当前位置: 仪器信息网 > 行业主题 > >

降解脂类过程

仪器信息网降解脂类过程专题为您整合降解脂类过程相关的最新文章,在降解脂类过程专题,您不仅可以免费浏览降解脂类过程的资讯, 同时您还可以浏览降解脂类过程的相关资料、解决方案,参与社区降解脂类过程话题讨论。

降解脂类过程相关的论坛

  • 三类化药中间体降解实验

    如题,三类化药中间体,需要做降解实验吗?如果需要,降解到什么程度?有官方的指导原则吗?如果有,请指出。谢谢。

  • 有机物降解过程的产物的确定

    [color=#444444]我在间苯氧基苯甲酸(3-PBA)降解过程中,发现了一个中间产物,但是根据分子量无法确定产物的化学结构,请各位大侠帮忙。质谱图是负离子。[/color][color=#444444]3-pba 的分子量为214,各个离子峰为93,169,213,[/color][color=#444444]产物的分子量为466,离子峰为213,169,93[/color]

  • 关于顶空气相色谱法测定残留溶剂 正己醇 样品降解物一致

    我们有一个酯类API,合成过程中加入正己醇生成的酯,该API需要测定正己醇残留,正己醇沸点约157℃,因此采用150℃的顶空条件测定样品,发现样品中的正己醇残留色谱峰面积其大,可能是该API在顶空条件下降解生成了正己醇,那么这样我如何实验证明该正己醇是降解的,样品中的正己醇残留应该怎么测定呢?谁有过类似的经历,分享一下。

  • 【我们不一YOUNG】β-胡萝卜素降解过程及产物

    [align=center][font=DengXian]β[/font]-[font=DengXian]胡萝卜素降解过程及产物[/font][/align][font=DengXian]无氧条件下,β[/font]-[font=DengXian]胡萝卜素通过顺反异构作用转变为新β[/font]-[font=DengXian]胡萝卜素,例如蔬菜的烹调和罐装。[/font] [font=DengXian]有氧时,β[/font]-[font=DengXian]胡萝卜素先氧化生成[/font]5,6-[font=DengXian]环氧化物,然后异构为[/font]5,8-[font=DengXian]环氧化物。光、酶及脂质过氧化物的共同氧化作用导致β[/font]-[font=DengXian]胡萝卜素的大量损失。光氧化的产物主要是[/font]5,8-[font=DengXian]环氧化物。[/font] [font=DengXian]高温时β[/font]-[font=DengXian]胡萝卜素分解形成一系列芳香化合物,其中最重要的是紫罗烯([/font]Ionene[font=DengXian]),它与食品风味的形成有关。[/font]

  • 【原创大赛】邻苯二甲酸二乙酯不同降解方法研究

    【原创大赛】邻苯二甲酸二乙酯不同降解方法研究

    [align=center]论文题目:邻苯二甲酸二乙酯不同降解方法研究[/align][align=center]邻苯二甲酸二乙酯不同降解方法研究[/align]摘要:邻苯二甲酸二乙酯(DEP)常作为增塑剂出现在大众的视野之中,由于目前塑料被大肆使用,造成DEP成为主要环境污染物之一。DEP不仅能够对环境产生污染,还可以通过生物富集或皮肤接触等方式对人体健康产生危害。本文主要研究了近年来降解DEP的不同降解方法,如微生物降解、Fenton与类Fenton处理、臭氧氧化降解、光催化降解等。关键词:邻苯二甲酸二乙酯,微生物降解,臭氧氧化,芬顿效应,光催化[align=center]Study on Different Degradation Methods of Diethyl Phthalate[/align]ABSTRACT:Diethyl phthalate (DEP) often appear as plasticizer in public view, and the current plastic use wholesale, DEP has become one of the main environmental pollutants.DEP can not only pollut to the environment, but also harm human health through [font=arial][size=10px][color=#434343] [/color][/size][/font]biological concentration or skin contact and so on. In this paper, different degradation methods for DEP degradation in recent years were mainly studied, such as micro-biological degradation, Fenton and Fenton-like [font=georgia][size=13px][color=#2e2e2e]reactions[/color][/size][/font] , ozone oxidation degradation, photocatalytic degradation, etc. [size=18px]KEY WORDS:[/size][size=18px] Diethyl Phthalate,Micro-biological Degradation,Ozonation,Fenton Method,Photocatalysis[/size][align=center]目 录[/align]前言.............................[color=black](6)[/color]第1章 概论.[color=black]................................................(7)[/color]第1.1节 邻苯二甲酸二乙酯简介[font=宋体].[/font][font=宋体][color=black]..............................[/color][/font][color=black](7)[/color]第1.2节 邻苯二甲酸二乙酯对环境影响[font=宋体][color=black]........................[/color][/font][color=black](7)[/color]第1.3节 邻苯二甲酸二乙酯对生物体影响[font=宋体][color=black].......................[/color][/font][color=black](8)[/color]第2章 降解邻苯二甲酸二乙酯不同途径...................[color=black](8)[/color]第2.1节 微生物降解...................................(9)2.1.1 微生物降解机理................................([color=black]9)[/color]2.1.2 不同菌类降解DEP研究.................[color=black](9)[/color]2.1.3 本节小结...................................[color=black](13)[/color]第2.2节 化学催化降解.......................................[color=black](14)[/color]2.2.1 Fenton法降解DEP机理.....................(14)2.2.2 不同催化体系降解DEP研究................[color=black](14)[/color]2.2.3 臭氧氧化降解方法......................[color=black](18)[/color]2.2.4 本节小结.........................(19)第2.3节 光催化降解.......................................[color=black](20)[/color]2.3.1 光催化降解DEP途径概述.................(20)2.3.2 不同光催化降解DEP研究.................(20)2.3.3 本节小结.........................(21)结论.............................[color=black](22)[/color]参考文献...........................[color=black](23)[/color][align=center]前 言[/align]邻苯二甲酸二乙酯(DEP)是一种环境污染物,对大气、水、土壤等均有不同程度的污染,同时通过对土壤的污染,影响植物生长,通过食物链威胁人体健康。并且DEP作为增塑剂,在日常生活中被大量使用,所以对DEP降解技术的研究是至关重要的。本课题主要围绕近年来邻苯二甲酸二乙酯不同降解技术的介绍以及分析,为传统降解技术提供优化降解效率(主要以添加催化剂为主)的方法。[align=center]第1章 概论[/align][align=center]第1.1节 邻苯二甲酸二乙酯简介[/align]邻苯二甲酸二乙酯(Diethyl phthalate DEP)。分子式:C12H14O4,属于肽酸酯类,是一种无色或微黄色带有芳香味的澄清油状液体。易溶于有机溶剂,几乎不溶于水。属于难挥发、中等极性和高脂溶性物质[1]。可以用作增塑剂,润滑剂,定香剂等,同时也可以改善部分这类材料的性能。[align=center]图1[color=black][/color]1 邻苯二甲酸二乙酯的分子结构式[/align][align=center]第1.2节 邻苯二甲酸二乙酯对环境影响[/align]DEP在工业领域的广泛使用会导致空气、水、土壤污染等环境问题。具体而言,DEP在大气中主要以气态的形式存在,并能够吸附于空气和水环境中的固体颗粒而引起污染[2]。所以实际上DEP可以说是“无处不在”,大量探究检测得出DEP存在于空气、水等各类物质中,并且严重污染土壤的质量。而将其作为增塑剂时,只要改变外界的温度等环境因素,DEP很容易就从塑料中脱附,影响生态环境。Demirta?, G等[2]通过洋葱曲霉测试得出DEP可以通过破坏细胞有丝分裂纺锤体从而影响洋葱生长,在高浓度的DEP中还会引起细胞的结构变化甚至坏死(图1[color=black][/color]2)。所以控制DEP浓度也是非常重要的。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202229657_7874_5365519_3.png[/img][/align][align=center]图1[color=black][/color]2 DEP引起的结构畸变和变化:a一个不清晰的维管束[font=宋体],[/font]b皮质细胞变形[font=宋体],[/font]c表皮中的物质积累[font=宋体],[/font]d扁平核[font=宋体],[/font]e表皮细胞变形,f坏死。[2][/align]DEP本身就是具有毒性的环境激素,所以DEP对生物体会产生不利影响。[align=center]第1.3节 邻苯二甲酸二乙酯对生物体影响[/align]DEP可以通过多种途径对人体健康产生威胁,如皮肤直接接触、呼吸等。主要途径一般是通过污染脂肪类食物。人类摄入这类食物,导致男性雄激素水平下降,精子数量、形态异常等危害[1,2],而对于女性,高富梅等[3]则通过实验证实DEP作为增塑剂,用于各类生活产品中,在这样的生活环境下,DEP高度暴露在空气中。孕妇长期生活于其中有自然流产的高风险。对婴儿也会有很大的影响。人们还通过对鼠类进行实验发现DEP除影响生殖系统外会对肝脏等器官造成破坏。总之,由于DEP对生态环境以及动物体的危害性是巨大的也是不可逆转的,所以中国《地表水环境质量标准》和《饮用水质量标准》规定了DEP 的限值为300μgL-1。目前国际上也较为看重DEP的降解处理。接下来我将从生物降解、氧化降解、光催化降解三个方面介绍近年来降解DEP的主要方法。[align=center] 降解邻苯二甲酸二乙酯不同途径[/align]由于DEP不溶于水,易于吸附在固体颗粒上的性质所以可以通过活性炭等吸附剂以物理处理的方式去除DEP[4]。但物理处理效率低,需要大量的吸附剂,而吸附剂价格贵且无法回收再利用,最终达到的效果也只是让DEP由环境转移至吸附剂中不能使其降解,还有一定的可能造成二次污染,所以一般都是利用化学处理降解。[align=center]第2.1节 微生物降解[/align]2.1.1[color=black]、[/color]微生物降解机理在自然条件下,DEP的水解、光解速度都很慢,而微生物降解的速率较快、原料便宜、对环境影响小并且不会二次污染环境所以成为DEP降解主要途径。DEP通过吸附在菌体上,作为唯一碳源和能源被微生物利用后降解,虽然好氧菌类和厌氧菌类都可以降解但目前仍然以好氧菌类为主要研究对象,一般都是利用好氧菌类对DEP进行降解,主要是通过侧脸水解形成邻苯二甲酸(PA),PA再进一步降解[5]。形成PA则有两种途径,脱脂化和转酯化。脱脂化:在酯酶作用下DEP侧链酯基水解成邻苯二甲酸单酯,其进一步水解就形成了PA。转酯化:DEP侧链烷基脱落形成邻苯二甲酸二甲酯后进一步水解成PA。微生物中的酶使PA降解为原儿茶酚。原儿茶酚可以转化为三羧酸循环中必要的有机酸从而转化为CO2和H2O[4]。[align=center]图2[color=black][/color]1 DEP微生物降解简易流程(a邻苯二甲酸二乙酯 b邻苯二甲酸 c原儿茶酚)[/align]2.1.2[color=black]、[/color]不同菌类降解DEP研究虽然微生物降解速率较快,但并不是所有的微生物都能够起到这样的作用。这就需要我们去寻找高降解效率的菌类物质。如薛潮等[6]以鞘氨醇单胞菌为实验对象探究其对DEP的降解,吸附等行为。 通过对不同浓度(100mgL-1、300mgL-1)的鞘氨醇单胞菌对DEP去除、降解、吸附行为进行实验(图2[color=black][/color]2).可以得出降解是鞘氨醇单胞菌去除DEP的最主要途径。在实验规定的时间内,降解率与时间正相关,与吸附率负相关。这是由于在去除过程将要结束时,作为微生物的唯一碳源DEP含量明显降低,DEP解吸到溶液中,最终被菌利用。由此我们可以知道微生物降解DEP以利用存在于或解吸到溶液的部分为主,很难直接利用被吸附的物质。同时他们还探究了表面活性剂对DEP降解的影响(图2[color=black]3[/color])。不同的表面活性剂在不同浓度下对DEP产生的影响不同,这也可以作为改进微生物降解效率的一个因素。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202233341_1492_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]2 DEP的表观去除率、降解率、吸附率与非生物损失率[6][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202237578_6652_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]3 吐温80、吐温40和鼠李糖脂对DEP降解的影响[6][/align]李晗绪[7]对高降解菌—假单胞菌DNE-S1的生长环境条件、降解DEP途径、降解能力等因素进行实验。DNE-S1是通过脱脂化作用降解DEP,并且对DEP有耐受性,在 50-1500 mgL-1都可以有效降解DEP,同时发现在给定条件下DEP浓度为500 mgL-1时达到最高降解效率97.8%(图24 a)。在DEP浓度为500 mgL-1的固定值下,绘制三维响应面和轮廓(图25),理论上在三维响应面最高点得到DNE-S1生长的最佳条件是 29.96℃和pH 8.51。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202237316_7897_5365519_3.png[/img][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202239220_4875_5365519_3.png[/img][/align][align=center]图 2[color=black][/color]4 a)和 c):不同 DEP 浓度下菌株 DNE-S1 的生长及降解能力;b)和 d):不同 DEP浓度下的比生长速率和降解速率 [7][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202242011_3235_5365519_3.png[/img][/align][align=center]图2[color=black][/color]5 响应面图和等值线图[7][/align]Elen Aquino Perpetuo等[8]将由土壤中分离出来的皮氏罗尔斯顿菌(Ralstonia pickettii)一种耐盐好氧细菌作为DEP的唯一碳源,进行生物降解分析。发现皮氏罗尔斯顿菌能够在24 h(pH 7、30 ℃和200mgL-1)下完全降解300 mg L-1的DEP。这也可以从侧面证实其实环境中存在着许多能够降解DEP的微生物,还是有待我们发现。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202242169_8666_5365519_3.png[/img][/align][align=center]图2[color=black][/color]6 在300mgL-1DEP下皮氏罗尔斯顿菌的生物降解及细胞生长[8][/align]2.1.3[color=black]、[/color]本节小结综上,通过近年来对高降解菌的寻找以及实验,有许多可高效率短时间降解DEP的菌类被发现。而DEP吸附于微生物表面是降解的前提,解吸后在降解酶的作用下转化成为菌类的营养物质(经过三羧酸循环)。同时菌类的生长条件如温度、pH值等也影响着降解的效率,从而我们要探寻每种菌类最适宜的降解DEP的环境。其次表面活性剂对生物降解也存在一定的影响,表面活性剂通过促进或者抑制吸附作用从而起到间接影响。[align=center]第2.2节 化学催化降解[/align]2.2.1[color=black]、[/color]Fenton法降解DEP机理催化氧化降解如O3氧化、Fenton处理、电化学氧化等手段都是通过利用羟基自由基(OH)的氧化性达到降解DEP的目的[9]。所以OH是降解DEP的主要因素。而OH可以由H2O2分解得到。Fenton反应则是生成OH的一个传统氧化还原反应,主要利用了H2O2的氧化还原性。具体来说则是:Fe2+与H2O2反应生成Fe3+和OH,Fe3+又能和H2O2反应生成Fe2+,这样循环反应直到反应物消耗完为止。而我们利用OH与DEP反应生成其他自由基, 其他自由基进一步被氧化为CO2和H2O由此氧化降解DEP[10]。2.2.2[color=black]、[/color]不同催化体系降解DEP研究由以上原理章琴琴等[11]对影响Fenton降解法的因素进行探究,发现在研究范围内随着Fe2+浓度增大,DEP的降解效率变高(图2[color=black]7[/color]),但不论什么浓度的Fe2+在15min以后降解速率极慢,这是由于反应产生的Fe3+与H2O2反应速度很慢,无法及时还原出Fe2+,直接导致的结果就是OH的产率低。虽然DEP降解效率也随着H2O浓度的增大而升高,但可以从图2[color=black]8[/color]看出500μmolL-1及其以上浓度降解DEP的效率几乎相同。这是由于H2O2浓度过大会让OH进一步氧化成HO2,或者H2O2直接分解为H2O和O2。其次环境的pH值和土壤成分等都会影响DEP的降解效率。 [img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202244443_8618_5365519_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202244132_3876_5365519_3.png[/img][align=center] 图2[color=black]7[/color]不同浓度Fe2+对DEP降解率影响[11] 图2[color=black]8[/color]不同浓度H2O2对DEP降解率影响[11][/align]所以Fenton处理方法在实际应用除了只能在酸性环境下使用外还存在着H2O2易分解,Fe3+利用率低等缺点。于是目前人们利用不同的催化剂催化H2O2或是利用不同催化剂与过一硫酸盐PMS或CaO2体系探究提高降解DEP的效率的方法。截至目前,对PMS采用氧化铝和氧化铁混合物的柱撑黏土活化(Al/Fe-PILCs)是一种较好的方法,还不易产生二次污染[9,12]。邓亚梅等[10]利用V2O5催化H2O2这样的类Fenton处理法探究其影响DEP降解的情况(图29)。可以发现在其他因素不变的情况下,当V2O5投加浓度在0.1gL-1时降解率最大,效果最好。而同样的条件下单独的H2O2即使浓度增大也无法达到这样的降解率。由此可以充分说明V2O5催化H2O2降解效果好。更为重要的是利用5, 5, -二甲基-1-吡咯啉氮氧化物 (DMPO 一种OH捕获剂)来探究此类Fenton处理的机理时发现,在较宽的pH范围内都可以检测到OH的存在(图2[color=black]10[/color]),这也说明V2O5/H2O2体系改善了Fenton反应只能在酸性条件下降解DEP的限制条件。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202245411_5695_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]9 V2O5投加量对其催化H2O2降解邻苯二甲酸二乙酯 (DEP) 的影响((a) 降解动力学 (b) 单独H2O2或V2O5对DEP降解影响)[10][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202247822_1370_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]10 不同pH条件下的V2O5/H2O2体系的EPR信号[10] [/align]Yang Zhou等[13]探究了黄铁矿(FeS2)催化CaO2降解DEP的方法(图2[color=black][/color]11为机理)。在pH为3.5时(经典Fenton处理法最佳pH值)探究不同体系对降解DEP的影响(图2[color=black][/color]12 a)。结果表明,单独使用CaO2降解效率低,但FeS2/CaO2体系比直接用Fe2+/H2O2体系有着更为优越的降解性能。探究FeS2用量也可以发现,在0.3gL-1时DEP在五分钟内完全降解(图2[color=black][/color]12 b),这更加说明了FeS2/CaO2体系优越的降解作用。而黄铁矿(FeS2)活化PMS的机理也与活化CaO2相似,同样提高PMS与FeS2用量能够有效降解DEP[12]。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202249492_5872_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]11 黄铁矿/ CaO2系统降解DEP途径[13][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202250761_2918_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]12 黄铁矿/CaO2体系降解DEP:(a)不同反应体系中DEP的降解动力学;(b)黄铁矿/ CaO2系统中对DEP降解的影响。[13][/align]Xiaolei Wang等[14]则是主要探究了CuS催化PMS体系降解DEP的效率(图2[color=black][/color]13降解途径)。控制温度在25°C下及pH=5,对比了CuS/PMS体系与CuS/H2O2体系等不难发现,CuS/PMS体系降解效率非常好(图2[color=black][/color]14 a)。同样用DMPO检测OH,也可以发现CuS/PMS体系有较强的响应信号。所以证实了此体系也是通过OH机理降解DEP。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202252431_7421_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]13 CuS / PMS体系降解DEP途径[14][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202252169_8666_5365519_3.jpg[/img][/align][align=center]图2[color=black][/color]14 CuS/PMS降解DEP:(a)不同氧化剂对DEP降解的动力学;(b)不同反应体系的EPR光谱。[14][/align]2.2.3[color=black]、[/color]臭氧氧化降解方法臭氧降解DEP机理其实和上述降解机理相似,即产生OH进而降解DEP。Mansouri Lobna等[15]对其也进行了研究。我们可以发现单独使用O3也可以有效的降解DEP(图215 a),并且在碱性条件下降解效果最好。此外随着DEP浓度降低,O3降解速率增加(图215 b)。对这个体系进行TOC(总有机碳)分析,同样可以发现DEP被完全降解(图215 c)。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202253107_9016_5365519_3.jpg[/img][/align]图215臭氧对DEP的去除效率:(a)在不同的pH值下([DEP]0= 200 mg/L,CO32-?= 0.98×10-4M);(b):在不同的初始DEP浓度下(pH = 7,CO32-?= 0.98×10-4M);(c)去除总有机碳(TOC)(pH = 7,[DEP]0?= 200 mg/L)T = 20±1℃。[15]他们也探究了不同臭氧体系在不同pH下降解DEP的效率(图216),明显可以看出不同pH下O3/Al2O3体系降解效率最好,并且在pH=11时可以完全降解DEP。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202255537_3951_5365519_3.jpg[/img][/align][align=center]图216 pH对异相催化臭氧化法DEP去除率的影响[15][/align]2.2.4[color=black]、[/color]本节小结其实从以上的实验探究我们也可以发现金属硫化物是较好的助催化剂,用催化PMS和CaO2的方法降解DEP,比起单独使用H2O2的降解效率要高,并且可使用的pH范围也要比H2O2高,当然这三种物质都要合适的催化剂才能体现出更优越的降解效率。而臭氧氧化降解则适用于碱性环境,在pH=11时还可以完全降解DEP。同时通过控制不同环境因素进行实验也不难发现,在不同环境因素(pH、温度等)对O3氧化、Fenton和类Fenton处理法降解效率有着非常大的影响,所以如果想要高效率降解就要针对不同环境使用不同催化降解DEP的物质。[align=center]第2.3节 光催化降解[/align]2.3.1[color=black]、[/color]光催化降解DEP途径概述光解过程主要的三种途径都是利用紫外光进行降解。一是直接由DEP吸收紫外光进行光降解。二是自由基吸收紫外光与 DEP 发生取代、络合、电子转移等反应。三是土壤中的有机物质经紫外光照射激发,激发态能量传递使DEP降解。2.3.2[color=black]、[/color]不同光催化降解DEP研究虽然在自然光照的条件下,光降解DEP的效率低,但加入催化剂后能够明显提高效率。光催化降解DEP常用的催化剂是TiO2,Mansouri Lobna等[15]假设反应为一级反应,探究了TiO2用量与反应速率的关系。明显看出TiO2用量超过1gL-1时反应速率下降,主要原因是光散射导致光透过性差。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202255138_9474_5365519_3.jpg[/img][/align][align=center]图217 TiO2用量对DEP光催化降解的拟一级反应速率常数k的影响[15][/align]实际上TiO2复合型材料光催化性能更好。方媛萍[16]利用CuO/TiO2复合型光催化剂对影响光降解的因素邻苯二甲酸酯类(PAEs)中的DMP、DEP、DBP、DEHP进行了对比实验。除了必要的pH以及催化剂加入量的控制变量实验外,还进一步探究了光照条件。经过5小时的暗反应DEP几乎不降解,而在5小时紫外照射下DEP降解效率达到45.26%,这也充分说明了光照条件也是重要影响因素之一。[align=center]表1[color=black][/color]1 四种不同捏合块构型下流道的物理参数[16][/align][table][tr][td][align=center]化合物[/align][/td][td][align=center]UV[/align][/td][td][align=center]暗反应[/align][/td][/tr][tr][td][align=center]DMP[/align][/td][td][align=center]38.85%[/align][/td][td][align=center]3.25%[/align][/td][/tr][tr][td][align=center]DEP[/align][/td][td][align=center]45.26%[/align][/td][td][align=center]0.41%[/align][/td][/tr][tr][td][align=center]DBP[/align][/td][td][align=center]51.33%[/align][/td][td][align=center]0.54%[/align][/td][/tr][tr][td][align=center]DEHP[/align][/td][td][align=center]54.60%[/align][/td][td][align=center]0.68%[/align][/td][/tr][/table]戴高鹏等[17]则是探究了DEP分子印迹TiO2纳米管阵列(DM-TNA)光电降解DEP,通过与光催化降解和电化学氧化降解进行对比不难发现(图218),光电降解速率快且降解效率高。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109042202256202_8079_5365519_3.jpg[/img][/align][align=center]图217 三次沉积循环的DM-TNA的(a)电化学氧化、(b)光催化和(c)光电催化降解DEP的活性比较[17][/align]2.3.3[color=black]、本节小结[/color][color=black]光降解DEP一般都是利用紫外光,且若只在紫外光照射下不难发现降解效率仅在50%左右,添加TiO[/color][color=black]2[/color][color=black]催化剂明显降解效率有所提升,而利用TiO[/color][color=black]2[/color][color=black]复合催化材料则是更进一步提升了光降解效率。并且从目前的研究来看,光电降解性能可能要比光降解性能更好,这也不失为一个研究方向。[/color][align=center]结 论[/align]本课题基于近年来各个课题组对邻苯二甲酸二乙酯所作实验研究及理论知识得到以下结论:1、DEP是一种环境激素,对环境中动植物生长起到很大危害,在人们的日常生活中,又由于其作为增塑剂被大量使用,导致人们通过生物聚集、皮肤接触、呼吸等方式摄入DEP,而大量摄入则会影响到人体健康。2、截至目前,微生物降解DEP是最普遍的降解途径,部分微生物能够将DEP作为唯一碳源以及能量,直接将DEP作为营养物质吸收。并且在合适的环境条件及微生物浓度下可以完全降解DEP。3、DEP还可以通过化学氧化降解,其中最重要的就是Fenton效应,但Fenton效应普遍存在循环利用率低,适用pH范围窄等问题,于是产生了类Fenton法,通过加入不同的催化剂活化H2O2、PMS、CaO2等,降解效率显著提升,并且适用pH范围变宽,使得在不同的土壤条件下通过化学氧化降解途径也可以达到高降解效率。4、光降解效率并没有其他化学氧化降解和微生物降解效率高,目前较为优异的光降解催化剂是TiO2,研究表明TiO2复合材料(可加入微量过渡元素氧化物)有着更好的光降解性能。[align=center]参考文献[/align][1] 张政芳. 基于高级氧化技术对邻苯二甲酸二乙酯、草甘膦和四环素的去除研究[D].华南理工大学,2019.[2] Güray Demirta?,Külti?in ?avu?o?lu,Emine Yal?in. Aneugenic, clastogenic, and multi-toxic effects of diethyl phthalate exposure[J]. Environmental Science and Pollution Research,2020,27(5).[3] 高福梅,蔡晓辉,沈浣.邻苯二甲酸酯类化合物暴露情况与自然流产的关系[J].国际生殖健康/计划生育杂志,2013,32(04):281-283.[4] 李静. 邻苯二甲酸酯降解菌的降解特性与降解机制的初步研究[D].西南大学,2018.[5] 唐锦平. 土壤中邻苯二甲酸酯的生物可降解性及影响因素研究[D].湖南农业大学,2019.[6] 薛潮,唐锦平,曹若愚,罗斯.邻苯二甲酸二乙酯的微生物降解与吸附性能研究[J].环境污染与防治,2019,41(05):526-530+535.[7] 李晗绪. 一株DEP高降解菌Pseudomonas sp.DNE-S1对DEP强化降解[D].东北农业大学,2019.[8] Perpetuo Elen Aquino,da Silva Esther Cecília Nunes,Karolski Bruno,do Nascimento Claudio Augusto Oller. Biodegradation of diethyl-phthalate (DEP) by halotolerant bacteria isolated from an estuarine environment.[J]. Biodegradation,2020,31(4-6).[9] 冯莉莎,方国东,周东美,高娟.铝铁柱撑黏土活化单过硫酸盐降解邻苯二甲酸二乙酯的研究[J].土壤,2020,52(05):962-968.[10] 邓亚梅,王荣富,方国东,周东美.五氧化二钒类Fenton降解邻苯二甲酸二乙酯的机制研究[J].生态毒理学报,2017,12(03):717-725.[11] 章琴琴,丁世敏,封享华,余友清,王捷,陈凤贵,黄海燕.Fenton法降解邻苯二甲酸二甲酯的动力学特征及其影响因素研究[J/OL].环境化学:1-8[2021-01-07].http://kns.cnki.net/kcms/detail/11.1844.X.20201109.1030.016.html.[12] 周洋. 基于黄铁矿的非均相类-Fenton反应高效降解邻苯二甲酸二乙酯的机制研究[D].安徽师范大学,2019.[13] Yang Zhou,Min Huang,Xiaolei Wang,Juan Gao,Guodong Fang,Dongmei Zhou. Efficient transformation of diethyl phthalate using calcium peroxide activated by pyrite[J]. Chemosphere,2020,253.[14] Wang Xiaolei,Ding Yingzhi,Dionysiou Dionysios D.,Liu Cun,Tong Yunping,Gao Juan,Fang Guodong,Zhou Dongmei. Efficient activation of peroxymonosulfate by copper sulfide for diethyl phthalate degradation: Performance, radical generation and mechanism[J]. Science of the Total Environment,2020,749.[15] Mansouri Lobna,Tizaoui Chedly,Geissen Sven-Uwe,Bousselmi Latifa. A comparative study on ozone, hydrogen peroxide and UV based advanced oxidation processes for efficient removal of diethyl phthalate in water.[J]. Journal of hazardous materials,2019,363.[16] 方媛萍. 水体中邻苯二甲酸酯的直接质谱检测及其光催化降解研究[D].吉林大学,2019.[17] 戴高鹏,周京慧,龙家豪,李尊,刘力.分子印迹TiO_2纳米管阵列的制备与选择性光电催化降解邻苯二甲酸二乙酯[J].无机化学学报,2020,36(05):850-856.李鹏,耿孝正.同向啮合双螺杆挤出机捏合块流道三维流场分析[J].中国塑料,2000,14(3):1.

  • 强制降解实验

    现在做的是固体制剂的强制降解实验,强制降解试验时由于制剂在溶剂中不好溶解,现在强酸强碱或氧化降解试验不知道是做药物完全溶解的溶液还是制剂粉末还是整块的制剂,

  • 【资料】酸性偶氮染料的好氧生物降解性能试验研究

    近年来,国内酸性染料的生产、出口逐年增加,已成为国际上最大的酸性染料出口国。酸性染料是水溶性染料,且又是典型的小批量、多品种的一类染料,生产废水量大,废水成分复杂,色度污染严重。研究这类污染物的生物降解性能,可为开发更有效的染料废水生物处理技术提供参考和实践指导。1 试验部分1.1 试验材料酸性偶氮染料的品种和产量均居酸性染料之首。本试验选用的14种染料全为偶氮型,其中单偶氮类、双偶氮类各6种。主要由安徽凤阳染料化工有限公司提供;三、四偶氮类各1种,由杭州恒升化工有限公司提供。1.2 降解原理微生物在好氧条件下分解有机物的反应:http://www.e-dyer.com/userfiles/image/aa5%2826%29.jpg除H20外,反应中的任何一种物质或微生物的变化,都可用来分析有机物的生物降解性能。1.3 试验方法和分析方法(1)好氧呼吸法。微生物在进行代谢过程时,通过呼吸作用,将复杂的有机物转化为CO2、H20和其他简单物质。呼吸消耗的氧气与被生物降解的有机物浓度成正比。用测定微生物呼吸的方法来测定有机物的生物降解就是基于这一原理。在污染物生物治理工程中,常用BOD5/CODcr。(2)测定基质去除的方法。采用半连续活性污泥法试验。测定各种染料在生物降解反应前后的浓度变化。分析方法采用分光光度法(WFJ7200型分光光度计,由尤尼柯(上海)仪器有限公司制造)。(3)分析微生物细胞增殖的方法。微生物在分解有机物的同时.还以有机物为营养和能源进行生物合成,所以。通过分析微生物细胞增殖的情况也能间接反映有机物的降解。本试验采用了细胞湿重和浊度法分别进行研究。测细胞湿重是取一定容积的培养物,经离心、弃上清液、称重。浊度法是取一定量的培养物,直接测定其浊度(用SZD一1 型散射光台式浊度仪测定,该仪器由上海市自来水公司制造)。

  • 【讨论】男孩发现"塑料袋克星" 降解过程缩至3个月

    由于塑料袋造成的“白色污染”早已成为地球公害,因此它被称为“人类最糟糕的发明”。然而加拿大年仅16岁的高中生丹尼尔伯德通过潜心研究,发现通过一种神奇的假单细胞菌,可以将塑料袋的自然降解过程从上千年缩短至短短3个月!目前伯德正在为这项革命性的技术申请专利,希望它在解决地球生态灾难的同时,也为他挣得足够的大学学费。  细菌快速分解塑料袋  伯德是安大略省沃特卢市一名普通高中生。他的研究理念来自日常生活的经历:他的母亲经常指示他帮忙做家务,但每当他打开存放洁具的柜子时,放在最上层的塑料袋就会如雪崩般飞散。于是,烦不胜烦的他开始研究如何能令塑料袋“消失”。  经了解,塑料袋的自然分解时间很长,通常从20年到1000年不等。但伯德认为,它始终会被微生物分解,所以只要找出可以分解塑料袋的原料——聚乙烯的细菌,再将这些细菌集中便行了。在老师的指导下,他发现将绿脓杆菌和甲氰菊酯降解菌混合使用,将会令分解塑料袋的速度大大加快。这两种细菌均属于假单细胞菌,而伯德的研究是全球首度证明假单细胞菌可以分解制造塑料袋的原料——聚乙烯。  分解只产生水和二氧化碳   在实验过程中,伯德从当地一个垃圾场获取泥土样本,并将泥土样本跟聚乙烯和一些促进细菌生长的溶液混合。他将溶液浓缩多次及培养12个星期后,试验培养液对塑料袋碎片的分解效果。结果,他发现上述两种细菌分解聚乙烯最为有效。  随后,伯德分离出这两种细菌并混和醋酸钠,然后将温度调节至摄氏37度。他惊喜地发现,细菌在这样的环境下,6周内就能分解43%的塑料袋碎片。按照这个速度,伯德认为塑料袋只需3个月便可以完全被分解。伯德又测试了这个分解塑料袋的方法能否大规模应用,结果发现,只要好好控制温度,令细菌变得活跃,它们便能大量分解塑料袋,所需成本极低。分解过程中亦不会产生大量污染物,只会产生水和少量二氧化碳。  申请专利挣大学学费   伯德认为,他的发现将令人类对塑料袋的处理方法向前跨进一大步,只要塑料袋可以被快速分解,就不怕大量塑料袋弃置于填埋区对环境造成污染,亦可减少海洋垃圾。伯德想象将来可以设立大型的塑料袋分解站,所谓分解站其实就是一个大型容器,里面放置溶液和细菌,可将放进去的塑料袋快速分解。  据悉,伯德将继续研究加速分解塑料袋的方法,希望可以进一步缩短塑料袋被完全分解的时间。虽然目前这项研究仍然处于实验阶段,但伯德已经有了更长远的想法:他正为此申请专利,将这种技术打入市场。  日前,被誉为“塑料袋克星”的伯德在“全加拿大科学展”上勇夺第一名,并且获得3万美元的奖金。目前,他已经得到多所大学的奖学金。

  • 热降解对三类聚合物分子量分析的影响

    热降解对三类聚合物分子量分析的影响

    聚合物分子量分析,样品溶解是一个很重要的因素,溶解时间过长,可能会造成聚合物热降解,特别是氧化降解,下面我们来看一下热降解对聚丙烯PP、聚苯乙烯PS及高密度聚乙烯HDPE的GPC分析结果的影响:http://ng1.17img.cn/bbsfiles/images/2015/10/201510191001_570312_1664_3.jpg图一、热降解对不同聚合物的GPC分析结果的影响从上图我们可以看出,热降解对PP的影响更大,不同受热时间的同一样品分析结果差别较大,而对PS和HDPE影响较小,但是多少也会有一些影响,如何保证样品分析结果不受或者减少热降解的影响,是很多从业人员关心的问题,如果我们保证了同一样品的受热时间一致,那么分析结果的重复性自然会很好。

  • 蛋白质降解指数

    请问肉制品在加工过程中蛋白质降解指数一定不断增大吗?比如腊肉和火腿。非蛋白氮含量先降后增,总氮含量持续增大,最终结果是蛋白质降解指数先降低后增大,这样可以吗?看文献里有解释是水分含量降低使得总氮在肉制品中的占比增大。

  • 【转帖】我国农药残留降解与检测技术进展显著

    我国农药残留降解与检测技术进展显著  国家863计划现代农业研究在农药残留降解与检测技术获得突破性进展,取得了国际领先或先进水平的技术成果,为无公害农产品生产保障体系建立提供了有效的技术支撑和保障。  (1)化学农药多残留免疫检测技术研究取得重要突破,实现了对同类农药的同时在线检测。以间苯氧基苯甲酸(PBA)为半抗原,通过活性酯法与BSA偶联后免疫新西兰大白兔,获得对多种菊酯类农药有免疫学反应的通用抗体。该抗体对氯菊酯、甲氰菊酯、氯氰菊酯、三氟氯氰菊酯、溴氰菊酯、功夫菊酯、二氯苯醚菊酯均有特异性识别,而对氰戊菊酯识别弱;以二乙基膦酸乙酸为半抗原,分别用NHS-DCC法和EDC法与BSA连接合成了人工免疫原,免疫后获得了针对双乙氧基硫代磷酸酯类有机磷农药的通用多抗血清。该抗体与毒死蜱、氧乐果、二嗪农、乙基对硫磷、丙溴磷、辛硫磷等农药均有特异性反应。  (2)农药重组抗体技术研究处于国际领先水平,为试剂盒的规模化生产提供了高质量的抗体保证。先后完成了免疫小鼠脾细胞mRNA的提取和cDNA链的合成,全套VH和VL基因的扩增和鉴定,并将全套VH和VL基因拼接成ScFv基因,构建了重组ScFv抗体库。通过加入辅助噬菌体富集和多克隆ELISA筛选,能产生甲胺磷抗体的特异性ScFv噬菌体阳性克隆;对部分阳性克隆进行了表达研究,并经竞争ELISA方法验证获得了甲胺磷特异性重组抗体。目前,化学农药重组抗体的制备在国内外还未见报道。  (3)重金属单克降抗体技术研究取得突破,为重金属残留检测和治理奠定了技术基础。先后制备了三种重金属(Hg、Cd和Pb)的人工合成抗原。将免疫原免疫Balb/c小白鼠,鉴定后取其脾细胞与骨髓瘤细胞融合,检测后获得阳性孔,阳性孔克隆后获得能特异性识别重金属Cd的杂交瘤细胞株4株(Aa4、Aa6、Ac4、Ba2),并在对这些细胞株产生抗体的特性进行了鉴定。  (4)研发了甲胺磷、速灭威、氟虫腈、对硫磷、玉米赤霉醇、Milbemycin Oxine ELISA检测试剂盒,初步建立了化学农药快速免疫检测技术体系。  (5)筛选到农业生产过程中常用菊酯类、有机氯、氨基甲酸酯类农药的高效降解菌株20余株,其中多株降解能力国际领先;实验室条件下对相关农药的降解效率在95%以上。  (6)开发了六六六、DDT阿特拉津、磺酰脲类除草剂、有机磷、有机氮、菊酯类等农药的微生物降解菌剂。建立了菌剂生产的企业质量标准,产品获得了国家级的重点新产品和农业部肥料临时登记证。

  • 【求助】在有机污染物被氧化降解过程中出现了两个等吸收点能说明什么?在线等?

    【求助】在有机污染物被氧化降解过程中出现了两个等吸收点能说明什么?在线等?

    我在做有机污染物被氧化降解实验中发现,随着时间的进行,降解过程中出现了两个等吸收点(每一条曲线代表某个时间),见附件,请问等吸收点能说明什么?是不是杂质啊!也许其浓度在有机污染物被氧化降解过程中未发生变化,因此,其吸光度不变,是这样吗?[img]http://ng1.17img.cn/bbsfiles/images/2006/12/200612202020_35970_1090519_3.jpg[/img][color=red]【由于该附件或图片违规,已被版主删除】[/color][color=red]【由于该附件或图片违规,已被版主删除】[/color][color=red]【由于该附件或图片违规,已被版主删除】[/color]

  • 【分享】我国农药残留降解与检测技术进展显著

    国家863计划现代农业研究在农药残留降解与检测技术获得突破性进展,取得了国际领先或先进水平的技术成果,为无公害农产品生产保障体系建立提供了有效的技术支撑和保障。 (1)化学农药多残留免疫检测技术研究取得重要突破,实现了对同类农药的同时在线检测。以间苯氧基苯甲酸(PBA)为半抗原,通过活性酯法与BSA偶联后免疫新西兰大白兔,获得对多种菊酯类农药有免疫学反应的通用抗体。该抗体对氯菊酯、甲氰菊酯、氯氰菊酯、三氟氯氰菊酯、溴氰菊酯、功夫菊酯、二氯苯醚菊酯均有特异性识别,而对氰戊菊酯识别弱;以二乙基膦酸乙酸为半抗原,分别用NHS-DCC法和EDC法与BSA连接合成了人工免疫原,免疫后获得了针对双乙氧基硫代磷酸酯类有机磷农药的通用多抗血清。该抗体与毒死蜱、氧乐果、二嗪农、乙基对硫磷、丙溴磷、辛硫磷等农药均有特异性反应。 (2)农药重组抗体技术研究处于国际领先水平,为试剂盒的规模化生产提供了高质量的抗体保证。先后完成了免疫小鼠脾细胞mRNA的提取和cDNA链的合成,全套VH和VL基因的扩增和鉴定,并将全套VH和VL基因拼接成ScFv基因,构建了重组ScFv抗体库。通过加入辅助噬菌体富集和多克隆ELISA筛选,能产生甲胺磷抗体的特异性ScFv噬菌体阳性克隆;对部分阳性克隆进行了表达研究,并经竞争ELISA方法验证获得了甲胺磷特异性重组抗体。目前,化学农药重组抗体的制备在国内外还未见报道。 (3)重金属单克降抗体技术研究取得突破,为重金属残留检测和治理奠定了技术基础。先后制备了三种重金属(Hg、Cd和Pb)的人工合成抗原。将免疫原免疫Balb/c小白鼠,鉴定后取其脾细胞与骨髓瘤细胞融合,检测后获得阳性孔,阳性孔克隆后获得能特异性识别重金属Cd的杂交瘤细胞株4株(Aa4、Aa6、Ac4、Ba2),并在对这些细胞株产生抗体的特性进行了鉴定。 (4)研发了甲胺磷、速灭威、氟虫腈、对硫磷、玉米赤霉醇、Milbemycin Oxine ELISA检测试剂盒,初步建立了化学农药快速免疫检测技术体系。 (5)筛选到农业生产过程中常用菊酯类、有机氯、氨基甲酸酯类农药的高效降解菌株20余株,其中多株降解能力国际领先;实验室条件下对相关农药的降解效率在95%以上。 (6)开发了六六六、DDT阿特拉津、磺酰脲类除草剂、有机磷、有机氮、菊酯类等农药的微生物降解菌剂。建立了菌剂生产的企业质量标准,产品获得了国家级的重点新产品和农业部肥料临时登记证。

  • 【分享】微生物的转化和降解

    相对于生物的进化历史来说,有些有机污染物被释放到环境中的时间是非常短暂的,微生物与之相互作用的时间就更短了。但是农药等生物外源性物质的广泛使用和对环境的污染,增加了微生物生存环境中的不利因素,用科学术语来说,就是增加了微生物进化的选择压力。这起到了促进微生物的物种发生改变和进化的作用,因为只有那些发生了对微生物本身存活有利的突变(如抗药性、转化能力、降解活性)的微生物,才能继续存在于自然界中。我们人类最感兴趣和有可能加以利用的微生物的新特性,正是它们对生物外源性物质的转化和降解作用。 zhikaoy带com   许多微生物可以对生物外源性物质进行化学转化,使其转变成为毒性较小或易于被其它微生物所降解的化合物。如对杀虫剂DDT和对炸药TNT的转化。  微生物对生物外源性物质的转化主要有以下几种形式: 本!文!来!自!执(考)苑  (1)脱卤(主要是脱氯),如DDT的脱氯; 内@容*采@集@于@执@考@苑@http://zhikaoy点com/  (2)还原,将生物外源性物质上的取代基,特别是硝基,进行还原;   (3)水合反应,如对有机氰的水合反应,形成无毒的含氮有机化合物。   微生物除了可以转化生物外源性物质外,有些微生物还可以把它们分解掉,因为是把较大的化合物分子一步一步地变小,所以称为降解作用。有些生物外源性物质可以被彻底降解,即变成水和二氧化碳等无毒无害的很小的分子化合物或元素。但是,有些生物外源性物质不能被彻底降解。 执@考&苑   多数情况下,这种降解过程需要多种微生物的协同作用,才能彻底完成。有些微生物在降解生物外源性物质时,要给微生物另外提供对它们生长繁殖所需要的营养物质,因为这些生物外源性物质的降解产物并不能成为该微生物生长繁殖所需的碳源和能源。在微生物生态学中,我们把这种情况叫做共代谢作用(Cometabolism),或辅代谢作用。这种降解往往是不彻底的,同时也是最多见的。

  • 【求助】-三唑磷等农药的降解方法

    各位大侠:目前我国农药的不恰当使用很普遍,造成农残屡屡超标。但有些农药例如甲胺磷容易降解,在加工过程中加加温,再摊凉一下产品农残就可以降下来。最近,我们发现三唑磷又屡屡超标,不知哪位高手熟知它的特性,有什么办法可以降解?其他农药有降解的办法也请提供。谢谢!

  • 可降解材料测试/塑料可降解检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-37185.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font][font=微软雅黑, &][color=#333333]废旧塑料管理在全世界范围内是一个严重的问题。生物降解测试是模拟自然界如土壤或沙土的条件,或特定条件如堆肥条件下进行,通过模拟自然界微生物引起的降解作用,分析最终完全或者大部分降解变成的产物(二氧化碳或/和甲烷、水及其所含元素的矿化物无机盐以及新的物质材料),计算可降解材料的生物分解率,崩解程度等。生物分解率是可降解材料重要指标,是反映可降解材料分解程度的重要依据。[/color][/font][font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font][font=宋体, SimSun][size=16px][/size][/font][b][font=宋体, SimSun]产品范围:[/font][/b]薄膜类(购物袋,包装袋,农用薄膜,保鲜袋,垃圾袋,连卷袋等)胶带,可降解餐具,塑料纤维制品,聚乳酸冷饮吸管[b][font=宋体, SimSun]服务项目:[/font][/b]生物分解率;生物降解率;生物降解程度;崩解率[b][font=宋体, SimSun]测试周期:[/font][/b]视客户选择测试时间而定(一般45天,最长6个月)[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]塑料购物袋[/td][td]水蒸气透过率、氧气透过率、摩擦系数、穿刺强度、透光率 耐压性能、跌落性能、漏水性、封合强度、落镖冲击 生物降解率、溶剂残留量、特定元素含量[/td][td]GB/T 21661-2020、GB/T 38082-2019、GB/T 10004-2008、GB/T 24454-2009、GB/T 4456-2008、GB/T 16958-2008、GB/T 21302-2007、GB/T 10457-2009、GB/T 33798-2017、GB/T 33897-2017、QB/T 2461-1999、GB/T 28018-2011[/td][/tr][tr][td]农用薄膜[/td][td]厚度偏差、宽度偏差、净质量偏差 拉伸负荷、断裂标称应变、直角撕裂负荷、耐候性能 生物降解率、透光率、雾度、初滴时间、流滴失效时间[/td][td]GB/T 13735-2017、GB/T 4455-2019、GB/T 35795-2017、GB/T 20202-2019、 QB/T 2472-2000、QB/T 4475-2013[/td][/tr][tr][td]一次性塑料餐具[/td][td]外观、结构、感官、容积偏差 负重性能、跌落性能、盖体对折性能、耐热性能、漏水性 降解性能、含水量、特定元素含量、淀粉含量 食品安全卫生指标(总迁移量、高锰酸钾消耗量、重金属、脱色等[/td][td][url=https://www.woyaoce.cn/download/paperinfo_52254.html]GB_T18006.3-2020一次性可降解餐饮具通用技术要求.pdf[/url][/td][/tr][tr][td]一次性塑料用品[/td][td]外观、结构、感官、容积偏差 负重性能、跌落性能、盖体对折性能、耐热性能、漏水性 降解性能、含水量、特定元素含量、淀粉含量 食品安全卫生指标(总迁移量、高锰酸钾消耗量、重金属、脱色等[/td][td]GB/T 24453-2009[/td][/tr][tr][td]快递塑料包装[/td][td]平均厚度偏差 拉伸强度、断裂标称应变、直角撕裂强度、直角撕裂力、穿刺强度、自粘性、透光率、热合强度 落镖冲击、抗穿刺强度、充气后抗压负荷、真空负压测试漏气率 生物分解率、气味性、溶剂残留量、特定元素含量 油墨VOC含量、胶粘剂苯/甲苯+二甲苯/卤代烃含量[/td][td][url=https://www.woyaoce.cn/download/paperinfo_52254.html]GB_T18006.3-2020一次性可降解餐饮具通用技术要求.pdf[/url][/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font][font=宋体][size=16px]广电计量可提供塑料袋、购物袋、农用薄膜、塑料餐具、快递包装等塑料制品的产品标准检测,包括生物降解性能检测、材料物理性能和食品卫生安全检测服务,并已具备各类项目的CMA、CNAS资质。[/size][/font]

  • 【转帖】浅谈强制降解试验。

    摘要:本文简要介绍了强制降解试验的定义、目的与常规的考察项目及试验条件,为规范这方面的研究提供参考。 关键词:强制降解试验 目的 考察项目 试验条件 强制降解试验是指将原料药或制剂置于比较剧烈的试验条件下,考察其稳定性的一系列试验。一般而言,该试验的目的主要有以下两方面:一是通过考察药品在一系列剧烈条件下的稳定性,了解该药品内在的稳定特性及其降解途径与降解产物。例如,通过高温降解试验,可以了解所考察的药品在高温条件下是否稳定;如果不稳定,大致在何种条件下不稳定,该药品又是通过何种降解途径得到何种降解产物。其二,这些试验也能在一定程度上对有关物质分析方法用于检查降解产物的专属性进行验证。 对于创新药,由于对其各方面的性质均不够了解,因此,通过设计比较完整的强制降解试验,可以比较全面地了解其稳定特性,从而为制剂处方、工艺的设计,以及产品储存条件的确定等提供有益的参考。所以对于创新药而言,通过强制降解试验来了解药物的稳定特性就显得尤为重要。对于仿制药而言,如果已有充分的文献资料对该药物的稳定特性及其降解途径与降解产物进行比较全面的阐述,则没有必要再通过强制降解试验来重复了解这些背景知识。此时,强制降解试验的目的主要就是为了验证降解产物分析方法的专属性。并且,由于国内在进行有关物质研究时,一般不对各有关物质进行定性研究,也无相应的杂质对照品,所以在对有关物质的分析方法进行验证时,很难用杂质对照品对方法的专属性、检测限等进行验证。故作为对有关物质分析方法验证的一种补充,国内在制定相关指导原则时,要求对原料药及制剂进行必要的强制降解试验,以考察分析方法的可靠性。 经查阅国内外相关的指导原则,均未对强制降解试验的具体项目与试验条件作明确的规定。国内的部分研发单位在进行该项研究时,由于未充分理解该项试验的目的,所做的研究根本达不到强制降解试验的要求。基于以上现实情况,本人在查阅相关资料的基础上,综合提出了强制降解试验的常规项目与部分试验条件,供大家参考。 根据强制降解试验的目的,该项试验一般应考察药品在酸、碱、高温、强光、氧化等因素影响下的稳定性。对固体状态的原料药而言,一般还需分别考察该原料药在固体和溶液状态下的稳定性。另外,为全面了解该药品的稳定特性及其降解途径,还可根据情况进行以上因素综合存在时的强制降解试验,例如,可以考察样品溶液分别在中性、酸性或碱性条件下对高温或强光的稳定性等。 在设计各项目的具体试验条件时,应结合该药的剂型、工艺条件等进行综合考虑,只要达到了强制降解试验的目的,所选的试验条件就是合理的。由于各药品的化学结构、剂型、工艺条件等各有不同,很难提出一个统一的试验条件,下面所介绍的各降解试验的条件仅供大家在研究中参考: 1.酸降解试验 一般选择0.1N的盐酸,在室温或加热条件下进行考察。酸液的浓度、考察的温度与时间均可根据具体品种,在前期预试验的基础上灵活确定。

  • 液质联用测定降解产物分子量

    利用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]MS测定降解过程中的中间代谢产物,对于母物质发现在SRM模式下可以出峰,而在全扫模式下不出峰,大佬们有知道为什么的吗?求解啊

  • 降解实验

    强制降解实验中1mol/L氢氧化钠1ml,水浴90度加热1h,发现原原料药中杂质也降解了产生新的杂质,这样能行吗

  • 强制降解实验色谱图中的忽略限问题

    现在强制降解实验中,因为遭遇比较苛刻的条件,在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]图中,积分方法如何合理的设施忽略限?1:一般样品检测我们设置0.03%,所以强制降解实验也是设置0.03%2:根据ICH要求,设置忽略限为0.05%3:设置忽略限为0.10%,没有降解出来很大的杂质没有必要研究欢迎各位老师讨论

  • 【最新报道】上海研制出可降解塑料袋

    上海已经研制出可降解的塑料袋,国家塑料制品质量监督检验中心经过122天的测试发现,其降解率可达到62%,其余塑料暂存物变为对土壤和空气无害的细小颗粒。这是记者昨天从市高新技术成果转化服务中心获悉的。   中国塑料袋协会塑料再生专业委员会副会长董金狮昨天在接受记者电话采访时称,上海研制的这种可降解塑料袋在使用性能上可以做超市的塑料购物袋,在卫生性能上可以包装食品,在环保性能上达到国际标准的降解水平。按国际标准,在2个月至6个月内,塑料袋生物分解率达到60%以上,就是合格的可降解塑料袋。  研制出可降解塑料袋的是上海还原高分子材料有限公司。公司采用美国和欧盟的专利技术,将淀粉和不可降解的塑料通过特殊设备粉碎成纳米级后,再添加多种材料进行物理结合后生产出降解树脂。经国家塑料制品质量监督检验中心测试,用降解树脂生产的塑料袋,62%可以“变身”为水和二氧化碳。其余暂存物若放大500倍,也不过如芝麻大小。  公司总经理高寅华解释,所谓“暂存物”,是指理论上最后也能降解,但因为降解测试不可能旷日持久地进行,因此在测试期内尚未完全降解的物质。检测报告称,降解树脂分解后的暂存物对土壤和地下水不构成危害。  还原高分子公司研发的降解树脂及塑料袋已获得市高新技术成果转化认定,并获得美国、加拿大、德国和日本等国家的青睐。年产3.15万吨可降解塑料袋原料的全自动工厂春节后就将兴建,预计下半年可降解塑料袋就能进入国内外市场。来源:中国新闻网

  • 标液的降解

    标液放冰箱存放,存放一段时间后会发生降解,那么降解多少就不能用了?比如说标液打开稀释后,进气相,记录峰面积,过一个月后,再时样,记录峰面积,这两个峰面积相差百分之几,就可以理解为降解了。

  • 润滑油生物降解测试检测

    润滑油生物降解测试标准  1、 ASTM D 5864  美国ASTM 委员会通过了OECD 301-B 在ASTM D-5864-00标准试验方法内修改Sturm流程测定好氧水生生物降解的润滑油 (最初于 1995 年出版)。  这种测试方法包括有氧水生生物降解程度的全面制定润滑剂或其部件上暴露于细菌的接种量在实验室条件下测定。这种测试方法为了专门解决与水不溶性材料测试有关的困难和复杂的混合物如被发现在许多润滑剂。这种测试方法被设计为适用于所有的润滑剂不挥发性和不是抑制在试验浓度下对生物菌剂中存在。  一种已知的可生物降解的物质应与测试物质同时测试。水溶解试验物质,建议的参考物质为苯甲酸钠或苯胺。水不溶性试验物质,建议的参考物质是低芥酸菜籽油,如芥花油。  测试应继续至少 28 天,或者直到 CO2 演化已达到高原。  生物可降解性的水平在环境持久性分类下面列出。最终降解 Pw1 是生物可降解性的最快和最高水平。在生物降解测试中使用的细菌微生物是一些最简单的形式的生活,和所有生物一样,受影响的化学毒素存在。在这个测试中测试样品的低毒性作用的微生物的繁殖和生物降解样品的能力可见一斑。已接受CO2理论% 测试方法以测定有氧水生生物降解润滑剂的其他组织包括国际标准化组织ISO、 OECD、 美国环保署EPA 和欧盟EUC。  ASTM D-6046-02 液压油对环境影响的标准分级的术语(从 ASTM D 5864 引用)  可最终生物降解— 实现当一种材料完全利用微生物造成的退化生产的二氧化碳 (和可能在厌氧生物降解甲烷),水,无机化合物,和新微生物细胞成分 (生物量或分泌物或两者)。  终极生物降解试验— 一个估计的一种物质中的碳转换为 CO2 的程度的测试或甲烷,或者通过直接间接地测量生产的 CO2 或甲烷,或为好氧生物降解性,测量 O2 的消耗。  环境持久性分类-好氧新鲜水(也使用的美国军队)  Pw1 大于或等于 60%在 28 天 = 可最终 (ASTM)/ 容易 (OECD)生物降解  Pw2 大于或等于 60%在 84 天 (12 周)  Pw3 大于或等于 40%在 84 天 (12 周)  Pw4 小于 40 % 在 84 天 (12 周)  2、 OECD-301B 改进Sturm方法  修改后的测试足够测试可溶性和不溶性有机、 非易失性的材料。此测试措施产生的二氧化碳进化而来,因此措施只有"完整的"氧化 ;有机杂质会使二氧化碳生产数据的解释变得复杂。  测试材料引入含矿物基底和细菌的接种量瓶。超声振动后,将烧瓶曝气与无二氧化碳的空气。无测试材料的控制是在并行运行。  任何释放的二氧化碳的吸收在烧瓶含有氢氧化钡溶液。定期,用盐酸滴定法确定使用的氢氧化钡溶液的量。生物降解对理论产生的二氧化碳,测试材料有可能产生的进化在测试期间,(校正的控制),二氧化碳排放总量的百分比表示。  通常情况下,测试时间为 28 天。测试但是可能在28 天前结束 ,例如生物降解曲线已达到至少三个确定的高度。测试也可能要延长超过 28 天,当曲线表明生物降解已开始但高度尚未到达天 28,但在这种情况下这种化学物质不将被归类为易生物降解。  容易生物降解性的传递水平是 DOC 的 70%去除和植菌ThOD或 ThCO2 产生量的 60%。他们的低植菌的方法,因为作为一些从测试化学碳纳入新的细胞,产生 CO2 的百分比较低比正在使用的碳的百分比。这些传递值必须达成在为期 10 天的窗口中的测试,28 天内除了下文提到的地方。10 天窗口开始时的生物降解程度已经达到 10 %doc、 方法或 ThCO2 和之前测试的第 28 天必须结束。  3、 CEC L-33-T-82 测试  CEC L-33-T-82 (现在列为 CEC L-33-A-934) 测试适用于大部分有机化合物,不论溶或不溶于水。它确定的总体的生物降解性的碳氢化合物或类似化合物含 (CH2) 亚甲基基团,测量的起始物料的经历,包括氧化和水解的所有转换。它被开发用来来表征Bodensee湖使用的舷外发动机油的生物降解性,由于湖底积淀的矿物油对鱼类产生污染。CEC 测试被蓝色天使环保标签接受,并要求 80%或更大的可生物降解性。德国蓝色天使计划不打算制定"封闭"体系的指南。  尽管是方便和容易,CEC 测试只是测量红外吸收的亲脂性分子可入代烷溶剂萃取。它也不度量的水溶性代谢产物,是很差可萃取,因此,不能测量广泛退化或成矿作用。这就需要测量氧气消耗量或二氧化碳演变并行测试。也是没有清晰的结构标准,可以通过比较各种结构类型的生物降解性。  CEC L-33-T-82 可生物降解性试验中常见的碳氢化合物总结、 典型生物可降解性值为:  矿物石油 15 到 35%  白矿油 25 到 45%  天然 & 植物油 70 到 100%  PAO 5 到 30%  聚醚 0 到 25%的 6 4 页  PIB 0 到 25%  邻苯二甲酸酯 & 酯酯 5 到 80%  多元醇 & 双酯 55 到 100%

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制