当前位置: 仪器信息网 > 行业主题 > >

黄嘌呤衍生物

仪器信息网黄嘌呤衍生物专题为您整合黄嘌呤衍生物相关的最新文章,在黄嘌呤衍生物专题,您不仅可以免费浏览黄嘌呤衍生物的资讯, 同时您还可以浏览黄嘌呤衍生物的相关资料、解决方案,参与社区黄嘌呤衍生物话题讨论。

黄嘌呤衍生物相关的资讯

  • 与T细胞结合的抗体衍生物靶向修复用于精准免疫治疗
    2019年11月26日,刊登在Nature communication上的研究报告指出,一种与T淋巴细胞结合的抗体衍生物,重新定向T淋巴细胞以溶解肿瘤细胞。T细胞的免疫疗法正在改变当前癌症治疗的前景。但是,缺乏合适的靶抗原,将这些策略限制在极少的肿瘤类型上。在这里,本文报道了一种T细胞结合抗体衍生物,该衍生物分为两个互补的半部分,并针对抗原组合而不是单个分子。现在,每半个部分都是半抗体,包含与抗CD3抗体的可变轻链(VL)或可变重链(VH)融合的抗原特异性单链可变片段(scFv)。当两个半抗体同时在单个细胞上结合各自的抗原时,它们会对齐并重组原始CD3结合位点以与T 细胞结合。本文表明,通过这种方法,T淋巴细胞可专门消除双重抗原阳性细胞,同时保留单个阳性癌旁细胞。这使不适合当前免疫疗法的精确靶向治疗成为可能。抗癌单克隆抗体代表了现代药物治疗中增长最快的领域之一。在临床前和临床研究中目前列出的数百种治疗性抗体和抗体衍生物中,有一些脱颖而出,其重点是将细胞毒性T淋巴细胞重新靶向恶性细胞。其中,最先进的是将嵌合抗原受体(CARs)转染到T细胞和双特异性T细胞结合抗体(BiTE),两者均使用单特异性单链可变片段(scFv)作为靶向装置。总的来说,这些抗体衍生物所针对的靶分子是存在于恶性细胞及其未转化的对应物上的分化抗原,它们的结合常常引起严重的,甚至致命的不良事件。由于适用于基于抗体疗法的真正的肿瘤特异性抗原很少见,因此本文在这里研究一种组合方法,该方法可以解决由某些类型的白血病或淋巴瘤,实体癌和其他来源的癌干细胞异常表达的抗原组合。此外,鉴于结合T细胞疗法的临床有效性,本文以双重抗原限制的方式重定向T淋巴细胞以裂解肿瘤细胞。半抗体消除体内已建立的肿瘤为了测试半抗体的潜在治疗适用性,对免疫缺陷的NOD/SCIDγ(NSG)小鼠进行了体内免疫接种。在第1天接种萤光素酶基因标记的THP-1肿瘤细胞。在第1、22和28天,尾静脉接种HLA-A2阴性的CD4和CD8供体T淋巴细胞。在第7天植入肿瘤细胞后,每天皮下分别注射:盐水、单个半抗体、两个半抗体的组合及这是双特异性T细胞结合抗体(BiTE)对照。直到第39天。为了研究半抗体是否可以相互发现以实现靶标功能互补,将构建体彼此分开注射在较远的位置,一个在颈部,另一个在后肢上。尽管所有接受盐水或单个半抗体的小鼠疾病发展迅速,并在53天内达到了安乐死的标准,但用两个半抗体对或BiTE对照治疗的小鼠却排斥了已建立的肿瘤(下图a)。接受半抗体对或BiTE对照的小鼠的总生存期显著延长。上图:体内高精度靶向癌细胞a.通过IVIS Lumina XR实时生物发光成像,每周评估一次荧光素酶基因标记的THP-1肿瘤细胞的生长b.每天监测生存期,直到第110天半体技术的组合性质为特异性治疗开辟了新的领域。它可能选择性消除不适合当前免疫疗法的人类癌症,并且与旨在增强对靶标亲和力的其他双重或三重抗原特异性策略大不相同。尚不清楚半抗体是否会诱导细胞因子释放综合征,这是双特异性T细胞结合抗体(BiTEs)或针对抗原(例如CD19)的CAR-T细胞的主要缺陷。在这种情况下,甚至用半抗体处理单个靶分子也是合理的,以便将T细胞活化专门限制在肿瘤部位,同时减少血管内T细胞活化和全身细胞因子分泌。 综上所述,本文研究的半体技术将成为用于组合高精度免疫靶向以消除恶性细胞及其他恶性肿瘤的通用平台。
  • 新品速递| 酚汀(酚丁)、酚酞及其酯类衍生物或类似物上架
    国家市场监督管理总局发布关于打击食品中非法添加酚汀(酚丁)、酚酞及其脂类衍生物或类似物违法行为的通知,加强了对食品中非法添加的监管。由于酚汀(酚丁)、酚酞及其酯类衍生物或类似物与酚酞具有相同/相似的核心药效团和临床功效,具有类似属性和危害性,因此,添加有上述物质的食品有对人体产生毒副作用的风险,影响人体健康,甚至可危害生命。根据《食品安全法》,食品不得添加药物,而该类原料也从未获得批准作为食品添加剂或新食品原料,以及保健食品原料,因此,在食品中检出酚汀(酚丁)、酚酞及其酯类衍生物或类似物(如4-氯双醋酚丁),均属于非法添加。部分相关产品:了解更多产品或需要定制服务,请联系我们关于我们天津阿尔塔科技有限公司成立于2011年,是国内领先的具有专业研发及生产能力的国产标准品企业,公司坚守“精于科技创新,保障人民健康安全生活”的企业愿景,秉持”致力于成为标准品第一品牌”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并被认定为国家高新技术企业、国家级专精特新小巨人企业、天津市专精特新中小企业、天津市瞪羚企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和国家重点研发计划重大专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,精于标准品科技创新,创造绿色健康品质生活,真正实现From Medicare to Healthcare。
  • 标准解读|化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-串联质谱法
    基本情况 深圳海关食品检验检疫技术中心和深圳市检验检疫科学研究院一同起草了GB/T 41683-2022化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-串联质谱法,此标准将在5月1日起正式实施。 标准背景 秋水仙碱大多是由百合科秋水仙属植物秋水仙的鳞茎中提取出的生物碱,生物碱属于生物里面常见有机化合物,其中很多是具有毒性的,部分还会对人体的神经系统,消化系统等产生危害。国家对化妆品中的生物碱也做了详细规定,秋水仙碱及其衍生物秋水仙胺禁止在化妆品中检出。 本标准中的秋水仙碱及其衍生物秋水仙胺是我国《化妆品安全技术规范(2015年版)》规定的禁用物质。规范中规定:若技术上无法避免禁用物质作为杂质带入化妆品时,应进行安全性风险评估,确保在正常、合理及可预见性的使用条件下不得对人体健康产生危害。 标准范围 本标准规定了化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的高效液相色谱-质谱/质谱测定方法的原理、试剂和材料、仪器设备、试验步骤、试验数据处理、回收率、精密度等内容。 本标准适用于水基、乳液、膏霜、凝胶、蜡基、粉基类等化妆品中秋水仙碱及其衍生物秋水仙胺的测定,并对多种基质类样品前处理进行了规定。 本标准秋水仙碱及其衍生物秋水仙胺的方法检出限均为10.0 μg/kg。GBT 41683-2022化妆品中禁用物质秋水仙碱及其衍生物秋水仙胺的测定 液相色谱-串联质谱法.pdf
  • 成本低廉的造纸衍生物质 摇身一变成锂硫电池电极材料
    p   造纸工业一种很常见的副产品:木质磺酸盐,已被以色列理工学院科学家证明可做为锂硫电池的低成本电极材料,目前研究小组创建了一款手表锂硫电池原型,下一个工作将试着扩大原型。 br/ /p p   锂硫电池能量密度至少是锂离子电池的两倍之多,因此尽管可充电锂离子电池是市场当红炸子鸡,科学家还是对锂硫电池的开发产生浓厚兴趣。 /p p   可充电电池主要由两个电极、电极间的液体电解质以及隔离膜组成,锂硫电池的阴极由硫碳基质构成,阳极使用锂金属氧化物。在元素形式中,硫是不导电的,但当硫在高温下与碳结合时会变得高度导电,因此被看好应用于新型电池技术中。 /p p style=" text-align: center "    img src=" http://img1.17img.cn/17img/images/201804/insimg/a6c903ca-7605-4ae1-b894-c58d427c5885.jpg" title=" 3.jpg" / /p p   然而,锂硫电池的一大挑战是硫很容易溶解到电池电解质中,导致两侧电极在循环仅仅几个周期后就恶化,尽管科学家试图使用不同形式的碳如:纳米碳管、复杂的碳泡沫等将硫稳在适当位置,但成效有限。 /p p   以色列理工学院研究团队现在找到一种简单方法,可以从单一原材料中创造出最佳的硫基阴极,他们将造纸工业的主要副产品木质磺酸盐(lignosulfonate)进行干燥处理,然后放到石英炉管(quartz tube furnace)中加热至 700℃,于高热之下驱除大部分硫气,但留下一些多硫化物(硫原子链),可深度嵌入活性碳基质中。 /p p   研究人员重复加热过程好让适量硫嵌入碳基质中,接着将材料研磨并与惰性聚合物黏合剂混合,于铝箔上形成阴极涂层,证实可以用这种廉价、丰富的造纸衍生物质来建构锂硫电池。 /p p   目前团队设计了一款锂硫电池原型,规格为手表电池,可循环充放电约 200 次。下一步工作是扩大原型,以显著提高放电率和电池循环寿命,使电池有机会为大型数据中心供电、微电网和传统电网提供更便宜的能源存储选项。 /p p br/ /p
  • 贵州大学池永贵团队Nat Commun | 国仪量子EPR助力合成苯并呋喃衍生物研究
    近日,贵州大学池永贵研究团队证明了杂原子阴离子可以用作超电子供体来引发自由基反应,从而轻松合成 3-取代苯并呋喃。所得产物在有机合成和农药开发方面具有广阔的应用前景。  相关成果以“Facile access to benzofuran derivatives through radical reactions with heteroatom-centered super-electron-donors”为题,发表于著名学术期刊《自然-通讯》(Nature Communications)。研究中使用了国仪量子的X波段连续波电子顺磁共振波谱仪EPR200-Plus,证实了反应体系中自由基物种的生成。  苯并呋喃是广泛存在于人类临床药物中的100种主要环状结构之一。特别是,在许多已被证实具有生物活性的天然和非天然药物分子中, 3-取代苯并呋喃经常被发现为核心结构。为快速而选择性地获得具有多种功能的3-取代苯并呋喃衍生物,开发高效的合成新方法至关重要。单电子转移反应是构建功能化 3-取代苯并呋喃的最有效途径之一,而合适的电子供体对单电子转移过程的成功至关重要。然而迄今为止,还未有研究报道采用以杂原子为中心的阴离子作为单电子转移反应的直接超级电子供体。图片来源:摄图网  贵州大学池永贵研究团队在研究中利用杂原子阴离子作为 SED 来引发自由基反应,从而轻松合成了具有各种杂原子官能团的 3-取代苯并呋喃分子。具有不同取代模式的膦、硫醇和苯胺在这种分子间自由基偶联反应中表现良好,并且具有杂原子官能团的 3-官能化苯并呋喃产物具有中等至优异的产率。  Fig. 1 | Bioactivities, syntheses of 3-substituted benzofurans and SEDs for radical reactions. a Commercial drugs containing 3-substituted benzofuran structures. b Typical methods for access to 3-substituted benzofurans. c Representative organic small molecular SEDs. d Heteroatom anions as SEDs for 3-heteroalkylbenzofuran synthesis.  研究中使用EPR技术(国仪量子EPR200-Plus)证实了反应体系中自由基物种的生成。在25℃ DME中,1a、HPPh2和LDA的混合物的EPR光谱在g = 2.0023处出现了类似于苯基g因子的信号。  Fig. 4 | EPR spectrum of the reaction mixtures and control experiments. a EPR spectrum of the reaction mixtures. b Feasibilities of the heteroatomic anions as SEDs for the radical reactions. c Cross-radical coupling reactions with mercaptans. d The X-band EPR spectrum of 1:2:2 stoichiometric reaction of 1a (0.1 mmol), HPPh2 (0.2 mmol), and LDA (0.2 mmol) was measured at 298 K with DME (2 mL) as solvent at a microwave frequency of 9.418333054 GHz (g = 2.0023).成果摘要  Nature Communications:通过与杂原子中心的超级电子供体的自由基反应轻松获得苯并呋喃衍生物  开发合适的电子供体对于单电子转移(SET)过程至关重要。使用杂原子中心阴离子作为直接 SET 反应的超电子供体 (SED) 的研究很少。在这里,我们证明杂原子阴离子可以用作 SED 来引发自由基反应,从而轻松合成 3-取代苯并呋喃。具有不同取代模式的膦、硫醇和苯胺在这种分子间自由基偶联反应中表现良好,并且具有杂原子官能团的 3-官能化苯并呋喃产物具有中等至优异的产率。通过控制实验和计算方法阐明了反应机理。所提供的产品在有机合成和农药开发方面显示出有前景的应用。国仪量子电子顺磁共振波谱仪国仪量子目前已推出具有核心自主知识产权、商用化的X波段电子顺磁共振波谱仪全系列产品:X波段脉冲式电子顺磁共振波谱仪EPR100、X波段连续波电子顺磁共振波谱仪EPR200-Plus、台式电子顺磁共振波谱仪EPR200M;并向前沿高端技术的高频谱仪进军,研发出了W波段脉冲式电子顺磁共振波谱仪EPR-W900。在化学、环境、材料物理、生物医疗、食品、工业领域有着重要而广泛的应用。国仪量子电子顺磁共振波谱仪全系列产品
  • 福斯诚邀您参加2013第八届上海国际淀粉及淀粉衍生物展览会暨新技术、新设备研讨会
    尊敬的先生/女士: 我们谨此诚邀您及贵公司代表于2013年5月22日-24日莅临我公司展台参观指导。 · 展会期间我们将展出福斯旁线、在线实时监控近红外分析仪及湿化学分析仪。 · 展会期间我们将参加有关近红外应用的讲座活动。 福斯开发、生产分析仪器致力于提高客户的生产效率、产品质量及收益。 福斯是一家致力于提供农业、食品及饲料行业专业解决方案的领导者。借助福斯精确、易用的分析仪器,福斯用户可通过节约生产过程的时间、更有效的利用原材料、降低生产成本、始终如一的保持高质量产品以及优化食品安全实现提高收益。 期待您莅临我们的展位参观指导。 2013第八届上海国际淀粉及淀粉衍生物展览会暨新技术、新设备研讨会 会场: 上海光大会展中心 地址: 上海市徐汇区漕宝路88号 展位: A2+A16 时间: 2013年5月22日-24日 讲座: 淀粉加工及氨基酸发酵过程中近红外快速分析技术应用 时间: 2013年5月22日 13:40-14:10 地点: 光大会展中心~西馆三楼二号会议室 此致敬礼 福斯 中国
  • 质构仪在鱼、肉、无肉蛋白替代品及其加工衍生物食用质量的质构控制
    美国FTC质构仪(多种型号可选)质地是决定鱼、肉、无肉蛋白替代品及其加工衍生物食用质量的首要考虑因素。例如,从制造商的角度来看,这可能是一种成分的影响,例如,一个加工过的火腿生产商向其产品中加水,并希望量化消费者可接受的最大加水水平。从顾客的角度来看,这是正宗的火腿。从农场/海洋到餐盘的质地分析被用来客观地衡量鱼、海鲜和肉类产品的质量,例如老化对肉嫩度和鱼的肌肉轮廓的影响,以表明脂肪含量。其他应用包括加工肉制品的切片/撕裂特性,肉酱和糊状物的稠度,鱼凝胶的弹性,海产品的硬度,以及腌料对肉类的影响等。在过去50年里,全球对肉类和鱼类的消费显著增加,但也有一种消费肉类替代品的趋势。肉类替代品主要由寻求更健康、无胆固醇、可持续和合乎道德的肉类替代品的素食主义者和纯素食主义者消费,但也有弹性素食主义者(主要食用植物性食品,偶尔食用肉类、鱼类和家禽)消费。食品科学家正在开发植物性肉类 与肉类口感和味道相似的鱼类替代品,模仿动物蛋白质中的纤维特性。它们通常由大豆、麸质和Quorn等产品制成,但制造商也使用其他成分,如豌豆蛋白。无论是在一个研发实验室,一个领域,还是一个制造设施,我们的产品是量化鱼,肉和植物性替代品的质构特征的理想解决方案。
  • 哈医大通过色谱法建立食物嘌呤数据库
    哪些食物中含有嘌呤物质?每种食物中的嘌呤含量又是多少?今后,痛风的“原凶”——嘌呤物质,将首次得到准确、科学的“再现”,为痛风患者健康膳食提供指导依据。日前,一项规范测定常见食物中嘌呤含量的研究在哈尔滨医科大学进入研究阶段。科研人员将初步建立我国食物中嘌呤含量的数据资料,并补充到国家食物成分数据库中,为降低国内高尿酸血症和痛风病的患病率及症状减轻提供科学数据。   据了解,随着经济发展和人们膳食结构的改变,我国人群高尿酸血症和痛风的患病率呈直线上升趋势。有资料显示,我国20岁以上的人群约2.4%—5.7%存在血尿酸过高的情况,从而引起痛风的发病。而在对痛风患者的治疗中,医生发现,低嘌呤膳食是治疗该病的关键。   据哈医大公共卫生学院潘洪志副教授介绍,在我国食物成分表中,目前尚无食物中嘌呤含量的准确数据,临床及有关网站上公布的嘌呤含量数据普遍来源不清且彼此不一致,对嘌呤含量高低类别的划分标准也不尽相同,给广大痛风患者治疗时带来极大疑惑。   哈医大科研人员此次开展的嘌呤含量研究拟采用高效液相色谱法,通过现代科技手段,测定我国常见各类食品中的嘌呤含量,包括腺嘌呤、鸟嘌呤、次黄嘌呤、黄嘌呤等,并计算总嘌呤含量,提高嘌呤测定方法的准确度、精密度和重现性,获得准确的常用食物嘌呤含量数据。   测定结果评出后,将初步建立我国食物中嘌呤含量的数据资料,并补充到国家食物成分数据库中,以此作为痛风患者健康膳食指导的依据。专家表示,该项研究预计在今年内完成,它将为降低我国高尿酸血症和痛风病的患病率和减轻症状提供科学数据,对公共卫生具有重大意义。   嘌呤为有机化合物,在人体内嘌呤氧化会变成尿酸,而尿酸过高就会引起痛风。据了解,痛风是长期嘌呤代谢障碍、血尿酸增高引起组织损伤的一种疾病。其临床特点为高尿酸血症、急性关节炎反复发作、痛风石形成、关节畸形、肾实质性病变等。   痛风俗称“富贵病”。该病一般在男性身上发病,且会遗传。有痛风的病人发病时,除用药物治疗外,重要的是平时注意忌口,以限制饮食中嘌呤的含量。
  • 安谱实验新产品系列之三——醛酮及其衍生物篇
    醛酮类化合物具有慢性毒性,被列为空气中的有害物质,主要来自于汽车尾气、化工行业、木材加工防腐等直接产生的醛酮类化合物。近年来,随着人民生活水平的提高及化工等行业的发展,对空气中醛酮类有机污染物的分析与监测显得尤为重要。目前醛酮类化合物检测方法主要有:1.HJ 683-2014 空气醛、酮类化合物的测定 高效液相色谱法2.HJ/T 400-2007《车内挥发性有机物和醛酮类物质采样测定方法》说明:1.对于车内空气以及零部件中醛酮类化合物检测,各企业以HJ/T 400-2007为基础,制定符合要求的企业标准,给出所涉及分析物的限值。2.对于多种醛酮的检测主要采用衍生化方法。
  • 湖南大学刘海蓉课题组《J. Mater. Chem. B》:一种高保真柚皮苷衍生生物墨水加速了软骨缺
    3D生物打印技术加速了健康科学研究的发展,如组织工程与再生医学、药物筛选和开发等。生物墨水是3D生物打印技术的基本组成部分,目前广泛应用的生物墨水主要是由明胶、透明质酸、海藻酸盐、丝素蛋白和PEG等常用生物医用高分子衍生物构成,其种类和功能有限,需进一步开发和拓展特异性组织再生的医用功能化生物墨水。由植物和微生物产生的天然化学物质具有广泛的生物活性和高度的立体化学结构,是一种极具应用潜力的医疗资源。研究发现天然黄酮糖苷类化合物含有至少一个共轭大π键和多个共轭双键,可以在一定波长范围内吸收光,因此推测黄酮糖苷类化合物基生物墨水在光辅助打印过程中或许可以吸收散射光,提高打印产品的形状保真度。另一方面,黄酮糖苷类化合物具有抗氧化、抗炎和抗凋亡特性,被用于治疗骨质疏松、风湿病和神经退行性疾病等临床前研究。然而,由于其生物利用度低,限制了其在生物医学等领域的广泛应用。因此,研究黄酮糖苷类化合物衍生物基生物墨水来提高3D生物打印保真度及黄酮糖苷类化合物在组织工程等医学应用中的生物利用度是有显著科学意义的。与口服黄酮糖苷类药物相比,3D生物打印黄酮糖苷类化合物基生物墨水可将黄酮糖苷类分子的生物活性直接传递至邻近细胞被有效利用。鉴于其有望改善打印保真度、促进组织再生修复,将黄酮糖苷类化合物基生物墨水称为医用生物墨水。为了验证这一假设并建立生物活性医用生物墨水的研发方案,湖南大学刘海蓉教授课题组提出了一种基于柚皮苷衍生物的新型医用生物墨水,该生物墨水可显著提高3D打印保真度,极大地提高了软骨缺损修复效率(图1)。相关论文在线发表在《Journal of Materials Chemistry B》,湖南大学黄宇婷为本文第一作者,刘海蓉、周征为通讯作者,韩晓筱课题组为本文3D生物打印提供了支持。图1 一种可提高3D打印保真度的柚皮苷衍生的生物墨水加速了软骨缺损修复。柚皮苷(NAR)衍生的生物墨水材料(NARMA-GELMA bioink)由甲基丙烯酰化柚皮苷(NARMA)和甲基丙烯酰化明胶(GELMA)组成,在405 nm光照条件下可快速固化成型。图2结果证明了植物源活性因子黄酮糖苷类化合物柚皮苷和天然高分子明胶的甲基丙烯酰化改性成功,表明NARMA和GELMA具有光聚合交联能力。接着,采用摩方精密nanoArch S140打印机研究载细胞生物墨水的生物打印性能,结果如图3所示,相比于经典的GELMA生物墨水,光固化打印NARMA-GELMA生物墨水结果表明该生物墨水的生物打印结构完整性好、形状保真度高,这一优异的光固化结果得益于NARMA在405 nm处有光吸收特性(图2B)。并且该打印过程条件温和,细胞存活状态良好。最后采用兔关节软骨缺损模型验证了NARMA-GELMA生物墨水的软骨缺损修复性能,结果如图4所示,联合自体软骨细胞的NARMA-GELMA生物墨水修复兔关节软骨缺损一个月后,NARMA-GELMA水凝胶组处理的组织表面光滑、与宿主组织的界面整合程度高、骨软骨界面清晰,在组织学层面上形成了大量的软骨样陷窝结构,分泌了丰富的蛋白聚糖和二型胶原成分。特别是,NARMA-GELMA水凝胶组中软骨细胞呈清晰的梯度排列,与天然软骨相似。表明NARMA-GELMA生物墨水有利于软骨样组织的形成,可提高软骨修复效率、能有效促进体内关节软骨缺损再生修复。该研究拓展了生物墨水材料,为特异性组织再生的医用功能化生物墨水的研究提供了一种新策略。图2 改性柚皮苷和改性明胶的表征。柚皮苷改性前后的FTIR图(A)、UV-Vis图(B)和1H NMR谱(C);明胶改性前后的FTIR图(D)、UV-Vis图(E)和1H NMR谱(F)。图3 采用摩方精密nanoArch S140打印机制备由柚皮苷衍生生物墨水和改性明胶生物墨水转化的水凝胶结构。(A)3D生物打印的CAD模型和切片图案;(B)3D生物打印结构的宏观照片;(C) 3D生物打印结构的活细胞荧光染色图片。图4 生物墨水原位修复关节软骨缺损一个月后的大体观和组织学染色结果。(A)大体观;(B)苏木素-伊红染色(H&E);(C)番红/固绿染色(SO/FG);(D)马松染色(Masson);(E)二型胶原的免疫组化染色(IHC);(F)ICRS大体观评分;(G)O`Driscoll 组织学评分。
  • 光化学衍生(PCD)方法综述
    月旭WelView光化学衍生器订货号:00836-00003什么是光化学衍生方法光化学衍生(PhotoChemical Derivatization, PCD)分析法是基于光化学反应而建立的一类分析方法,它以其独特的衍生方式与传统的荧光,化学发光,紫外-可见,电化学等检测方法相结合,提高了原有方法的灵敏度与选择性,极大地拓展了传统检测方法的应用范围,在药物、复杂生物样品,环境样品分析测定等方面得到广泛应用。如何使用光化学衍生器的使用十分简单,将光化学衍生器的两端管路分别连接到色谱柱的出口端和荧光检测器的入口端,然后打开仪器开关等待紫外灯稳定即可使用。应用综述1. 黄曲霉毒素G1和B1衍生自然界中的霉菌分布广泛,种类繁多,据联合国粮农组织估计,目前世界上至少有25%左右的谷物被霉菌毒素污染,其中最为严重的是黄曲霉毒素的污染,它们是一类具有相似结构的二氢呋喃杂氧萘的衍生物,有B1, B2, G1, G2, M1等,其中B1毒性最强,是氰化钾的10倍,砒霜的68倍,但用荧光检测器检测时,B1和G1的响应很低,需要进行衍生增强才能检测到。月旭科技WelView光化学衍生器经过优化的衍生管路能够显著提升样品衍生效果,使用黄曲毒霉素混标进行测试发现相同的色谱条件下衍生后G1和B1的峰面积是未衍生时的8倍和6倍以上。2. 磺胺类药物衍生磺胺类药物(Sulfonamides)是一类人工合成的抗菌药,具有效价高、抗菌谱广,毒性小,使用方便等特点,而广泛使用于畜牧业生产。但其不合理的使用会通过肉类食品在人体蓄积,造成危害。由于质谱检测成本高,紫外检测灵敏度低,选择性差,应用有局限性。推荐采用光化学衍生方法对样品进行衍生后进行荧光检测分析,能够获得较好的检测效果。如下例中,对于SDZ, SPD, SMR, SM2, SMD, SQX等六种磺胺类药物衍生前后的对比图。3. 硫肟醚类农药衍生硫肟醚是国家南方农药创制中心湖南基地研制成功的2种新型杀虫剂,对多种害虫具有优良的防治效果,硫肟醚类农药测定方法主要有光化学荧光法和质谱法,质谱法成本较高,难以推广。通过光化学衍生法可实现衍生产物的高灵敏度检测。4. 强化食品中叶酸含量测定时衍生增强叶酸是一种重要的B族维生素,是机体细胞生长和繁殖的必需物质,是维持生物体正常生命过程所必需的一类有机物质,与新生儿缺陷,心血管疾病,精神疾病,胃肠功能异常,免疫缺陷及肿瘤等具有相关性。叶酸的检测方法比较多,HPLC可实现叶酸的完全分离,特异性高,但叶酸一般含量低,荧光很弱,痕量分析时,推荐采用光化学衍生方法,叶酸在254nm紫外光照射后光化学产物的荧光强度能得到较大增强,用于片剂或维生素制剂中痕量叶酸的测定。方法具有操作简便,无需要外加试剂,重现性好,选择性好,灵敏度高的特点。如上图,对于奶粉等样品进行分析,流动相为50mmol/L 磷酸二氢钾水溶液(pH=5.0)和乙腈,采用梯度洗脱,改善峰形,与杂质有效分开。5. 辣椒油中4种苏丹红染料的的分析苏丹红是一类人工合成的以苯基偶氮萘酚为主要基团的偶氮染料,其外观为暗红色或深黄色片状体,是亲脂性化合物,具有潜在致癌性,我国和欧盟都禁止添加在食品中。苏丹红检测方法较多,但都有选择性差或检测成本高等问题,大批量样品的快速测定,推荐采用HPLC+PCD+FLD的方法,达到选择性好、灵敏度高和价格友好的检测。这种方法对于苏丹红Ⅲ和苏丹红B的检测限比PDA检测方法低一个数量级。除此之外,光化学衍生方法在核黄素检测、多种维生素检测、多种霉菌/真菌,以及离子色谱分析领域有多种应用。产品参数
  • Sigma-Aldrich/Supelco提供三聚氰胺检测专用衍生化试剂
    衍生化试剂,特别是硅烷化试剂在GC分析中用途最大。许多被认为是不挥发的或在200~300℃热不稳定的羟基或胺基化合物,经过硅烷化后,可成功地进行气相色谱(GC)分析。 硅烷化作用是指将硅烷基引入到分子中,取代活性氢。活性氢被硅烷基取代后,降低了化合物的极性,减少了氢键束缚。因此形成的硅烷化衍生物更容易挥发。同时,活性氢的反应位点数目减少,化合物的稳定性得以加强。硅烷化衍生物极性减弱,被测能力增强,热稳定性提高。 Sigma-Aldrich旗下的分析品牌Supelco,有品种齐全的硅烷化试剂和其他衍生化试剂。 目前特别热销的硅烷化试剂BSTFA +1%TMCS,用于三聚氰胺检测,有如下几种不同包装规格。 货号 包装规格 33154-U 144X0.1mL 33148 20X1mL 33155-U 25mL 33149-U 50mL 备注: BSTFA [即 Bis(trimethylsilyl)trifluoroacetamide 双(三甲基硅烷)三氟乙酰胺 的简称] TMCS [即 Trimethylchlorosilane 三甲基氯硅烷 的简称] 关于Sigma-Aldrich: 美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌 Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。 Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的得奖网站:http://www.sigma-aldrich.com, 或直接联系我们: 地址:上海市淮海中路398号世纪巴士大厦22楼A-B座 邮编:200020 电话:+86-21-61415566 传真:+86-21-61415568 热线电话:800-819-3336 email:ordercn@sial.com
  • 干货分享:药典中为什么选择HPLC-柱后衍生法测试氨基酸?
    2020年版中国药典收载了5种复方氨基酸注射液、9种多肽类药物及1种中药品种,均需要采用氨基酸分析方法测定药品中氨基酸含量或氨基酸组成。为了指导药典标准执行过程中如何选择适宜的方法,国家药典委员会委托中检院牵头承担完成了“药品中氨基酸分析法的建立课题”,拟定了中国药典氨基酸分析指导原则,填补之前药典中关于选择测试方法的空白。 图1:各国药典介绍的氨基酸分析方法问题来了这么多的检测方法应该如何选择?蛋白质和多肽的氨基酸分析,需要将样品先水解成游离的氨基酸才能进行分析。由于氨基酸本身并没有发色集团或荧光基团,所以游离氨基酸通常需要衍生化才能测定。药品中氨基酸测定常用方法一共有6种,分别是:① 柱前PITC衍生氨基酸测定法;② 柱前AQC衍生氨基酸测定法;③ 柱前OPA和FMOC衍生氨基酸测定法;④ 柱前DNFB衍生氨基酸测定法;⑤ 柱后茚三酮衍生氨基酸锂离子交换系统测定法;⑥ 柱后茚三酮衍生氨基酸钠离子交换系统测定法。按照衍生顺序可分为柱前衍生和柱后衍生。柱前衍生法原理:根据氨基酸与衍生试剂反应,生成有紫外吸收的衍生物,后经反相液相色谱分离后用紫外检测器在一定波长处检测,在一定的浓度范围内其响应值与氨基酸浓度成正比;优点:对仪器配置要求不高,实验成本低。缺点:某些衍生物不稳定,无法定量,分离效果一般。柱后衍生法原理:通过调节系统pH值及离子强度,采用锂/钠离子交换系统,实现离子交换色谱柱对混合氨基酸的分离,经离子交换色谱分离的氨基酸与茚三酮反应,一级氨基酸生成紫色化合物,在570nm波长处有*吸收。二级氨基酸(如脯氨酸)生成*化合物,在440nm波长处有*吸收。在440nm和570nm波长处分别检测,在一定的浓度范围(20~500pmol)内,氨基酸衍生化产物的吸光度与氨基酸浓度成正比;优点:自动化程度高,不易受基质干扰。缺点:针对《氨基酸分析指导原则草案公示稿(第二次)》提到的采用柱后茚三酮衍生氨基酸锂离子交换法,分析时间长,异亮氨酸和亮氨酸间的分离难以达到要求。改善建议采用温度梯度可以改善分离效果。Pickering |氨基酸分析解决方案 1、Pickering参照欧洲药典8.0,提供了完整的氨基酸分析解决方案——方案包括Onyx-PCX 柱后衍生仪、色谱柱和保护柱、缓冲液和茚三酮衍生试剂。Pickering Onyx-PCX可以修改运行条件,执行温度梯度程序,缩短运行时间加速氨基酸分离,符合欧洲药典8.0的系统适用性要求,(亮氨酸和异亮氨酸分离度要大于1.5)。 表1:欧洲药典8.0参考指南2、分析条件:色谱柱:高效钠离子交换柱 4.6*110mm,货号1154110T;流速:0.6mL/min;流动相:见表2;进样体积:50ul; 表2:HPLC梯度程序(115411T)3、柱后衍生条件:柱后衍生系统:Onyx PCX;反应器体积:0.5mL;试剂:Trione® 茚三酮 ;反应温度:130ºC;柱温:见表3;流速:0.3 mL/min;检测波长:UV/Vis 570nm一级氨基酸;440nm二级氨基酸。 表3:柱温程序 图1:欧洲药典8.0方法分析氨基酸的钠柱色谱图一 _(浓度3 ug/mL, 进样体积50 uL) 图2:氨基酸分析钠柱色谱图,以欧洲药典8.0方法计算系统适应性检查 _(参考表1).Proline – 1.2 ug/mL Isoleucine – 3 ug/mL Leucine – 3 ug/mL Ammonia – 0.12 ug/mL. 进样体积50 uL.4、结论:今年3月份发布的针对《氨基酸分析指导原则草案公示稿(第二次)》中,以欧洲药典为参照,填补了我国2020版药典之前对氨基酸分析指导意见的空白,详细的阐述了几个常用方法的原理以及特点。Pickering参照欧洲药典8.0,提供完整解决方案,HPLC+Onyx PCR 即可实现药典中提到的柱后茚三酮衍生氨基酸锂离子交换系统测定法和柱后茚三酮衍生氨基酸钠离子交换系统测定法,完美实现方法扩增。引用:氨基酸分析指导原则草案公示稿(第二次)关于Pickering Laboratories 美国Pickering Laboratories公司是全球*专业提供人工测试体液和柱后衍生化学试剂、色谱柱、分析方法等柱后衍生分析整体解决方案的机构,其不断创新及良好的信誉被众多的美国政府机构如EPA、ATF、FDA、AOAC和世界*的厂商所认可。
  • 意犹未尽 第三届全国生物医学拉曼光谱学术会议落幕
    仪器信息网讯 为期两天的第三届全国生物医学拉曼光谱学术会议于2024年3月30日圆满落幕,吸引国内外300多位专家及青年学子汇聚于此。与会代表纷纷表示这是一次学术创新、跨界融合、畅谈友谊的盛会。会议的成功召开不仅展现了生物医学拉曼光谱技术的发展前景,而且影响深远,将推动该领域研究进入全新的阶段!3月30日下午,哥伦比亚大学闵玮教授做题为《Stimulated Raman scattering imaging: the next frontier of light microscopy》的大会报告,闵老师从受激拉曼光谱的原理、发展历程、相关应用及未来思考等方面做了详细讲解,为在场的与会人员带来一场精妙绝伦的学术盛宴。吉林大学赵冰教授主持大会报告。哥伦比亚大学 闵玮教授报告题目:《Stimulated Raman scattering imaging: the next frontier of light microscopy》吉林大学 赵冰教授主持除了闵玮教授的分享外,下午还进行了以“等离激元纳米结构与新型SERS基底”为主题的论坛,专家们分享了最新研究进展及成果,引发热烈讨论。中科院半导体研究所谭平恒研究员和上海交通大学医学院肖泽宇教授分别主持了论坛。中科院合肥物质科学研究院 杨良保研究员报告题目:《小间隙热点自动捕获目标物分子的原位动态活体检测研究》武汉纺织大学 沈爱国教授报告题目:《双指纹SERS测量技术用于生物非定向分析》复旦大学 王聪青年研究员报告题目:《面向癫痫手术的比率型SERS技术》西北大学 王爽教授报告题目:《分子光谱与影像融合分析技术研究》华东理工大学 徐弋凯特聘研究员报告题目:《无修饰纳米材料表面化学的SERS研究及其在生物分析化学中的应用》中科院半导体研究所 谭平恒研究员报告题目:《共振拉曼光谱技术及其在低维纳米材料表征中的应用》厦门大学 吴德印教授报告题目:《腺嘌呤及其衍生物的电化学表面增强拉曼光谱研究》中山大学 陈建教授报告题目:《生化传感应用的可调控超材料结构设计》西安交通大学 方吉祥教授报告题目:《超快、高分辨拉曼光谱成像用于消化道早癌在体智能化精准诊断》东南大学 赵祥伟教授报告题目:《基于SERS纳米标签的POCT》闭幕式中,大会组织委员会主任、上海交通大学叶坚教授代表主办方向所有参与本次会议的嘉宾、演讲者、参会者以及工作人员表示最诚挚的感谢。叶坚教授说,为期两天的会议,300多位代表齐聚一堂,来自7个国家的55位专家学者现场分享报告,大家分享成果、知识和经验,共同见证了生物医学拉曼光谱领域的最新研究成果和发展趋势。不仅如此,专家学者和青年学生还进行了热烈的讨论和深入的交流,这种科学探索的热情和对创新的执着追求必将推动我国生物医学拉曼光谱技术的发展,为相关领域的科研工作和临床应用提供新的思路和方法。大会组织委员会主任、上海交通大学 叶坚教授主持闭幕式此外,大会闭幕式上还颁布了12位“优秀墙报奖”获得者。此奖项由复享光学赞助,并由崔靖副总公布获奖者名单。武汉大学胡继明教授、中山大学陈建教授、中国科学院合肥物质科学研究院杨良保研究员和吉林大学赵冰教授为获奖代表颁奖。“优秀墙报奖”颁奖仪式复享光学 崔靖中国物理学会光散射专业委员会秘书长陈建教授在闭幕辞中特别强调,作为光散射研究的一个极为重要的分支,拉曼光谱以其独特的非侵入性和高灵敏度等特点,在生物医学领域发挥着至关重要的作用。为期两天的报告,生物成像、疾病诊断、人工智能等创新、交叉的研究让大家大饱眼福。同时,陈建教授也提到,大家的交流和讨论不仅加深了对科学问题的理解,也为拉曼光谱技术和其他方向的合作奠定了坚实的基础。特别是,本次大会中,青年研究者和学生的参与度非常高,他们不仅为大会注入了新鲜血液,也展示了拉曼光谱领域未来的希望和潜力。中国物理学会光散射专业委员会秘书长 陈建教授闭幕致辞下一届会议承办单位代表中科院合肥物质科学研究院 杨良保研究员同时闭幕式上还宣布下一届(2026)全国生物医学拉曼光谱学术会议将在安徽合肥举办,中国科学院合肥物质科学研究院杨良保教授代表下一届会议承办方发言。
  • 一种可用于3D生物打印的抗菌ε -聚赖氨酸衍生生物墨水
    凭借其个性化定制的优势,3D生物打印受到了组织工程研究人员的广泛关注。生物墨水在打印过程中起着保护细胞,并在打印后提供促进细胞生长和组织再生的支架的作用。此外,不同的3D生物打印方法需要具有不同特性的生物墨水。然而目前用于3D生物打印的生物墨水是不足的,这限制了3D生物打印在组织工程中的应用。另一方面,细菌感染严重威胁着3D生物打印及后续组织工程技术的实现,并可能导致移植物植入失败和术后严重并发症。因此,引入一种具有固有抗菌特性的新型生物墨水用于组织工程,将促进3D生物打印在组织工程中的发展。近日,湖南大学刘海蓉教授课题组提出了一种新型可用于3D生物打印的抗菌ε-聚赖氨酸衍生生物墨水。体外抗菌实验表明,基于ε-聚赖氨酸的水凝胶对大肠杆菌和金黄色葡萄球菌均具有较强抗菌性能。通过使用面投影微立体光刻技术(nanoArch S140, 摩方精密),该研究成功打印了不同形状的高保真载软骨细胞水凝胶。在体内异位成软骨实验中,载细胞水凝胶经过4周培养形成了软骨样组织。总的来说,此项研究提出了一种很有前景的3D生物打印抗菌生物墨水,为3D生物打印在组织工程中的应用提供了一个新的选择。相关论文在线发表在《Journal of Materials Chemistry B》,湖南大学何亚辉为本文第一作者,刘海蓉、周征为通讯作者,韩晓筱课题组为本文3D生物打印提供了支持。图1 (a)EPLGMA-H水凝胶制备工艺示意图。(b)EPLGMA-1、EPLGMA-2和EPLGMA-3在D2O中的1H NMR谱。(c)蓝光照射后的EPLGMAs凝胶化照片。(d)EPLGMA-H凝胶过程的动态实时流变学分析。图2 大肠杆菌和金黄色葡萄球菌分别与PBS、EPLGMA-1H、EPLGMA-2H、EPLGMA-3H共混后的(a)生长情况,(b)细菌存活率,(c)活/死细菌染色照片。图3 (a-c)3D生物打印制备的细胞负载EPLGMA-3H的3种不同形状的俯视图。(d-i)3D生物打印载细胞EPLGMA-3H培养3天后的活细胞照片,(g-i)分别为(d-f)的放大照片。 原文链接:https://doi.org/10.1039/D1TB02800F
  • 单克隆抗体制备的基本原理与过程
    单克隆抗体制备的原理:B淋巴细胞在抗原的刺激下,能够分化、增殖形成具有针对这种抗原分泌特异性抗体的能力、B细胞的这种能力和量是有限的,不可能持续分化增殖下去,因此产生免疫球蛋白的能力也是极其微小的、将这种B细胞与非分泌型的骨髓瘤细胞融合形成杂交瘤细胞,再进一步克隆化,这种克隆化的杂交瘤细胞是既具有瘤的无限生长的能力,又具有产生特异性抗体的B淋巴细胞的能力,将这种克隆化的杂交瘤细胞进行培养或注入小鼠体内即可获得大量的高效价、单一的特异性抗体.这种技术即称为单克隆抗体技术。单克隆抗体制备的过程:免疫动物免疫动物是用目的抗原免疫小鼠,使小鼠产生致敏B淋巴细胞的 过程。 一般选用6-8周龄雌性BALB/c小鼠,按照预先制定的免疫方案进行免疫注射。 抗原通过血液循环或淋巴循环进入外周免疫器官,刺激相应B淋巴细胞克隆,使其活化、增殖,并分化成为致敏B淋巴细胞。细胞融合采用二氧化碳气体处死小鼠,无菌操作取出脾脏,在平皿内挤压研磨,制备脾细胞悬液。 将准备好的同系骨髓瘤细胞与小鼠脾细胞按一定比例混合,并加入促融合剂聚乙二醇。在聚乙二醇作用下,各种淋巴细胞可与骨髓瘤细胞发生融合,形成杂交瘤细胞。选择性培养选择性培养的目的是筛选融合的杂交瘤细胞,一般采用HAT选择性培养基。在HAT培养基中,未融合的骨髓瘤细胞因缺乏次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,不能利用补救途径合成DNA而死亡。 未融合的淋巴细胞虽具有次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,但其本身不能在体外长期存活也逐渐死亡。 只有融合的杂交瘤细胞由于从脾细胞获得了次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,并具有骨髓瘤细胞能无限增殖的特性,因此能在HAT培养基中存活和增殖。杂交瘤阳性克隆的筛选与克隆化在HAT培养基中生长的杂交瘤细胞,只有少数是分泌预定特异性单克隆抗体的细胞,因此,必须进行筛选和克隆化。通常采用有限稀释法进行杂交瘤细胞的克隆化培养。采用灵敏、快速、特异的免疫学方法,筛选出能产生所需单克隆抗体的阳性杂交瘤细胞,并进行克隆扩增。经过全面鉴定其所分泌单克隆抗体的免疫球蛋白类型、亚类、特异性、亲和力、识别抗原的表位及其分子量后,及时进行冻存。单克隆抗体的大量制备单克隆抗体的大量制备主要采用动物体内诱生法和体外培养法。(1)体内诱生法 取BALB/c小鼠,首先腹腔注射0.5ml液体石蜡或降植烷进行预处理。1-2周后,腹腔内接种杂交瘤细胞。杂交瘤细胞在小鼠腹腔内增殖,并产生和分泌单克隆抗体。约1-2周,可见小鼠腹部膨大。用注射器抽取腹水,即可获得大量单克隆抗体。(2)体外培养法 将杂交瘤细胞置于培养瓶中进行培养。在培养过程中,杂交瘤细胞产生并分泌单克隆抗体,收集培养上清液,离心去除细胞及其碎片,即可获得所需要的单克隆抗体。但这种方法产生的抗体量有限。各种新型培养技术和装置不断出现,大大提高了抗体的生产量。单克隆抗体制备的意义:用于以下各种生命科学实验并具有医用价值(1)沉淀反应:Precipitation reaction(2)凝集实验:haemaglutination(3)放射免疫学方法检测免疫复合物(4) 流式细胞仪:用于细胞的分型和细胞分离.(5)ELISA 等免疫学检测(6)BIAcore biosensor:检测Ab-Ag或与蛋白的亲和力 .(7)免疫印记(western blotting)(8) 免疫沉淀:(9) 亲和层析:分离蛋白质(10) 磁珠分离细胞(11)临床疾病的诊断和治疗;
  • 文献分享 | Orbitrap高分辨质谱技术在暴露组学中的应用
    文献分享篇 暴露组学是一门新兴的研究领域,侧重于分析和测量人类在一生中暴露于环境和生活方式因素的总体程度,以及这种暴露对人类健康的影响。其研究范围包括化学物质,污染物,辐射,饮食和体育锻炼等生活方式因素的暴露,以及可能影响健康和幸福的社会和经济因素。暴露组学研究旨在更好地理解环境暴露和人类健康结果之间的复杂相互作用,以预防和减轻与此类暴露有关的疾病负担。高分辨质谱技术作为一种强大的化学分析手段,被广泛应用于暴露组学的相关领域研究中。 本次我们分享两篇应用Orbitrap进行暴露组学相关研究的文章。 文章一 探究食源性多酚化合物对于人体的暴露组学研究[1]Part.1研究背景质谱非靶向代谢组学研究流程由于其检测目标可涵盖机体内的全部内源性代谢物、饮食摄入物以及环境污染物而被广泛应用于暴露组相关物质的研究检测。基于上述流程所测得的生物样品数据中可含有上万个特征信号,虽然经过数据发掘和多数据库比对,很多与宿主、微生物代谢以及常见环境暴露因素(包括烟草、药品和环境污染物)的化合物可得到解析鉴定,但是数据中的大部分特征信号仍然为未知物,被称为“代谢组学暗物质”(metabolomics dark matter)。考虑到日常饮食中大量植物成分的存在,上述暗物质中极有可能包括大量植物化学成分及其在人体、肠道微生物体内代谢产生的代谢物。本文作者以多酚类物质为切入点,研究食源性植物化学物质在人体内暴露情况。 Part.2建立多酚类化合物谱图库研究人员总结归纳了常见蔬菜水果中的已知多酚类物质清单,并参考相关食品组学文章中采用质谱分析所检测到的多酚类物质,从而生成了目标化合物列表并收集到166种对照品。这些对照品包括57种苯甲酸、苯甲醛、苯环衍生物,12种肉桂酸,16种苯乙酸,11种苯丙酸,9种嘌呤衍生物,8种马尿酸,5种色氨酸-吲哚衍生物,3种吡啶甲酸,2种儿茶酚胺等。研究人员在Q Exactive HF-X高分辨液质联用系统上建立了非靶向代谢组学方法测试多酚类化合物对照品,建立谱图数据库。166种对照品中有151种化合物可被质谱检测到,其中90种可在正、负离子模式下同时被检测到。 Part.3检测尿液和血浆中的多酚类食源性代谢物研究人员由美国儿童健康暴露分析资源组织(Child Health Exposure Analysis Resource, CHEAR)获得参照尿液和血浆样本。经过蛋白沉淀处理后,直接用于液质联用分析。研究人员将代谢物鉴定结果分为三个等级:OL1(MS、RT和MS/MS匹配)、OL2a(MS和RT匹配)和OL2b(MS和MS/MS匹配)。最终,在人体尿液和血浆样本中检测到123种代谢物。Part.4总 结本文作者以多酚类化合物为例,描述了建立饮食暴露组数据库(Dietary Exposome Library, DEL)的流程方法。通过不断完善数据库,有望进一步提高体内生物样本中化合物的鉴定覆盖率,阐明饮食暴露对于机体的影响。 文章二 胆汁淤积性肝病的暴露组学与代谢组学研究[2]Part.1研究背景原发性硬化性胆管炎(PSC)和原发性胆汁性胆管炎(PBC)作为罕见的胆汁淤积性肝病,由于对其病因认知不足,导致治疗手段有限、预后效果差。尤其是肝毒性以及其他影响代谢的环境物质在疾病发生、发展过程中的可能作用仍然缺乏研究。 本文作者应用暴露组学-代谢组学相结合的方式来揭示PSC和PBC的潜在致病因素。通过全暴露组关联分析(exposome-wide association study, EWAS)检测包括农药、添加剂、持续污染物等环境物质暴露,分析环境物质在PSC和PBC发生过程中的作用。通过全代谢组关联分析(metabolome-wide association studies, MWAS)探究体内代谢途径在PSC和PBC疾病状态下的变化和差异。 Part.2全暴露组关联分析研究人员应用Q Excative GC Orbitrap 高分辨气质联用仪对病人、健康人的血浆样本中的环境物质进行非靶向分析。在数据处理方面,非靶向数据经过log2-转换、四分位差归一化处理,统计模型考虑年龄、性别等因素的影响,探究环境物质与PSC、PBC的关联。研究人员将错误发现率(false discovery rate, FDR)限值设置为20%,筛选出54个与PSC相关的物质。作为差异排名前6位的物质,C-256通过NIST 2017数据库匹配,被鉴定为氨基甲酸酯类农药芽根灵(terbucarb)。值得注意的是,在非靶向分析中,未找到与PCB相关的环境 物质。同时,研究人员还通过Q Excative GC Orbitrap 高分辨气质联用仪和Orbitrap Exploris系列高分辨液质联用仪对血浆中的环境物质进行了554种物质靶向分析。最终通过GC-HRMS和LC-HRMS分别检测到55种和71种环境物质。将P 0.05 作为差异物质筛选条件,分别发现12种和8种与PSC、PBC相关的环境物质。全代谢组关联分析研究人员在Orbitrap Exploris系列高分辨液质联用平台上,采用HILIC和反相色谱两种分离模式对80个PSC病人和40个健康人血浆样本中的内源性代谢物进行分析检测,分别检测到了11634个和9109个特征信号。其中,有1204个特征信号与PSC相关。对40个PBC病人和40个健康人血浆样本中内源性代谢物分析中,HILIC和反相色谱分离模式分别检测到了11729个和9294个特征信号,其中703个特征信号与疾病相关。经代谢通路识别分析发现,与健康人相比,PSC病人和PBC病人分别有27条和10条代谢通路中的代谢物含量发生显著上调,9条代谢通路在两种疾病条件下都发生变化,其中胆汁酸生物合成是两种疾病条件下变化最为明显的代谢通路。EWAS × MWAS研究人员通过网络分析检查环境物质与内源性代谢通路间的关联。在PSC和PBC两种疾病状态下,相互作用网络中分别生成了3个和2个聚类节点。其中,对于PSC分析最大的网络节点为氨基甲酸酯类农药芽根灵,该节点涵盖大多数氨基酸相关通路、类花生酸代谢以及核酸代谢通路。总 结本文将高分辨液相质谱平台和高分辨质谱平台联用,对罕见肝病病人和健康人的血浆样本进行了暴露组学和代谢组学分析,揭示了外源性环境污染物对于胆汁淤积性肝病发生的影响。
  • 天美(中国)成功举办第五届爱丁堡仪器产品用户会
    [导读]2017年10月23日至26日,天美(中国)科学仪器有限公司于杭州成功举办第五届爱丁堡科学仪器产品用户会,来自全国高等院校及企业的104位学者专家出席本次用户会,共计收录应用论文224篇,本次用户会为爱丁堡仪器用户们提供了一个互相学习及交流的高端平台。  2017年10月23日,天美(中国)科学仪器有限公司(以下简称“天美(中国)”)于杭州举行“稳态/瞬态荧光光谱最新技术和应用研讨会——暨爱丁堡仪器2017年中国区用户会”。自2013年天美(中国)成功收购英国爱丁堡科学仪器,天美(中国)秉承为产品用户会提供高端交流平台的理念,已经连续四年成功举办爱丁堡仪器用户会,本次的第五届爱丁堡仪器用户会选择风光旖旎的杭州举办。天美(中国)总裁付世江先生、副总裁张海蓉女士、爱丁堡仪器首席执行官Roger Fenske博士等高层领导及产品专家Ian Stanton博士出席了本次客户研讨会。   本次用户会不仅介绍了最新的爱丁堡仪器,还邀请到全国使用到爱丁堡仪器的学者和专家到场做专题报告,包括华南理工大学苏仕健教授,苏州大学宋波教授,浙江大学乔旭升副教授,中科院海西院厦门稀土材料所/物构所马恩高级工程师,上海大学孙丽宁教授,中国科学院理化技术研究所李嫕研究员,南京工业大学胡锦阳博士,南方科技大学黄文忠副教授,北京师范大学节家龙博士,华南理工大学乔现峰副研究员,上海大学文建湘副教授11位学者专家。爱丁堡仪器首席执行官Roger Fenske博士及产品专家Ian Stanton博士,产品经理覃冰女士为大家介绍了爱丁堡仪器最新产品、附件及应用实例。在茶歇过程中,仪器产品专家也为各位老师解答仪器使用过程中的各种应用问题。   本次会议由天美(中国)科学仪器有限公司副总裁张海蓉女士主持并做开幕致辞,介绍了天美(中国)自1988年成立以来经筚路开山、夯基立柱、锐意拓疆、全球布局并于2013年收购英国爱丁堡仪器公司,到一个天美的统一理念,助力科学研究、服务产业创新、关爱人类健康、缔造美好生活。天美“智”造将继续砥砺前行。英国爱丁堡仪器自1971年成立,经过近50年的产品创新,发展,已作为荧光光谱技术的引领者,持续创新是仪器行业占领鳌头的不二法则,天美(中国)将持续发扬爱丁堡仪器的创新精神,努力带给业界新的应用技术和产品,与用户一起迎接挑战。 天美(中国)科学仪器有限公司副总裁  张海蓉女士   爱丁堡仪器首席执行官Roger Fenske博士在会议上介绍最新的FLS1000荧光光谱仪、荧光光谱测试技术与数据分析技巧及最新测试及附件功能介绍。为各位在场学者专家提供行之有效的测试方案。爱丁堡仪器首席执行官 Roger Fenske博士   华南理工大学发光材料与器件国家重点实验室的苏仕健教授做了题为《高效率低成本荧光材料OLED》的报告,指明在有机发光二极管(OLED)材料的研发领域,不含贵重金属元素同时兼具热活化延迟荧光特性(TADF)的纯有机化合物发光材料具有同时实现低成本、环境友好、高效率、以及化学结构稳定性的潜能。 华南理工大学  苏仕健教授   苏州大学宋波教授做了题为《添加剂增强的超分子纳米荧光探针》的报告,苏教授利用超分子组装的多样性、可控性及裁剪性等特点,将具有荧光性的染料基团引入构筑基元,发展制备聚集诱导发光和聚集诱导猝灭的纳米结构材料,探索了这些组装体作为荧光探针在生物成像及离子检测等方面的应用。 苏州大学  宋波教授   浙江大学乔旭升副教授做了题为《发光材料的结构调控、光谱学性能优化与发光机理研究》的报告,介绍了发光中心在多相玻璃陶瓷中的选择性富集与发光效率增强及稀土掺杂NaYF4核壳纳米结构的结构表征与防伪应用研究。 浙江大学  乔旭升副教授   中科院海西院厦门稀土材料所/物构所马恩高级工程师做了题为《玩转EI样品仓》的报告,从效率提升、功能完善、功能辅助、新功能拓展及全功能整合五个方面介绍了配合EI样品仓所设计的各个附件。 中科院海西院厦门稀土材料所/物构所  马恩高级工程师   上海大学孙丽宁教授做了题为《稀土上转换发光多功能纳米材料及其传感、生物应用研究》的报告,指出荧光生物成像作为一种非侵入式、在线实时的活体可视化示踪技术,具有成本低、亚细胞层次(百纳米)分辨率和灵敏度高等特点,是细胞生物学研究最重要的活体研究工具之一。 上海大学  孙丽宁教授   爱丁堡仪器产品专家Ian Stanton博士及天美(中国)爱丁堡仪器产品经理覃冰女士介绍了FLS荧光光谱仪系列的积分球附件绝对量子产率测试技术与方法、瞬态吸收光谱仪LP系列的技术介绍及在各个领域的最新应用。LP980作为最新的集成式纳秒闪光光解技术,不仅可以采集样品的三重态物种信号,还可以采集样品基态拉曼及激发态拉曼信号。   爱丁堡仪器产品专家 Ian Stanton博士天美(中国)爱丁堡仪器产品经理 覃冰女士   中科院理化技术研究所李嫕研究员做了题为《三重态-三重态湮灭上转换体系光物理过程研究》的报告,指出在[PdDTP-D]/DPA体系中高效的三重态-三重态湮灭上转换来源于高效的光捕获和能量转移能力、同时指出树枝状的骨架结构会影响其TTA-UC的能力。 中科院理化技术研究所  李嫕研究员   南京工业大学刘睿教授课题组的胡锦阳博士做了题为《瞬态吸收光谱在材料反饱和吸收与激发态性质预测方面的应用》的报告,胡博士通过对配体共轭度和供吸电子基团的修饰,可以实现三线激发态的转变,以及混合态的调控,从而调节光限幅性能;氧化石墨烯和铂配合物杂化材料展现了较好的光限幅性能,这源于多重作用机制的协同效应,另外也可以实现激发态的调控。 南京工业大学 胡锦阳博士   南方科技大学黄文忠副教授做了题为《罗丹明衍生物的过渡金属配合物和新型罗丹明衍生物》的报告,介绍了爱丁堡仪器在罗丹明衍生物发光材料研发过程中的应用。 南方科技大学 黄文忠副教授   北京师范大学苏红梅课题组的节家龙博士做了题为《DNA鸟嘌呤氧化损伤反应的动力学机理研究》的报告,介绍了DNA氧化损伤微观反应机理。 北京师范大学  节家龙博士   华南理工大学乔现峰副研究员做了题为《FLS980在OLED中的应用》的报告,介绍了利用FLS980进行OLED电致发光的研究。 华南理工大学  乔现峰副研究员   上海大学文建湘副教授做了题为《FLS980-荧光光谱仪在光纤中的应用》的报告,介绍了掺杂有源光纤应用研究背景、掺杂有源光纤制备技术及荧光光谱仪在有源光纤应用研究。 上海大学  文建湘副教授   在自由讨论时间,来自江南大学的刘俊峰老师做了题为《外接激光器用于上转换荧光测定》的报告,讲述了他在爱丁堡FS5荧光光谱仪上耦合红外激光器及实验结果。 江南大学 刘俊峰老师   会议过程中,各位学者专家积极讨论报告内容,交流仪器使用心得。    茶歇时间,针对仪器使用过程中遇到的技术问题,爱丁堡仪器产品专家也为老师们进行答疑。     会议上,天美(中国)还进行了与南方科技大学成立奖学奖教金的签约仪式,表达了天美(中国)助力科研的意愿与决心。   科研的需求推动着仪器的进步,本次用户会收集的高质量论文充分显示出爱丁堡仪器在科研领域的领先地位(共收集到43位用户的224篇论文,其中影响因子大于5的113篇,大于10的39篇),根据投稿文章的单篇影响因子,与爱丁堡仪器相关度以及文章篇数合计影响因子等因素,评选出卓越、杰出及优秀奖,以奖励参与评选的老师,和感谢他们对爱丁堡仪器及天美公司的大力支持。(获奖名单详见天美中国官网) 关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。
  • 天美(中国)成功举办第五届爱丁堡仪器产品用户会
    [导读]2017年10月23日至26日,天美(中国)科学仪器有限公司于杭州成功举办第五届爱丁堡科学仪器产品用户会,来自全国高等院校及企业的104位学者专家出席本次用户会,共计收录应用论文224篇,本次用户会为爱丁堡仪器用户们提供了一个互相学习及交流的高端平台。  2017年10月23日,天美(中国)科学仪器有限公司(以下简称“天美(中国)”)于杭州举行“稳态/瞬态荧光光谱最新技术和应用研讨会——暨爱丁堡仪器2017年中国区用户会”。自2013年天美(中国)成功收购英国爱丁堡科学仪器,天美(中国)秉承为产品用户会提供高端交流平台的理念,已经连续四年成功举办爱丁堡仪器用户会,本次的第五届爱丁堡仪器用户会选择风光旖旎的杭州举办。天美(中国)总裁付世江先生、副总裁张海蓉女士、爱丁堡仪器首席执行官Roger Fenske博士等高层领导及产品专家Ian Stanton博士出席了本次客户研讨会。   本次用户会不仅介绍了最新的爱丁堡仪器,还邀请到全国使用到爱丁堡仪器的学者和专家到场做专题报告,包括华南理工大学苏仕健教授,苏州大学宋波教授,浙江大学乔旭升副教授,中科院海西院厦门稀土材料所/物构所马恩高级工程师,上海大学孙丽宁教授,中国科学院理化技术研究所李嫕研究员,南京工业大学胡锦阳博士,南方科技大学黄文忠副教授,北京师范大学节家龙博士,华南理工大学乔现峰副研究员,上海大学文建湘副教授11位学者专家。爱丁堡仪器首席执行官Roger Fenske博士及产品专家Ian Stanton博士,产品经理覃冰女士为大家介绍了爱丁堡仪器最新产品、附件及应用实例。在茶歇过程中,仪器产品专家也为各位老师解答仪器使用过程中的各种应用问题。   本次会议由天美(中国)科学仪器有限公司副总裁张海蓉女士主持并做开幕致辞,介绍了天美(中国)自1988年成立以来经筚路开山、夯基立柱、锐意拓疆、全球布局并于2013年收购英国爱丁堡仪器公司,到一个天美的统一理念,助力科学研究、服务产业创新、关爱人类健康、缔造美好生活。天美“智”造将继续砥砺前行。英国爱丁堡仪器自1971年成立,经过近50年的产品创新,发展,已作为荧光光谱技术的引领者,持续创新是仪器行业占领鳌头的不二法则,天美(中国)将持续发扬爱丁堡仪器的创新精神,努力带给业界新的应用技术和产品,与用户一起迎接挑战。 天美(中国)科学仪器有限公司副总裁  张海蓉女士   爱丁堡仪器首席执行官Roger Fenske博士在会议上介绍最新的FLS1000荧光光谱仪、荧光光谱测试技术与数据分析技巧及最新测试及附件功能介绍。为各位在场学者专家提供行之有效的测试方案。爱丁堡仪器首席执行官 Roger Fenske博士   华南理工大学发光材料与器件国家重点实验室的苏仕健教授做了题为《高效率低成本荧光材料OLED》的报告,指明在有机发光二极管(OLED)材料的研发领域,不含贵重金属元素同时兼具热活化延迟荧光特性(TADF)的纯有机化合物发光材料具有同时实现低成本、环境友好、高效率、以及化学结构稳定性的潜能。 华南理工大学  苏仕健教授   苏州大学宋波教授做了题为《添加剂增强的超分子纳米荧光探针》的报告,苏教授利用超分子组装的多样性、可控性及裁剪性等特点,将具有荧光性的染料基团引入构筑基元,发展制备聚集诱导发光和聚集诱导猝灭的纳米结构材料,探索了这些组装体作为荧光探针在生物成像及离子检测等方面的应用。 苏州大学  宋波教授   浙江大学乔旭升副教授做了题为《发光材料的结构调控、光谱学性能优化与发光机理研究》的报告,介绍了发光中心在多相玻璃陶瓷中的选择性富集与发光效率增强及稀土掺杂NaYF4核壳纳米结构的结构表征与防伪应用研究。 浙江大学  乔旭升副教授   中科院海西院厦门稀土材料所/物构所马恩高级工程师做了题为《玩转EI样品仓》的报告,从效率提升、功能完善、功能辅助、新功能拓展及全功能整合五个方面介绍了配合EI样品仓所设计的各个附件。 中科院海西院厦门稀土材料所/物构所  马恩高级工程师   上海大学孙丽宁教授做了题为《稀土上转换发光多功能纳米材料及其传感、生物应用研究》的报告,指出荧光生物成像作为一种非侵入式、在线实时的活体可视化示踪技术,具有成本低、亚细胞层次(百纳米)分辨率和灵敏度高等特点,是细胞生物学研究最重要的活体研究工具之一。 上海大学  孙丽宁教授   爱丁堡仪器产品专家Ian Stanton博士及天美(中国)爱丁堡仪器产品经理覃冰女士介绍了FLS荧光光谱仪系列的积分球附件绝对量子产率测试技术与方法、瞬态吸收光谱仪LP系列的技术介绍及在各个领域的最新应用。LP980作为最新的集成式纳秒闪光光解技术,不仅可以采集样品的三重态物种信号,还可以采集样品基态拉曼及激发态拉曼信号。   爱丁堡仪器产品专家 Ian Stanton博士天美(中国)爱丁堡仪器产品经理 覃冰女士   中科院理化技术研究所李嫕研究员做了题为《三重态-三重态湮灭上转换体系光物理过程研究》的报告,指出在[PdDTP-D]/DPA体系中高效的三重态-三重态湮灭上转换来源于高效的光捕获和能量转移能力、同时指出树枝状的骨架结构会影响其TTA-UC的能力。 中科院理化技术研究所  李嫕研究员   南京工业大学刘睿教授课题组的胡锦阳博士做了题为《瞬态吸收光谱在材料反饱和吸收与激发态性质预测方面的应用》的报告,胡博士通过对配体共轭度和供吸电子基团的修饰,可以实现三线激发态的转变,以及混合态的调控,从而调节光限幅性能;氧化石墨烯和铂配合物杂化材料展现了较好的光限幅性能,这源于多重作用机制的协同效应,另外也可以实现激发态的调控。 南京工业大学 胡锦阳博士   南方科技大学黄文忠副教授做了题为《罗丹明衍生物的过渡金属配合物和新型罗丹明衍生物》的报告,介绍了爱丁堡仪器在罗丹明衍生物发光材料研发过程中的应用。 南方科技大学 黄文忠副教授   北京师范大学苏红梅课题组的节家龙博士做了题为《DNA鸟嘌呤氧化损伤反应的动力学机理研究》的报告,介绍了DNA氧化损伤微观反应机理。 北京师范大学  节家龙博士   华南理工大学乔现峰副研究员做了题为《FLS980在OLED中的应用》的报告,介绍了利用FLS980进行OLED电致发光的研究。 华南理工大学  乔现峰副研究员   上海大学文建湘副教授做了题为《FLS980-荧光光谱仪在光纤中的应用》的报告,介绍了掺杂有源光纤应用研究背景、掺杂有源光纤制备技术及荧光光谱仪在有源光纤应用研究。 上海大学  文建湘副教授   在自由讨论时间,来自江南大学的刘俊峰老师做了题为《外接激光器用于上转换荧光测定》的报告,讲述了他在爱丁堡FS5荧光光谱仪上耦合红外激光器及实验结果。 江南大学 刘俊峰老师   会议过程中,各位学者专家积极讨论报告内容,交流仪器使用心得。    茶歇时间,针对仪器使用过程中遇到的技术问题,爱丁堡仪器产品专家也为老师们进行答疑。     会议上,天美(中国)还进行了与南方科技大学成立奖学奖教金的签约仪式,表达了天美(中国)助力科研的意愿与决心。   科研的需求推动着仪器的进步,本次用户会收集的高质量论文充分显示出爱丁堡仪器在科研领域的领先地位(共收集到43位用户的224篇论文,其中影响因子大于5的113篇,大于10的39篇),根据投稿文章的单篇影响因子,与爱丁堡仪器相关度以及文章篇数合计影响因子等因素,评选出卓越、杰出及优秀奖,以奖励参与评选的老师,和感谢他们对爱丁堡仪器及天美公司的大力支持。(获奖名单详见天美中国官网) 关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。
  • 食品添加剂6-苄基腺嘌呤等检测国标通过评审
    近日,江门检验检疫局承担制定的“进出口食品添加剂6-苄基腺嘌呤的检测方法”和“进出口食品添加剂蔗糖聚丙烯醚的检测方法”两项国家标准顺利通过了国家认监委、国家标准委和中国检科院等部门的专家评审。   由于此前国内外均无相关标准,江门检验检疫局这两项国家标准的顺利通过评审为今后我国对进出口食品添加剂6-苄基腺嘌呤、蔗糖聚丙烯醚的检测提供了保证。这也是江门局首次承担国家标准的制定,填补了该局国家标准制修订工作的空白,为继续参与国家标准的制修订打下了良好的基础,标志着该局的科研能力迈上了一个新的台阶。
  • 微生物所开发出新型微滴反应筛选技术及单细胞分析应用
    p style=" text-indent: 2em " 微生物所 strong 微生物资源前期开发国家重点实验室 /strong 杜文斌研究组和黄力研究组共同开发了一种新型的 strong 微流控界面纳升注射技术 /strong (Interfacial Nanoinjection, INJ),该技术可以将传统的生化反应体系微缩在一个纳升体积的油包水微液滴体系中完成。 /p p    strong span style=" color: rgb(0, 112, 192) " 界面纳升注射(INJ)具有诸多显著优势 /span /strong /p p   针对这一技术创新,团队申请了多项中国发明专利和美国专利,并研制了基于INJ技术的小型桌面系统。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/fe470173-c411-4a4f-857f-952adad6e8d5.jpg" title=" 界面纳升注射(INJ)系统.jpg" alt=" 界面纳升注射(INJ)系统.jpg" / /p p style=" text-align: center " 界面纳升注射(INJ)系统 /p p   该系统和国外同类产品如美国Labcyte公司的Echo超声纳升移液系统、以及美国TTP Labtech公司的mosquito HTS微量筛选系统相比, strong 在仪器成本、耗材成本、最小液滴体积、流式细胞仪兼容性、操作的灵活性、以及污染控制等方面,均具有显著优势, /strong 适用于各类单细胞微体积反应分析,也可应用于其他微体积反应分析,在微生物培养筛选、合成生物学、药物筛选、蛋白结晶条件筛选等方面均具有应用潜力。 /p p   在性能方面,INJ系统通过高精密度的微体积控制实现不同试剂组分的纳升体积分步添加,兼容96和384孔板,可以在预先填装矿物油的孔板上,按照程序设定加入纳升样品或试剂液滴,用于实现高通量筛选。利用低成本探针可以精确加注的最小体积达到1 nL,当加样体积为5 nL时,体积标准偏差小于11 %。加注的液滴通过离心可以沉降到孔板底部并融合,液滴的融合效率最高,达到99%以上。利用多次加注样品、试剂的方法,可以实现多步反应和浓度梯度配置。系统加注的体积精确性、线性和重现性良好。 /p p   strong span style=" color: rgb(0, 112, 192) "  FACS-INJ单细胞分析流程和应用 /span /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 281px " src=" https://img1.17img.cn/17img/images/201910/uepic/7cc806a5-55aa-475f-a110-69b3c5038b70.jpg" title=" 杜文斌-流式细胞分选+界面纳升注射技术图示.jpg" alt=" 杜文斌-流式细胞分选+界面纳升注射技术图示.jpg" width=" 600" height=" 281" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" text-align: center " FACS-INJ单细胞分选分析流程 /span /p p    strong 单细胞分析是一项变革性技术 /strong ,在单细胞基因组异质性研究及复杂微生物群落中稀有微生物种群多样性研究等领域应用广泛。然而,如何进一步降低单细胞分析的成本,提高可靠性和效率,仍然面临重大挑战。流式细胞荧光激活细胞分选(FACS)是目前最高效的单细胞分选技术,可实现病毒、细菌、真菌和动物细胞的多参数检测和分选 利用荧光标记,可对不同类型的细胞进行有效的区分,分选成功率高。研究团队将INJ与FACS平台相结合,建立了FACS-INJ单细胞分选分析流程,应用覆盖了单细胞表型分析、基因型分析、基因表达分析以及全基因组扩增测序。 /p p   研究团队首先利用FACS-INJ系统实现了 strong 病原菌微生物单细胞耐药基因的PCR筛查和单细胞药敏表型筛查 /strong 。经优化,多孔板可预先装载纳升体积的PCR引物或不同浓度的抗生素液滴。PCR筛查体积缩小到500 nL,试剂消耗和成本和常规体系相比降低至原先的1/40,耐药检测的体积控制在200 nL,试剂消耗和成本和常规体系相比降低至原先的1/1000,时间从& gt 12小时缩短至5小时,这对于大幅降低临床病原检测的成本,实现脑脊液、房水等难获取微量样品的耐药基因和表型筛查具有重要意义。 /p p   其次,FACS-INJ系统还可用于 strong 动物细胞的单细胞基因表达分析 /strong 。以小鼠巨噬细胞RAW264.7在细菌胞外多糖处理前后的炎症反应为例,通过荧光激活流单细胞式分选处理前后的小鼠巨噬细胞,基于一步法反转录实时荧光PCR扩增,在单细胞水平解析了次黄嘌呤鸟嘌呤转磷酸核糖基酶(HPRT)基因(看家基因)和白介素1β(IL-1β)基因(炎症反应)表达水平的变化。 /p p   最后,团队与北京大学黄岩谊课题组合作,建立了 strong 基于FACS-INJ的微生物全基因组扩增测序流程 /strong ,以获得未培养微生物的全基因组信息。流程包括流式分选微生物单细胞、单细胞裂解、酸碱中和、MDA扩增和建库测序。以热泉来源的古菌硫化叶菌(Sulfolobus sp. A20)菌株为模型,将单细胞扩增的体积优化至360nL,硫化叶菌全基因组覆盖度达到80%以上。在纳升级微液滴中实现西南印度洋未培养单细胞微生物全基因组DNA的MDA扩增与测序,拼接后获得15个单细胞基因组,大小在0.1~3.7Mb大小。该方法获得的微生物基因组污染度较传统的MDA扩增方法显著降低(& lt 5%),显著提高了微生物单细胞基因组数据质量。平台也适用于肿瘤、胚胎等动物细胞的全基因组扩增测序,对肿瘤细胞的单细胞测序的覆盖度达到60-80%。 /p p   上述研究工作近期作为特邀论文在线发表在Small上。微生物研究所助理研究员贠娟莉博士、郑小伟博士、徐鹏博士为论文共同第一作者,杜文斌研究员、黄力研究员和北京大学黄岩谊教授为论文共同通讯作者。该研究该研究得到了中国大洋协会大洋十三五重点项目、中科院战略性先导科技专项(B类),中国科学院重点部署项目、中国科学院前沿科学重点研究项目、国家自然科学基金面上项目和优青项目等支持。 /p p   论文出处: /p p   Yun, J.L. sup # /sup Zheng, X.W. sup # /sup Xu. P. sup # /sup Zheng, X. Xu, J.Y. Cao, C. Fu, Y.S. Xu, B.X. Dai, X. Wang, Y. Liu, H.T. Yi, Q.L. Zhu, Y.X. Wang, J. Wang, L. Dong, Z.Y. Huang, L.* Huang, Y.Y.* Du, W.B.* Interfacial Nanoinjection-based Nanoliter Single-cell Analysis, Small, 2019, doi:10.1002/smll.201903739. /p p    a href=" https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201903739" target=" _self" style=" text-decoration: underline font-family: 楷体, 楷体_GB2312, SimKai color: rgb(255, 0, 0) " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai color: rgb(255, 0, 0) " 查看原文戳这里 /span /strong /a /p p    strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 杜文斌 /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " ,男,中科院微生物研究所研究员。2007年于浙江大学化学系,获博士学位。2007-2011年于美国芝加哥大学化学系从事博士后研究工作。2013年11月加入中科院微生物研究所微生物资源前期开发国家重点实验室。主要从事微流控芯片技术及新型分析微生物技术与应用研究。已发表论文60余篇,申请中国和美国专利30余项,授权20多项。主持国家优秀青年科学基金项目,国家重点研发计划 “数字诊疗装备研发”项目,中国科学院前沿科学重点研究项目等。 /span /p
  • 科学岛团队开发出一种纳米口袋自动捕获目标物分子的SERS方法
    近日,中国科学院合肥物质院健康所杨良保研究员课题组开发了一种AgNP/MoS2纳米“口袋”自动捕获目标物分子的表面增强拉曼光谱方法,可实现部分化学反应过程的高灵敏长时间动态监测。相关成果发表在分析化学顶刊 Analytical Chemistry 上,并且被选为当期正封面(图1)。   表面增强拉曼光谱(SERS)是一种分子光谱,具有快速、高灵敏和指纹识别的特性。杨良保研究员团队一直从事SERS方面的研究,在之前的研究基础上(DOI:10.1021/jacs.1c02169),团队在大面积单层纳米粒子膜上覆盖了二维材料MoS2(图2),制备成AgNP/MoS2纳米“口袋”,将其覆盖在待测目标物分子之上,采用多物理场模型的有限元模拟方法,分析了AgNP/MoS2纳米“口袋”结构在溶液和空气中的电场增强分布和溶液蒸发的动态过程。研究表明,该纳米“口袋”不仅具有高密度的热点,还具有主动捕获分子的能力,与单层Ag NP膜相比,覆盖MoS2后减缓了溶液的蒸发,延长了SERS检测的窗口期,同时进一步增强了电场。该结构可以实现长达8分钟的高灵敏度、高稳定性的SERS动态检测。此外,该结构还可用于检测抗肿瘤药物和监测血清中次黄嘌呤的结构变化。相关方法有望更多地应用于生物系统中物质转化或其他化学反应动力学的现场监测。   该工作的第一作者为健康所2019级博士生陈思雨、2018级博士生葛美红以及博士后翁士瑞。该项研究受到中国科学院科研仪器装备开发项目、国家自然科学基金、安徽省自然科学研究项目等资助。图1 Analytical Chemistry的正封面图2 (上) 通过在液液界面组装大面积单层纳米粒子膜(下)在大面积单层纳米粒子膜覆盖二维材料MoS2,形成的AgNP/MoS2纳米“口袋”
  • 合肥物质院杨良保团队开发出表面增强拉曼光谱分析新方法
    近日,中国科学院合肥物质科学研究院健康与医学技术研究所研究员杨良保课题组,开发了AgNP/MoS2纳米“口袋”自动捕获目标物分子的表面增强拉曼光谱方法,可实现部分化学反应过程的高灵敏长时间动态检测。相关成果发表在《分析化学》(Analytical Chemistry)上,并被选为当期正封面(图1)。表面增强拉曼光谱(SERS)是一种分子光谱,具有快速、高灵敏和指纹识别的特性。杨良保团队致力于SERS方面的研究。在既往研究的基础上,该团队在大面积单层纳米粒子膜上覆盖了二维材料MoS2(图2),制备成AgNP/MoS2纳米“口袋”,将其覆盖在待测目标物分子之上,采用多物理场模型的有限元模拟方法,分析了AgNP/MoS2纳米“口袋”结构在溶液和空气中的电场增强分布和溶液蒸发的动态过程。研究表明,该纳米“口袋”具有高密度的热点,并具有主动捕获分子的能力,与单层AgNP膜相比,覆盖MoS2后减缓了溶液的蒸发,延长了SERS检测的窗口期,同时进一步增强了电场。该结构可实现长达8分钟的高灵敏度、高稳定性的SERS动态检测。此外,该结构可用于检测抗肿瘤药物和监测血清中次黄嘌呤的结构变化。相关方法有望更多地应用于生物系统中物质转化或其他化学反应动力学的现场检测。   研究工作得到中国科学院科研仪器装备开发项目、国家自然科学基金和安徽省自然科学研究项目等的支持。
  • 葛瑛团队成果|通过平行代谢物提取和高分辨率质谱对人体心脏组织进行全面的代谢组学分析
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章:Comprehensive Metabolomic Analysis of Human Heart Tissue Enabled by Parallel Metabolite Extraction and High-Resolution Mass Spectrometry[1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授。  心脏收缩需要持续的能量供应。作为一种“代谢杂食动物”,心脏利用多种代谢底物,如脂肪酸、碳水化合物、脂质和氨基酸等,来满足其高能量需求。然而,由于代谢物在极性尺度上具有广泛的覆盖范围,这使得它的提取和检测变得困难。因此,迫切需要对心脏的代谢产物进行全面的组学分析。本研究结合了平行代谢物提取和互补高分辨质谱检测的方法,对人类心脏进行了系统性代谢学分析。作者首先用六种提取方法获得了健康供体心脏组织的代谢物,包括三种单相提取,两次双相提取和一次三相提取,可以充分覆盖不同极性范围的代谢物。其中,单相的提取溶剂分别是100% 甲醇、80% MeOH 和乙腈/异丙醇/水(3:3:2),双相使用了Matyash和Bligh & Dyer法去萃取极性和非极性相,而三相则是进一步将非极性相分离成极性和中性脂质相,极性物质依然保留在水相中。紧接着,作者使用了两种互补的质谱平台进行代谢物检测:超高分辨傅里叶变换离子回旋共振质谱的直接进样(DI-FTICR)和高分辨率液相色谱四极杆飞行时间串联质谱(LC-Q-TOF-MS/MS)。总的实验流程如图1所示。这里总共鉴定到了1340种心脏代谢物,它们具有广泛的极性范围。本工作强调了平行提取和互补质谱检测技术在人类心脏代谢组研究中的重要性,其可作为帮助选择适当的提取和MS方法以研究特定类别代谢物的指南。    图1. 平行代谢物提取和高分辨率质谱检测的实验流程图。  为了捕获不同极性的代谢物,作者使用了六种提取方法获得了心脏组织的代谢物。单相法具有操作简便和通量较高的特点,但提取效率仍待提高。相对于单相法,多相提取可以覆盖更广泛极性范围的代谢物,但也需要注意一些代谢物可能在多相中分布,这会给检测和定量带来困难。比如,脂肪酰基链较短的酰基肉碱主要在极性相中存在,而较长链(C10)的酰基肉碱主要在非极性相中存在。DI-FTICR评估了六种提取方法的重现性,结果发现乙腈/异丙醇/水(3:3:2)在单相法中的重现性最好,两种双相法的重现性类似,但低相的Pearson相关性较低,说明了代谢物在跨相运动中有一定潜在困难。研究也发现不同提取方法均具有各自的提取特征,尤其在三相法中可以观察到更多的特征,它在极性相、极性脂质相和非极性脂质相中分别观察到了2275、541 和 443 个独特的SmartFormula注释。图2展示了六种方法通过DI-FTICR得到的代谢物SmartFormula注释,其中最大的三个交叉区域分别是六种方法共享、三相法特有和乙腈/异丙醇/水(3:3:2)特有的,分别有1287个、1010和703个,且发现多相提取的重叠度会更高。虽然在三相提取中可以获得更多的代谢特征,但该方法的重现性也最低。故对于发现代谢组学实验,Matyash提取法会更具优势,因为它可以鉴定到较多的已知代谢物,且重现性会更好。图2. 六种提取方法间代谢物SmartFormula注释的重叠情况(DI-FTICR)。  借助DI-FTICR平台,总共鉴定到9644个代谢特征,其中可以7156和1107个可以分配到SmartFormula注释和准确质量数。DI-FTICR在代谢物检测和鉴定方面具有强大优势,它可以给出准确的同位素分布,如图3B~3D所示。但需要注意的是,由于缺乏前端色谱分离,DI-FTICR对于异构体的分离检测能力有限,以及缺乏高通量的MS/MS分析。因此,作者利用LC-Q-TOF-MS/MS补齐了DI-FTICR检测平台的缺点。在LC-Q-TOF-MS/MS分析中,总共鉴定到21428个代谢特征,其中285个可通过比对二级谱图数据库来匹配确定。图4是鉴定到的代谢物和脂质。尽管与图3B~3C的酰基链组成相同,但在图4B~4C中可以通过观察酰基链的碎裂谱图得到脂质的酰基链信息。这说明LC-Q-TOF-MS/MS平台在获取更详细的酰基链信息方面的优势,但对于双键定位以及 sn1 和 sn2 定位等信息,还需要额外的实验去确定(如:衍生化和离子淌度)。此外,仪器参数设置也会影响到二级匹配评分。总的来说,相对单一的质谱检测平台,使用DI-FTICR MS和LC-Q-TOF-MS/MS平台可以增加心脏代谢组的覆盖范围。图3.使用LC-Q-TOF-MS/MS鉴定代谢物。(A)代表性的MS 谱图(100% MeOH),标注了SmartFormula注释和准确质量数,叠加实验质谱图(黑色)与理论质谱图(红色)以比较同位素分布 (C~D)FAHFA(40:5)、DG(32:0)和N-palmitoyl glutamic acid。图4.使用LC-Q-TOF-MS/MS鉴定代谢物,比较实验串联质谱图(黑色)与数据库质谱图(红色)。(A~D)N-acetyl-β-glucosaminylamine、DG(16:0_16:0)、FAHFA(18:1_22:4)和TG(18:1_18:1_18:2)。  使用多种提取和检测方法,本研究总共鉴定到了1340种心脏代谢物。每种提取方法都贡献了唯一检测到的代谢物。相较于提取效果最好的单一方法,平行提取可以检测到额外的350种代谢物。单相法可以鉴定到更多与二级谱图相匹配的代谢物,而多相法可以得到更多具有准确质量数的代谢物(图5A)。如图5B所示,三相法富集到的代谢物种类最多,包含甘油磷酸乙醇胺(PE)、脂肪酸和偶联物、三酰基甘油、脂肪酸酯和其他代谢物。此外,Matyash法可以鉴定到更多的氨基酸、甘油磷酸甘油和甘油磷酸丝氨酸,B&D法可以鉴定到更多的甘油磷酸胆碱(PC)、和磷磷脂,而100% MeOH鉴定最多的则是甘油磷酸盐。图5.已鉴定的人类心脏代谢物汇总。(A)各种提取方法中的准确质量注释、MS/MS注释和唯一检测到的代谢物 (B)各种提取方法中前10的代谢物种类。  最后,作者进一步表征了所有代谢物的化合物分类和通路富集,如图6所示。实验观察到很多代谢物归属于脂质和类脂分子,其中主要是PC、PE和脂肪酸,而非脂质化合物主要是有机酸及其衍生物(图6A)。通路分析也检测到了与心脏代谢过程相关的重要通路,包括嘌呤代谢和甘油磷脂代谢,如图6B所示。这里以嘌呤代谢(与多种心脏病变相关)为例,展示了平行提取在提高代谢物覆盖率方面的优势。在嘌呤代谢过程中,只有IDP仅在单一提取方法中观察到,而许多代谢物均在所有六种提取方法中都被检测到(图6C)。值得注意的是,B&D提取法在该过程中观察到了最多的代谢物,而100% MeOH富集的最少。上述结果为选择适当的用于分析人类心脏代谢物的提取方法提供了重要见解。图6.已鉴定的人类心脏代谢物的化合物分类和通路富集。(A)化合物分类 (B)所有已鉴定代谢物的通路分析汇总,每个圆圈的颜色和大小分别基于p值和通路影响值(红色表示影响大,黄色则相反) (C)嘌呤代谢过程,颜色表示鉴定代谢物的提取方法。  总的来说,本研究利用六种平行代谢物提取的方法和两种基于质谱检测平台,对人类心脏进行了全面的代谢组学分析,总共鉴定到1340种心脏代谢物,这代表了迄今为止对人类心脏代谢组学的最深度覆盖。研究发现三相法最适合脂质的提取,它获得的极性代谢物的数量与Matyash法相似,但其实验重现性也最低。因此,提取方法的选择应当取决于感兴趣的待分析物。但对于非靶向研究,作者建议使用Matyash提取法,以实现代谢组覆盖率和重现性的最佳平衡。尽管本研究目前还存在一定的局限性,比如,平行提取样品量较大和分析时间较长,但其为选择适当的提取和质谱检测平台去分析不同类型的心脏代谢物提供了宝贵经验,有助于人类心脏代谢组学的全面分析。  撰稿:陈昌明编辑:李惠琳文章引用:Comprehensive Metabolomic Analysis of Human Heart Tissue Enabled by Parallel Metabolite Extraction and High-Resolution Mass Spectrometry
  • 【瑞士步琦】使用Sepmatix 8x SFC进行高效色谱柱筛选
    高效色谱柱筛选尿嘧啶和黄嘌呤,即咖啡因、可可碱和茶碱,是一组在各种生物过程和人类消费中起重要作用的有机化合物[1-3]。这些分子属于杂环化合物,其特点是含有碳原子和氮原子的环状结构。尿嘧啶是 RNA(核糖核酸)的基本组成部分,RNA 是形成遗传密码并参与蛋白质合成的基本核碱基之一。另一方面,黄嘌呤、咖啡因、可可碱和茶碱是一类结构相似但生物效应不同的生物碱[1-3]。这些黄嘌呤存在于各种植物中,是一种众所周知的兴奋剂,可以穿过血脑屏障,影响中枢神经系统。在 RP(反相色谱)[1-3]条件下(SN_802_2023), LC(液相色谱)可分离生物碱。超临界流体色谱(SFC)是一种使用超临界二氧化碳(CO2)作为流动相的基本成分的色谱技术。这种状态的二氧化碳被称为超临界,它具有独特的特性,如高扩散系数和低粘度,使其成为分离和分析化合物的绝佳溶剂。与传统色谱方法相比,SFC 提供了许多优势,包括更快的分析时间,更低的溶剂消耗和分离的差异选择性。此外,与 RP-LC 相比,SFC 代表了一种正交技术,为各种分析挑战提供了互补的分离能力。在 SFC 中,色谱柱筛选包括测试不同的固定相,以找到最适合特定分离任务的固定相。固定相是色谱系统的重要组成部分,因为它直接影响色谱的选择性。不同的固定相具有不同的化学功能和与分析物的相互作用,使它们或多或少地选择特定的化合物。通过筛选和选择合适的色谱柱,可以优化分离条件,以获得更好的目标分析物的分辨率和灵敏度。本文描述了使用 Sepmatix 8x SFC 仪器对尿嘧啶、咖啡因、可可碱和茶碱混合物进行平行柱筛选,随后转移到制备的 Sepiatec SFC-50。1设备Sepiatec SFC-50 instrumentSepmatix 8x SFC instrumentPrepPure Silica, 5μm, 250 x 10mmPrepPure Diol, 5μm, 250 x 10mmPrepPure Silica, 5μm, 250 x 4.6mmPrepPure Diol, 5μm, 250 x 4.6mmPrepPure Amino, 5μm, 250 x 4.6mmPrepPure 2-EP, 5μm, 250 x 4.6mmReprosil 4-EP, 5μm, 250 x 4.6mm (Dr. Maisch GmbH)PrepPure PEI, 5μm, 250 x 4.6mmPrepPure CBD, 5μm, 250 x 4.6mmCyano, 5μm, 250 x 4.6mm, (Dr. Maisch GmbH)2试剂和材料二氧化碳(99.9%)甲醇(≥99%)尿嘧啶(99% + %)可可素(99%)咖啡(99%以上)茶碱(99%)3实验样品制备:在 50/2.5mL 甲醇/水混合液中,40℃ 下用超声水浴溶解 0.05g 尿嘧啶,0.07g 咖啡因,0.055g 可可碱,0.085g 茶碱。Sepmatix 8x SFC 筛选运行条件:流动相:A =二氧化碳:甲醇流速:3ml /min(每柱)流动相条件:0-0.5min:5% B0.5-8.0min:5 - 50%8.0-9.4min:50%9.4-9.5min:50 - 5%9.5-10min:5% B检测:紫外扫描波段:200nm - 600nm筛选运行是自动开始的。使用流量控制单元将流量设置为每通道 3mL/min,并平衡色谱柱。自动进样(V=5 μL),开始平行筛选(运行时间=10min)。背压调节器设置为 150bar,柱箱加热至 32°C。SFC-50 运行条件:流动相:A =二氧化碳;B=甲醇流动相条件:等度运行条件检测:紫外波长 270nmSFC 柱在规定的流速下条件预热 3 分钟,使用定量环自动注入样品并开始运行。背压调节器设置为 150bar,柱箱加热至 40°C。3结果与讨论用 Sepmatix 8x SFC 筛选色谱柱:为了确定样品的最佳分离选择性,进行了不同色谱柱的筛选。使用 Sepmatix 8x SFC 仪器可以高效地同时筛选8个色谱柱。因此,最佳选择性可以在很短的时间内确定。为此,使用了 8 种不同的固定相:硅胶、二醇基、氨基、氰基、2-EP、4-EP、PEI 和 CBD,图1显示了筛选的结果。▲图1:Sepmatix 8x SFC 仪器筛选结果。从左到右依次为:硅胶、氨基、氰基、二醇基;下从左至右依次为:2-EP、4-EP、PEI、CBD 柱;运行时间=10分钟用分辨率(R)来衡量色谱方法在色谱图中分离和区分两个相邻峰的能力,它量化了分析物相互分离的程度。表 1 显示了 4 组分分离的分辨率值。使用 Sepmatix 软件和以下公式自动确定:其中tR1 和 tR2 代表 组分 1 或组分 2的保留时间W1 和W2 代表分量1或分量 2 峰高一半处的宽度在处理复杂的混合物时,分辨率尤其重要,因为它确保每个分析物都被很好地分离,并且可以准确地识别和定量。分辨率为 1 表示峰值根本没有被分解,基本上是合并的,而更高的分辨率值表示峰值之间的分离更好。在使用过程中,分辨率至少应达到 1.5,才能以适当的定量和鉴定分析物。色谱柱R1R2R3硅胶1.574.183.79氨基5.421.264.44氰基未分离3.351.69二醇3.925.12.292-EP3.622.72未分离4-EP9.462.87未分离PEI9.931.8610.8CBD5.011.274.51表1:SFC 不同筛选条件下的分辨率值R 值的筛选和评价表明,硅胶、二醇基和 PEI 相对样品的分离选择性最好。二醇基在运行时间和分辨率方面表现出最佳性能。硅胶柱上的分离并不完全是茶碱和咖啡因的基线分离。PEI 相的运行时间相对较长,因为样品分子的位阻较大。表 2 为洗脱顺序,这是通过测定的光谱和组分的单独进样来确定的。与其他相相比,硅胶显示出不同的洗脱顺序。对于氰基、2-EP 和 4-EP,不能完全确定洗脱顺序。色谱柱洗脱顺序硅胶茶碱,咖啡因,尿嘧啶,可可碱氨基咖啡因,茶碱,可可碱,尿嘧啶氰基咖啡因和茶碱的双峰,可可碱,尿嘧啶二醇咖啡因,茶碱,可可碱,尿嘧啶2-EP咖啡因,茶碱,可可碱和尿嘧啶的双峰4-EP咖啡因,茶碱,可可碱和尿嘧啶的双峰PEI咖啡因,茶碱,可可碱,尿嘧啶CBD咖啡因,茶碱,可可碱,尿嘧啶表2:SFC 不同色谱柱筛选条件下的洗脱顺序将开发方法通过 SFC-50 放大:由于二醇基取得了最好的结果,因此选择了 5μm, 250 x 10mm 的 PrepPure 二醇基进行 Sepiatec SFC-50 方法放大制备。由于通过堆叠注射法纯化混合物的效率明显高于多次梯度注射法,该方法是在等度运行条件下实施的,这是使用堆叠进样的要求。在等度条件下,样品只能在低甲醇含量下分离(见图2,下)。在高甲醇浓度下,由于流动相的高洗脱强度,尿嘧啶、咖啡因、茶碱和茶碱是不可分离的(见图2,上)。▲图2:使用 PrepPure Diol 5 μm, 250 x 10mm 色谱柱分离样品。上:流速= 20 mL/min, 150 bar, 40℃,270nm, 33% B,进样量= 0.09 mL,运行时间= 4 min;下:流量= 20 mL/min 150 bar 40°C, 270 nm, 12%甲醇,0.09 mL,运行时间= 5 min改变压力和温度可以优化分辨率。最佳分离条件为 40℃ 和 150bar。图 3 为图 2(下)实验条件下的堆叠进样情况,堆叠时间为 2.42min,因此每 2.42min 进样一次。在这种情况下,由于每次额外注入节省了平衡时间,因此提高了产能。为了更有效的多次分离,可以使用硅胶填料。使用 34% 的甲醇作为改性剂,将堆叠时间缩短至 2.15min。与二醇基相比,硅胶填料在 100bar 下表现出更好的性能。然而,在 1.5 的分辨率下,咖啡因和茶碱并不能获得理想的基线分离。由于硅胶的极性比二元醇高,为了快速洗脱,必须增加改性剂的含量,但这也导致溶剂消耗增加。4结论在本文中,使用 Sepmatix 8x SFC 进行柱筛选,并将开发结果转移到 Sepiatec SFC-50 进行放大。在色谱参数分辨率和运行时间方面,二醇基表现出最好的效果。对于二醇基,根据筛选结果,在 Sepiatec SFC-50 仪器上采用 250 × 10 mm 柱进行等度堆叠进样。作为比较,开发了另一种用于硅胶填料的方法,但分辨率值略差。这种分离表明,要想在 prep-SFC 中获得一个好的分离方法,事先通过柱筛选确定最佳选择性是很重要的。然后,该方法可以在 prep-SFC 上简单实现,并进行了优化。最理想的是,该方法在等度条件下应用,以最大限度地提高产量。每次注射后的叠加紫外信号表明该方法具有良好的再现性(图3和4,下面)。垂直线描述了收集相应分数的时间窗口。▲图3:堆叠进样与二醇柱分离。流速= 20 mL/min, 150 bar, 40℃,270 nm, 12% B,进样量= 0.12 mL;堆叠时间:2.42 min,注射次数:8次;上图:最终色谱图;下图为各注射剂的紫外信号叠加图▲图4:堆叠进样与硅胶柱分离。流速= 16 mL/min, 100 bar, 40℃,270 nm, 34% B,进样量= 0.09 mL;堆叠时间:2.15 min,注射次数:7次;上图:最终色谱图;下图:分别在254 nm和270 nm处注射的叠加紫外信号5参考文献https://doi.org/10.1093/chromsci/46.2.144DOI: 10.1021/jf030817mDOI: 10.1016/j.foodchem.2004.11.013DOI: 10.1016/j.saa.2004.03.030Laboratory Chromatography Gμide, ISBN 3-033-00339-7, by Büchi Labortechnik AG (Switzerland)
  • 以普洱茶为例介绍代谢组学研究中药的新思路
    p   上 span style=" font-family: times new roman " 海市第六人民医院转化医学中心研究组最近应邀在美国《科学》杂志为中药研究增设的副刊Science,The Art and Science of Traditional Medicine上发表综述文章,贾伟教授针对中药研究的瓶颈问题——复杂成分中药的药代动力学,提出采用代谢组学与生物学分析技术相结合的手段进行多组分中药药物代谢动力学研究的新策略,并提出了Poly-PK(polypharmacokinetics)的新概念,文章以普洱茶中多组分的药代动力学为例子展示和总结了Poly-PK的研究思路和方法。 /span /p p span style=" font-family: times new roman "   普洱茶根据发酵工艺不同分为生茶和熟茶两种,生茶由晒青茶精制而成,熟茶则需经过渥堆、发酵的过程,并且一般认为普洱茶存放时间越长,茶的色泽味越好,生物活性作用也越强。前期的实验中,研究小组通过对存放1~ 10年的普洱熟茶成分谱的分析发现,随时间的增加,普洱茶的化学成分谱随之发生明显变化。与1年的普洱茶相比,10年的茶中的生物活性成分,如表儿茶素、葡萄糖含量增加,而茶中具有神经兴奋作用的咖啡因含量则相对减少。对不同工艺制备的茶进行比较后发现,茶叶中的色素,茶褐素(theabrownin, TB)在普洱茶中含量较高,而立顿红茶和龙井绿茶则以茶红素(thearubigin, TR)为主,这可能与普洱茶独有的渥堆发酵工艺有关。 /span /p p span style=" font-family: times new roman "   很多研究表明普洱茶具有降低血脂和血清总胆固醇水平的作用,但对普洱茶中究竟哪些是真正被机体吸收利用的活性成分并不十分清楚。研究小组利用代谢组学平台采用Poly-PK的研究思路对普洱茶中的化学成分进行了药代动力学研究。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" mmexport1460432233165_副本.png" src=" http://img1.17img.cn/17img/images/201604/insimg/93710b3b-c992-413c-a4cd-62803605b87a.jpg" / /span /p p span style=" font-family: times new roman "   首先,研究人员对志愿者饮茶后0、1、3、6、9、12、24小时的尿液样本分别进行收集,然后采用超高效液相色谱四级杆-飞行时间质谱仪和气相色谱-飞行时间质谱仪对普洱茶提取液中所含化学成分以及人喝茶后尿液中的代谢成分的变化进行了研究。采用多元相似性分析方法,将喝茶后不同时间点的尿液与0点相比较,寻找到喝茶后引起改变的内源性物质118种。将喝茶后不同时间点的尿液与茶提取液相比较,得到尿液中有19种物质成分是从普洱茶中吸收的,还有26种物质成分是从普洱茶吸收并经体内代谢产生的,接下来又通过相关性分析研究表明这几组物质间存在正相关或负相关关系。如发现咖啡因与它的代谢产物次黄嘌呤、茶碱、马尿酸、3-羟基苯乙酸呈明显正相关。而次黄嘌呤与内源性小分子物质鸟氨酸、缬氨酸、酪氨酸等呈明显正相关,茶碱与2-甲基鸟苷呈正相关而与尿素等呈负相关,升高的3-羟基苯乙酸导致氨基丙二酸二乙酯和2-氨基丁酸的升高。该研究结果阐明了喝茶后能被机体吸收的成分物质以及能产生生物活性作用的物质组成基础,并以期刊封面论文发表在2012年的Journal of Proteome Research上。 /span /p p style=" text-align: center " span style=" font-family: times new roman " img title=" mmexport1460432229668_副本.png" src=" http://img1.17img.cn/17img/images/201604/insimg/a1b5c4f9-1b44-4aa5-a2aa-44d092ff9430.jpg" / /span /p p span style=" font-family: times new roman "   Poly-PK的研究思路可以针对中药多组分的特点对复杂成分进入体内后的动态代谢过程,以及对机体内源性小分子代谢物的影响同时进行评价,阐明多组分药物在体内的吸收、代谢,清晰的了解复杂成分中药中哪些可能是具有生物活性的物质成分。 /span /p p span style=" font-family: times new roman "   原文出处: /span /p p span style=" font-family: times new roman "   1. Jia Wei, Fang Taiping,Wang Xiaoning, Xie Guoxiang. The polypharmacokinetics of herbal medicine.Science, The Are and Science of Traditional Medicine. 2015, 350, 6262:871. /span /p p span style=" font-family: times new roman "   2. Xie, Guoxiang Ye, Mao Wang, Yungang Ni, Yan Su, Mingming Huang, Hua Qiu, Mingfeng Zhao, Aihua Zheng, Xiaojiao Chen, Tianlu Jia, Wei*. Characterization of Pu-erh Tea UsingChemical and Metabolic Profiling Approaches. Journal of Agricultural and FoodChemistry. 2009, 57 (8): 3046–3054. /span /p p span style=" font-family: times new roman "   3. Xie Guoxiang, Zhao Aihua,Zhao Linjing, Chen Tianlu, Chen Huiyuan, Qi Xin, Zheng Xiaojiao, Ni Yan, ChengYu, Lan Ke, Yao Chun, Qiu Mingfeng, Wei Jia*. Metabolic Fate of Tea Polyphenolsin Humans. Journal of Proteome Research. 2012, 11(6):3449-54. /span /p p /p
  • 阿拉丁合成有机化合物配体——科研之星
    阿拉丁合成有机化合物配体——科研之星 在生物医药的浩瀚星空中,每一颗星星都代表着一个可能的突破。今天,我们要聚焦的是那些能够点亮科研之路的星星 —— 合成有机化合物配体。这些小分子是一系列通过化学合成方法得到的,能够与生物分子特异性结合的宝藏。它们不仅是药物设计的核心构件,也是实验研究中不可或缺的工具,直接影响着生物活性分子的发现与优化。 「应用」 (1)医药研发 作为药物分子的候选者,它们与疾病靶点的结合能力直接影响药物的疗效和安全性。 (2)实验研究 在实验室中,它们是研究生物分子功能、探索细胞信号传导路径的关键工具。 (3)药物设计 作为先导化合物,合成有机化合物配体在新药发现中起到决定性作用,通过与生物靶标的相互作用,优化药物的疗效和安全性。 (4)分子探针 在生物传感和分子成像中,它们作为信号放大和识别单元,为生物过程的监测提供了新的视角。 「为什么选择我们」 (1)品牌力量: 作为A股科创板上市企业,阿拉丁以强大的品牌影响力,赢得广泛认可。(2)创新先锋: 自主研发的"阿拉丁"品牌,覆盖四大科研领域,持续推动产品创新。(3)研发实力: 先进的研发设施和专业团队,确保技术领先和产品质量。(4)便捷电商: 依托电子商务平台,提供线上销售,优化购物体验。(5)生产基地: 在上海拥有自主的研发生产基地,确保生产效率和产品质量。(6)物流网络: 全国布局的现代化物流五大仓库,缩短交货时间,提升客户体验。(7)客户基础: 服务覆盖全部985和211高校,多家A股上市公司以及顶尖科研院所。(8)服务理念: 秉承“以进口替代为己任,让科研创新更便捷”的理念,持续提升服务。(9)市场认可: 成功上市,股票代码688179,展现公司实力和发展潜力。 探索更多,与阿拉丁一起,点亮科研的星光,照亮生命科学的未来。 产品货号产品名称规格或纯度包装规格T110598三(羟甲基)氨基甲烷EP, USP, 用于细胞培养测试, ≥99.9% (T)100g/500g/2.5kgC1127663-戊二酰胺95%250mg/1g/5g/25gA108470丙烯酰胺电泳专用级, ≥99%25g/100g/500g/1kg/5kg/12×500gP1111411,10-菲罗啉(无水)99%5g/10g/25g/100g/500gI131590碘乙酰胺超纯级,≥99% (NMR)5g/25g/100gI1068123-异丁基-1-甲基黄嘌呤(IBMX)99%100mg/250mg/1g/5gP167764佛波醇12-十四酸酯13-乙酸酯98%1mg/5mg/10mg/25mg/50mgH116380乌洛托品(易制爆)AR, ≥99.0%100g/500g/5kg 欢迎访问我们的官网,了解阿拉丁合成有机化合物配体的更多信息。
  • 走近Pribolab MDS多功能光电衍生系统
    p style=" margin-left:28px text-align:left line-height:150%" a name=" _Toc30635_WPSOffice_Level1" /a strong span style=" font-size:21px line-height:150% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing:0" span 1. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp /span /span /span /strong strong span style=" font-size:21px line-height:150% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing:0 background:white" 产品背景 /span /strong strong /strong /p p style=" text-indent:28px line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 色谱是一种分离科学, span HPLC /span 同其他类色谱一样,依据样品的结构进行分离, span HPLC /span 分很多种,它们往往可以将物质分离,被分离的组分峰应该能被检测到,通常最常用的检测器是 span UV/VIS /span 或荧光检测器,但很多物质不能被检测,后者很难与背景区分以致不能被检测。柱后衍生则很好的解决了这一问题。柱后衍生也称柱后反应,主要目的是使本来不可以 span / /span 不易检测的物质变为可检测的物质,这种方法主要是将分离后的物质通过反应使之具有可检测的物理性质。典型的方法是通过一种反应使物质带有带色基团,或使物质能产生荧光。在有些情况下可以使检测灵敏度提高几个数量级。大部分的溶剂对于某一特定类型的物质有一定的选择性,该类物质因而可以从复杂的背景中被检测到。所以柱后衍生的最大作用在于提高灵敏度和选择性。 /span /p p style=" margin-left:28px text-align:left line-height:150%" a name=" _Toc4715_WPSOffice_Level1" /a strong span style=" font-size:21px line-height:150% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing:0" span 2. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp /span /span /span /strong strong span style=" font-size:21px line-height:150% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing:0 background:white" 产品介绍 /span /strong strong /strong /p p style=" text-indent:28px line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " Pribolab sup & reg /sup MDS /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 多功能光电衍生系统将液体衍生装置和光化学衍生装置集成于一体,采用双流路通道,可实现自动切换衍生流路,实现化学试剂衍生和光衍生的转换,可有效提高检测效率,将分析工作者从单一的化学试剂衍生和光衍生工作中解放出来。配套高效液相色谱仪使用,有效拓展色谱系统的分析功能领域,可对多种物质衍生化后进行检测,可广泛适用于环境、临床、药物、食品和饲料等工业。 /span /p p style=" text-align:center text-indent:28px line-height:150%" span style=" font-family: & #39 微软雅黑& #39 ,& #39 sans-serif& #39 " img style=" max-width: 100% max-height: 100% width: 242px height: 332px " src=" https://img1.17img.cn/17img/images/202009/uepic/c5dadb16-5995-4f0d-a533-a6883d6ad40d.jpg" title=" 资讯-多功能光电衍生系统.png" alt=" 资讯-多功能光电衍生系统.png" width=" 242" height=" 332" / /span /p p style=" text-align:center text-indent:28px line-height:150%" span style=" font-family: & #39 微软雅黑& #39 ,& #39 sans-serif& #39 " Pribolab sup & reg /sup MDS3000/3100 /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 多功能光电衍生系统 /span /p p style=" text-align:center text-indent:28px line-height:150%" span style=" font-family: & #39 微软雅黑& #39 ,& #39 sans-serif& #39 " & nbsp /span /p p style=" margin-left:28px text-align:left line-height:150%" a name=" _Toc19744_WPSOffice_Level1" /a strong span style=" font-size:21px line-height:150% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing:0" span 3. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp /span /span /span /strong strong span style=" font-size:21px line-height:150% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing:0 background:white" 产品特点 /span /strong strong /strong /p p style=" margin-left:57px text-align:left line-height:150%" a name=" _Toc8145_WPSOffice_Level2" /a strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.1. span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span /span /strong strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 优良的人机交互设计 /span /strong strong /strong /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:101px margin-bottom:0 line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.1.1. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp /span /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 电脑控制和触摸屏控制两种方式可选,快速且易于设置; /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:101px margin-bottom:0 line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.1.2. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp /span /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 只有两个需连接端口,一个连接来自色谱柱的入口和一个进入检测器的出口; /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:101px margin-bottom:0 line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.1.3. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp /span /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 模块式设计,便于维护; /span /p p style=" margin-left:57px text-align:left line-height:150%" a name=" _Toc29757_WPSOffice_Level2" /a strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.2. span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span /span /strong strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 全面的多功能设计 /span /strong strong /strong /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:101px margin-bottom:0 line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.2.1. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp /span /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 将碘衍生装置和光衍生装置集于一体,检测项目增加,采用双流路通道,可以随意切换检测流路,实现试剂衍生和光衍生的转换; /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:101px margin-bottom:0 line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.2.2. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp /span /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 良好的系统兼容性,可与任何 span HPLC /span 系统一起工作,使现有的 span HPLC /span 实用性增大; /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:101px margin-bottom:0 line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.2.3. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp /span /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 可选 span 1 /span 个或 span 2 /span 个反应器,操作温度:环境温度 span +5~150 /span ℃,温度重现性± span 0.1 /span ℃,温度准确:± span 0.1 /span ℃,温度稳定时间:< span 25 /span 分钟; /span /p p style=" margin-left:57px text-align:left line-height:150%" a name=" _Toc21167_WPSOffice_Level2" /a strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.3. span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span /span /strong strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 精准的输液系统 /span /strong strong /strong /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:101px margin-bottom:0 line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.3.1. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp /span /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 整机采用 span PEEK /span 材质配件和管路,耐酸耐碱耐有机,寿命延长; /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:101px margin-bottom:0 line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.3.2. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp /span /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 久经考验的自清洗泵,大大延长了其使用寿命; /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:101px margin-bottom:0 line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.3.3. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp /span /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 可选 span 1 /span 个或 span 2 /span 个衍生剂泵,可选 span PEEK /span , span SUS /span 泵及管路; /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:101px margin-bottom:0 line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.3.4. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp /span /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 内置匀速器,大大降低了流速脉冲; /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:101px margin-bottom:0 line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.3.5. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp /span /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 流量精度± span 0.5% /span ; /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:101px margin-bottom:0 line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.3.6. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp /span /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 流速重现性 span 0.025%RSD /span ; /span /p p style=" margin-left:57px text-align:left line-height:150%" a name=" _Toc8363_WPSOffice_Level2" /a strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.4. span style=" font:9px & #39 Times New Roman& #39 " & nbsp /span /span /span /strong strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 完备的安全保障措施 /span /strong strong /strong /p p style=" margin-left:101px text-align:left line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.4.1. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp /span /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 柱后防回流系统:管内单向阀,当 span HPLC /span 压力降低时,防止试剂回流至色谱柱; /span /p p style=" margin-left:101px text-align:left line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " span 3.4.2. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp & nbsp & nbsp /span /span /span span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 过温保护系统:反应池温度不能超过 span 150 /span ℃,防止反应池过热损坏。 /span /p p style=" margin-left:28px text-align:left line-height:150%" a name=" _Toc17776_WPSOffice_Level1" /a strong span style=" font-size:21px line-height:150% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing:0" span 4. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp /span /span /span /strong strong span style=" font-size:21px line-height:150% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing:0 background:white" 应用领域 /span /strong strong /strong /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:28px margin-bottom:0 line-height:150%" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 广泛适用于环境、临床、药物、食品和饲料等工业。 /span /p p style=" margin-left:28px text-align:left line-height:150%" a name=" _Toc2795_WPSOffice_Level1" /a strong span style=" font-size:21px line-height:150% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing:0" span 5. span style=" font:9px & #39 Times New Roman& #39 " & nbsp & nbsp /span /span /span /strong strong span style=" font-size:21px line-height:150% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing:0 background:white" 实例展示 /span /strong strong span style=" font-size:21px line-height:150% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing:0 background:white" ( /span /strong strong span style=" font-size:13px line-height:150% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing:0 background:white" 方案可致电详询! /span /strong strong span style=" font-size:21px line-height:150% font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#009E7D letter-spacing:0 background:white" ) /span /strong /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:115px margin-bottom:0" span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 1. /span span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 黄曲霉毒素 /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:115px margin-bottom:0" span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 2. /span span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 九种氨基甲酸酯及其衍生物 /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:115px margin-bottom:0" span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 3. /span span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 化妆品中游离甲醛 /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:115px margin-bottom:0" span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 4. /span span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 草甘膦 /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:115px margin-bottom:0" span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 5. /span span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 伏马毒素 /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:115px margin-bottom:0" span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 6. /span span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 牛磺酸 /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:115px margin-bottom:0" span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 7. /span span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 六价铬 /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:115px margin-bottom:0" span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 8. /span span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 聚醚类抗生素(马杜霉素铵、赛杜霉素钠、莫能菌素) /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:115px margin-bottom:0" span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 9. /span span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 溴酸盐 /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:115px margin-bottom:0" span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 10. /span span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 赛杜霉素钠 /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:115px margin-bottom:0" span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 11. /span span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 氨基苷类抗生素(硫酸安普霉素) /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:115px margin-bottom:0" span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 12. /span span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 麻痹性贝类毒素 /span /p p style=" margin-top:0 margin-right:28px margin-bottom: 0 margin-left:115px margin-bottom:0" span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 13. /span span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " 伏格列波糖 /span /p p span style=" font-size:15px font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 " & nbsp /span /p p br/ /p
  • 代谢组学揭示肠癌患者临床诊断依据
    近年来,医学领域的基础研究日趋系统化和多学科交叉,系统生物学的迅猛发展翻开了临床实践、药物研发的新篇章。作为国内较早涉足系统生物学研究的贾伟教授研究团队,近年来应用代谢组学技术对各种临床疾病的早期预测、诊断和预后的生物标志物进行了广泛的研究,现以结直肠癌的系列研究为例介绍我们的研究进展。  研究团队首先采用气相色谱质谱联用、液相色谱质谱联用分析方法,结合单维统计、多维统计的代谢组学研究技术,对I-IV期的64名肠癌患者和65名健康志愿者分别进行了血清和尿液代谢标志物的筛查,并进一步在扩大的研究对象101名肠癌患者和103名健康人中对所发现的潜在代谢标志物进行了验证。  研究结果显示,肠癌患者与健康人的血清代谢物组成具有显著差异。肠癌患者的糖酵解通路中的两个代谢产物丙酮酸和乳酸在血清中呈显著性升高,三羧酸循环中的琥珀酸、异柠檬酸、柠檬酸中间产物呈下降趋势 油胺在肠癌病人血清中的含量也有显著性降低 尿素循环代谢物精氨酸、鸟氨酸和瓜氨酸在病人血清中均显著降低,脯氨酸、羟基脯氨酸和谷氨酸也显著下降 另外,色氨酸及其相关的代谢物5-羟基色氨酸和5-羟基吲哚乙酸在肠癌组和正常组之间有显著性差异,提示与5-羟色胺的代谢相关。研究结果还显示,血清代谢产物不仅可以将肠癌Ⅱ-Ⅳ期的患者与健康人明显区分开,还能将Ⅰ期的早期肠癌患者与健康人也区分开来。我们的相关研究结果从2009年开始陆续发表在专业领域内具有较大影响力的杂志Journal of Proteome Research(2009和2013)上。  尿液代谢组学结果同样显示,结直肠癌患者和正常人的代谢谱亦呈显著差异。结直肠癌患者中的色氨酸代谢上调,组胺和谷氨酸代谢通路、三羧酸循环和肠道菌群代谢紊乱。另外,结直肠癌病人中紊乱的代谢谱,如5-羟色氨酸代谢物、三羧酸循环代谢和肠道菌群代谢物在手术后得到明显改善。研究进而开展了二甲肼(DMH)所致结肠癌早期病变的SD大鼠模型的研究,同样发现这些代谢物的波动和紊乱。研究结果发表在Journal of Proteome Research (2010和2012)上,并得到美国ACS和TIME(时代周刊)为代表的多家权威媒体的重点报道和关注,对该研究结果和前景给予了极高的评价。  在结直肠癌血清和尿液的代谢组学研究基础上,我们对肠癌的组织也进行了深入的研究,对组织的研究可以有效规避血清、尿研究中由于饮食差异等外界因素对体内代谢物的影响带来对研究结果的影响。研究团队首先对来自上海地区的结直肠癌和癌旁组织进行研究,发现了一组在癌和癌旁组织中具有显著性差异的代谢物。进而对来自北京、浙江和美国加州另外3个不同地区的结直肠癌和癌旁组织也进行了研究。结果显示肠癌组织中总的代谢物变化趋势在4个不同地区的样本具有很高的相似性,其中的15个代谢分子呈现出完全一致的变化趋势。进一步研究发现这些差异性代谢物的变化与所在的代谢通路上的基因表达水平的变化呈高度的一致性。这些差异代谢物包括上调的犬尿氨酸、b-丙氨酸、谷氨酸、半胱氨酸、2-氨基丁酸、棕榈油酸、焦谷氨酸、天冬氨酸、次黄嘌呤、乳酸、豆蔻酸、甘油、尿嘧啶、腐胺,以及下调的肌醇。差异表达性的基因包括LDHA、TALDO1、GOT2、MDH2、ME1、GAD1、ABAT、PANK1、DPYD、ACLY、FASN、SCD、IDO1、GPX1、GSTP1、GSR、GSS、GGCT、ANPEP、CAT、ERCC2。结合代谢物和基因表达变化发现的结直肠癌的代谢物模式和基因表达模式特点主要可以从三个方面阐释其生物特性:1)“瓦伯格效应”(Warburg Effect):这是肿瘤细胞能量代谢的典型特征,表现在大量地摄取葡萄糖进行有氧糖酵解,生成大量的乳酸,同时为不断生长的肿瘤细胞提供生物合成原料 2)伴随着糖酵解的上升,用于大分子物质合成的代谢中间体显著上升:肿瘤细胞的代谢会产生大分子中间体来支持细胞生长,导致某些特定的游离脂肪酸(豆蔻酸、棕榈油酸)和核酸(次黄嘌呤)的浓度上升。在肿瘤细胞中,高表达的ACLY、 FASN和SCD同样提示了脂肪酸合成的增强。而b-丙氨酸在肿瘤细胞生长中明显的变化可能与脂肪酸合成中的乙酰辅酶A和丙二酸辅酶A有着密切的联系,提示这种变化可能与肠道菌群代谢有相关性 3)肿瘤细胞内维持较高的氧化应激水平:我们发现肿瘤组织内具有抗氧化活性代谢物的浓度显著上升。由于肿瘤细胞加速合成代谢而产生较高的活性氧,从而使胞内氧化应激水平上升。所发现的这些具有抗氧化活性的代谢产物在肿瘤组织中被大量的合成,提示肿瘤细胞通过改变代谢模式,用还原性的分子来平衡活性氧,从而在较高的氧化应激水平下维系其生理和代谢功能。实验中发现,氧化应激的生物标志物视晶酸、2-氨基丁酸在肿瘤细胞中上升。同时,与谷胱甘肽相关的基因包括GPX1、GSR、GGCT、GSTP1也在肿瘤组织中显著升高。该研究结果发表于国际知名的癌症研究期刊ClinicalCancer Research(2014)。  我们相信对结直肠癌的系统性的代谢研究,对寻找和发现具有临床早期诊断和预后价值的生物标志物研究提供了极大的可能性,为未来的临床转化研究奠定了坚实的基础。     原文出处:  1.Qiu, Y. Cai, G. Su, M. Chen,T. Zheng, X. Xu, Y. Ni, Y. Zhao, A. Xu, L. X. Cai, S. Jia, W., Serummetabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS.Journal of Proteome Research. 2009, 8, 4844–4850.  2.Qiu, Y. Cai, G Su, M. Chen, T. Liu, Y. Xu, Y. Ni, Y. Zhao, A. Cai, S. Xu, L. X. Jia, W.,Urinary Metabonomic Study on Colorectal Cancer. Journal of Proteome Research.2010, 9, 1627–1634.  3.Cheng, Y., Xie, G., Chen, T., Qiu, Y., Zou,X., Zheng, M., Tan, B., Feng, B., Dong, T., He, P., Zhao, L., Zhao, A., Xu,LX., Zhan,g Y., Jia, W. Distinct urinary metabolic profile of human colorectalcancer. Journal of ProteomeResearch. 2012, 11(2):1354-63.  4.Tan, B, Qiu,Y, Zou, X, Chen, T, Xie, G, Cheng, Y, Dong, T, Zhao, L, Feng, B, Hu, X, Xu, L.X, Zhao, A, Zhang, M, Cai, G, Cai, S, Zhou, Z, Zheng, M, Zhang, Y & Jia, W.Metabonomics identifies serum metabolite markers of colorectal cancer. Journalof Proteome Research 2013, 12, 1354?1363.  5.Qiu, Y. Cai,G. Zhou, B. Li, D. Zhao, A. Xie, G. Li, H. Cai, S. Xie, D. Huang,C. Ge, W., Zhou,Z. Xu, L. Jia, Weiping Zheng, S. Yen, Y. Jia, W. Metabonomicsof human colorectal cancer: new approaches for early diagnosis and biomarkerdiscovery. Clinical Cancer Research.2014, 20(8):15.
  • 世界首例胎盘干细胞移植成功
    日前,解放军307医院宣布,经过16个月的术后观察,由全军造血干细胞研究所所长、该院造血干细胞移植科主任陈虎教授领衔的团队,率先开展的世界首例胎盘造血干细胞联合脐带血造血干细胞移植治疗重型再生障碍性贫血获得成功。据主治医生扈江伟介绍,2013年12月30日,河北迁安一位9岁女童患再生障碍性贫血入院治疗。患者为重型再障,如果不采取移植治疗,将因反复出血、感染而导致死亡,结局和白血病患者一样。2014年3月14日,在征得患者父母同意后,307医院从女童新诞生的妹妹胎盘中提取造血干细胞联合脐带造血干细胞进行移植治疗,患儿康复出院。目前造血功能恢复正常,情况稳定。陈虎表示,脐带血干细胞具有免疫原性较弱、配型要求不高的优势,且移植抗宿主病发率较低,但缺点是是造血干细胞数量太少,不容易植活,难以满足移植要求。胎盘组织含有大量造血干细胞,通过分离胎盘中造血干细胞,从而弥补干细胞数量不足,两者联合移植在世界上尚属首次公开报道。陈虎还强调,胎盘造血干细胞移植的成功,为治疗白血病患者开辟了一条新的路径,但还需要积累更多的临床病例才能不断验证这种移植方式的科学性和稳定性xy-8326R Hi95缺氧诱导基因95抗体xy-8379R HIP2泛素蛋白连接酶E2抗体xy-7982R HOXC9同源盒蛋白HOXC9抗体xy-11630R HCN2 + HCN4环化核苷酸调控阳离子通道蛋白亚型2/4抗体xy-11851R HELT转录因子HELT蛋白抗体xy-11852R HES6转录因子HES6抗体xy-11853R HMX2同源盒蛋白H6亚型2抗体xy-11854R HS6ST1硫酸乙酰肝素6脑苷脂转硫酸酶1抗体xy-11646R Humanin神经保护肽HN抗体xy-4646R Capsid protein VP1大鼠细小病毒H-1株(H-1)抗体(N端)xy-2946R HAS1透明质酸合成酶1抗体xy-5898R HIF3 alpha缺氧诱导因子3α/HIF-3α抗体xy-5899R HIFPH4缺氧诱导因子脯氨酰4羟化酶抗体xy-5888R Hyaluronidase2透明质酸酶2/玻璃酸酶2抗体xy-5822R H Cadherin心脏钙粘蛋白抗体xy-6592R HSD17B617-β-羟脱氢酶6抗体xy-4813R H5N1-H5禽流感H5亚型全病毒抗体xy-2942R ORF K14(HHV8)人类疱疹病毒8 ORF14抗体xy-5889R Hyaluronidase3透明质酸酶2/玻璃酸酶2抗体xy-6538R HOXB2同源盒蛋白B2抗体xy-6539R HOXB8同源盒蛋白B8抗体xy-6540R HSPA6热休克蛋白70家族蛋白6抗体xy-9913R HGFA肝细胞生长因子激活蛋白抗体xy-6537R HDGF肝癌衍生生长因子抗体(高迁移率族蛋白1样蛋白2抗体)xy-5386R Phospho-Histone H3(Thr3)磷酸化组蛋白H3抗体xy-9026R HPRT次黄嘌呤磷酸核糖基转移酶1抗体xy-3776R Histone H3 (acetyl K9)乙酰化组蛋白H3抗体xy-3748R Acetyl and phospho-Histone H3 (Ac-K9/p-Ser10)乙酰化和磷酸化组蛋白H3抗体xy-3779R Histone H2A组蛋白H2A抗体xy-3781R Acetyl-Histone H2A(K5)乙酰化组蛋白H2A抗体xy-3782R Acetyl-Histone H2B(K5)乙酰化组蛋白H2B抗体xy-3783R Acetyl-Histone H2B(K20)乙酰化组蛋白H2B抗体xy-5360R Phospho-Histone H2A.X (Tyr143)磷酸化组蛋白H2AX抗体xy-5361R Phospho-HSP27 (Ser254)磷酸化热休克蛋白27抗体xy-5362R phospho-HSP70(Tyr41)磷酸化热休克蛋白70抗体xy-5363R phospho-HSF1(Ser303)磷酸化热休克因子1抗体xy-5364R phospho-HSF1(Ser307)磷酸化热休克因子1抗体xy-5365R phospho-HSP70 (Tyr525) 磷酸化热休克蛋白70抗体xy-6011R HACE1E3泛素蛋白连接酶HACE1抗体xy-3837R Hamartin结节性硬化症蛋白1抗体xy-3828R HNF4A肝细胞核因子4α抗体xy-4001R phospho-HNF4 (Ser313)磷酸化肝细胞核因子4α抗体xy-6014R HELLS淋巴特异性解旋酶抗体xy-6013R HRASLS2HRAS样抑制因子2抗体xy-6002R HSP40 homolog热休克蛋白家族40抗体xy-6121R RBMX糖蛋白P43抗体xy-2366R HSD3B7滋养层细胞抗原3β7抗体xy-3672R HSP22热休克蛋白-22抗体xy-3606R HRH4组织胺H4受体抗体xy-3618R HSD11B2羟基类固醇脱氢酶11β2抗体xy-3635R HRH3组织胺H3受体抗体
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制