当前位置: 仪器信息网 > 行业主题 > >

火山灰土

仪器信息网火山灰土专题为您整合火山灰土相关的最新文章,在火山灰土专题,您不仅可以免费浏览火山灰土的资讯, 同时您还可以浏览火山灰土的相关资料、解决方案,参与社区火山灰土话题讨论。

火山灰土相关的资讯

  • Palas | 持续助力实时监测火山灰和沙暴尘埃气溶胶分布
    隶属于西班牙加那利群岛(Islas Canarias)的拉帕尔马岛(La Palma)自2021年9月发生了50年不遇的火山喷发以来,不到一年时间,在今年2月又遭遇了由强季节性风引起的沙尘暴。接踵而至的自然灾害对当地的空气环境以及人们的生活造成严重影响。Palas® 在得知火山爆发的当下便立即做出响应,部署Palas® 员工飞往该岛安装了10台AQ Guard Smart 网格化监测仪。面对此次沙尘暴AQ Guard Smart再次为西班牙当局提供实时监测信息,以帮助他们做出决策并告知公众。沙尘暴登陆拉帕尔马岛沙尘暴卡利马加那利群岛位于摩洛哥和撒哈拉沙漠以西,属西班牙自治区。引起这场沙尘灾难的是一场名为“卡利马”(la Calima)的大风暴,它席卷了大西洋东北部。根据《华盛顿邮报》24日发布的分析,大西洋东北部低压区周围的逆时针气流,从撒哈拉沙漠吸走了沙子,将尘埃直接吹向了加那利群岛,然后再将其向西输送到风暴中心。作为沙尘落定的首站,这片美丽岛屿不幸沦为重灾区。下图分别展示1月14日下午6点到1月15日时间段,监测网络实时测得的PM10浓度:AQ Guard Smart监测到的火山灰和撒哈拉沙尘PSD成相图这场突如其来的沙尘暴导致当地能见度从五英里以上下降到不足一英里,空气污染恶化到难以呼吸的地步。当地政府于宣布加那利群岛进入“警戒状态”,建议人们留在室内,关紧门窗。由于沙尘属于粗粒径颗粒,在气溶胶状态下的停留时间并不长,所以就需要精准的仪器来进行测量。作为气溶胶监测行业的专家,Palas® 不仅对城市细粉尘污染的监测有着丰富的经验,对极端天气下的空气质量监测同样熟悉。无特定事件时的粒度分布沙尘暴期间的粒径分布Palas® 的精准测量AQ Guard Smart 是耐用的室外空气气溶胶光谱仪,以通过 EN 16450 认证的 Fidas® 200 技术为基础,采用单个颗粒物散射光测量原理,可同时测量PM1, PM2.5, PM4和PM10,还可提供175nm-18μm颗粒物粒径分布和数浓度信息,给研究和监管部门更多参考。通过标准协议,如 ASCII 进行双向连接,或者通过 UDP 协议直接传输都容易实现。要实现自给自足运行,可以通过带有或不带太阳能支持功能的外部电池运行系统。为了更好地理解和解释细粉尘侵害及其来源,可以为设备配备气象站。按标准集成用于记录温度、湿度和压力的传感器。和所有用于细粉尘测量的 Palas® 系统一样,AQ Guard Smart可以长期稳定运行,通过标准单分散颗粒物实现现场校准。AQ Guard Smart 获得 MCERTS 批准用于监测细颗粒物的新款 Palas® 空气质量测量系统 AQ Guard Smart 于 2022 年 6 月 24 日获得 MCERTS 批准的环境颗粒物监测器。无论是测量拉帕尔马火山喷发期间的空气质量,还是测量建筑工地或城市中心交通路口的细粉尘污染。国际公认的 MCERTS 认证证实了 AQ Guard Smart 在测量范围内的精确结果(CN ) 高达 20,000 个颗粒/cm³。紧凑且支持云传输的 AQ Guard Smart 因此将自己确立为用于确定空气质量(PM1、PM2.5、PM4、PM10、TSP)的可靠测量系统之一。AQ Guard Smart网格化监测仪选配数据云平台,即插即用,实时查看热点数据:产品优势以经过认证的 FIDAS® 200 系列为基础而开发的技术,可以保证细粉尘值的高准确度和可重现性;以公认的快捷方便的现场校准而闻名通过云 MYATMOSPHERE 实现短时间调试和即时记录测量值通过 Wi-Fi 热点、远程访问和外部触摸板,根据现场情况进行配置通过 GPRS/3G/4G/Ethernet/Wi-Fi 通信,可选:LoRaWAN可扩展气象站和气体传感器,可以更好地评估和评价颗粒物数据以高时间分辨率测量 Cn、PM1、PM2.5、PM4、PM10(可选:SO2、CO、NO2、O3)颗粒物测量范围从 0.175 - 20,000 nm 到 100 mg/m³ 质量浓度或 20000个颗粒/cm³(单一颗粒物分析)应用领域工业:- 生产过程 - 散装物料处理(混合,卸料,储存,包装等) - 厂界监控施工现场:道路,铁路,拆除现场建筑物:学校,幼儿园,医院,酒店,办公室,公共服务建筑物建筑工地或其他污染区域附近的住宅建筑公共交通:机场,火车站,电车和地铁站,游轮,客舱,例如在电车、火车上
  • 日本火山喷发频繁,测温1000℃的FLIR A70可派上用场......
    据日本TBS电视台报道,2012年10月20日上午,位于日本熊本县的阿苏火山发生喷发,烟柱高达3500米,附近村庄降下火山灰。据统计,阿苏山在1953、58、79年有过三次喷发,特别是进入2000年以后,阿苏火山突然就更活跃了。2011年、13年、15年、19年、2020年都发生过喷发,但是规模都不大,今年的喷发已经是十一年内第6次喷发了。此处岩浆越来越活跃,是预示着什么吗?为了更好地预测火山喷发的时间许多天文台都会对其进行实时监测但用常见摄像机监测火山活动会有局限:比如烟雾弥漫遮挡视线、火山物质不够亮导致白天无法观察等因此,现代天文台的解决方案是安装固定的红外热像仪对可疑火山进行7*24小时连续监控在Kīlauea顶峰,从西缘看Halemaʻumaʻu火山口和熔岩湖红外热像仪检测到的是“热能”即使在无光的条件下也能实时监控不仅如此,热像仪还能提供火山热、暖和冷表面的清晰视图在某些情况下,甚至可以通过烟雾安装固定式热像仪不仅能够提供研究数据,还可以提供有关火山活动的重要信息,使研究人员可以轻松辨别哪些地区表面是活跃的、最近活跃的或非活跃的。例如,研究人员使用热像仪监测2007年 Stromboli 火山爆发,该火山爆发始于3月15日的爆炸和火山灰坠落。他们能够监测延伸到Sciara delFuoco的熔岩流分支,记录其进展并确定分支何时开始冷却。通过记录火山岩浆温度变化或探测表面裂缝释放的异常蒸汽产生的热量,用于连续监测的红外热像仪还可以提供预测火山活动所需的数据。具有宽视场角的热像仪可以提供监控大型室外区域所需的广角,例如配备95°镜头的FLIR A70,该热像仪可以测量1000°C (1832°F) 的温度,精度为±2%;即使距离潜在目标很远,该热像仪也可以为研究观察者提供“大致”范围的有用信息。灵活的场景增强 (FSX® )功能可增强图像对比度,提高在烟雾中的能见度。当FLIR红外监控解决方案配置为图像流时,FLIR A70可以通过Wi-Fi将压缩的辐射图像和视觉图像一起流式传输,并可通过标准Web浏览器访问。FLIR A50/70图像流热像仪FLIR A50/70图像流热像仪拥有强大的热像仪控制功能,支持通过以太网图像流图像,还能灵活地使用软件应用开展分析、采集原始数据。借助GigE Vision和GenICam,可以将热图像和数据输出轻松集成到定制解决方案中。虽然不用监控火山的研发轨迹但是我们可以将FLIR A50/70用到工作中利用它集成工厂生产监控系统可以优化生产过程控制和质量保证工作还能提高良品率、产品质量缩短生产时间,降低成本哦~各位菲粉们,对它是不是很心动呢?现在有一个不花钱就能用它的机会新品免!费!试!用!活动火热进行中如果你对FLIR A50/70很感兴趣联系我们我们都将安排专人上门为您演示全方位详细的解说与试用哦~
  • Spectrum仪器为危险火山预警系统提供ADC卡
    中美洲的危地马拉有三座活火山,它们附近都有村庄,因此建立早期的火山爆发预警系统对于挽救生命尤为重要。虽然这样的系统早已存在,但这三座火山产生的是火山碎屑密度流(PDC),而非熔岩。极端危险的PDC云是由气体、岩石和火山灰构成的,它们能以600公里的时速移动,温度更是高达800摄氏度。因此,能够尽早为人员疏散提供预警显得至关重要。Amin Amiri博士是伦敦大学学院(UCL)PDC研究小组的负责人,目前正在研发一套基于雷达的高灵敏度的早期预警系统。这个系统的核心部分是Spectrum仪器公司提供的M2p.5921-x4型号PCIe数字化仪卡。它非常灵敏,可以安装在距离火山斜坡6公里处并探测到所有微小的运动。图1:为了避免潮湿、雨水和丛林中野生动物的破坏,电子系统被置放于一个金属盒子中该设备由X和Ku波段雷达系统组成,其中包括用于发射和接收的反射盘。当PDC出现在火山斜坡时,返回信号和发出信号进行比对后会产生包含距离信息和移动信息的中频(IF)信号。中频信号可使用Spectrum仪器的M2p.5921-x4型号设备,通过SBench6测量软件以20MS/s的采样率进行处理。Amin Amiri博士解释道:“我们刚为Santiaguito火山安装好一个监测设备。这是我们对PDC事件的首次研究,希望借此了解这类火山的活动机制。火山爆发是难以预测的,所以我们安装了一个地震活动探测器。当它探测到地震时就会启动雷达系统,这确保我们只获取PDC事件中的相关数据。通过这种方式,我们还节省了系统所使用的电池电力。该系统位于危地马拉丛林深处,通过太阳能电池板充电。我们会在几个月后回来收集这些存储数据,并安装另外两个设备用来监测其它两个斜坡。”最初。该系统设置的目标工作距离是4公里。但由于丛林地形的特殊性,它被设置在了6公里以外的高地上。该团队担心距离增加50%后会降低设备的敏感度,因此他们在丛林和火山斜坡之间使用了一架无人机来测试系统的性能。“灵敏度是该系统作为早期预警系统制胜的关键,”Amiri博士补充道,“我们对Spectrum仪器的卡片进行了测试,发现其低噪声基准可以达到惊人的-100 dBm。因此,我们可以搭建一个移动目标指示器(MTI)系统,该系统可以看到火山的所有微小运动,这也是PDC出现的第一个迹象。”图2:Santiaguito活火山超越了Santa Maria火山研究团队面对的最大挑战来自高温、潮湿和蚊子。他们不仅要保护自己,还要保护所有的电子设备。火山预警系统被放置于一个金属盒子里,用来防潮、防雨和抵挡野生动物的侵袭。这样就要求金属盒子上不能有洞,在超过35摄氏度的丛林高温下,如何为系统进行冷却成为了一个不小的挑战。最终,研究团队把盒子置放于阴凉处,并在盒子里安装一个风扇用来保持空气的流通。该团队目前正在为下一个系统进行改进,比如盒子顶部的大鳍片可以散热,或者一个小型的太阳能冰箱。“选择Spectrum仪器产品的一个重要因素是由于它可以在高温和极大湿度范围区间正常运作。此外,如果环境变得太热,它还有热切断装置来保护自己。” Amiri博士总结道,“我在其他项目中曾使用过Spectrum仪器的设备,所以我很清楚他们的高制造标准。我相信它会在丛林深处继续工作,而我也不必担心要飞越半个地球去更换它!”图3:首个系统被设置在距离活火山坡6100米处
  • 中国科学家发现生物大灭绝真相(图)
    在生物演化的“长河”中,曾经出现过一次“大灭绝”事件,几乎造成了地球生物界回到原始状态,这就是著名的“二叠纪末生物大灭绝”。究竟是什么造成了这次大灭绝?这些“谜底”不久前终于被揭开。中科院南京地质古生物研究所沈树忠研究员及其团队,研究发现“二叠纪末生物大灭绝”的真相。这一成果,已于近期被刊登在国际上著名的自然科学综合期刊,美国的《科学》杂志上。 中科院南京地质古生物研究所沈树忠研究员 在二叠纪大灭绝后消失的大雨羊齿类化石   大灭绝的几点新发现   开始时间 化石研究首次将时间精确至2.5228亿年前   从上世纪80年代开始,中科院南京古生物研究所就开始着手二叠纪末生物大灭绝的研究,带头领导这个项目的负责人是已故古生物专家金玉玕,接着好几位研究人员也相继加入,沈树忠就是其中之一,他对二叠纪末大灭绝的研究已经十几年了。   化石是生命演化最“忠实”的记录者,想要“还原”二叠纪大灭绝,就要找到足够的化石。为此,沈树忠和他的研究团队在浙江煤山、西藏及其周边地区20余条地质剖面开展研究。这些剖面既有海洋环境,也有陆地环境,甚至还有海陆过渡的环境。   细致全面的工作也给专家们带来了他们想要的:他们在浙江煤山发现了高分辨率的牙形化石带。这种化石带的化石长短不一,但都是相似的长方形,它们也是古生物学上用来作为划分古生界和中生界的标准化石。研究人员还在四川的剖面上找到了火山灰的痕迹。“火山喷发形成的火山灰,沉积下来之后是可以保存的。而火山灰里的锆石等成分可以用来测定火山喷发的时间,精度也很高。”沈树忠说。   此外,化石中碳同位素的变化也为大家带来了“好消息”。生物的多样性与二氧化碳等指标有密切关系,研究发现当时地球的碳同位素在两万年内出现千分之五的变化。在种种“证据”面前,“二叠纪末生物大灭绝”发生的时间终于得以首次确定2.5228亿年前。   形成原因 不是“天外来客” 是岩浆、火山、气候共同作用   二叠纪末生物大灭绝的原因,长期以来一直是争论的热点。2000年,金玉玕院士等人在《科学》上发表了论文,认为是瞬间事件导致了生物的灭绝,因为二叠纪末期发生的生物灭绝速度太快了。所以有美、日等科学家推断当时有一颗小行星或者彗星猛烈地撞击了地球,其造成的强烈震波瞬间杀死了上千平方公里内的所有生物……如同6500万年前,恐龙的灭绝一样。当时,这种观点一度风靡一时,受到媒体和民众的普遍关注。但随着进一步的深入研究,真正的“凶手”逐渐浮出水面。   “我们在大灭绝地层层位,发现了当时的树木大都经过燃烧,证明天气非常干燥,森林遭受大面积野火吞噬。”沈树忠说,正是这些绵延不绝的野火,给位于赤道地区的以大雨羊齿为代表的热带雨林带来灾难。森林的破坏又使得地表风化加剧,地表土壤系统快速崩溃。   那么海洋生物又是如何灭绝的呢?“之前我们说的碳同位素突然大幅度变化,说明大气中的二氧化碳也出现剧烈变化,给生物多样性带来灭顶之灾。”沈树忠帮助记者“还原”了当时的环境:地下岩浆在经过长期的“平稳”之后,突然迎来了“活跃期”,大规模的活动造成了地表甲烷释放以及火山喷发,使得大气中二氧化碳浓度快速增加。“天气越来越热,海底缺氧严重,海洋生物们也没能逃过这次劫难。”   更让人惊奇的是,通过化石研究比对发现,大灭绝速度非常快。“在上世纪80年代的时候,大家都认为灭绝应该是1000万年完成的,但我们认为这一切不会超过20万年。”沈树忠告诉记者,而且海洋和陆地生物灭绝是同时的,和之前普遍认为的海洋生物灭绝快于陆地生物的理论不同。   存活生物 “肥胖版”豆芽、毛发叶子银杏在灾难中成功“逃生”   二叠纪大灭绝给世界带来的破坏是灾难性的,造成了95%海洋生物和75%陆地生物物种灭绝,并让地球进入了一个长达五百万年以上的生命“萧条”期。但即便环境再险恶,仍有少数陆地和海洋物种成功活了下来。“这些物种都是抗压能力强、忍耐度很高的。”沈树忠说。   “比如海豆芽,就是成功活下来的海洋生物。”沈树忠打开一张图,从外形上看,它更像是“肥胖版”的豆芽。沈树忠告诉记者,它的“大名”叫舌形贝,是世界上已发现生物中历史最长的腕足类海洋生物,生活在温带和热带海域。   而存活下来的陆地生物要比海洋生物多一些,该所古植物学家王军研究员告诉记者,包括蕨类、石松类、有节类、银杏类、松柏类延续了下来。“这些延续下来的是以大类划分的,但每个大类只有几个种成功活下来。”比如说古银杏。据王军介绍,那个时候的银杏和现在的完全不同,“早期的树叶分叉很多,而且叶子和毛发的样子差不多。”   “虽然二叠纪末大灭绝破坏性巨大,但是也留下来巨大的生态空间。”沈树忠说,这也为接下来的三叠纪的陆地、海洋生物,甚至为很快出现的地球霸主恐龙提供了生态发展的“机遇”。   “这次的成果并不是关于二叠纪大灭绝研究的终结,”沈树忠说,未来和大灭绝事件相关、相近的生物事件依然是他们关注的焦点。
  • 专家称我国大部分土壤存在重金属污染问题说法不实
    专家称&ldquo 我国大部分土壤存在重金属污染问题&rdquo 说法不实   &ldquo 检出&rdquo 与&ldquo 超标&rdquo 有本质区别   最近,关于&ldquo 我国大部分土壤存在重金属污染问题&rdquo 的消息在微博、微信上广为传播。按照该消息的说法,我国土壤质量问题十分严重,导致种植的农产品,特别是大米也普遍存在重金属超标的问题。这不由得让人联想到去年沸沸扬扬的&ldquo 镉大米&rdquo 事件。   我国土壤的重金属污染问题是否真如网上说的那么严重?我们该如何理性看待土壤重金属残留?带着这些问题,记者采访了农业部农产品质量安全风险评估实验室(北京)主任、北京农业质量标准与检测技术研究中心主任王纪华研究员。   去年的&ldquo 镉大米&rdquo 事件让大众开始关注土壤中的重金属。而国内外科学家早在数十年前就已经开始了对土壤污染问题的研究。王纪华表示,通常情况下,一些重金属,例如铜、锌等是人类健康的必需元素 但由于人为活动而造成的外源化学物质影响,有可能造成土壤&mdash 植物系统中重金属含量升高,超过一定的负载容量时,才可称为重金属污染。   通常,土壤中重金属污染主要有3个来源:一是工业废水、废渣、废气的随意排放 二是生活垃圾,特别是节能灯、电池的随意扔弃 三是汽车尾气大量聚集。&ldquo 从客观上说,土壤污染问题是工业发展到一定阶段才会出现的问题。有色金属之乡当前显现出的环境污染问题属于旧账新还。不光是中国,发达国家在工业快速发展的阶段也不同程度存在同类问题。&rdquo   王纪华认为,当前土壤重金属污染问题形势严峻,但他直言,情况没有网上传得那么严重,而且在空间分布上呈现很大的不平衡性。以北京为例,他们曾做过一次涉及7000多个样本的检测,大田(普通农田)的重金属超标率为1.8%,设施农业(温室大棚)的重金属超标率为7.5%。&ldquo 设施农业超标率偏高与肥料高投入有关,一方面有的劣质化肥中含有重金属,另一方面是因为劣质有机肥如鸡粪中的重金属含量偏高,而这又与鸡饲料中违规添加重金属密切相关。&rdquo   2012年,农业部印发了《农产品产地重金属污染防治实施方案》,正在全国范围内开展土壤重金属污染状况普查及监测预警、治理修复和禁产区划分工作。从目前掌握的情况来看,虽然湖南等地的土壤重金属污染情况比较严重,但总体来说,重金属含量超标的土壤占总耕地面积的比例,远未达到&ldquo 大部分&rdquo 的比例。   王纪华告诉记者,无论谈论农药残留还是重金属含量问题,都应明确&ldquo 检出&rdquo 与&ldquo 超标&rdquo 的本质区别。在现有技术条件下,为了保障农产品总量需求,投入一定的化肥农药是必需的,而且随着仪器分析水平的提高,在土壤中&ldquo 检出&rdquo 重金属不足为怪,关键是要关注重金属含量累积的趋势,分析来源,加强肥料质量管理,严控&ldquo 超标&rdquo 。目前我国对于土壤重金属的限量标准完全与国际接轨。也就是说,虽然我国的农业品生产能力和供给水平尚处在发展中国家,但相关标准是向发达国家看齐的。他透露,目前我国的土壤重金属限量标准预留了很大的空间,这也为农产品质量再加了一道&ldquo 安全锁&rdquo 。   那么,对于确实存在重金属污染的土壤,我们该怎么做呢?是全面禁产还是抓紧治理?王纪华认为,仅仅以土壤中重金属含量来机械评价土壤质量是不准确的。应该根据土壤综合指标,因地制宜地采取结构调整、修复治理等不同应对措施。   例如,在实际检测中经常发现,重金属超标的土壤种出来的农作物重金属不超标,而土壤重金属不超标而种出的农作物反倒重金属超标。这主要与作物对重金属的吸收能力以及土壤的酸碱性有关。实验证明,南方酸性土壤加之种植的籼稻,远比北方种植的粳稻更容易吸收土壤中重金属。这也提示我们,根据土壤现状科学地改善土壤条件和调整作物结构的必要性。以日本为例,该国许多火山灰土壤本身重金属含量就偏高,因此该国已开始重视重金属吸收率低的新品种筛选。   与此同时,王纪华建议,治理工作也应考虑成本因素等分级分类进行。&ldquo 虽然国际上已经形成了一套成熟的治理办法和经验,但成本很高、花费的时间也很长,应把治理的重点放在轻度和中度污染的区域。因此,应当根据污染的严重程度,分别采取调整作物结构、休耕和修复治理,比如尽量种植对重金属吸收率较低的农产品或改种其他非食用农产品。&rdquo   王纪华对于土壤污染的治理充满了信心。他表示,比起治理手段来说,人们的思想观念和政府是否作为更为关键。&ldquo 无论是土壤重金属污染还是其他的农产品质量安全风险都没有大家想得那么可怕。关键是科学家要做好风险评估,政府部门要做好风险管理,媒体和大众要做好风险交流,大家各司其职,把风险置于可控范围内,就一定能把问题解决好。&rdquo
  • X 射线探伤技术在文物保及考古绘图中的应用
    一、X 射线探伤技术在文物考古中应用的原理X 射线探伤技术,是利用射线透过物体时,发生吸收和散射这一特性,通过测量材料中因缺陷存在影响射线的吸收来探测缺陷的一种技术。根据底片上有缺陷部位与无缺陷部位的黑度图像不一样,就可判断出缺陷的种类、数量、大小等,这就是射线照相探伤的原理,也称 X 射线照相技术。在考古学中运用 X 射线照相技术,就是利用 X 射线照相方法所具有不损坏器物的特性,而且,具有高穿透能力的电磁辐射 X 射线。在文物保护工作中单一的利用数码照片,只能对器物表面及形的一些信息进行了解,锈层底部及器物的内部的信息无法知晓,X 射线照相技术就能很好地解决这一问题。从另一个角度上讲,X 射线照相技术实际是一种“转换”技术,是把用肉眼直接观察不到的信息,变成“可识信息”,以反应物体内部的形貌特征,或者是物体内部结构特征。通过记录在 X 射线照片物体透视影像的丰富信息及其特征,来判断文物内部结构特征,或者相关的其他特征,如文物保存状况、前修复痕迹、相关其历史艺术信息,相关器物制作工艺特点等。现在,X 射线探伤技术已经成熟地应用于文物保护修复及古代技术研究中。运用此种设备进行文物相关研究比较广泛。X 射线是借助荧光屏显像的一种成像技术,具有穿透和荧光两个作用。X 射线照相是借助各种摄影装置,利用 X 射线的吸收、穿透和感光等作用。将被检客体的影像记录在与 X 射线仪连接的电脑相应的程序中。传统光学成像方式与 X 射线平面成像有些差异,传统的光学成像,不管模拟成像或数字成像,均使用光学透镜,波长范围为紫外线、可见光和近红外线。X 射线平面成像不用光学透镜成像。而是利用射线的直线传播,穿透物体,在物体背后放置 X 射线感光片将影像记录下来。X 射线平面成像与光学成像相比,除了不用镜头外,最主要的是记录的信息并不相同。二、X 射线照相技术在文物考古和绘图方面的应用实例文物具有不可再生性,在修复文物前,用 X 光照相方法能反应文物保存现状,通过这种无损分析结合文物的保存状况更利于文物保护与研究1. 在文物考古方面的应用X 射线照片作为光源的一种照相方法,利用具有高穿透能力的电磁辐射 X 光,在不破坏“研究对象”的情况下,对其内部形态进行探测来反应物体内部结构特征的一种无损检测方法。不同材质的文物,由于非均质特征,各个部位对X 射线能量的吸收明显不同。能够显示铁器表层的锈蚀深度,能够了解器物的内部形貌特征。 现代文物保护修复,不仅是把破碎的文物复原,把受自然力侵蚀的文物寿命延长,而是对其历史价值、艺术价值的一个重新“发掘”、认识和评价的过程。文物在锈蚀或损坏得比较严重的情况下,对其修复保护操作前,没有详细的了解器物的现状,直接进行操作很可能对文物造成损伤甚至破坏,相关的历史和艺术信息将永远的消失,并且对文物研究也会有极大的影响,造成无法弥补的遗憾。下面结合铁牌饰、铁饰件、铁称砣数码相片与X 射线照片的对比图片,可以细致地了解器物纹样与图案。 图2 为铁牌饰的 X 射线照片,从片中看到的是一件非常生动的艺术品,没有任何损伤拼接痕迹,轮廓立体感强,人、马的轮廓线及人体五官和头部也非常清楚,马的线条也很清晰,马身上的饰物、缰绳、马鞍、弓弦、缨、鞦带等细微之处都清晰地呈现出来。马的五官、尾部、四蹄的外轮廓与真实马的形态相像,从马的尾巴及身体上的饰物上看去,动感很强。整体上看去好似一人悠闲地在马背上吹着音乐,而马听着美妙的乐声慢步行走,很陶醉的样子。铁饰件的数码片中,只能看到表面厚厚的锈层,锈层下的任何信息都显示不出来。这次在文物保护的过程中,我们利用 X 射线照技术,详细的对器物进行了解,发现锈层下的有粗细不均线条组合成生动的图案,而且固定在铁饰件边缘的两个片状铁片及与铆钉相接的结构也能清晰地看到。这个信息的解读对于保护研究方面与保护工作的操作方面以及考古研究工作的开展有着非常重要的价值,也同时要求文物保护人员在进行保护工作时要特别小心,如果不小心就会伤及器物的花纹。所以在保护操作工作中,一边对照 X 射线图片,一边小心谨慎进行保护操作,结果器物花纹没有受到一丝的伤害,同时也说明器物得到了成功的保护。秤砣虽锈迹斑斑,却保存尚好。器表 1 面刻有凹槽(图 5),另一面无任何纹饰。经 X 射线照相,想进一步对其进行了解。结果很遗憾,在 X 射线片上除有一些白点外(图 6),只能看到一块加工规整的铁块,没有显现出任何套接及修复痕迹,说明这件器物是一次成形的实心器物。在器物中心部位有若干大小不等的小圆点,我们认为此物应是在制作器物时产生的气泡而形成。器物表面刻的凹槽在 X 射线片中没有任何体现,我们也无法辨别记录的是什么文字,这种结果的出现主要是由于器物太厚,器物上所刻文字的凹槽太浅所致。反而在数码片中,这种实心器物用数码片的效果反而要比 X 射线片好一些,表面信息虽然不是很清晰,还可以看到大致的轮廓。2. 在考古绘图中的应用出土文物是研究者对遗址的文化进行判定的重要依据。器物图是对器物进行平面展示的平台,绘图是编写考古报告中的一项不可缺少的基本工作,也是进一步研究器物相关工艺的基础。目前的考古绘图,是完全使用手工测量,可直接测量的部分,在图中可以准确绘出其结构与大小,而一些无法测量的部位,尤其在绘器物的剖面图、内部结构及加工工艺和器物厚度是无法准确测量的,也只能估测,这样会影响考古报告的读者对器物内部结构的认知程度。X 射线平面成像是 X 射线穿透物体的影像信息的记录。由于 X 射线穿透能力强,光学成像射线无法穿透的物体,X 射线却可能穿透,获得其内部信息。通过 X 射线照片专业绘图员可以对文物的内部形貌及器物的原貌有更加细致的了解。在绘图时,用绘图工具测量、数码片、X 射线片三者相结合,能够完整地把器物的内、外部信息更全面地表现出来。如铁锁为圆柱形,锈蚀严重,有些锈层已经剥落(图 7),内部结构不详。从(图 8)X 射线照片中,能够清晰地了解铁锁的内部形貌。除铁锁两端外侧可看到的铁条贯通铁锁内部外,再无任何部件。铁条一侧弯曲,呈“U”形,且残断。则另一侧端部似花瓣形扁片。数码片对器物表面信息是一个很好的展示,在铁锁两侧各有一孔,一侧为圆形,另一侧则为月牙形,且二孔在一条直线上。通过铁锁使用两种照相技术相结合的方法。能够清晰地了解铁锁内、外部结构与构成,有助于绘图者对器物有更深一层、更细致的了解,提高了绘制器物线图的准确性,尤其是对器物的内部结构能够绘得更准确。再如,帽顶,表面可以看到它的内部构成。先制成直径不等的空心半圆形范,并在范上刻好花纹,三个直径基本相同,另一个较前者稍大,其中两个小的半圆对扣成球体,而另一个小半圆与大者叠扣在一起,再用一根方形铁条通过顶点将其串在一起(图 9、图 10)。三、利用 X 射线照相技术进行文物保护应注意的问题利用 X 射线技术对文物进行保护,能收到较好的效果,但不能取代所有的方法,还要注意与其他方法的结合。1. 要对 X 光片进行整体判读从利于文物保护与研究的角度,在提取器物时,最好用整取的方法将器物内部任何遗物信息留存。在对器物进行清洗保护时,根据 X 射线片对器物的锈蚀物进行清理,这样就不会将器物本身破坏,也不会丢失任何信息,可以更准确地识别器物的内部构成与结构形貌。2. 要与传统的数码技术相结合如前所述,进行文物保护,利用 X 射线技术并不能解决所有的问题。从(图 5、图 6)的秤砣来看,器物大致为柱状,受 X 射线穿透力的影响,在识别时纹样图案的效果极差。(图 8)的铁锁 X 射线照片也如此,除铁锁的内部存有一根铁条以外,无其他任何信息,也无法得知铁锁内部的具体结构。而数码相机照的照片,可以把器物表面的一些特征及信息反应出来。而两者相结合,第一有利于文物保护与制造工艺的研究;第二有利于文物保护操作工作的进行。所以个人认为,用 X 射线技术对文物进行研究时,应运用多种科学技术方法相结合进行测试,具有互补的作用。获取更多、更大量的信息,减少丢失任何有价值信息的可能性,对文物考古的相关研究可提供更全面的内在信息。通过对以上三件器物 X 射线相片,可以看出,它们的效果完全不同。由于骑士牌饰为薄片状,相关的历史和艺术信息一览无余。而多年保护工作的实践,本人总结出一些经验。对器物进行保护工作前,一定要进行一些科学技术的测试,能够尽量多的留下一些信息。文物具有不可再生性,所以对文物进行的保护都应在详细了解文物之后再进行操作。X射线探伤技术,具有无损的特征,这种特性非常适合在文物研究和文物保护中应用,可以更全面地揭示与文物有关的历史信息,更生动地提供文物的制作工艺及技术,更详细地绘制器物的原图。
  • 质谱检测北京猿人“年龄”老了20万岁
    因为终于测定了比较准确的同位素“年龄”,出土于我国北京周口店的北京猿人头骨,登上了今天出版的英国《自然》杂志的封面。   我们终于比较准确地知道,原来我们的老祖宗“北京人”早在距今约77万年前,就在周口店繁衍生息了,较此前历史教科书上的“约50万年前”的估计“老”了20多万岁。运用目前世界上最先进的加速器质谱测年方法,论文通讯作者、南京师范大学地理科学学院沈冠军教授与其合作者,对北京周口店古人类遗址地层年代做了迄今为止最精确的测定。   从小我们就在历史教科书上读到:“约50万年以前,距北京城约50公里的北京市房山区周口店龙骨山的周口店北京人遗址,已有人类活动。”当时限于技术手段,考古学家只能给出“约50万年”这样一个“毛估估”的约数。   直到上世纪末,常用的“铀系”测年法的“极限”只有60万年。2001年,沈冠军教授与美国同行合作,测得周口店第1-2层为“距今40万年”,误差仅为1万年 但测到第5层,他们遇到了“60万年”的极限。“周口店遗址堆积分为17层,从第10或11层起,就有人类活动的遗迹。”沈冠军介绍,“有一种方法,通过测定火山灰中钾和氩的同位素,可以比较准确地测定更古老的年代,可惜北京猿人遗址里一点儿火山灰也找不着。”   幸好,本世纪初,一种名为“铝铍同位素比值(26Al/10Be)埋藏测年”的方法被运用到古人类遗址的年代研究中,事情出现了转机。听起来有些玄乎:沙石中常含有石英 (二氧化硅),这是众所周知的。当宇宙射线打到地面时,会将石英中硅原子和氧原子打破,生成铝和铍的同位素。在地表时,这两种同位素的比值一般固定在6.8左右,当石英被埋入地下,不再受到宇宙射线“轰击”后,这两种同位素都停止生成,并开始衰变。由于它们的半衰期不同,其比值就会发生变化,大约每过150万年,比值减小一半。就凭这一微乎其微的改变,用一种叫做“加速器质谱仪”的大型仪器准确测定石英中这两种同位素的含量,就能计算出其埋入地下的时间。   论文中写道,他们共测定了6个石英砂样和4个石英质石制品样,得出的平均年代在77万年左右。这个年代的确定,使另一个困扰考古学家的问题有了初步答案。77万年前,正逢地球经历一次较小的冰期,人类在寒冷的冰期是迁居南方,还是坚守在北方?学者们一直争论不休。而77万年前“北京人”在北纬40度左右活动的事实,至少明示了部分人类在冰期仍然坚持活动在中高纬度。
  • 画一画就能拿iPad?珀金埃尔默邀请您参加ChemDraw化学绘图大赛!
    相信学化学的亲们对ChemDraw软件都不陌生,ChemDraw是全球领先的且被广泛使用的化学结构绘制工具, 它不仅使用简便、输出质量高,并且结合了强大的化学智能技术,集成许多第三方产品,多年来一直受到全球用户的好评。但您知道ChemDraw是珀金埃尔默公司的产品吗?不知道没关系,科普一下:ChemDraw和电子实验记录本,以及用于科学数据分析的TIBCO Spotfire平台同属于珀金埃尔默Informatics部门。珀金埃尔默Informatics部门提供全套的科学信息学和软件解决方案,从仪器生成的数据,到企业解决方案,再到移动应用程序,为科学家提供了必要的工具来聚合、搜索、挖掘、分析和可视化关键数据,帮助以自动化、预测性和可扩展性的方式将数据转化为可操作的见解。好啦,敲黑板,说重点!珀金埃尔默为激励广大ChemDraw用户更好的使用该软件,特举办“ChemDraw技巧大比拼”的绘图大赛,让您一睹ChemDraw用户的使用风采。还有大奖iPad等您来拿哦! 比赛主题:ChemDraw 技巧大比拼比赛时间: 6月10日-7月10日(接受比赛作品的时间)比赛内容: 使用ChemDraw软件绘画出规定化学结构式,即阿法骨化醇、阿格列汀(任选一种)。比赛规则: 采用发送绘画视频的方式,(参赛作者和绘画屏幕需要同时入镜,屏幕上同时开一个计时器哦~)及参赛者的姓名、单位、电话至官方指定接收邮箱:ChinaMarketing@PERKINELMER.COM绘画要求: 快速、准确、优美;大小在10M以内,MP4格式。奖项设置: 由珀金埃尔默公司ChemDraw技术专家组成“评审委员会”,从所有参赛作品中评选出前50名,活动结束后一周内将评出的TOP50发布在微信中邀请大众投票。最终按票数多少排名评奖:一等奖:2名,iPad mini 5二等奖:5名,Kindle阅读器三等奖:10名,LAMY钢笔优秀奖:33名,小米充电宝优胜证书:所有获奖人员将获得由珀金埃尔默颁发的优胜证书比赛评分标准:评分分为三部分:绘画时间,化学结构式准确性和美观度,每部分按10分制打分(详细打分细则如下表),总分30分;领取正版软件流程:作为ChemDraw达人的您是不是等不及要参加比赛啦?比赛需要使用正版ChemDraw软件绘制,如果您还没有正版软件,没关系,动动小手,扫描下方海报中的二维码参与领取ChemDraw 30天试用账号吧!关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 使用加速器质谱法测量岩石中的放射性核素
    几十年来,科学家们一直在研究这些早期人类祖先和他们失散已久的亲属的化石。现在,由普渡大学地质学家开发的一种年代测定方法将在斯特克方丹洞穴遗址发现的一些化石的年龄提前了100多万年。这将使它们比世界上最著名的南方古猿化石Dinkinesh(也被称为Lucy)还要古老。“人类的摇篮”是联合国教科文组织在南非的世界遗产,包括各种含化石的洞穴沉积物,包括在斯特克方丹洞穴。斯特克方丹因1936年发现了第一个成年南方古猿(一种古人类)而闻名。古人类包括人类和我们的祖先亲属,但不包括其他类人猿。从那时起,成百上千的南方古猿化石在那里被发现,包括著名的普勒斯夫人,以及被称为小脚的几乎完整的骨骼。古人类学家和其他科学家对人类摇篮中的斯特克方丹和其他洞穴遗址进行了数十年的研究,以阐明过去400万年人类和环境的进化。达里尔格兰杰是普渡大学理学院的地球、大气和行星科学教授,他是这些科学家中的一员,在一个国际团队中工作。格兰杰专门研究地质沉积物的年代测定,包括洞穴中的沉积物。作为一名博士生,他设计了一种测定洞穴沉积物年代的方法,现在全世界的研究人员都在使用这种方法。他之前在斯特克方丹的研究表明,“小脚(Little Foot)”化石的年龄约为370万年前,但科学家们仍在争论该遗址其他化石的年龄。在PNAS上发表的一项研究中,格兰杰和一组科学家发现,不仅是“小脚”,而且所有带有南方古猿的洞穴沉积物的年龄都在大约340万至370万年前,而不是科学家之前理论的200 - 250万年前。这个年龄表明这些化石属于南方古猿时代的开端,而不是接近尾声。Dinkinesh来自埃塞俄比亚,至今年龄320万岁,她的物种,非洲南方古猿,可以追溯到约390万年前。斯特克方丹是一个深而复杂的洞穴系统,保存着古人类在该地区居住的悠久历史。了解这里化石的年代可能会很棘手,因为岩石和骨头会滚到地下一个深洞的底部,而且几乎没有办法确定洞穴沉积物的年代。在东非,人们发现了许多古人类化石,东非大裂谷的火山堆积了一层一层的火山灰,这些火山灰可以确定年代。研究人员利用这些层来估计化石的年龄。在南非,尤其是在洞穴里,科学家们没有这种奢侈。他们通常使用骨头周围发现的其他动物化石或洞穴中沉积的方解石流石来估计它们的年龄。但骨头可能在洞穴中移动,年轻的流石可能沉积在古老的沉积物中,这使得这些方法可能不正确。更准确的方法是对发现化石的岩石进行年代测定。嵌入化石的混凝土状基质被称为角砾岩,是格兰杰和他的团队分析的物质。“斯特克方丹拥有世界上最多的南方古猿化石,”格兰杰说。“但是很难在它们身上找到一个好的日期。人们观察了在它们附近发现的动物化石,并比较了洞穴特征(如流石)的年龄,得到了一系列不同的日期。我们的数据所做的就是解决这些争议。这表明这些化石很古老——比我们最初认为的要古老得多。”格兰杰和他的团队使用加速器质谱法测量岩石中的放射性核素,同时还绘制了地质图,并深入了解了洞穴沉积物是如何积累的,从而确定了斯特克方丹含南方古猿沉积物的年龄。格兰杰和普渡大学稀有同位素测量实验室(PRIME实验室)的研究小组研究所谓的宇宙成因核素,以及它们可以揭示的化石、地质特征和岩石的历史。宇宙成因核素是由宇宙射线产生的极其罕见的同位素——高能粒子不断轰炸地球。这些入射的宇宙射线有足够的能量在地表岩石内部引起核反应,在矿物晶体中产生新的放射性同位素。一个例子是铝-26:铝缺少一个中子,在数百万年的时间里慢慢衰变变成镁。由于铝-26是在岩石露出地表时形成的,而不是在岩石深埋洞穴后形成的,所以PRIME实验室的研究人员可以通过测量铝-26和另一种宇宙成因核素铍-10的水平来确定洞穴沉积物(以及其中的化石)的年代。除了根据宇宙成因核素确定斯特克方丹的新年代外,研究团队还仔细绘制了洞穴沉积物的地图,展示了在20世纪30年代和40年代的挖掘过程中,不同年代的动物化石是如何混合在一起的,这导致了几十年来与之前年代的混淆。格兰杰说:“我希望这能让人们相信,这种测定年代的方法给出了可靠的结果。使用这种方法,我们可以更准确地将古人类和他们的亲属放在正确的时期,在非洲和世界其他地方。”化石的年代很重要,因为它影响了科学家对当时生活环境的理解。人类是如何以及在哪里进化的,他们是如何融入生态系统的,以及谁是他们最近的亲戚,这些都是紧迫而复杂的问题。把斯特克方丹的化石放到合适的环境中是解开整个谜题的一步。
  • 法证先锋高科技仪器检测神奇揭秘
    法证先锋3大结局 高科技仪器检测神奇揭秘 关键词:仪器 分析 检测 最近,《法证先锋Ⅲ》一直以来为大家所追捧的TVB电视剧,最具影响力的就是那些高智商对决、深层次人性角斗的刑侦剧。诡谲曲折的案情,现代化尖端精密的仪器,令人拍案叫绝的侦破手法&hellip &hellip 走近法政先锋3,我们不难发现,高科技及推理元素所占的比重会非常高,对科技仪器、证据采集、分析等的过程描绘更是令人惊叹不己。   一般来说,仪器的分析检测通常出现在科研机构、实验室里。而法政人员就像实验室的研究员一样,他们使用当今全球最先进的检测仪器,检验在案发现场留下的证物,进行排查、比较、对比、分析、化验等方法。通过高科技仪器高超的物证检验,层层剖析,得出各种检验分析报告,成功帮助破案。其中,运用最为广泛的就属神秘的DNA检验和指纹对比检验,不知道现实当中的科学分析仪器能否达到如此高的精确度。   神奇的仪器分析检测案例   鞋衣证据:警员发现一嫌疑人鞋底黏有些物体,于是把鞋交到法证部作进一步检验,鉴证主任化验出鞋底黏上的黑色物,原来是柏油沥青。鉴证主任把再枪战案其中一名死者的衣服污渍进行化验,结果证实污渍是蓝鳍吞拿鱼的鱼油渍,把两件看似毫不相干的案件联系了在一起。   切片检验:一个人生前和死后不久所造成的刀伤有所不同,做组织切片检验可知,人死后所造成的刀伤深层细包出血程度比较轻微。   DNA提取:在没有牙髓的情况下拿DNA,首先要用液体氮把牙齿冷冻,使牙齿变得脆弱,再把牙的碎片放入溶液中溶解,这样DNA就会一起溶在液体中。   变色花之谜:绣球花是一种很有趣的花种,它有颜色色素会因为和泥土里面的铝素结合而变色。而铝元素又会因为泥土里的酸碱度差异而有不同的溶解度,即花的颜色会因应不同酸碱度的泥土而变色。红色的药PH值是7~7.2,泥土偏碱性。紫色的花PH值是5~6,泥土偏酸性。放几根生锈铁针,花会由白色变成紫蓝色。滴几滴肥皂水,泥土会变碱性,花就会变成红色。   揭秘高科技仪器背后原理   有网友表示:不得不说,法证里面的仪器也太强了!什么元素、成分、物质肯定不用说了,连什么化妆品里的绿茶海洋精华、以四川的某某辣椒做配料的沙爹酱、含有特殊物质的油漆(连产地都知道)、还有某地的火山特有的某种成分的火山灰&hellip &hellip 全都能检测出来!真是神了?   仔细看看那些仪器的近镜头,也就是普通烘箱、旋蒸仪、元素分析仪之类的,还有一些标记&ldquo match&rdquo 、&ldquo notmatch&rdquo 的应用软件设备。其实凭空分析一个物质是件很麻烦的事,一种检测手段,不管是核磁、红外、元素分析、电子透镜等等,都无法确定的,最多就是你有个目标物的结构,然后用来比对,看是否符合。   总归而言,很多神奇的分析实验都是为了顺应剧情的需求,但究其原理还是非常符合科学研究的方法。我们可以由此为启发,通过全行业的共同努力,不久的将来,也憧憬着在食品、医药、生物等领域能够运用到分析效率和精度更高的科技仪器产品。
  • 原子钟或可用于监测火山和预测喷发
    黄石国家公园有着相当壮美的景色,但在陶醉之余,你肯定也被告知它其实正处于一座超级火山的头上。如果它再次爆发,显然会对当地甚至全球造成深远的影响。   好消息是,瑞士苏黎世大学的一支研究团队,似乎找到了可用原子钟来检测火山活动的方法。   作为人类有史以来制作的精度最高的钟表,其原子钟通过铯原子的震动(而不是钟摆)来作为基准,就算连续运行数十上百亿年的时间,其误差也不会超过1秒钟。   原子钟在天文、物理、计算机、导航等领域均派上了大用场,但在此之前,大家却没有考虑过它在地质领域也能发挥作用&mdash 直到由苏黎世大学物理研究所率领的一支团队提出了用它来监测火山活动。   该技术依赖于爱因斯坦的广义相对论,简单说就是&mdash 时间会在不同的情况下,以不同的速度流动。   这方面最有名的例子就是   以光速旅行的飞船上的人,会比其在地球上的双胞胎所经历的时间要短。   因此当前者搭乘飞船回来的时候,地球上的同胞已经年长他20岁了(即&ldquo 巨大的速度会放缓时间&rdquo )。   重力也可以制造出同样的效果:即&ldquo 站在地表上的人们,其距离地球重心的位置会比国际空间站(ISS)上的人们更近&rdquo ,所以前者的时间流逝就会更慢一些。   由此可知,当火山临近喷发时,其下腔填充的熔融岩浆会导致局部重力的增加。   如果位于火山附近的原子钟检测到了这种变化,就会发现此时此地的时间&ldquo 变慢了&rdquo 。   通过与一段距离之外的参考时钟进行对比,就可以得知时间减慢的速率、以及增加了多少的质量。   该团队表示,这项技术早已投入使用,但它取决于GPS卫星的信号。不过为了测得更加精确的结果,这一过程可能需要耗时数月。   相比之下,原子钟可以在几个小时内完成同样的工作。   该团队希望这项技术能够于数年后运行在基于光纤互联网的新型火山爆发早期预警系统上。此外,这样的网络也可用于研究潮汐运动对于地球质量转移的影响(每天两次、质量转移可达50cm)。   领队Ruxandra Bondarescu表示:&ldquo 我们需要这款额外的工具来监测诸如黄石这样的超级火山,因为它的爆发将改变地球生命的轨迹&rdquo 。   这项研究的论文以发表在近期的《国际地球物理学》(Geophysical Journal International)杂志上。
  • 我国高光谱观测卫星监测到汤加火山二氧化硫气团
    南太平洋岛国汤加火山发生喷发后,大量二氧化硫随火山喷发进入大气。由中科院合肥研究院安徽光学精密机械研究所(以下简称安光所)研制的搭载于高光谱观测卫星上的大气痕量气体差分吸收光谱仪,发挥单日覆盖全球的优势,第一时间获取灾区二氧化硫分布卫星观测资料。大气痕量气体差分吸收光谱仪,是国内目前在轨运行的最高空间分辨率大气痕量气体遥感卫星载荷。汤加火山二氧化硫气团卫星监测结果-高光谱观测卫星大气痕量气体差分吸收光谱仪 中科院合肥研究院供图此次汤加火山爆发后,引发各界对全球气候变化的关注。而二氧化硫是火山喷发后影响气温最关键的因素之一,它与其它成分反应会形成硫酸、平流层气溶胶等,气溶胶强烈吸收太阳光。太阳光被吸收后到达地面的辐射就会变少,可能导致地表温度下降。安光所环境光学中心成像光谱技术研究室副主任周海金介绍,“高光谱观测卫星大气痕量气体差分吸收光谱仪全程观测到了火山爆发过程中二氧化硫分布及输运过程。从截至目前监测的数据看,此次火山爆发对全球气候的影响有限。”接下来,安光所科研团队将持续监测汤加火山二氧化硫气团的进一步动态。高光谱观测卫星由国家生态环境部牵头,由航天八院509所抓总研制,可以全面提升我国大气、水体、陆地的高光谱观测能力。该卫星共搭载七台遥感仪器,其中四台大气监测载荷由中科院合肥研究院研制,大气痕量气体差分吸收光谱仪就是其中之一。目前,安光所大气痕量气体差分吸收光谱仪载荷团队还承担了多颗大气遥感卫星载荷研制任务,后续将实现全球大气关键痕量气体成分卫星组网探测,提升卫星遥感观测能力,进一步支撑大气污染防治、全球气候变化治理等业务需求。
  • 滨松开发出世界上最小波长扫描量子级联激光器,有望用于便携式火山气体监测系统光源
    此次,滨松光子学株式会社在日本国家研究开发法人新能源与产业技术开发组织(NEDO)主办的“实现IoT社会的创新传感技术开发”项目中,利用独自的微机电系统(MEMS)技术和光学封装技术,成功开发出世界上最小尺寸的波长扫描量子级联激光器(QCL),其体积约为传统产品的1/150。通过将其与日本产业技术研究所开发的驱动系统结合,实现了高速操作和外围电路简化,同时作为光源安装在分析设备上,使可便携的小型分析设备的开发成为现实。在本开发项目中,我们提高了二氧化硫(SO2)和硫化氢(H2S)的探测灵敏度以及设备的维修性,目标是实现在火山口附近对火山气体成分的长期和稳定的检测。此外,它还可以应用于化工厂和下水道中有毒气体的泄漏检测和大气测量等。图1 世界上最小尺寸的波长扫描QCL,体积约为传统产品的1/150概要在火山爆发的前几个月,火山气体中的二氧化硫(SO2)或硫化氢(H2S)等浓度会开始逐渐上升,因此对该气体浓度的监测是火山爆发预测的常规方法。目前许多研究机构在火山口附近安装了电化学传感器分析设备,通过电极检测来实时分析火山气体的成分。但由于电极与火山气体的接触,容易出现寿命变短和性能降低的问题,因此除了定期更换部件等维护,监测的长期稳定性也是一个难题。这样,长寿命光源和全光学光电检测器分析设备则具有无需大量保养,还具有高灵敏度并长时稳定地进行成分分析的特点。目前因为光源的尺寸较大,尙难以将其安装在火山口附近。 在此背景下,滨松从2020年开始,参与了NEDO与产业技术综合开发机构(产综研)的“实现IoT社会的创新传感技术开发”※1项目,积极投入研究和开发具有全光学,小尺寸,高灵敏度和高可维护性特点的新一代火山气体监测系统。 滨松公司正在该项目中承担了分析设备光源的小型化任务,并成功开发出中红外光※2在7-8微米(μm,μ为百万分之一)范围内可高速改变输出功率的世界上最小尺寸波长扫描QCL(Quantum Cascade Laser)。※3(图1、图2、表)。本次新开发的产品是通过将其与产综研开发的驱动系统相结合,实现了高速操作和外围电路简化,作为光源安装在分析设备上,实现了可便携的小型化分析设备。此外,本项目的目标是进一步提高灵敏度和可维护性,实现长时间稳定地对火山口附近气体进行实时监测。同时也有望应用于化工厂和下水道的有毒气体泄漏检测和大气测量等用途。产品特点 1、开发了世界上最小的波长扫描QCL,体积约为传统产品的1/150。 公司利用独自的MEMS技术,对占据了QCL的大部分体积的MEMS衍射光栅※4进行完全的重新设计,成功开发出新的尺寸约为以前1/10的MEMS衍射光栅。此外,通过采用小型磁铁,减少了不必要的空间,并采用独特的光学封装技术,以0.1微米为单位的高精度实现部件的组装,实现了世界上最小的波长扫描QCL,其体积约为传统产品的1/150。 2、实现中红外光在波长7~8μm的范围内的周期性变化输出 滨松利用多年积累的量子结构设计技术※5通过搭载新开发的QCL元件,实现中红外光在易于吸收SO2或H2S的7-8μm的波长范围内的扫描输出。同时,我们还开发了可变波长QCL,可以从7-8μm范围内选择特定波长进行输出。 3、可高速获取中红外光的连续光谱 与产综研传感系统研究中心开发的驱动系统相结合,实现波长扫描QCL的高速波长扫描。它可以在不到20毫秒的时间内获取中红外光的连续光谱,可捕捉和分析随时间快速变化的现象。图2 波长扫描QCL的结构表 本次开发的波长扫描QCL的主要规格未来计划滨松公司将与NEDO和产综研进一步构建新型高灵敏度和高可维护性的火山气体监测系统,同时推进多点观测等实地测试。此外,公司将在2022年度内推出将该产品与驱动电路或与本司光电探测器相结合的模块化产品,以扩大中红外光的应用。 “注释” *1 实现IoT社会的创新传感技术开发 项目名称:实现IoT社会的创新传感技术开发 / 创新传感技术开发 / 波长扫描中红外激光器 研究开发新一代火山气体防灾技术 业务和项目简介:https://www.nedo.go.jp/activities/ZZJP_100151.html *2 中红外光 是一种波长比可见光长的红外光,一般把波长在4-10μm之间的红外光称为中红外光。 *3 波长扫描QCL(Quantum Cascade Laser) 量子级联激光器(QCL)是一种通过在发光层中采用量子结构,可以在中红外到远红外的波长范围内获得高输出功率的半导体激光光源。波长扫描量子级联激光器是将从量子级联激光器发出的中红外光进行分光,反射到MEMS衍射光栅,再通过对MEMS衍射光栅进行电控,使其的倾斜面发生快速变化,从而实现中红外光的波长快速变化并输出。 *4 MEMS衍射光栅 通过电流工作的小型衍射光栅。衍射光栅是一种利用不同波长的光衍射角度的差异来区分不同波长光的光学元件。 *5 量子结构设计技术 是一种利用纳米级超薄膜半导体叠层产生的量子效应的器件设计技术。在该开发中,滨松公司在QCL的发光层采用了独有的反交叉双重高能态结构(AnticrossDAUTM )。
  • “100家实验室”专题:访中国建筑材料检验认证中心
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。2009年7月7日,仪器信息网工作人员参观访问了本次活动的第十九站:中国建筑材料检验认证中心。 中国建材检验认证中心   中国建筑材料检验认证中心(简称CTC)于2005年成立,是目前中国建筑材料检验和认证领域极具规模的并拥有独立法人资格的第三方检验认证机构。CTC依托中国建筑材料科学研究院雄厚的技术力量,拥有国家建筑材料质量监督检验中心、国家建筑材料测试中心、国家水泥质量监督检验中心、国家安全玻璃与石英玻璃质量监督检验中心的、国家建材工业建筑材料节能评价检测中心等十余家国家级及行业级质检中心,强强联合使CTC成为行业内规模最大、业务最齐全检验认证机构。   中国建筑材料检验认证中心常务副主任马振珠教授热情接待了我们,据介绍,中心自成立以来发展速度很快,05年总收入只有5000万,08年总收入已经增长为1.16亿,其中测试收入就达8500万。马振珠教授还介绍道,09年中心计划收入1.4亿,目前已进入工程建筑高峰期,检测业务量相应也已急剧增多,中心对于完成任务充满信心。 中国建筑材料检验认证中心常务副主任马振珠教授   CTC广泛的业务领域和雄厚技术力量,拥有四大核心业务平台:“建筑工程、建材产品检测 产品、管理体系、服务认证 检测仪器设备制造及相关延伸服务”,即检验、认证、仪器和相关服务。   检验业务是CTC核心业务之一,CTC是国家质检总局授权的全国工业产品生产许可证检验单位,国家认证认可监督管理委员会首批批准通过的29家装饰装修材料有害物质检测机构之一,中国消费者协会建材类商品唯一指定检测实验室,北京市建委建筑工程质量见证实验室、专项检测实验室。CTC可向社会提供多种检验服务,可检产品1000余种,涉及建筑材料及装饰装修材料、安全玻璃、石英玻璃、耐火材料等 建材工业窑炉、建筑材料及建筑节能检测与评估 环境质量检测与评价 同时可对建筑工程提供专项检验和见证检验服务。   实验室面积1万5千平米,固定资产6千多万元,拥有透射电子显微镜、扫描电子显微镜、等离子发射光谱仪、气液相色谱仪、高纯锗γ能谱仪、门窗幕墙检测系统、外墙外保温检测系统、抗菌实验室、30m3环境试验仓、Q-sun老化仪、耐盐雾试验箱、建筑防火检测设备、水嘴检测设备、塑料管材静液压试验仪、建筑声学检测设备、中空玻璃耐温耐湿箱、航空前挡风鸟撞综合测试仪、各种材料万能试验机、霰弹袋冲击试验仪等大型先进的分析检测仪器设备850余台(套)。   部分检验仪器设备: 化学分析实验室 家具环境舱检测 老化实验室 五金水嘴实验室 中空玻璃实验室 外墙外保温耐候性检测系统及抗风压检测系统 管材5000次循环实验室 大幕墙实验室 风机盘管检测 采暖实验室 海南自然暴晒场   CTC向社会提供建材产品CCC强制认证、中国建材认证CTC标志认证(健康、质量、安全、环保、节能、节水)、管理体系认证(质量管理体系、环境管理体系、职业健康管理体系)、汽车玻璃零配安装服务认证,并为出口企业提供CE、ECE、DOT、IGCC/IGMA、KAN、AS、GS代理认证服务。   认证业务是中心近两年来积极拓展的业务领域,并且中心设有专门的国际业务部,现有160多个国际客户,主要是认证客户。随着中心检验认证能力及业务范围扩展,中心获得政府及国内外权威机构资质授权,如成为德国TÜ V合作实验室、是美国机动车管理协会认可的国外检验认证机构、美国IGCC/IGMA北美以外地区惟一认可实验室、西班牙Applus认可的国外检验认证机构、印度尼西亚产品认证中心授权实验室、荷兰TNO合作实验室。   中心每年在研的制修订国家标准、行业标准、地方标准等将近80项,每年有20多项新标准出自建筑材料检验认证中心,各种标准及检测实验方法都需要相应的测试仪器设备进行配套,所以中心也开展了仪器研发业务,主要进行检测仪器设备的研发、制造、检定与销售。   部分自主研发的仪器设备:     SGT-A型透射比测定仪    ZWJ-851型准直望远镜      MCJ-12/6 型冲击试验机(12m/6m)   中心的延伸服务包括针对所制定的标准举办的培训班、国家建材行业职业技能鉴定等 中心作为国家质检总局授权的的建筑材料国家标准样品及标准物质生产者,开展建材标准物质的研究与销售服务。   中心现有员工近350人,其中,享受政府特殊津贴专家5人,教授级高工25人,高级工程师及工程师90人,博士12人,硕士90人,国家计量认证评审员9人,中国实验室认可评审员7人,国家注册高级审核员30人,水泥、玻璃、功能陶瓷等国际专业标准化组织中国委员2人。中心拓展业务的同时积极引进各类高级人才,如结构工程师、无损检测工程师、中高级认证审核员等行业需要的特殊资质的人才。   中心现有客户中40%来自北京市场,为在整个中国范围内进一步拓展建材行业的检验认证业务,中心积极实施“走出去”的策略,在沿海经济发达地区、省会等城市成立分支机构。如,中心于08年底成立了厦门检验有限公司,并且于09年3月又收购了厦门宏业工程建设技术公司。      附录1:中国建筑材料检验认证中心    www.ctc.ac.cn   附录2:中国建筑材料检验认证中心自主研发仪器设备 http://www.ctc.ac.cn/html/CTCjieshao/CTCzhuanyerenyuan/CTCzhuanyeshebei/index.html http://equipment.ctc.ac.cn/   附录3:标准样品/标准物质目录   样 品 名 称 质量/g 单价/元 样 品 名 称 质量/g 单价/元 硅酸盐水泥 20 80 矿渣水泥 20 80 普通硅酸盐水泥 20 80 火山灰水泥 20 80 水泥熟料 20 80 粉煤灰水泥 20 80 水泥生料 20 70 复核硅酸盐水泥 20 80 水泥黑生料 20 70 白色硅酸盐水泥 20 80 黑生料(碳酸钙) 20 70 铝酸盐水泥20 80 粘土 20 70 矿渣 20 70 石灰石 20 70 粉煤灰 20 70 石膏 20 70 火山灰质混合材 20 70 铁矿石 20 70 含氟水泥 20 70 萤石 20 70 硫铝酸盐水泥熟料 20 80 水泥用矾土 20 70 硫铝酸盐水泥生料 20 70 无烟煤 20 80 钠长石 50 150 烟煤 20 80 钾长石 50 150 普通水泥混合材料含量 20 80 软质粘土 50 150 矿渣水泥混合材料含量 20 80 钠钙硅玻璃 50 150 水泥氯离子含量 20 150 硼硅酸盐玻璃 50 150 水泥生料氯离子含量 20 150 矾土 50 150 中热硅酸盐水泥 20 80 CMP指示剂 20 40 水泥细度和比表面积标准粉 200 80 KB指示剂 20 40   附录4:中国建筑材料检验认证中心联系方式   业务受理电话:010-51167983/7984/7681   传真:010-65715991   地址:北京市朝阳区管庄东里1号中国建材总院南楼中国建筑材料检验认证中心   邮编:100024
  • 火山喷好礼,赛多利斯邀您红火过新春!
    金鸡报春,鸡祥如意!在这阖家团聚的日子里,赛多利斯邀您一起玩游戏、过大年、领好礼!轻轻点击,即有机会获得爱奇艺VIP会员,这个假期奢侈畅享万部影视剧!还有蓝牙键盘、户外背包、Lock&Lock保温杯、野餐垫......缤纷好礼为您的新年添满喜气! 参与方式:活动期间,在微信中搜索“赛多利斯实验室”,登入赛多利斯官方微信,点击“火山喷礼”菜单,直接参与活动。活动说明:1.活动时间:2017年1月23日至2月4日 2.每人每天可以参与三次3.兑奖方式:(1)爱奇艺VIP会员:在“我的奖品”中查看并兑换;(2)实物奖品:我们会核实您联系信息的完整性和准确度,核实无误后于2017年2月17日前为您邮寄奖品;(3)礼品积分卡:在“我的奖品”中查看并兑换,兑换的实物礼品按照上述第(2)项的方式邮寄。
  • 穿越大草原,畅游火山地质公园—北京共赢、艾佧科技团建探险记
    天高气爽的9月,恰是团建风光时。北京共赢联盟国际科技有限公司中心实验室——艾佧科技(北京)有限公司成立五周年纪念之际,两个公司共同组织了外出团建活动--穿越辉腾锡勒大草原,畅游乌兰哈达火山地质公园。9月8日,清晨的北京北站,一行44人的大团队充满期待地聚集在一起,准备开始这次令人激动的团建之旅。搭乘G2463次列车,我们迎着晨曦,一路向北前行。车窗外的风景渐渐变化,城市的喧嚣被美丽的自然景色所取代。中午抵达乌兰察布市区,我们第一次品尝了当地特色的美食,也是我们一系列精彩活动的开始。午餐后,当地导游宝音达赖带领我们驱车前往大草原,一路向我们介绍内蒙古的历史。在一片特色的蒙古包前喝下下马酒,这个草原住所就是我们未来三天的家。稍事休息后,我们迫不及待地开始了一场飞盘比赛。在广袤的草原上奔跑,用力抛掷飞盘,大家不仅锻炼了身体、释放了压力,还建立了更紧密的团队关系。晚上的烤全羊晚宴和篝火晚会为这兴奋的一天画上了圆满的句号。晚宴上,北京共赢公司董事长杨立强、销售总监邹佳霖代表公司领导发表了鼓舞人心的讲话,表达了对团队的信任和期望。艾佧科技也在五周年之际为北京共赢团队每人准备了红包以表示对共赢团队在日常工作中支持的感谢。团队之间畅饮欢唱、互诉衷肠,这或许就是团队的魅力和力量。清晨,蒙古包的特色早餐让我们充满能量,迎来了新一天的冒险。我们来到了广袤无垠的辉腾锡勒大草原。骑马让我们感受到了草原的无限魅力,射箭让大家学习到了新的技能。挽弓搭箭,凝神射击,箭矢穿越空气击中靶心的那一刻,感受到了巨大的成就感。这种活动不仅考验了眼准手稳,还培养了团队协作,因为我们相互鼓励、分享技巧,一同提高。午餐过后,我们继续探险,前往辉腾锡勒黄花沟草原旅游区。索道上,俯瞰了整片美丽的景色,心情愉悦;小火车上,感受了草原的广袤和静谧。随后的滑草活动带来了一场刺激的冒险。我们站在陡峭的草坡上,放开了所有的顾虑,随着轨道车冲下了坡下的草海,风声呼啸,速度飞快。这一刻,我们感受到了无与伦比的自由和活力。内蒙古特色歌舞和骑马表演也让我们大开眼界,惊呼歌舞之唯美、马术技艺之高超。傍晚,美味的晚餐和绚烂的烟花表演结束了这一天的探险,留下了深刻的回忆。迎着乌兰察布清晨的朝阳,我们出发前往乌兰哈达火山地质公园。这个特殊的景观充满神秘和奇幻,所有人穿上宇航服,仿佛踏上了另一个星球的探险之旅。宇航服拍照成为了团队中的一大亮点,我们兴奋地留下这个瞬间,作为这次旅行的新奇回忆。午餐过后就踏上了回京的旅程,高铁上大家还在不断分享照片、热烈讨论,三天的美好经历不断在脑海中播放,回味无穷。这次团建活动不仅是一场探险,更是一次磨练。我们共同面对挑战,彼此鼓励,团队凝聚力得到进一步增强。在大自然的怀抱中,我们感受到了互相依靠和协作的重要性,这将在工作中带来积极的影响。感谢公司为我们提供了这个珍贵的机会,让我们在草原与火山之间,留下了永久的回忆。期待着未来在工作中我们更加团结与和谐,也期待着下一次的团队相聚,只要在一起,我们就会创造新的美好!
  • 科尔康便携式气体检测仪Gas-Pro再次入选火山环境考察探险队专用探测器
    对于“全球变暖”这个词,我们都不陌生,经常可以看到关于它对地球的潜在影响的统计数据。其中一个预测是:到本世纪末,全球气温将上升0.8至4摄氏度。许多人可能不知道,火山爆发这一完全自然的现象,会向我们的大气排放大量气体。而这些气体目前尚未被纳入世界气候模型,这意味着可能存在很大的误差。然而,这种情况即将发生改变。灵感四射的法国火山学家Yves Moussallam在Rolex和2019年Rolex企业奖的支持下,肩负起研究火山及其对地球的影响的使命。他冒险进入这些极具危险的环境中进行测量,为科学家和气候学家提供了用以改进预测模型的数据。通过观察火山并收集这些重要数据,他正在推动世界了解火山对气候变化的影响。Yves对火山探险并不陌生。2015年,他曾带领一个小团队来到南美洲的纳斯卡俯冲带。此次探险的任务是对几种挥发性气体的流量进行精确的大规模估算。 极端的工作条件意味着气体探测器是这支科考队所需装备的重要部分。为了保证团队的安全,Yves选择采用科尔康(Crowcon)检测设备,并对科尔康便携式气体检测仪Gasman和Gas-Pro的小巧、自清洁和安全功能感到满意。科尔康Gas-Pro便携式气体探测器(此次选用的是扩散式)用于监测CO2、H2S、CO、SO2等气体的危险等级,并向小组成员发送警报。同时,探测器还可以监测气体平均暴露等级,以保障长期暴露在低等级危险气体中的小组成员安全。Gas-Pro探测器的数据记录存储功能也为科考队提供了额外的信息。 现在,Yves带着一支新探险队再次归来,并再次选择了科尔康。这一次,Yves将前往意大利的美拉尼西亚地区。跟踪火山活动的卫星显示该地区的火山气体排放量约占全球的三分之一。他的探险队将攀登这些火山,并直接在火山烟流中进行测量。测量火山气体的方法主要有两种。第一种方法是通过卫星从太空拍摄图像。第二种是直接进入现场,测量由爆发源释放的气体。专家们认为,直接在现场工作的方法是最准确的,因为它的位置离爆发源更近,出错的风险更低。要进行这些测量,需要使用具备经过试验、测试的可靠设备。鉴于科尔康一贯的可靠性,Yves再次将目光投向了科尔康复合式气体检测仪Gas-Pro。科尔康的Gas-Pro具备机载数据记录功能,提供一个额外数据行以及平均曝光量,这对于时间跨度较长的探险非常重要。该设备重量很轻,对于需要携带笨重装备的团队来说大有帮助。科尔康的每名成员都希望Yves在安全的情况下成功探险,我们也希望他能够为我们带来新的数据,帮助我们了解火山对全球的影响。关于科尔康:英国科尔康检测仪器有限公司是安全和环境监测产品领域的领导者,专门从事开发、制造和销售创新、可靠并具有成本效益的易燃和有毒气体检测仪器。公司成立于1970年,总部位于英国牛津的阿宾登,并在荷兰、美国、新加坡、印度、中东和中国设有分公司。科尔康的产品远销世界各地,服务于石油、天然气、石化、公用市政、水清洁与污水处理、消防、建筑等其他因气体或蒸汽意外泄漏有可能产生爆炸或威胁毒气的行业。请访问科尔康中文官网www.crowcon.com.cn,了解更多资料。 市场合作请联系:Ms. Kate Li电话:010-67870335-104邮箱:kate.li@crowcon.com官网:www.crowcon.com.cn / www.crowcon.com
  • 灰霾笼罩中国东部 恢复蓝天至少需二三十年(首席研究员吴兑先生)
    南方都市报11月29日报道 近百年来,全球经历了一次以气候变暖为特征的重大变化,灰霾现象就是其中之一。11月22日,在南方都市报与广东科学中心联合主办的大型科普系列讲坛活动&ldquo 小谷围科学讲坛 &rdquo 上,来自中国气象局广州热带海洋气象研究所的首席研究员吴兑先生做了有关灰霾主题的演讲,为听众揭开个中奥秘。以下为其演讲和答问的主要内容: 灰霾的两大成因 灰霾的成因,主要与化石能源的燃烧相关。人类活动排放颗粒态污染物,比如水泥厂、发电厂都会直接排放颗粒物,汽车尾气会直接排放黑碳粒子,人类活动也会排放二氧化硫、氮氧化物、挥发性有机物等气态污染物。二氧化硫被氧化过后会生成硫酸盐,氮氧化物和挥发性有机物(或者说碳氢化合物)在紫外光的照射下发生光化学反应(主要是烯烃、烷烃、芳烃这三类物质的反应),这些反应的现象就是臭氧浓度的升高,最终生成了与过氧乙酰硝酸酯等等有关的二次气溶胶,这类物质都是气溶胶细粒子,造成了能见度的恶化,也就造成了所谓的灰霾天气。我们都熟悉的两类烟雾事件,伦敦烟雾事件和洛杉矶光化学污染事件,其实质都是灰霾天气,其中后者的主要污染物氮氧化物和碳氢化合物污染,也是我们现在面临的污染。 除此之外,城市化、土地利用变化也加速了灰霾的形成。土地利用变化,就是下垫面的改变。城市化之后,下垫面变成了硬的,水泥或者沥青,它的热容量非常小,比植被和水体小得多,吸热放热都非常快,所以造成了一系列复杂的气候变暖和污染事件。 灰霾对健康的危害 灰霾能造成小儿佝偻病高发,因为它阻碍了阳光辐射。黄种人、白种人、黑种人不能从食物中直接摄取维生素D,得到维生素D的唯一途径就是皮肤的光合作用,所以我们必须晒太阳。灰霾使太阳辐射减少,紫外线减少,使得我们合成的维生素D减少,因此不能在骨骼中固定钙。小孩是长身体的时候,需要的钙量非常大,缺钙就会得软骨病、佝偻病。 灰霾治理长路漫漫 灰霾治理不是一下就可以看到成绩的。伦敦治理环境花了50多年,才把泰晤士河治理好,空气也治理好,其能见度50年来是持续好转的。洛杉矶也已经治理得比较好。 能见度恶化,是因为大气中的细粒子增加,即PM 1的气溶胶粒子浓度,从20微克每立方米增加到40微克每立方米,能见度就从四五十公里恶化到十几公里;气溶胶粒子增加到80微克每立方米,能见度就恶化到八九公里;浓度再继续增加时,能见度的变化也还是在这个范围。只有从40微克每立方米到了20微克每立方米,才能真正恢复蓝天白云。这个过程,美国和欧洲花了近五十年,这在我们社会主义国家,可能是二三十年。我们不能急,不能一下子就治理好,至少需要二三十年时间。 提问:你好,吴教授,我想问一下什么是气溶胶,它是怎么产生的? 吴兑:气溶胶是合成词,是气体介质和大气中的颗粒物的混合物、胶体,英文名叫aerosol,实际上和牛奶类似,牛奶是在水的介质里漂浮着一些脂肪类、蛋白类物质,而在空气中漂浮的颗粒物就是气溶胶。最原始的气溶胶概念包括气体介质和空气中所有的颗粒物质,最大的是冰雹,其次是雨滴、雪花,再其次就是一些土壤尘、火山尘、海盐粒子,以及刚才看到的由于人类活动排放的硫酸盐、硝酸盐、铵盐、黑碳、有机碳 (就是大量的有机化合物),这些细微的粒子都漂浮在大气中,通称气溶胶。 学术界有三个认知的过程,第一个气溶胶在广义上应该是气体介质和其中漂浮的颗粒物总成;第二步是把介质去掉之后就缩小到大气中的颗粒物;第三个是把大气中的降水物质全部排除,把冰雹、雨滴、冰晶、雪花全部排除掉之后,剩下的仅仅是一个狭义的气溶胶概念,就包括土壤粒子、沙尘粒子、火山灰、海盐粒子和一些元素碳粒子、有机碳粒子和具有生物活性的蛋白粒子(比如病毒、病菌、动植物有机碎片),这个合起来就是现在最狭义的气溶胶概念。 提问:我想问一下霾是由哪些原因造成的?在生活和生产过程中怎么样减少霾的形成? 吴兑:灰霾形成的原因主要有两点,一点就是特殊的地形或者气象条件使气流停滞,比如珠三角形成严重的灰霾天气的原因就是形成了气流停滞区;第二是有过量的大气污染物排放源。即在气象条件不利于污染物的稀释扩散,污染物排放超过环境容量时,空气就会受污染,出现灰霾。 减少颗粒物的排放和形成,使得灰霾现象减缓,不光要政府努力,我们每个市民都要参与其中。这其实就是和我们所谓低碳经济、清洁能源和环保生活习惯直接相关联。灰霾的形成和温室气体、气候变化的来源是一致的,就是由于我们燃烧的化石燃料,这是个根本的问题。所以我们一定要做到控制污染,不能简单地只控制硫,简单控制氮,简单地只控制某种污染物比如PM 10、PM 2.5、PM 1。我们应该控制本源的是碳,碳的排放决定了经济规模。碳排放控制住了,硫的排放、氮的排放、颗粒物的排放也相对控制住了。 所以不能只治标不治本,我们过去的环境政策就是二氧化硫控制、酸雨控制,早期的粉尘控制,或者现在的氮氧化物控制,这些都是治标的措施。我们国家非常成功的环保措施,第一个就是80年代的消烟除尘,大颗粒减少了;然后进入二氧化硫污染时代,就是能源生产排放大量的二氧化硫,经过大气中氧化生成硫酸盐;现在进入光化学污染时代,主要是氮氧化物和碳氢化合物,在紫外光照射下发生光化学反应,形成细粒子,也就是亚微米尺度的气溶胶。 这些事,我们个人其实是有办法的,比如,它的本源是碳排放,我们节约能源就行了。空调的温度适度,人走关灯,都可以减少碳排放,也就减少了灰霾的形成。比如,在座有很多靓妹,我倒建议各位靓妹买点贵价的,时髦的时装,穿的时间长点,别买非常便宜的,三两天一换,或者穿完了就扔,这个不好,虽然很便宜,但是整个在经济循环的链条里面是非常污染和不环保的,宁可穿一些贵价的,穿的时间长一点。其他当然了,减少纸质文件,纸质交流,因为纸直接跟森林有关系,森林还能吸二氧化碳。所以我们有一个理念,所有能源的发电站扩建,都让它有替代的,比如要在南沙扩建一个电厂,就要求在其他地方建一个多少亩的森林,这些都是治理气候变化和灰霾的办法。 提问:珠三角、长三角或者黄渤海这些相对发达的,工业化比较前沿的地区,它们之间在灰霾现象上有没有不同,或者有规律吗?工业燃料排放和汽车尾气排放谁的贡献更大? 吴兑:非常专业的问题,也是现在非常敏感的热点问题。首先我们国家有4个大的灰霾区,其中你提到三个,一个就是黄淮海平原,一个是长江三角洲,一个是珠三角地区,还有一个是长江河谷,也就是从川渝到武汉。 黄淮海地区到长三角到长江河谷这三个地区是连成一片的,珠三角是相对孤立的。从治理难度来讲,黄淮海平原和长三角要比我们珠三角治理难度大,珠三角协调好粤港澳就可以有效治理灰霾。 在组成成分上,黄淮海平原,北京地区的灰霾和沙尘暴还是有一定关系的,起码有1/3是跟沙尘粒子有关。而我们珠江三角洲的灰霾天气主要都是人类活动排放的污染物形成的灰霾。从这个角度上来讲,我们的灰霾对人体危害比北方的危害要严重,就是因为它是以有机物为主的。珠三角地区的灰霾主要是人类活动的排放物质生成的,我们要下更大力度治理。 你刚才第二个问题,珠三角地区灰霾来源的研究,我们没有做过这方面的研究。但是我们看到过一些合作单位,比如中科院广州地化所,他们做的一些工作的结果我们也引用。大概珠江三角洲的主要城市中,对大气颗粒物,尤其是细粒子颗粒物的贡献是交通源的排放占第一位,贡献率比较小的是贡献20%,比较大的能贡献40%。但是不管它的贡献率是20%还是40%,在所有排放中都排第一位。其次才是大工业排放。 细粒子的排放,主要有这么几个要注意的地方。一是刚才我们说交通源的排放是细粒子的主要来源。交通源是包含几个方面:一个是汽车尾气,汽车尾气直接有黑碳粒子排放、另外是汽车尾气有氮氧化物,你烧柴油也好、汽油也好,它只跟燃烧温度有关、还有就是碳氢化合物,它和氮氧化物都是光化学烟雾的前体物,所以交通源里头排第一位的是汽车尾气;交通源里头排第二位的就是加油站,所有的加油站都存在有大小呼吸,排放了很多挥发性有机物,新的油往里边一罐,废气就排出来了;第三个就是轮胎的摩擦,我们这儿一脚刹车一脚油,轮胎跟地面摩擦,直接排放黑碳,因为轮胎就是橡胶加黑碳组成的。 除了交通源排放,现在最需要控制的就是家庭装修业。胶合板制造业、家具制造业、做鞋的、做文具的、做化妆品的,这些东西排放的都叫碳氢化合物,尤其是头发定形的摩丝。所以我们每个人要做的就是少化妆,哪怕少用化妆品也行。家庭少装修,能10年装修一次就不5年装修。溶剂的排放也是重要的。 我们现在面临新型复合大气污染,交通源的排放和其他生产溶剂的排放是占很大部分的。所以去年经济危机,鞋厂都减产、关闭、停产,工人都回家,排放就少了。广州市政府采取的50项空气质量治理措施,其中有3项针对灰霾的就很到位,在全国率先直接针对新型复合污染的来源。就是汽车尾气治理、加油站治理、溶剂生产和使用企业的治理,这三项都是非常到位的,都是直接针对灰霾天气的。 提问:吴教授,请问霾有没有可能传染病毒呢? 吴兑:我们已经接触过最早是SARS,后来是禽流感,后来是猪流感。这三次全球性的瘟疫,都说明它们和人之间有传染的可能,也不知道是谁先谁后,这个病毒在人和动物之间都可以引起症状。我研究的内容和这个有一点关系的,只是说气溶胶可以作为 SARS、禽流感、猪流感病毒的交通工具,因为气溶胶表面可以是坑洼不平的,它的凹面可以有一些水凝结,为病毒病菌提供生存条件。虽然原来认为这三种病毒都是近距离飞沫传播,但是由于气溶胶的存在,病毒病菌可以把气溶胶当汽车、火车,气溶胶可以把这些病毒带得非常远。比如禽流感,鸟在天上一飞,在天上一拉,都变成气溶胶,飞来飞去就传染开了。(注:本文有删节)
  • 等离子体质谱仪灵敏度提高 研究建立激光方解石U-Pb定年技术
    方解石可以在多种地质环境中形成。方解石U-Pb年代学在诸多地学领域具有较大应用前景,如古气候、沉积学、成岩作用、断裂时代、成矿过程以及油气运移等方面。   早期方解石U-Pb定年主要基于同位素稀释法(ID),然后采用热电离质谱(TIMS)或多接收电感耦合等离子体质谱(MC-ICP-MS)进行测定。然而,这种分析方法耗时长,成功率低,需要样品溶解以及U和Pb的化学分离;其空间分辨率差,不适合用于具有环带变化的样品,因此未得到广泛应用。   自2014年激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)首次应用于化石中方解石胶结物U-Pb定年以来,该技术在解决一系列关键地质问题中得到广泛应用。与ID-TIMS相比,LA-ICP-MS具有空间分辨率高、分析速度快等优点,能快速测得样品的U-Pb比值。但方解石U含量普遍较低(   基于此,研究建立了LA-SF-ICP-MS方解石U-Pb定年技术。采用国际标准物质Duff Brown Tank、JT和ASH-15对方法的分析精度和准确度进行了验证(图2)。通过改善的灵敏度,空间分辨率达到85-110微米,可以对大多数方解石进行U-Pb定年。研究还进一步证明,基于LA-ICP-MS二维元素成像技术选取样品定年区域可提高方解石U-Pb定年的成功率。   副研究员兰中伍及其合作者将该技术应用于埃迪卡拉纪盖帽碳酸盐岩上。Marinoan冰川杂砾岩和其上部的盖帽碳酸盐岩是支持雪球地球假说(snowball Earth)直接的岩石学证据,该岩石组合指示了古气候由冷到暖的变化,是多学科领域关注的前沿和焦点。前人从这套盖帽碳酸盐岩内陆续开展了沉积学、地层学、地球化学和地球生物学等方面的工作,但其复杂的沉积结构和异常低的δ13Ccarb值(   通过对方解石进行U-Pb定年,在Tera-Wasserburg图解中得到了636.5 ± 7.4 Ma 下交点年龄(图4)。传递衰变常数和标样误差之后,年龄误差为17.8 Ma。因此,采样层位的沉积时代为636.5 ± 7.4/17.8 Ma。该年龄和前人从盖帽白云岩内白云石中测得的U-Pb年龄629.3 ± 16.7/22.9 Ma以及火山灰锆石U-Pb年龄635.23 ± 0.57 Ma在误差范围内相一致。新的年龄数据表明方解石在埃迪卡拉纪早期形成,不可能在埃迪卡拉纪晚期或者寒武纪热液活动中形成。   方解石REE组成总体上表现出La,Y和Gd正异常(δGd=1.1-1.96),高Y/Ho比值(大多数44)(图5)。Eu以正异常为主(δEu=1.02-1.38),少量表现出负异常(δEu=0.79-0.96)。高Y/Ho比值为海水沉积的特征,Eu正异常说明有热液活动的影响。从REE配分型式上可以看出有些方解石可能是从海水中形成的。这种情况下,甲烷的厌氧氧化(AOM)形成了方解石、黄铁矿、硫酸钡、铁氧化物,以及盖帽白云岩中的负δ13Ccarb值。负δ13Ccarb方解石和盖帽白云岩近于同期形成,甲烷水合物去稳导致甲烷泄露到大气中,引发冰川融化。有些方解石可能是在埃迪卡拉纪早期(ca. 632 Ma)热液活动中形成的。   研究成果发表于Science China Earth Sciences和Geological Magazine。研究工作得到国家重点研发项目、国家自然科学基金、岩石圈演化国家重点实验室开放基金、古生物学与地层学国家重点实验室开放基金,以及地质过程与矿产资源国家重点实验室开放基金的共同资助。 图1.三种锥组合(S + H、Jet + H和Jet + X)在不引入N2和引入少量N2条件下206Pb和238U的信号强度图2.ASH-15的下交点年龄和U含量结果图,其中下交点年龄结果以Tera-Wasserburg图表示;U含量变化以相对概率的形式表示。蓝色虚线为固定上交点207Pb/206Pb为0.832的等时线;黑色实线为未固定上交点的等时线。在不同时间内,共进行了2次独立分析图3.三峡地区九龙湾剖面陡山沱组底部葡萄状白云岩内矿物共生组合(BSE图像)。多种形态的方解石胶结物和黄铁矿充填在等厚状白云石内部的孔洞和裂隙内,后期被石英胶结物所包裹图4.方解石Tera-Wasserburg谐和图。回归线的上交点代表普通铅组成,下交点代表样品的年龄图5.葡萄状白云岩内方解石的REE配分型式
  • 69项!这些地矿行业新规10月1日起实施
    自然资源部近日发布35号、36号、37号公告,公布了69项涉及地质矿产领域的行业标准。这69项标准自2024年10月1日起实施。标准编号及名称:DZ/T 0184.1-2024地质样品同位素分析方法 第1部分:总则和一般规定(代替DZ/T 0184.1-1997)DZ/T 0184.2-2024地质样品同位素分析方法 第2部分:锆石 铀-铅体系同位素年龄测定 热电离质谱法(代替DZ/T 0184.2-1997、DZ/T 0184.3-1997)DZ/T 0184.3-2024地质样品同位素分析方法 第3部分:锆石 微区原位铀-铅年龄测定 激光剥蚀-电感耦合等离子体质谱法DZ/T 0184.4-2024地质样品同位素分析方法 第4部分:地质样品 钐-钕体系同位素年龄和钕同位素比值测定 热电离质谱法(代替DZ/T 0184.6-1997)DZ/T 0184.5-2024地质样品同位素分析方法 第5部分:地质样品 铷-锶体系同位素年龄和锶同位素比值测定 热电离质谱法(代替DZ/T 0184.4-1997)DZ/T 0184.6-2024地质样品同位素分析方法 第6部分:脉石英 铷-锶体系同位素年龄测定 热电离质谱法(代替DZ/T 0184.5-1997)DZ/T 0184.7-2024地质样品同位素分析方法 第7部分:辉钼矿 铼-锇体系同位素年龄测定 电感耦合等离子体质谱法DZ/T 0184.8-2024地质样品同位素分析方法 第8部分:地质样品 钾-氩体系同位素年龄测定 熔炉法(代替DZ/T 0184.7-1997)DZ/T 0184.9-2024地质样品同位素分析方法 第9部分:地质样品 氩-氩同位素年龄及氩同位素比值测定 熔炉法(代替DZ/T 0184.8-1997)DZ/T 0184.10-2024地质样品同位素分析方法 第10部分:地质样品 碳-14年龄测定 液闪能谱法(代替DZ/T 0184.9-1997)DZ/T 0184.11-2024地质样品同位素分析方法 第11部分:碳酸盐岩 铀系不平衡地质年龄和铀钍同位素比值测定 α能谱法(代替DZ/T 0184.10-1997)DZ/T 0184.12-2024地质样品同位素分析方法 第12部分:沉积物 铅-210地质年龄测定 α能谱法(代替DZ/T 0184.11-1997)DZ/T 0184.13-2024地质样品同位素分析方法 第13部分:沉积物 铅-210地质年龄测定 γ能谱法DZ/T 0184.14-2024地质样品同位素分析方法 第14部分:沉积物 铯-137地质年龄测定 γ能谱法DZ/T 0184.15-2024地质样品同位素分析方法 第15部分:地质样品 铅同位素组成测定 热电离质谱法(代替DZ/T 0184.12-1997)DZ/T 0184.16-2024地质样品同位素分析方法 第16部分:地质样品 铅同位素组成测定 多接收电感耦合等离子体质谱法DZ/T 0184.17-2024地质样品同位素分析方法 第17部分:岩石 锇同位素组成测定 负热电离质谱法DZ/T 0184.18-2024地质样品同位素分析方法 第18部分:锆石 微区原位铪同位素组成测定 激光剥蚀-电感耦合等离子质谱法DZ/T 0184.19-2024地质样品同位素分析方法 第19部分:硫化物矿物 硫同位素组成测定 二氧化硫法(代替DZ/T 0184.14-1997)DZ/T 0184.20-2024地质样品同位素分析方法 第20部分:硫酸盐矿物 硫同位素组成测定 二氧化硫法(代替DZ/T 0184.15-1997)DZ/T 0184.21-2024地质样品同位素分析方法 第21部分:硫化物矿物 硫同位素组成测定 六氟化硫法(代替DZ/T 0184.16-1997)DZ/T 0184.22-2024地质样品同位素分析方法 第22部分:地质样品 硅同位素组成测定 四氟化硅法(代替DZ/T 0184.22-1997)DZ/T 0184.23-2024地质样品同位素分析方法 第23部分:硅酸盐和氧化物矿物 氧同位素组成测定 五氟化溴法(代替DZ/T 0184.13-1997)DZ/T 0184.24-2024地质样品同位素分析方法 第24部分:水和非含氧矿物包裹体水 氧同位素组成测定 五氟化溴法(代替DZ/T 0184.20-1997)DZ/T 0184.25-2024地质样品同位素分析方法 第25部分:天然水 氧同位素组成测定 二氧化碳-水平衡法(代替DZ/T 0184.21—1997)DZ/T 0184.26-2024地质样品同位素分析方法 第26部分:水 氧同位素组成测定连续流水平衡法DZ/T 0184.27-2024地质样品同位素分析方法 第27部分:碳酸盐岩和矿物 碳氧同位素组成测定 连续流磷酸法DZ/T 0184.28-2024地质样品同位素分析方法 第28部分:碳酸盐岩和矿物 碳氧同位素组成测定 磷酸法(代替DZ/T 0184.17-1997)DZ/T 0184.29-2024地质样品同位素分析方法 第29部分:微量碳酸盐岩和矿物 碳氧同位素组成测定 连续流磷酸法(代替DZ/T 0184.18-1997)DZ/T 0184.30-2024地质样品同位素分析方法 第30部分:水中溶解无机碳 碳同位素组成测定 连续流磷酸法DZ/T 0184.31-2024地质样品同位素分析方法 第31部分:水中颗粒有机碳 碳同位素组成测定 连续流燃烧法DZ/T 0184.32-2024地质样品同位素分析方法 第32部分:水中溶解有机碳 碳同位素组成测定 燃烧法DZ/T 0184.33-2024地质样品同位素分析方法 第33部分:天然气单体烃 碳同位素组成测定 连续流燃烧法DZ/T 0184.34-2024地质样品同位素分析方法 第34部分:水和含氢矿物 氢同位素组成测定 锌还原法(代替DZ/T 0184.19-1997)DZ/T 0184.35-2024地质样品同位素分析方法 第35部分:水 氢同位素组成测定 连续流水平衡法DZ/T 0184.36-2024地质样品同位素分析方法 第36部分:水 氢氧同位素组成测定 激光光谱法DZ/T 0184.37-2024地质样品同位素分析方法 第37部分:富硼矿物 微区原位硼同位素组成测定 激光剥蚀-多接收电感耦合等离子体质谱法DZ/T 0475-2024区域地质调查规范(1∶50 000)DZ/T 0476-2024覆盖区区域地质调查规范(1∶50 000)DZ/T 0477-2024深部矿产远景调查技术要求DZ/T 0478-2024固体矿山矿产资源储量三维动态管理技术要求DZ/T 0479-2024压覆矿产资源调查评估规范DZ/T 0480-2024砂石矿山综合利用规范DZ/T 0481-2024水热型地热资源回灌技术要求DZ/T 0482-2024水热型地热资源开发与保护监测规范DZ/T 0483-2024水热型地热资源开发利用技术要求DZ/T 0484-2024遥感地质术语DZ/T 0485-2024微动探测技术规程DZ/T 0486-2024固体矿产勘查钻孔质量要求DZ/T 0487-2024绳索取心钻杆作业规程DZ/T 0488-2024煤层底板分支孔定向技术规范DZ/T 0489-2024煤层底板地面探查与注浆技术规范DZ/T 0490-2024工程建设项目地质资料汇交规范DZ/T 0491-2024观赏石鉴评 灵璧石DZ/T 0492-2024观赏石鉴评 大化彩玉石DZ/T 0493-2024观赏石鉴评 雨花石DZ/T 0466.1-2024地质资料馆藏管理规范 第1部分:实物DZ/T 0069-2024地球物理勘查图图式图例及色标(代替 DZ/T 0069-1993)DZ/T 0225-2024浅层地热能勘查评价规范(代替 DZ/T 0225-2009)DZ/T 0260-2024地热钻探技术规程(代替 DZ/T 0260-2014)DZ/T 0494-2024矿产地质勘查规范 海砂DZ/T 0495-2024鸡血石 鉴定DZ/T 0461.4-2024矿产资源定期调查规范 第4部分:成果报告编制DZ/T 0461.6-2024矿产资源定期调查规范 第6部分:图例图式DZ/T 0462.11-2024矿产资源“三率”指标要求 第11部分:火山渣、火山灰、浮石、粗面岩、麦饭石、硅藻土DZ/T0462.12-2024矿产资源“三率”指标要求 第12部分:宝石、水晶、玛瑙、金刚石DZ/T 0462.13-2024矿产资源“三率”指标要求 第13部分:黏土类矿产DZ/T 0462.14-2024矿产资源“三率”指标要求 第14部分:饰面石材和建筑用石料矿产DZ/T 0462.15-2024矿产资源“三率”指标要求 第15部分:地热、矿泉水
  • Palas®空气质量监测仪器帮助应对空气污染挑战
    空气是维持生命的重要物质,其质量优劣对人体健康有重要影响。伴随冬季的到来大气以下沉气流为主,污染物不易扩散。Palas® 对城市细粉尘污染的监测有着丰富的经验,并且对恶劣天气下的空气质量监测同样熟悉。颗粒物监测专家Palas® 提供的AQ Guard Smart网格化空气质量监测仪和Fidas® 单颗粒计数气溶胶粒径分布光谱仪是用于空气质量监测的专业仪器,为测量空气中的气溶胶颗粒物提供监测支持。用吸烟的危害衡量空气污染程度空气中的PM2.5颗粒物的粒径仅2.5微米。因为这些颗粒足够小,可以深入肺部进入血液,并引发心脏病、中风、肺癌和哮喘等疾病危害到人们的健康。同时人们深谙吸烟对身体健康的危害,一家著名的环境机构通过环境监测数据报告,设计了一款应用程序,通过将空气质量与吸烟的数量联系起来,将空气污染与吸烟行为造成的危害进行对比,对空气污染的健康影响进行了深入分析,以帮助人们了解空气污染对健康的影响。其结果直观且引人注目,通过该应用程序可查看不同地区的空气污染信息。例如在一天内的监测中,海南的空气污染程度相当于一天吸0.4支香烟,系统提示当前的空气质量令人满意,空气污染很少或没有风险,人们可以享受平常的户外活动;而保定的空气污染程度则相当于一天吸9支香烟,系统提醒目前的主要空气污染物PM2.5可能影响身体健康,人们应减少户外活动,特别是弱势人群。由此可知空气污染在一些城市是一个不容乐观的现状,人们需要时刻关注空气污染所带来的伤害。海南与保定两地一天内的空气污染用吸烟量衡量的对比恶劣天气中的气溶胶监测针对不同原因造成的空气污染,专注于研究气溶胶和颗粒物的监测专家Palas® 带来了空气质量监测解决方案。2021年9月隶属于西班牙加那利群岛(Islas Canarias)的拉帕尔马岛(La Palma),发生了50年不遇的火山喷发。而后不到半年,今年2月又遭遇了由强季节性风引起的沙尘暴。接踵而至的自然灾害对当地的空气环境以及人们的生活造成严重影响。Palas® 即刻响应,部署员工飞往该岛安装了10台AQ Guard Smart 网格化监测仪。面对此次沙尘暴AQ Guard Smart再次为西班牙当局提供实时监测信息,以帮助他们做出决策并告知公众。AQ Guard Smart监测到的火山灰和撒哈拉沙尘PSD成相图可靠的Palas® 监测仪器Palas® 稳定的空气质量监测仪器,能对颗粒物浓度和分布进行可靠、连续、灵活的测量,找出颗粒物污染产生原因,并对其扩散作出预测,可用于移动走航监测、颗粒物排放扩散研究、安全工作条件的监控,以及在路边位置、建筑工地或工业厂房进行临时或长期的空气质量监测等,以帮助人们应对各种空气污染的挑战。AQ Guard Smart网格化环境空气质量监测仪选配数据云平台,即插即用,实时查看热点数据:AQ Guard Smart 是适用于室外空气气溶胶监测的光谱仪,以通过 EN 16450 标准下的 Fidas® 200 为基础,采用单颗粒物散射光测量原理。可加载气体传感器(SO2、CO、NO2、O3),从而提供评估空气质量数据。AQ Guard Smart 不需要重新校准,可长时间运行。可通过对粒度分布的具体分析来确定粒度测定的偏差和PM值的偏移,并且将其作为系统自测的内容,当多出容差时系统自动显示和报警。AQ Guard Smart通过 Palas® MyAtmosphere 传输测量数据;单独运行时,可以借助带或不带太阳能支持的外部电池来运行系统。产品优势以经过认证的 FIDAS® 200 系列为基础而开发的技术,可以保证细粉尘值的高准确度和可重现性;以公认的快捷方便的现场校准而闻名通过云 MYATMOSPHERE 实现短时间调试和即时记录测量值通过 Wi-Fi 热点、远程访问和外部触摸板,根据现场情况进行配置通过 GPRS/3G/4G/Ethernet/Wi-Fi 通信,可选:LoRaWAN可扩展气象站和气体传感器,可以更好地评估和评价颗粒物数据以高时间分辨率测量 Cn、PM1、PM2.5、PM4、PM10(可选:SO2、CO、NO2、O3)颗粒物测量范围从 0.175 - 20,000 nm 到 100 mg/m³ 质量浓度或 20000 个颗粒/cm³ (单一颗粒物分析)应用领域工业: - 生产过程 - 散装物料处理(混合,卸料,储存,包装等) - 厂界监控施工现场:道路,铁路,拆除现场建筑物:学校,幼儿园,医院,酒店,办公室,公共服务建筑物建筑工地或其他污染区域附近的住宅建筑公共交通:机场,火车站,电车和地铁站,游轮,客舱,例如在电车、火车上Fidas® 单颗粒计数气溶胶粒径分布光谱仪Palas® Fidas® 单颗粒计数气溶胶粒径分布光谱仪是为管制空气污染而开发的气溶胶光谱仪。它可以连续分析环境空气中存在的细粉尘颗粒,测量尺寸范围为180 nm – 18 µ m,并计算PM10和PM2.5排放值。同时计算并记录的还有PM1,PM4,PMtot,颗粒数浓度Cn和粒度分布。因此,通过计数、单颗粒测量原理即可提供有关细尘颗粒信息。产品优势获得德国TÜ V Rheinland认证以及英国MCERTS认证连续和同时实时测量多个PM值基于颗粒物粒径分布的详细信息可调时间分辨率从1 秒以上至24小时通过Palas® 服务器云区域进行全球数据检索低维护、低消耗品应用领域监测网中合规性监测颗粒物特征科学研究移动走航监测颗粒物排放扩散研究
  • 惊讶!雾霾是怎样干掉我们的?
    每个人都必须呼吸,没有人能置身事外。 关于 雾霾 这个词,相信大家也不陌生了。我国中东部地区先后遭遇多次大范围持续雾霾天气,雾霾污染渐成污染新常态。据说今年,雾霾也入侵广州了。虽说大家都不再谈霾色变,但也有的无奈有的调侃。今天小编就来给大家科普一下,关于雾霾的那些事,让大家科学有效的对战。 雾霾是什么鬼?古语有云:知己知彼,百战不殆。所以,光知道pm2.5浓度,空气污染指数,细颗粒物等等这些名词,对防治雾霾来说没什么用,当聊天谈资都有股子烟熏味儿。关键是要知道,雾霾到底是个啥,又如何起作用。雾,是接近地面的空气因气温下降水蒸气凝结而成的悬浮的微小水滴;霾,是大量极细微的干尘颗粒等均匀地浮游在空中,使水平能见度小于10千米的空气普遍浑浊现象,也称灰霾。在气象学上,雾和霾的判识标准为:相对湿度小于80%时为霾;相对湿度大于90%时为雾;相对湿度在80%—90%之间时为雾和霾的混合物,其中雾和霾的程度要按照大气细颗粒物pm2.5和pm1.0(指空气动力学直径分别小于2.5和1.0微米的细颗粒)的浓度来判识。所以雾和霾的区别就是:“疗效”好不好,关键看大小值得指出的是,雾本来是一种自然现象,但是在污染导致大气细颗粒物增多的情况下,即使气象上判识为“雾”,也不再是完全的自然现象,而是有细颗粒物附着的微小水滴。pm2.5从哪儿来?pm2.5的来源可分为一次源(直接排放)和二次源(二次生成)。一次源又可分为自然排放源和人为排放源。其中,自然排放源包括风扬尘土、火山灰、森林火灾、海浪飞沫、生物来源等。人为排放源包括工业粉尘、机动车尾气颗粒物、道路扬尘、建筑施工扬尘、厨房烟气等。pm2.5的二次生成是指排放到大气中的气态污染物通过多种化学物理过程产生的二次细颗粒物。人类活动排放的大量气态污染物如二氧化硫so2、氮氧化物nox、氨气nh3、挥发性有机污染物(vocs)等,都能在大气中被氧化产生硫酸盐、硝酸盐、铵盐和二次有机气溶胶(soa)。这些新生成的细颗粒物是大气中pm2.5的重要来源。全球范围内,二次颗粒物贡献率在20%—80%之间,在我国中东部地区常常高达60%,在成霾时往往二次颗粒物所占比例更高。也就是说,人类活动产生的二次颗粒物占比更高!人类活动产生的二次颗粒物占比更高!人类活动产生的二次颗粒物占比更高!重要的事情说三遍。原来,雾霾主要是人类活动造成的。雾霾是如何影响人体健康的呢?你应该看看这个视频。也许可以叫上小孩子和你一起看。在你自己被“雾霾怎样干掉我们”吓到的同时,也让他们有机会发出责问:你们大人到底对空气干了什么?视频链接:https://v.qq.com/x/cover/bnch6y2pg8sw7tu/l0341ic3f3l.html如何降低雾霾的危害呢?空气净化器可以有效净化雾霾,家中必备??答案是不一定。空气净化器通常由负离子发生器、微风扇、空气过滤器等系统组成。 它的工作原理如下:机器内的微风扇(又称通风机)使室内空气循环流动,污染的空气通过机内的空气过滤器(两次过滤)后将各种污染物清除或吸附,然后经过装在出风口的负离子发生器(工作时负离子发生器中的高压产生直流负高压),将空气不断电离,产生大量负离子,被微风扇送出,形成负离子气流,达到清洁、净化空气的目的。这其中的关键就在于空气过滤器所使用的滤网技术。高效微粒空气过滤器(hepa)是空气净化中使用的最热门的技术之一。标准的hepa过滤器能够吸纳99.7%大小为0.3微米的悬浮微粒(0.3微米是最难过滤的大小),这样看来似乎完全可以过滤直径小于等于2.5微米的pm2.5。然而实际上,由于hepa的风阻也相对比较大,一般很少用在空气净化器中。空气净化器厂家宣称的hepa其实不是真正的hepa,它的过滤效率比hepa稍低,风阻也相对较低。而且hepa滤网只能滤除悬浮微粒、无法滤除有害气体。使用hepa的空气清净机要有良好的气密设计,否则空气会绕过滤网而失去过滤效果。雾霾天气时,由于室外空气污染加重,室内空气在一定程度上也会受到影响,采用空气净化器有助于室内空气质量改善,但能否净化pm2.5,目前还未进行专门研究。专家认为,空气净化器只能做一个局部的空气净化,要想达到整个室内的空气净化不太可能。那些号称防雾霾神器的产品,基本上可以判定是商家营销的噱头。防雾霾中医药方、多吃蔬菜能防雾霾?你是否被朋友圈里防治雾霾的中医药方,或者防雾霾必吃的多少种蔬菜刷过屏?实话告诉你,这些也没什么卵用。前面说到雾霾对人体造成危害主要看pm2.5所吸附的是什么物质,成分最重要。而所谓的中医药方、多吃蔬菜,只不过起到一些清肺润肺的作用,对进入肺部甚至血液的细颗粒物完全没效果。而且,如果说一个方子能统治所有地方的雾霾带来的不适,肯定是没有道理的。只要戴口罩就能防雾霾?不是所有口罩都能防。普通纱布口罩和医用一次性口罩就没什么卵用。原因有二:一是过滤效率低,只能隔离大的颗粒如灰尘,对pm2.5毫无效果,哪怕你戴了100层;二是它们与脸部不紧密贴合,基本上四面漏风,颗粒物会从缝隙溜进鼻腔。另外,戴口罩不能做运动,比如跑步,因为跑步到一定强度,需要更多呼吸,而口罩会导致呼吸不畅;老人和孩子也不适合常戴口罩,因为这两类人群呼吸能力比较差。不戴口罩将直接呼吸雾霾与戴口罩很大可能形成缺氧从而对心脏造成负面影响,两种措施都对健康有害。但是在雾霾天,选用一款靠谱的口罩还是有必要滴!美国vwr n95口罩,结合卓越的安全性和舒适性功能,以确保可靠的防护作用,并具有质轻、安全健康的特点。可调节的皮夹确保了不同用户脸部的密封性。产品的可滑动性与呼气阀,有效降低了面罩内温度和湿度的积累。国际上对防颗粒物口罩的使用要求相当严格,防颗粒物口罩在个人防护用品中属于第一等级,高于耳罩和防护眼镜等,如果使用不当,泄漏率最高可达80%以上,戴了还不如不戴。目前,比较权威的检测认证有欧洲的ce认证和美国的niosh认证,而中国的标准和美国的niosh类似。这款口罩防范雾霾颗粒和各种病菌也是最有效的,符合美国职业安全与健康研究所(niosh)要求,最少能过滤95%的0.3微米颗粒物,也可以隔绝细菌和病毒的侵害。能够防护固体和液体的颗粒。轻盈的结构带来长时间舒适的使用体验。不仅是雾霾天哦~大城市空气污染大,汽车多,外出备一个专业口罩也是非常有必要哒。今年广州绿百草正式与vwr合作,专业为广大客户提供优质的vwr产品。更多优惠,请来电咨询。谁让我们的呼吸如此困难?在如此恶劣的雾霾天气下,我们唯一能做的就是防护,再防护。(如此呼吸)(文章来源:网络)
  • 解密陕西首个空气质量监测超级站
    在西安市含光门里的报恩寺街上,一栋不起眼的三层楼的楼顶,我省首个空气质量监测超级站刚刚初步建成,从后天开始,西安发布的每日PM2.5浓度试验性监测数据将从这里和另外原有的6个子站发出。超级站是啥样?PM2.5数据是怎样监测出来的?昨日,记者一探究竟。   PM2.5监测设备可实现每5秒更新一次PM2.5数值   为何选址在报恩寺街?   城区内典型的人口聚集地   这条并不宽敞的小街上周围有多个居民小区,还有学校、幼儿园、菜市场,以及诸多餐饮店,路上车辆往来繁忙,这里是西安城区内典型的人口聚集地,周围居民区、商业区、机动车流量等各方面都属于典型的城市代表,监测数据具有代表性。   超级站为何称“超级”?   可监测百余项目   记者看到,超级站其实只是一个75平方米房间,里面有4台设备。为保障仪器设备正常工作,两台柜式空调将这里的温度控制在25℃左右,上下浮动不能超过5℃。   据介绍,超级站还有许多设备没有到位。现有的4套设备已开始正常工作,包括2台PM10监测仪、1台PM2.5监测仪和1台总悬浮颗粒物监测仪。其中1台现在用于PM10的监测设备是用来监测PM1的,由于PM1的采样头尚未到货,所以暂时先监测PM10。此后,超级站里所监测的PM家族成员将为PM1、PM2.5和PM10。   超级站之所以被称为“超级”,是因为普通子站只监测PM10、SO、NO 等项目,共计不超过10种,而超级站监测的项目多达上百种,包括PM2.5、臭氧、一氧化碳等大气中的物质,还增加了碳浓度、酸性气体,甚至还包括紫外线等内容。这些项目对于研究并指导我们今后的生活很有意义。   “这些设备都是美国热电公司的,在目前来说是世界一流。”西安市环保局科技监测处处长陈宁介绍。   超级站造价1600多万元。设备包括200多万的离子色谱仪,可分析得知PM2.5中大致的离子种类 激光雷达,可监测到大气中垂直距离不同高度悬浮的颗粒物 100多万的能监测50多项有机化合物的“VOC”设备 价值20多万的PM2.5监测检测仪在超级站里只是“小儿科”。   中科院地球环境研究所对西安PM2.5已监测了10年   西安可吸入颗粒物中 PM2.5占一多半   从气象卫星遥感监测图上看,从山西西南经我省韩城、渭南,沿渭河谷地向西到宝鸡呈现出了一条明显的东北、西南走向的红色区域,这就是一直盘踞在渭河谷地至秦岭北麓的“大气污染带”,在西安、渭南那团红色最浓重。   城区PM2.5约占PM10的60%-80%   记者从中科院地球环境研究所了解到,该机构对西安PM2.5的监测“悄悄”进行了10年,2002年开始该研究所在西安高新区进行PM2.5连续监测,2010年,在西安选择了具有代表性的6个监测点,研究PM10和PM2.5的空间分布状况,结果显示,西 安 城 区 PM2.5 约 占 PM10 的60%-80%,也就是说,西安城市上空大气中的可吸入颗粒物,一多半都是PM2.5。   藏在PM2.5中的污染物大多为土壤尘、有机物、硫酸根、硝酸根、氯离子等物质,燃煤、扬尘、机动车尾气、有机化工生产、餐饮油烟等是产生这些污染物的主要来源,污染物中含有的二氧化硫、氮氧化物、挥发性有机物等排放到空气中,通过化学反应产生硝酸盐、硫酸盐等,又继续被PM2.5携带。   这些有毒、有害物质的细颗粒在大气中的停留时间长、输送距离远,就成为了影响人体健康和大气环境质量的“无形杀手”。   若以PM2.5衡量西安“蓝天”减少一小半   2011年8月1日起,西安市环境监测站就已通过新城、碑林、莲湖、雁塔、灞桥、高新的6个环境空气自动监测子站试点监测PM2.5。   按照国家今年公布的新的《环境空气质量标准》,PM2.5日均浓度二级标准限值(0.075 mg/m)来衡量(一级标准日均值限值是0.035 mg/m,适用于景区),在2011年8月至2012年5月连续305天对PM2.5试验性监测期间,只有54%的日子里PM2.5的日均浓度值达到二级以上标准,也就是我们常说的“蓝天”标准,其他时间均超过二级标准,而PM2.5日均浓度最大的一天,超过二级标准值近三倍。而按新标准的年均浓度来衡量,可吸入颗粒物(PM10)、细颗粒物(PM2.5)两项指标都不达标。   按现行的《环境空气质量标准》,2011年西安的“蓝天”数量为305天,也就是说全年80%以上都是“蓝天”(首要污染物为PM10)。实施“新标准”后,仅以PM2.5来衡量,西安的“蓝天”数量预计将减少到180天左右,达标率降低到50%。   PM100、PM10、PM2.5区分   PM100   标准   是指直径小于或者等于100微米的颗粒物总和,它的单位是微克/立方米。   危害   粒径10微米以上的颗粒物,会被挡在人的鼻子外面。   PM10   标准   是指直径小于等于10微米的颗粒物总和,又称可吸入颗粒物,可以进入人的呼吸系统的颗粒物。   危害   粒径在2.5微米至10微米之间的颗粒物,能够进入上呼吸道,但部分可通过痰液等排出体外,另外也会被鼻腔内部的绒毛阻挡,对人体健康危害相对较小。   PM2.5   标准   指的是直径小于或等于2.5微米的颗粒物总和,也称可入肺颗粒物,是形成灰霾天气的主要原因之一。它的直径是人头发丝粗细的1/20左右。是地球大气成分中含量很少的成分,但对空气质量和能见度等有重要的影响。   成因   成因复杂、来源广泛,分为人为源和自然源。人为源包括化石燃料的燃烧、生物质的燃烧、垃圾焚烧、餐饮油烟、建筑施工扬尘、喷涂喷漆装修等 自然源包括风扬尘土、火山灰、森林火灾、漂浮的海盐和花粉等。   危害   PM2.5细小,不易被阻挡。被吸入人体后会直接进入支气管,干扰肺部的气体交换,引发包括哮喘、支气管炎和心血管病等疾病。PM2.5富含大量的有毒、有害物质,且在大气中停留时间长、输送距离远。
  • TOP 科学杂志报道:与飞纳电镜一起探索地球最年轻洞穴的炙热深处
    《史密森尼(Smithsonian)》杂志,隶属于美国史密森尼学会,该学会 1846 年成立。《史密森尼(Smithsonian)》杂志是美国华盛顿特区的史密森学会官方发行刊物,于 1970 年出版第一期杂志。 索罗,一位专注洞穴研究的洞穴学家,同时担任La Venta 地理探险协会的领军人物,他跨越国界与美国宇航局和欧洲航天局携手合作,致力于宇航员的行星探索训练工作。他每天花数小时查看现场的照片和视频,这些丰富的信息,不仅让研究人员得以追踪洞穴的形成过程与具体位置,也提供了一个难得的机会,使科学家有机会深入探究未经生命物质触碰的洞穴深处:在前所未有的细节层面,观察冷却过程、矿物生成以及这些环境中早期微生物群落的诞生。 穿着冶金用“冷却服”的洞穴学家 1994 年,洞穴学家研究了意大利埃特纳火山喷发后形成的熔岩管。研究人员在火山喷发停止近一年后进入熔岩管,发现里面尽管余温高达 158℃,却存在着罕见的晶体与矿物。然而,六个月后回到实验室时,这些亚稳态的矿物已经因为温度的降低分解消失,错失了详细研究的机会。这次经历深刻体现了在极端环境中进行快速样本采集并及时表征的重要性。 为了准备进入冰岛的新洞穴,索罗及其团队需要掌握洞穴形成的具体位置,以及哪些通道最为简单安全。在国家地理学会的资助下,于 2021 年 9 月,即在火山停止喷发大约一周后,索罗团队接近这座火山。他们运用精心绘制的地图,成功确定了地表的“天窗点”——这些点极有可能是新形成的洞穴入口。研究团队在该区域放置一架搭载热成像摄像机的无人机,细致地记录下火山不同区域的温度数据。 1.研究人员操作一架配备有激光雷达扫描仪的无人机,对熔岩管网络进行精细的三维绘图 鉴于一些矿物会随着时间改变或消失,这一次在冰岛法格拉达尔火山,为了避免出现类似情况,研究人员携带飞纳台式扫描电镜大样品室卓越版 Phenom XL G2,将其安置在火山旁边的帐篷内,使用发电机以维持扫描电镜正常运行。“环境条件非常恶劣,记得有一次突如其来的降雨,帐篷内积流成河。我把电源设备放置在地板上,所幸水流绕过了它,”工作人员回忆道。 2.在火山旁,研究人员依靠这台飞纳台式扫描电镜进行矿物分析,这对火山口生态系统和生命起源的研究具有重要的价值。 2022 年 5 月,通过热成像摄像机传回的数据显示,里面的温度仍然高达 900℃。索罗描述了他们所遇到的情景:“空气仿佛在燃烧,一股热浪扑面而来。而外面的风却寒冷刺骨,这种内外温差所形成的鲜明对比,简直令人难以置信。” 研究人员穿过一条 1000 英尺长的熔岩管(地球上最年轻的洞穴之一) “空气温度在一米之内就能从 100℃ 骤升至 200℃,”索罗描述道。索罗进入的管道中,洞穴墙壁在发光,温度接近 600℃(1100华氏度)。“这是我见过的最为震撼的景象之一,”他感慨道。 索罗团队的研究主要集中在两个领域:首先,他们热衷于探索洞穴内所发现的矿物,尤其是那些在洞壁及其他岩石表面逐渐形成的独特矿物。其次,他们期待揭示这些极端环境何时成为微生物群落的领地,并鉴定出哪些微生物在此类环境中能够繁衍生息。深入探究这些新生洞穴如何逐步孕育生命,不仅有助于科研人员对地球生命发展过程的认知更加完善,而且对于科研人员在其他行星,如火星上寻找生命迹象的工作具有重要的指导意义。 研究人员发现,这些微生物通常能够通过氧化无机物质(如硫、铁和铜)来获取能量。在考察现场,Phenom XL 飞纳台式扫描电镜对于快速识别和分析矿物样本起到了非常重要的作用: 研究人员在洞穴表面的裂隙与凹槽中发现了各种矿物。“我们发现了这种美丽的矿物,有白色的、绿色的、蓝色的等等。”南佛罗里达大学的矿物学家博格丹奥纳克回忆道。研究人员用无菌刮刀刮下样本,并将其放置在真空密封袋中。收集样本后,索罗及其同事们便回到帐篷中,利用飞纳台式电镜的图像来确定样本的化学构成,他们通常能在半小时内识别出矿物,极大地提高了样本采集和分析的效率。 研究人员在飞纳台式扫描电镜下发现几种稀有矿物 追寻微生物的繁殖路径,将帮助科学家在宇宙中寻找生命。索罗提问:“既然地球上一些特定的微生物能在熔岩管道中迅速繁衍,那么在火星上为何不能上演同样的生命奇迹呢?” 从内部观察一个已经坍塌的熔岩管 美国宇航局艾姆斯研究中心 NASA 天体生物学研究所所长佩内洛普博斯顿博士将熔岩管形容为“太阳系其他天体可能存在现象的缩影”。火山活动并不仅限于地球和火星,即便是在木星的卫星之一IO上,也能观察到活跃的火山活动。这表明,太阳系外的行星和卫星同样可能存在火山以及熔岩管。因此,博斯顿博士认为索罗正在研究的洞穴具有很高的参考价值。 01洞穴内一个已经凝固的小熔岩湖 02.绳状熔岩(熔岩流表面构造) 03.洞穴入口附近的墙壁细节 法格拉达尔火山的喷发虽然已经平息,索罗对冰岛其他火山的动态依然保持着浓厚的兴趣。今年 3 月,雷克雅内斯半岛上的 Hagafell 山,距离法格拉达尔仅几英里之遥,突然开始了新的喷发。索罗望着那片火山喷发的壮丽景象,心中沉思:“新的熔岩管道正在形成。”这些神秘莫测的洞穴,或许将成为他下一次探险的目的地。
  • PALL PM 2.5空气监测膜片满足美国EPA标准
    PM 2.5标准是为了检测可吸入颗粒物的一个标准,来衡量空气的被污染程度   PM,是颗粒物英文全称Particulate matter的缩写   PM2.5,指大气中空气动力学直径小于或等于2.5微米的颗粒物,亦称可入肺颗粒物.   人为来源:主要来自燃烧过程,比如化石燃料(煤、汽油、柴油)的燃烧、生物质(秸秆、木柴)的燃烧、垃圾焚烧。在空气中转化成PM2.5的气体污染物主要有二氧化硫、氮氧化物、氨气、挥发性有机物。   自然来源:风扬尘土、火山灰、森林火灾、漂浮的海盐、花粉、真菌孢子、细菌其粒径小,富含有毒有害物质,因而对人体健康和大气环境质量影响极大   PM10,则指大气中空气动力学直径等于或小于10微米的颗粒物,也称可吸入颗粒物,粒径2.5微米至10微米的粗颗粒物主要来自道路扬尘等,属于粗颗粒物,与细颗粒物相对。   PM2.5的危害   PM2.5主要对呼吸系统和心血管系统造成伤害,包括呼吸道受刺激、咳嗽、呼吸困难、降低肺功能、加重哮喘、导致慢性支气管炎、心律失常、非致命性的心脏病、心肺病患者的过早死。老人、小孩以及心肺疾病患者是PM2.5污染的敏感人群。 世界卫生组织(WHO)和一些国家的PM2.5标准(单位:微克/立方米)   PM 2.5的标准最早是由美国在九七年的时候提出来,目前世界上很多的发达国家都把PM 2.5列入了一个评价空气质量的标准,我们国家采用的是新的环境空气评价办法—环境空气质量指数(AQI).   《环境空气PM10和PM2.5的测定 重量法》(中华人民共和国国家环境保护标准,HJ618-2011)   “根据样品采集目的可以选用玻璃纤维、石英等无机滤膜或聚氯乙烯、聚丙烯、混合纤维素等有机滤膜。滤膜对0.3um标准粒子的截留效率不低于99%。”   美国EPA标准,用做PM2.5 检测的膜厂家应该满足的EPA 40 CFR Part 50 (EPA 1997a)   生产标准:   • 大小—圆盘, 46.2-mm ±0.25 mm (带支撑环)   • 材质—带完整支撑环的(PTFE) Teflon®   • 支撑环—PMP或相等的惰性材料,0.38±0.04mm厚度,外部直径46.2±0.25mm,宽3.68 mm。支撑环应保持性能一直,否则会影响操作。   • 孔径—2μm (按ASTM F 316-94标准)   • 厚度—30-50μm   其他信息请访问美国环保局网站,http://www.epa.gov/air/particlepollution/health.html   PALL用于PM 10,PM 2.5检测的膜片符合EPA规定   Teflo PTFE膜片   PTFE膜,拥有EPA规定的PMP支撑层,专用于PM-10, PM-2.5,分道采样和其他空气抽样检测技术。在X射线萤光分析下极低的化学背景,低成分也适用于高精度的重量分析测定法。   滤材:带 PMP支撑层的PTFE膜(符合美国EPA法规)   厚度: 1 µ m: 76 µ m (3 mils), 2 µ m: 46 µ m (1.8 mils), 3 µ m: 30.4 µ m (1.2 mils)   典型气溶胶截留 (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求) :1 和2 µ m: 99.99%, 3 µ m: 99.79%   典型空气流速(0.7 bar (70 kPa, 10 psi)): 1 µ m: 17 L/min/cm2, 2 µ m: 53 L/min/cm2 , 3 µ m: 90 L/min/cm2   A/E玻璃纤维   用于各种空气分析的顶级玻璃纤维过滤膜,符合EPA法规推荐使用的要求为:无粘合剂的硼酸硅玻璃纤维。   滤材: 无粘合剂的硼酸硅玻璃纤维   孔径: 1 µ m (nominal)   厚度: 330 µ m (13 mils)   典型气溶胶截留 :99.98% (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)   典型空气流速(0.7 bar (70 kPa, 10 psi)): 60 L/min/cm2   典型水流速度(0.3 bar (30 kPa, 5 psi) ): 250 mL/min/cm2   最大操作温度-空气: 550 °C (1022 °F)   Zefluor™ PTFE膜   低化学本底,高灵敏度,无干扰. 0.5 µ m孔径,满足 NIOSH标准,适合监测酸雨,芳香烃和为例检测.   滤材: 有PTFE支持层的PTFE 膜   孔径: 0.5, 1, 2, 和3 µ m   厚度: 0.5 µ m: 178 µ m (7 mils), 1 µ m: 165 µ m (6.5 mils), 2 and 3 µ m: 152 µ m (6 mils)   典型气溶胶截留 :0.5, 1, and 2 µ m: 99.99%, 3 µ m: 99.98% ((按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)   典型空气流速(0.7 bar (70 kPa, 10 psi))0.5 µ m: 1, 1 µ m: 14.6, 2 µ m: 25.3, 3 µ m: 53 L/min/cm2   Pallflex Tissuquartz™ (石英膜)   纯石英,没有粘合剂,最高化学纯度, 高流速,高过滤效率. 独特的设计适用用高温和热气体的监测应用。   滤材: 纯石英,没有粘合剂   厚度: 432 µ m (17 mils)   重量t: 5.8 mg/cm2   典型气溶胶截留 :99.98% (按照标准 ASTM D 2986-95A, 0.3 µ m DOP at 32 L/min/100 cm2滤材要求)   典型空气流速(0.7 bar (70 kPa, 10 psi)): 73 L/min/cm2   典型水流速度(0.35 bar (35 kPa, 5 psi) ): 220 mL/min/cm2   最大操作温度-空气: 1093 º C (2000 º F)   PM 10, PM 2.5监测配件   滑动盖   保护样品膜的完整性   具体购买事宜,请联系PALL当地代理商:   http://www.ebiotrade.com/custom/ebiotrade/DLS2009/pall.htm   或Email PALL 实验室市场部:   Jessie_jing_chen@ap.pall.com
  • ​质谱技术助力我国科学家在月壤中首次发现分子水!
    从中国科学院物理研究所获悉,中国科学院物理研究所/北京凝聚态物理国家研究中心研究员陈小龙、副研究员金士锋、博士研究生郝木难等,联合北京科技大学副教授郭中楠、天津大学工程师殷博昊、中国科学院青海盐湖研究所研究员马云麒、郑州大学工程师邓丽君等,在嫦娥五号带回的月球样本中,发现了月球上一种富含水分子和铵的未知矿物晶体——ULM-1。这标志着科学家首次在月壤中发现了分子水,揭示了水分子和铵在月球上的真实存在形式。该研究成果近日在学术期刊《自然-天文学》(Nature Astronomy)在线发表。月球上是否存在水,对于月球演化研究和资源开发至关重要。对1969年至1972年采集的阿波罗样品的研究表明,月壤中未发现任何含水矿物。此后,月球不含水成为月球科学的基本假设,这对认识月球火山演化、月地起源等问题产生了重要影响。1994年,研究人员通过克莱门汀探测器对月球两极进行观测,提出极区永久阴影区的月壤中可能存在水冰。2009年,月船一号搭载的月球矿物绘图光谱仪发现,月球表面存在太阳风导致的羟基和/或水分子信号。同年,月球观测和传感卫星以2.5公里/秒的速度撞击了月球永久阴影区,而对撞击尘埃的遥感测量显示了水的信号。近年来,遥感数据表明月球光照区有水分子存在的迹象。针对当年采集的阿波罗月球样品,科学家运用高灵敏度的表征技术,在部分玻璃和矿物中发现了百万分之一量级的“水”(H+、OH-或H2O),但没有水分子存在的确凿证据。富含水分子和铵的未知矿物晶体——ULM-1和成分组成我国嫦娥5号采集的月壤样品属于最年轻的玄武岩,是迄今为止纬度最高的月球样品,为月球水的研究提供了新机遇。我国科研人员开展的这项研究基于单晶衍射和化学分析发现,这些月球水和铵以一种成分为(NH4,K,Cs,Rb)MgCl36H2O的水合矿物形式出现。该矿物分子式中含有多达六个结晶水,水分子在样品中的质量比高达41%。红外光谱和拉曼光谱上均可以清晰地观察到源于水分子和铵的特征振动峰。晶体的电荷密度可以清晰地看到水分子中的氢。ULM-1的晶体结构和组成与地球上近年来发现的一种稀有火山口矿物相似。地球上,该矿物是由热玄武岩与富含水和氨的火山气体相互作用形成。这为月球上的水和氨的来源提供了新线索。ULM-1是如何被发现的?中国科学院物理研究所/北京凝聚态物理国家研究中心副研究员金士锋说,科研人员在1.5克细如尘埃的月壤中筛选了数千个晶体颗粒,绝大多数是已知矿物。ULM-1晶粒大小和月壤里大部分颗粒大小差不多,直径仅有零点几毫米。科研人员在挑选样品时发现, ULM-1质地非常软且外观透明,猜测其中含有水。研究基于单晶衍射和化学分析发现,这些月球水和铵以一种成分为NH4MgCl36H2O的水合矿物形式出现。该矿物分子式中含有多达六个结晶水,水分子在样品中的质量比高达41%。红外光谱和拉曼光谱上均可以清晰地观察到源于水分子和铵的特征振动峰。晶体的电荷密度可以清晰地看到水分子中的氢。ULM-1的晶体结构和组成与地球上近年来发现的一种稀有火山口矿物相似。地球上,该矿物是由热玄武岩与富含水和氨的火山气体相互作用形成。这为月球上的水和氨的来源提供了新线索。“我们认为,ULM-1是月火山喷发的产物,其中的水是月球本身的水。”金士锋说,目前认为月球“水”的来源主要有几种可能:一是太阳风粒子与月表物质相互作用产生的羟基物质;二是撞击月球的彗星或陨石带来的水和含羟基物质;三是月球原生水。科研人员推测,几十亿年前,月球火山喷发时,喷出的水蒸气、氨、氯化氢等气体和月壤反应,形成了ULM-1。为了确保这一发现的准确性,该研究进行了严格的化学和氯同位素分析。纳米二次离子质谱数据表明,该矿物的Cl同位素组成和地球矿物显著不同,与月球上的矿物相符。研究人员对该矿物化学成分和形成条件进行分析,进一步排除了地球污染或火箭尾气作为这种水合物的来源。该六水矿物的存在为月球火山气体的组成给出了重要的约束。热力学分析显示,当时月球火山气体中水的含量下限与目前地球中最为干燥的伦盖火山相当。这揭示了复杂的月球火山脱气历史,对探讨月球的演化过程具有重要意义。这种水合矿物的发现揭示了月球上水分子可能存在的一种形式——水合盐。与易挥发的水冰不同,这种水合物在月球高维度地区(嫦娥5号采样点)非常稳定。这意味着,即使在广阔的月球阳光照射区,也可能存在这种稳定的水合盐。这为未来月球资源的开发和利用提供了新的可能性。
  • 读完这些小故事,你会爱上化学(图)
    观音菩萨生病了   南宋年间,有位老财主迷信,将一尊观音像请回了家。过了一段时间后,尽管老财主每天供品、香火不断,但观音像却变得黯淡无光,好像生病似的。老财主一看,以为照顾得还不够周到,就赶紧一日三餐上供品、点香火,但观音像依然是&ldquo 病恹恹&rdquo 的。为什么观音菩萨会&ldquo 生病&rdquo 呢?   原来,这位财主供奉的观音像不是铜塑的,更不是金塑的,而是用金属钠塑造出来的。在袅袅的香火中,金属钠渐渐被氧化了。原来的观音是银光闪闪的,被氧化后,生成了一种新的氧化物,看上去就像&ldquo 生病&rdquo 一样,一脸倦容。   钠呈银白色,有美丽的光泽,常温时有蜡状,低温时可变脆。化学性质很活泼,能与非金属直接化合,在空气中氧化迅速,所以钠一般被保存在煤油中。   第一个飞人之死   在18世纪80年代初,热气球刚在欧洲出现不久,人们对这种飞行器还不十分相信,当时人们已经用热气球成功把鸡、鸭、羊送上了天空,但从来还没有人乘气球离开地面。1789年,法国国王批准了科学家第一次用气球送人上天的计划,并决定用两个犯了死刑的囚犯去冒这个风险。这件事被一个叫罗齐埃的青年知道了,他想人第一次飞上天是一种极大的荣誉,这荣誉不能给囚犯。他决定自己去尝试作一次飞行,于是便找了另外一个青年人向国王表达了他们的决心,国王批准了他们的请求。1783年11月21日,他俩乘坐热气球,成功地进行了世界上第一次用热气球载人的飞行。那次共飞行了23分钟,行程8.85公里,罗齐埃由此成了当时的新闻人物。   第二年,罗齐埃计划乘气球飞跃英吉利海峡。当时已经发明了氢气球,使他拿不定主意的是:乘热气球好呢,还是乘氢气球好?最后,罗齐埃决定两个气球都乘,即把氢气球和热气球组合在一起去飞跃海峡。一天,他们将两个气球组合在一起,升空了,然而,升空不久就发生了悲剧,两只气球碰在一起,发生了爆炸,罗齐埃和另一位青年葬送了年轻的生命。   是什么原因导致了这一悲剧的发生? 原来热气球下面挂了一个火盆,目的是给气球气囊中的空气加温,是气球里充满着热的空气。然而在氢气球中充的是氢气,罗其埃没想到氢气是一种易燃、易爆的气体,只要一碰到火星就会爆炸,显而易见,热气球是不能和氢气球同时混用的。看来,化学知识是多么的重要!   总统内部新闻   1929年,腰缠万贯的胡佛终于登上了美国第三十一届总统的宝座,名声大噪,其发迹的秘密逐渐被披露出来。   胡佛先前家境贫寒,学生时代仅以打零工才勉强维持学业。尔后,又职微薪薄,寄人篱下。穷途末路之际则风尘仆仆来到中国,以期转机。腐败、落后的旧中国任忍列强宰割,多少洋人在此大发其财!无疑,胡佛也不失所望,很快找到了发财的良机。当时,中国开采金矿的水平低,滤过矿金后就丢弃了。胡佛凭借他掌握的化学知识,断定这些&ldquo 废物&rdquo 中仍有黄金,于是便搞起了&ldquo 废物利用&rdquo 。他雇人用氰化钠的稀溶液处理矿砂,氰化钠与之发生化学反应,使Au呈络合物而溶解,接着,他又让人用锌粒与滤液作用,置换反应的结果,纯净的Au也就被提取出来了。   显然,这种炼金方法在当时是较为先进的。因而,成色尚好的黄金源源不断地流进胡佛的腰包,不久他成为了百万巨富。总统发迹内幕昭然若揭,不乏慕之者,赞其超群绝伦,生财有方,更是平步青云有道。然而,更有真诚的人们深知,胡佛是靠用黄金垒起的台阶登上总统宝座的。   比金子还贵的帽子   法国拿破仑三世是一位爱慕虚荣的皇帝,为了显示自己的阔绰富有,于是他命令一位大臣去做一顶比黄金还贵重的帽子。这位大臣左思右想,就是不明白究竟世界上还有什么能比黄金还贵重。后来,实在没办法,这位大臣就去问拿破仑三世的心腹,原来在拿破仑三世眼中,铝比金子更值钱。   我们也许觉得这很可笑,但当时,铝真的比黄金还贵重,生产技术不过关,为了制取铝这种金属,必须要用钠做还原剂,制造铝的成本比黄金要高出好几倍。铝粉具有银白色光泽,常用来做涂料,俗称银粉、银漆,以保护铁制品不被腐蚀。   玻尔巧藏诺贝尔金质奖章   玻尔是丹麦著名的物理学家,曾获得诺贝尔奖。二战中,玻尔被迫离开将要被德国占领的祖国,为了表达一定要返回祖国的决心,他决定将诺贝尔金质奖章溶解在一种溶液里,装于玻璃瓶中,然后将它放在柜面上。后来,纳粹分子窜进玻尔的住宅,那瓶溶有奖章的溶液就在眼皮底下,他们却一无所知。战争结束后,玻尔又从溶液中还原提取出金,并重新铸成奖章。   那么,玻尔是用什么溶液使金质奖章溶解呢?原来他用的溶液叫王水。王水是浓硝酸和浓盐酸按1:3的体积比配制成的的混和溶液。由于王水中含有硝酸。氯气和氯化亚硝酰等一系列强氧化剂,同时还有高浓度的氯离子。因此,王水的氧化能力比硝酸强,不溶于硝酸的金,却可以溶解在王水中。这是因为高浓度的氯离子与金离子形成稳定的络离子[AuCl4]-,从而使金的标准电极电位减少,有利于反应向金溶解的方向进行,而使金溶解。   蒙屈的管家   马提尼岛上有一个商人,精心收藏了一批古董,有次出门办事前发现家里一件银壶上有一层黑影,擦了两下没擦干净,便叮嘱管家想办法擦干净,十几天后,他回家后发现银壶依然如故,便发火斥责管家偷懒,管家满脸委屈地说:&ldquo 我已经想了许多办法,仍然无法恢复如初。不仅如此,岛上其他银器也变黑了,像得了什么传染病似的。&rdquo 商人见了,目瞪口呆,却不知道这是为什么。直至有一天,马提尼岛火山爆发,空气中充满着难闻的硫黄味儿,商人才恍然大悟:这银器变黑一定与空气中的硫化物有关!   事实果真如此:火山爆发前,空气中已经有二氧化硫,硫化氢等气体在弥漫,只是人的嗅觉不那么灵敏,没有嗅出来而已。硫与银,这两种元素就是这么怪,不知不觉地走到一起,搞了一场不大不小的闹剧。在火山爆发前,地下灼热的岩浆虽然还没有冲出地面,可是已经在大量聚集,并逐步向上漂移。由于地下温度在不断攀升,一些火山爆发时才喷出的硫化物,像硫化氢、二氧化碳等气体,便随着地下热空气悄悄地渗透到地面。空气中的硫化物能与银发生化学反应,生成黑色的硫化银。   银饰变黑是正常的自然现象,因空气和其他自然介质中的硫和氧化物等对银都有一定的腐蚀作用。在佩戴一段时间后,就会出现一些微小的斑点(硫化银膜),久之会扩散成片,甚至变成黑色。所以,目前银饰都有一些因氧化而变色的现象。   下面将介绍一些关于保养和去除银饰表面氧化物、恢复银饰亮泽的方法。1)避免银饰接触水汽和化学制品,避免戴着游泳,尤其是去海里;2)每天将银饰用棉布擦干净,放到首饰盒或袋子里密封保存;3)银饰已经氧化变黑了,可以用软毛刷子蘸牙膏刷洗,也可用手搓香皂清洁剂等方式清洗,实在无法处理干净时才用洗银水擦洗,洗完后银饰均要用棉布擦干。
  • 月球有水“实锤”:光谱仪助力嫦娥五号新发现,1吨月壤中约有120克水
    月球上有水吗?1吨月壤中含有多少水? 基于嫦娥五号携带的“月球矿物光谱仪”探测的数据,中科院地质与地球物理研究所等单位的研究人员首次获得了月表原位条件下的水含量。他们发现,嫦娥五号采样区的水含量在120 ppm(百万分之一)以下,而从别的地方溅射到采样区的更古老岩石中的水含量约为180 ppm。这就相当于1吨月壤中大约有120克水,1吨岩石中大约有180克水。相关研究成果1月8日在线发表于《科学-进展》。图说:嫦娥五号采样区背景图和水含量。 来源:研究团队供图 需要说明的是,“光谱仪所探测到的‘水’是指矿物里的水分子或者羟基,在一定条件下才能转化为我们喝的水。”论文第一作者、中科院地质地球所副研究员林红磊解释道。  争论半个世纪  月球有水才等到“实锤”  月球上到底有没有水?这个问题不仅大众好奇,科学家也想知道答案。  早在1952年,美国化学家哈罗德尤里大胆猜测月球上太阳永远无法照射到的洼地中可能存在像水一样的挥发性物质。  1969至1972年,美国阿波罗任务从月球采集了大量的样品并返回地球,终于让人们有机会直接测量月球上是否有水,但遗憾的是,月壤很干,宇航员留在月球表面探测大气的仪器也无法探测到水。这似乎让“月亮是干的”成为了一个事实。  然而,即使苏联科学家在1978年从“月球24号”任务采集的样品中测量到了微量水,但这一结果并没有被重视。  直到1994年“克莱门汀”任务实施前,对月球水的研究一直处在停滞阶段。  2009年,有了不一样的发现。印度“月船一号”搭载的月球矿物绘图光谱仪发现在月球上水随处可见,水含量随纬度的增加而增加。  “这一探测结果使科学家极为兴奋,这也许是很多人第一次意识到月球上有水。”林红磊说,这里的“水”是指水分子或者羟基。  此后,前往土星探测器“卡西尼号”、前往彗星的探测器“深度撞击号(Deep Impact)”、“月球观测和传感卫星(LCROSS)”等都用光谱仪的探测“实锤”月球上确实存在水。  总之,经过半个多世纪的争论和探测,各种“实锤”证据让人们相信了月球上是有水存在的,但仍然没有在月表原位进行过水的探测!  嫦娥五号探测器携带了月球矿物光谱分析仪,在采样过程中获取了月表的光谱。林红磊说,这些数据让我们第一次有机会在月表近距离、高分辨地探测水的信号。  和普遍意义上的液态水不同,光谱仪在月面探测到的“水”都藏在岩石中,水分子代表稍微加热就可以跑出来的“结合水”,羟基则代表需要较高温度才能析出的“结构水”。  月壤中的水绝大部分是太阳风的贡献  嫦娥五号光谱仪对采样区约2米见方的区域进行了光谱观测,观测对象除了月壤之外还有一块没有带回来的岩石。  数据分析结果表明,嫦娥五号采样区的水含量在120 ppm以下,而岩石中的水含量约为180 ppm。“相当于1吨月壤中大约有120克水,1吨岩石中大约有180克水。”林红磊解释道。  那么,这些水又是从哪里来的呢?  结合样品分析,月壤中的水绝大部分是太阳风的贡献。  论文通讯作者之一、地质地球所研究员林杨挺说,太阳风里有很多氢,轰到月面与月壤里的氧结合形成了羟基或者水分子。  和月壤中120ppm水含量相比,岩石中仍多出来60ppm的水,多出来的水又来自哪里?科研人员推测岩石是来自于比嫦娥五号着陆点本地玄武岩更古老的区域,多出来的水可能代表了月球内部水。“而月壤中的含水量较低,可能是嫦娥五号着陆区月幔较干或经历了大量脱气的过程,这与风暴洋地区长期的火山喷发是一致的。”林红磊说。  不久前,中科院地质地球所的科研团队在《自然》上同时发表三篇论文。其中一篇论文报道了基于纳米离子探针分析技术对月球内部水的探测结果,确定嫦娥五号着陆区月幔源区非常“干”,推测原因之一可能就是由于风暴洋地区长期的火山喷发造成强烈脱气的结果。  林红磊介绍,嫦娥五号是目前唯一一次既返回样品又获取到月表原位光谱的任务,样品能够详细分析水在月壤颗粒中的分布、存在形式,并可利用同位素示踪来源,而原位光谱可以与轨道遥感建立联系,能够研究月表水的全球性分布和时间变化特征。  月表水的分布可能与纬度高度相关,嫦娥五号是目前返回样品中纬度最高的,这对研究月表水的分布及来源具有重要意义。林杨挺表示,嫦娥六号、嫦娥七号未来将在原位和轨道尺度继续探测月表水的含量、分布,本研究成果也将为嫦娥六号、嫦娥七号的科学目标实现提供支撑。
  • ASD | 好想看看月壤长啥样!
    2020年11月24日4时30分长征五号遥五运载火箭点火升空托举嫦娥五号探测器送入预定轨道意味着人类时隔44年再次从月球带回了岩石和土壤样品上一次月球采样返回任务是1976年苏联的月球24号美国在阿波罗十一号成功登月之后,进行了6次发射任务,其中有5次都获得了成功,一共将12名宇航员送上了月球,带回来了382公斤的月球土壤。中美两国于1979年1月1日正式建交;而就在这前夕的1978年,美国国家安全事务顾问布热津斯基访华时,为表示友好,向中国赠送了1克月岩。地质学家将1g月壤等分成两份,每份重量0.5g,一份用于研究,另一份用来展览。如今,我们自己从月球带回1731克月壤!北京时间2022年10月10 日,国际科学期刊《自然 通讯》(Nature Communications)在线发布我国嫦娥五号样品的一项研究成果。中国科学院国家天文台李春来、刘建军研究员领导的团队,结合嫦娥五号月球样品的实验室分析结果和遥感探测数据,解答了过去对月球晚期玄武岩遥感光谱解译的疑惑,纠正了月球晚期玄武岩独特遥感光谱特征的物质成分解译结果。根据以往地基望远镜和月球轨道器遥感光谱数据的分析,普遍认为月球正面西部晚期月海玄武岩覆盖的区域富含橄榄石,这是约束月球晚期玄武岩成因的重要因素。然而该推论是否正确,由于缺乏实际样品的分析而无法证实。嫦娥五号成功着落于月球风暴洋东北部的玄武岩平原,返回样品的研究显示其玄武岩的年龄仅为20亿年,是月球上最年轻的玄武岩地层。嫦娥五号任务采集的月壤样品,作为从月球晚期玄武岩区域返回的唯一地面真值,为我们研究月球晚期火山活动提供了宝贵的机会。基于此,中国科学院国家天文台李春来、刘建军研究员团队结合嫦娥五号月球样品的实验室分析结果和遥感探测数据(ASD FieldSpec 4),解答了过去对月球晚期玄武岩遥感光谱解译的疑惑,纠正了月球晚期玄武岩独特遥感光谱特征的物质成分解译结果。研究团队通过对返回月壤样品开展实验室光谱和X射线衍射分析,与以往获取的月球样品进行对比,并结合电子探针分析的数据结果,证明嫦娥五号月壤的光谱特征主要是由其富含的富铁高钙辉石引起,而非富含橄榄石所致。由于国外历次月海采样任务鲜有以富铁高钙辉石为主的月壤样品,加之富铁高钙辉石晶体结构的特点在光谱特征上与月球上常见的橄榄石光谱相近,导致了月球晚期玄武岩的遥感光谱被错误地解译为富含橄榄石。为了解决富铁钙辉石与富橄榄石月壤光谱的易混性,研究团队基于大量地面实测的橄榄石和辉石混合物光谱数据,提出了一种新的基于光谱参数判别月壤中橄榄石含量的遥感光谱反演方法,能够有效地解决月表富橄榄石区域和富铁钙辉石区域的区分和圈定问题,为利用遥感光谱数据探测月表主要矿物成分和分布提供了新的方法。【结果】嫦娥五号与LSCC土壤样品的光谱形状比较。嫦娥五号样品与纯辉石、以前的月壤和玄武岩样品的光谱参数比较,以及月球矿物绘图仪(M3)轨道光谱。【结论】月表其他被认为是晚期玄武岩覆盖的区域与嫦娥五号着陆区有着相似的光谱学和地球化学特征(如铁、钛含量),这说明它们可能具有与嫦娥五号样品相似的岩石矿物学组成,都应是以富铁的高钙辉石为主,而非过去遥感光谱推测的橄榄石为主。结合月球晚期玄武岩的分布范围、持续时间及覆盖厚度的特点,晚期玄武岩的热源在强度上较弱,但可能在很大范围内长期稳定和活跃,形成该热源的机制可能包括月球表面厚风化层(megaregolith)的覆盖和地球与月球之间的潮汐作用。本研究对回答关于月球晚期玄武岩物质组成的问题,深化对月球热演化历史,特别是月球晚期火山活动特点的认识具有重要意义。
  • 创新之躯——分子绘图超人ChemDraw 18
    2018年是珀金埃尔默进入中国40周年,为了让广大用户更加了解我们,公司特遣小编从公司档案中搜集整理,汇集成10个“你所不知道的珀金埃尔默”系列故事。接下来的日子会一一与您见面,故事后还有关于本篇故事的资料和活动预告,快来了解我们吧~ChemDraw 18亮点用户可通过热键来快速绘制结构用户可通过ChemDraw绘制相应结构,并在网页中直接登录和检索其在Reaxys中的结构信息用户可通过Add-in模块中ChemACX explorer直接对所画结构的相关名称、CAS号、SMILES、价格、安全测试等进行检索更快捷的复制粘贴,可直接复制(CTRL+C) SMILES式和InCHI式,然后按CTRL+V在桌面中显示结构式线下ChemDraw活动回顾在上海慕尼黑分析生化展上,我们的新老用户通过体验最新版ChemDraw使用快捷键进行结构式绘制比赛。 活动预告广州质谱会上我们也将组织线下ChemDraw体验及评比:时间:11月24-25日09:00-16:00参与方式:现场绘画奖项设置:一等奖:Kindle 1位二等奖:蓝牙音箱 2位三等奖:毛巾礼盒 3位 如果您想了解ChemDraw最新功能,请扫描/识别下方二维码更多“你所不知道的珀金埃尔默”文章请点击阅读:哈勃望远镜与珀金埃尔默,不得不说的故事
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制