当前位置: 仪器信息网 > 行业主题 > >

激光钻孔

仪器信息网激光钻孔专题为您整合激光钻孔相关的最新文章,在激光钻孔专题,您不仅可以免费浏览激光钻孔的资讯, 同时您还可以浏览激光钻孔的相关资料、解决方案,参与社区激光钻孔话题讨论。

激光钻孔相关的资讯

  • 手持测温应用激光篇|热成像在激光器制造、激光切割、焊接时如何应用?
    据激光加工专委会统计,2023年中国激光产业产值约980亿元,直逼千亿元大关。 据MRFR数据显示,预计2026年全球激光加工市场规模将达到61.1亿美元。 中国激光产业正处于成长期,预计2024-2029年,我国激光产业市场规模将以20%左右的增速增长,到2029年产业规模或超7500亿元。可见,激光产业有着巨大的市场潜力。激光技术市场需求已成为国内外企业重点关注的话题之一。我国激光技术的市场需求主要在哪里?中国激光技术目前已应用于光纤通信、激光切割、激光焊接、激光雷达、激光美容等行业,涉及多个领域,形成了完整的产业链。激光切割激光焊接激光美容比如在工业制造领域,激光已成为需求极大的一种工具。用户可利用激光束对材料进行切割、焊接、打标、钻孔等,这类激光加工技术已在汽车、电子、航空、冶金、机械制造等行业得到广泛应用。新能源汽车制造激光打标激光钻孔激光这个“潜力股”跟热成像有关系吗?在激光这个庞大的产业链中,激光器和激光设备两个环节的竞争尤为激烈。激光器是产生、输出激光的器件,是激光设备的核心器件。从激光器来看,光纤激光器由于具备电光转换效率高、光束质量好、批量使用成本低等优势,可胜任各种多维任意空间加工应用,成为目前激光器的主流技术路线,在工业激光器中占比过半。对此值得关注的是,在光纤激光器的生产质检过程中,热成像仪可以发挥极大的应用价值。比如在大功率光纤激光器的制造过程中,严重的缺陷会导致光纤熔接处异常发热,从而对激光器造成损坏或烧掉热点。因此,光纤熔接接头的温度监测是光纤激光器制造过程中的一个重要环节。使用红外热像仪可以实现对光纤熔接点的温度监测,从而判断产品质量是否合格。在光纤激光器生产质检中,热成像还可以如何发力?先简单了解下,光纤激光器的组成和工作流程:注解:单条激光的功率有限。在泵浦和合束器的双重加成下,激光的输出功率会变得更大。在上述流程中,热成像可以有如下应用:① 光纤熔接点质量监测光纤之间会有很多焊接点,光纤熔接处可能存在一定尺寸的光学不连续性和缺陷,借助热成像仪可以监测光纤熔接点的温度有无异常,判断熔接点是否存在缺陷,提高产品质量。② 泵浦检测泵浦在工作时会产生大量热量,其温度会直接影响芯片输出的激光波长,使用热成像仪可以对每台泵的来料进行质量检测,保证激光器质量。③ 合束器检测通过热成像仪,既可以判断合束器温度是否异常,也可以检测合束聚合后,输入和输出光纤受热是否均匀。
  • 大族激光:光刻机项目已实现小批量销售
    1月14日,大族激光在互动平台表示,目前公司在研光刻机项目分辨率为3-5μm,主要聚焦在5G通讯配套分立器件、LED、Mini/Micro-LED新型显示等方面的应用,且光刻机项目已实现小批量销售。值得关注的是,近日,深圳监管局披露了大族激光的子公司大族数控首次公开发行股票并上市辅导备案信息。据披露,大族数控拟首次公开发行股票并在境内证券交易所上市,现已接受中信证券的辅导,并于2020年12月31日在深圳证监局进行了辅导备案。据了解,大族数控是由大族激光组建的全资子公司,是集技术研究、开发、生产和销售为一体的高科技企业。天眼查显示,大族数控注册资本为37800万人民币,于2014年12月30日及2016年3月1日,分别获得了由大族控股和大族激光投资的两轮战略融资。在产品方面,其专业开发和生产具有国内领先水平的HANS系列PCB激光设备、PCB数控钻铣机HANS系列PCB激光设备,以及PCB数控钻铣机是集激光技术、机械学、电子学、计算机学、气动学和光学于一体,是印刷电路板行业的专用设备,适用于印刷电路板的精密钻孔和异形槽、孔、边 框的铣削加工。公司于2006年通过ISO-9001质量认证。
  • 滨松参展CIOE 2019,激光加工、激光雷达、光通信等多类应用新品展现
    2019年9月4日-7日,中国国际光博会(CIOE 2019)在深圳成功举行。本次滨松中国在展会中主要以激光加工、激光雷达、光通信、工业计测、气体分析、民用消费、光谱检测、检验医学八个方向为主,进行了产品技术的呈现。久经市场考验的经典产品,以及最新曝光的新品都同台出现,获得了众多参观者的驻足。展会现场激光加工# 激光加工联合实验室展品:激光并行加工模块2019年7月,湖北工业大学-滨松中国-金顿激光共同建立的“激光加工联合实验室”正式成立。目前主要进行着基于空间光调制器的精密激光加工方案(钻孔、切割、打标等)的研究,包括不同应用的相位图计算算法、光路系统的搭建与优化、不同材料和应用的实验工艺验证等等。激光并行加工模块是联合实验室的一个小小的首秀。内部配置了滨松空间光调制器(LCOS-SLM)。激光入射到SLM上,在软件内预先设置的多焦点全息图,随后激光通过独特设计的光路,最终在相机靶面上产生多光束。在光调制时,该模块使用了带反馈的迭代算法。相机采集的多个光束的能量分布首先经过算法优化,再迭代入GS算法迭代循环中,经过不断迭代循环,最终得到了能量分布均匀的多个光束。这在实际的加工中,是十分必要的。利用这套激光并行加工模块可以进行10*10阵列多光束打孔、多光束并行蚀刻加工、多光束字母打孔等作业。现场亦展示了多个使用该模块进行加工的样品。除了光调制技术以外,联合实验室计划逐渐拓宽研究范围,滨松的更多产品和技术也将参与其中。以行业需求为导向,更好的促进我国智能激光加工行业的发展。加工样品通过便携显微镜可看到样品上的打孔细节# 下一代激光加工模块:JIZAI此次CIOE,首次曝光了滨松下一代激光加工引擎JIZAI的信息。JIZAI是基于滨松隐形切割技术(独有技术,拥有全球专利)以及空间光调制技术开发而出的产品。灵活性极强,可以根据不同的应用选配其中的器件,进行自由定制。模块可以实现任意形状的加工光束,比如多点并行加工、像差校正、平顶光束等等。紧凑轻巧,可自由移动,在多点打标、内部打标、玻璃打孔、微通道成型等众多激光加工作业中都可应用。JIZAI概念图使用JIZAI进行的玻璃打孔作业激光雷达 # 面阵红外近距离传感器低速及特殊场景下的应用,是激光雷达目前的落地热点之一。智能工厂、智慧物流、智能仓库等场景中,都少不了它的存在。新系列的面阵红外近距离传感器,主要就是面向针对此类应用的激光雷达的。新产品增大了像素尺寸,提高了饱和上限,并在内部设置了补偿电路,增强了抗环境光干扰的能力,更加适合于强背景光环境(如:室外环境)下的近距离测距。同时该器件还具有低成本的特点。目前推出了3种不同像素数量的器件,也可根据具体需求进行定制。# VCSEL固态Flash LiDAR被普遍看做是当前LiDAR发展阶段的下一个台阶。在探测器和激光器的选择上,都将有很大的变化。激光器方面,旋转式中普遍使用的边缘发射激光器(EEL)已经不再完全适用于Flash式的雷达,高功率垂直腔面发射激光器(VCSEL)将成为最理想的选择。随着3D摄像头的热潮,VCSEL成为了近几年的热点话题,在大众熟知的人脸识别、手势识别等应用中都扮演了重要角色。但面向激光雷达的产品,对其各方面性能都有了新的要求,而此次滨松展出的940nm的VCSEL也是特别针对此应用开发的。除了本身光斑形态好的特点外,滨松新展出的VCSEL还具有光功率密度高、光电效率转换高、稳定性好的优点。带封装(金属)的滨松VCSEL产品,特定要求下,裸片产品的提供也可探讨光通信# 面向5G前传和数据通信中心光模块应用CIOE中,滨松呈现了面向中长距5G前传25G/50G光模块,以及100G/200G/400G数据中心互联光模块的全系列探测器方案。包括正照式/背照式、单点/阵列(pitch250/500/750μm)的InGaAs PIN PD,满足不同项目应用的需求。系列产品的特点在于,其采用了独特的设计结构,在保证高灵敏度、低终端电容的同时,也具备极高的可靠性。整个系列产品均可支持非气密封装。工业计测# 应用于编码器的光电探测方案展会中主要展出了目前编码器应用中比较具有代表性的产品,PD阵列、LED光源,以及集成光发射和探测的整体模块产品。实际上滨松探测器覆盖从可见光到近红外几乎全波段,可为LED光源匹配最合适高灵敏度的探测器,实现整个系统的高信噪比。滨松一贯是全线In-house设计和生产,无论是半导体设计及制造工艺,还是封装工艺都拥有丰富的技术储备,可以很好的应对针对编码器应用的各种定制化需求,打磨出最优的产品方案。民用消费# 针对广泛消费类应用的全波段产品“光”是无处不在的,不光是在生产制造、科研学术中,更是在生活的方方面面。滨松则希望通过自身的光电技术,为与我们息息相关的种种生活中的应用,带来更好的可能。让它们变得更加便捷、智能、环保。CIOE中滨松展出了多类光电半导体产品,其中包括可用于屏下,辅助屏幕亮度控制的接近传感器;可装配在便携式设备或独立体温计中,实现无探测位置限制的高精度温度测量,且低成本、环境友好的InAsSb探测器等等。滨松能为民用消费应用提供高一致性、高可靠性的产品。但最为重要的是,以60余年光电技术的沉淀,可以为具体的客户需求提供高定制化的服务,以及产品技术建议。成就更有竞争力的性能,抢占更新市场的先机。目前滨松中国除了北京总部外,在深圳和上海均设有分公司,拥有本土的销售、市场、产品团队,亦可以为中国客户提供更快速有效的服务。在CIOE中我们展现的产品技术和应用仅是冰山一角。实际上,滨松一直希望被看做是一个光子技术的提供者,以和客户更紧密的交流沟通,以及更深入的相互理解,来促成最佳的应用技术诞生。
  • 2024慕尼黑华南激光展观众预登记火热开启!
    2024慕尼黑华南激光展将于10月14-16日在深圳国际会展中心(宝安新馆)隆重举办。展会观众预登记已全面开启,诚邀您与我们相约在鹏城!即刻点击链接注册参观赢取200元京东卡:https://dwz.cn/L0M77buQ个人参观预登记步骤关于慕尼黑华南激光展2024年华南国际智能制造、先进电子及激光技术博览会(简称LEAP Expo)旗下成员展慕尼黑华南激光展关注粤港澳大湾区半导体、消费电子、医疗/生物技术、新能源/锂电、集成电路、金属/钣金、模具/工具制造等,为光电行业提供包括精密光学及检测、先进激光材料、光源及先进激光器件、激光智能制造、激光加工控制及配套系统、激光加工服务的一站式采购及交流平台。本届展会将共论激光新应用趋势,拓展行业新客户,集中在新能源、半导体、消费电子、医疗、3D打印、系统集成等多个终端应用,顺应激光智造变革潮流,助华南高端智能设备产业升级。展馆布局图展示范围精密光学及检测光学材料、元器件、镜头组件、整机仪器、光学加工设备、光学镀膜、镜头与摄像、安防与监控、红外技术工业配套及控制系统激光防护设备、激光冷却设备、激光清洗设备、智能控制系统、自动化管理激光智能制造激光切割、激光焊接、激光钻孔、激光打标、激光雕刻、激光划线、激光刻蚀、激光熔覆、激光淬火、激光清洗、激光开槽、激光医疗、激光显示先进光源及激光器件激光器、激光系统元件、激光器零部件、光机模组、芯片、二极管、光电元件、光学系统、光学力、激光及光学软件详情咨询:慕尼黑展览(上海)有限公司电 话:+86 (0)21 2020 5652传 真:+86 (0)21 2020 5688联系人:孔逸 女士邮 箱:karyn.kong@mm-sh.com
  • 滨松中国与湖北工业大学激光加工联合实验室正式建立
    2019年7月5日,湖北工业大学-滨松中国-金顿激光共同建立的“激光加工联合实验室”在湖北工业大学举行揭牌仪式。湖北省机械工程学会监事长陈万诚教授、秘书长朱永平教授、湖北省激光学会秘书长唐霞辉教授、华工激光、锐科激光、华日激光等十余家国内知名激光企业代表及吉林大学、华中科技大学、华南师范大学的专家学者近百人参加了活动。在出席嘉宾的见证下,湖北工业大学科研处处长武明虎、滨松中国总经理章劲松与金顿激光总经理金翔代表三方签署了联合实验室合作框架协议。湖北工业大学校长刘德富代表学校,与两方企业一起,为 “激光加工联合实验室”揭牌。该联合实验室目前主要进行着基于空间光调制器的精密激光加工方案(钻孔,切割,打标等)的研究,包括不同应用的相位图计算算法、光路系统的搭建与优化、不同材料和应用的实验工艺验证等等。期望通过产学研一体化的发展,推进空间光调制技术在精密加工中的应用。除此之外,实验室也将持续以行业需求为导向,集合三方资源,逐渐拓宽研究范围,将该平台拓展为国内一流产学研平台,促进我国智能激光加工行业的发展。湖北工业大学校长刘德富在致辞中回顾了与滨松长久以来的深入合作,希望以此次三方全方位的合作为契机,博采众长,共同提高,建立一个相互交流的平台,实现校企共赢,创建联合实验室的行业典范。滨松中国总经理章劲松则表示,滨松致力于光子的研究已经60余年,一直秉持着不断探索人类未知未涉的理念。滨松相信,“光”将是引领第四次工业革命的关键,而在中国制造2025的政策引领下,激光加工也必将是下一个备受追逐的风口,此次激光加工联合实验室的建立具有重大意义。华南师范大学博士生导师张庆茂教授、中国科学院上海光机所储蔚副研究员、吉林大学樊华博士、华中科技大学博士生导师甘棕松教授、新加坡南洋理工大学邵国栋博士、滨松中国高级光学技术工程师王梓博士等七名国内知名专家学者也出席了本次活动,并围绕超快激光微加工技术发展趋势、激光微加工技术与激光微纳制造技术研究发展现状等相关主题,进行了精彩的学术报告分享。
  • 滨松成功研发只有桌子尺寸大小的高功率、高重复频率激光器
    滨松光子学株式会社(静冈县滨松市,董事长:昼马 明 ,以下简称“滨松光子学(株)”)将传统泵浦用半导体激光器的功率提高了三倍,并优化了放大器的设计 ,成功开发了只有桌面尺寸大小,可以产生1焦耳(以下,j)的高能量、300赫兹(以下,hz)高重复频率的功率激光器。一般的激光器的输出功率与设备的尺寸、重复频率成正相关关系,而该课题实现了小型却高功率、高重复频率的激光器。本产品的诞生,通过去除细小的污垢的激光清洁来提高了传统加工的生产效率,同时,期待它在金属材料的激光成形、延长金属器件的使用寿命的激光喷丸等方面的新应用。该产品的开发是内阁办公室主导的综合科学技术与创新研发推进项目(impact)的一部分,是佐野雄二负责的“普及功率激光器以实现安全、安心、长寿社会”研发项目的一环,由滨松光子学(株)中央研究所产业开发研究中心副所长川嶋利幸等人开发,而且今后我们也将继续推进研究成果的产品化。此外,该新研发的产品将于11月1日(星期四)起连续3天在actcity滨松(滨松市中町区)举行的滨松光子综合展“2018photon fair”上展出。<关于功率激光器>功率激光器主要由振荡器和放大器组成。 振荡器由泵浦用半导体激光器、激光介质、全反射镜、输出镜和光开关组成,放大器由泵浦用半导体激光器和激光介质组成。 由振荡器发出的激光通过放大器时,从三种高能量状态(激发状态)的三段激光介质接收能量实现高功率输出。功率激光器的结构<新产品概述>该产品搭载了最新研发的泵浦用半导体激光器,虽然只有桌子尺寸大小,但却是可以产生1j的高脉冲能量且300hz的高重复频率的功率激光器。滨松光子学(株)已经开始制造并销售300hz的重复频率下输出功率为100w的泵浦用半导体激光器。此次,结合公司独有的晶体生长技术和镀膜技术,将传统泵浦用半导体激光的功率提高到世界最高水平300w,同时放大器在激光介质的长度和横截面积上下功夫,并采用具有提高冷却效率的放大器,解决了由于热问题导致激光介质损坏或破坏的问题,成功输出了传统放大器的3倍能量。这是因为放大器采用了新的散热设计,提高了激光的放大效率。此外,由于采用半导体激光器作为泵浦光源,具有高于市面上销售的氙灯泵浦脉冲激光器约10倍的光电转换效率,约100倍的泵浦光源的寿命。通过控制零部件的数量,成功实现了器件的稳定输出、小型以及低成本。一般激光器的功率与设备的尺寸、重复频率成正相关关系,但本产品却实现了小型而又高功率和高重复频率的特性。利用该产品,可以对附着于材料上的小污垢进行激光清洁,以提高传统加工的生产效率。此外,我们也期待脉冲激光器在工业领域的新应用,如飞机的金属材料等可以在不使用模具的情况下进行变形加工完成激光成形,以及通过激光喷丸来提高金属器件的使用寿命等。<研发背景>激光在金属材料的钻孔、焊接、切割等方面有着广泛地加工用途,为了提高生产效率,光纤激光器和co2激光器等各种各样的激光都在朝着高功率的方向发展。激光分连续输出一定强度激光的cw(continuous wave)激光和短时间内重复输出激光的脉冲激光,目前cw激光是激光加工领域的主流。另一方面,脉冲激光不同于cw激光,它正在朝着新型激光加工的应用方向发展。采用半导体激光器作为泵浦光源的功率激光器,它具有高功率、高重复频率的特性,但因为半导体激光器价格昂贵很难推向产品的实用化,而市场上销售的j级脉冲激光器上使用的泵浦光源多采用氙灯光源,对激光器内部有严重地热影响,因此重复频率只能限制在10hz左右。像这样,为了进一步提高生产效率,同时扩大用途,对小型且可以发出高功率、高重复频率脉冲激光的激光器的需求日益增加。主要规格<委托研究信息>此研究成果,是通过以下的科研课题项目得到的。内阁办公室创新研发推进项目(impact)项目负责人:佐野雄二研发项目:普及功率激光器以实现安全、安心、长寿社会研发课题:开发高功率小型功率激光器研究负责人:川鸠利幸(滨松光子学株式会社 中研研究所 产业开发研究中心 中心副主任)研发时间:2015年~2018年本研究开发课题是致力于开发桌子大小、高功率、高重复且稳定性高的脉冲输出的功率激光器。<项目负责人佐野熊二的评论>“普及功率激光器以实现安全、安心和长寿的社会”的impact计划,推动了大功率脉冲激光器的小型化、简化和高性能的发展,这对于探索最先进的科学和工业是不可缺的,同时,我们也正在推进相关基础技术和应用技术的开发,旨在提供可以随时随地使用,具有高稳定性的廉价激光器,向工业领域的创新努力。此次,滨松光子学(株)的开发团队采用了自有的先进半导体激光器作为泵浦高能脉冲激光器的光源,通过优化激光器件,以低价格实现前所未有的小型、高功率、高重复的激光设备。从限制成本和生产效率的角度来看,在我们之前放弃引入激光设备的领域,也期待会有更多的应用。功率激光器设备的结构 功率激光器设备外观
  • 华丽回归,助力智能制造,探索激光新应用,2022华南激光展盛大开幕
    11月15日华南先进激光及加工应用技术展览会终于,终于,终于不负众望如约而至了!!!这一天,虽然等了两年,但是,今年展会以新身份、新面貌再次回归业内视野第二十四届中国国际高新技术成果交易会成员展——2022华南国际智能制造、先进电子及激光技术博览会(简称:LEAP Expo)于11月15日,在深圳国际会展中心(宝安新馆)盛大开幕。而作为LEAP Expo成员展之一,华南先进激光及加工应用技术展览会(简称:华南激光展)与LEAP Expo旗下成员展慕尼黑华南电子展及慕尼黑华南电子生产设备展,并与同期举办的华南电路板国际贸易采购博览会、中国(深圳)机器视觉展暨机器视觉技术及工业应用研讨会(VisionChina深圳)共同亮相高交会。LEAP Expo为制造业不同细分领域的专业观众集中呈现了表面贴装、点胶注胶及材料、线束加工、电子组装自动化、机器人及智能仓储、质量控制、元器件制造、半导体、传感器、电源、无源元件、连接器、测试测量、PCB、汽车电子、激光智造技术及装备、光源和先进激光器件、激光加工控制及配套系统、工业智能检测与质量控制技术、激光加工服务、3D打印/增材制造技术,机器视觉核心部件和辅件等多个板块的新品及技术研发成果,联合产业优质企业,助力高交会在智能制造领域主题的呈现与技术展示。联动大湾区,响应“20+8”产业集群目标聚焦消费电子、半导体、锂电、医疗、智能检测等应用领域当前,粤港澳大湾区是目前中国最具活力和最国际化的地区之一,有着完整的机器人及智能制造产业链,产业集群协同效应日益凸显。在以“内循环”为主体,“双循环”相互促进的发展格局推动下,深圳处于内外循环交汇的重要位置,是大湾区建设的重要引擎。今年,深圳提出“20+8”产业集群发展目标:着力推动网络与通信、软件与信息服务、智能终端、超高清视频显示、新能源、海洋产业等增加值千亿级产业集群发展优势更加凸显,半导体与集成电路、智能传感器、工业母机等产业短板加快补齐,智能网联汽车、新材料、高端医疗器械、生物医药、数字创意、现代时尚等产业发展水平显著提升,同时也是为粤港澳大湾区先进制造业核心竞争力的提升注入强劲动力。华南激光展立足大湾区,背靠华南雄厚的产业基础与市场资源,深度剖析先进激光器,诠释未来激光新应用。展会汇聚了多家知名企业,为大家呈现智能检测、激光材料与配件、激光器、激光设备与控制系统等激光智能制造上下游产业链一站式采购平台,携手大族、华工、二十三所、通快、MKS、隐冠半导体、韵腾、热刺、创鑫、普雷茨特、光惠、锐科、步波、泰德、华日、飞博、汉立、汇乐、圣德科、中图仪器、滨松、佳能、永新、凌云光、凯普林、 镭宝、Ekspla、长飞光坊、炬光、奥创、晨锐腾晶、灏克、大科激光、卓镭、嘉强、东露阳、Light Conversion、仪景通、盛镭、德擎、诺派、贝尔金、星汉、铟尼镭斯、鼎鑫盛、易安锐、视百科、睿达、日月新、斯派特等激光产业链内知名企业,联袂演绎激光技术在消费电子、半导体、锂电、医疗、智能检测等重点终端应用场景的加工展示与创新发展。激光+智能制造,跨界融合看激光创新技术及智能检测展示区智能制造是“中国制造2025”主攻方向,是未来制造业发展的重大趋势和核心内容。通过跨界融合打开了智能制造升级的新出口,加速中国制造2025的进一步落地。深圳是国内激光和增材制造产业的重要集聚区,已初步形成覆盖材料、器件、软件、设备和应用服务全链条的产业生态体系。今年深圳出台的行动计划中指出“行业应用深度融合”,到2025年,围绕3C电子、新能源、新型显示等优势领域,将打造一批“激光+”和“3D打印+”智能制造应用示范项目。建成若干检验检测、试验验证、应用研发等产业基础设施和公共服务平台,形成覆盖源头创新、智能制造、创新应用的产业发展生态。华南激光展顺势而为,为强化创新驱动,推动技术跨越发展,提升“基础与专用材料-关键零部件-高端装备与系统-应用于服务”的激光产业链整体创新效能,精心打造“激光创新技术及智能检测展示区”,携手通快、MKS、普雷茨特、TOPTICA、滨松光子、奥创、光惠、蓝菲、德擎集中展示激光创新技术、工业智能检测技术及核心部件,内容包括光源和先进激光器件、激光加工控制及配套系统、检测仪器和设备等,应用于激光加工制造的AOI缺陷检测、产品表面及外观检测、零件的几何尺寸和误差测量等。现场通过各类演示模式及配合专人讲解,为消费电子、微电子/半导体、集成电路、新能源、汽车工程、医疗等下游用户带来激光深度应用和智能检测技术方案。Start-ups初创专区氛围热烈,企业前景看好作为创业浓度强、创业氛围好的城市-深圳,指引着科技的创新和发展。深圳人社部门为了中小企业的创业之路更加顺利,出台了一系列政策。为了更好地赋能初创企业,匹配专业领域买家或企业技术人才。本届华南激光展携手慕尼黑上海光博会,推出“初创企业助力计划”,发挥平台优势,帮助初创企业扩大品牌影响力,提供宣传渠道,寻找合适人才。麓邦、久渡科技、康克科技、法拉第、佛山帕科斯、蓝溪华兴光电、中辉激光、光缘实业、杰昇精密五金、长春飞鹰、广东艾莫讯等11家初创规模的企业齐聚“Start-ups初创专区”,纷纷拿出了各自专注领域的引以为豪的展品向专业观众解说,应用领域广泛,产品种类繁多,甚至已经远销海外,涵盖光学元件、光学模组、光学系统及仪器、激光腔体、特种光纤处理设备及高功率光纤器件、保偏光纤产品、高端激光器、超短脉冲光纤激光器、固体激光器、半导体激光器老化系统、半导体激光器测试系统、半导体激光器、高功率皮秒激光器、激光打标,激光焊接、激光清洗控制、精密机械零部件、激光切割机、激光清洗机等。可以说这些初创企业都是“未来之星”,期待他们在激光市场中能继续发光发热,为行业发展贡献更多力量,创造更多技术可能,甚至引起行业变革。头脑风暴,探索激光工艺赋能消费电子创新升级随着全球消费电子产业迅速发展,消费电子产品朝着集成化、精密化、智能化的方向升级,电子产品的内部构建也愈发精巧,对制造过程中的高效率、高精度、热影响区小、无污染等要求越来越高,激光工艺的发展正为消费行业的精密加工带来了更优的解决方案。消费电子产品制造对激光工艺的需求既是生产制造升级的需求,也为华南地区的消费电子创新智造提供持续动力。华南激光展开幕当日,《激光工艺赋能消费电子创新制造研讨会》同期举办。针对激光技术在消费电子产品制造行业的创新应用和解决方案展开话题讨论,深度探索消费电子智能制造中对激光工艺需求和难点,促进激光技术的技术革新和设备升级。大会为消费电子领域用户寻找新技术、了解行业先机、与业内专家近距离交流提供了一个绝佳平台。浩浩荡荡买家团,商贸配对不可少为进一步帮助展商拓展商机、获取意向订单、提高参展效率,华南激光展主办方联合行业协会、媒体及相关业界机构共同邀请了由消费电子、微电子、工业电子等应用领域人士组成的专业买家团,莅临参观展会,更在展会现场专设商贸配对区,基于展前供需双方线上填写的采购及配对需求,特邀有采购意向的决策层与展商一对一线下开展贸易洽谈。2022华南激光展,作为第二十四届高交会智能制造系列展之一,依托于高交会的平台优势,以推动“激光+智能制造”深度融合为目标,深挖激光产业链先进技术产品,配套同期论坛、商贸配对等丰富同期活动,以期汇聚更多行业优质资源、精准对接垂直领域核心业务,为上下游企业提供综合性服务商贸平台。明日会议预告目前,5G、智能汽车、智能制造、人工智能、物联网等技术的快速发展,对各类芯片的旺盛需求,正成为驱动半导体制造业进一步增长的重要力量。另一方面,由于缺乏核“芯”技术而带来的产业发展卡脖子问题,以及当前因为芯片短缺问题而导致的生产停滞问题,都在促使国内芯片制造业奋力图强!而在半导体芯片的制造及封装测试过程中,激光技术正在越来越多地参与其中,从晶圆的光刻到切割划片,从清洗到钻孔,激光已经成为半导体制造中不可或缺的关键工具。本次研讨会雅时国际商讯、《激光世界》杂志将联合华南先进激光及加工应用技术展览会,围绕“激光技术在半导体芯片制造中的应用”这一话题展开讨论。逛展那么累怎能不奖励自己?别忘了明天前往6H44展位参与幸运大抽奖活动精美礼品等你来拿走!速速来试试好运吧!此外,观看展会云直播且转发朋友圈也有好礼相送啦!
  • 科技部科学仪器重大专项评审专家谈激光跟踪仪技术及应用
    激光跟踪仪技术及应用周维虎1,周培松2,石俊凯11. 中国科学院微电子研究所2. 海宁集成电路与先进制造研究院一、引言激光跟踪仪是一种大尺寸空间几何量精密测量仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点,是大型高端装备制造的核心检测仪器。目前,国际上主要有瑞士Leica、美国API和美国FARO三家公司生产销售激光跟踪仪。其中Leica公司凭借自身百年光学仪器制造优势,全球市场占有率最高,目前该公司主推产品型号为AT960,该仪器最大测量距离为80m,空间坐标测量精度为15μm+6μm/m,数据输出速率为1000点/秒;API公司激光跟踪仪小型灵巧,安装和校准快捷,移动方便,便于携带,目前主推产品为Radian系列,其中Radian Pro最大测量距离可达80m,三维坐标测量精度为为10μm+5μm/m;FARO公司财力雄厚,研发投入高,销售网络强大,目前主推产品为Vantage系列,其中VantageS6最大工作范围为80m,角度测量精度为为20μm+5μm/m,数据输出速率为1000点/秒。自1997年开始,国内天津大学、清华大学、中国科学院光电研究院等科研院所先后对激光跟踪测量技术及设备进行了相关研究,其中天津大学最先对单站式结构跟踪仪坐标测量系统进行了研究,并开展了测量功能实验,为激光跟踪仪的后续开发奠定了基础;清华大学对组合式多自由度跟踪测量系统进行了研究,基于三组跟踪测量系统构建空间位置姿态测量系统;中国科学院光电研究院团队(该团队于2018年划转至中科院微电子研究所)自2009年开始研究激光跟踪仪,在中科院装备项目、国家重大仪器设备开发专项、国家重点研发计划、装备发展部、国防科工局等项目的支持下,经过10余年研发和技术积累,实现了激光跟踪仪的自主研制,打破了国外技术封锁和垄断。当前,激光跟踪仪技术正向高精度、小型化、多功能、智能化等方向发展。激光跟踪仪是机器人校准的理想仪器,可以配合机器人实现高精度智能制造。高端激光跟踪仪含有大范围超清摄像头,用于测量过程断光后靶标的自动寻找和测量续接。除此之外,激光跟踪仪结合不同的测量靶标还可以实现隐藏点测量、工件局部形貌高密度扫描测量以及六自由度测量。随着激光跟踪仪在航空航天、舰船、核工业等大型装备制造中的重要性日益凸显,国内用户对仪器国产化的要求越来越高,随着中美贸易战的加剧和发达国家对我国高技术产品的打压,激光跟踪仪国产化替代势在必行。二、激光跟踪仪测量原理激光跟踪仪基于球坐标测量系进行测量,主要用于大尺寸坐标测量以及大型构件尺寸及形位误差测量,亦可对运动部件进行动态跟踪测量。2.1三自由度激光跟踪仪如图2.1所示,当激光跟踪仪工作时,激光测距系统获得靶球到仪器的精确距离r,方位编码器和俯仰编码器测角系统分别测出目标方位角A和俯仰角E,利用这三个原始测量值,就可以通过球坐标与直角坐标之间的转换关系获取空间三维直角坐标(X,Y,Z)。图2.1 三自由度激光跟踪仪原理图合作靶球在空间移动时,从合作靶球返回的一部分光会进入激光跟踪仪内部的位置检测器(PSD,Position Sensitive Detector),随着合作靶球的移动PSD将探测偏移值,跟踪控制系统根据这个偏移值控制方位和俯仰电机转动直到偏移值为零,从而达到跟踪的目的。测量组合参数(A,E,r) 经过坐标转换得到空间三维直角坐标(X,Y,Z)后,经过数据分析软件可以得到被测对象各种几何量参数。激光跟踪仪数据采集系统将测量数据发送至上位机以后,经上位机解析可以确定目标的三维尺寸、几何形貌等信息,并通过计算机实时显示并打印测量结果。2.2 六自由度激光跟踪仪图2.2 六自由度激光跟踪仪原理图六自由度激光跟踪仪为三自由激光跟踪仪的升级产品,在空间位置信息测量的基础上加入了视觉测量、光电测量和惯性测量等模块,用以获取目标空间姿态信息。首先需要建立激光跟踪仪坐标系与上述测量模块之间的转换关系,并通过视觉测量中纵向投影比不变的约束实现横滚角测量;在上述基础上,基于光束向量唯一性约束和激光准直传感原理实现方位角和俯仰角的测量,最后实现三个空间姿态角的测量;除此之外,还融入了惯性测量单元IMU的测量信息,用于动态条件下的辅助测量。三、激光跟踪仪产业和市场分析随着我国制造业产业升级和科技领域的迅猛发展,高端制造、精密制造、智能化制造成为我国未来工业和科技领域的主流方向,激光跟踪仪等精密测量仪器具有巨大的应用前景。在大尺寸精密测量领域,激光跟踪仪具有测量范围大、精度高、功能多、可现场测量等优点,取代了大型固定式三坐标测量机、经纬仪、全站仪等许多传统测量设备,在设备校准、部件检测、工装制造与调试、集成装配和逆向工程等应用领域显示出极高的测量精度和效率,激光跟踪仪已成为大尺寸精密测量的主要手段,激光跟踪仪应用领域主要包括航空航天、汽车制造、重型机械制造、重工与船舶、能源、科研、医疗等领域。根据国外市场研究机构,2017年全球激光跟踪仪市场规模为2.595亿美元,2020年全球激光跟踪仪市场规模为3.438亿美元,预计2023年有望达到5.216亿美元,2028年有望达到8.364亿美元,市场主要驱动力来自质量控制和检验、对准、逆向工程和跨行业校准的需求。按应用细分,质量控制和检验占据最大的市场份额。这是因为激光跟踪仪被越来越多地用于监控和测量跨行业的质量,如汽车、航空航天和国防。为确保客户的要求和规格,质量控制和检验是汽车、航空航天和国防工业的重要参数。为了做到这一点,这些行业主要依靠激光跟踪仪来检查和监测元器件、组装件和成品质量。激光跟踪仪在建筑产品测量、过程优化和通过快速精确测量提供解决方案方面具有精确度高和易便携等不可替代的优势。按行业细分,汽车、航空航天和国防有望引领整个激光跟踪仪市场。在航空航天和国防行业中,激光跟踪仪用于三维测量、逆向工程、武器系统、轴与导轨对准、雷达罩剖面图、飞行器传动装置,以及许多其他测量产品和服务。在航空航天行业中,激光跟踪仪最常应用于夹具部件检查和机翼部件装配。在汽车行业中,激光跟踪仪被用于自动化生产线校准、铰接线和车身部件对准、大型面板和装配主体面板测量、逆向工程、部件验证表面测量、工业机器人调整、变形和动态测量、质量控制和检验等。按地区细分,欧洲占据激光跟踪仪市场的最大份额。为了满足生产过程中的质量和安全要求,欧洲的原始设备制造商(OEMs)早已经开始使用激光跟踪仪。在汽车行业中,激光跟踪仪也得到了多种应用,例如质量检查、对准和校准。因此,日益增长的汽车行业对激光跟踪仪需求也在逐渐增加。德国、英国和法国有望成为欧洲激光跟踪仪市场的三大贡献国。亚太地区市场预计将获得最高的复合年增长率,该地区市场增长的关键驱动因素是市场参与者对新技术的日益关注和采用,这一地区已成为全球投资的焦点和业务拓展的机会。四、国产激光跟踪仪新成果及应用国内开展激光跟踪仪研发主要有中国科学院微电子研究所周维虎团队、深圳中图仪器公司、海宁集成电路与先进制造研究院等,近年来在国家和地方相关部门的支持下仪器研发取得了快速发展,主要体现在以下方面:1)与绝对测距技术相融合,提高仪器的测量精度和测量方便性。激光跟踪仪都是基于球坐标的测量系统,在没有绝对测距之前,没有测量信息冗余,测量过程中任意一个参数丢失,都直接影响测量数据的准确性。新一代激光跟踪仪都增加了激光绝对测距功能,这使得激光跟踪仪的测量信息有了冗余,保证了测量的精确性,在测量过程中丢失部分信息依然可以完成测量工作;同时,由于被挡光时不需要重回基准点复位,这也提高了使用方便性和测量效率。2)与视觉测量系统相结合,实现六自由度测量功能。激光跟踪仪与视觉测量系统相结合不仅能精确定位目标的三维位置,而且还能通过配合特定的靶镜对目标的空间三维姿态进行检测。不仅如此,视觉测量系统还可以识别目标靶镜,保证光路中断后可以通过视觉方式重建测量光路,且无需用户介入。3)测量靶镜多样化。针对三自由度、六自由度等测量需求需要提供不同的测量靶标,另外,仪器还配有隐藏点靶标、扫描测头等附件,使仪器具有隐藏点测量功能和局部区域扫描功能,不仅使仪器测量复杂结构的能力大大提高,还拓展了系统的通用性。4)自我诊断功能。精密测量要求仪器在各种测量环境下保证稳定的工作状态,所以仪器在测量中对自身状态的检测和诊断显得特别重要,自我诊断能在系统工作时实时显示系统的状态,排除微振、升温、光强不足等因素带来的影响。5)飞秒激光频率梳测距技术。飞秒激光频率梳绝对测距技术能够实现大量程、高精度和快速测量三者的完美统一,是激光测距领域的重大突破,有望为大型零部件外形测量、大型设备装配对接,尤其是未来空间任务提供新的技术支撑,在激光跟踪测距、高精度激光雷达测距、卫星编队位置测量、导航星间链路测距、深空探测、引力波测距等领域具有广阔的应用前景。6)组网协同测量技术。针对大型复杂设备装配测量中被测目标尺寸较大或者存在遮挡,单测站难以完成测量任务的难题,通过激光跟踪仪多次设站或者利用多台跟踪仪组网可实现对于大型复杂装备的测量。组网测量技术基于空间多公共点约束,建立激光跟踪仪多测站平差模型,利用平差的权重、约束条件等进行多测站空间位置和姿态的解算,同时求解出所有被测点的三维坐标,得到空间被测物体关键尺寸和特征信息的最优解。7)功能强大的测量软件。激光跟踪仪软件是测量系统的重要组成部分之一,系统软件通过TCP/IP通讯与硬件进行实时数据交互,对硬件上传的数据进行处理和分析,并控制硬件系统执行相应的测量等控制指令。软件系统为用户操作提供人机交互接口,通过数据库管理可实现用户对测量数据的编辑和输入输出等操作,在此基础上通过三维显示操作可面向用户实现测量数据和拟合数据的直观显示和交互操作。为了进一步提升系统测量精度,激光跟踪仪软件系统利用误差补偿算法对激光跟踪仪测距、测角和几何误差进行实时修正,结合激光跟踪仪硬件系统实现大型复杂工件或设备的高精度测量。近年来由中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队(以下简称该团队)致力于实现激光跟踪仪国产化。该团队在激光跟踪仪领域取得了一系列具有自主知识产权的研究成果,共申报发明专利45项(已授权32项),软件著作权5项,发表研究论文130余篇。 2020年激光跟踪仪成果通过了中国仪器仪表行业协会组织的成果鉴定,鉴定委员会认为:“本研究成果技术难度很大,创新性很强,取得了多项自主知识产权。整体达到国际先进水平,研制的激光跟踪仪填补国内空白,飞秒激光跟踪仪属国际首创,其中绝对测距精度、断光续接精度达到国际领先水平。”该成果于2020年分别荣获中国机械工业技术发明特等奖、中国计量测试学会科技进步一等奖。该团队目前主推三自由度激光跟踪仪ICAM-LT-3DOF、六自由度激光跟踪仪ICAM-LT-6DOF如图4.1所示。图4.1(a) ICAM-LT-3DOF型激光跟踪仪图4.1(b) ICAM-LT-6DOF型激光跟踪仪ICAM-LT-3DOF型激光跟踪仪与ICAM-LT-6DOF型激光跟踪仪的主要技术指标如表4.1和表4.2所示。表4.1 ICAM-LT-3DOF型激光跟踪仪主要技术指标指标参数最大测量范围(半径)80m空间坐标测量精度15μm+6μm/m水平角测量范围±320°垂直角测量范围-45°~+60°数据采集速度1000 点/秒跟踪速度>4m/s表4.2 ICAM-LT-6DOF型激光跟踪仪主要技术指标指标参数空间坐标测量范围(半径)80m空间坐标测量精度15μm+6μm/m姿态测量范围(半径)25m姿态测量精度≤0.05°水平角测量范围±320°垂直角测量范围±145°角度测量误差≤1’’数据采集速度1000 点/秒跟踪速度>4m/s截至目前,该团队研制的国产激光跟踪仪已在航天五院514所、航空304所、武船公司、中科院高能所、中科院国家空间科学中心、航天科工集团三院三十一所等多个科研院所和企业进行了应用。1)航天领域应用图4.2 激光跟踪仪在航天五院514所应用激光跟踪仪在航天五院514所进行了如下应用:① 紧缩场结构测试:完成紧缩场实验室结构测量,测得最大反射面尺寸10m×15m,最大测量距离35m,最高公差1mm;② 卫星壳体焊接工装结构测量:完成典型零件测量,测得工件尺寸1.5m-3m,测量距离:10m,最高公差0.2mm。在上述测量工作中,使用激光跟踪仪突破了传统测距在测程、精度和测量速度方面难以协调的瓶颈,提高了卫星和空间有效载荷的制造及组装精度。2)航空领域应用图4.3 激光跟踪仪在航空304所应用激光跟踪仪在航空304所进行了如下应用:① 航空工装测试:坐标不确定度达0.05mm,满足航空制造对精度溯源要求;② 飞机水平飞控部件姿态测量:位置传感器测量精度在线校准精度达0.018mm。在上述测量工作中,使用激光跟踪仪主要解决了两个问题:① 解决了大尺寸航空工装测量问题,提供了可供溯源的依据和测量基准,为数字化制造提供了可靠的计量保证;② 解决了飞机水平飞控部件姿态测量问题,实现了飞机部件姿态高精度高效率数字化测量,为航空制造安全提供了保障。3)船舶领域应用图4.4 激光跟踪仪在武船公司应用在船舶领域中,激光跟踪仪在武船公司进行了如下应用:① 与API激光跟踪仪测试数据进行比对,验证本激光跟踪仪的准确性、可靠性、稳定性、可操作性等综合性能;② 对船台建造过程中的分段结构外形尺寸、装配尺寸、位置偏差等进行了测量,突破了大尺寸测量仪器三维坐标测量方法关键技术。根据应用结果,在船舶领域应用激光跟踪仪,建立了相应的应用方法/规程,可逐步推广到船舶建造其他阶段,为船舶建造精度控制提供新的方向。4)大科学装置应用在大科学装置方面,激光跟踪仪在中科院高能所进行了如下应用:① 对北京正负电子对撞机储存环部分设备进行了准直调整,调整精度达0.1mm;② 在中国散裂中子源建设过程中,对隧道控制网进行测量,相对点位测量精度0.08mm,绝对点位测量精度0.05mm。图4.5 激光跟踪仪在中科院高能所应用在上述测量测试工作中,使用激光跟踪仪主要解决了两个问题:① 利用标准杆进行空间测量,大跨度搭接测量控制网,提高了控制网测量精度和效率;② 采用边长法进行高精度设备标定,彻底消除了测角误差的影响,提升了大科学装置安装精度。此外,该团队研发的激光跟踪仪还广泛应用于机器人磨削、航天钻孔及铣削、机器人校准等场景中,如图4.6所示。图4.6 激光跟踪仪在机器人场景的应用机器人磨削(左),航天钻孔及铣削(中),机器人校准(右)随着现代工业技术的迅猛发展,高端制造业对设备尺寸及空间位置精度要求越来越严苛,激光跟踪仪作为最先进的三坐标精密测量仪器之一,将为工程技术及科学研究大尺寸精密测量提供有效的解决方案。(点击图片查看专题)
  • 【超全解析】用于智能制造的滨松激光解决方案
    讲到滨松的激光技术,最早要从参与激光核聚变研究开始讲起。为实现激光核聚变的能源开发,滨松与大阪大学的激光工程学院合作,共同推进用于固态激光激发的高功率输出LD的研发以及相关技术的研究。滨松四大事业部之一的激光事业部 在不断成熟的过程中,滨松也希望将自身的激光技术带入产业应用中。以此为原点,积极推进了各类激光技术的研发。逐渐拥有了包括了半导体激光器、固体激光器、激光器配套附件、以及有着全球专利的隐形切割等产品。正在工作的滨松隐形切割引擎(SDE)世界首创也是唯一可进行晶圆内部切割的技术,与多个知名厂商有着紧密合作关系 随着中国制造2025的不断深入推进,激光技术已成为一种不可或缺的支撑技术,在晶圆切割、手机屏幕粘贴、玻璃切割、塑料焊接以及表面处理等众多应用中都不可替代。而针对这些应用,滨松可提供从元器件一直到整套系统的全产线产品。并以各自的独特性能,为目前的技术应用带来更好的可能。 元器件产品半导体激光器泵浦源作为光纤激光器的重要组成部分,主要由半导体激光器芯片(CWLD)和快轴准直镜(FAC)封装而成。滨松拥有两款输出功率分别为12 W和22 W的 CWLD芯片,对应的条宽分别为100 μm和190 μm。由于CWLD发射的激光在快轴方向的发散角较大,大约达到25°,非常不利于之后的光纤耦合,因此需要在芯片发射前加上FAC,进行快轴方向光束准直。为此,滨松可提供在800 nm~1050 nm波长范围为内透过率达到99%以上的FAC来解决上述问题。同时,对于FAC的尺寸规格(长度、高度、宽度)以及有效焦距,可根据需求进行定制。模块化产品为了解决大功率半导体激光器封装的问题,滨松可为客户提供巴条模块和叠阵模块供选择。巴条模块主要有以下两款产品:L8413-50-808(808 nm)及L8413-50-940(940 nm),输出功率分别为50 W和60 W。巴条模块除了可以单个使用外也可以组合使用。多个巴条模块呈线阵排列,在与冷却装置配合使用时可达到高输出功率以及高可靠性。此外,滨松还可将多个巴条一起封装成940 nm的叠阵模块。该叠阵模块内含15个巴条,输出功率高达1200 W(80 W/Bar)。当然,我们可以在叠阵前面加上FAC,对快轴方向的激光进行准直,耦合效率高达95%。 叠阵模块可用于高功率固体激光器泵浦源或是材料的表面处理。巴条模块叠阵模块半导体激光器随着传统工业制造朝着更加精密的方向发展,激光焊接俨然成为激光加工领域的市场风口。激光加热光源(LD-Heater & SPOLD)作为滨松在激光焊接领域的主要产品,其重要程度自然不言而喻。激光加热光源适用于新型的塑料焊接和OLED屏幕焊接。这些产品主要有能量分布均匀的平顶光束、改变镜头实现可变光斑面积、可实时监测表面温度,加工效果“可视化”等优势。针对不同的客户需求,滨松可提供波长为808nm、915nm以及940nm,输出功率从10W至200W的产品。目前在OLED屏焊接和无损拆解、智能腕表的防水焊接等中都发挥着重要作用。LD-Heater & SPOLD 除了激光加热光源之外,滨松也提供基于叠阵模块集成开发的直接输出半导体激光器(DDL)。该产品的中心波长为940nm,输出功率为4000 W、6000 W(可选)。主要应用为表面处理包括熔覆和淬火。为了获得更好的处理效果,DDL输出的光斑为矩形平顶光束,即照射到材料表面光斑形状为矩形,并且能量分布均匀。此外,为了满足各种不同材料的处理需求,输出的矩形光斑的长宽比例可以通过附加镜头实现1:1~1:5改变。直接输出半导体激光器(DDL)光斑长度比 超快激光加工解决方案皮秒固体激光器(Moil-ps)与Wavefront Shaper空间光调制器模块的结合,是滨松可为超快激光加工提供的,包括激光器和整形系统的全套解决方案。滨松超快加工解决方案 此套方案可实现在ITO薄膜上同时钻孔1000个(单孔直径为1.5 μm),也可实现在电子元件上微型二维码的一次成型,大大提升加工效率。ITO薄膜同时钻孔1000个,单孔直径1.5μm电子元件微型二维码一次成型Wavefront Shaper空间光调制器模块是滨松在光束整形领域的新品。同时采用了均匀激光强度分布的匀化器、非球面透镜成像的光学系统等高性能光学器件并配合核心器件——滨松空间光调制器(LCOS-SLM),实现了高强度的激光加工。(滨松LCOS-SLM可以承受200W以上的平均功率)相对于元件级别的LCOS-SLM,Wavefront Shaper更容易连接到系统,可实现简单的计算机控制系统(各种DLL适配),并具备温度控制功能(提高激光毁伤阈值)。在光束整形、像差校正、三维加工、并行加工等中有着广泛的应用。滨松Wavefront Shaper空间光调制器模块 2019年,湖北工业大学-滨松中国-金顿激光共同建立的“激光加工联合实验室”。目前主要进行的,就是基于滨松空间光调制器的精密激光加工方案(钻孔、切割、打标等)的研究,包括不同应用的相位图计算算法、光路系统的搭建与优化、不同材料和应用的实验工艺验证等等。依托联合实验室,滨松也可以更快的为国内客户提供产品应用验证、打样等服务。激光隐形切割引擎&下一代激光加工引擎隐形切割可以说颠覆了现有的切割概念。该方法将激光聚焦至晶圆内部进行预切割,再通过扩张膜的张力实现晶圆的划片。相比传统的砂轮切割,可以实现完全干式工艺,切割后晶圆无崩片、高强度,并且可缩小切割道的宽度。滨松隐形切割是世界首创,也是唯一可进行晶圆内部切割的技术,目前在全球拥有600多项专利。为了提高使用的便捷性,滨松可为客户提供系统化产品——隐形切割引擎(SDE)。目前,已有4000台以上的隐形切割设备,在世界各大半导体工厂中稳定运行着。以深厚的隐形切割工艺积累,和卓越的SLM控制技术为基础,滨松最新开发出了下一代激光加工引擎JIZAI。其灵活性极强,客户可以自由选配SLM、扫描镜、自动对焦镜、物镜等内部器件,来获得不同成本和性能要求的JIZAI模块。JIZAI概念图这个小模块可以实现任意形状的加工光束,比如多点并行加工、像差校正、平顶光束等等。紧凑轻巧,可自由移动,在多点打标、内部打标、玻璃打孔、微通道成型等众多激光加工作业中都可应用。内部打标玻璃打孔微通道成型滨松成立于1953年,已有66年的历史,其与中国结缘于1988年合资工厂的建立。为顺应中国市场发展,2011年全资子公司——滨松光子学商贸(中国)有限公司于北京成立,负责集团在中国的产品技术、服务、市场以及销售,随后在上海和深圳设立了分公司,以更好地服务于各地区的客户。针对激光加工的市场需求,滨松中国于本土配备了专门的产品技术、市场及销售人员。在提供更快速、优质、本土化的服务外,还会基于滨松集团的广阔视野,为客户带去具有价值的前沿产品技术、应用、市场信息。同时我们也不断推进着与国内高校的合作,如通过成立联合实验室(湖北工业大学-滨松激光加工联合实验室)这种方式,进一步优化产品的使用,加强与市场联系。以期为客户提供可更好满足应用需求的优质产品解决方案。
  • 奥林巴斯激光共焦显微镜OLS5100,5G技术普及守护者
    说到5G技术,我们会想到一个字:快!更严谨的来说,5G技术有3大优点: 1. 超大连接2. 超快速度3. 超低延时高速,同样需要付出代价,那就是:传输损耗 研究发现,高频信号比低频信号更容易造成信号传输损失。所以,为了有效传输5G信号,需要使用传输损耗低的PCB板。这里说的PCB板主要是指应用在5G通讯基站上的高速高频多层板。多层板,是指拥有3层以上的导电图形层。通过在核心层的顶层和底层重复蚀刻过程和钻孔过程,可以形成任意数量的层。在高频的信号下,5G的趋肤效应更加明显。趋肤效应是指,高频电流流过导体时,电流会趋向于导体表面分布,越接近导体表面电流密度越大。这是频率较低时,铜电路里面的信号流动区域,信号时充满整个区域的。频率增高,信号趋向于表面分布频率越高,铜箔表面的电流密度越大。这是电流与趋肤深度和频率的关系图: 原来在PCB的生成过程中,会对铜箔的表面进行粗化处理,从而得到较好的结合强度。但是在5G高频信号下,信号集中在铜箔表面。如果是在粗糙度较大的铜电路表面,信号传输的路径很长,传输损耗增加。 如果是在粗糙度较小的铜电路表面,信号传输的路径变短,传输损耗就会降低。 总的来说,铜箔表面既需要大的粗糙度来增强结合强度,同时也需要小的粗糙度来降低趋肤效应。所以,以下的两点在铜箔的检测中就显得十分重要: 1. 非接触形式的测量2. 更小的粗糙度数值 还记得奥林巴斯上个月发布的新品OLS5100吗?针对上述这样较为严格的检测条件,奥林巴斯OLS5100的粗糙度测量功能,可以很好的匹配这样的测量诉求。接触式表面粗糙度仪用触针直接在铜箔表面划过,可能会损坏铜箔样品,难以得到准确的测量结果。OLS5100显微镜采用非接触的测量方式,不会损坏样品,可以获得准确的数据结果。OLS5100显微镜使用直径0.4μm的激光束扫描样品表面,这让其能够轻松测量接触式表面粗糙度仪无法测量的样品表面粗糙度。这种同时获取接触式表面粗糙度仪无法获得的表面彩色图像、激光图像和3D形貌,使得更多分析功能得以实现。同样的,为了满足非接触以及更为精细的粗糙度检测,对测量器材就有了一定的要求,尤其在物镜选择上。要想实现精确的粗糙度测量,选择合适的物镜非常重要。其“智能物镜选择助手(Smart Lens Advisor)“,就是帮助检测高效顺利进行的好帮手。 我们通过智能物镜选择助手(Smart Lens Advisor),只需选中物镜后启用智能物镜选择助手,单击开始,智能物镜选择助手(Smart Lens Advisor)就会告诉您该物镜的推荐程度。这样,就可以确定您所使用的物镜对于测试而言是否合适。 智能物镜选择助手(Smart Lens Advisor)通过三个简单步骤即可避免通过猜测为粗糙度测量选择合适的物镜。只需确定您的视场,启动智能物镜选择助手(Smart Lens Advisor),然后按下开始按钮,软件就会告诉您所选的物镜是否适合您的实验。 这样一来,就能顺利减少因错误选择物镜造成的实验时间浪费。 在智能物镜选择助手(Smart Lens Advisor)的帮助下检测过关的铜箔,就可以成为低耗PCB的材料,保证了大家在5G技术加持下,高速的网络体验。
  • 激光从蛋白质分子粗细的小孔穿过
    报讯据美国《每日科学》网站8月31日报道,美国加州大学伯克利分校制出世界最小半导体激光器,能使激光从一个蛋白质分子粗细的小孔中穿过。相关论文8月30日在线发表在《自然》杂志网站上。该成果在激光物理学领域具有里程碑式的意义,将有可能开创光学研究的新时代。   加州大学伯克利分校纳米科学与工程中心主任张翔(音译)说:“该研究打破了传统意义上对激光极限的认识,在生物学、通信和计算机领域有着广泛的应用前景。”   据了解,在分子生物学上,纳米级的激光可用于对DNA分子进行探测和控制;在通信领域可大幅提高基于光传导的信息传送速度和带宽;在光学计算机领域对现有技术也有极大的促进作用。   在传统观点看来,包括激光在内的电磁波最细只能聚焦到其波长的一半。经过努力,科学家们找到了一种将电子和光子相互震荡并让其沿着金属表面传播的方法,才将激光压缩到几十纳米细,这种沿着金属表面传播的电磁表面波就是表面等离子体。此后各国科学家开始竞相建造等离子体激光器,但由于金属内在电阻的干扰,表面等离子体在产生后极易衰减,研究人员不得不为此再制造磁场以汇聚光线。   张翔和他的研究小组破解了这个难题。他们用比头发丝还要细1000倍的硫化镉纳米丝在金属银的表面分隔出一个5纳米宽的缝隙。在这个结构中所产生的激光比其波长小20倍。由于光能主要集中在这个极为狭小的缝隙中,其在传播中损耗也被降到了最低。自发辐射率的增加程度是衡量该设备的一个重要指标,在这项研究中,研究人员在该设备5纳米的间隙中测量到了6倍的自发辐射率。(王小龙) 本篇文章来源于 科技网|www.stdaily.com原文链接:http://www.stdaily.com/kjrb/content/2009-09/02/content_100089.htm
  • 创新应用 | 中红外激光排放控制新应用
    可调谐激光吸收光谱(TDLAS)具有测量不受背景气体干扰、测量准确性好、可靠性高等技术优势,已被公认为工业应用的首选测量技术,特别是其具有非侵入特性,从而在原位应用方面备受关注。随着近年激光吸收谱技术的发展,尤其是量子级联激光器(QCL)、带间级联激光器(ICL)等小型激光器技术不断成熟,激光吸收光谱的输出波段从近红外到中远红外不断拓展。气体检测由传统的工业过程优化控制、废气源排放、燃烧诊断等领域扩展到环境微量气体检测。中红外光一般指波长从2.5um到25um的光谱区域,中红外基频指纹吸收谱具有吸收强、谱线宽且密集的特点。分子在中红外波段的吸收一般比近红外吸收高约2个数量级(或以上),所以在中红外光谱气体探测灵敏度比近红外光谱探测的灵敏度高很多。同时特殊气体,如有机分子、氮氧化物、烯烃类气体在中红外的吸收比近红外特征更强,下图为HITRAN数据库的空气常见气体吸收谱线;中红外基频指纹吸收强有利于痕量气体的高灵敏检测。LGT-3000激光气体分析仪LGT-3000激光气体分析仪是基于TDLAS技术开发的一款原位对穿正压防爆型仪表,可以原位测量O2、CO、CO2、NH3等气体含量。此外,LGT-3000可配置ICL激光模块,采用中红外光谱,达到更低的检测限,并且能检测在近红外没有吸收光谱的一些常见气体SO2、NO、NO2等。产品特点: ◆响应时间低至1s◆双屏显示,方便光路调节观察透过率信息◆正压防爆设计,可以在爆炸性场合1区和2区使用◆采用“单线光谱”技术,测量不受背景气体交叉干扰◆一体化结构方式,无运动部件,可靠性高,稳定性好◆原位测量,无需预处理系统,避免预处理采样吸附、堵塞和器件损坏等问题,降低运行成本应用领域:该系统广泛应用于硫磺回收、烟气脱硝、燃烧控制、合成氨等领域中。
  • 上海光机所合成孔径激光成像雷达技术研究取得突破性进展
    中科院上海光机所空间激光通信及检验技术重点实验室在重大项目的支持下,自2008年开始合成孔径激光成像雷达技术的研究,目前已经取得阶段性突破进展。已实现实验室尺度缩小合成孔径激光成像雷达装置的二维目标的同时距离向和方位向的成像,实现了合成孔径激光雷达的光学、光电子学和计算机处理的全过程贯通。这是世界上第三个成功的实验报道。 合成孔径激光成像雷达(也称光学SAR)是在远距离达到厘米量级成像分辨率的唯一光学手段,在空间领域有着重大应用前景。其特点包括:1. 激光主动成像,适合全天时使用,具有接近光学可见成像的高视觉性,成像速度快;2. 雷达应用范围广泛,适合于空间对地超分辨率观察,空间远程活动目标超分辨率成像等应用。 美国已于2002年取得了合成孔径激光成像雷达的核心关键技术突破,实现了实验室尺度缩小装置的合成孔径激光二维成像,并在此基础上,2006年,由雷声公司和诺格公司分别研制成功机载合成孔径激光成像雷达样机,进行了多种野外试验,目前已向应用拓展。 与美国实验采用的光纤光学结构不同,上海光机所实验系统采用了空间光学结构,虽然增加了实验难度,但将更具有实用化前景。同时,由于光学合成孔径成像雷达与微波合成孔径雷达在实施方法上的根本不同,无法直接移植微波雷达的概念和原理,这也使得光学合成孔径成像雷达的研究具有很高的挑战性。上海光机所空间激光通信及检验技术重点实验室在研究过程中,创造性地提出并解决了一系列的空间域光学科学问题,时间域光学科学问题和统计光学科学问题,也相应系统性地发展了总体设计、光学天线、接收/发射光电子系统和图像处理等关键技术,为实现实验室尺度缩小合成孔径激光成像雷达,以及未来的样机装置奠定了坚实基础。 本项目成果目前在国内起着引领作用,项目的基础研究成果特别是空间域光学问题上的研究具有高度创新性,填补了国际研究的空白,并迅速得到了国际同行的肯定。
  • 上海光机所在液晶光学相控器件激光辐照效应方面取得新进展
    近期,中国科学院上海光学精密机械研究所薄膜光学实验室赵元安研究员团队与上海理工大学、苏州科技大学合作在液晶光学相控器件激光辐照效应方面取得新进展,研究厘清了液晶可变相位延迟器(LCVR)在连续激光加载下相位调控性能退化机理,并提出了性能退化补偿的预配置方法,为相关器件设计以及在高功率激光中的实际应用提供了指导方向,相关研究成果发表于Optical Materials 。   液晶相控器件可以实现对光束振幅、偏振、波前和指向等参数的调节,在激光点火、激光加工、光电对抗等高功率激光系统中有着广泛应用和研究,激光加载产生的热效应造成器件性能退化及失效的问题一直困扰着其在激光系统中的应用。   在该研究中,研究人员集成相位、温升在线测量技术并结合温度场建模分析,证实加电工作状态下LCVR的相位调控能力退化归因于连续激光加载导致的温升不但改变了液晶折射率,还影响了液晶分子在加电状态下的偏转角。上述性能退化可通过事先绘制不同激光功率下的相位响应曲线,通过降低电压进行预配置补偿,从而实现LCVR在更高功率激光辐照下按照预设相位调控参数输出。这些结果阐明了热沉积引起液晶相位器件相位调控能力退化的基本机制以及相应的补偿手段,为液晶相控器件的设计优化和实际应用提供了重要参考。   相关研究得到了国家自然科学基金、脉冲功率激光技术国家重点实验室开放基金的支持。图 1 (a)不同激光功率加载下LCVR的温度随时间的变化;(b)不同激光功率加载下LCVR的相位延迟随电压的变化;(c)不同激光功率加载下LCVR的相位延迟随电压的变化(第二次实验)。
  • HT8600大气甲烷激光开路分析仪,助力中国甲烷排放控制新征程
    近年来,随着全球气候变化问题的加剧,甲烷排放成为引起广泛关注的环境挑战之一。在应对这一问题的过程中,《甲烷排放控制行动方案》应运而生,为我国在甲烷排放控制方面制定了明确的战略和计划。甲烷排放形势严峻 甲烷,作为全球第二大温室气体,具有增温潜势高、寿命短的特点,对全球变暖贡献率达25%,其贡献仅次于二氧化碳,与CO2相比,甲烷吸附热量能力更强,20年内的全球增温潜势(GWP)相当于CO2的84倍,100年内的GWP100为CO2的28倍,已成为全球气候变化不可忽视的因素。 国际能源署(IEA)数据显示,2022年全球和我国甲烷排放量分别为35580.13万吨、5567.61万吨,我国甲烷排放量占全球比重为15.65%。我国虽然在甲烷资源化利用方面取得一定成效,但在统计监测基础、法规标准体系和技术管理能力等方面仍然面临一系列挑战。 甲烷排放控制不仅关系到气候效益,还涉及到能源资源化利用、环境保护和生产安全等多个方面的问题。政策解读《甲烷排放控制行动方案》的出台旨在通过全面、有序的措施,提升我国在甲烷排放统计核算、监测监管等基础能力,积极参与全球气候变化治理。亮点解读:1) 指导思想明确:以新时代中国特色社会主义思想为指导,贯彻生态文明思想,坚持减排与发展、安全的统一,引导经济社会全面绿色转型。2) 工作原则清晰:统筹协调、夯实基础、分类施策、稳妥有序、防范风险,形成了科学而灵活的工作原则,旨在多方面推动甲烷排放控制工作。3) 主要目标明确:在“十四五”和“十五五”期间,逐步建立政策、技术、标准体系,提升相关基础能力,实现甲烷资源化利用和排放控制的积极进展。4) 重点任务突出:加强监测、核算、报告和核查体系建设,推进能源、农业、垃圾和污水处理领域的甲烷排放控制,强化污染物与甲烷协同治理。5) 技术创新和监管加强:鼓励技术创新,推进关键技术的研发与应用,加强对甲烷排放控制的监管,提高数据质量。海尔欣助力中国甲烷排放控制新征程 在这一重要的甲烷排放控制行动中,宁波海尔欣光电科技有限公司旗下“昕甬智测”国产创新品牌HT8600大气甲烷激光开路分析仪,专门用于实时监测大气中甲烷气体的浓度,为环境监测和空气质量管理提供可靠数据支持。 仪器采用量子级联激光技术,应用两面暴露在大气中的高反射率镜面对中红外激光进行多次反射,有效光程达数十米,测量目标气体对特征吸收峰处中红外激光能量的微弱吸收,通过对吸收峰光谱曲线的实时积分进行痕量气体的浓度反演。开放式光腔,避免闭路仪器管道吸附问题造成的延迟,实现10Hz无损高频浓度输出,使检测更灵敏、响应更快速。 海尔欣自2004年创立以来,致力于量子级联激光技术的多领域应用,践行“光谱技术助力零碳地球”的企业使命,履行社会责任,在大气污染防治和温室气体减排方面,公司一直发挥着积极作用。我们认识到控制甲烷排放对于可持续发展的关键性,在产品研发中注重可持续性,努力通过技术手段推动企业、行业的绿色发展。HT8600的产品设计、生产和售后服务等环节都考虑到了对环境的影响,致力于为客户提供更环保、更高效的解决方案。结语总的来说,《甲烷排放控制行动方案》的制定标志着我国在应对气候变化、加强环境保护方面迈出了坚实的步伐。HT8600大气甲烷激光开路分析仪将发挥其独特的优势,帮助各行业准确获取甲烷排放数据,为实现监测、核算和报告等任务提供强有力的技术支持,为我国在全球环境治理中发挥更为积极的作用。
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器   新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。   1.美国“国家点火装置”   这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。   美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。   2.庞大的靶室    庞大的靶室   在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。   3.包含放射性氢同位素、氘和氚的铍球    包含放射性氢同位素、氘和氚的铍球   这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。   例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。   4.靶室顶部的起重机和气闸盖    靶室顶部的起重机和气闸盖   在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。   5.精密诊断系统    精密诊断系统   激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。   6.激光间    激光间   在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。   最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。   7.磷酸盐放大玻璃    磷酸盐放大玻璃   国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。   8.技术人员在激光间里安装光束管    技术人员在激光间里安装光束管   技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。   9.紧急停运盘    紧急停运盘   在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。   10.光导纤维    光导纤维   光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。   11.能量放大器    能量放大器   能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。   12.可变形的镜子    可变形的镜子   可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。   13.激光放大器    激光放大器   激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。   14.便携式洁净室    便携式洁净室   科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。   15.能量放大器    能量放大器   每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。   16.技术人员校对能量放大器    技术人员校对能量放大器   从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。   17.模仿NASA的主控室    模仿NASA的主控室   照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。   18.光束源控制中心    光束源控制中心   光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。   19.国家点火设施的激光源    国家点火设施的激光源   国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。   20.高能灯管    高能灯管   高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。   这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。   国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)   导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:   “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。   以下是“国家点火装置”产生最强激光的几大步骤:   1、安装球形外壳      安装球形外壳   为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。   2、用调节器调整靶位      用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。   3、将燃料放入燃料舱(圆柱体)      将燃料放入燃料舱(圆柱体)   进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。   4、压缩并加热燃料      压缩并加热燃料   所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。   5、用磷酸二氢钾晶体转换激光束      用磷酸二氢钾晶体转换激光束   激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 云南警方将引入激光拉曼光谱技术 助力禁毒反恐工作
    p   随着技术的不断创新,以及应用的拓展,拉曼光谱技术的应用范围也在逐渐扩大,目前很多已经走出学术研究实验室,走向实际应用。根据中国政府采购网上有关拉曼光谱的中标信息统计,我们可以明显的发现,越来越多的拉曼光谱仪入驻了公安局、刑侦中心等单位,未来将发挥其优势做出应有的贡献。 /p p   日前,中国科学院院士李灿光谱新技术在公安工作中应用学术交流会在云南警官学院举行。交流会上,中科院院士、中科院大连化学物理研究所洁净能源国家实验室(筹)主任李灿作了“激光拉曼光谱技术及其在各个领域中的应用”的学术报告,并与云南警官学院签署合作框架协议。云南卫视也对此事进行了报道:云南警方将引入激光拉曼光谱技术,应用于禁毒反恐工作。 /p p style=" TEXT-ALIGN: center" img title=" QQ截图20171206092810.jpg" style=" HEIGHT: 296px WIDTH: 500px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201712/insimg/b8a838b2-bfa0-418a-938d-0634c0f5d70c.jpg" width=" 500" height=" 296" / /p p style=" TEXT-ALIGN: center" img title=" QQ截图20171206092836.jpg" style=" HEIGHT: 296px WIDTH: 500px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201712/insimg/857e95b8-8676-4d7e-9b45-3694563c0e9b.jpg" width=" 500" height=" 296" / /p p   据了解,紫外拉曼光谱技术是中国具有自主知识产权的技术,已在催化、材料、能源以及深海探测等领域的研究中发挥着重要的作用。它在复杂化学品和材料的鉴定分析领域显示出潜在的重大应用前景,尤其在关系国家安全的禁毒、反恐斗争中具有独特的优势。按照双方签署的合作框架协议,中科院大连化学物理研究所将积极配合云南警方,将包括紫外拉曼光谱技术在内的最先进的技术及时应用在禁毒、反恐斗争前哨,并与云南警官学院合作培养高素质人才。借此机会,云南警官学院将把科技创新摆在服务公安发展全局的核心位置,切实加强科技合作交流,促进云南警官学院教育、人才、科研、师资队伍建设的全面提升,为建设更高水平的平安云南提供科技、人才和智力支持。同时,将不断加快推进毒品分析及禁毒技术公安部重点实验室、云南省刑事科学技术重点实验室、云南高校禁毒重点实验室各项建设和跨越发展,不断开创公安科技创新新局面。 /p p style=" TEXT-ALIGN: center" img title=" 20171203113646225.jpg" style=" HEIGHT: 333px WIDTH: 500px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201712/insimg/c45830fb-75b8-460a-9470-27f80265d2d3.jpg" width=" 500" height=" 333" / /p p   交流会上,双方参会人员进行了学术交流发言 云南警官学院为李灿颁发聘书,聘任其担任毒品分析及禁毒技术公安部重点实验室名誉主任。交流会期间,李灿院士团队一行先后参观了云南省禁毒教育基地,并前往玉溪市公安局禁毒支队青龙厂流动警务站实地调研。 /p
  • 应用实例|STFC-UKRI:用于高功率激光实验的高精度微流控装置
    在英国科学与技术设施委员会(STFC-UKRI)中央激光研究所,微靶制造科学家们正积极投身于高功率激光实验的微靶研究。新一代激光器提升了重复频率(高达10Hz),这让高重复制靶法成为了重要的研究途径。在这些高功率激光实验中,科学家们依赖微流控装置实现亚微米级的液体片靶。然而,他们发现,依赖传统的机械加工或蚀刻来制造微流控通道,既耗时又昂贵。因此,研究小组正在寻求一种创新的解决方案,以便能够快速制作新的靶设计几何体原型来满足他们的实验需求。01、研究开发靶研究团队利用微流控设计了一种液体靶,当液体从微通道流出时产生了液体叶片靶。通道的设计会直接影响到叶片的质量,通过叶片的宽度和厚度判断。设计目标为制造出宽度为几毫米、厚度为几百纳米的叶片,以实现高精度实验需求。图1:当液体从通道中流出时产生的液体叶片靶由于液体的行为随通道的变化而变化,因此通道设计对实验来说尤为关键。需要平滑的通道以减少湍流,同时要严格控制出口的形状,因为它对最后的叶片质量起到重要影响。02、精密3D打印制造通道为了创建液体片,该团队利用摩方精密microArch® S240打印出 20mm x 15mm x 5mm 的结构,其中有一个30μm 深的通道和一个 100μm 的出口。当然,与微型且精确的通道相比,该结构尺寸相对较大。但使用摩方精密设备打印较大的零件时,可同时保持通道所需的精度和准确度。现今通道选用钨材质,得益于钨能实现精确加工。在这种背景下,研究团队运用摩方精密 microArch® 系列设备的高精度 3D 打印系统,迅速准确地构建通道,为科研和快速原型设计提供了高效且成本较低的解决方案。图2:原钨件图3:高精度3D打印制造零件的特定部分原文链接:https://bmf3d.com/resource/high-precision-microfluidic-devices-for-high-power-laser-experiments/microArch® S240microArch® S240 作为摩方精密一款面向工业批量生产的超高精密3D打印机,不仅荣获全球光电科技领域最高奖—"棱镜奖(Prism Award)",且具有以下突出特点和优势:高公差低层厚:光学精度高达10μm,±25µ m的加工公差,打印层厚10~40μm 打印体积扩大:满足工业打印的需求,可达100mm×100mm×75mm,实现更大规模的小部件产量;打印速度提升:最高提升10倍以上,快速缩短加工周期,为客户节省时间和成本;多种材料支持:支持多种高粘度陶瓷浆料(≤20000cps),以及耐候性工程光敏树脂、磁性光敏树脂等功能性复合材料的打印;应用领域广泛:卓越的精度、扩大的打印体积和多材料兼容性,满足客户在尺寸、性能和效率方面的多重需求。摩方精密作为目前全球唯一可以生产最高精度达到2μm精度,微尺度3D打印技术及颠覆性精密加工能力解决方案提供商,会持续专注于精密器件免除模具一次成型能力的研发,为客户提供制造复杂三维微纳结构技术解决方案。
  • 激光赛道再添新军 英诺激光A股上市
    7月6日,我国激光产业赛道再添新军,英诺激光(301021)正式登陆创业板。英诺激光本次IPO发行3800万股,发行价格9.46元/股,对应的市盈率和市净率分别为26.48倍和1.59倍;募资总额3.59亿,拟用于固体激光器及激光应用模组生产、营销及技术服务网络中心建设、激光及激光应用技术研究中心建设和企业管理信息化建设及补充流动资金。  激光器+定制模组双向驱动  英诺激光是国内领先的专注于微加工领域的激光器生产商和解决方案提供商,激光器产品包括DPSS调Q纳秒激光器(纳秒固体激光器)、超短脉冲激光器(超快激光器,包括皮秒、飞秒级)和MOPA纳秒/亚纳秒激光器(MOPA光纤激光器),覆盖从红外到深紫外的不同波段,从纳秒到飞秒的多种脉宽。  2018 至2020 年,英诺激光营业收入分别为2.91 亿、3.59 亿和3.39 亿元,除了2020年受疫情影响外,主营业务整体上呈良好增长态势,最近三年复合增长率为6.90%。2021年一季度,公司营业总收入8608.20万元、归母净利润1956.29万元,同比增速分别为100.17%和561.79%。  从营收构成来看,激光器产品和定制激光模组销售是公司主要收入来源。公司激光器产品主要面向激光智能装备集成商,2018至2020年主营业务收入占比分别为69.28%、63.32%和64.84%;定制激光模组主要面向工业制造商、科研机构等终端用户,2018至2020年主营业务收入占比分别为24.17%、30.12%和28.13%。随着新产品的研发、推广以及新客户的开发,公司定制激光模组销售收入呈整体增长态势。  盈利能力上,英诺激光的整体毛利率和净利率水平较高,超过多数国内的可比公司。2018 至2020 年,公司销售毛利率分别为56.91%、50.75%和50.63%,销售净利率分别为21.35%、19.97%和19.35%。  顶尖“高材生”团队  管理团队背景来看,英诺激光是一家“高材生”企业。公司核心技术团队是广东省“珠江人才计划”和深圳市“孔雀计划”重点引进的创新创业团队;董事长暨创始人赵晓杰毕业于华中科技大学光电子工程系,日本分子科学研究所博士后,普林斯顿大学应用研究科学家,该机构也被认为是全球顶级的电化学研究机构;MOPA纳秒/亚纳秒激光技术研发负责人林德教为清华大学博士,英国哈德斯菲尔德大学博士后,曾发表过与激光技术及应用相关的期刊论文70多篇。此外,公司的激光应用技术研发工程师陶沙、混合超快激光技术研发工程师杨昕、激光应用技术研发负责人Jie Zhang等也均拥有知名机构的博士学历背景。  截至2020年12月31日,英诺激光共有研发人员55人,占公司员工总数的16.67%,其中博士15人。2018年-2020年,公司研发投入占比分别为9.19%、10.72%、11.78%,处于行业头部水准。  得益于较强的技术背景和较高的研发投入,英诺激光已成为全球少数同时具有纳秒、亚纳秒、皮秒、飞秒级微加工激光器核心技术和生产能力的厂商之一,同时也是全球少数实现工业深紫外纳秒激光器批量供应的生产商之一,拥有专利124项,其中发明专利34项。  英诺激光的主要产品纳秒紫外激光器,2018年销售量为2633台,约占当年全国销量的21.94%,市占率水平较高。  国产激光器正当时  2018年起全球激光行业周期性下行,目前正处于加速复苏阶段。而国内激光产业自2012年以来,市场规模加速成长,年均复合增速达26.45%。2019 年,我国激光设备市场规模达到658 亿元,全球激光设备市场规模1267 亿元,超过一半以上的激光设备市场在国内。  从发展趋势上看,紫外激光器销量增长明显,现已成为激光微加工的主力机型。紫外光的波长较短,加工时的接触面相对较小,有利于减小热效应影响区,能够有效提升加工精度,应用领域广。根据《2019年中国激光产业发展报告》,国产紫外激光器的出货量从2014年的2300台增长至2018年的15000台,预计2020年出货量有望达到20,000 台,整体增速较高。18年15000台出货量中,纳秒紫外激光器约占八成,是目前激光微加工领域的主力产品。  同时,超快激光器也正蓬勃发展,2017、2018 年两年的增速远超过整体激光设备市场增速。超快激光器短脉宽、大功率,适用于精密加工,未来仍有望成为激光微加工领域新的增长点。  回到公司而言,英诺激光的主力产品便是纳秒紫外激光器,主要竞争对手包括美国光谱物理、美国相干和华日精密激光等。与国际先进企业相比,公司的产品在光束质量M2、最大单脉冲能量和平均输出功率等性能指标上已达到国际先进水平。同时,超快激光器正是英诺激光主要研发布局方向,目前公司部分产品的性能也已达到或接近国际先进水平,该领域主要竞争对手包括美国光谱物理、美国相干等。  公司表示,未来将继续专注于微加工激光器及解决方案的自主研发,在激光器方面进一步丰富产品线,朝更短波长、更窄脉宽、更高功率方向发展。在微加工解决方案方面,积极布局激光技术在生命健康、生物医疗、高效微纳制造等新兴领域的应用,成为全球激光微加工行业的技术引领者之一。
  • 十年征途:探索激光粒度仪的“真理”之旅——仪器信息网25周年万里行之走访真理光学
    珠三角地区,作为中国经济与科技创新的前沿阵地,汇聚了众多高新技术企业与研究机构,新建实验室数量领跑全国,对科学仪器的需求也极为旺盛,成为名副其实的“采购大户”。据仪器信息网统计,广东省凭借其雄厚的科研实力与广泛的市场需求,在激光粒度仪、电镜等分析表征仪器的采购中标数量上连续多年领衔。尤为值得一提的是,这片热土还孕育了两家优秀的激光粒度仪制造企业。仪器信息网成立25周年之际,特别策划了“万里行”系列走访活动。近期,为深入了解珠三角地区激光粒度仪产业发展现状,仪器信息网编辑部主管杨厉哲、营销服务中心材料物性部经理韩永风等一行走进了珠海真理光学仪器有限公司 (以下简称“真理光学”),受到了真理光学董事长兼首席科学家张福根博士的热情接待。——企业发展进展真理光学成立于2015年,专注于高端颗粒表征仪器的研发和制造,产品涵盖激光粒度分析仪、纳米粒度及Zeta电位分析仪以及颗粒图像分析仪,其创始人张福根博士凭借在该领域的深厚积淀,引领公司稳步前行。张福根深知,一家企业从萌芽至相对成熟,往往需要十年的蛰伏与成长,他向创始团队强调,只要我们能“活下去”,凭借我们固有的优势基因——持续不断的创新能力,就一定能不断推出引领市场的新产品,使得我们在竞争中脱颖而出。而今,在真理光学即将迈入其第一个十年之际,公司跨越了初创期的重重考验,初步奠定了坚实的基础。在财务层面,实现了自主运作与良性循环;产品方面,经过市场打磨与验证,品牌知名度与日俱增;团队建设上,凝聚了一个专业、稳定且充满创新精神的团队。可以说,真理光学已初步实现了起步阶段的既定目标,站在了新的发展起点上。2023年,真理光学实现超乎预期的近20%强劲增长。进入2024年,面对宏观经济环境的挑战,公司上半年营收未达预期目标;但张福根表示,市场近期已显现出积极的回暖迹象,下半年相较于上半年将有明显改善。实验室——激光粒度仪技术与市场现状在探讨颗粒表征技术的进展时,张福根博士指出:“尽管激光粒度仪在各个领域已得到广泛应用,但它存在一个显而易见的问题,即不同厂商的仪器,乃至同一厂商不同型号的仪器,在测量同一样品时,其结果却呈现出令人困惑的不一致性。这一问题的根源在于该仪器原理层面的固有局限,而识别并力求弥补这一技术缺陷,是我们公司这几年来一项至关重要的工作,也是我之所以创办真理光学的原因之一。真理光学与天津大学的联合团队展开了系统的理论研究,发现了激光粒度仪衍射光斑(爱里斑)的反常变化现象(ACAD)。通常来说,颗粒越小,爱里斑越大,于是颗粒大小与爱里斑大小之间有一一对应关系;但在有的粒径区间,颗粒越小,爱里斑却也越小。我们把这样的粒径区间叫做“反常区”,这也解释了为什么不能测量3μm左右的聚苯乙烯微球,同时也给出了反常区的一般公式。未来,力求精准测量颗粒的真实粒径,将成为技术发展的理想方向,我们也会沿着这个方向努力。”当前,激光粒度仪市场的竞争态势愈发激烈,张福根博士对此有着深刻的见解:“在这片竞争的红海中,不仅有老牌劲旅稳扎稳打,还有几家试图搅局的。价格战硝烟弥漫的同时,技术指标虚标问题也愈发凸显,严重扰乱了市场秩序。为了正本清源,我们积极投身于激光粒度仪产品标准的制定工作之中。2023年7月,我们深度参与的GB/T 41949-2022《颗粒 激光粒度分析仪 技术要求》国家标准正式实施。起初,该标准在国内市场未激起涟漪,但出乎意料的是,它在国际市场上却引起了强烈的反响。相较于国际通用标准ISO&ensp 13320-2020 《颗粒细度分析 激光衍射法》 ,该标准更为严谨细致,避免了模糊地带与不可验证的指标。GB/T 41949-2022作为产品标准,其每一项条款都力求明确且可验证,为遏制虚假宣传、保护消费者权益提供了坚实的依据,让‘钻空子’的行为无所遁形。然而,尽管普遍共识认为标准至关重要,但现实情况却是大多数用户对于具体标准知之甚少,甚至缺乏足够的关注。所以对标准化委员会来说,加强标准宣贯是一项紧迫而重要的任务。”交谈中,张福根博士透露,真理光学的新产品即将在金秋十月召开的第十三届中国颗粒大会上亮相。随后,张福根还简单阐述了真理光学的全球化战略,明确指出国际市场是其不可或缺的拓展方向。目前,真理光学已在俄罗斯、韩国、越南、美国、意大利、英国以及中东等多个国家和地区成功布局,建立代理网络。最后,张福根博士谈到:“总体而言,过去几年里我们在传统产品方面与同行激烈竞争,凭借自身技术和产品优势,打下了坚实基础,接下来要实现更大的发展,关键在于推出具有差异化优势的新技术新产品。而研发,作为我们的核心竞争力与根本优势,将持续引领真理光学向更高更远的目标迈进。”合影留念
  • 滨松激光加热光源助力更高效、更精确的激光焊接
    如今,用激光进行塑料焊接(Plastic Welding)以及锡焊(Soldering)已是一种十分常见的加工方法。非接触性、高自由度、高速度、高精密是此类方法的突出优点。然而,需要达到理想的焊接效果,怎样的加工条件是最好的?我们都知道,假如使用放大镜将光聚焦在一张纸上,如果纸是黑色的,就很容易被点燃,白色的则相对困难,这是由其温度升高情况不同而造成的。激光加工也是一样,拿塑料焊接来说,待加工的塑料往往颜色、厚度各异,如果不去测量加工过程中物体表面的温度,则难以准确判定是否达到了预期的加工效果。对于新的待加工物来说,找到理想的加工条件就将花费很多时间。 可以说,温度信息是缩短寻找最佳加工条件周期的一项重要参数。以前,加工操作和合格判定多是通过交由经验丰富的工人来获得保障。但这种依赖于“人”的模式,显然不能满足工业发展的需求。如果能把握温度信息的反馈,就可实现“可视化”,即便是经验尚浅的人,也能进行精确高效的加工。那么,我们要如何获取此信息呢? 将温度信息一滴不差的收起来 获得温度信息的唯一方法,是测量来激光自加工过程中的红外光强度。但这里我们需要捕捉的,是高能量激光中那缕极其微弱的红外光,前后者的强度比率大约是一亿比一。常规操作是无效的,拥有极高灵敏度的弱光探测器才能派上用场。此外,红外光产生与物体被照的位置是一致的。想要精确测量,观测点和照射点的形状、位置都须做到同步。然而,受制于工艺水平,目前市面上许多此类激光器的该两部分是分离的,使用时主要通过一些人为的调试来尽可能保障效果,易用性和精确性都不够理想。 而滨松激光加热光源LD-HEATER及SPOLD,可以将以上问题都解决。滨松激光加热光源将激光照射和红外探测都集成在了同一个激光头中。因此,不必进行光轴调整,照射和探测就可完美的同步进行。由于照射光和监控信息的光程相同,所以不管大小、近远、光的形状,观测到的都是相同的。而滨松本身十分擅长微弱光的探测,探测器的灵敏度即可以得到很好的保障。高精度的实时温度监测技能加身后,会有怎样的直接变化呢?曾有客户反馈,在以前,新待加工物从试生产到批量生产,需半年左右(包括修正模具的时间)。配备滨松LD-HEATER后,大概仅需1/3的时间就可完成。如今,已有激光加热光源设备在客户的产线中工作了10年,且保持了0故障率。如此超高的稳定性,也为带来了生产效率的提升。 LD-HEATER和SPOLD有何不同? 这里我们提到了两个不同的名字,LD-HEATER以及SPOLD。同是激光加热光源的它们有什么不同呢? LD-HEATER是多功能的,实时温度监测功能为其标准配置,适用于试生产时期的加工条件寻找,以及问题分析。秉承即使是不完全了解激光的人都可以使用的理念,滨松工程师在开发时也考虑了足够的安全性。而SPOLD更低廉、更小巧、更多产品系列,易于在大规模生产现场使用。它是尽可能简化了的光源,以期能集成到其他的设备中。 不过,两者在许多核心的基本性能上是相同的。除了上述的高稳定性外,最为突出的则是其内部均配备了光束整形系统,输出的直接为平顶光,保证了加工的高效以及高度均匀性。如今某球知名的智能腕表生产商已将此系列激光加热光源置入了其产线中,其焊接达到的高防水性则让客户十分满意。此外, OLED屏的焊接也是目前的一个典型应用,其可进行高质量的无损拆解,这也源于激光器核心性能的保障。 简单来讲,LD-HEATER与SPOLD在生产的不同阶段扮演着不同的角色。在LD-HEATER给出加工条件后,可将相对低成本以及内嵌式的SPOLD配备入大规模生产系统,以保障已确定的加工条件与预期相同。而一旦实际生产中出现问题,也可以继续使用LD-HEATER找到问题所在。 不过,并不是所有SPOLD都配备了实时温度监测功能,客户可根据自身的需求进行选配。而此功能发挥的作用与LD-HEATER的也不尽相同,我们将此称为LPM(Laser Process Monitor,激光过程控制器)。 低成本,实现批量生产时的加工质量监控 一般来讲,激光加工的时间很短,在线探测异常并尽快做出反应非常重要。在实际生产现场,可能会发生很多难以直接察觉的未预料到的事情,比如设备或磨具状态的变化。而这些变化很可能导致待加工材料随着时间而改变,进而影响到最终的加工效果。而通过温度差异则可探知异常的发生,装配了LPM的SPOLD在加工中就可实现这样监测。 滨松目前提供3款配备LPM的SPOLD:L11785-61M,L12333-411M/-511M LPM采集由热产生的红外光后,可输出相应的模拟信息。如果加工出错,红外光的强度就会改变,LPM输出值也会不同。也就是说,其可以提供的是一个信息对比。如果是稳定的设备和材料,执行稳定正确的加工过程,输出信号也将是稳定的。一旦出现异常的信号,则可判定加工过程存在异常。 不过LPM并不是一个单独的模块,只能装配在SPOLD中才可很好的发挥作用。带有LPM的SPOLD只通过一根光纤来同步完成激光照射与红外探测,同样不用进行调整,也能确保加工区域和红外光信息获得区域是统一的。 当然,滨松也提供不带有LPM的SPOLD产品,可实现更低的成本,以及更小的体积。 不带有LPM的SPOLD系列:L11785,L13920 除了性能优异的产品外,由于产品研发是从应用端开始着手的,滨松对于不同材料之间的加工工艺非常熟悉,因此还可向客户提供帮助进行工艺选择的增值服务。 滨松最早的激光技术起源于激光核聚变的研究。为实现激光核聚变的能源开发,滨松与大阪大学的激光工程学院合作,共同推进用于固态激光激发的高功率输出LD的研发,在不断成熟的过程中,滨松也希望将自身的激光技术带入产业应用中。以此为原点,便积极推进了各种激光技术的研发。结合自身在光子技术应用中的广阔视野和经验,以期为激光技术打开新的应用领域。
  • 广东激光后来居上 湖北激光正“加速”突围
    自2006年汽车产业率先突破千亿大关后,湖北的千亿产业一路小跑,划出一道靓丽的上升曲线。截至2012年底,汽车、钢铁、石化、电子信息、食品、纺织、机械、电力、建材、有色金属等十大“台柱”产业支撑湖北经济快速发展。肩负工业强省重任,走新型工业化道路,湖北哪些产业将策动经济实现弯道超车?   为此,记者多方探寻未来助力湖北经济快速发展的源动力。   作为中国激光技术的发源地、先行者、排头兵,湖北汇聚了大批激光领域的优秀技术人才和研究成果,但在激光业的产值上,湖北激光业先后被广东、江浙和环渤海地区超越。用“起了个大早,赶了个晚集”这句俗语来形容湖北激光产业,再恰当不过。   在新一轮竞争中,如何发挥湖北激光技术优势,向激光产业大省迈进?   “成为下一个千亿产业,激光业有很大的潜力”。全国政协常委,湖北省工商联主席赵晓勇去年曾对湖北激光业的发展有过深入的调研,日前在接受记者采访时感叹:我省激光业在经历了萌芽、突破性、规模化发展阶段后,目前已经进入进阶发展阶段,只要打通全产业链的发展链条,激光业将有望实现千亿产业的大跨越。   竞争比拼日趋激烈   赵晓勇提供给本报的一份《关于推动湖北千亿元激光产业建设的建议》的调研报告显示:经过十多年的发展,截至2011年底,武汉地区规模以上(产值1000万以上)激光企业仅26家,其中包括,产值规模过亿元以上企业7家、5亿以上企业3家、10亿以上企业2家、15亿以上企业1家(团结激光) 在全国规模以上激光企业数量占比25%左右,其中,激光装备制造规模以上企业占比40%左右,全国第一。   而深圳大族激光一家以民用激光为主营方向企业,2011年的营收总额就超过36亿元,远远超过湖北相关激光企业的营收。   不仅在单个企业的比拼上,湖北不如外省,在全省或地区激光产业的产值上,截至2011年,约150亿元产值的湖北,也远远落后于国内相关省份,处于“抱着技术、却饿肚子”的尴尬境地:数据显示,2011年,广东地区激光设备产值虽然仅35亿元,但激光加工及激光制品产值达到260亿元以上,在激光应用领域排在全国第一位。   不仅广东的激光业产值后来居上,长三角、环渤海湾地区特别是辽宁依托庞大的经济规模和快速的产业升级,激光产业发展大有后来居上之势。去年初,辽宁省在鞍山市规划建设我国首个以激光技术为特色的产业园辽宁(鞍山)激光科技产业园,最终打造成集激光技术研发、应用和生产为一体的国家级激光产业基地,目标产值1000亿元。   “广东等华南地区激光业后来居上,源于其先天优势。”华工科技常务副总裁、华工激光董事长、总经理闵大勇分析,最近10年,当地企业承接了来自世界的代加工服务,要求其适合激光产业的应用,所以激光加工及其制品的产值比较大。这既是区位优势使然,也是市场资源配置的结果。   有望彰显集群效应   后来者居上,激光产业的竞争日趋激烈,在技术上更占优势的湖北,怎样才能立于不败之地?记者在多日的调研中获悉,湖北已悄然擂响了“打造激光千亿产业”的战鼓:相关部门已为激光产业的发展筹划并完善产业规划。   借助东部产业转移,以及中部崛起等外围政策和环境的变化,湖北激光业也正在迎接着“美好时光”。   面对这样的机遇,赵晓勇建议:目前仅依靠单个企业自发的发展壮大的动力还不足,还要把分散的动力集合起来,推动其发展。延伸产业的覆盖面,使企业合作,产业合作,区域合作,技术合作有效地结合起来。逐步完善激光产业的产业链条。   闵大勇也表示:“政府搞好产业规划、引导及招商,可以极大促进武汉激光产业。”   公开资料显示,东湖高新技术开发区拟在左岭新城筹建目前国内最大的激光产业基地。根据武汉官方说法,该基地一期工程预计5年建成,届时,园区科工贸年生产总值可达300亿元,创税25亿元并间接带动相关产业生产总值500亿元左右,最终基地将打造千亿激光产业链。   据了解,正是基于光谷激光产业的这种集群效应,截至2012年底,仅华工科技就将国家千人计划人才徐进林等12位全球顶尖激光人才收入麾下。如今,华工激光从上游激光器到下游激光先进精密微细加工装备、大功率数控激光加工系统、激光再制造系统,已形成完整的产业链。   湖北优势下的“加速度”   闵大勇估算,激光产业链产业规模往下游成几何级数放大增长,1个单位的激光材料产值,将产生约10倍的激光器产值、约5—10倍的激光系统集成产值、约20倍激光应用产值。   “激光产业特征就是规模不大,所有新的市场开拓都是基于不断发现新的应用领域。”闵大勇称。   去年6月,华工科技公司与武钢研究院历时两年合作,开发出了国内首套激光拼焊机组,并将投入使用。武钢将在全国建20条激光拼焊设备生产线,建成后年产值将达百亿元。   不仅华工激光,在湖北规模最大的团结激光、产业品类最全的楚天激光也都拥有自身的拳头产品。   楚天激光2007年底与欧洲一流的激光系统制造商—意大利ELEN集团合资组建武汉奔腾楚天激光公司,专业生产经营中高功率激光切割设备,如今在国内占有重要市场份额,还实现批量出口,该公司已成为我国航天器精密加工装备的供应商。   而团结激光下属武汉科威晶激光公司2007年产值仅1000万,得益于国际合作,2011年产值突破2亿元。   “我感觉,5年左右,中国将取代日本,在激光产业与美国、德国形成三强鼎立的格局。”闵大勇称。   他山之石   在美国,受激光技术应用影响和推动的国民经济年产值约为7.5万亿美元,涉及生物与国民健康、交通与能源、通信与IT业、文学艺术与制造业等。   在我国,激光技术在国民经济中逐步显现放大效应。   2011年,全国激光产业总产值约1100亿元。其中,激光设备销售收入约300亿元,产业链下游的激光加工服务业约350亿元,激光制品约450亿元。
  • 空天院高光谱激光雷达团队 揭示新型主动光学传感器高光谱激光雷达辐射效应产生机制
    近日,中国科学院空天信息创新研究院遥感科学国家重点实验室牛铮研究员团队,在新型主动光学传感器高光谱激光雷达(hyperspectral LiDAR, HSL)辐射效应产生机制及相应校正算法研究方面取得重要进展。距离效应和入射角效应作为高光谱激光雷达面临的两大几何辐射效应,严重限制了其在定量遥感方面的应用。该团队研究发现,高光谱激光雷达距离效应和入射角效应分析及校正可以独立进行,并提出了一种耦合二次函数和指数衰减函数的分段函数模型用以分析和校正距离效应,发展了一种改进的Poullain算法用以目标入射角效应分析和校正。上述研究得到了国家自然科学基金重点项目“植被生理生化垂直分布信息遥感辐射传输机理与反演研究”的支持,有关成果发表在遥感领域国际顶级期刊ISPRS Journal of Photogrammetry and Remote Sensing和IEEE Transactions on Geoscience and Remote Sensing上,第一作者为实验室博士研究生白杰。面对高光谱激光雷达主要几何辐射效应即距离效应和入射角效应校正的技术难题,团队自2020年起开展科技攻关,发现距离效应源于系统本身,所有波长拥有统一的距离效应函数,在此基础上提出了一种耦合二次函数和指数衰减函数的分段函数模型用以分析和校正距离效应 而对于不同种类植被叶片目标,因其表面微观尺度物理结构和内部生化参数不同,因此通常表现出不同的入射角效应,该效应与被测目标种类在高光谱激光雷达条件下二向反射特性密切相关,因此该团队指出关于高光谱激光雷达入射角效应,更准确的表述应为“某一目标高光谱激光雷达入射角效应”,并发展了一种新的改进的Poullain算法,用以目标入射角效应校正。与传统基于各向同性散射假设的朗伯余弦定律和原始Poullain算法相比,该算法考虑了目标粗糙度因子和漫反射系数在不同入射角和波长下的异质性,更加符合自然目标物回波强度的反射特征,不同植被叶片实验显示,相对于标准0度入射角下的回波强度和反射率,校正结果标准差减少了30%~60%。有关算法为后续植被三维生化参数准确反演提供了重要的理论基础和技术支撑。目前,实验室已经完成具备高速采集能力的第二代高光谱激光雷达系统设计与研制工作,正在开展性能测试,预计2023年底投入使用。早在2014年,遥感科学国家重点实验室就设计、研制了具有完全自主知识产权的国际上首台32波段高光谱激光雷达系统。自此,相关团队围绕这一新型传感器持续开展研究,在高光谱激光雷达系统设计研制、数据获取与处理、辐射信息提取、辐射效应校正及植被三维生理生化参数反演等方面取得了丰富的研究成果,为我国抢占高光谱激光雷达设备研制与应用这一领域做出系统性贡献。
  • 863计划“先进激光材料及全固态激光技术”项目申请指南公布
    国家高技术研究发展计划(863计划)新材料技术领域“先进激光材料及全固态激光技术”主题项目申请指南  在阅读本申请指南之前,请先认真阅读《国家高技术研究发展计划(863计划)申请须知》(详见科学技术部网站国家科技计划项目申报中心的863计划栏目),了解申请程序、申请资格条件等共性要求。  一、指南说明  依据《国家中长期科学和技术发展规划纲要(2006-2020年)》,为满足先进制造、精密测量和国家重大科学工程等对全固态激光器的迫切需求,设立“先进激光材料及全固态激光技术”主题项目。  本项目通过突破人工晶体材料及全固态激光器研制和产业化关键技术,开发出具有自主知识产权的系列化高功率、皮秒和紫外全固态激光器产品,促进我国人工晶体材料和全固态激光器产业的发展。  本主题项目的任务落实只针对项目整体进行,项目申请者应针对指南内容,围绕项目总体目标和任务进行申请,而不要只针对项目部分目标和任务进行申请。  项目可以由一家申请,也可以由多家共同申请。对于多家共同申请的主题项目,由研究单位自行组合形成项目申请团队(一个单位只能参加一个申请团队),并提出项目牵头申请单位和申请负责人,由项目牵头申请单位具体负责项目申请。  项目申请要提出项目分解(包括任务分解及经费分解)方案,提出项目课题安排及承担单位建议,并填写课题申请书(项目拟分解的课题数最多不超过10个)。  二、指南内容  1、项目名称  先进激光材料及全固态激光技术  2、项目总体目标  突破人工晶体、全固态激光器及其核心器件的研发和产业化关键技术,开发出系列化高功率、皮秒和紫外全固态激光器产品并实现工业示范应用,促进我国人工晶体和全固态激光器产业的发展。  3、项目主要研究内容  (1)深紫外激光器及人工晶体关键技术  KBBF/RBBF晶体生长、KBBF-PCT器件制备、激光高次谐波和激光线宽控制等技术研究。  (2)新型晶体材料及器件技术  超晶格晶体制备、超晶格可调谐锁模、Nd:YAG激光陶瓷材料制备等技术研究。  (3)千瓦级光纤材料及全光纤激光器  低光子暗化光纤制备、全光纤种子源研制、全光纤激光器整机设计和装配等技术研究。  (4)单频激光器关键技术  纵模控制、增益光纤与标准光纤熔接、倍频晶体抗光损伤工艺等技术研究。  (5)紫外激光器产业化关键技术及应用  光学晶体长寿命使用、激光器单元模块化、系统集成等产业化关键技术开发 紫外激光微加工应用技术开发。  (6)高功率激光器产业化关键技术及应用示范  大批量Nd:YAG单晶高质量低成本生长及加工、激光振荡放大、系统集成等产业化关键技术研发 高功率激光在焊接、表面处理等方面的应用技术开发。  (7)皮秒激光器产业化关键技术及应用示范  皮秒激光振荡、再生与行波放大、系统集成等产业化关键技术研发 皮秒激光微加工应用技术开发。  4、项目主要考核指标  (1)深紫外人工晶体及激光器  KBBF晶体尺寸15×10×4mm3,RBBF晶体尺寸12×6×1.5mm3,KBBF-PCT器件透过率95%@193nm 177.3nm激光器功率100mW。  (2)光学超晶格锁模器件  线性损耗0.5%/cm、尺寸≥20×3×1mm3 锁模激光器:1.0μm/0.5μm双波长和1.3μm 激光陶瓷尺寸≥100×100×20mm3、透光率≥80%@1064nm。  (3)千瓦级光纤材料及激光器  双包层光纤材料光子暗化12dB/m@633nm 全光纤激光器功率1.5kW、光束质量M21.5。  (4)单频激光器  倍频晶体KTP抗光损伤阈值2GW/cm2@1064nm/10ns/10Hz 单频绿光激光器功率10W、线宽2MHz、噪声0.03%RMS 单频光纤激光器功率5W、线宽10kHz、边模抑制比60dB。  (5)紫外激光器  功率10W/20W/30W系列,重复频率50~150kHz,光束质量M2≤1.3,8小时内功率起伏3%,无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产。  (6)高功率激光器  Nd:YAG晶坯直径≥100mm、单程损耗≤2×10-3/cm@1064nm,键合晶体的键合面损耗≤0.1% 3kW和5kW激光器产品:光纤芯径为400μm,连续无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产 激光器功率≥6kW,8小时内功率起伏±2%。  (7)皮秒激光器产品  千赫兹10~20mJ@1064nm、5~10mJ@532nm、1~2mJ@355nm,脉冲宽度≤20ps,光束质量M2≤2,连续无故障运行时间≥5000小时,实现与加工系统的匹配及定型生产。  5、项目支持年限为2年。  6、项目国拨经费控制额为9000万元,自筹经费不低于国拨经费控制额。  三、注意事项  1、鼓励“产学研用”联合申报,项目下设每个课题的协作单位原则上不超过5家。  2、受理时间:项目申请受理截止日期为2010年12月8日17时。  3、申报要求:项目申请采取网上申报方式,申报通过“国家科技计划项目申报中心”进行,网址为program.most.gov.cn。请按要求编写《国家高技术研究发展计划(863计划)主题项目申请书》,具体申请程序、要求及其他注意事项详见《国家高技术发展计划(863计划)申请须知》。  4、咨询联系人及联系电话、电子邮件  咨询联系人:史冬梅  联系电话:010-88372105/68338919  电子邮件:shidm@htrdc.com  863计划新材料技术领域办公室  2010年10月20日
  • 便携式电池供电激光功率测量积分球助力激光企业发展
    某现场安装激光二极管的制造公司需要一种可靠的方法用于现场测量激光功率,而无需带回实验室进行测试。激光测量系统需要完全由电池供电,因为现场没有电源。Labsphere(蓝菲光学)根据客户要求提供一套独立的、便携式且耐用的激光功率测试系统。Labsphere (蓝菲光学)提供标准的激光二极管测量积分球; 然而,还需将新功能整合到系统中,使其能被带到现场测试。 由此产生的一个小而轻的积分球系统,能够在世界任何地方进行可靠的激光功率测量。1.5 英寸开口端,用于轻松安装激光二极管组件针孔滤光片后面的制冷型 InGaAs 探测器,用于在功率低至 200 μW 的情况下进行红外范围内的辐射测量两个 FC/PC 适配器,允许通过光纤连接额外的探测器Spectralon® 漫反射材料,在 UV-VIS-NIR 范围内提供近乎完美的朗伯反射,以优化测试结果的准确性为 TE 冷却器和充电装置供电的可充电电池组轻巧的手持式塑料支架可固定每个组件,并带有泡沫内衬派力肯手提箱,可确保安全运输特点电池组可为系统供电数小时,为一个项目中的多项测试提供充足的时间每个组件都包依附在安装板上,提供了极大的可移动性,而手提箱确保了产品运输过程中的安全性InGaAs 探测器在近红外范围内提供可靠的校准测量,附加的光纤适配器使系统能够灵活地在其他范围内或使用光谱仪执行附加测试Spectralon 极高的漫反射率,以及积分球内的挡板几何形状,很大限度地提高了光照射到探测器上的均匀性Labsphere(蓝菲光学) 的 HELIOSense 软件进行实时数据收集、存储和可视化,使测试变得简单易行。光谱响应
  • 大族激光全资子公司中标新微半导体1台激光开槽机
    9月27日,上海新微半导体有限公司(以下简称“新微半导体”)化学气相沉积设备(钨)和激光开槽机项目中标结果公布。化学气相沉积设备(钨)项目中标人为上海谙邦半导体设备有限公司(以下简称“谙邦半导体”),标的物1台化学气相沉积设备(钨),用于6英寸GaN晶圆制造过程中W金属填孔沉积工作;激光开槽机项目中标人为深圳市大族半导体装备科技有限公司(以下简称“大族半导体”),标的物1台激光开槽机,可加工2/3/4/6/8inch的GaN-Si、Low-K、Metal等材料晶圆的激光开槽。据悉,谙邦半导体是上海邦芯半导体科技有限公司的临港落地项目公司(全资子公司),是一家专注于真空等离子体技术的半导体设备厂商,重点研发项目包括化合半导体和硅基芯片加工设备,如化合物半导体刻蚀机、化合物芯片介质刻蚀机等。大族半导体是大族激光科技产业集团股份有限公司全资子公司,专业聚焦为LED、面板、半导体等泛半导体行业提供系统加工和智能化车间解决方案,主要研究蓝宝石、玻璃、陶瓷、硅、碳化硅、氮化镓、砷化镓和柔性薄膜等材料的加工工艺,提供从精细微加工,到视觉检测等一系列自动化专业装备。
  • 莱赛激光拟挂牌新三板 主营激光测量仪器
    1月3日消息,莱赛激光科技股份有限公司(以下简称:莱赛激光)已于近日正式申请新三板挂牌,全国股转系统披露的挂牌资料显示,莱赛激光董事长陆建红、副董事长张敏俐2人,通过直接和间接合计占股72%,为莱赛激光共同实际控制人。  公告显示,莱赛激光2014年度、2015年度、2016年1-9月营业收入分别为1.11亿元、9961.31万元、8212.80万元 净利润分别为546.37万元、678.32万元、791.14万元。  资料显示,莱赛激光主要业务为激光测量仪器设备的研发、生产和销售,主要为客户提供激光测量的整体解决方案。
  • 光谷激光公司共同选择进军海外
    国内市场已近红海,布局海外正成为光谷激光企业的共同选择。   继华工系挺进美国市场后,日前,位于光谷的团结激光股份有限公司(以下简称:团结激光),已正式落子俄罗斯乌拉尔地区,加速发力当地市场。   进军海外已是大势所趋   资料显示,目前,全球激光器市场可分为三大区域,即美国、欧州和日本,市场份额分别是55%、22%和23%。据冯迅介绍,长期以来,国内激光企业的海外市场主要集中在南美、中东及亚洲地区,欧美市场正成为同行们发力的新板块。   就在不久前,同样是行业大佬,华工激光就与全球著名的自动化控制产品提供商 Honeywell公司签下采购合同,首次将旗下精密激光修调机打入美国市场。   参与全球竞争,光谷的激光企业又走出了一步。   日前,作为湖北省省激光产业三大巨头之一,团结激光最终敲定布局俄罗斯市场的方案。根据规划,在俄合资企业将逐步升级为集销售、加工和研发于一体,并在当地建成加工连锁网络和应用人才培训中心,2016年市场目标为1000万美元。“加工基地已成为激光产业中新崛起的业务板块。”团结激光副总经理冯迅如是说。   按照协议,团结激光将在加工、装备和工艺等领域,与俄罗斯开展全方位合作。作为载体,今年,该公司将在叶卡捷琳堡投资控股分公司,注册资金300万美元,主要经营激光设备组装、销售和加工业务,并谋求打造成为俄罗斯激光加工行业领军企业之一。   对此,团结激光副总经理冯迅告诉记者,随着两国战略合作关系进一步稳固,俄罗斯将会是激光技术重要的海外市场,“在这个大背景下,我们才签署了这个合作协议”。此前有消息称,未来一段时间,俄罗斯将会投资数亿元对激光产业进行现代化改造和升级。   加工连锁渐成盈利新利器   “加工基地已成为新崛起的业务板块。”据团结激光方面介绍,目前,海外的加工基地只负责组装、售后和加工等服务环节,研发和生产都在国内,“可随时满足客户个性化需求”。   资料显示,早在2007年底,作为在国内率先提出“连锁”概念的企业,团结激光就联合同行发起成立武汉光谷激光加工连锁有限公司(以下简称:光谷激光连锁),先后通过并购、控股和加盟等方式,在国内外建有近50家激光加工连锁机构。   谈及连锁,冯迅坦言,按目前市场行情,一台工业用激光器售价在百万元以上,如果购买,多数中小客户都会觉得是负担,而拥有购买能力的大企业,也存在一定程度的闲置现象。与国内企业购买为主不同,据冯迅介绍,美国和日本均已建成超过5000家激光加工站,且数量一直保持上升趋势。   对此,光谷激光连锁总经理许桂华也表示,随着国内经济转型升级,可以预见,高耗能、高污染的传统加工技术必将淘汰出局,以激光为主导的新加工技术将取而代之。   据悉,未来3年内,作为激光领域的新业务板块,连锁加工新模式给团结激光贡献的收入将不低于15亿元,“基地数量将扩大到100家”。
  • 激光雷达 lidar
    激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代产品。20世纪90年代研制成功的第三代系统以第二代系统为基础,增加了GPS定位和定高功能,系统与自动导航仪接口,实现了航线和高度的自动控制。   成像激光雷达可水下探物   美国诺斯罗普公司为美国国防高级研究计划局研制的ALARMS机载水雷探测系统,具有自动、实时检测功能和三维定位能力,定位分辨率高,可以24小时工作,采用卵形扫描方式探测水下可疑目标。 美国卡曼航天公司研制成功的机载水下成像激光雷达,最大特点是可对水下目标成像。由于成像激光雷达的每个激光脉冲覆盖面积大,因此其搜索效率远远高于非成像激光雷达。另外,成像激光雷达可以显示水下目标的形状等特征,更加便于识别目标,这已是成像激光雷达的一大优势。 History and Vision History Velodyne's expertise with laser distance measurement started by participating in the 2005 Grand Challenge sponsored by the Defense Advanced Research Projects Agency (DARPA).A race for autonomous vehicles across the Mojave desert, DARPA's goal was to stimulate autonomous vehicle technology development for both military and commercial applications. Velodyne founders Dave and Bruce Hall entered the competition as Team DAD (Digital Audio Drive), traveling 6.2 miles in the first event and 25 miles in the second. The team developed technology for visualizing the environment, first using a dual video camera approach and later developing the laser-based system that laid the foundation for Velodyne's current products. The first Velodyne LIDAR scanner was about 30 inches in diameter and weighed close to 100 lbs. Choosing to commercialize the LIDAR scanner instead of competing in subsequent challenge events, Velodyne was able to dramatically reduce the sensor's size and weight while also improving performance. Velodyne's HDL-64E sensor was the primary means of terrain map construction and obstacle detection for all the top DARPA Urban Challenge teams. Vision Velodyne's ultimate vision for its LIDAR technology is simple: to save lives. We see the day where this sensor technology is deployed on every vehicle in the world. While traditional LIDAR sensors have relied on fixed electronics and rotating mirrors to deliver a 3-D terrain map, the rotation of an entire array of multiple fixed lasers has proven to be a quantum leap forward in sensing technology. This accomplishment has been termed a "disruptive event" by car safety research groups, who see the technology as a reason to rethink all that we know about vehicle sensors and the safety systems they enable. Until the day when we help eliminate automobile-relatedcasualties, Velodyne plans to market its unique LIDAR technology wherever sophisticated 3-D environment understanding is required: robotics, map capture, surveying, autonomous navigation, automotive safety ystems, and industrial applications. 激光雷达介绍   激光雷达   LiDAR(LightLaser Deteetion and Ranging),是激光探测及测距系统的简称。   用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。 激光雷达的历史   自从1839年由Daguerre和Niepce拍摄第一张像片以来,利用像片制作像片平面图(X、Y)技术一直沿用至今。到了1901年荷兰人Fourcade发明了摄影测量的立体观测技术,使得从二维像片可以获取地面三维数据(X、Y、Z)成为可能。一百年以来,立体摄影测量仍然是获取地面三维数据最精确和最可靠的技术,是国家基本比例尺地形图测绘的重要技术。   随着科学技术的发展和计算机及高新技术的广泛应用,数字立体摄影测量也逐渐发展和成熟起来,并且相应的软件和数字立体摄影测量工作站已在生产部门普及。但是摄影测量的工作流程基本上没有太大的变化,如航空摄影-摄影处理-地面测量(空中三角测量)-立体测量-制图(DLG、DTM、GIS及其他)的模式基本没有大的变化。这种生产模式的周期太长,以致于不适应当前信息社会的需要,也不能满足&ldquo 数字地球&rdquo 对测绘的要求。   LIDAR测绘技术空载激光扫瞄技术的发展,源自1970年,美国航天局(NASA)的研发。因全球定位系统(Global PositioningSystem、GPS)及惯性导航系统(InertialInertiNavigation System、INS)的发展,使精确的即时定位及姿态付诸实现。德国Stuttgart大学于1988到1993年间将激光扫描技术与即时定位定姿系统结合,形成空载激光扫描仪(Ackermann-19)。之后,空载激光扫瞄仪随即发展相当快速,约从1995年开始商业化,目前已有10多家厂商生产空载激光扫瞄仪,可选择的型号超过30种(Baltsavias-1999)。研发空载激光扫瞄仪的原始目的是观测多重反射(multiple echoes)的观测值,测出地表及树顶的高度模型。由于其高度自动化及精确的观测成果用空载激光扫瞄仪为主要的DTM生产工具。   激光扫描方法不仅是军内获取三维地理信息的主要途径,而且通过该途径获取的数据成果也被广泛应用于资源勘探、城市规划、农业开发、水利工程、土地利用、环境监测、交通通讯、防震减灾及国家重点建设项目等方面,为国民经济、社会发展和科学研究提供了极为重要的原始资料,并取得了显著的经济效益,展示出良好的应用前景。低机载LIDAR地面三维数据获取方法与传统的测量方法相比,具有生产数据外业成本低及后处理成本的优点。目前,广大用户急需低成本、高密集、快速度、高精度的数字高程数据或数字表面数据,机载LIDAR技术正好满足这个需求,因而它成为各种测量应用中深受欢迎的一个高新技术。   快速获取高精度的数字高程数据或数字表面数据是机载LIDAR技术在许多领域的广泛应用的前提,因此,开展机载LIDAR数据精度的研究具有非常重要的理论价值和现实意义。在这一背景下,国内外学者对提高机载LIDAR数据精度做了大量研究。   由于飞行作业是激光雷达航测成图的第一道工序,它为后续内业数据处理提供直接起算数据。按照测量误差原理和制定&ldquo 规范&rdquo 的基本原则,都要求前一工序的成果所包含的误差,对后一工序的影响应为最小。因此,通过研究机载激光雷达作业流程,优化设计作业方案来提高数据质量,是非常有意义的。 LiDAR的基本原理   LIDAR是一种集激光,全球定位系统(GPS)和惯性导航系统(INS)三种技术与一身的系统,用于获得数据并生成精确的DEM。这三种技术的结合,可以高度准确地定位激光束打在物体上的光斑。它又分为目前日臻成熟的用于获得地面数字高程模型(DEM)的地形LIDAR系统和已经成熟应用的用于获得水下DEM的水文LIDAR系统,这两种系统的共同特点都是利用激光进行探测和测量,这也正是LIDAR一词的英文原译,即:LIght Detection And Ranging - LIDAR。   激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR系统的精确度除了激光本身因素,还取决于激光、GPS及惯性测量单元(IMU)三者同步等内在因素。随着商用GPS及IMU的发展,通过LIDAR从移动平台上(如在飞机上)获得高精度的数据已经成为可能并被广泛应用。   LIDAR系统包括一个单束窄带激光器和一个接收系统。激光器产生并发射一束光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。结合激光器的高度,激光扫描角度,从GPS得到的激光器的位置和从INS得到的激光发射方向,就可以准确地计算出每一个地面光斑的座标X,Y,Z。激光束发射的频率可以从每秒几个脉冲到每秒几万个脉冲。举例而言,一个频率为每秒一万次脉冲的系统,接收器将会在一分钟内记录六十万个点。一般而言,LIDAR系统的地面光斑间距在2-4m不等。 激光雷达的妙用   激光雷达是一种工作在从红外到紫外光谱段的雷达系统,其原理和构造与激光测距仪极为相似。科学家把利用激光脉冲进行探测的称为脉冲激光雷达,把利用连续波激光束进行探测的称为连续波激光雷达。激光雷达的作用是能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。经过多年努力,科学家们已研制出火控激光雷达、侦测激光雷达、导弹制导激光雷达、靶场测量激光雷达、导航激光雷达等。   直升机障碍物规避激光雷达   目前,激光雷达在低空飞行直升机障碍物规避、化学/生物战剂探测和水下目标探测等方面已进入实用阶段,其它军事应用研究亦日趋成熟。   直升机在进行低空巡逻飞行时,极易与地面小山或建筑物相撞。为此,研制能规避地面障碍物的直升机机载雷达是人们梦寐以求的愿望。目前,这种雷达已在美国、德国和法国获得了成功。   美国研制的直升机超低空飞行障碍规避系统,使用固体激光二极管发射机和旋转全息扫描器可检测直升机前很宽的空域,地面障碍物信息实时显示在机载平视显示器或头盔显示器上,为安全飞行起了很大的保障作用。   德国戴姆勒.奔驰宇航公司研制成功的Hel??las障碍探测激光雷达更高一筹,它是一种固体1.54微米成像激光雷达,视场为32度× 32度,能探测300―500米距离内直径1厘米粗的电线,将装在新型EC―135和EC―155直升机上。   法国达索电子公司和英国马可尼公司联合研制的吊舱载CLARA激光雷达具有多种功能,采用CO2激光器。不但能探测标杆和电缆之类的障碍,还具有地形跟踪、目标测距和指示、活动目标指示等功能,适用于飞机和直升机。   化学战剂探测激光雷达   传统的化学战剂探测装置由士兵肩负,一边探测一边前进,探测速度慢,且士兵容易中毒。   俄罗斯研制成功的KDKhr―1N远距离地面激光毒气报警系统,可以实时地远距离探测化学毒剂攻击,确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数,并可通过无线电通道或有线线路向部队自动控制系统发出报警信号,比传统探测前进了一大步。   德国研制成功的VTB―1型遥测化学战剂传感器技术更加先进,它使用两台9― 11微米、可在40个频率上调节的连续波CO2激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又准确。   机载海洋激光雷达   传统的水中目标探测装置是声纳。根据声波的发射和接收方式,声纳可分为主动式和被动式,可对水中目标进行警戒、搜索、定性和跟踪。但它体积很大,重量一般在600公斤以上,有的甚至达几十吨重。而激光雷达是利用机载蓝绿激光器发射和接收设备,通过发射大功率窄脉冲激光,探测海面下目标并进行分类,既简便,精度又高。   迄今,机载海洋激光雷达已发展了三代
  • 美建成世界最大激光器
    美建成世界最大激光器 所释能量将震撼世界      经过10余年设计制造、35亿美元投资,美国建成世界最大激光器。   新装置将于6月投入实验。能否借助新装置实现核聚变成为科学家现阶段关注焦点。他们希望,这一装置能把可控核聚变变为“工程现实”。   建成完工   美联社报道,美国能源部定于3月31日宣布,位于加利福尼亚州利弗莫尔劳伦斯国家实验所的“国家点火装置”(National Ignition Facility)已建成合格。   “国家点火装置”激光器占地约一个足球场般大小,由192个激光束组成。每个光束能在千分之一秒的时间内前行1000英尺(合304.8米),同时汇聚到一处橡皮擦般大小的目标上。   “国家点火装置”项目的建造计划于上世纪90年代早期提出,当时预计投资7亿美元,工程1997年正式开工。   项目负责人爱德华摩西说,“国家点火装置”192个激光束产生的能量将是世界第二大激光器的60至70倍,后者位于美国罗切斯特大学。   “这是一个重要里程碑,”摩西说。   美联社说,“国家点火装置”的设计初衷是帮助确保美国“年老”核武器的可靠性。   国家核安全管理局负责人托马斯达戈斯蒂诺说,激光器的建成将确保美国在无需地下核试验的情况下保证核武库的持续可靠性。   开发核能   “国家点火装置”投入科学实验后,预计将于2010年至2012年间收获首批重大实验成果。   利用“国家点火装置”实现可控核聚变是科学家眼下关注焦点。   与核裂变依靠原子核分裂释放能量不同,聚变由较轻原子核聚合成较重原子核释放能量,常见的是由氢的同位素氘与氚聚合成氦释放能量。与核裂变相比,核聚变能储量更丰富,几乎用之不竭,且干净安全。不过,操作难度巨大。   英国广播公司说,当星体内部存在巨大压力,核聚变能在约1000万摄氏度的高温下完成,然而,在压力小很多的地球,核聚变所需温度达到1亿摄氏度。   “国家点火装置”将寄望通过汇聚大功率激光束实现这一高温。   摩西说:“当‘国家点火装置’的所有激光束全力发射,它们将对目标产生1.8兆焦的紫外光能。”   由于激光脉冲持续时间只有数纳秒,这相当于对准滚珠大小般的氢“燃料球”瞬间发电500万亿瓦,比全美用电高峰时期消耗的电能还多。   摩西说,整个过程将创造出1亿摄氏度的高温和数十亿个大气压,使氢同位素的原子核聚变,产生比触发反应所需能量多出数倍的核能。   “能量收益”   能否在核聚变过程中实现“能量收益”是问题的关键。英国广播公司说,此前有实验实现过核聚变,但未能使核聚变释放的能量超过触发实验所需能量。   对此,摩西充满信心。他说:“我们正在实现目标的路上——首次在实验室环境中实现可控、持续的核聚变和能量收益。”   英国广播公司说,“国家点火装置”如果成功,核聚变释放出的能量将达到触发反应所需能量的10倍至100倍。   英国牵头的高能激光项目(Hiper)同样致力于核聚变能量的开发与利用。其项目负责人迈克邓恩说,“国家点火装置”一旦成功,将“震撼世界”,这将标志着激光核聚变从物理学进入“工程现实”。   “这将解决基本物理学问题,”他说,“让整个社会集中致力于利用这类能量。”   邓恩指出,“国家点火装置”每发射一次激光束需间隔数小时,仅能证明核聚变操作的科学性,却不能满足建造“激光核聚变动力工厂的需求”,后者可能每秒钟需完成数次发射。   “这意味着(需要)一种完全不同的激光技术,”他说。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制