当前位置: 仪器信息网 > 行业主题 > >

混浊介质角域成像

仪器信息网混浊介质角域成像专题为您整合混浊介质角域成像相关的最新文章,在混浊介质角域成像专题,您不仅可以免费浏览混浊介质角域成像的资讯, 同时您还可以浏览混浊介质角域成像的相关资料、解决方案,参与社区混浊介质角域成像话题讨论。

混浊介质角域成像相关的资讯

  • 鑫图sCMOS相机丨高混浊水中光信标跟踪及其在水下船坞中的应用
    了解海洋环境对各种水下任务至关重要,如资源的探测和水下结构的检查,没有自主水下航行器(AUVs)的介入,这些任务就无法进行。由于机载电池和数据存储容量不足, AUVs在执行水下探索任务也会受到限制。水下对接站的出现能够很好的解决这一问题,它能够为水下机器人提供水下充电和数据传输。然而在动态海洋环境中,浑浊和低光条件是阻碍成功对接的关键挑战。在本文中,研究人员提出了一种基于视觉的引导方法,使用锁定检测以减轻浊度的影响,同时屏蔽杂光和噪声。锁定检测方法锁定位于对接站灯标的闪烁频率,并消除其他频率无用光的影响。该方法使用两个固定频率发光的信标,安装在模拟对接站和一个sCMOS相机(鑫图Dhyana 400BSI)上。概念验证实验结果表明,该方法能够识别不同浊度下的信标,并能有效地剔除不需要的杂散光,而且不需要对基于视觉的引导算法做单独的图像处理。图1 锁定检测原理图 (a) 在清澈的水中拍摄的带有有源光信标的原始图像,调制频率为63 Hz,安装在中间的模拟停靠站上,两个背景光源发射频率为55 Hz和0 Hz。图 (b) 将锁相检测后的二值化结果应用于63hz。图 (c) 将锁定检测后的二值化结果应用于55hz。鑫图相机推荐Dhyana 400BSI V3视觉导航技术配合计算机视觉算法能够在定位精度高、不易被外部探测、可执行多任务等方面优于其他导航技术,但在水下环境中会受到光线的衰减和散射。此外,水下机器人在深海中吹起的泥浆会造成浑浊,这使得基于视觉方法的适用性更具挑战性。Dhyana 400BSI相机供了实验所需的灵活性,具有高速和高信噪比,能够在噪声中提取微弱的信号,配合软件获取图像的拍摄时间序列以实现lock-in time检测。参考文献Amjad R T, Mane M, Amjad A A, et al. Tracking of light beacons in highly turbid water and application to underwater docking[C]//Ocean Sensing and Monitoring XIV. SPIE, 2022, 12118: 90-97.该文章旨在为大家提供先进成像技术相关应用参考,部分内容摘抄于相关论文研究成果,版权归原作者所有,引用请标注出处。
  • 海洋光学R1000-4探头改善了有色及浑浊环境中的pH响应
    海洋光学新型R1000-4反射探头将极大提高pH测定效率。R1000-4与海洋光学非侵入式反射pH感应补丁搭配使用,可以克服使用单一方式检测的弊端,在浑浊或有色环境中实现精确的pH反应。 海洋光学的光学pH传感系统由具有pH反应补丁的光纤探头、光源、光谱仪和软件组成。从酒精和溶剂等清澈浅色的样本,到泥浆和地表水等浑浊且光密质样本,指示材料补丁和探头可充分优化各种样本和环境中的pH值监控过程。传感补丁可以直接用于光纤探针,比色皿以及其他基片上。 在食品、饮料和环境检测情况下,通常有色或浑浊溶液对pH测定制造了挑战。R1000-4探头设计极大地增强了反射式pH补丁的背反射率,提高了信噪比,以提供更精确的结果。将R1000-4探针与海洋光学反射式补丁相结合,可实现精确的非侵入式pH测量,其用途包括啤酒和葡萄酒的发酵监控,以及湖水和河水的检测。 关于海洋光学(Ocean Optics)和豪迈(HALMA): 总部位于美国佛罗里达的海洋光学(www.OceanOpticsChina.cn)是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了近20万套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈(HALMA www.halma.cn)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约40家子公司。豪迈目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • 选择分析发布美国Choice自动色度、浑浊度二合一分析仪新品
    自动色度、浑浊度二合一分析仪仪器名称:自动色度、浑浊度二合一分析仪型号:Color Choice hz分析方法:浑浊度严格执行ASTM D8148分析方法色度分析执行ASTM D1500,Saybolt D156, D6045, D1209, D5386, ISO 2049, IP 196 仪器特点:1、相比传统手动方法,自动方法尽可能减少人员操作误差2、执行在石油工业中使用最广泛的色度和浑浊度等级3、相比传统ASTM D4176方法,数据无差别,双模式检测4、浑浊度检测等级(IHR)1-65、专有浑浊度检测指数(HCI)50-100定量分析6、浑浊度趋势时间/温度/ HCI/IHR7、现场校准,无需其他外部支持8、采用先进的分光光度计和光学系统 9、无需运动部件及过滤器降解10、经过 UL, TUV, CE 和 CSA多方认证11、真彩触摸屏操作,可外接键盘及鼠标12、存储和打印数百个结果13、易于使用、校准和维护14、输出方式包括LIMS,打印机,PC或其他存储设备创新点:填补此设备以往只有手动方法的局面,采用自动方法,并获得ASTM方法认可 美国Choice自动色度、浑浊度二合一分析仪
  • 洞穿浑浊的火眼金睛——奥豪斯走进污水处理厂的故事
    水是人类及一切生物赖以生存的一种重要资源,是不可替代的生命之源。随着我国经济的飞速发展和人口不断增加,各行各业对水资源的需求量及利用也越来越多,然而,一系列触目惊心的水质监测数据却无情地向我们反映出当下日益严重的水污染现象,对国民生命安全和经济发展造成了严重的威胁,让人深感切肤之痛,水体治理刻不容缓,因此以污水处理为代表的资源再生行业再次被推到了风口浪尖。那么在污水处理方面又有哪些值得关注的科学秘密呢?今天小编就带领大家走进污水处理厂来看看这些有趣的故事吧! 原来污水处理还有这么多学问 A. 大开眼界的复杂工艺 污水处理是指为使污水达到排水某一水体或再次使用的水质要求对其进行净化的过程,目前已被广泛应用于建筑、农业、交通、能源、环保、医疗、餐饮等各行各业,也越来越多地走进寻常百姓的日常生活。污水的来源如此广泛,但按照大类一般可分为生产污水和生活污水。生产污水包括工业污水、农业污水以及医疗污水等,而生活污水就是日常生活产生的污水,是指各种形式的无机物和有机物的复杂混合物,包括漂浮和悬浮的大小固体颗粒、胶状和凝胶状扩散物、纯溶液等。 图1:生产和生活污水 由于污水中的成分多种多样,因此现代污水处理按照其作用可分为物理法、生物法和化学法三种。1. 物理法主要利用物理作用分离污水中的非溶解性物质,在处理过程中不改变化学性质。常见的有重力分离、离心分离、反渗透、气浮等。该方法是一种比较简单、经济的处理方法,主要用于村镇水体容量大、自净能力强、污水处理程度要求不高的情况。 2. 生物法利用微生物的新陈代谢功能,将污水中呈溶解或胶体状态的有机物分解氧化为稳定的无机物质,从而使污水得到净化。常见的有活性污泥法和生物膜法等。该方法处理程度比物理法要高。 3. 化学法主要是利用化学反应作用来处理或回收污水的溶解物质或胶体物质,经常用于处理工业废水。常见的有混凝法、中和法、氧化还原法、离子交换法等。该方法处理效果好,但成本高,多用作生化处理后的出水,作进一步的处理,提高出水水质。 同时,基于不同的水处理排放标准,污水处理也会有不同级别的处理程度,其中通常会涉及到两个指标,即BOD (Biochemical Oxygen Demand) 和COD (Chemical Oxygen Demand)。 BOD称为生化需氧量或生化耗氧量,是水中有机物等需氧污染物质含量的一个综合指示,表示水中有机物由于微生物的生化作用进行氧化分解,使之无机化或气体化时所消耗水中溶解氧的总数量。 COD称为化学需氧量或化学耗氧量,是利用化学氧化剂(如高锰酸钾)将水中可氧化物质(如有机物、亚硝酸盐、亚铁盐等)氧化分解,然后根据残留的氧化剂的量计算出氧的消耗量。COD的单位为毫克/升,其值越小说明水质污染程度越轻。 BOD和COD都是衡量水质污染度的重要指标,按不同的污水处理程度可分为以下三个级别: 1. 一级处理主要去除污水中呈悬浮状态的固体污染物质,物理法大部分只能完成一级处理的要求。经过一级处理的污水,一般可去除左右,还达不到排放标准。因此一级处理只能属于二级处理的预处理。 2. 二级处理主要去除污水中呈胶体和溶解状态的有机污染物质(和物质),去除率可达以上,使有机污染物达到排放标准。 3. 三级处理进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法、混凝沉淀法、砂滤法、离子交换法和电渗分析法等。 通过粗格栅的原污水经过污水提升泵提升后,流经格栅或砂滤器进入沉砂池,这样经过砂水分离的污水进入初次沉淀池,到这里为一级处理(物理法),初沉池的出水进入生物处理设备,包括之前提到的活性污泥法和生物膜法,其中活性污泥法的反应器有曝气池、氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床,生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或进入三级处理。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。这就是污水处理的一般流程。 B. 不断进化的曝气池 从上面的处理流程可看出,生物处理法在整个处理过程中扮演着举足轻重的角色,而作为生物处理主要构筑物的曝气池的运行直接影响污水处理的干净程度与处理成本的高低。 曝气,顾名思义就是不断地把空气打入水中,是使空气与水强烈接触的一种手段,其目的是利用机械搅拌作用使空气中的氧溶解于水中,或者将水中不需要的气体和挥发性物质放逐到空气中。传统曝气池利用活性污泥法进行污水处理,这是一种需氧性生物处理方法,在处理过程中,池内提供一定的污水停留时间,满足好氧微生物所需要的氧量以及污水与活性污泥充分接触的混合条件,污水中的有机物经微生物作用被生物氧化,同时污水中的氨氮经微生物硝化与反硝化作用,达到脱氮的效果。 随着污水处理技术不断地发展,曝气工艺也在朝着高效率、小体积、节省能源的方向发展,一些特殊型式的曝气池被研发出来,如生物接触氧化、生物膜载体流化床曝气池等。目前连续循环曝气系统工艺(Continuous Cycle Aeration System,简称CCAS)已成为最先进的生物除磷、脱氮处理方法。CCAS是在SBR(Sequencing Batch Reactor Activated Sludge Process,序批式活性污泥法)的基础上改进而成的一种连续进水式SBR曝气系统,CCAS对污水预处理要求不高,只设间隙15mm的机械格栅和沉砂池。生物处理核心是CCAS反应池,除磷、脱氮、降解有机物及悬浮物等功能均在该池内完成,BOD、COD的去除率高达95%,氮、磷去除率达80%以上,出水即可达标排放。 看奥豪斯溶解氧仪表如何大显身手 在曝气池中,为了维持微生物的生命活动,必须保证水中有一定量的溶解氧,而且BOD和COD的核心都是计算水中的耗氧量。因此溶解氧的精确测定直接或间接地反映出污水的处理程度。 目前溶解氧仪表测定有极谱法、原电池法和光学法。其中极谱法、原电池法属于化学法,需要匀速搅拌样品,否则读数会不稳定、下降。光学法则避免该类情况出现。而污水处理中曝气池溶解氧监测的重要性不言而喻,但是由于曝气池中要连续机械搅拌供氧气,同时曝气池比较大,每处供氧量不同会导致使用化学法测量值有所差异。 图2:某污水处理厂曝气反应池 奥豪斯ST400D光学法溶解氧仪表,搭配STDO21光学溶氧电极,出厂即可使用,无需校准。同时针对样品池较深或者大的区域,还提供5m长线缆STDO21光学溶解氧电极。另外温度对溶氧含量影响很大,STDO21探头自带温度控制监测,使读数很精准。下图是奥豪斯ST400D光学法溶解氧仪表将昆明市某污水处理厂作为实验基地测得的几组数据,同时现场还有市场占有率很高的某品牌在线仪表测量数据做对比,其中ST400D读数为7.96 mg/L,某品牌读数为7.94mg/L,可知数值差异很小。 图3:ST400D光学法仪表与某品牌在线光学法仪表读数对比 通常曝气池中的氧值在1~3mg/L。而出现上述数值,经过与该厂技术人员沟通得知,实验前一周该地连续大雨使得污泥浓度下降,曝气池中的氧气含量有所回升,因此该值为正常情况。 怎么样,在污水处理厂参观了一圈你是不是大有收获呢?是不是也想拿起外观精美而又兼具高性价比的ST400D光学溶解氧仪动手操作一番呢?其实这只是奥豪斯庞大的水质分析仪器家族的冰山一角,欲了解更全面的家族产品信息,请及时联系我们,我们专业的工程师们届时将会在第一时间联系您!
  • 煤制油与食用油混装,如何守护餐桌安全
    据7月2日《新京报》记者报道:5月21日午间,一辆罐车从河北一家粮油公司满载三十多吨大豆油驶出厂区。也正是这辆满载食用大豆油的罐车,三天前刚将一车煤制油从宁夏运到河北秦皇岛,卸完后并未清洗储存罐,就直接来运输食用大豆油了。从《新京报》的报道来看,罐车里面装的煤制油产品主要是煤制白油。实际是以煤炭为原料,通过化学加工,获得的石油化工产品。其主要化学成分是C10-C50之间的烃类混合物,是矿物油的一种。食用油作为烹饪不可或缺的基石,关联着每一张餐桌。随着混装运输等不合规情况的出现,矿物油正在逐渐威胁我们的餐桌安全,如何守护餐桌安全,仪真分析为您排忧解惑。毒性和法规根据毒理程度,矿物油目前被分成两类,一类是由直链、支链或环烷烃组成的饱和烃类矿物油(MOSH),另一类是含有苯环的芳烃类矿物油(MOAH)。研究表明,碳数在C16-C35之间的饱和烃类矿物油(MOSH)在体内不易被代谢,在组织中出现蓄积现象,长期食用会在淋巴结、肾脏和肝脏等组织内蓄积。芳香烃类矿物油(MOAH),常含有一个至多个苯环,含有多于三个苯环的MOAH被认为可能具有致突变和致癌性。德国联邦风险评估研究所(BfR)明确要求用于食品包装的接触材料MOSH迁移量小于2mg/kg, MOAH小于0.5mg/kg。2017年,欧盟发布了关于“监测食品以及食品接触材料和物品中矿物油烃类”的建议性指导文件,指出矿物油可以通过环境污染、收获和食品生产等残留在食品中。2022年,欧盟在食品中,推出了矿物油推荐性限量要求。分析解决方案(Chronect LC-GC-FID)矿物油检测极具挑战性,首先要将样品中矿物油与复杂的介质分离,再通过气相色谱检测。由于矿物油无处不在,获得干净的仪器很重要。为了达到足够的灵敏度,需要大体积进样技术。由于矿物油中MOSH和MOAH的毒性不同,欧盟要求必须分开定量。矿物油在2011年被报道发现以来,欧洲的分析化学家经过多年努力,终于实现了矿物油可靠分析方法(在线LC-GC-FID)。方法初始,分析仪器由科学家自行搭建而成。仪器可靠性和耐用性方面一般。欧洲著名的仪器方法集成公司德国Axel Semrau公司,在5个博士组成的硬件和软件攻关团队集体努力下,实现了可靠性和耐用性非常高的分析系统。系统组成和特点如下:CHRONECT® LC-GC Workstation MOSH/MOAH食品中矿物油分析系统● 系统清洁和改装技术,去除背景;● 使用液相色谱和硅胶柱将矿物油从介质(油脂等)中分离;● 部分溶剂蒸发技术保证450ul的样品在气相色谱中的分析,满足超低量分析;● 双通道双FID技术对MOSH和MOAH同时定量检测(它们分别是成千上万的混合物),节省分析时间;● 全自动氧化铝和全自动环氧化技术,进一步提高样品分析灵敏度与准确度;● 具有馏分收集功能,可以由GC*GC-QTOF对MOAH定性分析,确定来源;● 可使用LC-GC*GC-TOF 联用直接对矿物油各成分进行定性分析;● 软件Chronect可以兼容市场上所有主要品牌的LC和GC,无缝对接。 仪真分析是德国Axel Semrau公司中国区独家合作伙伴,2018年开始在国内推广矿物油分析系统,与北京理化分析测试中心建有矿物油研究合作实验室,已经成功为雀巢、玛氏、益海嘉里等知名企业和SGS、欧陆检测、梅里埃等第三方检测机构提供矿物油解决方案。可以提供“交钥匙”解决方案。此外,仪真分析还可以提供MCPD/GE、甾醇、塑化剂、脂肪酸及PAH等全自动解决方案。
  • 科技前沿 | 高光谱扫描成像技术在水环境监测领域的创新实践
    高光谱遥感技术具有“图谱合一”的特点,在获取地物图像的同时可以得到地物的连续光谱信息,进而迅速锁定超标污染来源,全面掌握区域水污染的整体状态,帮助解决水污染防治和水质达标中遇到困难的问题诊断,提供依据。传统的水质参数测量,采用点采样分析的方法,只能了解监测点附近水质状况。而高光谱成像仪则可采集一片水域的反射率光谱信号,以及代表性的测点采样化验数据,通过水体光谱特征与水质参数浓度之间的关系,建立水质参数反演算法,实现水质参数的定量化空间表达,其具有高效、监测范围广和便于长期动态监测等优点。打破传统监测局限 创新水环境监测模式传统水质监测方案:一是采集水样,经过实验室分析,二是固定式监测站,只能了解监测点的水质状况,难以捕捉时空变化规律。基于成像高光谱技术的遥感监测水质弥补传统方式的监测局限,优势互补,相互联合,共同提供水质监测解决方案。反演水质参数达15种以上,包括化学需氧量、总氮、总磷、氨氮、叶绿素a。多种监测手段融合分析,提供监测水质参数空间分布、趋势分析诊断报告。应用领域高光谱扫描成像遥测技术可应用于河流、湖泊、水库、近岸海域等污染空间分布、现状评估、溯源分析场景。无人机式成像高光谱遥测通过无人机搭载成像高光谱设备,对目标区域进行遥感测量,得到目标区域的图像和光谱信息,再利用反演模型计算光谱,可反演15种以上水质参数(包括化学需氧量、氨氮、总磷、总氮、悬浮物、浑浊度、透明度、溶解氧、锌、铜、铅、叶绿素、蓝藻等),定制参数,还可反演植被覆盖、土壤类型等。对监测数据进行整理分析,通过对飞行区域的参数空间分布、演化趋势进行分析并输出报告,进而进行污染追溯分析,实现对水污染防治的精细化管理。塔式成像高光谱遥测塔式相对于无人机式成像高光谱仪,可以实现更长时间的运行,在白天时均可探测。同时塔式高光谱仪成像范围较大,适合在湖库出入水口、河道支流汇入口、入海口等重点水域处临水部署。扫描成像技术:岸边高位采用倾斜角度探测和扫描,具有大范围监测和空间成像能力。可根据现场需求灵活配置“点-线-面”工作模式,监测范围可覆盖数百平米至数万平米的水域范围,单台设备即可获取不同尺度范围内的水质空间分布情况。自动标定:具备在线定标功能,大幅提高原始数据的准确性和可靠性,为水质多参数反演和深度应用提供必要的前提保障。应用实例2020/11 河北某区域某新区该水域面积较为宽阔,高光谱水质反演出总磷和化学需氧量,发现总磷达到Ⅲ类水质标准,化学需氧量有超过所属流域该新区水质标准的风险。实现了区域性水质多参数信息的及时高效获取,为水环境综合监管提供了新的技术手段。
  • NIR-II半导体聚合物点:链堆积调节和深部组织中的高对比度血管成像
    研究内容:近红外二区(NIR-II)窗口的荧光成像在研究血管结构和血管生成方面引起了人们的极大兴趣,为早期疾病的精确诊断提供了有价值的信息。然而,由于荧光团的强光子散射和低荧光亮度,对深层组织中的小血管成像仍然具有挑战性。本文描述了作者在荧光探针设计和图像算法开发方面的共同努力。首先,使用聚合物共混策略来调节大型刚性NIR-II半导体聚合物的链堆积行为,以产生紧凑明亮的聚合物点(Pdots),这是小血管体内荧光成像的先决条件。进一步开发了一种稳健的Hessian矩阵方法来增强血管结构的图像对比度,特别是小血管和弱荧光血管。与原始图像相比,在全身小鼠成像中获得的增强的血管图像在信噪比(SBR)方面表现出超过一个数量级的改善。利用明亮的Pdots和Hessian矩阵方法,作者最终进行了颅骨NIR-II荧光成像,并在携带脑肿瘤的小鼠和大鼠模型中获得了高对比度的脑血管系统。Pdots探针开发和成像算法增强的研究为深层组织的NIR-II荧光血管成像提供了一种很有前景的方法。图1.(a)NIR-II半导体聚合物的分子结构。(b)由纯NIR-II半导体聚合物制备的聚集体或线状聚合物纳米结构的TEM图像。(c)通过将短刚性半导体聚合物与NIR-II半导体聚合物共混得到小球形Pdots的TEM图像。首先,作者研究了由两组氟取代的半导体聚合物制备的NIR-II Pdots的大小和形态,单纯的NIR-II聚合物纳米颗粒是通过再沉淀法制备的,透射电子显微镜(TEM)观察纳米粒子呈现大尺寸和线状形态。通过混合NIR-II聚合物和CN-PPV获得的Pdots的大小和形态发生了显著变化。从TEM图像可以看出,所有六种类型的混合Pdots均表现出小尺寸和球形形态,与纯CN-PPVPdots相似。CN- PPV聚合物在Pdots形成过程中具有协同效应,迫使大的刚性聚合物主链折叠并扭曲NIR-II聚合物的链堆积,从而形成小尺寸的球形形态。这表明混合具有小共轭长度的传统半导体聚合物是制备小尺寸球形NIR-II Pdots的可靠策略。图2. m-PBTQ4F Pdots与不同比例的(a)PSMA聚合物、(b) PS-PEG-COOH聚合物和(c) CN-PPV聚合物混合的TEM图像。实验证实,只有共轭聚合物,才能有效调节NIR-II半导体聚合物的链堆积行为,产生小球形的Pdots。作者研究了不同质量分数的NIR-II聚合物m-PBTQ4F分别与PSMA、PS-PEG-COOH和CN-PPV共混制得的纳米粒子的形态变化。对于PSMA和PS-PEG-COOH,所得到的大多数纳米颗粒都呈短丝状形态。虽然通过共混(1:1比例)可以减小粒子的尺寸,但粒子的尺寸分布很大,在透射电子显微镜中仍观察到部分椭圆形的纳米粒子。相反,当m-PBTQ4F与CN-PPV混合时,随着CN-PPV分数的增加,观察到了向单分散球形Pdots的明显形态演变。这些结果表明,共混刚性共轭聚合物可以有效调节NIR-II半导体聚合物的链堆积,得到致密的球形Pdots,而柔性两亲聚合物没有类似的效果。图3. (a)聚乙二醇化CN-PPV Pdots、m-PBTQ4F Pdots和 (b) 聚乙二醇化m-PBTQ4F/CN-PPV混合Pdots的吸收和发射光谱。(c)聚乙二醇化m-PBTQ4F/CN-PPV Pdots的流体动力学直径和TEM图像。(d)在808 nm连续辐射下ICG和Pdots在相同质量浓度的水中的光稳定性。为了使Pdots具有更长的血液循环时间,将m-PBTQ4F和CN-PPV聚合物组成的小尺寸Pdots进一步用两亲性PS-PEG-COOH官能化。观察三种类型Pdots的吸收和发射光谱,发现混合Pdots的吸收光谱与纯m-PBTQ4F和CN-PPV Pdots的吸收光谱一致。此外,混合的Pdots在可见光和NIR-II区域显示出双发射峰。动态光散射(DLS)测量和TEM结果显示,混合的Pdots呈球形,流体动力学直径约为20 nm。以临床批准的染料ICG为对照,对Pdots的光稳定性进行了表征,在808 nm激光持续照射2 h下,Pdots的荧光保持接近原始强度的88%,而ICG在10 min内完全光漂白,表明Pdots具有优异的光稳定性。与不同浓度的Pdots孵育24小时后的细胞存活率测定显示,Pdots的细胞毒性最小,静态溶血试验结果显示,Pdots的溶血活性可忽略不计。此外,在注射Pdots的小鼠的主要器官的苏木精和伊红(H&E)染色图像中未观察到明显异常。总之,这些结果表明聚乙二醇化m-PBTQ4F/CN-PPV Pdots是具有高亮度、光稳定性和生物相容性的小尺寸探针,有望用于体内成像应用。图4. (a)用于血管图像分割的Hessian矩阵方法示意图。(b)俯卧位采集的小鼠NIR-II荧光图像与(c)横截面强度分布。(d)仰卧位采集的小鼠NIR-II荧光图像与(e)横截面强度分布。首先进行预处理以抑制图像中的背景信号并增强血管的几何特征。进一步估计一系列的尺度因子,构造了平滑的高斯核,然后与图像进行卷积,得到Hessian矩阵的元素。然后,考虑管状结构的具体情况,推导出Hessian矩阵的特征值,最终得到血管增强图像。作者通过使用Pdots探针和Hessian矩阵方法展示了活小鼠的高对比度全身血管成像。。在静脉注射Pdots探针的小鼠的NIR-II荧光图像中,虽然注射的Pdots属于最亮的荧光团,但原始图像中几乎无法将荧光信号较弱的小血管与周围背景区分开,经Hessian矩阵法处理后,原始图像中的许多小直径血管和模糊血管均得到明显增强。从仰卧位的同一只小鼠的原始图像和增强图像中,血管结构明显增强,而来自肝脏的信号受到抑制,因为该方法只能提取具有管状结构的目标。图像处理后两条小血管的SBR较原图像增强了约13倍,说明Hessian矩阵算法对于提高全身荧光血管成像中弱小荧光血管的SBR有很强的效果。图5. 颅骨和头皮完整的小鼠的脑脉管系统的体内NIR-II荧光图像。(a)野生型C57BL/6小鼠和ND2:SmoA1小鼠的脑脉管系统NIR-II荧光图像以及(b)放大图像。(c)使用血管分割和量化算法,对野生型和荷瘤小鼠的脑血管系统中的血管长度和血管分支进行定量比较。接下来,作者使用NIR-II Pdots和Hessian矩阵法探索了小鼠脑深部组织血管成像。对正常小鼠和携带脑肿瘤的转基因ND2:SmoA1小鼠进行了头皮和颅骨脑部成像。与野生型动物相比,由于肿瘤的发展,ND2:SmoA1小鼠显示出更扭曲和紊乱的脑脉管系统,从原始荧光图像中很难识别横窦和小直径血管的轮廓,经Hessian矩阵法图像处理后,原始图像中多条小血管明显增强,横窦结构清晰。为了评估肿瘤生长中的血管形态,还定量分析了血管长度和血管分支,这些在原始图像中是无法获得的,因为它们的图像对比度低。从增强图像中提取的血管长度和血管分支统计分析表明,转基因脑肿瘤小鼠的这两个参数均显著高于野生型小鼠。血管形态的定量评估为研究肿瘤血管生成和诊断肿瘤恶性提供了一种有效方法。图6. 切除肝脏中血管的离体成像。(a)注射NIR-II Pdots期间肝脏中血管树的原始和增强图像以及(b)放大图像。(c)切除肝脏的照片。(d)从Pdots注射整个过程的NIR-II图像中获得的血管长度和(e)血管分支。(f)沿(b)中白色虚线标记的位置强度分布。接下来,进一步证明了使用NIR-II Pdots和Hessian矩阵方法在体外可视化大鼠肝脏血管结构的可行性。由于肝组织的强散射和吸收以及肝血管的复杂结构,肝血管成像是一项复杂的任务。原始图像在高度混浊的肝组织中显示出非常弱的荧光信号,而Hessian-matrix增强图像显示出高得多的SBR,肝血管成像中SBR的20倍以上增强。这些结果验证了Hessian矩阵用于血管成像的有效性,并为研究肝脏疾病中血管结构的发展提供了工具。图7. (a)颅骨完整的SD大鼠的脑脉管系统的体内NIR-II荧光图像和Hessian基质增强图像与(b)横截面强度分布。(c)大鼠切除的脑组织的亮场和荧光图像。(d) H&E染色图像。(e)健康大鼠和荷瘤大鼠脑切片荧光图像。最后,作者探索了大鼠模型中原位成胶质细胞瘤的颅骨内脑血管成像。由于颅骨更厚且光子散射更强,因此将大鼠脑可视化比将小鼠脑可视化更具挑战性。图像经Hessian矩阵法处理后,原始图像中的小直径血管明显增强,脑血管结构更加清晰可见且增强图像中的SBR有明显改善,与小鼠脑和肝血管成像结果一致。此外,进行离体NIR-II荧光成像,在来自不同组的切除的脑器官的亮场和荧光图像中,模型组肿瘤部位可见亮荧光,而对照组和假组未检测到明显信号。该结果表明,由于渗透性和滞留性增强(EPR)效应,Pdots在脑肿瘤中有效蓄积。对照组和荷瘤组脑切片的H&E染色图像,证实了脑中肿瘤的发展。除了链式堆积调制时,CN-PPV聚合物的混合也赋予Pdots橙色发射,从而能够通过常规共焦成像对组织切片进行显微镜检查,脑切片的共焦荧光图像表明Pdots在脑肿瘤中明显积聚。总之,这些结果证明了使用NIR-II荧光Pdots和Hessian矩阵法进行的大鼠脑高对比度颅骨血管成像。总结:作者设计了荧光Pdots并且开发了一种图像算法,用于小动物的高对比度血管成像。作者提出了一种聚合物共混策略,该策略可以有效地调节大的刚性NIR-II半导体聚合物的链堆积行为,产生用于小血管体内荧光成像的致密明亮的Pdots。此外,作者开发了一种有效的Hessian矩阵方法来增强血管结构的图像对比度,特别是小的和弱荧光的血管。在全身小鼠成像中,与原始图像相比,增强的血管图像在SBR中表现出超过一个数量级的改善。进一步证明了使用NIR-II Pdots和Hessian矩阵法离体可视化大鼠肝脏血管结构的可行性。原始图像显示高度混浊的肝组织的血管网络非常模糊,而Hessian矩阵图像在肝血管成像中显示SBR增强20倍以上。利用明亮的Pdots和Hessian矩阵法,最终进行了颅骨内荧光成像,并在荷脑肿瘤的小鼠和大鼠模型中获得了高对比度的脑脉管系统。本研究将成像算法与NIR-II荧光Pdots相结合,显示出其在体内促进肿瘤血管生成及其他微循环相关疾病定量成像与研究的潜力。参考文献Chen, D. Qi, W. Liu, Y. Yang, Y. Shi, T. Wang, Y. Fang, X. Wang, Y. Xi, L. Wu, C., Near-Infrared II Semiconducting Polymer Dots: Chain Packing Modulation and High-Contrast Vascular Imaging in Deep Tissues. ACS Nano 2023, 17 (17), 17082-17094.⭐ ️ ⭐ ️ ⭐ ️ 近红外二区小动物活体荧光成像系统 - MARS NIR-II in vivo imaging system高灵敏度 - 采用Princeton Instruments深制冷相机,活体穿透深度高于15mm高分辨率 - 定制高分辨大光圈红外镜头,空间分辨率优于3um荧光寿命 - 分辨率优于 5us高速采集 - 速度优于1000fps (帧每秒)多模态系统 - 可扩展X射线辐照、荧光寿命、一区荧光成像、原位成像光谱,CT等显微镜 - 近红外二区高分辨显微系统,兼容成像型光谱仪 有不同型号的样机可以测试,请联系:艾中凯(博士)132 6299 1861⭐ ️ ⭐ ️ ⭐ ️ 恒光智影 上海恒光智影医疗科技有限公司,被评为“国家高新技术企业”,上海市“科技创新行动计划”科学仪器领域立项单位。 恒光智影,致力于为生物医学、临床前和临床应用等相关领域的研究提供先进的、一体化的成像解决方案。 与基于可见光/近红外一区的传统荧光成像技术相比,我们的技术侧重于近红外二区范围并整合CT, X-ray,超声,光声成像技术。 可为肿瘤药理、神经药理、心血管药理、大分子药代动力学等一系列学科的科研人员提供清晰的成像效果,为用户提供前沿的生物医药与科学仪器服务。⭐ ️ ⭐ ️ ⭐ ️ 上海恒光智影医疗科技有限公司地址:上海市浦东新区张江高科碧波路456号 B403-3室网址:www.atmsii.com邮箱:ai@atmsii.com电话:132 6299 1861 (同微信)
  • 技术原理:浊度仪测浊度采用的原理
    浊度是表现水中悬浮物对光线透过时所发生的阻碍程度。水中含有泥土、粉尘、微细有机物、浮游动物和其他微生物等悬浮物和胶体物都可使水中呈现浊度。浊度仪采用90°散射光原理。由光源发出的平行光束通过溶液时,一部分被吸收和散射,另一部分透过溶液。与入射光成90°方向的散射光强度复合雷莱公式:IS = ×I0其中:I0---------------入射光强度;IS----------散射光强度;N-------单位溶液微粒数;V-----------微粒体积;-------入射光波长 ;K-----------系数;在入射光很定条件下,在一定浊度范围内,散射光强度与溶液的浑浊度成正比。上式可 表示为 =K’N (K’为常数) 根据这一公式,可以通过测量水样中微粒的散射光强度来测量水样的浊度。浊度仪分为便携式,台式和在线浊度仪。台式一般用于实验室检测浊度;便携式和在线浊度仪一般用于现场检测。便携式用于不连续的检测,在线浊度仪用于连续,现场浊度监测。它可以实时,连续监测浊度,一般用于自来水厂,污水厂,渠道,水利设施,防洪监测,水池等处。
  • 技术参数|麦氏比浊仪应用于微生物检测领域
    【麦氏比浊仪←点击此处可直接转到产品界面,咨询更方便】麦氏比浊法是细菌浓度测量的经典方法,其核心原理是细菌溶于水后会形成与其浓度相应的浑浊度。菌悬液中微生物的含量越大,透过光越少,被散射的光就越多,即菌悬液的浓度在一定范围内与透光度成反比,与光密度成正比。该方法主要应用于微生物检测领域的细菌浓度检测、药敏实验前配置菌液时的大致浓度判断等。麦氏比浊仪仪器特点:1、采用全新安卓7.1.1智能操作系统,人性化中文操作界面,运转速度更快速,稳定性更强。 2、8英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。 3、采用精密比色池设计,使用光源一致,可以解决由于光源误差带来的检测结果误差问题,检测结果更加精准。 4、光源采用进口超高亮发光二极管,光源亮度可以自动调节与校准。 5、具有无线通讯功能,支持WIFI、RJ45、手机热点联网传输,检测数据亦可通过U盘导出; 麦氏比浊仪技术参数:最小示值(MCF):0.01 MCF测量范围(MCF):0~5 MCF(麦氏浊度单位)示值误差(准确度):±5%重复性:≤1.0%比色皿参数:10mm(1cm)比色皿测量波长:620nm光化学稳定性:20min内数值漂移小于0.005A;存储数据:800万组;操作系统:Android 7.1.1 智能操作系统;显示屏:8英寸高清晰度彩色液晶触摸屏;网络接口:WiFi、热点、RJ45; 操作界面:中文/英文(出厂可选);比色方式:比色皿;打印机:热敏行式打印机;通讯接口:USB2.0、HDMI;供电方式:交流220V,可选配大容量充电锂电池;数据导出格式:Excel表格;云平台:仪器带有监管平台,连接网络,检测结果直接传至环境安全监管平台;仪器尺寸:367 x 243 x 125 mm;仪器重量:5.3kg。
  • AP30TUR “浊“而不群
    浊度,即浑浊度,是除pH、电导率、溶解氧、温度之外,水质检测常规五参数中的重要参数。无论是在地表水、饮用水,还是在工业水、污水,浊度都是日常检测必不可少的项目之一。根据《生活饮用水标准检验方法水样的采集与保存》(GB/T 5750.2-2006),浊度需要在现场检测。那么,浊度检测有哪些注意事项呢?浊度计需要定期用标准液校准,且仪器与装有浊度标准液的比色瓶需要匹配,不可混用取样时,要选择均匀的、有代表性的水样,不可以偏概全水样检测前,请用擦镜布将比色瓶外壁擦拭干净,避免留有指纹或水渍水样检测前,请再次摇晃比色瓶使样品均匀分布,同时确保样品及瓶壁没有气泡,然后应立即开始测量,以防止样品沉降浊度检测时尽可能避免稀释样品奥豪斯AP30TUR是一款适合多种场合使用的便携式浊度计,拥有低量程和高量程两种选择,满足客户不同的应用场景。独特的双光路和双检测器设计,可以同时满足ISO 7027和EPA 180.1法规要求配合近红外光源,消除色度干扰和杂散光,提高测量精度通过文字提示指导操作,无需培训,开机即用关于我们:奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 16岁初中生花了两年时间 自制水浊度检测仪
    树枝的不挽留,让苹果砸中了牛顿,于是重力被发现了。水质的不给力,让王子文想到了检测,于是一个小装置诞生了&mdash &mdash   近日,杭州下城区2014科技活动周在潮鸣街道正式启动,&ldquo 五水共治,节水护水&rdquo 是关注的焦点。现场,一个小男孩和他身边的白色的装置吸引了众多市民驻足,小装置是男孩发明的,用来检测水体的水浊度。   成本300元的测试机器得到的数据和万元以上专业机器差不多。据说还获得了第28届浙江省青少年科技创新大赛一等奖。   小男孩名叫王子文,16岁,杭州风帆中学初三学生。他说,这些年老是在各种媒体上见到河流、湖泊遭受污染的新闻,能不能利用中学生学的知识,对城区水域的水况和水质情况进行检测呢?   在查阅了资料和文献后,王子文觉得在水质检测过程中,水浊度的数据很重要。   那么怎么样才能测定水体的水浊度呢?&ldquo 平时我们观察水,水质好就清澈见底,水质差就浑浊、发黄发黑或有其它颜色,我就联想到了采用光透射法来测定水浊度。&rdquo 王子文在老师指导下,查阅了相关资料,参观了自来水厂,杭州市环境监测中心站的实验室。用了近两年的时间,设计和制作了这一装置。   看看王子文制作的装置:主体是两根1米多高的白色PVC管,两根管子各有一个进水口,顶端还有一个显示装置。他演示了一下如何使用这个水浊度测量仪:将两种取自不同河流的水分别倒入两个入水口,没一会,两根水管上方出现了不同的数据,一大一小。   &ldquo 其实原理很简单,利用投射法原理。透射法是将光源发出的平行光束射入浊液水样,水样中的浊度物质及悬浮颗粒对光的吸收,会使透射光的强度发生衰减,入射光被减弱的程度与浊度存在一定的函数关系。这个函数关系可以通过硅光电池直接把光能转换成电能,然后让电能以亮光或数码管的数显形式表达。所以水越清则显示数据越大,水越浑浊则显示的数据越小。&rdquo   子文说,为了检测自己设计装置的准确度,他还分别在西湖、运河、钱塘江三个水域分别选取了三个采水取样点,取了一共9组水样进行实验。取得检测结果后,他还带着检测结果和水样去了杭州市环境监测中心站的实验室。工作人员采用符合国家标准的进口浊度计对上述九个点的标样水进行检测。检测结果让小子文很开心,因为他自制的水浊度检测仪与环境监测中心所用的进口浊度计检测结果几乎一致。   子文告诉记者,专业的水浊度检测仪虽然很小巧,可是价格很昂贵,一般都在上万元以上。&ldquo 我自己设计的这个装置虽然挺大,不过成本只要300元。&rdquo
  • 聚焦环境与食品安全 | 第十七届全国青年分析测试学术报告集锦
    仪器信息网讯 2022年07月17日-18日,由中国分析测试协会青年学术委员会主办的“第十七届全国青年分析测试学术报告会”在山东青岛成功召开。会议开设生命分析、环境与食品分析、化学计量与标准物质三个专题的分会报告,以下是环境与食品分析专题报告集锦。中国分析测试协会青年学术委员会副主任、吉林大学宋大千教授主持17日上半段报告中科院烟台海岸带研究所 陈令新教授报告题目:现代海洋监测技术 微小型化与自动化监测该课题受线圈本的启发,发展了一种在微流控纸芯片分析装置上制造纸基阀的新策略,并基于比色检测器的纸芯片分析技术,研制了基于反射法的手持式纸芯片快速分析仪,实现海水营养盐在线监测系统。于2021年7月,在青岛海洋实验站进行国家重点研发计划“海洋安全保障”专项海上完成对比验收。天津大学 王勇教授报告题目:超分子分离 识别与组装王勇教授围绕超薄坚固超分子功能化2D膜分离技术,介绍了插层组装构建仿生异质结构氧化石墨烯膜,解析了基于弱相互作用的分离、识别机制及构效关系。北京师范大学 那娜教授报告题目:基于电喷雾的合成及反应研究本课题介绍利用电喷雾离子化技术快速制备合成各种纳米材料,包括聚合物包裹水溶性的钙钛矿量子点以及Zn掺杂钙钛矿的异质结材料等。与传统的合成技术相比,基于电喷雾的合成技术可将合成反应时间降至毫秒级别。东北师范大学 周明教授报告题目:全集成便携与可穿戴式体液电子器件周明教授团队通过将全集成、便携式与可穿戴式生物电子器件与体液相结合,构建了便携式与可穿戴式全集成体液电子器件,利用汗液和尿液可以实现对血糖及尿酸的体外检测,并搭建了用于可穿戴式电子器件的外源性物质燃料电池,可用于可穿戴式生物电子器件的电量供给。岛津企业管理(中国)有限公司 张玥报告题目:助力食品环境科研——岛津特色色质谱技术方案介绍报告中主要介绍了岛津在食品环境科研领域的整体解决方案和特色技术。岛津特色色质谱——超强扩展性辅助视频环境监测。中科院烟台海岸带研究所 陈令新教授主持17日下半段报告复旦大学 孔彪教授报告题目:超组装智能感知界面构筑及其生物传感应用复旦大学孔彪课题组开发动力学调控界面选择性超组装策略,利用前驱体中同时发生的(烯基)自由基聚合反应和(三甲氧基硅烷)水解聚合反应,成功构筑具有选择性中空结构的纳米机器人,且其拓扑结构可以精准调控。此外,该新型中空纳米机器人可以实现货物分子的可控装载及卸载,在生物医疗等领域具有潜在应用。中国分析测试协会青年学术委员会副主任、青岛科技大学 王晓春教授报告题目:新型分子荧光探针开发与应用小分子荧光探针具有灵敏度高、靶向识别,非破坏性、实时监测等优点,被广泛应用于生物监测和环境分析领域。王晓春教授围绕着荧光探针检测技术作为一种新型高效简便的检测手段在近年来的研究和应用情况,从研究背景、作用机理和应用范围等方向都进行了详细的分析介绍。吉林大学 高德江教授报告题目:光谱快速分析技术及其应用的研究报告中介绍了一种基于微波快速提取、高灵敏试剂识别、长光程显色技术的溴酸盐快速检测技术,并制备出相应的溴酸盐快速检测仪,该方法用于58中瓶装矿泉水、纯净水和矿物质中溴酸盐的测定,并与国标离子色谱检测结果和ICP/MS检测结果相比较,结果无显著性差异。北京海光仪器有限公司 焦振报告题目:有色蒸馏酒中氰化物的测定—连续流动分析法介绍了利用连续流动分析技术法,在试剂和样品混合之前,由间隔引入的空期将液流分割成一个个区段,并通过三部分测试数据得出经过该方法处理后,酒的回收率大大提高,可为有色酒或有混浊物的酒水样品的检测提供可参考的解决方案。东北大学 舒杨教授报告题目:荧光成像的高保真、定量分析探索和罗丹明等亲脂性阳离子信噪比低,光稳定性差,商业探针JC-1细胞摄取差异导致误差大、光稳定性差差相比,利用线粒体激活的探针信噪比高,可有效降低探针在非线粒体部位的发光造成的假阳性信号。南京师范大学 王琛教授报告题目:纳流控端面分析新方法报告就如何有效调控并精准分析纳流控的物质传输特性,利用探针修饰、分子识别发生在端面,研究了端面分析新方法,并对其做了精彩及详尽的讲解。新方法端面组装探针分子,方便容易,且系统稳定,引入功能材料界面,可有效调控,灵敏度也有所提高。青岛农业大学 盖盼盼教授报告题目:环境污染因子,光电传感新方法研究报告详细介绍了围绕信号探针创制和表界面电子传递调控,建立的若干环境污染因子光电传感新方法和研究过程。四川大学 吴鹏教授报告题目:选择性重原子效应促进的室温磷光分析报告介绍了室温磷光分析和重原子效应,就选择性重原子效应促进的室温磷光分析的发展与应用做了详细讲解。青岛大学 毕赛教授报告题目:基于DNA纳米技术的生物传感与纳米医学新方法报告主要介绍了利用光电磁纳米材料的优异性能,发展光电化学传感新体系和新界面,提高了灵敏度,实现了单分子生物分子的检测以及分子逻辑操作。拓展了DNA自组装的设计思路和应用范围,并应用于等温信号放大传感、原位成像、靶向协同治疗等,为诊疗一体化平台的开发提供了应用模型。青岛众瑞智能仪器股份有限公司 臧远泽报告题目:油气行业环境应急事件管控技术本报告介绍了LDAR泄漏检测与修复是对工业生产全过程物料泄漏进行控制的系统工程,通过常规或非常规检测手段,在一定期限内采取有效措施修复泄露点。并就LDAR的相关政策以及标准做了详细解读。黑龙江大学 徐英明教授报告题目:微纳结构材料的可控组装及其在环境气体检测中的应用徐英明教授在报告中介绍了微纳结构材料的可控组装及其在环境气体检测中的应用,并以CuO/NiO纳米符合材料和PANI/氧化物阵列材料等举例说明了具体应用情况。
  • 浊度测量 | 更清晰的监控输液的生产质量
    浊度是指溶液对光线通过时所产生的阻碍程度,它包括悬浮物对光的散射和溶质分子对光的吸收,它不像温度或液体密度等有明确定义的物理属性,而是参照明确定义的标准来表示。而在DIN EN 27027标准中的浊度定义为:“浊度是由于存在不溶物质而引起的液体透明度的下降。” 图示形象化了“ HAZE”的含义制药行业为什么要测量浊度? 输液或类似的药液在使用前应定期检查,如果它们产生浑浊或颗粒,它们可能会产生危及生命的并发症,应停止使用。浊度计在制药行业主要用于最终产品的质量控制和生产的过滤的过程检查。浊度测量是一种比较适宜的药品质控监测的方法,制药行业在输注溶液中进行浊度测量尤为常见。在欧洲药典的“液体的澄清度和乳浊度”一章中介绍了对药液中浊度的测量。浊度测量仪器有严格的要求,而安东帕HazeQC ME满足这些严格的要求。安东帕药品质控解决方案安东帕HazeQC ME作为一个浊度测量模块,采用了独有的三角度测量比值法,用于减少干扰和投射对浊度测量结果的影响。HazeQC ME的测量波长为650nm,内置帕尔贴精确控温,以保证测量环境的稳定。该浊度测量模块作为安东帕液体物性测量的产品组合之一,为分析液体样品增加了重要的浊度参数测量选项,这种组合节省时间和样品,这对于昂贵的样品而言尤其重要!产品特性一览• HazeQC ME允许在设定的温度下进行测量,适用温度范围为-5°C至+40°C• 大幅降低并节省维护成本与时间• 高度可重复的测量结果 • 内置光源不受外界影响• HazeQC ME仅需要少量样品(约3mL) • 可轻松应对含有颜色的样品作为DMA™ 密度计M系列主仪器的附加组件,HazeQC ME是制药行业用于抽检和最终产品质量控制的解决方案。在欧洲药典的“液体的澄清度和乳浊度”一章中详细介绍了对药液中浊度的测量,同时对浊度测量仪器也有着严格的要求,安东帕HazeQC ME完全符合这些严格的要求。
  • 哈希公司为杭州自来水公司提供2100系列浊度仪维护保养服务
    美国哈希公司的2100系列浊度分析仪(包括2100P,2100N,2100AN),广泛应用于各自来水公司,浑浊度是衡量水的清澈程度的重要综合性指标,随着水质的提高,对浑浊度测定有更高的要求,尤其现在很多地区的自来水厂的出厂水都要求超低浊度的情况下对浊度仪要求也越来越高。浊度仪在使用一般时间后,空仓值会升高,影响低浊度的测量的准确性,同样型号的不同仪器测量同一个低浊度样品数据会不一样。为了保证仪器的灵敏度、准确度,稳定性和可比性,需要对仪器每年做至少做一次维护、检验与比对。 为此,哈希公司上海技术服务中心联合国家城市供水水质监测网杭州监测站,开展一次集中的2100系列浊度仪的维护保养、检验比对工作,目的为各水司提供更便捷、更优惠的服务。 4月末哈希公司华东区售后技术服务部门对杭州水司自来水的13台2100系列浊度仪做了彻底的维护保养工作,消除了仪器的空仓值过高,读值不准,且所有的仪器在测量同一超低浊度的样品读数很稳定,具有可比性。维护结果得到了杭州水司的肯定,售后服务部门的以客户为本的主动服务态度更使HACH的品牌得到了客户认可。
  • ​TESCAN公司在Interpore 2024上展示显微CT技术,为多孔介质研究领域带来新突
    TESCAN公司在Interpore 2024上展示显微CT技术,为多孔介质研究领域带来新突破作为全球显微技术和科学仪器的领军企业,TESCAN公司将在2024年5月13日至16日于中国青岛举办的Interpore 2024会议上,展出其最新研发的显微CT技术。这一盛会专注于多孔介质材料的研究,TESCAN的技术展示无疑将成为会议的焦点。TESCAN的显微CT技术在多个方面展现了其卓越的性能。首先,多功能性是TESCAN显微CT系统的一大亮点,其直观的感兴趣区域扫描工作流程能够对广泛的样品类型进行高精度成像,从而促进了多尺度研究的发展。其次,TESCAN通过行业领先的快速自动扫描技术,极大提高了样本的扫描效率,使研究人员能够最大化样品吞吐量,加快研究进程。此外,TESCAN显微CT技术的4D成像能力,通过连续数据采集和专用的4D重建、可视化和分析工具,能够探索样本内部的动态过程,为研究者提供了深入洞察样品行为的新视角。特别值得一提的是TESCAN的能谱CT技术,它是TESCAN显微CT系统中的一项创新。该技术通过分析X射线光谱来揭示样品的化学成分,为研究人员提供了深入洞察样品结构与组成的新途径。能谱CT技术能够识别并量化样品中的不同元素,提供原子序数信息和密度图,这对于土壤科学、地质科学、材料工程和生物医学等多个领域具有重要的应用价值。在Interpore 2024上,TESCAN将举办两场演讲,深入探讨显微CT技术在不同应用中的最新进展。Jan Dewanckele将介绍动态显微CT技术如何照亮电池电解液在充放电和加热过程中的行为,这一进展对于电池性能优化和安全研究具有重要意义。而Marijn Boone将展示能谱CT成像技术如何为土壤科学研究提供新的视角,通过揭示土壤样品的化学成分,为土壤改良和可持续农业实践提供科学依据。TESCAN邀请所有参会者访问其位于#8号展位的展台,了解其显微CT解决方案如何革新多孔介质研究,并与TESCAN的专家进行互动。在TESCAN的展位上,参会者将有机会近距离体验显微CT技术的强大功能,了解TESCAN解决方案如何满足特定的研究需求,并与研究人员和行业专家建立联系,共同探讨未来的科研方向和合作机会。TESCAN一直致力于通过技术创新推动科学发展。在Interpore 2024会议上,TESCAN将展示其对多孔介质研究领域的贡献,并期待与全球科研人员共同探索未知,解锁多孔介质研究的新篇章。TESCAN相信,通过其显微CT技术,可以为科研人员提供更深入的洞察力,解锁多孔介质的秘密,从而推动相关科学领域的发展。关于TESCANTESCAN公司成立于1991年,是一家专注于微观形貌、结构和成分分析的科学仪器的跨国公司,是全球知名的电子显微仪器制造商,总部位于全球最大的电镜制造基地-捷克布尔诺,产品主要有电子显微镜、聚焦离子束、X射线显微CT、电镜和拉曼、双束电镜和二次离子质谱的一体化联用系统及相关附件和软件,正被广泛应用于材料科学、生命科学、地球科学、半导体和电子器件等领域中。联系方式:地址:上海市闵行区联航路1688弄旭辉国际10号楼公众号:TESCAN公司
  • 重返餐桌“地沟油”都是升级货
    昨日,武汉市食品药品监督管理局相关负责人表示,尚未发现有加工点可以将“地沟油”提纯到真假难辨的水平,粗加工的“地沟油”既混浊又刺鼻难闻,根本无法销售。向本报报料的从业者梁新则认为,精加工技术已经由原先的加入火碱改进为添加生物制剂,效果更好,成本更低,也更难检测。   观点   市食品药品监督管理局——   未发现武汉有提纯“地沟油”水平   加工点对于回收好的地沟油如何处理呢?武汉市食品药品监督管理局执法处负责人介绍,通常的做法都是先将回收来的“地沟油”原料放入水中煮沸,然后把漂浮在最上面的油舀出来,因为舀出的“地沟油”含有大量各种杂质,然后需要在其中加入硫酸将杂质去除。   “最后加工出来的油是人都不会买。”该负责人认为,粗加工的“地沟油”和真正的成品油相比,既混浊又刺鼻难闻,根本无法销售。此外,该负责人坦言,执法多年来从未发现过武汉有加工点可以将“地沟油”提纯至真假难辨的水平。   据悉,针对市民怀疑煎早餐点、火锅店、烧烤摊经常使用“地沟油”,该局去年6月份曾做过一次大规模批量检测,结果305批的用油检测全部合格。   该负责人表示,去年,该局不仅检查了受检食品行业的用油来源记录,还对正在使用的油进行了质量检测。该负责人表示,如果是“地沟油”,则一定会含有盐,所以还专门检测了油品的氯化钠含量。   即使含有氯化钠,是否和好油按比例勾兑后就检测不出呢?该负责人强调,他们使用监测工具 气相质谱仪和液相质谱仪,只要含有氯化钠,不管多少都检测的出来。   报料人梁新——   加生物制剂精炼后更难检测   针对食品药品监督局方面的说法,梁新表示,自己干了16年,在行内也算一个“专家”了。执法部门查处的都是一线粗加工的小作坊,这些经过粗加工的“地沟油”还将送往上游进行深加工。   “粗加工的程序就是经过简单过滤、加热、沉淀、分离出暗淡浑浊、略呈红色的膏状物。”他透露,会有专门的人来收这些膏状物进行二次深加工,深加工的地方武汉很少,主要集中在江浙和广东一带,地沟油的精炼最早就是发源于广东佛山等地。   他表示,深加工的具体技术环节很复杂,主要是加入火碱洗涤、蒸馏、脱色、脱臭后就清亮了。   “现在还有更先进的生物制剂,脱色脱臭变清亮的过程更短,加工后的食用油更耐看耐闻。”他说,精炼后的地沟油还会掺入少量的食用油,更是难以检测。
  • 【步琦维修小课堂】浴锅选用何种加热介质及保养
    对于BUCHI Rotavapor R-300 (旋转蒸发仪),我们有两个不同尺寸的浴锅可供选择:浴锅 B-301浴锅 B-305用于最大容积为 1 L 的蒸发瓶,只适合以水为加热介质的应用环境。用于最大容积为 5 L 的蒸发瓶,适合以水和油为加热介质的应用环境。▲ 浴锅 B-301 & B-305如何避免因使用不合适的加热液体造成浴锅腐蚀?BUCHI 建议用水作为浴锅的加热介质。根据水的硬度,去离子水和蒸馏水的混合比例最高可达 1:1。如果使用纯蒸馏水或去离子水,则每升水中应添加约 1 g 硼砂 (Na2B4O7 x 10 H2O)。如果使用油浴,BUCHI 建议使用聚乙二醇 PEG-400作为油浴介质,不建议客户使用普通硅油。使用时,加热介质不宜加的过满,以免蒸发瓶旋转时,液体溢出。如果液位因为蒸发变低,应及时补充加热介质,避免触发过热保护。同时 BUCHI 建议至少每个月应全部更换一次加热介质。如何清洁,保养浴锅?液体进入设备内部可能造成短路,浴锅和旋转驱动装置不得浸入水中,或将水倾倒到上面。浴锅外壳只能用湿布擦洗。 1浴锅槽内部应定期清洁,最迟在:浴锅变得污浊时开始形成钙沉淀时浴锅的钢质表面开始生锈时2清洁步骤: 断开浴锅和旋转驱动装置的电源。让浴锅冷却并排空槽内的加热介质。如浴锅槽内有少许钙沉淀,则可用非刮擦式清洁用具 (如家用清洁剂和海绵) 进行清除。顽固的钙化物要用稀释的醋酸进行溶解。之后对浴锅槽内进行彻底冲洗。
  • 加速赋能您的组织成像研究 THUNDER 3D Tissue高分辨组织成像系统
    一更高的分辨率更细节的细胞生物学信息THUNDER技术采用硬件加软件的整体解决方案,在宽场成像原理下,通过计算清除(Computational Clearing)和自适应反卷积(Adaptive Deconvolution)的专利方法,有效的减少离焦信号的干扰,保留焦平面的信号,从而提高对比度,改善图像质量并提供更多细节信息供进一步分析。XY轴分辨率能达到136nm,Z轴分辨率能达到264nm,是一种广泛受到学术界认可的宽场高分辨率成像技术。(小鼠肾脏组织切片)通过THUNDER技术,排除模糊离焦信号的干扰,将原本“深藏于”模糊离焦信号之中的、微小的细节信息暴露出来,为进一步破解细胞生命动态变化的规律提供了新的思路。(视网膜切片,普通宽场成像,左;THUNDER成像,右)技术详情请点击点击下载THUNDER的工作原理:如何赋能细胞生物学研究新一代Live THUNDER,通过实时THUNDER技术,在预览的模式下,实现高分辨率条件下的视野寻找,提高实验工作效率。(脑组织切片成像的预览模式)二 更深的成像深度更完整的细胞生物学信息(脑组织切片 成像深度达150um)在上图中,用于厚样本成像(如脑组织成像,通常为了尽可能保留神经元的完整性,而制备较厚的组织样本;如类器官成像),通过Large Volume Computational Clearing(LVCC),一种匹配大体积的、厚的样品的THUNDER技术。在样本的上层,甚至最微小的细节都能被THUNDER解析。(神经元深度成像)三 更多的颜色(生物标记物)更丰富的空间信息(癌症组织6色成像)THUNDER结合上游的多色荧光染色技术,如TSA技术,突破常规荧光标记方法因为种属限制和特异性限制,可以实现超过4色的细胞生物学研究。通过多个荧光探针(或多个荧光蛋白)对不同的生物分子或细胞结构进行标记,可以同时观察多个目标,并了解它们之间的相互关系和空间分布,揭示细胞内的亚细胞结构、细胞类型、代谢状态、信号通路活性等多个方面的信息。四从高分辨率成像到样品捕获 更有效率的组织学研究方式(激光显微切割工作原理)THUNDER系统可以与激光显微切割(LMD)升级成为一体机。连接从高分辨率成像到精准的单个细胞或组织区域捕获,不再需要通过两种不同的系统进行组织和数据的转移。通过显微切割重力收集作用将其收集到下方的收集管中,以便进行下游处理。从高分辨率成像到精准的单个细胞或组织区域捕获,再到下游精确定量的分析技术,如 RNAseq、NGS、MS、qPCR、微阵列等,加速与赋能您的组织学研究。五应用案例【THUNDER小课堂】感觉神经元的高对比度快速三维成像【THUNDER小课堂】血管疾病的分子机制六申请样机徕卡显微咨询电话:400-630-7761关于徕卡显微系统徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 中科院分子植物卓越中心蔡文娟博士:激光扫描共聚焦显微镜使用和管理心得分享
    生命科学基础研究与人类健康和社会经济发展密切相关,在科学和经济社会领域中的重要性日渐增强。Science 曾发布125 个挑战全球科学界的重要基础问题,其中涉及生命科学的问题约占 54%。生命科学研究过程离不开各类科学仪器的帮助,今年,仪器信息网特别策划话题:“生命科学技术平台经验分享”,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展、学习仪器使用方法。 本篇为中国科学院分子植物科学卓越创新中心细胞结构分析技术平台主管蔡文娟撰写,蔡老师根据多年工作经验,详细介绍了激光扫描共聚焦的发展、系统组成和应用,并分享了工作中仪器使用的心得体会。以下为供稿内容:1957年, Malwin Minsky博士在其博后阶段首次阐明了激光扫描共聚焦显微镜技术的基本工作原理,但由于当时没有足够强度的照明光源,工作一直停留在理论阶段。20世纪60年代,伴随着激光器技术的发展,激光扫描共聚焦技术开始进一步发展,直到80年代中期才基本成熟,有了成熟的商业化产品(Bio-Rad)。由于该系统所用光源为激光,成像方式为逐点扫描成像,因此又被称为“laser scanning confocal microscope”, 简称为LSCM。激光扫描共聚焦仪器发展至今,已经不再是简单的光学显微镜 ,而是整合了光学显微镜 、激光、检测器、工作站和图像处理软件的复合型显微成像系统。1987年,White和Amos在英国《自然》杂志发表了“共聚焦显微镜时代的到来”一文,标志着LSCM已成为进行科学研究的重要工具。作为细胞生物学研究的必备工具,激光扫描共聚焦显微镜堪称各个成像平台的“扛把子”,其对各种标本和荧光标记方法具备很强的普适性,即使在各种高端显微成像技术飞速发展的当下,也依然占据着极高的使用率。中国科学院分子植物科学卓越创新中心所级中心细胞结构分析技术平台成立于2010年,经过10余年的发展,拥有多种细胞成像设备,包括激光扫描共聚焦(7台)、转盘共聚焦和SIM超高分辨等高端显微系统(http://cfc.cemps.ac.cn/xibao.php),为中心内部及周边科研院所和企业提供专业的显微成像服务,最大程度地满足中心及周边的成像需求。一、 激光扫描共聚焦显微镜的组成和应用激光扫描共聚焦显微镜(以下简称为LSCM)的灵魂部件是针孔(pinhole),针孔与物镜的焦平面共轭,因此被称为“共(共轭)聚焦”。由于共轭针孔的存在,只有标本焦平面的荧光信号才会透过针孔被检测器捕捉,而非焦平面的信息被阻挡在针孔之外,形成类似光学CT的效果。配合针孔成像, LSCM硬件部分通常包括光学显微镜、激光器、扫描振镜、检测器和图像工作站组成,每一个重要部件均可根据实验需求选择合适的配置,以下将结合分子植物卓越中心细胞平台的实际需求,逐一进行简要介绍。1、光学显微镜 LSCM可以搭建在正置或倒置荧光显微镜上。生命科学研究中,倒置显微镜使用更为广泛,适合组织切片、贴壁细胞等相对较薄的标本。样品固定在载玻片上,可以方便地倒置观察。在植物研究领域,倒置显微镜也经常用于观察拟南芥根/叶片、烟草叶片、原生质体等标本,这类标本的特点是相对较薄,制片简单,可以通过简单压片的方式,利用水或其他压片溶剂在载玻片盖玻片之间形成的吸附力,将标本固定住,从而可以倒置观察。但也存在部分无法使用倒置观察的应用场景,如茎尖分生组织、较厚的作物叶片或根等,由于标本过于厚重,倒置观察时容易掉落,不方便固定,或者由于压片会导致表面形态发生变化或组织破裂,从而影响定位观察。针对这类应用,正置显微镜就显得尤为重要,尤其是搭配合适的浸入式水镜,可以帮助这类厚标本实现清楚方便的显微成像。作为光学显微平台,需要考虑到研究所各个课题组之间的应用差异,保证正置与倒置的合理配备,设备组合可最大程度地满足各类研究需要。2、激光器 为了激发出足够的荧光信号,LSCM采用激光作为照明光源。根据标记和成像需求,一般LSCM至少配置4个波段的激光器,包括405/488/561/633nm等,涵盖了整个可见光波段的激发需求,能满足大多数荧光染料和蛋白的成像。在此基础上,研究组经常涉及荧光共振能量转移(FRET)相关实验,需要对CFP和YFP等分子对进行特异性激发,这种情况下,必须选择配置有458和514nm激光器的LSCM系统。红色荧光蛋白中,mCherry以单体形式存在,不易出现由荧光蛋白多聚化带来的artifact定位现象,因此现在很多研究组选择mCherry荧光蛋白标记,543nm和561nm等波长都能够激发mCherry蛋白,但如果希望得到更为明亮和特异的红色荧光信号,最好选择含594nm激发波长的系统。除了固定波段的激光器,还可选择搭配脉冲式白色激光器,自由选择所需激发波段。由于白色激光器在激发波段方面调节的灵活性,以及其特有的脉冲式而非连续激发,可以配合检测器做基于门控技术的荧光寿命成像,有助于过滤部分自发荧光信号,或者得到荧光寿命信息。分子植物卓越中心细胞平台(辰山园区)就配备了该系统,配合脉冲式白激光和高灵敏度检测器,可以进行FLIM-FRET实验,在荧光强度成像的基础上,增加荧光寿命维度的检测。3、扫描振镜 扫描振镜一般由x和y两个方向的振镜组成,通过高速振动控制激光在成像视场内逐点扫描,“点动成线,线动成面”,形成一个完整的2D图片。根据振动速度的区别,在LSCM中一般分为检流式振镜(galvanometer)和共振振镜(resonant)。检流式振镜是应用最多的扫描振镜,单个像素点上停留时间在微秒层级,可激发出更多的荧光信号,保证图像信噪比。常规拍摄荧光2D/3D图像和非毫秒级变化的time-series,检流式振镜一般都可以满足需求。共振振镜的振动频率相比检流式有显著提高, 能实现万赫兹,512X512分辨率的图像采集频率可达到30fps。如果涉及到钙波捕捉、相分离小体快速融合/FRAP实验、囊泡运动等快速变化,使用该振镜更容易检测完整的运动变化。细胞平台2015年后购买的系统,多为混合式振镜(含有两种振镜),在实际实验中,会根据需求选择合适的振镜使用。但必须注意的是,由于共振振镜速度很快,牺牲了每个像素点上的激发时间,图像的信噪比下降严重,一般需结合合适的图像处理,才可以得到相对清晰的共聚焦图片。近三年植物领域由于相分离和钙信号相关研究逐渐增多,对扫描成像速度的要求也日渐提高,共振振镜的存在可以很好地补充检流式振镜的不足,两种振镜同时存在,可兼顾成像分辨率和时间分辨率,更好地满足不同研究方向的需求。4、检测器 配合振镜的点扫描方式,光电倍增管(PMT)和雪崩式光电二极管(HyD)均可用于激光扫描共聚焦系统的荧光检测,实现光电子信号的倍增放大。除了常规的PMT(一般以多碱作为光阴极感光材料),细胞平台每套LSCM系统上也会配置高灵敏度的GaAsP检测器(镓砷磷为感光材料的PMT)或HyD检测器,目的是提高检测灵敏度,提升弱信号的捕捉能力。对于较明亮的荧光信号,常规PMT即可满足需求;碰到相对较弱的信号,建议使用高灵敏度的GaAsP或HyD检测器,以获得信噪比更高的图片。但实际使用中,高灵敏度检测器并非万能,如果荧光发射在近红区域(Cy5.5和Cy7等),常规PMT的检测效率会相对更高,这是因为不同的感光材料对各个光谱波段的响应效率不一样。作为细胞成像平台,需要保证各类型检测器的存在,根据荧光染料的强度和特性,给出专业的建议和设置,能够更好地保证成像效率。5、图像工作站 激光扫描共聚焦系统需要整合多种硬件协同工作,因此对图像工作站和操作软件都提出了较高的要求。操作软件和工作站必须能稳定运行,精准控制各电动部件,流畅采集显微图片,针对3D/time series等较大的图像数据,能够保证后期图像处理速度。一般来说,成熟的商业化共聚焦系统在硬件控制上都可以做到稳定流畅,但对于后期的图像处理,则需要根据平台常见的数据做合理配置。反卷积处理,3D重构和AI分析等图像数据处理都对图形处理显卡有一定的要求,因此我们平台一般都会选择配备有GPU的工作站,以满足越来越高的分析需求。同时,在实际使用中,尽量避免在采集电脑上使用USB等移动存储设备,以最大可能杜绝电脑病毒的存在引起整机系统故障。二、 激光扫描共聚焦系统管理心得和未来可提升空间细胞平台成像设备类型多样化,各有特点,作为其中的“扛把子”成员,激光扫描共聚焦系统使用频率极高,受众很广,应用方向也更为多样化。作为平台管理人员,如何管理统筹多台LSCM系统的使用,使其更好地服务于科研工作,也是常思常修的一门功课。现将日常管理心得和提升空间分享如下:1、激光扫描共聚焦系统的日常维护必不可少,尤其是物镜的清洁和光路的校准。每位用户根据观察标本的不同,会选择空气镜/水镜/油镜等不同介质类型的物镜,很容易存在交叉污染,导致物镜使用不当。在培训用户遵守使用章程的同时,平台工作人员必须保证2-3天检查一次常用物镜的清洁程度。光路校准方面,建议根据仪器使用状况每半年或一年检查一次光路状态,保证光路的准直。如果共聚焦光路上搭载了超高分辨系统,使用中尤其需要注意光路状态,以确保使用效率。2、激光扫描共聚焦系统的基础操作培训是重中之重。平台工作人员要精通已有设备的软件使用和参数调节,组织小范围培训,每次上机培训不超过5人,确保培训效果。培训必须结合考核进行,第一次上机实验须保证培训老师陪同,以了解用户的实验和使用薄弱点,巩固培训效果。3、预约体系和微信用户群的合理使用。目前中科院仪器平台有统一的预约体系,可以在网预约所需仪器机时。但作为使用频率极高的激光扫描共聚焦系统,经常面临僧多粥少难以预约的状况。我们针对高频使用的LSCM建立了仪器专用微信用户群,培训考核通过后即可入群。用户在使用结束或临时取消后会在微信群内公告,便于后续用户及有需求的用户及时知晓,提升使用效率。同时,该仪器如有任何不合理使用和故障,管理人员也可在群内及时公告,方便用户调整实验。4、拓宽平台设备的应用边界,提升管理人员的技术能力。作为平台管理人员,需要密切关注生命科学领域的研究进展,尽可能从应用角度提前布局所需的成像设备,做到有备无患,不断拓展应用边界。另外,必须时刻关注显微成像的技术前沿,结合用户的实验特性和科研目的,立足已有的设备进行必要的改造和改进,提升自身的技术能力。5、国产化成像设备的落地展望。2019年已有相关国产化LSCM设备搭建成功的报道(苏州医工所),2021年也有商业化SIM超高分辨显微镜的落地(北京大学),今年再传出国产超分辨显微成像设备商业交付的消息(中科院生物物理所),这表明国产化设备正在显微成像赛道不断发力,相信其能够更好地结合国内科研用户的应用需求,不断突破瓶颈,落地于细胞平台,提升平台的技术实力。作者简介: 蔡文娟 博士,高级工程师,中国科学院分子植物科学卓越创新中心(植物生理生态研究所)细胞结构分析技术平台主管。2012年中国科学院上海生科院植生所获博士学位,2012-2017年中科院上海生科院植生所担任助理研究员, 2017-2020在奥林巴斯中国有限公司担任应用工程师,2020年12月加入中科院分子植物科学卓越创新中心,担任细胞结构分析技术平台主管,主要负责所级中心细胞结构分析技术平台的管理维护和运行,承担院级功能开发研制项目,承担和参与多项国自然基金等。
  • 光电所暗场显微增强介质微球超分辨成像质量研究取得进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   在光学成像领域中,由于受到衍射极限的限制,常规成像分辨率难以突破200nm。生物医学、集成电路等领域对提高成像分辨率有迫切要求,如何实现更高成像分辨率成为近年来的热门研究方向之一。 /p p   受自然界微滴可提高成像分辨率的启发,2011年科学家提出将直径在微米级的介质微球直接放置于待测样品表面,在普通白光显微下即可达到50nm的分辨能力。介质微球超分辨显微方式以其简单灵活的特点,受到国内外广泛关注,但微球的成像对比度一直有待提高。 /p p   近日,中国科学院光电技术研究所研究团队发展出一种利用暗场显微有效提高成像高频成分含量的方法,具有降低成像低频成分的特点,结合微球超分辨能力,可实现更高对比度的微结构超分辨显微。该方法通过时域有限差分法模拟分析微球在不同浸没方式、浸没深度情况下的半高宽及光强值等得到更优化的超分辨能力,模拟结果如图1所示。在此基础上,通过二氧化硅和钛酸钡微球在不同浸没情况下观察特征尺寸为139nm的硅光栅结构,实验结果如图2所示。可以看出,在暗场显微时成像对比度明显得到增强。 /p p   研究工作得到国家自然科学基金和中科院科研装备研制项目的支持。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171122565441349485.png" src=" http://img1.17img.cn/17img/images/201711/uepic/73b00051-a008-40d3-94d5-c45458140124.jpg" / /p p style=" text-align:center " 不同浸没深度的微球聚焦特性分析 /p p style=" text-align:center " img alt=" " oldsrc=" W020171122569039673281.png" src=" http://img1.17img.cn/17img/images/201711/uepic/f335b35f-486d-4a12-91b4-35f95acbb34a.jpg" uploadpic=" W020171122569039673281.png" / /p p style=" text-align: center " 不同照明方式的微球成像质量对比 /p
  • 中国科学家获得国际上首批宇宙大视场X射线聚焦成像天图
    2022年8月27日,在太原举行的第二届中国空间科学大会上,来自中国科学院国家天文台的研究人员发布了 EP-WXT 探路者的首批在轨实测结果。该设备是爱因斯坦探针(EP)卫星宽视场X射线望远镜(WXT)的一个实验模块,于北京时间2022年7月27日搭载由中科院微小卫星创新研究院抓总研制的空间新技术试验卫星(SATech-01)发射升空。该项实验旨在开展一系列在轨测试和观测实验,为未来EP-WXT尽早开展科学运行奠定基础。EP卫星是由中科院主导的卫星,欧洲空间局和德国马普地外物理研究所参与合作,计划于2023年底发射。该仪器采用了先进的微孔龙虾眼X射线聚焦成像技术,观测视场可达340平方度(18.6度x18.6度),是国际上首个宽视场X射线聚焦成像望远镜。相比国际上其它X射线聚焦成像望远镜,其视场大小提高了100倍左右。截至目前,仪器已开展了为期4天的在轨测试观测,成功获得了一批天体的真实X射线实测图像和能谱。这是国际上首次获得并公开发布的宽视场X 射线聚焦成像天图。仪器的关键器件包括36片微孔龙虾眼镜片组成的X射线聚焦镜组件和4片大阵列CMOS传感器组成的焦面探测器,均为我国自主研发。这也是首次将CMOS传感器应用于空间X射线天文探测。EP卫星将搭载12个相同的 WXT望远镜模块,总视场可达3600多平方度。科学家利用该仪器首先观测了银河系中心天区(图1)。结果显示,单次观测就能够同时探测到多个方向上的X射线源,包含了恒星级质量黑洞和中子星。观测也捕捉到一个X射线辐射增亮数倍的中子星X射线双星(图2左)。同时,从数据中还能获得这些天体X射线辐射强度随时间变化的信息,以及天体的X 射线能谱。观测结果与仿真结果(图2右)相比高度一致。该仪器也观测了银河系的近邻星系——大麦哲伦云(图3),单次观测即可覆盖整个星系,同时探测到包含黑洞和中子星的多个X射线源。通过未来更多的观测,宽视场望远镜将能高效地监测天体的X射线光变,预期将发现新的暂现源。图4展示了对著名的天鹅座超新星遗迹的成像结果,表明了龙虾眼望远镜对弥散源的成像能力。对超新星遗迹Cas A的观测,则充分展示了CMOS探测器优秀的X射线能谱分辨率(图5)。仪器还探测到距离8.14亿光年的遥远类星体的X射线,证明其对较暗弱的X射线源的探测能力(图6)。初步测试结果表明,仪器功能正常,为满足EP宽视场望远镜的科学需求奠定了坚实的基础。EP卫星首席科学家、中科院国家天文台袁为民博士表示,“这些结果十分激动人心,表明我们的仪器能够获得预期科学数据,为此我们付出了十多年的努力。我对未EP的科学能力充满信心“。国际上该领域著名专家,英国莱斯特大学P. O’Brien教授和R. Willingale教授表示:“WXT的首光结果令人印象深刻。这是第一个宽视场X射线聚焦望远镜,创造了一个新记录。… … 几十年来,我们一直在期待一个真正的宽视场软X射线望远镜,EP-WXT探路者的成功运行令人振奋。这项技术将对X射线天空的监测带来变革性的推动,这项试验也表明了EP卫星巨大的科学潜力。”该仪器由中科院国家天文台和中科院上海技术物理研究所联合研制,国家天文台X射线成像实验室于2011年开始研发龙虾眼X射线成像技术,与北方夜视技术股份有限公司开展密切合作,联合研发核心微孔光学器件,器件由北方夜视提供。中科院国家空间科学中心和中科院电工研究所也参与仪器的研制。SATech-01是中科院空间新技术试验卫星系列的首发星,由中科院立项。EP卫星由中科院空间科学(二期)战略性先导专项支持,中科院国家空间科学中心是空间科学(二期)先导专项总体单位,卫星由中科院微小卫星创新研究院抓总研制。图1 宽视场X射线望远镜模块对银河系中心天区单次观测获得的X射线图像(视场18.6度x18.6度)。背景为Gaia的光学全天图像(银河系Gaia图片来自https://www.sci.news/astronomy/gaia-second-release-05950.html)。 图2 对银河系中心天区单次观测获得的X射线图像(左图)和仿真图像(右图),左右图的观测时长同为800秒,视场18.6度x18.6度。(左图中红色标记的是捕捉到的一个变亮的中子星X射线双星)。图3 左图:近邻星系大麦哲伦云的DSS光学图像(https://archive.eso.org/dss/dss);右图:宽视场X射线望远镜对大麦哲伦云进行700秒观测后得到的X射线图像(1个CMOS视场,9.3度x9.3度)。图4 观测到的天鹅座环状星云 (角直径2.5 度) 的X射线伪彩色图像(颜色代表光子的能量,红色0.3-0.6 keV 绿色0.6-0.8 keV 蓝色0.8-2.0 keV),观测时长为600秒。图5 观测到的超新星遗迹Cas A 的X射线能谱,观测时长为1100秒。分析表明能谱分辨率为150 eV图6 对遥远的类星体3C 382(红移0.056,距离8.14亿光年)的探测,表明仪器具有对较暗弱X射线源的探测能力
  • 宁夏计质院浊度计国家计量比对项目获“满意”结果
    近期,由国家市场监督管理总局组织的浊度计国家计量比对项目结果公布,宁夏计质院比对仪器测量En值为0.05,获量值比对“满意”结果。   浊度计是依据浑浊液对光进行散射或透射的原理制成的测定水体浊度的专用仪器,广泛应用于环境监测站、污水厂、化工厂等单位企业的水质检测,是环境监测领域必不可少的设备,其检测精准度直接关系社会民生及生态保护质量。宁夏计质院作为法定计量检定技术机构,为了保证能够准确高效开展浊度计的计量检定,积极参加项目比对,严格按照比对方案进行实验和结果上报,圆满完成了此次比对任务。   本次比对是A类国家计量比对项目,国内有72家计量技术机构参与。宁夏计质院取得“满意”结果,充分反映了对浊度计的检定能力,同时通过与其他院所的学习交流,使得技术人员自身业务能力更加精进,为今后高质量开展计量检校工作奠定了坚实基础。
  • 新品上市|AADI新型光学浊度传感器
    浊度传感器4296浊度传感器4296是一款紧凑型全集成传感器,用于测量水中的光学反向散射。旨在与使用AiCaP CANbus的SeaGuard或SmartGuard数据记录仪一起搭配使用或作为使用RS-232的独立传感器。优势:与SeaGuard和SmartGuard轻松集成的智能传感器;直接读出工程数据,多点出厂校准;输入现场特定参考数据以接收以mg/l 为单位的绝对值;坚固耐用,维护需求低;输出格式包括AiCaP CANbus,RS-232;可选3种深度范围-300、3000和6000 米。浊度是一种描述导致光被悬浮颗粒散射的水的光学特性。高颗粒浓度导致高浊度。通过建立浊度与当地的悬浮物质之间的关系,这类测量可用于评估悬浮物质的浓度。浊度传感器4296测量红外光的反向散射。使用高效发光二极管将调制光发送到水中。反向散射光由灵敏的光电二极管拾取,然后该信号经过调节、线性化并转换为工程单位数据 (FTU) 。除了浊度,传感器还测量水温。Aanderaa新型光学浊度传感器4296光学浊度传感器基于Optode技术进行生产,该技术已在100多篇科学出版物中为要求苛刻的客户证明了长期稳定的氧气测量。其他品牌的浊度传感器通常未经过校准,但Aanderaa的浊度传感器经过了多点校准,可确保准确性、可追溯性和可替换性。无论水有多浑浊,并行的传感器读数均能保持相同。该传感器可作为开放协议传感器通过串行接口使用,也可用作SeaGuard/SmartGuard多参数平台的一部分。Aanderaa在制造浊度传感器方面有着悠久的传统,从1990年初的第一批3612传感器到今天的新型4296传感器。我们很高兴将该款新传感器推向市场。欢迎4296的到来!
  • 新的简洁区分“雾”与“霾”评价方法初探
    一直以来&ldquo 雾&rdquo 与&ldquo 霾&rdquo 实际上都是气象科学中使用的两个专业属于,其定义如下:   雾是指在接近地球表面、大气中悬浮的由小水滴或冰晶组成的水汽凝结物,是一种常见的天气现象。当气温达到露点温度时(或接近露点),空气里的水蒸气凝结生成雾。根据凝结的成因不同,雾有数种不同类型。   当气温高于冰点时,水汽凝结成液滴。当气温低于冰点时,水汽直接凝结为固态的冰晶,比如冰雾。因为露点只受气温和湿度影响,所以雾的形成主要有两个原因:一是空气中的水汽大量增加,使得露点升高至气温,从而形成雾,比如蒸汽雾和锋面雾 二是气温下降至低于露点而生成雾,比如平流雾和辐射雾。   雾和云的不同在于,云生成于大气的高层,而雾接近地表。   霾   霾,也称灰霾(烟霞),是指原因不明的因大量烟、尘等微粒悬浮而形成的浑浊现象。霾的核心物质是空气中悬浮的灰尘颗粒,气象学上称为气溶胶颗粒。   空气中的灰尘、硫酸、硝酸、有机碳氢化合物等粒子也能使大气混浊,视野模糊并导致能见度恶化,如果水平能见度小于10000米时,将这种非水成物组成的气溶胶系统造成的视程障碍称为霾(Haze)或灰霾(Dust-haze),香港天文台称烟霞(Haze)。一般相对湿度小于80%时的大气混浊视野模糊导致的能见度恶化是霾造成的,相对湿度大于90%时的大气混浊视野模糊导致的能见度恶化是雾造成的霾,相对湿度介于80-90%之间时的大气混浊视野模糊导致的能见度恶化是霾和雾的混合物共同造成的,但其主要成分是霾。霾的厚度比较厚,可达1-3公里左右。由于灰尘、硫酸、硝酸等粒子组成的霾,其散射波长较长的光比较多,因而霾看起来呈黄色或橙灰色。   以上定义源自中国气象局官网【气象科普】雾霾及其定义   从定义中可以看出,在世界范围内,还没有从环境科学的角度,给出连续量化的霾的定义,就如同中医中用&ldquo 热&rdquo 和&ldquo 寒&rdquo 的概念时,大多只能指导中草药的使用一样,这直接导致了对空气环境污染量化评价的困难,&ldquo 分不清&rdquo 雾与霾,直接导致社会人群的心理困惑或恐慌,也会有重大经济影响,已有的医学研究利用空白对照研究表明,恐慌心理,可以直接使健康人表现出病态反应.科学﹑量化地分清雾与霾,变成了当务之急。   就此,吸收借鉴欧、美国、日本等发达国家在环境污染中的评价方法,中国的环保部门于2012年开始使用通过检测大气中气态的一氧化碳、臭氧、氮氧化物、二氧化硫以及PM2.5、PM10颗粒物的AQI综合评价方法,并将空气质量分为六级评价。这个评价方法,使得空气环境的评价更科学合理并日趋与发达国家的监测评价体系接轨。   AQI的建立,使污染的评价从非连续的雾、霾概念,提升为更科学的连续的污染评价体系.   人类对科学认识是无止境的,这似乎源于新技术的发展以及人类对科学技术的不断探索,这个过程在环境监测评价技术上也是如此。   现有的AQI综合评价方法中遇到的挑战:   3个奇怪的试验现象:   1. 加湿器试验:环境监测中,我们清楚水分对生物的危害通常是没有的,但当我们把由加湿器产生的纯水雾通过采样系统释放给连续测试功能的PM粒子分析仪时,PM粒子分析仪会&ldquo 误判&rdquo 并给出认定为有害的PM粒子浓度,有的PM粒子分析仪甚至给出&ldquo 严重污染&rdquo 程度的PM粒子监测结果   2. 环境监测中,大雨初期,连续PM粒子监测浓度也往往出现&ldquo 严重污染&rdquo 的类似结果   3. 即使在气象中被认定为&ldquo 雾&rdquo 的天气,连续PM粒子监测浓度也往往出现&ldquo 严重污染&rdquo 的类似结果   连续PM粒子监测中,水分的变化干扰已经成为影响PM粒子&ldquo 真实 &rdquo 表达空气污染的严重因素   AQI评价中对每个污染权重因子是&ldquo 叠加&rdquo 和&rdquo 优化&rdquo (首要污染物)的关系,这样单个高数值因子,就会对最终结果产生巨大影响。这也就是说:PM粒子的权重数值对整个AQI评价很多情况下会产生重大影响。   看来,模拟人类感官(重量和视觉长度)的监测手段在揭示环境空气污染的真相中至少还需要更科学的手段。   针对以上的问题,提出如下简易解决方法:   2个新评价指标的构建:气溶胶有机碳指标和二次有机碳指标   人类已经认知的大气科学特性:   包围地球的大气是一种由气态物质和可悬浮粒子组成的混合物,呈现气溶胶状态,粒子与气体物质之间存在复杂的气,液,固三项物理化学平衡状态,可悬浮粒子通常是有巨大比表面积的&rdquo 多孔&rdquo 物质,并且这些&rdquo 孔&rdquo 内是吸附着气,液,固物质.   按照化学常识,每摩尔的液态或固态物质,转化为气态后的体积都可以达到22.4升,如18毫升的水,气化后,体积可以达到22.4升.   也就是说,空气中的气溶胶粒子中&ldquo 富集&rdquo 着主要的环境污染物质.   这就是大气研究中,气溶胶成为热点和重点的主要原因.   由于有机物是环境污染的重要评价指标(在世界范围内,对于水和土壤的环境污染评价中已经被广泛认可,在中国,已经建立国家标准),环境空气中,大气气溶胶中的有机物与气态的挥发性有机物(VOCs)是直接相互转化并关联的,就是说,通过评价气溶胶中的有机物可以同时揭示挥发性有机物(VOCs)的污染程度.   二次有机气溶胶:又称二次有机碳,是直接排放如大气的一次污染物,在大气中再次发生光化学反应,形成的有机物.人类经历的空气污染教训表明:二次污染是对人类产生严重危害的物质(如伦敦雾,纽约光化学污染等).   新AQI的构建:   现行AQI也是大气科学工作者多年工作的结晶,当在这个科学评价方法中,把受水份影响的PM数值,调换为不受水份影响的气溶胶有机碳(OC or AOC)数值时,我们再看新的AQI已经不再是400-500以上,但气溶胶有机碳只是整个粒子中的一部分,按北京大学等科研单位多年的源解析研究,有机物在气溶胶粒子中的质量占比通常在30%附近徘徊.   当我们使用下表标准评价空气时,很多结果将变得更科学(数据不再&rdquo 恐怖&rdquo ).   空气质量分指数及对应的污染物项目浓度指数表   说明:   (1)二氧化硫(S02)、二氧化氮(N02)和一氧化碳(CO)的1小时平均浓度限值仅用于实时报,在日报中需使用相应污染物的24小时平均浓度限值。   (2)二氧化硫(S02)1小时平均浓度值高于800&mu g/m3的,不再进行其空气质量分指数计算,二氧化硫(S02)空气质量分指数按24小时平均浓度计算的分指数报告。   (3)臭氧(03)8小时平均浓度值高于800&mu g/m3的,不再进行其空气质量分指数计算,臭氧(03)空气质量分指数按1小时平均浓度计算的分指数报告。   对AQI的所有计算公式不变.(详见HJ 633&mdash 2012),标重部分为新设数值,并去除了PM10部分   笔者使用EPA-ETV认证过的Sunset热光法气溶胶有机碳/元素碳分析仪在线连续观测(使用TSP自动采样方式,空气经仪器自配溶蚀器去除SVOC,消除测试误差,采样量8升/分钟,此数据比PM2.5采样测试方式更严格)发现:   按以上方法评价空气质量时,AOC在2014年10月期间(10月18日-10月19日)曾出现一次接近100&mu g/m3浓度的情况,新的AQI的数值也只在300-400区间,并且持续时间只有7个小时.  图一 重污染时的小时有机碳变化图(10月18-19日)   图二 10月9日到28日有机碳小时变化图   图三 气溶胶有机碳日均数据   数据的分析:   从图一的数据可以看出:10月18日出现的峰值数据有一个小时的气溶胶有机碳在90-100微克/立方米,而在80-90微克/立方米的气溶胶有机碳数据有6个小时,这或许提示我们:连续监测气溶胶的小时数据是揭示大气污染的真实状况的一个重要手段。   图二的小时气溶胶有机碳数据则清晰揭示了从10月9日-10月28日污染的波动情况。   从图三的日均曲线可以看出:2014年10月8日至28日,在所监测的点位区域,发生过3次污染加重的过程.但按本文的新AQI评价,20天中,只有3天超过200的数值,低于200的AQI天数可以达到17个,占总数的85% 而在150新AQI数值以内的天数也可以达到70%.图三的日均气溶胶有机碳数据则清晰揭示了整个时间断3个污染的峰值特性。   另一个实验现象更耐人寻味:即使在室外空气18-19日的污染状态,这个时候的气溶胶有机物污染数值也只与良好天气仪器所在实验室室内的气溶胶有机物污染数值接近(见图四)   图四 室内与室外气溶胶有机碳日均数据的比较   二次气溶胶有机碳(SOC)直接监测模型:   具有很高的化学活性,这些物质浓度升高后,在光照条件下,会与有机物发生光化学反应,生成二次气溶胶有机碳, 很低浓度的二次气溶胶有机碳就会对生物造成急性毒性反映(伦敦雾,纽约空气污染事件等),由于存在AQI中的气体指标与二次气溶胶有机碳的这种化学关联关系,预警性的重大空气污染事件有必要直接使用SOC指标的小时数据作为快捷空气质量总体状况评价手段.   由于没有急性空气污染大事件(伦敦雾,纽约污染)时的SOC原始数据,制定对应的限值还需要环境人工模拟和大量的医学科研工作的进一步研究,才可以得出准确的结论.   已获得的数据,揭示的是:SOC与OC通常线性相关,但偶发的高活性物质是否会使SOC急剧超量变化,有待进一步研究.但日常限制标准SOC与OC的倍量关系应当是客观存在的.   图五 18-19日强污染时,二次气溶胶的小时变化   图六 10月9日至28日二次气溶胶的小时曲线   图七 10月9日至28日二次气溶胶的日均波动曲线   数据分析:   从以上三个图谱及数据可以看出:重污染时SOC数据也是在小时区间内发生很大变化的,小时级的数据监测可以精准研判污染的程度 而日均的数据可以使污染的趋势更容易被解读。   订立怎样的SOC等级作为快速评判污染发生的程度也是亟待有更多科技工作者加入的研究工作。SOC是基于气溶胶碳数据的估算值,估算方法的科学性也会随着人类认识的提高而更能客观表达真实的污染状态,但基础的化学知识或许已经告诉我们:一次污染物(POC)的浓度增加以及自由基浓度的增加,光和温度条件的加强,都会使二次气溶胶(SOC or SOA)的浓度提高。   思考:   从OC,SOC的观测数据,可以看出:这两个重要污染物质是会发生小时时间内的数值的大幅波动的,这可能源于空气污染物来源的多样性、复杂性,以及二次污染的复杂性、污染源的千变万化、二次污染的复杂化学变化,使&ldquo 由果&rdquo 推&ldquo 因&rdquo 的研究存在广阔的空间。但这些研究的学术价值可能比环境监测的应用价值更大。欧美等发达国家几十年的空气气溶胶研究产生了很多我们可以直接借鉴的成果,也附带了大量的教训。去粗取精,特别是战略方向上的科学研判,会使我们国家真正&ldquo 实现少花钱,多办事&rdquo .   中国真正重视环境空气的历史也不到短短的十年,这十年,我们的政府、空气环境工作者及全民都参与其中。从监测技术上看,政府的三期工程把我国的监测水平提高到了同发达国家同步的状态,但这些有巨大惠民利益的工作或许只是一个科技国家的起步,更精准的监测或许可以使我们国家的环境治理工作像激光制导武器那样精准切除污染源。   声明内容:   由于本文作者的知识水平和实验条件缺乏,本文中缺少大量验证性的科学工作,这或许会直接导致科学严谨性问题,但这不会影响作者参与环境治理的热情,及于国内同仁交流的目的,让我们国家的空气质量监测事业,从与国际同步发展到世界领先,掌握在国际空气环境评价技术上的话语权,&ldquo 使美国大使馆PM2.5&rdquo 这样的故事没有机会重演.   本文中的任何假设和观点都可以被相关科技工作者无须声明地使用.   由于本文不计划在学术文献中发表,本文中已经引用的文献和数据不再一一列出。在此,对被作者引用过文献、数据、观点等劳动成果的科学工作者们,请一一自动对号入座,作者一并表示感谢!   本文中任何错误或不符合科学的观点,欢迎读者批评指正.   本人联系信息:010-64322188   电子邮箱:bjsunrise@163.com
  • TL23台式浊度仪在某葡萄酒厂中的应用
    TL23台式浊度仪在某葡萄酒厂中的应用哈希公司 葡萄酒为自然发酵酿造的果酒,是一种分散且复杂的化学平衡体系。当周围的环境温度、湿度、氧化作用等因素发生变化时,其中富含的氨基酸及蛋白质会发生絮凝变化,以致降低葡萄酒的颜色、口感和香气等感官质量。虽然《葡萄酒》GB15037-2006中没有对国内葡萄酒类产品浊度值的硬性要求,但是企业内控往往以浊度方法来表征葡萄酒的澄清度,以及检验出厂酒的热稳定性。在《出口葡萄酒浊度的测定 散射光法》SN/T 4675.26-2016中,对出口葡萄酒产品的浊度测量已经有着明确的检测要求。用户使用浊度仪的主要目的是:对出厂酒热稳定性(Hot Stability)进行检测,当葡萄酒在温度超过30℃以上环境下放置,由于酒中蛋白质的絮凝会使酒产生浑浊,从而影响到酒的质量。热稳定性不合格的葡萄酒就需要考虑重新下胶(Fining)过滤。国内某葡萄酒酿造企业,在其质量控制(Quality Control)实验室使用哈希TL23系列台式浊度仪进行葡萄酒生产过程品质控制。 主要仪器:Hach TL23系列台式浊度仪。客户原先使用浊度仪,为散射光单点检测,在进行葡萄酒的浊度测量时,浊度仪读数一直跳动不停,实验人员无法判断究竟何时读出数值,且每次检测结果相差较大。图1 现场 Hach TL23浊度仪客户在更换为Hach新一代浊度TL23产品后,TL23比率测量系统可以为QC提供超高的准确度和重复性,并通过内部模型检测样品读数的变化,待识别稳定后给出最终读数,极大的避免了人工判断数值跳动导致的误判。另外,便捷的StabCal校准组件和校准方式,也让客户对现场的测量结果信心十足。 TL23系列台式浊度仪能够解决客户在葡萄酒热稳定性检测中的痛点,保证测量结果的稳定和准确,避免了人工判断读数变化所产生的误判和误差。哈希浊度仪产品可帮助解决葡萄酒浊度定性单凭感官判断澄清度、蛋白稳定性的行业传统问题。助力您的产品把控。END
  • 还不了解浊度计的设计原理?进来看
    浊度是一种常见的水质参数,浊度计测量的是一种水体的透明程度。通常水的浊度可以体现水质的好坏。需要注意的是,高浊度的出现并不一定意味着水有严重的问题。水的浊度水平可能会急剧改变,短期内剧烈变化而浑浊的“事件”可能是临时的,对生态系统的总体影响不大。   正如任何水质参数,它是很好的有历史数据的任何地方被监视,浊度趋势可以跟踪和事件的发生可捕获。这有几个原因浊度可以是一个有价值的参数获取一个水系统水质时剖面。   浊度计的设计依据瑞利理论和米氏定律,即IR=KNI0,式中IR为散射光光强,K为常数,N为单位体积内颗粒数,IO为入射光光强。其光学系统由一个钨丝灯、一个用于监测散射光的90°检测器和一个透射光检测器组成。其微处置器可以计算来自90°检测器和透射光检测器的信号比率。该比率计算技术能够校正因色度和/或吸光物质产生的干扰和补偿因灯光强度动摇而产生的影响,可以提供长期的校准稳定性。光学系统的设计也能够减少漂移光,进步测试的准确性。   在开始收集浊度数据之前,重要的是按照制造商的建议和批准的标准溶液校准。浊度计需要一个特定的距离的测量面提示注意事项,为校准的杯底避免校准过程中从杯子本身的干扰。为了节省校准解决方案,许多用户希望使用一个较小的刻度容器。不幸的是,如果使用一个较小的容器,在校准过程中一个不正确的距离将导致更高的偏移量,因为传感器将看到底部的杯子的浊度。这往往导致一系列的负面浊度特别是在低浊度环境中的实地读数。因此,听取制造商的建议非常重要。
  • 水质卫士安洲科技:无人机高光谱技术的应用与实践——《高光谱:水质监测的“科技助手”》主题约稿
    随着社会的发展,工业、农业及生活废水的大量排放,严重污染了人类赖以生存的水资源;河湖水体变色,甚至散发恶臭。这些呈现令人不悦的颜色和散发不适气味的水体,一般称为黑臭水体。黑臭水体破坏了水质和生态环境,很大程度地影响了人们的生活、危害人类健康,是目前较为突出的环境问题。遥感技术因具有速度快、同步性好、 覆盖面广、单位成本低等优点,已经被广泛地应用于水质动态监测中,遥感影像数据还可应用于水体成分的反演;研究表明,将卫星遥感技术应用于水质监测,其方法已经较为成熟,并已取得了较多的成果。然而受卫星遥感影像的分辨率限制,这种技术主要适用于大面积水域的监测,难以实现对小型水域或河道的高空间分辨率测量,而且卫星遥感还存在数据获取周期较长、时效性不够高、易受大气云层影响等问题,因此需要一种机动灵活且能够快速获得较大覆盖面积的水质测量方法,而无人机高光谱成像系统与地面水质测量相结合进行水质反演,即可解决这一问题。无人机高光谱成像系统是由无人机技术、遥感与测量技术、计算机技术等共同发展而融合的新技术,通常由硬件(包括无人机、 高光谱成像仪、计算机等)、软件(地面站控制软件、相片处理软件、影像应用软件等)和售后服务团队组成。 无人机高光谱成像系统测量相对于常规测量具有如下的优势:1)机动、灵活、 快速。无人机可在各种复杂条件下作业,反应迅速,适合应急监测。2)数据获取成本低。无人机遥感系统的购置、运行成本大大低于载人飞机,对场地和人员的要求也较低,日常维护简单,大大降低了遥感数据的获取成本。3)适合大面积观测。无人机作业可快速覆盖较大的观测面积,作业效率比人工现场测量大大提高。4)空间分辨率高。无人机高光谱成像数据的光谱分辨率高达纳米数量级。5)复杂区域观测。对于一些复杂区域,例如山区河流、河口海岸带、滩涂湿地等常规测量方式难以进入的区域,无人机航测具有显著优势。数据获取1.无人机光谱数据获取(1)机载高光谱成像设备介绍:X20P机载高光谱成像仪是一款基于光场成像技术的高光谱成像(HSI)设备,其内核为20 MP的超高清CMOS传感器,实现了相当高的空间分辨率。该设备以画幅式成像方式高速获取超过160个光谱通道的高光谱图像,连续覆盖350~1000 nm的波长范围,高性能传感器保证了噪声被控制得非常低,双GigE摄像机接口保证了高达5Hz的图像帧率(1886*1886像素/帧)。*350~1000nm宽波段范围*164或325通道瞬时同步成像*采用光场成像技术,快速成像无畸变*1886 x 1886大面阵空间维度高清图像*一体式无刷云台,Skyport电子排线接口*可搭载多种无人机并完成大面积数据图像X20P机载高光谱成像仪的164/325个光谱通道同步瞬时成像,更适合高速移动式使用,数据真实可靠无伪影;配套软件具有反射率校准、感兴趣波段数据导出、光谱植被指数制图等功能。X20P具有一体式无刷云台,内置控制及固态存储,适合多旋翼或固定翼无人机搭载。X20P一体式高光谱成像仪光谱范围350~1000nm高光谱分辨率1886*1886像素/帧光谱通道数164(可扩展)探测器20 MP高光谱CMOS成像方式全面阵所有通道同步成像,全局快门高光谱成像速度>2 Cubes/s 1886*1886像素/Cube数字分辨率12 Bit光谱输出168000 Spectra/Cube光学阵列/FOV66个/35°通讯接口Skyport电子排线接口、2*GigE、2*USB、HDMI存储内存内置固态硬盘500G/8G限位范围俯仰方向: ±50°,横滚方向: ±90°增稳范围俯仰方向: ±40°,横滚方向: ± 45°角度抖动量± 0.015°触发控制飞控提供触发信号,同步获取GPS数据结构重量一体式云台结构,整体重量<1.5Kg主要应用:UAV应用农业遥感环境遥感精准农业物种分类病害检测植物科学考古调查植物表型水色遥感(2) 作业计划落实:地物类型(主要提供河流宽度与长度等参数)、飞行面积(根据谷歌地图 kml 文件初步估算实际作业面积)、飞行高度(根据地面分辨率要求与空域高度等给出推荐飞行高度)、飞行架次(根据飞行面积与飞行高度等,估算无人机的飞行架次)、空域许可(需求方提供)。2. 无人机同步水面实验数据获取无人机飞行航测的同时,在水面开展实验,获取水体实验数据,主要包括:(1)水面反射光谱:用于水质参数反演建模、评价无人机反射率反演精度等。(2)现场测量水质参数:地面取样或直接测量相关的水质数据,包括:透明度、浊度、水深、水温、溶解氧、氧化还原电位等。(3)现场调查水体污染状况,包括:蓝藻水华、黑臭水体、排污口等。(4)现场采集水样,送到实验室内测量水质参数,包括:叶绿素 a、总悬浮物浓度、无机悬浮物浓度、有机悬浮物浓度、有色可溶性有机物(黄色物质)含量、总氮浓度、总磷浓度、化学需氧量(COD)浓度等。数据处理1. 基于无人机高光谱成像的水质参数反演建模利用无人机高光谱遥感图像和实测水面光谱和水质参数数据,构建水质参数遥感反演模型,实现基于无人机高光谱遥感的水质参数快速制图,包括浊度、叶绿素 a、总悬浮物浓度、无机悬浮物浓度、有机悬浮物浓度、黄色物质、水体营养状态等。2. 基于无人机高光谱成像的水体污染和水色异常区域提取方法利用无人机高光谱遥感图像和实地调查水体污染分布数据,构建水体污染遥感提取方法,实现基于无人机高光谱遥感的水体污染分布快速制图,包括蓝藻水华和黑臭水体等。此外,构建基于空间维和时间纬的水色异常区域提取算法,实现基于无人机高光谱遥感图像的疑似水体污染源信息提取。案例分享高光谱大面积水质反演案例飞行参数:飞行高度:400 m 飞行速度:20 m/s;飞行面积:3 平方公里 波段选取:490、550 、615、685、725、940拼接结果:1.RGB 合成图:2.总磷反演结果:总磷是水样经消解后将各种形态的磷转变成正磷酸盐后测定的结果,以每升水样含磷毫克数计量。3.氨氮反演结果:氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。 动物性有机物的含氮量一般较植物性有机物为高。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氮。4.水溶解氧(DO)反演结果:溶解于水中的分子态氧称为溶解氧,通常记作 DO,用每升水里氧气的毫克数表示。水中溶解氧的多少是衡量水体自净能力的一个指标。5.化学需氧量(COD)反演结果:化学需氧量 COD(Chemical Oxygen Demand)是以化学方法测量水样中需要被氧化的还原性物质的量。废水、废水处理厂出水和受污染的水中,能被强氧化剂氧化的物质(一般为有机物)的氧当量。水体遥感监测原理、特点影响水质的参数有:水中悬浮物、藻类、化学物质、溶解性有机物、热释放物、病原体和油类物质等。随着遥感技术的革新和对物质光谱特征研究的深入,可以监测的水质参数种类也在逐渐增加,除了热污染和溢油污染等突发性水污染事故的监测外,用遥感监测的水质数据大致可以分为以下四大类:浑浊度、浮游植物、溶解性有机物、化学性水质指标。利用遥感技术进行水环境质量监测的主要机理是被污染水体具有独特的有别于清洁水体的光谱特征,这些光谱特征体现在其对特定波长的光的吸收或反射,而且这些光谱特征能够为遥感器所捕获并在遥感图象中体现出来。如当水体出现富营养化时,浮游植物中的叶绿素对近红外波段具有明显的“陡坡效应”,故而这类水体兼有水体和植物的光谱特征,即在可见光波段反射率低,在近红外波段反射率却明显升高。水质遥感存在的问题与发展趋势1 存在的问题:①多数限定于定性研究,或进行已有的航空和卫星遥感数据分析,却很少进行定量分析。②监测精度不高,各种算法以经验、半经验方法为主。③算法具有局部性、地方性和季节性,适用性、可移植性差。④监测的水质参数少,主要集中在悬浮沉积物、叶绿素和透明度、浑浊度等参数。2 发展趋势2.1 建立遥感监测技术体系。研究利用新型遥感数据进行水质定量监测的关键技术与方法,形成一个标准化的水安全定量遥感监测技术体系,针对不同类型的内陆水体,建立多种水质参数反演算法,实现实验遥感和定量遥感的跨跃,从中获得原始创新性的成果。2.2 加强水质遥感基础研究。加深对遥感机理的认识,特别是水质对表层水体的光学和热量特征的影响机理上,以进一步发展基于物理的模型,把水质参数更好的和遥感器获得的光学测量值联系起来;加深目视解译和数字图象处理的研究,提高遥感影象的解译精度;增强高光谱遥感的研究,完善航空成像光谱仪数据处理技术。2.3 拓宽遥感水质监测项。现阶段水质遥感局限于某些特定的水质参数,叶绿素、悬浮物及与之相关的水体透明度、浑浊度等参数,对可溶性有机物、COD等参数光谱特征和定量遥感监测研究较少,拓宽遥感监测项是今后的发展趋势之一。应加强其他水质参数的光谱特征研究,以扩大水质参数的定量监测种类,进一步建立不同水质参数的光谱特征数据库。2.4 提高水质遥感监测精度。研究表明利用遥感进行水质参数反演,其反演精度、稳定度、空间可扩展性受遥感波段设置影响较大,利用星载高光谱数据进行水质参数反演,对其上百的波段宽度为10nm左右的连续波段与主要水质参数的波谱响应特性进行研究,确定水质参数诊断性波谱及波段组合,形成构造水质参数遥感模型和反演的核心技术,提高水质监测精度。2.5 扩展水质遥感监测模型空间。系统深入的研究水质组分的内在光学特性,利用高光谱数据和中、低分辨率多光谱数据进行水质遥感定量监测机理研究,进行水质组分的定量提取和组分间混合信息的剥离,消除水质组分间的相互干扰,建立不受时间和地域限制的水质参数反演算法,形成利用中内陆水体水质多光谱遥感监测方法和技术研究低分辨率遥感数据进行大范围、动态监测的遥感定量模型。2.6 改进统计分析技术。利用光谱分辨率较低的宽波段遥感数据得到的水质参数算法精度都不是很高,可以借鉴已在地质、生态等领域应用的混合光谱分解技术,人工神经网络分类技术等,充分挖掘水质信息,建立不受时间和地域限制的水质参数反演算法,提高遥感定量监测精度。2.7 综合利用“3S”技术。利用遥感技术视域广,信息更新快的特点,实时、快速地提取大面积流域及其周边地区的水环境信息及各种变化参数;GPS为所获取的空间目标及属性信息提供实时、快速的空间定位,实现空间与地面实测数据的对应关系;GIS完成庞大的水资源环境信息存储、管理和分析。将“3S”技术在水质遥感监测中综合应用,建立水质遥感监测和评价系统,实现水环境质量信息的准确、动态快速发布,推动国家水安全预警系统建设。
  • ”德国耶拿“盛装出席2014科学仪器发展年会,满誉而归!
    “德国耶拿”盛装出席2014科学仪器发展年会,满誉而归!(德国耶拿蝉联“2013年最具影响力国外十大厂商”,PQ9000,ChemStudio SA荣获“2013优秀新产品”!) 2014年4月18日上午9:00,中国科学仪器行业的“达沃斯论坛”——2014中国科学仪器发展年会(ACCSI 2014)在北京京仪大酒店正式召开。300余位相关政府领导及业内专家、300余位仪器企业负责人、40家媒体及200余位其他有关机构代表出席了会议。德国耶拿作为本次年会的特别赞助商,积极参加年会,不仅出席企业高峰论坛,同时在展位上展示了最新的产品信息,并在“食品检测技术论坛”中做了“高分辨率原子光谱仪最新技术进展及食品行业的应用“报告。图1-3:德国耶拿大中华区总经理:赵泰先生,出席“中国科学仪器企业高峰论坛”。 图4:德国耶拿原子光谱资深产品专家:杨静女士,于食品检测技术论坛,做报告“高分辨率原子光谱仪最新技术进展及食品行业的应用“作为ACCSI 2014的“重头戏”,“2013年度科学仪器优秀新产品”、“2013年度绿色仪器”、“2013年度最受关注仪器”以及“2013年度最具影响力厂商”等重要奖项在晚会现场一一揭晓。共有247家国内外仪器厂商,申报了561台2013年度上市的仪器新品, 经新品组委会初评,有150台仪器入围。 德国耶拿公司申报的4台仪器,全部顺利入围:AI部门: PQ9000 电感耦合等离子体发射光谱仪创新点介绍:1.提高了分辨率和光学性能:0.003nm(在200nm处)的光学分辨率,已达到谱线的自然宽度;将卡尔蔡司光学技术成功应用于ICP-OES。 2.采用垂直矩管、双向观测和4种测量方式(轴向、轴向Plus、侧向、侧向Plus)设计:适合各类样品(包括有机,高盐)的分析,能满足各种浓度(ug/L~%)的同时测定。3.科学降低消耗和提高灵敏度:吹扫、冷却用氩气又回到等离子体再用,节省氩气消耗超过35%;如此还实现了对光室的持续吹扫,自然提高了紫外波长谱线检测的灵敏度。4.使用新一代CCD检测器:快速,高像数分辨率——0.002nm,自动选择最佳积分时间,至少6个数量级的动态监测范围,同时记录元素线与其直接光谱环境,自动扣除背景。 5.即开即用:5分钟即可达到平稳的工作状态,不需要提前预热、提前吹扫和延时吹扫。 6.精巧设计:在同类仪器中体积较小。 SPECORD 50 PLUS 高智能紫外可见分光光度计创新点介绍:1.SPECORD 50 plus在光束上的创新技术——非对称分光双光束系统(SBT技术),使整个仪器光路设计更加简单,不仅具有双光束所具有的优势,测量参比和样品信号,直接补偿样品的变化,另外大大增加光通量,从而更有效地改善长期稳定性和仪器的检测能力。2.SPECORD 50 plus提供涵盖多种行业的免费方法库,如化学、制药、医学、食品质量控制、环境、生命科学等,每个方法都包括了样品的前处理,测量参数设置等内容,另外软件内置多条分析标准曲线,只需打开所需软件自带的方法及相应标准曲线就可以开始试验,大大节约分析时间,节约分析成本。 3.仪器本身特设浑浊样品池位,浑浊样品可直接测定独特的设计,不需另配其他附件,不受杂散光因素的困扰,可以直接测定浑浊样品。LS部门:Chemstudio SA全自动化学发光成像系统一体机 创新点介绍:1、eLite光源使用高性能氙灯提供全光谱的光源,突破了传统led光源能量不足、激发效率不够、波长单一不可变的瓶颈,结合21种滤光片最大化的拓展了荧光成像的应用。突破性的解决了传统成像荧光应用单一不可扩展的问题,普通荧光成像、RGB可见荧光成像、近红外荧光成像都能轻松得到最优化的结果。eLite光源是业内唯一一个既可以提供顶置荧光又可以提供透射荧光的光源,结合高分辨率的CCD首次实现了用CCD成像技术来进行2D DIGE的完美成像。 2、-50℃冷CCD确保仪器能提供最好的检测灵敏度。3、15.6寸彩色触控屏结合专为中国科研工作者开发的中文软件让操作变得极其简单,独立操作的仪器无需外接电脑,让您拥挤的实验室变得更加宽敞明亮。4、成像结果可以通过无线传输将图片传到每一位工作者的各人电脑中,方便操作且可以让仪器远离U盘病毒。5、专利的三波长紫外光源,蛇形排布的灯管使光源更均匀。InnuPureC96 高通量自动核酸纯化系统 创新点介绍:1、采用磁珠法进行核酸纯化,通过内部底座上的磁盘将磁珠吸附在管底,上清液产物通过tip吸出到产物收集管中,这样的分离方式可确保核酸产物中完全没有磁珠残留,无需离心即可直接应用于下游工作。2、试剂条全部预装好,密封包装,使用时tip自动穿破密封膜取样,不会因试剂过早暴露而污染。3、装有UV灯、HEPA过滤装置和风扇,以及密封的样品处理环境,确保仪器内部的洁净,产物无污染。在晚会上最终揭晓了20台获奖仪器,PQ9000电感耦合等离子体发射光谱仪,ChemStudio SA全自动化学发光成像系统一体机凭借多项创新技术,卓越分析性能,在众多产品中,脱颖而出,喜获”2013年度科学仪器优秀新产品”。 同时,德国耶拿荣获“2013年最具影响力国外十大厂商”。 德国耶拿历年来曾经多次获得该奖项,本届年会再获此殊荣,这是客户及业界对德国耶拿的肯定与支持。我们也将一如既往的以品质优异的仪器和专业周到的服务,为中国分析仪器行业的发展作出应有的贡献! 关于耶拿: 德国耶拿分析仪器股份公司,是德国最大的分析仪器制造商之一,在光学制造领域拥有超过160年的历史,在发展高质量精密仪器和发明创造方面有着悠久的传统。前身为久负盛名的卡尔蔡司公司分析仪器部。公司总部设在世界光学精密仪器制造中心的德国耶拿市,目前在全球90多个国家设有分支机构。 以“品质造就非凡,创新成就梦想”为企业信条,公司的宗旨是不断创新和追求活力,始终保持领先的技术水准。耶拿公司凭借其在光学和光谱技术领域内的优势,凭借其历史上的传统和经验,一直不间断地研究新的技术,并且和应用紧密联系, “技术”与“品质”是耶拿公司核心的竞争力。 更多信息,请登录:http://www.analytik-jena.com.cn/ 欢迎关注我们,获得更多资讯:新浪微博:@analytikjena, 微信:德国耶拿北京代表处
  • 可更换的人眼光学镜头—人工晶状体
    晶状体如同人眼中的一个精密光学元件,可以让进入眼睛的光线投影并聚焦到视网膜上,形成清晰的影像,因此我们可以看到外部精彩的世界。晶状体的主要成份是蛋白质和水份,它会因为老化而出现雾化或混浊的情况,而雾化的晶体则会阻碍光线和影像投射到视网膜上。老年人常见眼疾白内障就是由于老化引起的,患者晶状体会变得浑浊,如同透过一层白色障碍物在看东西,极大影响到视力。而相关的药物治疗至今未取得突破性进展,人工晶体植入术是治疗白内障最有效的手段,即把已变得不透明的晶状体拿掉,换上人工晶状体,术后相当于给人眼重新更换了一个光学镜头,且手术安全有效。人工晶状体(Intraocular Lens)通常是由一个圆形光学部和周边的支撑袢组成,光学部的直径一般在 5.5~6 mm 左右,支撑袢的作用是固定人工晶体,可以是两个 C 型或 J 型的线状支撑袢,通常有硬质人工晶体、折叠人工晶体,单焦点/多焦点、黄色人工晶体等。 人工晶状体作为第三类医疗器械,透光率是必测指标。《YY 0290.2-2009眼光科学 人工晶状体 第2部分:光学性能及试验方法》规定了对于人工晶状体透光性能的要求,详见下表描述。标准要求每一型号的人工晶状体都应该给出在波长300nm-1100nm范围内对于光焦度为20D的人工晶状体的光谱透过率记录(例如记录在使用说明书或包装上)。 岛津基于标准《YY 0290.2-2009眼光科学 人工晶状体 第2部分:光学性能及试验方法》开发了透光孔径为φ3mm的人工晶状体测试附件,并针对多数人工晶状体特殊的支撑袢结构,设计了斜凹圆槽,人工晶状体装入后被准确固定在定位孔中。为了模拟晶状体在人眼中的实际状态,支架中可充入盐溶液代替房水,一般可采用0.9%NaCl的盐溶液。以下为对某品牌人工晶状体进行测试的结果。仪器配置如上图所示,即在岛津的紫外可见分光光度计UV-2600i上使用积分球附件,人工晶状体放置在样品侧的人工晶状体支架中,并预先充入盐溶液,同时在参比侧的支架中也注入盐溶液。为了考察测试重复性,对样品进行5次测量,每次测试需要拆开支架重新装样,以验证该人工晶状体支架对于样品定位的准确性。经过5次测试,可看到该支架具有优异的测试重复性。YY 0290.2-2009 标准要求“光谱透射比记录应表明人工晶状体在紫外线(UV) 部分的光谱被滤除,对于光焦度为20D的人工晶状体或同等物,以光谱透射比10%对应的波长作为UV截止波长时,该波长应不小于360nm”。当截止波长小于360nm,则说明人工晶状体不能有效阻挡紫外光。UV截止波长还可反映有害蓝光的透过情况,当小于360nm时,有害蓝光的透过率会变大,而过多的有害蓝光进入人眼视网膜中有可能会导致黄斑眼疾的发生。从上图测试结果得到此人工晶状体的UV截止波长为398nm,可满足行标的要求。 本文内容非商业广告,仅供专业人士参考。
  • 安东帕密度/黏度检测一体机的新功能——浊点检测
    浊点是润滑油和民用燃料油的低温特性参数之一,通常情况随着温度降低到一定温度,清澈明亮的液体开始分离石蜡晶体,出现浑浊现象。知道浊点温度对于确定润滑油和民用燃料油的使用工况至关重要。润滑油的浊点越低,则其所含的水分或石油蜡越少。浊点如果高于制冷要求的最低蒸发温度,则析出的石蜡会堵塞节流阀,减弱蒸发器的传热效果,甚至会堵塞管式蒸发器的通道。使用流动改善添加剂可以改变低温流动性能,另一种防止凝结或堵塞的方法是加热燃油系统的过滤器和其他部件。目前市场上一般手动、自动方法测试石油产品的浊点仪器是根据标准GB/T6986-2014(ASTM D2500)生产的。而SVM 3001 Cold Properties一体机测试浊点结果的精密度完全符合GB/T6986-2014(ASTM D2500)重复性、再现性的要求。另外,该仪器还可以测定航煤的冰点。安东帕SVM 3001 Cold Properties为柴油、生物柴油和喷气燃料提供快速、可靠的低温性能测量解决方案。优势概览:温度范围从 -60 °C 至 +100 °C一次测试即可获得运动黏度、密度、浊点和冰点参数黏度临界温度(12 cSt 时的温度)ASTM D1655、D2880、D7566、D975、D7467、JIG AFQRJOS,与 ASTM D2386 和 ASTM D2500 的结果相关安东帕SVM 3001 Cold Properties一次进样就能够测量出从喷气燃料、柴油、到润滑油等各种样品的黏度、密度、浊点和冰点。无论是在-20℃下测量,还是在+100℃下测量,耗电量都远低于一般的毛细管水浴。自动进样器实现了进样、测量和清洗的自动化。安东帕SVM 3001 Cold Properties卓越的性能简化操作、提高效能,是石化行业质控和研发的首选。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制