露在这种腐蚀环境中会遭到破坏。为了保护火箭工程材料免受腐蚀,材料表面需要用防腐蚀添加剂处理,或从表面除去腐蚀活性化合物。 依靠1,1-二甲基肼和四氧化二氮双组分燃料工作的运载火箭,其燃料箱是由铝合金AD0和AMG6制成的。研究人员通常使用间硝基苯甲酸和3,5-二硝基苯甲酸及其铵盐、吗啉、间硝基苯甲酸作为洗涤剂去除1,1-二甲基肼及其在工程材料表面转化的产物。这些化合物作为薄膜保留在处理过的金属表面上。控制处理过的表面上使用过的洗涤剂组分的浓度,并检测其痕量,以确定所研究样品的加工阶段是一项非常重要的分析任务。近日,俄罗斯科学院Frumkin物理化学与电化学研究所的研究人员使用HPLC-MS(电喷雾电离)和基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)对火箭工程材料表面的防腐蚀添加剂及其分布进行了研究。通过各种形式的激光解吸/电离质谱法研究工程材料的表面,可确保快速检测多种化合物,其特点是灵敏度高,样品制备简单。这项工作的目的是通过质谱法开发可靠和快速检测萃取溶液中间硝基苯甲酸和3,5-二硝基苯甲酸以及它们的盐的组分的方法。研究人员用乙腈从研究物表面萃取分析物,然后用电喷雾电离源的HPLC-MS或基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)进行分析。 (a)间硝基苯甲酸和(b)3,5-二硝基苯甲酸在AMg6合金表面上分布的图。 扫描步长500μm。 MALDI电离。研究结果表明,不同电离方法(电喷雾和MALDI)的质谱法可用于检测间硝基苯甲酸和3,5-二硝基苯甲酸检测。对于电喷雾电离,检测限为6μg/L,MALDI检测限为2μg/L。MALDI-TOF MS技术还确保了直接分析样品而无需萃取,并通过构建2D成像确保了实际样品表面上硝基苯甲酸分布的可视化。提到MALDI质谱成像技术,就不得不说一说融智生物QuanTOF质谱成像系统。融智生物于2017年推出QuanTOF质谱成像系统,该系统集合了新一代宽谱定量飞行时间质谱平台QuanTOF,拥有强大的5,000-10,000Hz长寿命半导体激光器,以及自主开发的数据采集软件。2018年7月,融智生物宣布实现最高可达500像素/秒的成像速率,提升MALDI-TOF MS成像速率达10倍以上,普通样本成像只需几十分钟,使得质谱成像实现了“立等可取”。经过进一步的研发,目前QuanTOF质谱成像系统已经实现高达1000像素/秒的成像速率,5-10微米的高空间分辨率,且仍然保持极高灵敏度。这使得质谱成像真正可用于临床病理分析、术中分析等领域。
  • 大连化物所实现表面金属—氢物种精确表征及活性探索
    近日,大连化物所固体核磁共振及前沿应用研究组(510组)侯广进研究员团队利用固体核磁共振技术在金属氧化物催化剂表面上金属—氢(M-H)活性物种的研究方面取得新进展。   M-H是一类特殊的物种,已有近百年的研究历史。其通常具有很高的反应活性和独特的化学性质,在许多化学反应中作为中间体普遍存在。然而,在多相催化体系中,鉴于实际固体催化剂表面生成的金属氢物种固有的高反应活性,以及固体催化剂表面结构的复杂性,针对它们的全面表征和化学性质探索一直具有挑战。迄今为止,在常用的表征方法中,表面镓—氢(Ga-H)物种的特征信号仅在有限的文献中通过红外光谱检测到。 本工作中,研究人员利用固体核磁共振技术研究纳米Ga2O3催化剂上直接H2活化和丙烷脱氢反应中产生的表面物种,提出了表面Ga-H物种的明确的固体核磁共振谱学证据。Ga-H物种由于强的1H-69Ga/71Ga核自旋耦合作用(J耦合和偶极/四极耦合)产生了复杂的1H核磁共振特征信号,研究人员利用先进多维核磁技术对复杂谱线进行解析,并结合数值模拟与DFT理论计算,揭示了这种特殊中间体物种的结构构型、形成机制。进一步利用CO2吸附模型实验,研究人员揭示了Ga-H物种是CO2加氢转化过程中的关键中间体。   相关成果以“Direct Detection of Reactive Gallium-Hydride Species on Ga2O3 Surface via Solid-state NMR Spectroscopy”为题,于近日发表在《美国化学会志》(The Journal of the American Chemical Society)上。该工作的共同第一作者是我所510组博士研究生陈虹余和高攀副研究员。该研究得到了国家重点研发计划、国家自然科学基金、辽宁省兴辽英才计划、国家博士后创新人才支持计划、中国博士后科学基金等项目的资助。
  • 【赛纳斯】表面增强拉曼/红外光谱技术的进展与突破
    01导读拉曼光谱和红外光谱是 最 重 要 的分析化学方法之一,可提供待测体系的化学键等关键结构信息。然而,它们应用于材料和生物体系的表面化学分析时,常面临着灵敏度偏低的瓶颈。四十余年来,人们持续致力于突破该瓶颈,推动相关技术的应用和产业化。近日,厦门大学田中群教授课题组回顾了拉曼和红外光谱技术的发展历程,系统性论述了表面增强拉曼散射光谱和表面增强红外吸收光谱的三种物理机制:等离激元效应、避雷针效应和耦合效应。从拉曼和红外光谱的基本原理和实际案例出发,提出了进一步提高拉曼和红外光谱的表面检测灵敏度的策略,即宏观光学系统与微纳光学衬底之间多尺度耦合,最 后讨论了将宏观光学-微纳衬底间的高效耦合拓展到亚纳米分子尺度的可能性,展望了更多种形式的多尺度光耦合策略。图1 SERS和SEIRA光谱灵敏度提高的策略与实践:从微纳结构衬底设计到光学设计。02研究背景拉曼光谱和红外光谱技术的里程碑式进展如图2所示,时间轴上、下分别为拉曼光谱和红外光谱技术。从发展历程可见:(1)1800-1974年主要集中在基本测试仪器和方法,从无到有地建立拉曼和红外及其衍生光谱技术;(2)1974-2010年则在已有测量仪器基础上,从无到有建立起表面增强拉曼和表面增强红外光谱方法;(3)1997年至今的表面增强拉曼和表面增强红外光谱逐渐提升为单分子水平。由此可见拉曼和红外光谱技术的灵敏度在不断提升,而其蕴含的发展驱动力是由痕量甚至是单分子水平待测样品的实际需求所诱发的。如何提升拉曼和红外光谱的检测灵敏度,是具有 重 大 挑战性的科学问题和技术难题。图2 拉曼光谱、红外光谱、及其衍生技术的的里程碑式进展节点,时间轴上、下部分别为拉曼和红外光谱技术。2.1 SERS和SEIRA的增强机理表面增强拉曼光谱(SERS)和表面增强红外吸收光谱(SEIRA)主要基于电磁场增强机制。SERS和SEIRA电磁场理论的核心在于借助光和金、银等纳米结构的相互作用,增强纳米结构表面狭小区域内的光电场(也称近场)。该狭小区域也称为“热点”。处于热点中的待测分子的光散射和光吸收截面都被增强,如图3所示。图3 SERS和SEIRA的电磁场增强原理。a是分子的Raman散射及拉曼光谱。b是吸附于金属纳米球表面分子的SERS的两步增强机理。c是SERS光谱的数据处理。d是分子的红外吸收及红外光谱。e是吸附于金属纳米棒表面分子的SEIRA的一步增强机理。f是SEIRA谱的数据处理。热点内的局域电场的强度与分子的光吸收/散射效率直接相关。提高SERS和SEIRA增强衬底表面热点内局域电场强度是SERS和SEIRA技术发展的关键难题。SERS和SEIRA增强衬底可划分为非耦合型增强衬底和耦合型增强衬底两大类。非耦合型增强衬底,如单个纳米粒子、金属膜以及非金属表面的金属探针等,通常只支持局域表面等离激元、传播表面等离激元和避雷针效应中的一种机制。非耦合增强衬底的局域场增强因子较小,通常小于5个数量级,是研究局域场耦合的模型结构。耦合型增强衬底,特别是具有纳米间隙或者纳米尖端结构的增强衬底,分子拉曼散射和红外吸收信号会得到显著增强,检测灵敏度可达单分子水平。典型的耦合型增强衬底结构有纳米颗粒-纳米颗粒二聚体(dimer)、寡聚体结构(oligomer)、阵列结构(array)、蝴蝶结(bow-tie)结构,和金(或银)扫描探针-金(或银)衬底耦合结构等,如图4所示。图4 SERS和SEIRA典型结构。a-f为SERS衬底结构,g-i为SEIRA衬底结构。其中a和g为局域表面等离激元纳米结构,c和i为传播型表面等离激元纳米结构,e为支持避雷针效应的针尖纳米结构。b、d、f、h和i为不同形式的等离激元耦合纳米结构衬底。除了提高衬底的局域电场强度,SERS衬底在应用中还存在衬底普适性低和信号重现性不足的难题。壳层隔绝纳米颗粒增强拉曼光谱(SHINERS)是克服这一难题的强有力的创新方法,在材料表面化学分析中已发挥出独特的技术优势和巨大的实际应用效能。SHINERS技术的关键是制备超薄介质壳层包覆的金(或银)核的核壳结构纳米颗粒,其中壳层材质如SiO2、Al2O3等具有绝缘性和化学惰性,既避免了分子吸附于金(或银)核表面产生干扰信号,又减小了纳米颗粒和待测衬底发生烧融的概率,提升了体系稳定性。借助SHINERS中金(或银)核与待测金属材料衬底的耦合作用,金属衬底上吸附分子的拉曼信号得到显著放大,例如,实现了对不同晶面Au、Pt等金属单晶上痕量电催化中间产物的识别,为揭示相关电催化反应的路径和机制提供了关键证据(图5)。图5 用于表面分析的SHINERS技术。a 衬底表面的SHINERS粒子示意图。b 吸附在Au(111)、Au(100)和Au(110)表面的吡啶分子的SHINERS光谱。c SHINERS实验示意图。电磁场强度由颜色代表,红色(强)和蓝色(弱)。d SHINERS粒子的TEM成像和Pt衬底表面的3D-FDTD模拟。e 在氧气饱和的0.1 M HClO4中的ORR过程三个旋转环盘Pt单晶电极上的极化曲线。转速为1600转/分,扫描速率50 mV/s。坐标轴j和E分别代表电流密度和电极势。f 变电位条件下Pt(111)电极表面的ORR测试的EC-SHINERS光谱。类似壳层隔绝技术的核-壳结构构筑策略也适用于SEIRA技术。由金壳层和介质内核构筑的阵列SEIRA增强衬底不仅在近红外区有等离激元响应,在中红外区也显示出宽光谱共振响应。如图6所示,位于近红外区域的等离激元响应源自于单个纳米壳结构的多极等离激元共振,而位于中红外区域的宽谱响应带则源自多粒子结构的偶极共振耦合。耦合纳米结构是提高SERS和SEIRA衬底表面增强性能的有效方式,通过耦合效应可将衬底拓展为SERS和SEIRA同时响应的衬底。图6 多个纳米粒子耦合同时用于SERS和SEIRA虽然基于上述耦合纳米结构的SERS和SEIRA或SEIRA衬底,如单个SHINERS粒子、TERS探针、单根SEIRA棒和
  • 加拿大发布玩具表面涂层重金属含量法规
    近期,加拿大卫生部发布了一则关于儿童玩具表面涂层含有特定重金属的通知。该通知提醒所有玩具制造商、进口商和零售商,儿童玩具必须经过重金属含量测试,证明完全符合加拿大的法规之后,才可以进入加拿大市场销售。该通知同时公布了上述重金属的法定限量及测试方法。   儿童玩具进入加拿大市场需符合加拿大《危险产品法案》及《危险产品(玩具)条例》,该法规规定,如果儿童玩具、装备及供儿童学习玩乐的其它产品的表面涂料中含有总铅、特定可迁移的重金属及汞化合物,则禁止在加拿大宣传、进口或销售。所有制造商、进口商、经销商和零售商均有责任保证,在加拿大宣传、进口或销售的任何玩具(包括二手玩具)都已符合《危险产品法案》中规定的所有适用的安全规定。   同时,该通知还特别提到,在产品制造过程中使用的标签和贴花纸也属于表面涂层。由于,在许多情况下(特别是在重金属方面),加拿大的法规及相关的测试方法不同于美国或欧洲,因此需要相关人员特别注意。检验检疫专家建议,各相关机构及生产出口企业,应制定针对不同市场玩具重金属限量要求及检测方法的生产应对措施,实行“按需生产”,同时积极了解目标市场法规变化,进行有针对性检测,做到有备无患。
  • 贵金属纳米结构组装及其表面增强拉曼散射应用研究获进展
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文课题组和美国西弗吉尼亚大学教授吴年强研究小组合作,在贵金属纳米结构组装及其表面增强拉曼散射(SERS)应用研究方面取得新进展,相关结果以封面论文发表在《纳米研究》(Nano Res. 2015, 8, 957-966)上。  由于电磁增强作用,位于贵金属纳米结构表面的分子拉曼信号会得到数量级的增强,从而产生表面增强拉曼散射效应。表面增强拉曼散射技术具有分子“指纹”识别能力,在化学和生物分析等领域拥有广泛的应用前景。贵金属纳米结构表面具有大幅度增强局域电磁场的位置(一般位于10nm的间隙处)称为表面增强拉曼散射“热点”,是表面增强拉曼散射信号的主要来源。因此,在三维空间内增加“热点”的密集度将有效提高表面增强拉曼散射灵敏度。目前,构筑三维SERS基底的主要方式是将球形贵金属颗粒组装到非金属纳米结构阵列上。相关理论和实验研究表明,与球形贵金属纳米颗粒相比,带有棱角或尖端的贵金属纳米结构能够产生更强的局域电磁场,因而其组装体在间隙处更易产生“热点”。如果将这些纳米结构组装成三维SERS基底,有望得到高灵敏度SERS基底。  该研究团队以ZnO纳米锥阵列作为牺牲模板,使用含有贵金属离子和特定表面活性剂的电解液,采用电沉积方法构筑多种贵金属纳米结构单元组装的纳米管阵列,例如由银纳米片、金纳米棒、铂纳米刺和钯纳米锥等结构单元组装的纳米管阵列。这些纳米结构单元具有显著的棱角和/或尖端 由其组装的纳米管阵列具有大量间隙,在三维空间内产生高密度的“热点”。因此所构筑的纳米管阵列具有很高的表面增强拉曼散射灵敏度。例如,银纳米片组装的纳米管阵列能够灵敏地检测浓度低至10fM的罗丹明6G (R6G)。这种银纳米片组装的三维SERS基底对高毒性有机污染物多氯联苯也表现出高表面增强拉曼散射灵敏度,并能够检测两种多氯联苯的混合物,表明该三维SERS基底在检测环境中高毒性有机污染物方面具有应用前景。  相关工作得到科技部“973”计划、“中国科学院、国家外国专家局创新团队国际合作伙伴计划”和国家自然科学基金等项目的支持。图1. 论文的相关图片被选作期刊封面  图2. (a)银纳米片组装的纳米管阵列的扫描电镜(SEM)照片 (b)折断的纳米管的SEM照片 (c)不同浓度R6G的SERS光谱 (d) 20μ M多氯联苯-77 (PCB-77)和10μ M多氯联苯-1 (PCB-1)的混合物溶液(曲线I) 以及30μ M的 PCB-1溶液(曲线II)的SERS光谱。
  • “热火”的表面增强拉曼——第十九届全国光散射学术会议之分会场
    p    strong 仪器信息网讯 /strong 2017年12月2-4日,第十九届全国光散射学术会议(CNCLS19)在广州中山大学召开。CNCLS19是由中国物理学会光散射专业委员会主办、中山大学承办、吉林大学协办。据中山大学陈建教授介绍,本次会议共收到来自英国、德国、韩国、新加坡、港澳地区、国内90余家高校和科研院所的论文投稿300余篇,注册参会人数450余人,大会特邀报告6篇、分会邀请报告43篇、分会口头报告63篇、墙报160多篇。为了更好地交流,在大会报告环节之外,CNCLS19分为物理材料、表面增强拉曼、食品安全/生物医学/刑侦及其它等3个分会场进行邀请报告和口头报告,同时还专门设置了厂商技术交流报告分会场。 /p p   1928年,印度物理学家拉曼(Raman)首次在实验中观察到拉曼散射光,并因此荣获了1930年的诺贝尔物理学奖。但是,信号弱这个与生俱来的缺点在很大程度上限制了拉曼光谱在各方面的应用。直到,1974年,Fleischmann等人第一次在吡啶吸附的粗糙银电极上观察到表面增强拉曼散射(SERS)信号。SERS是指当一些分子被吸附到某些粗糙的金属(如银、铜、金等) 表面上时,它们的拉曼散射强度会增加10 sup 4 /sup ~10 sup 6 /sup 倍。由于表面增强效应可以使拉曼强度增大几个数量级,提供了极高的表面检测灵敏度,为人们刻画了很好的应用前景,在国际上很快就掀起了SERS研究的热潮。80年代初,中国就开始了SERS的相关研究工作。近几年越来越多的课题组踏入这个领域,几乎呈指数增长。 /p p style=" text-align: center " img title=" SERS现场.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/360208f8-b880-4bfd-8223-3db9852aa5cf.jpg" / /p p style=" text-align: center " 表面增强拉曼分会场现场 /p p   CNCLS19表面增强拉曼分会场的“热火”也正是体现了这一发展状况。12月2日下午,仪器信息网编辑驻足表面增强拉曼分会场。当然,这个分会场除了SERS,还有针尖增强拉曼散射(TERS)的研究工作。TERS是扫描探针显微镜与拉曼探测系统相结合的一门技术,可实现纳米级的空间分辨。TERS概念首先是由J. Wessel等在1985年提出的。2000年,四个研究小组几乎同时报道了TERS实验结果。10多年来,TERS研究取得了很大进展。 /p p   CNCLS19表面增强拉曼分会场共安排了15个邀请报告、21个口头报告,报告内容多围绕着表面增强基底的制备及其机理或应用研究。下面,将部分精彩报告进行摘录。 /p p style=" text-align: center " img title=" 杨良保.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/15834289-0800-47e4-beab-75a2e1434e1f.jpg" / /p p style=" text-align: center " 中国科学院合肥智能机械研究所 杨良保研究员 /p p style=" text-align: center " 报告题目:SERRS Strategy Sensitively and Selectively Detect the Biological Basis of Acupuncture /p p   杨良保研究员介绍了近年来关于SERS在针灸中研究工作的进展。针对高灵敏度检测针刺物质难点、围绕关键的科学问题——如何提高检测的灵敏度和选择性,杨良保提出了将活性基底与有效的前处理方案相结合的策略。并且展望未来该团队将把SERS与针灸结合实现原位跟踪、实时检测,进而阐明部分作用机制。 /p p style=" text-align: center " img title=" 张正龙.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/e488f5cd-524b-4a28-8c81-f942013fe86d.jpg" / /p p style=" text-align: center " 陕西师范大学 张正龙研究员 /p p style=" text-align: center " 报告题目:针尖增强拉曼光谱学中的表面等离激元催化 /p p   张正龙研究员报告中介绍了一种新的催化化学反应理论,即等离激元催化。根据该理论,表面等离激元在金属表面振荡衰减后,会释放出“热电子”,而这种“热电子”在催化反应中扮演重要角色。张正龙研究员利用TERS技术实现了分子催化化学反应,并实现了对原位催化反应动力学过程的原位观测。 /p p style=" text-align: center " img title=" 谢微.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/cebad7e5-4fa0-4713-97b8-92419e7af776.jpg" / /p p style=" text-align: center " 南开大学 谢微研究员 /p p style=" text-align: center " 报告题目:非均相催化反应的SERS原位检测研究 /p p   非均相催化剂因已于分离,在化工、能源、环境等领域有很好的应用前景。由于SERS的高灵敏度、高特异性,以及很好的表面选择性,可以用于非均相催化反应进行原位分析,而其实现的关键在于催化活性等离激元双功能纳米结构的制备。谢微研究员的报告中介绍了其团队设计合成了几种双功能SERS基底纳米粒子,通过模型反应初步实现了金、银、铂等纳米粒子催化反应的SERS检测。 /p p style=" text-align: center " img title=" 赵艳.jpg" src=" http://img1.17img.cn/17img/images/201712/insimg/6895ff5a-4b5b-49ec-8d78-1c480e4544ca.jpg" / /p p style=" text-align: center " 北京工业大学 赵艳副研究员 /p p style=" text-align: center " 报告题目:周期性金/银球形纳米阵列制备及非偏振依赖SERS机理研究 /p p   在周期性贵金属球形纳米粒子制备领域,目前缺乏一套能够可靠实现单纳米粒子尺寸小于100nm、粒子间距小于40nm的周期性贵金属球形纳米粒子阵列低成本、大面积制备技术。采用镀膜融塑法依托AAO纳米碗阵列,赵艳副研究员成功解决了该技术难题。并且其所制备的出的周期性银球形纳米粒子阵列不仅在全可见波段都具有良好的SERS活性,同时还展现出了非偏振依赖SERS特性。进而,赵艳副研究员进行相关工作解释了非偏振依赖SERS机理。 /p p & nbsp /p
  • 突破!原位电镜揭示双金属催化剂反应状态下的真实活性表面
    p style=" text-align: justify text-indent: 2em " 近日,中国科学院大连化学物理研究所能源研究技术平台电镜技术研究组副研究员刘伟、杨冰与中国科学院上海高等研究院研究员髙嶷团队及南方科技大学副教授谷猛团队合作,在观察和确认NiAu催化剂在CO2加氢反应中的真实表面方面取得进展。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 催化研究中,常规静态显微分析只能提供催化剂反应前或反应后的非工况结构信息。然而在热振动、气体分子吸/脱附等作用下,催化剂的表面原子难免发生迁移导致表面重构,变化后的表面才是与催化反应活性相关的真实表面,要看清这一表面状态需要借助原位表征技术。尤其对于容易发生表面重构的多元金属催化体系而言,无法原位观测反应气氛下催化剂的原子结构,就不能确认贡献催化活性的真实表面,更无法建立可信的催化构效关系。在以往的研究中,具有宏观统计特性的原位谱学手段已经从精细的能量维度对动态催化过程做出了先驱性探索,例如原位FTIR、原位XPS(AP-XPS)以及原位XAS。在此基础上,实空间下直接观测反应中催化剂的表面原子排布是研究人员长期追寻的目标。针对此问题诞生了环境透射电子显微技术(ETEM),ETEM是主要基于TEM成像的原位手段,适用于原子分辨下追踪气固相反应中催化剂的结构演化过程。 /span /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/69a53f56-f8b2-4cb7-adbb-cf19e4397bed.jpg" title=" 原位电镜揭示双金属催化剂反应状态下的真实活性表面.jpg" alt=" 原位电镜揭示双金属催化剂反应状态下的真实活性表面.jpg" / /span /p p style=" text-align: justify text-indent: 2em " 在本工作中,研究团队基于环境透射电镜以及特殊设计的mbar级负压定量混气系统,研究了NiAu/SiO2体系催化CO2加氢反应过程。初期静态显微结果表明,该催化剂以Ni为核心,表面包裹2至3层Au原子壳层,为一种典型的Ni@Au核壳构型。而考虑到Ni具有强大的加氢活性,会导致反应的CH4选择性,因此,该核壳构型可合理地解释本工作中CO2加氢高达95%以上的CO选择性。 /p p style=" text-align: justify text-indent: 2em " 但是,环境透射电镜原位观测发现,该催化剂在反应气氛和温度下,内核Ni原子会逐渐偏析至表面与Au合金化;在降温停止反应时,会退合金化返回Ni@Au核壳型结构。原位谱学手段(包括原位FTIR和原位XAS)的结果很好地证实了上述显微观测结果。理论计算和原位FTIR结果表明,反应中原位生成的CO与NiAu表面合金化起到了关键而微妙的相互促进作用,这是该催化剂构型演变及高CO选择性的原因。 /p p style=" text-align: justify text-indent: 2em " 该工作为研究核壳型双金属催化过程提供了启发,例如反应条件下核壳表面是否真实存在,是否贡献催化活性?又如催化剂制备中追求构建核壳表面是否有必要?该工作是一套原位环境下微观结构表征与宏观状态统计的综合应用案例,突出局域原子结构显微观测的同时,借助原位谱学手段,尤其是原位XAS技术,确保了电子显微发现与材料宏观工况性能的关联置信度。从而为发展原位、动态、高时空分辨的催化表征新方法和新技术提供了范例,也为设计构筑特定结构和功能催化新材料提供了借鉴和思考。 /p p style=" text-align: justify text-indent: 2em " 此外,期刊特别邀请审稿人撰写并独立刊发了题为The dynamic of the peel& nbsp 的工作评述(news & amp views),以表明本工作对于催化研究的独特启发。 /p p style=" text-align: justify text-indent: 2em " 相关成果发表在《 span style=" color: rgb(0, 112, 192) " 自然-催化 /span 》(Nature Catalysis)上。该工作得到国家自然科学基金项目、大连市人才项目、中科院青年创新促进会等的资助,尤其得到了研究员苏党生的大力支持。 /p
  • 加拿大发布玩具表面涂层重金属含量新法规
    近期,加拿大卫生部发布了一则关于儿童玩具表面涂层含有特定重金属的通知。该通知提醒所有玩具制造商、进口商和零售商,儿童玩具必须经过重金属含量测试,证明完全符合加拿大的法规之后,才可以进入加拿大市场销售。该通知同时公布了上述重金属的法定限量及测试方法。   儿童玩具进入加拿大市场需符合加拿大《危险产品法案》及《危险产品(玩具)条例》,该法规规定,如果儿童玩具、装备及供儿童学习玩乐的其它产品的表面涂料中含有总铅、特定可迁移的重金属及汞化合物,则禁止在加拿大宣传、进口或销售。所有制造商、进口商、经销商和零售商均有责任保证,在加拿大宣传、进口或销售的任何玩具(包括二手玩具)都已符合《危险产品法案》中规定的所有适用的安全规定。   同时,该通知还特别提到,在产品制造过程中使用的标签和贴花纸也属于表面涂层。由于,在许多情况下(特别是在重金属方面),加拿大的法规及相关的测试方法不同于美国或欧洲,因此需要相关人员特别注意。检验检疫专家建议,各相关机构及生产出口企业,应制定针对不同市场玩具重金属限量要求及检测方法的生产应对措施,实行“按需生产”,同时积极了解目标市场法规变化,进行有针对性检测,做到有备无患。
  • Advanced Materials: 可调谐低损耗一维InAs纳米线的表面等离激元研究
    亚波长下光的调控与操纵对缩小光电器件的体积、能耗、集成度以及响应灵敏度有着重要意义。其中,外场驱动下由电子集体振荡形成的表面等离激元能将光局域在纳米尺度空间中,是实现亚波长光学传播与调控的有效途径之一。然而,表面等离激元技术应用的关键目标是同时实现:①高的空间局域性,②低的传播损耗,③具有可调控性。但是,由于金属表面等离激元空间局域性较小,在长波段损耗较大且无法电学调控限制了其实用化。可喜的是:近期,由中科院物理所和北京大学组成的研究团队报道了砷化铟(InAs)纳米线作为一种等离激元材料可同时满足以上三个要求。作者利用neaspec公司的近场光学显微镜(neaSNOM, s-SNOM)在纳米尺度对砷化铟纳米线表面等离激元进行近场成像并获得其色散关系。通过改变纳米线的直径以及周围介电环境,实现了对表面等离激元性质的调控,包括其波长、色散、局域因子以及传波损耗等。作者发现InAs纳米线表面等离激元展现出:①制备简易,②高局域性,③低的传波损耗,④具有可调控性,这为用于未来亚波长应用的新型等离子体电路提供了一个新的选择。该工作发表在高水平的Advanced Materials 杂志上。图1 neaspec超高分辨散射式近场光学显微镜neaSNOM图2 InAs纳米线中表面等离激元的红外近场成像研究a) s-SNOM实验测量示意图;b) InAs纳米线的AFM形貌图;c) InAs纳米线的红外(901 cm?1)近场光学成像;d) 相应的模拟结果;e) c和d相应区域的界面分析;f) InAs纳米线的红外(930 cm?1)近场光学成像;g) InAs纳米线的红外(950 cm?1)近场光学成像;h) InAs纳米线的红外(930 cm?1)近场光学成像。该研究小组通过neaspec公司的散射型近场光学显微镜(s-SNOM)配合901–985 cm?1可调谐中红外QCL激光器,采用neaspec公司具有的伪外差近场成像技术的neaSNOM近场光学显微镜,对约为104 nm长的InAs纳米线的表面等离激元进行了研究。从近场成像图(图2 c)中可以看出,在930 cm?1红外光及AFM探针的激发下,表面产生的等离激元沿InAs一维纳米线传播,并从纳米线边缘反射回来产生相应的驻波图形。另外,可以通过定量分析表面等离激元传播的相邻的两个节点((λp/2)的空间距离来推断表面等离激元传播的波长(λp)。同时,作者也在不同的红外波长下(930, 950, 和985 cm?1,图2 f, g, h)对InAs纳米线的表面等离激元进行了纳米尺度近场光学成像研究,结果显示出相似的驻波图形。上述研究结果证实作者通过neaspec公司的散射型近场光学显微镜对InAs纳米线的近场成像研究成功观察到了InAs纳米线中的一维等离激元。该研究在通过s-SNOM红外近场光学显微镜展示了在InAs纳米线中等离激元的真实空间成像。作者的进一步研究表明其等离激元的波长以及它的阻尼都可以通过改变InAs纳米线的尺寸和选择不同基底来调控。研究显示半导体的InAs纳米线具有应用于小型光学电路和集成设备的巨大潜力。作者的发现开辟了一条设计与实现新型等离激元和纳米光子设备的新途径。同时,该研究也展示了neaspec公司的散射型近场光学显微镜在半导体一维或二维材料纳米光学研究中的广阔应用前景。截止目前为止,以neaspec稳定的产品性能和服务为支撑,通过neaspec国内用户不断的努力,neaspec国内用户2018年间发表了关于近场光学成像和光谱的文章共14篇:其中包括4 篇Advance Materials; Advance Functional Materials;Advance Science;Advanced Optical Materials和Nanoscale等。伴随更多的研究者信赖和选择neaspec近场和光谱相关产品, neaspec国内群的不断的持续增加,我们坚信neaspec国内用户将在2018年取得更加丰厚的研究成果。参考文献:Tunable Low Loss 1D Surface Plasmons in InAs Nanowires,Yixi Zhou, Runkun Chen, Jingyun Wang, Yisheng Huang, Ming Li, Yingjie Xing, Jiahua Duan, Jianjun Chen, James D. Farrell, H. Q. Xu, Jianing Chen, Adv. Mater. 2018, 1802551 https://doi.org/10.1002/adma.201802551相关产品及链接:1、 超高分辨散射式近场光学显微镜 neaSNOM:https://www.instrument.com.cn/netshow/C170040.htm2、 纳米傅里叶红外光谱仪nano-FTIR:https://www.instrument.com.cn/netshow/C194218.htm3、 太赫兹近场光学显微镜 THz-NeaSNOM:https://www.instrument.com.cn/netshow/C270098.htm
  • 越来越“精细”的表面增强拉曼研究——第二十届全国光散射学术会议SERS分会场报告摘录
    p    strong 仪器信息网讯 /strong 2019年11月2-6日,由中国物理学会光散射专业委员会主办,苏州大学、厦门大学承办的第二十届全国光散射学术会议(CNCLS20)在苏州同里湖大饭店召开,吸引了近600人参会,参会人数创历届之最。 br/ /p p   本届大会组委会特别邀请了国内外知名专家学者就近两年光散射及相关光谱原理和技术等领域的前沿热点问题进行交流,并增加了仪器研发和应用的相关报告,全力展示中国在光散射领域所取得的最新进展及成果,增进光散射及相关领域科技工作者的交流与合作,促进我国光散射和光谱事业的发展。 /p p   除6场大会报告外,大会组委会特别设置了物理材料仪器、表面增强拉曼(SERS)、分析医药其他三个分会场分别进行邀请报告和口头报告。其中,SERS分会场特别安排了14场邀请报告,21个口头报告,63份墙报。特别值得一提的是,延续历届“火热”的氛围,本次SERS分会场出席人数再次爆棚。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/d1952173-7f5c-44b9-ab16-dbb5b58df74b.jpg" title=" 会场.JPG" alt=" 会场.JPG" / /p p style=" text-align: center " strong SERS分会场现场 /strong /p p   从1974年,有关拉曼增强的第一篇文章发表到现在已经有45年了。45年间,SERS取得了长足的进展,虽然前半段时间发展的相对缓慢,但是得益于纳米科技的发展,后半段的发展非常迅速。就我国而言,近几年越来越多的课题组踏入这个领域,从历届会议SERS分会场的“火爆”场面也足见我国SERS依然保持强劲的发展势头。 /p p   本次会议各位老师的报告,涉及了各类型SERS基底的制备及应用研究。特别需要指出的是,很多老师的研究已经越来越“精细”,他们的研究工作不再局限于“是什么”,更多的在研究“为什么”。老师们不仅以应用为目的构建了特异性的拉曼探针,而且在制备的过程中还对分子进行精准的结构调控,甚至有老师开玩笑说是在“玩弄”分子。不仅如此,很多老师的研究工作还深入剖析了SERS的相关机理。 /p p   strong  部分老师的精彩报告摘录如下: /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/7d0237ec-2c2f-4120-b6d1-ee1805d9b765.jpg" title=" 杨海峰.JPG" alt=" 杨海峰.JPG" / /p p style=" text-align: center " strong 报告人:上海师范大学 杨海峰教授 /strong /p p style=" text-align: center " strong 报告题目:基于表面特异性反应的拉曼探针构建 /strong /p p   发展生物标志物、病毒和食品添加物的快速传感分析方法是实现 POCT(Point-of-Care Test)和食品安全相关现场检测的迫切技术需求。而在稳定的表面增强拉曼基底上修饰特异性反应层,可构建针对性的拉曼探针,有利于提高方法选择性。杨海峰教授课题组对金或银纳米粒子表面进行基于表面反应体系的功能化,制备了多种高选择性的拉曼探针,并开展了一系列的应用研究,如检测蔬菜农残福美双、唾液毒品标志物、肺癌标志物、人血液多巴胺、H7N9病毒等,表现出良好的传感应用前景。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/8ba18f13-7c66-44bb-be2c-163cbc742b7d.jpg" title=" 田景华.JPG" alt=" 田景华.JPG" / /p p style=" text-align: center " strong 报告人:苏州大学 田景华教授 /strong /p p style=" text-align: center " strong 报告题目:拉曼光谱技术在氧化还原反应过程和机理上的研究初探 /strong /p p   报告中,田景华教授介绍了其最新的研究成果:结合在线电化学光谱技术(EC-Raman),探明了BaCO3/rGO材料ORR的催化活性中心为Ba离子,并推测出在其表面发生2电子和4电子反应的反应历程 使用粗糙Au电极为工作电极,结合电化学表面增强拉曼光谱技术,系统研究了pH从1到13范围内的ORR反应过程和可能的反应途径。田景华教授指出:具有高灵敏度的原位表面增强光谱技术,在电催化反应机理研究及电催化剂材料设计方面具有指导性意义并能发挥重要的作用。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/247f78a9-9442-44e9-b667-5404e5c24275.jpg" title=" 宋薇.JPG" alt=" 宋薇.JPG" / /p p style=" text-align: center " strong 报告人:吉林大学 宋薇教授 /strong /p p style=" text-align: center " strong 报告题目:纳米酶表面增强拉曼基底的研究 /strong /p p   利用SERS技术以纳米复合酶作为新型催化剂,可以在原位-动态环境条件下研究催化表界面和反应中间体,对催化剂表面的分子转化催化过程进行指纹谱学监测,间接获得对生物分子、重金属离子等SERS高灵敏检测。宋薇教授构筑了一系列兼具类酶催化活性和 SERS活性的纳米酶SERS基底,利用SERS及其他技术研究了类酶催化过程中分子的反应动力学过程,提出了SERS研究纳米酶的动力学模型,探讨了其类酶催化机理,并将其应用于多种有机分子及生物分子的超灵敏检测中。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/8ae405df-d59f-4657-9375-1077f4cfb492.jpg" title=" 刘洪林.JPG" alt=" 刘洪林.JPG" / /p p style=" text-align: center " strong 报告人:合肥工业大学 刘洪林教授 /strong /p p style=" text-align: center " strong 报告题目:液相界面拉曼分析中的分子吸附问题初探 /strong /p p   贵金属表面与待测分子间的亲和性会影响待测分子在纳米间隙中的定位,很大程度上影响SERS的增强效果。刘洪林教授对液相界面拉曼分析中的分子吸附问题进行了深入的研究,报告中,其详细介绍了三维液相界面的定量化SERS测量、金属表面分子亲和性问题,并指出液相界面纳米阵列具有优异的可调谐、自愈合特性,液相界面分析克服(或弱化)了分子亲和性限制。据悉,刘洪林教授课题组利用PML-SERS技术,已成功实现多种植物和动物油脂中一种或两种多环芳烃的同时检测分析,具有良好的稳定性。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/c5d7e2de-d1ef-4266-b1dc-1df553eba608.jpg" title=" 方吉祥.JPG" alt=" 方吉祥.JPG" / /p p style=" text-align: center " strong 报告人:西安交通大学 方吉祥教授 /strong /p p style=" text-align: center " strong 报告题目:富集型SERS检测方案及分子传感 /strong /p p   当前, 如何提高对低SERS活性分子的检测灵敏度是SERS技术的关键问题之一,而如何高效的把待测分子在空间上局域化到等离激元热点区域仍然是提高SERS检测灵敏度至关重要的问题。西安交通大学方吉祥教授提出了两种分子富集型的SERS检测方案,一种是基于轻质漂浮微球和超滑移衬底策略的分子富集方法,另一种是基于毛细作用的分子富集方法。据悉,通过两种方法,待测分子都能高度的局域化到空间上很小的区域,从而显著的提高其SERS检测灵敏度。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/74d0ee5c-8573-4f9a-8abe-f3ba813bbdab.jpg" title=" 徐章润.JPG" alt=" 徐章润.JPG" / /p p style=" text-align: center " strong 报告人:东北大学 徐章润教授 /strong /p p style=" text-align: center " strong 报告题目:基于微流控液滴的表面增强拉曼光谱检测方法 /strong /p p   构建高灵敏度、高重现性和集成化的SERS分析方法是当前的研究热点之一,而微流控液滴作为稳定的微反应器,具有尺寸均一、混合速度快、传质和传热效率高等特点,在材料合成、生物和化学分析等方面具有广泛的应用前景。结合微流控液滴和SERS技术,构筑SERS基底以及基于液滴的定量分析方法,对探索肿瘤生理活动、临床药物开发、催化机理等具有十分重要的科学意义。徐章润教授在报告中分享了三方面的研究工作:微流控液滴作为微检测池用于SERS的检测 微流控液滴作为微反应器用于SERS检测 微流控液滴制备的凝胶微粒用于SERS检测。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/4b8679df-f092-4ee4-925f-d05aa4d8c586.jpg" title=" 杨士宽.JPG" alt=" 杨士宽.JPG" / /p p style=" text-align: center " strong 报告人:浙江大学 杨士宽研究员 /strong /p p style=" text-align: center " strong 报告题目:电化学3D打印SERS 器件 /strong /p p   杨士宽研究员从常规SERS器件讲起,介绍了电沉积浸润性可调银膜、SERS揭示分子转动调控机制,电沉积网粒体SERS微器件等多方面的内容。特别值得一提的是,杨士宽研究员介绍了一种新的具有体“热点”的体增强拉曼散射(VERS)基底,并比较了SERS和VERS在检测病毒方面的区别,研究结果显示VERS检测病毒弱依赖其取向,大大提高了病毒信号的重现性 此外,杨士宽研究员还介绍了SERS器件的电化学3D打印策略,详细介绍了电化学3D打印的鱼雷机器人及其在生物医学领域潜在的应用。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/8fd5b43c-8275-4f31-a575-b4a7000aa793.jpg" title=" 刘国坤.JPG" alt=" 刘国坤.JPG" / /p p style=" text-align: center " strong 报告人:厦门大学 刘国坤副教授 /strong /p p style=" text-align: center " strong 报告题目:SERS 快检研究中的科学和技术问题初探 /strong /p p   近年来,借助于拉曼光谱仪的小型化和微型化,SERS技术已经从实验室技术逐渐发展成为一种现场快检技术。刘国坤副教授的报告从SERS快检研究思路、痕量定性分析、定量分析的可靠性、化学计量学的作用等四个方面剖析了SERS领域尚待解决的一些基本科学问题。其间,针对分子与热点间有效相互作用进行了详细的介绍。刘国坤副教授指出SERS的实际应用研究拓展,不仅仅是SERS基础研究的外延,同时也反推并促进 SERS机理的深入分析和理解。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/7dfb67f5-b3f1-455f-9519-25b9d0e2fe27.jpg" title=" 杨良保.JPG" alt=" 杨良保.JPG" / /p p style=" text-align: center " strong 报告人:中科院合肥物质科学研究院 杨良保研究员 /strong /p p style=" text-align: center " strong 报告题目:高灵敏毒品SERS检测方法研究 /strong /p p   杨良保研究员的报告从增强芯片的关键科学问题和技术研究思路讲起,介绍了其课题组基于SERS技术而进行的便携式毒品快速检测体系研究。据悉,经过多年的研究和积累,其课题组已经成功开发了涉毒案件现场样品前处理模块,研制了基于贵金属纳米材料的SERS增强芯片,建立了常见毒品毒物SERS光谱数据库,并进行了智能识别与光谱仪系统的集成,实现对了人体唾液、尿液和毛发毒品的快速检测与鉴定,为各类涉毒案件的快速处置提供 SERS 解决方案、技术与设备支撑。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/8ed49163-2e19-422c-a177-fc905996a820.jpg" title=" 赵志刚.JPG" alt=" 赵志刚.JPG" / /p p style=" text-align: center " strong 报告人:中科院苏州纳米所 赵志刚研究员 /strong /p p style=" text-align: center " strong 报告题目:氧化钨基SERS材料的结构调控 /strong /p p   探索新型、高性能的非金属基底一直是SERS技术中最重要的研究方向之一,尤其近年来半导体化合物被证实具有SERS活性,其丰富的种类与化学组成引起人们极大的兴趣。通常认为金属材料中以电磁增强为主,而半导体化合物表面化学增强则起决定作用。正因为机制不同,半导体材料用作SERS基底的设计应遵循完全不同于现有的贵金属材料的研究理念。赵志刚研究员通过半导体氧化物中的氧缺陷、表面修饰、填隙离子插入等组成结构调制方式实现了其SERS性能的大幅提升。 /p p   截至11月4日,第二十届全国光散射学术会议的日程已过三分之二,SERS分会场的报告也已经进行了大半。除了以上老师的报告之外,中山大学李攻科教授等也带来了精彩的分享,由于篇幅的原因,在此就不再详细介绍。 /p p strong span style=" font-family: 楷体, 楷体_GB2312, SimKai "   作为拉曼光谱领域“炙手可热”的研究课题,SERS的研究群体不断扩大,发表的论文数量持续增长,近年来的研究方向和角度也呈多样化发展,这是学术界可喜的事情。但是,大家还必须认识到,目前SERS的机理研究及实际应用还存在不少问题,学术界的高产出如何更好提升和推动应用领域的实战是值得大家共同思考的话题! /span /strong /p p br/ /p
  • 中国科学院金属研究所比表面积及孔径分析仪公开招标
    项目概况中国科学院金属研究所比表面积及孔径分析仪招标项目的潜在投标人应在辽宁工程招标有限公司四楼401房间(沈阳市和平区南九马路47号)获取招标文件,并于2022年06月17日 09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:LNZB02-ZBR2022-056项目名称:中国科学院金属研究所比表面积及孔径分析仪预算金额:85.0000000 万元(人民币)最高限价(如有):85.0000000 万元(人民币)采购需求:本次招标货物分为1 个包,投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。(1)设备名称:比表面积及孔径分析仪;(2)数量:1套;(3)简要要求:该分析仪是全自动运行,能进行真空体积测定的气体物理吸附的系统,能在测定三个样品的同时,独立地对另外六个样品进行脱气操作。该系统可以用于分析比表面积,微孔,介孔,吸附动力学等研究。(4)交货方式与地点:CIP沈阳机场,中国科学院金属研究所指定地点;(5)本项目允许采购进口产品。合同履行期限:合同签订后六个月内交付本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无。3.本项目的特定资格要求:符合《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号)文件要求,不得为列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单的投标人。三、获取招标文件时间:2022年05月26日 至 2022年06月02日,每天上午8:30至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:辽宁工程招标有限公司四楼401房间(沈阳市和平区南九马路47号)方式:现场领取售价:¥500.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年06月17日 09点30分(北京时间)开标时间:2022年06月17日 09点30分(北京时间)地点:辽宁工程招标有限公司开标楼第四会议室。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.投标保证金金额:人民币1.5万元;2.采购项目需要落实的政府采购政策(1)政府采购促进中小企业发展(2)政府采购促进残疾人就业(3)政府采购支持监狱企业发展(4)节能产品、环境标志产品政策优惠七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院金属研究所     地址:沈阳市沈河区文化路72号        联系方式:佟老师 024-23971066      2.采购代理机构信息名 称:辽宁工程招标有限公司            地 址:沈阳市和平区南九马路47号401房间            联系方式:王天甲024-23389240            3.项目联系方式项目联系人:佟老师电 话:  024-23971066
  • 莱伯泰科《硅片表面金属离子国产检测仪器首创项目》 获中国检验检测学会科学技术奖
    近期,“2023年度中国检验检测学会科学技术奖”获奖名单公布,北京莱伯泰科仪器股份有限公司(简称“莱伯泰科”)凭借其《硅片表面金属离子国产检测仪器首创项目》荣获科学技术进步奖二等奖。该奖项由中国检验检测学会设立,旨在表彰那些在检验检测科学技术领域或相关领域,通过技术发明、科技进步、国际科技合作等活动,对推动检验检测科学发展做出显著贡献的组织和个人。莱伯泰科于2021年5月和2023年3月分别推出了自主研发的LabMS 3000电感耦合等离子体质谱仪和LabMS 5000电感耦合等离子体串联质谱仪,其技术成熟度与产品可靠性已经满足国内集成电路制造企业对28nm以上制程硅片表面金属离子检测的需求,并已成功应用于半导体晶圆制造企业,在半导体行业有了巨大突破。莱伯泰科此次获奖的《硅片表面金属离子国产检测仪器首创项目》成功解决了国产仪器在此领域的技术空白,有望打破国外技术的长期垄断。该项目依托先进的ICP离子源技术、加强的离子传输系统和基于CAN总线的电控系统,实现了仪器的高效稳定运行及精准检测,满足了半导体硅片行业对极低检出限的严苛要求。凭借在电感耦合等离子体质谱技术领域的丰富创新经验,莱伯泰科一直致力于为半导体行业提供更加精准、高效的解决方案。今天的荣誉标志着莱伯泰科在科技创新道路上达到了新的里程碑。未来,莱伯泰科将继续专注于高端科研设备的研发,努力推动科学仪器技术的持续进步,为行业的发展贡献自己的智慧和力量。电感耦合等离子体质谱仪LabMS 3000 ICP-MS&bull 强大:集成型高基质进样系统,支持在线氩气稀释和有机样品加氧除碳,从而减少样品前处理时间并避免此过程中引入的各种污染&bull 精准:新一代碰撞反应池技术,消除棘手的多原子离子和双电荷离子干扰,提升数据质量&bull 安全:具有多重安全防控以及定时维护日志,确保仪器在安全、可靠的状态下运行,尽量减少计划外的停机和提供安全保护&bull 智能:HiMass智能工作站,中英文语言实时切换,支持接入实验室管理系统和定制报告模版,向导式设计更符合中国人操作习惯&bull 高效:与LabTech前处理设备无缝衔接实现一站式元素分析解决方案,使元素分析更高效、更准确、更安全LabMS 5000 电感耦合等离子体串联质谱仪(ICP-MS/MS)精准:MS/MS模式实现受控且可靠的干扰去除,精准去除质量干扰离子,从而获得更低的检测限和准确的超痕量分析结果。稳定:采用工业标准27.12MHz 全固态RF发生器,具有高稳定性及可靠性;优异的离子传输系统设计即使在MS/MS模式下也具有良好的检测稳定性。可靠:通过 SEMI S2 认证,多达十重安全防护配置,带来全面可靠的安全防护,保证仪器长时间安全可靠运行。强大:全基体进样系统结合接口设计及加强离子传输系统,带来强大的基体耐受性,即使高基体直接进样也可有效降低信号漂移。易用:HiMass智能工作站,一键式,向导式、模块化设计,界面简洁直观,易学易用,提高工作效率。
  • 从技术到市场,3分钟让你了解表面分析技术(附2019年全球数据)
    p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 0, 0) " strong /strong /span /p h2 style=" text-align: center " span style=" text-decoration: underline " strong span style=" text-decoration: underline color: rgb(247, 150, 70) " 表面分析技术 /span /strong /span /h2 p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 0, 0) " strong 固体表面附近的几个原子层内具有许多与体内不同的性质(如化学组成、原子排列、电子状态等等)。 /strong /span /p p style=" text-align: justify text-indent: 2em " 在表面附近,由于垂直于表面方向的晶体周期性发生中断,相应的电子密度分布也将发生变化,从而形成一空间突变的二维区域。 strong 材料的许多重要物理化学过程首先发生在这一区域,材料的许多破坏和失效也起源于表面和界面,例如金属表面氧化、腐蚀、磨损、粘接、润滑以及金属材料的脆性、断裂等均与表面或界面的特性有关。 /strong 同时,由于这一突变区的存在,使材料表面产生许多新的物理化学性质。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 256px " src=" https://img1.17img.cn/17img/images/202004/uepic/833579e2-0ee5-4b8d-87eb-ce5c51d06958.jpg" title=" 摄图网_501421197_wx.jpg" alt=" 摄图网_501421197_wx.jpg" width=" 600" height=" 256" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 基于此, 世界各国通过各种处理方法使材料表面某种(些)特性突出, 或制造具有特殊性质的薄膜来改造材料或器件的功能,使之成为研制开发新材料的一种有效方法。表面分析技术随之发展起来。 /p p style=" text-align: justify text-indent: 2em " 为有效进行物质表面分析,上世纪30年代开始,一系列物质表面分析的探测和显微镜技术相继出现并日臻完善,为表面研究提供了良好的实验条件,其基本原理是用一个探束(光子或原子 、电子、离子等)或探针(机械加电场)去探测样品表面,并在两者相互作用时,从样品表面发射或散射电子、离子、光子及中性粒子(原子或分子)等。检测这些粒子的能量、质荷比、束流强度等就可得到样品表面的各种信息。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 256px " src=" https://img1.17img.cn/17img/images/202004/uepic/ced3af35-bd7b-457c-8905-30e7bcadd8fa.jpg" title=" 摄图网_500969170_wx.jpg" alt=" 摄图网_500969170_wx.jpg" width=" 600" height=" 256" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(247, 150, 70) " 根据这些信息的特点,表面分析可大致分为表面形貌分析、表面成分分析和表面结构分析三类: /span /strong /p p style=" text-align: justify text-indent: 2em " 1. span style=" color: rgb(247, 150, 70) " strong 表面形貌分析 /strong /span 指“宏观”几何外形分析,主要应用电子显微镜(TEM、SEM等)、场离子显微镜(FIM)、扫描探针显微镜(SPM,如STM、AFM等)等进行观察和分析。 /p p style=" text-align: justify text-indent: 2em " 2. span style=" color: rgb(247, 150, 70) " strong 表面成分分析 /strong /span 包括表面元素组成、化学态及其在表层的分布(横行和纵向)测定等,主要应用X射线光电子能谱(XPS)、俄歇电子能谱(AES)、电子探针、二次离子质谱(SIMS)和离子散射谱(LSS)等。 /p p style=" text-align: justify text-indent: 2em " 3. span style=" color: rgb(247, 150, 70) " strong 表面结构分析 /strong /span 指研究表面晶相结构类型或原子排列,主要应用低能电子衍射(LEED)、光电子衍射(XPD)、扫描隧道显微镜和原子力显微镜等。 /p p style=" text-align: justify text-indent: 2em " 由于各种方法的原理、适用范围均有所不同,因而从不同层面给人们提供了认识微观世界的手段。 /p h2 style=" text-align: center text-indent: 0em " span style=" text-decoration: underline " strong span style=" text-decoration: underline color: rgb(247, 150, 70) " 表面分析市场 /span /strong /span /h2 p style=" text-align: justify text-indent: 2em " 从市场来看,2015年到2019年期间,全球表面分析市场以超6.2%的复合年增长率增长。据相关报道显示,2019年表面分析市场总额为40.3亿美元,较2018年同比增长5.13%。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 333px " src=" https://img1.17img.cn/17img/images/202004/uepic/3daee296-8cb7-4a5e-bb4f-b07e6407fade.jpg" title=" 图表1.JPG" alt=" 图表1.JPG" width=" 600" height=" 333" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " 2019年全球不同地区表面分析市场分析 /p p style=" text-align: justify text-indent: 2em " 从地区上看, strong 2019年美国及加拿大地区是表面分析最大市场,市场额约为11.66亿美元,占比约为29%; /strong 其次是欧洲地区,市场额约为9.22亿美元,占比约23%;日本地区以8.68亿美元的市场额,位居第三,占2019年总体市场的约22%; span style=" color: rgb(247, 150, 70) " strong 中国地区表面分析市场额约为4.95亿美元,占比约为12%; /strong /span 印度、亚太其他地区、拉丁美洲以及世界其他地区市场额相对较小,约为5.78亿美元,占比约为14%。 /p p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 美国及加拿大、欧洲和日本三个地区是表面分析最大的市场,都超越了中国。 /span /strong span style=" text-indent: 2em " 这三个地区科技都相对发达,且这三个地区的复合年增长率也都超过平均水平, strong 可以推测美国及加拿大、欧洲和日本在表面分析相关领域较为领先,某些应用表面分析技术的领域也较中国更为发达。 /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 368px " src=" https://img1.17img.cn/17img/images/202004/uepic/2db7e1b6-3d0e-4780-b0ab-a1f2c964a2b5.jpg" title=" 图表2.JPG" alt=" 图表2.JPG" width=" 600" height=" 368" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" text-indent: 2em " 2019年不同领域表面分析市场分析 /span /p p style=" text-align: justify text-indent: 2em " 从应用领域来看, strong 2019年表面分析在工业领域市场额占比最高,约达到19.32亿美元,约占48% /strong ;此次为政府相关单位,市场额约为14.09亿美元,约占总量的35%;表面分析制药/生物和环境领域市场额分别为3.1亿美元和2.74亿美元,占比分别约为8%和7%;农业/食品、医院/临床/其他等领域市场额相对较少,均占表面分析市场总额的1%左右。 /p p style=" text-align: justify text-indent: 2em " strong 表面分析市场主要集中在工业和政府两个领域,市场额分别为19.32和14.09亿美元,占表面分析市场总体的83%。 /strong strong 工业中,表面分析技术在半导体、能源、聚合物、冶金金属、纺织品、纸张和包装等行业起到了至关重要,应用较为广泛,而政府相关单位主要承担了科学研发任务,对表面分析仪器的需求量较大。 /strong /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/95bc77c7-6b4b-4d33-97ea-108e6e434fd9.jpg" title=" w1920h420bmfxj2020(8).jpg" alt=" w1920h420bmfxj2020(8).jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" span style=" color: rgb(84, 141, 212) " strong (点击图片报名参会) /strong /span /a br/ /p p style=" text-align: justify text-indent: 2em " 此背景下,由国家大型科学仪器中心-北京电子能谱中心、北京理化分析测试学会表面分析专业委员会、中国分析测试协会高校分析测试分会、全国微束分析标准化技术委员会表面化学分析分技术委员会及仪器信息网联合举办的 span style=" color: rgb(247, 150, 70) " strong “第四届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”暨“表面化学分析国家标准宣贯会”主题网络会议将于2020年5月8日举行。 /strong /span /p p style=" text-align: justify text-indent: 2em " 会议邀请了李景虹院士等10位表面分析领域的研究应用专家、相关仪器技术专家,针对标准、技术进展等进行一一解读,为从事表面分析及材料研究的人士提供在线交流平台。 /p h4 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=2235" target=" _blank" span style=" text-decoration: underline color: rgb(0, 0, 0) " strong 主持人: /strong /span span style=" text-decoration: underline color: rgb(84, 141, 212) " strong 姚文清(清华大学 高级工程师) /strong /span /a /h4 h4 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6354" target=" _blank" span style=" text-decoration: underline color: rgb(0, 0, 0) " strong 报告一: /strong /span span style=" text-decoration: underline color: rgb(84, 141, 212) " strong 李景虹 院士(清华大学 化学系):界面电化学研究进展 /strong /span /a /h4 h4 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6383" target=" _blank" span style=" text-decoration: underline color: rgb(0, 0, 0) " strong 报告二:朱 /strong /span span style=" text-decoration: underline color: rgb(84, 141, 212) " strong 俊发(中国科学技术大学 教授):同步辐射光电子能谱技术及其应用 /strong /span /a /h4 h4 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6522" target=" _blank" span style=" text-decoration: underline color: rgb(0, 0, 0) " strong 报告三: /strong /span span style=" text-decoration: underline color: rgb(84, 141, 212) " strong 谢佳哲(Park帕克原子力显微镜 应用专家):AFM原子力显微镜在半导体产业应用案例介绍 /strong /span /a /h4 h4 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6384" target=" _blank" span style=" text-decoration: underline color: rgb(0, 0, 0) " strong 报告四: /strong /span span style=" text-decoration: underline color: rgb(84, 141, 212) " strong 毕迎普(中国科学院兰州化学物理研究所 研究员):光催化剂原子间光生电荷迁移及化学价键动态变化研究 /strong /span /a /h4 h4 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6385" target=" _blank" span style=" text-decoration: underline color: rgb(0, 0, 0) " strong 报告五: /strong /span span style=" text-decoration: underline color: rgb(84, 141, 212) " strong 王海(中国计量科学研究院 实验室主任/副研究员):国家标准“GB/T 33498-2017表面化学分析 纳米结构材料表征”宣贯 /strong /span /a /h4 h4 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6504" target=" _blank" span style=" text-decoration: underline color: rgb(0, 0, 0) " strong 报告六: /strong /span span style=" text-decoration: underline color: rgb(84, 141, 212) " strong 史南南(赛默飞世尔科技(中国)有限公司 应用工程师):XPS表面分析联用技术和应用——REELS、UPS、Raman /strong /span /a /h4 h4 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6386" target=" _blank" span style=" text-decoration: underline color: rgb(0, 0, 0) " strong 报告七: /strong /span span style=" text-decoration: underline color: rgb(84, 141, 212) " strong 刘芬(中国科学院化学研究所 副研究员):XPS中绝缘样品和薄膜样品分析 /strong /span /a /h4 h4 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6464" target=" _blank" span style=" text-decoration: underline color: rgb(0, 0, 0) " strong 报告八: /strong /span span style=" text-decoration: underline color: rgb(84, 141, 212) " strong 王文昌(岛津企业管理(中国)有限公司 应用工程师):岛津X射线光电子能谱应用实例介绍 /strong /span /a /h4 h4 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6387" target=" _blank" span style=" text-decoration: underline color: rgb(0, 0, 0) " strong 报告九: /strong /span span style=" text-decoration: underline color: rgb(84, 141, 212) " strong 吴正龙(北京师范大学 教授级高工):光电子能谱(XPS)定量分析综述 /strong /span /a /h4 h3 style=" text-align: center text-indent: 0em " span style=" color: rgb(227, 108, 9) " strong span style=" text-indent: 2em " /span /strong /span /h3 p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 211px height: 211px " src=" https://img1.17img.cn/17img/images/202004/uepic/ace38c9b-1dd7-42ec-87ae-b4a1275aa7e9.jpg" title=" 1587031337.png" alt=" 1587031337.png" width=" 211" height=" 211" / /p h3 style=" text-align: center text-indent: 0em " span style=" color: rgb(227, 108, 9) " strong span style=" text-indent: 2em " 扫码即可报名参会! /span /strong /span /h3 p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/329f4846-7c9b-43cc-861a-b4dee47ed1ad.jpg" title=" 海报.png" alt=" 海报.png" / /a /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/webinar/meetings/2020bmfx/" target=" _blank" span style=" color: rgb(84, 141, 212) " strong (点击这里报名参会) /strong /span /a br/ /p
  • SPM系列丨润滑油固液界面特性表征
    润滑油是各种机械设备上用以减少摩擦,保护机械及加工件的液体或半固体润滑剂。润滑油如发动机机油,润滑原理是其中所含的添加剂成分会在金属表面形成吸附膜,从而减少摩擦作用,并通过防止金属与金属间的直接接触来阻止金属磨损。 但目前常用的测试方法并不能直接观察吸附膜,因此在实际的润滑油开发过程中,需要使用大型装置进行重复测试,例如采用真实车辆测试和发动机测试,以缩小改性剂候选范围和最佳浓度范围。此类开发方式需要大量的时间与物料成本,因此迫切需要一种新的方法。 原子力显微镜是一种通过检测纳米级针尖和样品间作用力获得信息的高分辨工具。但是传统原子力显微镜对力的检测分辨率不够高,因此需要使用调频模式的原子力显微镜。调频模式下探针可以检测到一个或几个分子对探针的扰动,非常适合对润滑油吸附膜这种单分子膜进行观测。 SPM-8100FM调频原子力显微镜仅需500μl润滑油样品,即能够以分子级分辨率观察润滑油-氧化铁界面。 使用SPM-8100FM对润滑油中氧化铁表面上所形成的磷酸酯吸附膜进行分析基油为PAO 4(聚α-烯烃),添加剂为C18AP(正磷酸油酸酯)。 图示为4组对照实验,分别是仅使用PAO(不添加C18AP)和添加了浓度为0.2 ppm、 2 ppm、20 ppm和200 ppm的C18AP的润滑油。 在未添加C18AP的PAO中,观察到层间距离0.66 nm的层状结构。通过这一层次可以看出,PAO分子在氧化铁膜表面上形成了平行于表面的平坦的覆层。随着C18AP浓度不断增加,从0.2 ppm到2 ppm后,层状结构开始消失,最后在20 ppm和200 ppm时完全观察不到。层状结构消失表明PAO分子定向已被C18AP破坏,即C18AP在氧化铁基片上的形成了吸附膜。氧化铁基片在浓度为2ppm时部分覆盖,在20ppm和200ppm时完全覆盖。可以推断,随着C18AP浓度不断增加,氧化铁基片表面逐渐被吸附膜覆盖。 对照使用摆锤式摩擦力测试仪测量获得的钢-润滑油-钢界面的摩擦系数。 在添加C18AP浓度到达20 ppm后,PAO的摩擦系数大大降低。 SPM-8100FM界面图像表明,PAO中C18AP的浓度高于20ppm时,C18AP吸附层完全覆盖了氧化铁基片表面。 尽管对滑动条件和静态条件下实施表面分析的动态环境存在差异,但是这些实验结果表明,使用SPM-8100FM对润滑油-氧化铁界面实施分析进而评估滑动表面摩擦特性是可行的。该技术对于润滑油开发,可有效加快润滑油开发进度,在研发的初期阶段就可以在实验室中进行测试,完成开发初始阶段筛查。
  • DX系列比表面积仪-正极材料磷酸铁锂比表面积测试
    在动力电池界,三元锂和磷酸铁锂是最常用的两种锂离子电池。三元锂电池因为其正极材料中的镍钴铝或镍钴锰而得名“三元”,而磷酸铁锂电池的正极材料为磷酸铁锂。由于三元锂电池当中的钴元素是一种战略金属,全球的供应价格连年来一路飙升,相较之下,磷酸铁锂电池中没有钴这种价格昂贵的金属,更加便宜。因此,更多的造车企业采用磷酸铁锂电池来降低生产成本,抢占市场份额。在过去的2021年,磷酸铁锂凭借高性价比优势成为市场选择的宠儿,主流材料生产企业大多实现扭亏为盈,而下游动力方面需求的强劲支撑也使其在年末阶段面对高价的碳酸锂原料依然积极扫货。2022年1月国内磷酸铁锂产量为5.91万吨,同比增长158.9%,环比小幅提升3.3%。2021年1-12月国内动力电池装机量达到154.5Gwh,同比增长142.8%,其中磷酸铁锂电池在7月实现对三元电池产量与装机量的双重超越后,领先优势不断扩大,1-12月累计装机量达到79.8Gwh,占比51.7%,同比增幅达到227.4%,其中宁德时代、比亚迪和国轩高科分列磷酸铁锂电池装机前三甲,CR3集中度超过85%。从生产企业来看,德方纳米凭借稳定的客户渠道和产能优势,全年产量继续领跑;国轩高科在储能和自行车领域开疆拓土,自产铁锂需求稳健,紧随其后;湖南裕能、贝特瑞、湖北万润是市场供应的坚实后盾。考虑到未来全球动力电池与储能电池需求,预计2025年全球磷酸铁锂正极材料需求约为98万吨,对应市场规模约为280亿元。伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂新一轮周期即将来临。大规模的量产也必将刺激比表面积分析仪的市场需求。众所周知,比表面积分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、隔膜涂覆用氧化铝等材料的比表面积测试。比表面积过大的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外比表面积过大,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行比表面积测试,在一定程度上有助于研判后续产品的性能。磷酸铁锂作为动力电池的正极材料,其比表面积与电池的性能密切相关。通常情况下,磷酸铁锂的比表面积与碳含量呈线性关系。生产中有比表面积测试仪进行测试。比表面积太小,说明材料的碳包覆量不够,直接体现是电池内阻偏高、循环性能不好。比表面积过大,说明材料的碳包覆量过高,直接的体现是材料的电化学性能极好,但易团聚、极片加工困难,且涂布不均匀等。行业标准《YS/T1027-2015磷酸铁锂》明确规定了磷酸铁锂比表面积测试方法及流程。快速高效、精确规范的测试离不开性能优良的测试仪器,JW-DX系列快速比表面积测试仪,测试方法及数据符合《YS/T 1027-2015磷酸铁锂》的要求。JW-DX比表面积测试仪采用专利号为20140320453.2的吸附法专利测试,完全避免了常温下样品脱附不完全带来的测试误差,非常适合粉体生产厂家的在线快速测定。测试范围:比表面测试范围:0.0001m2/g,重复精度:±1%产品特性:1、测试速度快,5分钟测试一个样品;2、吸附峰的峰形尖锐,灵敏度大幅提高;3、独立4个分析站,实现了多样品的无干扰、无差异测试;4、外置式4站真空脱气机,避免污染测试单元。
  • 专家约稿|表界面科学设备在原位材料制备及结构表征中的应用:STM及XPS
    根据热力学分子自由程理论,即使是达到标准大气压亿分之一的真空环境 (10-3 Pa),也存在着在一秒钟内彻底污染清洁样品表面的可能。对性质活泼的纳米材料表面,易潮解的氧化物以及对碳氢化合物亲合性比较好的样品,无论预处理如何精细,在把样品暴露环境的那一刻,整个表面就已经彻底改变。想要认识在此之前发生的过程对表面的影响也就无从谈起。因此一套互联表征仪器需要真正的具备原位表征能力。比较形象的理解如下图1所示,原位、特别是使役条件下的表征仪器,可以在一定程度上实现对材料在工况下的结构、化学组分等的研究,有利于理解所观测到的现象是由于何种原因所引起。因此,发展使役条件、生长环境中样品表面结构、化学性质检测是非常重要和必要的。图1. 不同观测条件下所研究对象的状态。从左到右分别是离线观测、准原位观测和使役条件下的观测。对于高质量的材料制备,其在各类基底上的生长可以理解是一个“催化反应”过程,催化反应的机理研究最大的困难在于表征设备和真实情况之间的鸿沟,如时间鸿沟、材料鸿沟、压力鸿沟、温度鸿沟等。实现真实反应条件下与各类表征平台的对接,从而达到高效表征,协同工作,减少测试周期,提高测试精确度和信息完整程度。对于目前研究的材料生长机理,关注重点包括前驱体在衬底上的初始状态、中间态、成核、扩散、聚集、相变、长大到单晶,分子束外延与扫描隧道显微镜的真空互联系统满足了上述需求,每一个过程所需要的信息包含结构形貌和化学组分。结构形貌:扫描隧道显微镜(Scanning Tunneling Microscopy,STM);化学组分:包含两部分,一是反应过程中所产生的、脱附的组分;另一个是留在衬底表面上的组分。前者可以用质谱仪来实时检测,后者可以用X-射线光电子能谱仪(X-ray photoelectron spectroscopy, XPS)来观测。各类设备的特点:1、 高温近常压STM优点:(1)工作气氛可到100mbar;(2)工作温度可达1300 K(真空);10 mbar气氛下可达250 ºC;(3)快速扫描(大于10帧/秒);(4)原位质谱联用;缺点:因高温高压而丧失部分分辨率,难以获得原子分辨;图2. (A)高温近常压STM的实物照片(图片来自材料科学与纳米技术中心,University of OSLO);(B)SPECS的reactor STM的原位反应池和STM探头实物图;(C)石墨烯在金属表面的生长过程实时高压高温STM原位图片。图2(A)所示的反应STM(高温、近常压STM)位于挪威的奥斯陆大学(University of OSLO)材料科学与纳米技术中心,其制造商为Leiden Probe microscopy(The Reactor STM - Department of Chemistry (uio.no))。笔者博士后期间所在的布鲁克海文国家实验室的CFN(功能纳米材料研究中心)也有一台同样配置的Reactor STM。主要包含HP stage(高压STM扫描部件),其中的反应池由于较小的体积可以非常快速的实现气氛与真空之间的转换;独特的控制器可以实现20帧/秒的速度;最优条件下最高气压可达5bar,最高温度可达300 ℃。另一款经典的reactor STM是SPECS Aarhus 150系统(SPM Aarhus 150 NAP | SPECS (specs-group.com)),SPM的扫描头安装于原位的反应池中,高温加热是以卤素灯为热源,其工作范围是超高真空中850 K,10 mbar气氛为550 K。图2B是该经典系统的实物图。此外,扫描头中搭配有进光口,可以实现光催化反应的原位监测。如图2C所示,在室温下,干净的Cu(111)表面上,甲烷吸附后无团簇形成,加热后在金属表面上逐渐形成小的团簇,并均匀的铺展在表面上,终止气体的通入,继续加热金属,可以观测到不同尺寸的石墨烯岛,再进一步升高衬底温度,小的岛会在表面上移动聚集形成较大尺寸的石墨烯,再通入甲烷气体,在边界上继续反应,使石墨烯岛长大逐渐形成单层石墨烯。2021年,美国Lawrence Berkeley National Laboratory表面催化反应的领军人物Miquel Salmeron与以色列Weizmann Institute of Science的Baran Eren在国际最知名的Chemical Review上发表了题为“高压扫描隧道显微镜”的综述文章,概述了在过去20年内,随着扫描隧道显微镜在表面催化领域中的发展,以晶体表面在mTorr到近常压的气体存在的条件下表面结构的变化为主题,提出了高压STM这一新工具在未来表面科学研究中的重要性。目前,全球近常压扫描隧道显微镜的厂家主要有SPECS、Leiden Probe等。国产扫描隧道显微镜设备目前依然以极低温为主。2、XPS图3. 将制备腔体与XPS联用,外加质谱检测。(A)真空样品制备腔与XPS一体化系统;(B)联用质谱;(C)近常压XPS原位检测示意图。XPS的发明贡献了两个诺贝尔物理学奖,其中1905年爱因斯坦解释了光电现象,并因此获得了1921年的诺贝尔物理学奖。瑞典物理学家Kai Siegbahn将XPS发展为一个重要分析技术,并获得了1981年的诺贝尔物理学奖。值得一提的是,其父亲Karl Siegbahn在1924年也获得过诺贝尔物理学奖“鉴于其发现并研究X-射线光谱-for his discoveries and research in the field of X-ray spectroscopy”。美国惠普公司于1969年制造了世界上首台商业单色X射线光电子能谱仪。1962年,Imperial College London的David Turner等人又研制了紫外光电子能谱仪(Ultraviolet photoelectron spectroscopy, UPS),利用紫外光研究价带电子状态,与XPS互相补充。XPS目前已经成为了一种常规的材料化学组分分析手段,由于其表面灵敏性,特别适合于表面分析,已经成为几乎所有高校和研究院所分析测试中心的标配仪器。与近常压STM相对应的,在表面反应中也需要近常压的XPS来实时探测表面化学组分的变化。我国第一台近常压XPS系统是由原中国科学院上海微系统与信息技术研究所的刘志研究员课题组搭建,该设备是基于SPECS的近常压系统进行定制化升级,能够实现在样品环境气压最高20 mbar的条件下的光电子能谱原位测量。样品最高可以加热到800K,能够满足大部分催化反应、固-气界面等研究。随着我国科研投入的不断加大,国家对基础科研和大科学装置中心的投入,表面科学研究团队的不断发展也得益于这一类先进表征技术的发展,包括上海光源、苏州纳米所的真空互联Nano-X等都建有非常全面的表面科学研究平台。图3A所示是包含样品制备系统的XPS,含离子源(用于清洗单晶表面);加热台(除气、晶化表面);各类蒸发源(包括金属、非金属等,材料生长);LEED(低能电子衍射仪,表征样品晶化结构);原位氧化系统等;在生长腔内靠近样品处导入收集管与质谱系统连接,实时分析样品制备过程中所产生物质的化学成分(图3B)。图3C是近常压XPS系统的示意图,可以在近常压的反应氛围下监测在材料生长过程中样品表面上发生的化学变化,与质谱信息相对应,实现化学组分的分析。3、低温STM(含q-Plus AFM功能)超高真空低温STM的优点为超高分辨率,可达亚Å。超高稳定性,4K液氦温度下可以实现谱学测量,如拓扑态、能带、缺陷态、边界态、电荷分布等的实空间测量。对于STM而言,只有在低温环境中实现谱学测量的条件下才真正发挥了其独一无二的功能。仪器实物图如图4A所示,包含扫描腔、制样腔和进样腔,其中扫描腔外部较高的不锈钢杜瓦是为储存如液氮、液氦等制冷剂以实现扫描头和样品的极低温,从而实现高质量图、谱测试。样品托和扫描头的改进满足多尺度研究,如低温条件下的原位沉积。图4B所示,在腔体外部所放置的蒸发源可以聚焦到样品表面,实现原位生长和原位观测,对于分子或小尺寸纳米颗粒有独特优势;除此之外,样品托上可以改装成包含栅极、电压、电流接口的模型器件,可以在电场条件下原位监测样品表面电学信号的改变。组合q-plus AFM实现单原子键成像:2009年瑞士苏黎世IBM研究中心L. Gross等人首次报道了利用在AFM针尖上吸附单个CO分子获得了具有化学键分辨的分子结构图像,如图4C(右)所示,从上到下分别是并五苯的分子结构,STM图和AFM图像,针尖修饰的AFM图像可以清晰的分辨出分子中的五个苯环(Science, 2009, 325, 1110)。图4. (A)低温扫描隧道显微镜实物图(Omicron);(B) 上:可以进行原位沉积的扫描腔;下:可加电场的样品托设计图;(C)左:Q-plus AFM针尖托实物图(Omicron);右:并五苯分子的结构示意图、STM和AFM图像;(D)C26H14在Ag(100)表面上加热后发生脱氢反应的产物STM和AFM图像。自此之后,STM研究领域又开辟了一个崭新的方向,也赋予了STM更加突出的化学键分辨优势。因此,目前许多低温STM系统中都选配qPlus AFM配件用于化学键的成像。如图4D所示是C26H14前驱体分子在Ag(100)表面上脱氢聚合过程中化学键的变化(Science, 2013, 340, 1434)。从STM图上仅仅可以看出形貌的变化(第一排),AFM图像可以清晰的分辨出过程产物的不同键合情况(第二排)。最近越来越多的研究工作表明q-Plus AFM在研究反应过程中间产物中所发挥出的独特作用。笔者在准备草稿时,7月14日第377卷Science中有两篇文章均是利用q-Plus AFM实现了可控的表面化学反应操控和表征,以及超高分辨的水合质子的结构区分。在qPlus非接触原子力显微镜领域中,我国科学家江颖教授长期致力于超高分辨的SPM系统的研制和开发,近年来在表面二维冰的结构和动力学研究中取得了一系列突破性成果。4、展望以光源、“Nano-X” 真空互联实验站为代表的大科学装置中心及各研究院、大学科研平台中,根据其科研特色和研究方向,逐渐形成了材料生长、测试分析、器件加工、性能表征等大型设备互联的科学装置。主要解决了超高真空中样品易氧化、低温样品稳定性等难题,具有传统超净间无法比拟的优势。完全排除了外界环境因素的干扰,实现原子尺度下材料的本征性质及器件性能的表征。对新材料,特别是下一代先进半导体材料、量子信息材料的制备与表征具有重要意义。我们也需要认识到,从光源、互联站、到分析测试中心,再到每一个课题组的平台设施,国外进口的设备占比不低于50%,特别是高端的制造和表征设备。随着我国科研投入的增加,创新型企业如雨后春笋般不断涌现,在表界面科学相关领域,如费勉仪器的分子束外延系统、低温样品台;玻色子的低温扫描隧道显微镜、中科艾科米的无液氦系统等,也逐渐在国内甚至国际的表界面、凝聚态物理、在位化学等研究领域崭露头角。也希望国内各大研究院、所、高校等在购置相关设备时,可以考虑国产厂商,一起参与到我国重大仪器设备的自主研发中。作者简介牛天超,北航杭州创新研究院(余杭)研究员。2013年博士毕业于新加坡国立大学,之后分别在中科院上海微系统所、美国布鲁克海文国家实验室、南京理工大学和上海交通大学从事研究工作。主要研究方向是基于分子束外延生长制备和扫描隧道显微镜表征的二维材料生长机理及表面功能化研究。第一及通讯作者在包括Adv. Mater., J. Am. Chem. Soc., 和Prog. Surf. Sci.等期刊发表研究论文及综述30余篇。目前正在筹建中法航空大学(筹)理学院新型量子物态平台。参考资料:1、M. Salmeron, B. Eren, High-pressure scanning tunneling microscopy. Chem. Rev. 121, 962-1006 (2021).2、F. Albrecht,S. Fatayer, I. Pozo, I. Tavernelli, J. Repp, D. Peña, L. Gross, Selectivity in single-molecule reactions by tip-induced redox chemistry. Science 377, 298-301 (2022).3、Y. Tian, J. Hong, D. Cao, S. You, Y. Song, B. Cheng, Z. Wang, D. Guan, X. Liu, Z. Zhao, X.-Z. Li, L.-M. Xu, J. Guo, J. Chen, E.-G. Wang, Y. Jiang, Visualizing eigen/zundel cations and their interconversion in monolayer water on metal surfaces. Science 377, 315-319 (2022).4、苏州纳米真空互联实验站5、K. Bian, C. Gerber, A. J. Heinrich, D. J. Müller, S. Scheuring, Y. Jiang, “Scanning probe microscopy”, Nat Rev Methods Primers 1, 36 (2021).6、L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110-1114 (2009).
  • 岛津原子力显微镜-从表面到界面
    人类认识真理的过程就像剥洋葱,由表及里一层层递进。 反映到对化学反应过程的认识,一开始,人们通过物质的形、色等外在表象认识化学反应。正如现代化学之父拉瓦锡重复的经典“氧化汞加热”实验一样,氧化汞由红色粉末变为液态的金属汞,这个显著的变化意味着反应的发生。即使到了近现代,仪器分析手段越来越多样,我们做常用的分析手段也是通过物质外在状态的变化进行观察,或者利用各类显微镜及X射线衍射仪观察物质的结构变化。 拉瓦锡之匙拉瓦锡对化学反应中物质的质量、颜色、状态变化的观察,犹如在重重黑暗中,找到了打卡化学之门的那把钥匙。 元素周期表 到19世纪,道尔顿和阿伏加德罗的原子、分子理论确立,门捷列夫编列了元素周期表。原子、分子、元素概念的建立令化学豁然开朗 自从用原子-分子论来研究化学,化学才真正被确立为一门科学。正是随着对不同元素的各种微粒组合变化的认识发展,化学的大门终于被打开。伴随金属键、共价键、离子键、氢键等各种“键”概念的提出,人们逐渐认识到各种反应的本质是原子或分子等微粒间的力学变化。于是,对反应的观测需要微观下的力学测量工作。 作为专门利用极近距离下极小颗粒间作用力工作的原子力显微镜,此事展现了自身巨大优势。无论是直接测试不同分子间的作用力,还是利用力的测量完成表面形貌的表征,原子力显微镜以高分辨率出色地完成了任务。 对于一些生物样品,例如脂质膜,因为其是由磷脂分子构成的单层或双层结构,极其柔软,因此其表面作用力极其微弱。从测试曲线上可以看出,脂质膜对探针的力只有约1pN,但是原子力显微镜的测试曲线上可以很清晰地捕捉到这个变化。 有趣的是,人们对真理的发掘,是由表及里的。但是利用原子力显微镜对化学反应本质的发现,却是由内而外的。 原子力显微镜基本是被作为一种表面分析工具使用的。这使其只能用来观察反应前后固相表面的结构变化,或者通过固相表面的各种属性,如机械性能、电磁学性能等侧面论证反应的发生。而要真正观察到反应的过程,是要对界面层进行观测的。因为几乎所有的反应,都是发生在两相界面处的,表面只是最终反应结果的呈现。 在界面处,反应发生时,原有的原子/分子间的作用力——也就是各种“键”,因为电子的状态变化(得失或者偏移)无法维持原有的稳定性,从而导致了原子/分子的重新排列,直到形成了新的力学稳定态——也就是新的“键”形成后,反应结束。这个过程的核心就是原子/分子间的“力的变化”。 反应的本质——微粒间力的分分合合 当化学科学的车轮推进到纳米时代,当探索的前锋触摸了两相界面,当理论的深度深入到动力学的研究。原子力显微镜是否能够当此重任呢? 能。但是需要一番蜕变。 界面处的力梯度有两个特点。一是更为集中,一般在0.3nm-1nm左右的范围内会有2-4个梯度变化;二是更为微弱,现在的原子力显微镜可以有效捕捉皮牛级的力变化,但是在表征界面时依然分辨率不足,需要的分辨率要提高1-2个数量级。 新的需求引导了新的技术蜕变。调频模式的成熟化,几乎完美应对了界面处的力梯度特点。一方面,只有几个埃的振幅可以有效对整个界面区进行表征,另一方面,检测噪音压低到20 fm/√Hz以内,保证了极高的分辨率。 岛津调频型原子力显微镜SPM-8100FM 例如对固液界面的观察。我们都知道,因为在固液界面处,因为液体分子和固体表面分子的距离不同,会形成不同的作用力,如氢键、偶极矩、色散力等。因此形成的液体分子的堆积密度会有不同。这种液体分子的分层模型,是润滑、浸润、表面张力等领域的底层原理。但是长期以来,这些理论只存在于数理模型和宏观现象解释之中,没有一个合适的直观观测工具。 界面观测之牛刀小试 岛津的SPM-8100FM的出现,将固液界面的高效表征变成了现实。上图右侧就是云母和水的界面处,水分子的分层结构,在约0.6nm的范围内,可以清楚看到3个分层。 具体到现实应用中,对表面润滑的研究很适合采用这种分析工具进行定性定量化测试。使用SPM-8100FM对润滑油中氧化铁表面上所形成的磷酸酯吸附膜进行分析。 图示为4组对照实验,分别是仅使用PAO(聚α-烯烃)和添加了不同浓度的C18AP(正磷酸油酸酯)的润滑油。 在未添加C18AP的PAO中,观察到层间距离0.66 nm的层状结构。通过这一层次可以看出,PAO分子在氧化铁膜表面上形成了平行于表面的平坦的覆层。随着C18AP浓度不断增加,从0.2 ppm到2 ppm后,层状结构开始消失,最后在20 ppm和200 ppm时完全观察不到。层状结构消失表明PAO分子定向结构被C18AP取代,在基片上形成了吸附膜。随着C18AP浓度不断增加,氧化铁基片表面逐渐被吸附膜覆盖。 对照使用摆锤式摩擦力测试仪测量获得的钢-润滑油-钢界面的摩擦系数。在添加C18AP浓度到达20 ppm后,PAO的摩擦系数大大降低。和微观界面表征的结果非常吻合。 由此可见,使用SPM-8100FM对润滑油-氧化铁界面实施滑动表面摩擦特性分析评估,可有效加快润滑油开发进度。 技术的发展推动了科学的进步,科学的发展也渴求更多的技术发展。原子力显微镜表征技术由表面向界面的延伸,一定会有力地推动对化学由表象向本质的探索。岛津将一如既往地尽其所能,提供帮助。 本文内容非商业广告,仅供专业人士参考。
  • 美科学家打造纳米金属可使水往高处流
    -- 罗切斯特大学的光学副教授郭春雷(音译)   北京时间6月5日消息,据物理学家组织网报道,树木通过毛细管作用,把水分从树根运输到距离地面几百英尺的树叶上,现在罗切斯特大学的科学家已经制成一种简单的金属平板,它利用相同原理使液体向上运行,不过这种新发明运输液体的能力,比自然界快很多。   这种金属或许将证明,把一定数量的液体抽到医疗诊断芯片周围,用来冷却电脑的处理器,或者把纯金属转变成抗菌表面是多么有意义。这项研究结果将发表在即将刊出的《应用物理学》杂志上。罗切斯特大学的光学副教授郭春雷(Chunlei Guo)说:“我们几乎可以改变任何金属的表面结构,从而控制液体对它作出的反应。我们甚至可以控制液体流动的方向,也可通过控制,让液体流动或者不流动。”   郭春雷和他的助理亚纳托里沃罗比耶夫利用超速激光爆改变金属表面,使金属表面形成纳米规模的凹陷、小球和激光腐蚀孔道。这种飞秒激光(femtosecond laser)产生的脉冲仅持续数千万亿分之一秒,如果说一飞秒相当于一秒,那么一秒就相当于大约3200万年。在短暂的爆炸过程中,郭春雷的激光发射出大量能量(相当于北美洲使用的所有电量),而且所有能量都集中在一个针尖大小的点上。   郭春雷表示,这种灯芯效应跟用纸巾把溢出的奶吸干,或者在玻璃杯里产生“酒泪”,利用分子引力和蒸发作用促使液体逆着重力方向移动的效果一样。郭春雷的金属逆着重力移动的速度是每秒1厘米。他的纳米结构还改变了液体分子和金属分子相互作用的方式,使它们之间或多或少具有一些吸引力。在尺度合适的情况下,金属纳米结构吸引液体分子的能力,比金属分子之间的吸引力更大,这种情况使得液体迅速在金属表面展开。液体在散开的过程中与蒸发作用结合,就在郭春雷的金属表面迅速产生了灯芯效应。   郭春雷通过在金属里加入激光腐蚀孔道,进一步加强了对液体的控制。他说:“设想一下一个微型芯片上具有庞大的水路系统,就像微处理器上的电子线路一样,我们利用少量液体,就能实施化学或者生物学工作,那会是一种什么景象。血液可以沿着特定路径到达传感器,进行疾病诊断。通过这种微型系统,护士根本不需要抽取一试管血液,进行检测。在皮肤上擦一下获得的细胞,或许就足以进行微量分析。”   郭春雷的科研组还制成了一种可减小水分子和金属分子之间的吸引力(这种现象被称作恐水症)的金属。由于细菌主要由水构成,因此它们在恐水症分子表面根本无法生长。通常情况下要改变四分之一的金属表面需要30分钟或更多时间,但是郭春雷和沃罗比耶夫正在改进这项技术,让它变得更快。不过幸运的是,虽然这项技术非常复杂,但是利用简单的壁装电源插座就可以给飞秒激光供电,这意味着如果该技术得到改进,它使用起来就会更加简单。   郭春雷还将在这个月的《物理评论快报》上宣布,利用飞秒激光加工技术,可以生产出亮度跟普通灯泡一样的白炽灯,但是消耗的能量仅为制作普通灯泡所需能量的一半。2006年郭春雷的科研组利用飞秒激光制成具有纳米结构的金属,这种金属几乎不反射任何光。2008年,该科研组已经可以通过一些调整,让这种金属反射特定波长的光线,这种效果可以把任何金属改变成任何颜色。
  • 美国麦克仪器公司钟华博士带您全面认识粉体特性表征的手段与应用实践
    对于不同的应用领域而言,其对粉体的特性关注点也不尽相同,测量方法很难详尽描述。为了帮助粉体行业从业人员更加深刻地了解粉体特性表征手段等技术,“2017第二届全国粉体检测与评价技术应用交流会暨实战培训班”将于今年12月27日-29日在广东省珠海市隆重举行,麦克默瑞提克(上海)仪器有限公司市场应用部经理钟华博士也将应邀分享题为“全面认识粉体特性表征的手段与应用实践”的报告。我们期待与您在会场面对面交流,共同探讨促进粉体特性表征的手段与应用发展。粉体的特性包括颗粒物性和颗粒集合体的物性,其主要包括以下几方面内容:1.几何特性(比表面和孔隙度、孔径与孔径分布、孔容等);2.物理性能(真密度、堆积密度、骨架密度等);3.表面特性(表面活性、表面酸性等);4.力学特性(压缩性、成型性、流动性等)。这些特性在一定程度上会影响粉体的成型加工及后期应用。因此,在生产及研究过程中需要采用合适的手段,准确地测定材料表征。本文将就无机粉体材料较为常见的比表面积和孔隙度、物理性能、表面特性、力学特性等粉体材料特性的表征手段做简要分析。1、 比表面积和孔径比表面积和孔径是影响固体材料的质量和性能的物理性质。基于两种材料的物理表面积变化,相同物理尺寸的材料也会呈现完全不同的性能表现。比表面积测量是一种用于包括催化剂、分子筛、MOF材料、电池、吸附剂、人工骨、药物、金属粉末为增材制造与各种各样的其他应用和行业的重要分析法。利用物理吸附原理可以测定粉末对气体(或液体蒸汽)的吸附量,从而得到材料的比表面积和孔结构信息,是最常用的微孔和介孔材料的表征方法。物理吸附在化学工业、石油加工工业、农业、医药工业、环境保护等领域有广泛的应用。分析手段:气体吸附法ASAP 2020 Plus系列全自动比表面与孔隙度分析仪(气体吸附仪)2、表面特性对于催化剂的结构设计和性能优化而言,需要对催化材料的比表面和表面化学深入的了解。化学吸附法被用来测定某种催化剂促进理想反应的效率,和检测经过一段时间的催化活性/再生的降解。化学吸附是粉体表面和被吸附物之间的化学键力起作用的结果,常被用于研究催化剂活性位的性质。活性位与载体之间的作用以及测定负载金属的分散度、金属表面积或颗粒大小等。分析手段:化学吸附分析法,包括静态容量法和动态(流动气体法)技术法3、密度测试粉体的密度是指单位体积粉体的质量。粉体具有一定的流动特性,粉体的密度对粉体的流动性影响巨大,故研究粉体的密度这一特性,这对粉体加工、输送、包装、存储等方面都具有重要意义。粉体的密度根据所指的体积不同分为:真密度、骨架密度和堆积密度等。分析手段: 气体置换法AccuPyc II 1340系列全自动气体置换法真密度仪4、压汞法测试压汞法,又称汞孔隙率法,其原理是基于汞对一般固体不湿润,界面张力抵抗其进入孔中,欲使汞进入孔必须施加外部压力。压汞法可得到部分介孔和大孔粉体的很多重要物理特性,如孔结构信息(孔径、孔容、孔面积等)、孔隙率、迂曲度、渗透性、压缩性、孔喉比、分形维数等。分析手段:压汞法 AutoPore V系列高性能全自动压汞仪部分内容转自粉体圈美国麦克仪器公司美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。自1962年成立以来,美国麦克仪器公司因其在比表面积与孔隙度分析、压汞分析技术、各种密度测试,化学吸附分析与微型催化反应研究众多领域技术研究的前沿性及创新性,始终保持着细微颗粒分析仪器领域的世界领先地位。美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器之一。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州分别设有办公室,并设有应用实验室提供各类仪器的演示与操作培训并提供对外做样服务,为广大用户提供完整的实验室解决方案与疑难样品的分析。
  • 【技术知识】表面张力仪在电镀行业中的应用
    以往电镀液的更换或何时再添加接性剂(如促进剂),是以经验值或时间来决定,如此做法是无法量化数据化,不知所以然的做法。电镀液中除了含有欲镀上之金属离子,电解质,错合剂外尚有有机添加剂(光泽剂,结构改良剂,润湿剂),其中润湿剂是影响被镀物(导线架,铜箔基板,构装基板)与金属离子,光泽剂之类等物质之间附着力好坏。镀膜易剥离是因接口活性剂选用不对或是浓度不对所造成。表面张力仪在电镀行业中的应用介绍01如何选定附着力好的电镀液主要是电镀液供货商配方问题,使用者可依供货商所提供电镀液实际去镀看看结果如何而选定,选定后以这新电镀液去测量表面张力值,以这个值当进料检验标准值。电镀液效果好坏还有因选用电镀设备有关,如使用何种电源供应器,选用何种电源供应器技术原理,是整个电镀设备的技术关键点。02制程中电镀液表面张力监控理论上电镀液表面张力愈小,表示电镀液愈容易渗入小缝隙里面,愈容易在被镀物表面润湿,也就是愈容易使用金属离子镀上去。但在品质与经济效益需取得平衡点,故表面张力值需控制在哪一点,这必须有赖使用者去抓。因每一家所考虑的都不一样,故无一定标准。但有一CMC(CriticalMicelleConcentration)点需先抓出来,因为超过CMC点后,表面张力反而不会改变,不但没达到预期效果且浪费接口活性剂。在CMC点之前的任何表面张力值,选一点你们认为制程上的,作为监控的标准值。当CMC点与标准值定下来后,再定时作电镀液取样量测。03结论假设金属离子(欲镀物)浓度是在控制范围内,但因无法渗入较小缝隙内,会造成缝隙内厚度不均匀甚至没镀到,或因润湿性不好除了厚度不均匀外,更是造成易剥离主要原因。表面张力计与底材表面自由能分析仪界面科学领域中,有一物化性质很值得去了解与应用它,尤其在精密化学,半导体,光电等新兴科技产业,在研发,制程改善和品保方面常会碰到界面上瓶颈问题,但因人们没深入去了解此一物化现象,似懂非懂,没有很清晰建立起正确观念,这些观念就是液体表面张力,固体表面自由能与表面自由能分布,和润湿功在实务解释应用上所代表的意义如何,因而无法利用这些观念去发现问题之所在,以谋求解决之道。只要把这物化性质清晰了解后,配合表面张力计和底材表面自由能分析仪的数据,相信可以解决许多表面张力方面的问题。相关仪器A1200自动界面张力测定仪基于圆环法(白金环法),测量各种液体的表面张力(液-气相界面)及液体的界面张力(液-液相界面)。分子间的作用力形成液体的界面张力或表面张力,张力值的大小能够反映液体的物理化学性质及其物质构成,是相关行业考察产品质量的重要指标之一。广泛用于电力、石油、化工、制药、食品,教学等行业。执行标准适应标准:GB/T6541
  • 【精彩视频回放】聚焦新材料研究 多种表面分析技术各显其能——第三届表面分析技术应用论坛成功召开
    p   表面科学是上世纪60年代后期发展起来的一门学科,目前已经成为国际上最为活跃的学科之一。材料表面的成分、结构、化学状态等与内部有明显的不同,而表面特性对材料的物理、化学等性能影响很大。随着我国新材料领域研究的深入,表面分析技术也日益发挥其重要的作用。当前,全球已经开发了数十种常用的表面分析技术,如X射线光电子能谱(XPS)、二次离子质谱(SIMS)、扫描探针显微镜(SPM)、辉光放电光谱(GDS)、俄歇电子能谱(AES)等。 /p p   为了积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术在新材料研究中的进展,5月20日,仪器信息网联手国家大型科学仪器中心-北京电子能谱中心、中国分析测试协会高校分析测试分会举办“第三届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”网络主题研讨会,七位专家就相关的研究领域分享了高质量的报告。 /p p   此次应用研讨会内容立足表面分析技术在新材料研究中的应用,既有某一课题的科研进展综述,也有某一方向的研究成果分享、最新标准解读,以及相关仪器使用介绍等。组织方希望通过此次表面分析技术应用论坛的平台,让与会者深入交流,共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。本次会议由国家大型科学仪器中心-北京电子能谱中心副主任、清华大学分析表面分析室主任、高级工程师姚文清主持。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/85014051-a8d5-4da7-874c-4853820e8013.jpg" title=" 姚文清.jpg" alt=" 姚文清.jpg" / /p p style=" text-align: center " strong 国家大型科学仪器中心-北京电子能谱中心副主任、清华大学分析表面分析室主任、高级工程师姚文清 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/80a5fb64-a7ff-4e04-a2d4-f343cc70cb41.jpg" title=" 报告嘉宾.png" alt=" 报告嘉宾.png" / /p p   清华大学张强教授主要从事能源材料研究,尤其是在金属锂、锂硫电池和电催化方面开展了一系列的工作。本次报告中,他从能源存储与转化的新机遇讲起,针对工作金属锂界面上的SEI(界面层),以及如何获得稳定的SEI,如何诱导金属锂均匀沉积等多个话题给大家介绍了其所开展的研究工作。报告题目: strong 《The Working Surface of Li Metal Anode in Safe Batteries》。 /strong /p p   计量、标准、合格评定(检测和认证认可)对人类社会进步和工业发展发挥着不可或缺的基础性作用,2006年联合国与国际标准化组织(ISO)正式明确“计量、标准化、合格评定”为国家质量基础(National Quality Infrastructure,简称 NQI)的三大构成要素。石墨烯由于其独特的性能使其成为代表性的新材料而受到各国政府的产业支持。中国计量科学研究院任玲玲研究员在简要回顾计量、标准的基础上,重点介绍针对急需有序规范发展的石墨烯粉体材料开展的NQI技术研究及成果实施。 strong 报告题目:《石墨烯粉体材料计量、标准及合格评定全链条实施》。 /strong /p p   X射线光电子能谱(XPS)是表面分析领域中的一种崭新的分析技术,通过测量固体表面约10个纳米层左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量或半定量及价态分析。XPS作为一种分析各种材料表面的重要工具,目前广泛应用于与材料相关的基础科学和应用科学领域,包括各种催化材料、纳米材料、高分子材料、薄膜材料、新型光电材料、金属以及半导体等表面性能研究。岛津宋玉婷博士介绍了XPS的技术特点及应用案例。 a href=" https://www.instrument.com.cn/webinar/Video/play/105159/" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《X射线光电子能谱最新应用进展》 /strong /span /a /p p   以氮化镓和砷化镓为代表的III-V族化合物,都是直接带隙半导体材料,通过掺杂或能带设计可以调控光电等物理特性,在光电领域具有独特优势。表面分析技术常被用于研究半导体材料及器件性能,分析表面形貌、组分、化学态、结构及能带等信息。本次报告,中国科学院半导体研究所赵丽霞研究员介绍了几个利用表面分析技术在研究III-V半导体光电材料和器件的典型工作。 strong 报告题目:《表面分析技术在III-V族半导体光电材料器件中的应用》 /strong 。 /p p   扫描隧道显微镜是当前表面物理和化学研究的重要实验设备。扫描隧道显微镜的基本原理是基于量子力学的隧穿效应,隧穿电流与隧穿结的高度灵敏性使扫描隧道显微镜具有原子级的空间分辨能力。扫描隧道显微镜的主要功能包括表面形貌成像、表面电子态密度测量、及原子分子操纵。中科院物理研究所陆兴华研究员的报告通过几个典型应用来展示扫描隧道显微镜的这些基本功能,并对扫描隧道显微镜技术的未来发展方向作了简单的介绍。 a href=" https://www.instrument.com.cn/webinar/Video/play/105162" target=" _blank" strong span style=" color: rgb(255, 0, 0) " 报告视频精彩回放:《扫描隧道显微镜技术》。 /span /strong /a /p p   飞行时间二次离子质谱(TOF-SIMS)能以极高的灵敏度(ppm~ppb)探测到包括H在内的所有元素及其化合物信息,被誉为是一种普适的分析技术。清华大学分析中心李展平博士的报告介绍了TOF-SIMS的基本原理、技术特点,以及它在环境等各种领域的应用。 a href=" https://www.instrument.com.cn/webinar/Video/play/105160" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《飞行时间二次离子质谱分析技术及其应用》。 /strong /span /a /p p   三氧化钼是一种用途广泛的材料,在催化、抗菌等领域内有独特的应用。MoO sub 3 /sub @SiO sub 2 /sub 是常见三氧化钼的使用形态,几十年来已经用不少方法进行过很多研究。北京化工大学程斌分享了其实验室对MoO3@SiO2的最近研究方法与结果。 a href=" https://www.instrument.com.cn/webinar/Video/play/105161/" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《氧化钼在MoO3@SiO2上分布的研究》 /strong /span /a /p p   虽然会议已经结束,但是精彩仍在继续,仪器信息网已经将部分报告老师的现场讲座视频上传到仪器信息网网络讲堂,想要重复学习或者没机会参与会议直播的网友,可以点击 strong 报告视频精彩回放 /strong 进行学习与分享。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制